WO2016201757A1 - Séparateur à revêtement nanocomposite à constante diélectrique élevée et son procédé de fabrication - Google Patents

Séparateur à revêtement nanocomposite à constante diélectrique élevée et son procédé de fabrication Download PDF

Info

Publication number
WO2016201757A1
WO2016201757A1 PCT/CN2015/084124 CN2015084124W WO2016201757A1 WO 2016201757 A1 WO2016201757 A1 WO 2016201757A1 CN 2015084124 W CN2015084124 W CN 2015084124W WO 2016201757 A1 WO2016201757 A1 WO 2016201757A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
parts
coating
nanocomposite
inorganic
Prior art date
Application number
PCT/CN2015/084124
Other languages
English (en)
Chinese (zh)
Inventor
曹江
杨雪梅
谭斌
吴术球
杨佳富
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Publication of WO2016201757A1 publication Critical patent/WO2016201757A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, in particular to a nano composite coating membrane with a high dielectric constant coating layer and a preparation method thereof.
  • the separator has the basic functions of isolating the positive and negative electrodes, preventing short circuits, and providing lithium ion conduction holes.
  • the traditional ion battery separator adopts a single layer or a plurality of porous membranes of polyolefin.
  • the pure polyolefin porous membrane only has the basic functions of a lithium battery separator, and it is difficult to meet the technical requirements of a new generation of lithium ion batteries.
  • the polymer coated diaphragm imparts the function of absorbing the electrolyte gel
  • the lithium battery no longer causes safety problems due to leakage, but the battery internal resistance is too large, which affects the battery performance, and the rate and cycle life are reduced.
  • composite coated separators obtained by blending polymers and ceramic powders, but all of them affect the performance of the battery due to poor interfacial properties of the composite coating.
  • a commercially available composite coated separator usually uses a ceramic powder having a low dielectric constant such as alumina, silica or barium sulfate, and the obtained composite separator has poor ion conductivity. In view of this, it is necessary to provide a functionalized nanocomposite coated separator having a high dielectric constant coating layer and a method of preparing the same.
  • the present invention provides a high dielectric constant nanocomposite coating separator having high ionic conductivity and excellent battery performance and a preparation method thereof.
  • the parts described in the present invention are all parts by weight unless otherwise specified.
  • a nano composite coating separator comprising a polyolefin porous film and a nano composite coating on one side or both sides of the polyolefin porous film, wherein the nano composite coating is an inorganic-organic polymer composite particle.
  • the inorganic-organic polymer composite particles contain a gel polymer and nano ceramic particles, and the parts by weight are:
  • the lithium ion battery separator provided by the invention has the inorganic-organic polymer composite particles compounded by the gel polymer and the nano ceramic particles, and has the characteristics of high dielectric constant due to the presence of the inorganic-organic polymer composite particles, and can be fully Prevent the diaphragm from being broken down by voltage and short-circuit the battery. Therefore, not only is the safety better, but the service life is longer and so on.
  • the inorganic-organic polymer composite particles obtained by combining 50 to 90 parts by weight of the gel polymer and 10 to 50 parts by weight of the nano ceramic particles of the present invention have a high dielectric constant which is much higher than that of the existing composite coating. Technology, better security.
  • the nanocomposite coating layer preferably has a thickness of 1 to 4 ⁇ m.
  • the dielectric constant is small, which does not meet the need for improving safety.
  • the nanocomposite coating is larger than 4 ⁇ m, the dielectric constant is improved, but the excessive thickness of the nanocomposite coating affects the isolation effect of lithium ions.
  • the inorganic-organic polymer composite particles wherein the gel polymer monomer comprises acrylonitrile, methyl methacrylate, butyl acrylate, butyl acrylate, methacrylic acid, acrylic acid, styrene One or a mixture of two or more.
  • the high dielectric constant nano ceramic particles are one or a mixture of two or more of rutile type nano titanium dioxide, nano barium titanate, and nano CaCu 3 Ti 4 O 12 .
  • the aqueous coating slurry used in the nano composite coating layer contains a composition and an aqueous solvent; wherein the composition is in parts by weight, and the inorganic-organic polymer composite particles are 90 to 95 parts, 1 to 5 parts of the wet agent and 3 to 10 parts of the adhesive.
  • the wetting agent is a fluoroalkyl methoxy ether alcohol, a fluoroalkyl ethoxy ether alcohol, an alkyl phenol ethoxylate, a fatty alcohol polyoxyethylene ether, a fatty acid polyoxygen One or more of vinyl ethers.
  • the adhesive is one or more of polyethylene glycol, styrene-butadiene latex, and polyvinyl acetate.
  • the aqueous solvent includes one or two or more kinds of water-miscible alcohol solvents such as deionized water, ethanol, methanol, and ethylene glycol.
  • the inorganic-organic polymer composite particles are surface-treated with a graft polymer, and the surface treatment coupling agent mainly uses a silane coupling agent with a double bond, and the silane coupling agent includes vinyl triethyl hydride.
  • the silane coupling agent includes vinyl triethyl hydride.
  • the dielectric constant thereof is further improved, and the safety performance is remarkably improved.
  • the polyolefin separator is a polyethylene separator, a polypropylene separator, a polypropylene/polyethylene/polypropylene separator, and has a thickness of 5 to 40 ⁇ m and a porosity of 30% to 60%.
  • the invention also discloses a preparation method of a nano composite coating membrane, comprising the following steps:
  • the polymer layer in the inorganic-organic polymer composite particles prepared by the method has a low molecular weight and generally has a molecular weight of less than 10,000, it is easy to gel with the electrolyte in a lithium battery, so the nanocomposite coating membrane absorbs the electrolyte gel.
  • the internal state of the battery is dry, which can improve the safety and hardness of the lithium battery.
  • the inorganic nanoparticles with high dielectric constant are dispersed on the surface and inside of the coating layer, and the surface nanoparticles can effectively reduce the transfer of lithium ions from the electrode to the electrolyte.
  • the energy barrier of the process serves to reduce the interface resistance of the lithium battery and improve the performance of the battery rate.
  • the entire coating system increases the wettability and liquid absorption of the separator, which effectively improves the cycle performance of the battery.
  • the present invention utilizes the synergistic effect of the high dielectric constant of the inorganic nanoparticles and the low molecular weight polymer to obtain an inorganic-organic polymer composite particle for preparing a nanocomposite coating separator, which has an efficient absorption of the electrolyte and condensation.
  • the properties of the glue are excellent in the performance of the nanocomposite coated separator battery.
  • the invention adopts synthesis and slurry preparation process without other by-products, and various solid components can exert their functions in the battery, and the efficiency is high, the cost is low, and the environment is environmentally friendly.
  • Figure 1 is a high dielectric constant nanocomposite coating diaphragm electron micrograph
  • a high dielectric constant nanocomposite coated separator comprising a polypropylene based film and a nanocomposite coating applied to one side of the polypropylene film.
  • the polypropylene porous film has a thickness of 16 ⁇ m, a porosity of 42%, and a coating thickness of 2 ⁇ m.
  • the nanocomposite coating is mainly composed of rutile-type nano-titanium dioxide and polymethyl methacrylate oligomer, wherein rutile titanium dioxide
  • the dielectric constant is 180 and the particle size is 5-10 nm.
  • the mass ratio of polymethyl methacrylate to nano titanium dioxide is controlled at 2:1,
  • the coating slurry used deionized water and ethanol as a mixed solvent, and the volume ratio was controlled at 9:1.
  • the slurry configuration includes 95 parts of high dielectric constant inorganic-organic nanocomposite particles, 2 parts of a wetting agent, and 3 parts of an adhesive calculated in parts by weight.
  • the wetting agent is fluoroalkyl methoxy ether alcohol
  • the coating slurry was applied to one side of the polypropylene base film by a precision coater, and dried to obtain a nanocomposite separator having a high dielectric constant coating layer.
  • a high dielectric constant nanocomposite coated separator comprising a polyethylene porous film and a mixed coating applied on both sides of a polyethylene porous film, wherein the polyethylene porous film has a thickness of 9 ⁇ m and a porosity of 48% on both sides The thickness of the coating is 2 ⁇ m.
  • the nanocomposite coating is mainly composed of nano-barium titanate and polymethyl methacrylate oligomer.
  • the nano-barium titanate has a dielectric constant of 380 and an average particle diameter of 20 nm.
  • the mass ratio of methyl acrylate to nano titanium dioxide was controlled at 4:1, and the coating slurry was treated with deionized water and ethylene glycol as a mixed solvent, and the volume ratio was controlled at 4:1.
  • the slurry configuration included 93 parts of high dielectric constant inorganic-organic nanocomposite particles, 2 parts of a wetting agent, and 5 parts of an adhesive calculated in parts by weight.
  • nano-barium titanate is added to a mixed solvent of water and ethylene glycol, and a silane coupling agent ⁇ -methacryloxypropyl-trimethoxysilane is added thereto, and the mixture is stirred at a high speed to obtain a mixed solution.
  • a silane coupling agent ⁇ -methacryloxypropyl-trimethoxysilane is added thereto, and the mixture is stirred at a high speed to obtain a mixed solution.
  • the wetting agent is a fluoroalkyl methoxy ether alcohol, stirring at a high speed, and filtering with a 400-mesh sieve to obtain a coating slurry;
  • the coating slurry was applied to both sides of the polyethylene wet base film by a precision coater, and dried to obtain a nanocomposite separator having a high dielectric constant coating layer.
  • a high dielectric constant nanocomposite coated separator comprising a polypropylene/polyethylene/polypropylene porous membrane and a mixed coating applied on both sides of a polyethylene porous membrane, wherein the base film has a thickness of 25 ⁇ m and a porosity of 38 %, both sides of the coating thickness are 2 ⁇ m, the nanocomposite coating is mainly composed of nano-titanium titanate surface modified nano-barium titanate particles and polyacrylonitrile oligomer, wherein the coated inorganic nanoparticles have a dielectric constant of 248
  • the average particle size is 25 nm
  • the mass ratio of polyacrylonitrile to nano titanium dioxide is controlled at 5:2
  • the coating slurry is treated with deionized water and ethylene glycol as a mixed solvent, and the volume ratio is controlled at 5:1.
  • the slurry configuration includes 90 parts of high dielectric constant inorganic-organic nanocomposite particles, 1 part of a wetting agent, and 10 parts of
  • the coating slurry was applied to both sides of the base film by a precision coater and dried to obtain a nanocomposite separator having a high dielectric constant coating layer.
  • This comparative example provides an alumina ceramic coated lithium ion battery separator comprising a porous polypropylene membrane and an alumina coating applied to one side of the porous membrane of polypropylene, wherein the porous polypropylene membrane has a thickness of 16 ⁇ m and a porosity. 42%, the alumina coating thickness is 4 ⁇ m.
  • This comparative example provides a polymer coated lithium ion battery separator comprising a polypropylene porous membrane and a cohesive polymer coating applied to one side of the polypropylene porous membrane, wherein the polypropylene porous membrane has a thickness of 16 ⁇ m, pores The rate was 42% and the polymer coating thickness was 1 ⁇ m.
  • the present comparative example provides a polymer coated lithium ion battery separator comprising a polypropylene porous membrane and a cohesive polymer-ceramic hybrid coating applied to one side of the polypropylene porous membrane, wherein the polypropylene porous membrane has a thickness of 16 ⁇ m, porosity is 42%, and polymer coating thickness is 2 ⁇ m.
  • This comparative example used a porous film having a thickness of 16 ⁇ m and a porosity of 42%, and was not subjected to any coating treatment.
  • the particle conductivity test was carried out on the lithium ion battery separators of Examples 1 to 3 and Comparative Examples 1-4, and the diaphragm was assembled into a steel/steel sheet analog battery, and the particle conductivity of the separator was tested by using an alternating current impedance.
  • Table 1 The particle conductivity test was carried out on the lithium ion battery separators of Examples 1 to 3 and Comparative Examples 1-4, and the diaphragm was assembled into a steel/steel sheet analog battery, and the particle conductivity of the separator was tested by using an alternating current impedance.
  • coating a polyolefin with a high dielectric constant nanocomposite coating facilitates the migration efficiency of lithium ions in the separator and increases the ionic conductivity.
  • the high dielectric constant nanocomposite coating is composed of high dielectric constant nano-inorganic particles and oligomers, it has a strong absorption of electrolyte gel, which can be used in lithium batteries to obtain internal apparent dryness. State structure, the battery does not leak, and the safety performance of the battery is correspondingly improved.
  • a lithium ion battery separator was prepared by using Example 1, wherein the gel polymer and the nano inorganic ceramic particles were parts by weight, and the test results are shown in Table 2.
  • the separator prepared by 50 to 90 parts of the gel polymer and 10 to 50 parts of the nano inorganic ceramic particles have stable ionic conductivity.
  • a lithium ion battery separator was prepared by using Example 1, wherein the thickness of the nanocomposite coating and the test results are shown in Table 3.
  • the thickness of the nanocomposite coating is 1-4 ⁇ m, the ionic conductivity is stable, and the useful life effect is particularly remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

La présente invention porte sur un séparateur à revêtement nanocomposite à constante diélectrique élevée présentant une forte conductivité ionique et d'excellentes performances de batterie, et sur son procédé de fabrication. Le revêtement nanocomposite, préparé à l'aide d'un composite polymère organique-particules inorganiques formé par mélange de 50 à 90 parties en poids d'un polymère gel et de 10 à 50 parties en poids de nanoparticules céramiques inorganiques, possède une constante diélectrique sensiblement plus élevée que celle de l'état de la technique et offre une meilleure sécurité. La présente invention utilise l'effet coopératif des caractéristiques des nanoparticules inorganiques à constante diélectrique élevée et du polymère à faible poids moléculaire pour obtenir le composite polymère organique-particules inorganiques pour la préparation du séparateur à revêtement nanocomposite présentant les caractéristiques d'absorption et de gélification à haute efficacité d'un électrolyte et d'excellentes performances de batterie. Les processus de synthèse et de préparation de suspension épaisse adoptés par la présente invention ne produisent pas d'autres sous-produits, et tous les composants solides fonctionnent d'une manière efficace dans la batterie, ce qui lui permet d'être très efficace, économique et écologique.
PCT/CN2015/084124 2015-06-19 2015-07-15 Séparateur à revêtement nanocomposite à constante diélectrique élevée et son procédé de fabrication WO2016201757A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340240.0 2015-06-19
CN201510340240.0A CN105047845A (zh) 2015-06-19 2015-06-19 一种高介电常数的纳米复合涂层隔膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2016201757A1 true WO2016201757A1 (fr) 2016-12-22

Family

ID=54454227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084124 WO2016201757A1 (fr) 2015-06-19 2015-07-15 Séparateur à revêtement nanocomposite à constante diélectrique élevée et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN105047845A (fr)
WO (1) WO2016201757A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978687B2 (en) 2017-06-13 2021-04-13 Shenzhen Senior Technology Material Co., Ltd. Multi-core-single-shell structure of a gel polymer coated separator and lithium-ion battery
CN112770487A (zh) * 2020-12-31 2021-05-07 深圳市捷安纳米复合材料有限公司 一种具备杀病毒功能的柔性复合电路板及其制造工艺
US20210280947A1 (en) * 2018-08-28 2021-09-09 Shenzhen Senior Technology Material Co., Ltd. Coating Liquid for Use in Lithium Ion Battery, Lithium Ion Battery Separator, and Lithium Ion Battery
CN114171843A (zh) * 2021-11-18 2022-03-11 清华大学 一种锂离子电池隔膜用水性纳米复合涂覆液和锂离子电池隔膜
US20220209361A1 (en) * 2019-05-07 2022-06-30 Evonik Operations Gmbh Lithium-ion battery separator coated with surface treated alumina
CN115521492A (zh) * 2022-11-25 2022-12-27 杭州德海艾科能源科技有限公司 一种钒电池用复合质子交换膜及其制备方法
CN115548583A (zh) * 2022-11-24 2022-12-30 合肥长阳新能源科技有限公司 一种高安全性锂离子电池复合隔膜及其应用
US20230402711A1 (en) * 2022-06-09 2023-12-14 Sk Innovation Co., Ltd. Separator, method of manufacturing separator, and electrochemical device including separator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602309B (zh) * 2015-12-28 2018-05-08 深圳市星源材质科技股份有限公司 一种高弹性导离子涂层浆料及其锂离子电池隔膜制备方法
CN106519872A (zh) * 2016-12-01 2017-03-22 深圳市星源材质科技股份有限公司 一种涂层浆料、锂离子电池隔膜及其制备方法
CN106887555B (zh) * 2016-12-29 2019-03-12 吴清国 一种锂离子电池隔膜的制备方法
CN109841779A (zh) * 2017-11-24 2019-06-04 深圳市比亚迪锂电池有限公司 一种电池隔膜及其制备方法和电池
CN108305972B (zh) * 2017-12-29 2021-08-17 深圳中兴新材技术股份有限公司 一种陶瓷涂层隔膜及制备方法和应用
JP7032180B2 (ja) * 2018-03-07 2022-03-08 トヨタ自動車株式会社 電池およびその製造方法
CN109065801A (zh) * 2018-07-09 2018-12-21 中国电力科学研究院有限公司 高分散性无机隔膜浆料的制备方法及无机隔膜
CN110718659A (zh) * 2019-10-21 2020-01-21 重庆云天化纽米科技股份有限公司 氮化硼涂覆的电池隔膜及其制备方法
CN111200093B (zh) * 2020-01-10 2022-08-12 武汉中兴创新材料技术有限公司 一种陶瓷颗粒及其制备方法和应用
CN113809477A (zh) * 2020-05-31 2021-12-17 重庆恩捷纽米科技股份有限公司 闭孔特性电池隔膜及其制备方法和应用
CN113964450A (zh) * 2020-07-17 2022-01-21 深圳市星源材质科技股份有限公司 电池隔膜涂布液及其制备方法、电池隔膜及电池
CN112142995A (zh) * 2020-08-24 2020-12-29 深圳市德立新材料科技有限公司 有机无机复合葡萄颗粒结构材料、浆料、隔膜及制备方法
CN113764823B (zh) * 2021-09-17 2023-06-30 江苏卓高新材料科技有限公司 高性能梯度复合凝胶聚合物隔膜及其制备方法
CN114497899A (zh) * 2022-02-11 2022-05-13 北京宇程科技有限公司 一种耐高温聚合物微球涂覆改性复合隔膜及其制备方法
CN117397109A (zh) * 2022-03-25 2024-01-12 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电池和用电装置
CN115275523A (zh) * 2022-07-01 2022-11-01 张健明 一种聚乙烯基锂电池用隔膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779603A (zh) * 2013-12-25 2014-05-07 山东恒宇新能源有限公司 一种复合电解质膜的制备方法
CN104638217A (zh) * 2015-02-02 2015-05-20 深圳市慧通天下科技股份有限公司 一种复合改性隔膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096591A1 (fr) * 1999-10-26 2001-05-02 MERCK PATENT GmbH Membrane à électrolyte polymère employée dans des batteries au lithium
CN101707242A (zh) * 2009-10-14 2010-05-12 东莞新能源科技有限公司 有机/无机复合多孔隔离膜
CN102280605B (zh) * 2011-04-18 2013-10-30 成都中科来方能源科技有限公司 具有热胀融合关闭效应的锂离子电池隔膜及其制备方法
CN103400953B (zh) * 2013-07-19 2016-01-13 中国科学院金属研究所 一种具有无机涂层的锌银电池复合隔膜及其制备方法
CN104600230A (zh) * 2014-12-12 2015-05-06 深圳中兴创新材料技术有限公司 一种电池隔膜及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779603A (zh) * 2013-12-25 2014-05-07 山东恒宇新能源有限公司 一种复合电解质膜的制备方法
CN104638217A (zh) * 2015-02-02 2015-05-20 深圳市慧通天下科技股份有限公司 一种复合改性隔膜及其制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978687B2 (en) 2017-06-13 2021-04-13 Shenzhen Senior Technology Material Co., Ltd. Multi-core-single-shell structure of a gel polymer coated separator and lithium-ion battery
US20210280947A1 (en) * 2018-08-28 2021-09-09 Shenzhen Senior Technology Material Co., Ltd. Coating Liquid for Use in Lithium Ion Battery, Lithium Ion Battery Separator, and Lithium Ion Battery
US20220209361A1 (en) * 2019-05-07 2022-06-30 Evonik Operations Gmbh Lithium-ion battery separator coated with surface treated alumina
CN112770487A (zh) * 2020-12-31 2021-05-07 深圳市捷安纳米复合材料有限公司 一种具备杀病毒功能的柔性复合电路板及其制造工艺
CN112770487B (zh) * 2020-12-31 2022-01-28 深圳市捷安纳米复合材料有限公司 一种具备杀病毒功能的柔性复合电路板及其制造工艺
CN114171843A (zh) * 2021-11-18 2022-03-11 清华大学 一种锂离子电池隔膜用水性纳米复合涂覆液和锂离子电池隔膜
US20230402711A1 (en) * 2022-06-09 2023-12-14 Sk Innovation Co., Ltd. Separator, method of manufacturing separator, and electrochemical device including separator
US12015170B2 (en) * 2022-06-09 2024-06-18 Sk Innovation Co., Ltd. Separator, method of manufacturing separator, and electrochemical device including separator
CN115548583A (zh) * 2022-11-24 2022-12-30 合肥长阳新能源科技有限公司 一种高安全性锂离子电池复合隔膜及其应用
CN115548583B (zh) * 2022-11-24 2023-05-05 合肥长阳新能源科技有限公司 一种高安全性锂离子电池复合隔膜及其应用
CN115521492A (zh) * 2022-11-25 2022-12-27 杭州德海艾科能源科技有限公司 一种钒电池用复合质子交换膜及其制备方法
CN115521492B (zh) * 2022-11-25 2023-02-28 杭州德海艾科能源科技有限公司 一种钒电池用复合质子交换膜及其制备方法

Also Published As

Publication number Publication date
CN105047845A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2016201757A1 (fr) Séparateur à revêtement nanocomposite à constante diélectrique élevée et son procédé de fabrication
CN101434708B (zh) 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
CN102888016B (zh) 具有交联结构复合层的锂离子二次电池隔膜的制备方法
WO2017185519A1 (fr) Séparateur revêtu de céramique aqueuse pour batterie lithium-ion et son procédé de fabrication
WO2019128147A1 (fr) Séparateur ayant un revêtement céramique et son procédé de préparation
EP3496184B1 (fr) Diaphragme revêtu d'un gel polymère à structure multi-noyau/monocoque, et son procédé de fabrication et son utilisation
CN104868084A (zh) 一种锂离子二次电池用隔离膜
CN105206777B (zh) 含锂离子传导多孔无机氧化物的锂电池隔膜及其制备方法
WO2014008761A1 (fr) Liant aqueux en chitosane innovant et son dérivé pour batterie lithium-ion
CN104953070A (zh) 一种锂离子二次电池用隔离膜
JP2019057486A (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
WO2015180472A1 (fr) Liant de série aqueuse à base de résine de terpène et son utilisation dans un supercondensateur ou une électrode négative de batterie au lithium-ion
CN103545475B (zh) 锂离子电池硫酸钡隔膜及其制备方法
CN109980162A (zh) 一种聚磷腈包覆陶瓷颗粒及其在锂离子电池隔膜中的应用
WO2023123751A1 (fr) Diaphragme revêtu et son procédé de préparation
CN103956451A (zh) 一种锂离子电池用复合陶瓷隔膜及其制备方法
CN115101894A (zh) 一种pvdf涂覆隔膜及其制备方法及应用
CN111540868A (zh) 一种二维二氧化锰修饰聚丙烯隔膜的制备方法和应用
CN115275514B (zh) 电池隔膜及其制备方法和电池
CN113611981A (zh) 一种低水分锂离子电池隔膜浆料及其制备方法、电池隔膜
JP2015070245A (ja) 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
US11177534B2 (en) Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
TW201922615A (zh) 複合體、蓄電裝置用電極材料、及蓄電裝置
JP6344081B2 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895330

Country of ref document: EP

Kind code of ref document: A1