WO2016182202A1 - 빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치 - Google Patents

빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016182202A1
WO2016182202A1 PCT/KR2016/003399 KR2016003399W WO2016182202A1 WO 2016182202 A1 WO2016182202 A1 WO 2016182202A1 KR 2016003399 W KR2016003399 W KR 2016003399W WO 2016182202 A1 WO2016182202 A1 WO 2016182202A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive current
lens
drive
driving
current
Prior art date
Application number
PCT/KR2016/003399
Other languages
English (en)
French (fr)
Inventor
현경원
김동원
김병록
신경범
박효진
Original Assignee
주식회사 지니틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지니틱스 filed Critical 주식회사 지니틱스
Priority to JP2018511570A priority Critical patent/JP6591662B2/ja
Priority to CN201680027745.4A priority patent/CN107636530B/zh
Publication of WO2016182202A1 publication Critical patent/WO2016182202A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present invention relates to electronic control technology, and more particularly, to a technique for quickly moving and stabilizing a lens position.
  • a user device such as a smartphone or tablet.
  • the camera module using the lens is also most likely to be mounted on the user device.
  • the market for digital cameras is growing with the development of technology for processing images taken with lenses.
  • the above-described devices are all equipped with a lens, and an auto focus (AF) technique for shifting the focus according to the distance from the imaging surface to the subject may be applied to the lens.
  • AF auto focus
  • Autofocus technology can be implemented using 'driving elements' that convert electricity into physical forces, such as piezo elements or voice coil actuators (Voice Coil Modules) (VCMs) that are coupled to the lens and move the lens in the optical axis direction.
  • the driving element may receive a current as an input and output a force for moving the lens in the optical axis direction.
  • the lens may be accelerated or decelerated by the force according to the current. By controlling these accelerations and decelerations well, fast autofocus can be achieved.
  • the lens is mounted on the camera module
  • the mounting connection to which the lens is connected may be connected to the physical elements that apply a physical force, such as a frictional force or an elastic restoring force acting on the lens.
  • the displacement of the lens may experience under damping, critical damping, or over damping due to this physical force. That is, when the current input to the driving element is changed in the form of a step waveform in order to move the lens from the 'start position (initial position)' to the target position, the lens moves farther than the target position and then back to the starting position.
  • the so-called mechanical ringing phenomenon which repeats the return phenomenon, occurs. This mechanical vibration causes a problem that the settling time taken for the lens to reach the target position increases.
  • a technique of changing the current input to the driving element into a ramp waveform instead of changing it into a step waveform and a technique of changing into various step waveforms have been proposed.
  • the position of the lens does not deviate from a predetermined + -tolerance from the target position.
  • the shorter the 'stabilization transition period' (simply, the 'transition period' or 'settling time' or 'settling time') until the first 'stabilization point', the faster the autofocus function was performed.
  • a quick autofocus technique capable of shortening the above-mentioned 'transient period' is a very important technique for providing a comfortable user shooting experience.
  • the transient period is closely related to the mechanical resonance frequency present in the camera module including the lens.
  • This resonant frequency may have unique characteristics depending on the internal configuration of the camera module. Elements such as lens displacement required for lens weight and focal length shift should be designed according to the purpose of use of the camera module, and there are limitations in arbitrarily adjusting the resonant frequency because such a design is subject to certain constraints.
  • the resonant frequency of the camera module may vary little by little depending on the use environment. Therefore, assuming a given resonance frequency as described above, there is a need for a technique capable of shortening the transient period in spite of the resonance frequency.
  • An object of the present invention is to provide a technique for stabilizing the position of a lens within a short time by quickly moving the lens to a target position when the lens is moved in the optical axis direction by using a driving element.
  • Lens AF drive control method as a lens AF drive control method for changing the drive current input to the drive element for driving the lens in order to change the position of the lens from the initial position to the target position, During the 'drive current control section' between the control start point at which the change of the drive current starts and the control end point at which the change in the drive current ends, the target drive current level corresponding to the target position and the initial stage Increasing the drive current one or more times and reducing the drive current one or more times, such that each of the plurality of current levels existing between the initial drive current levels corresponding to a position persists one or more times; Can be.
  • the plurality of current levels may include the initial driving current level, the target driving current level, and a transient driving current level larger than the initial driving current level and smaller than the target driving current level.
  • the lens AF driving control method may include: toggling the driving current by reciprocating one or more times between the transient driving current level and the initial driving current level during the driving current control section; And switching the driving current by reciprocating one or more times between the target driving current level and the transient driving current level.
  • the level transition edge of the driving current may have a multi-step waveform consisting of a plurality of steps.
  • the plurality of current levels may include only the initial driving current level and the target driving current level.
  • the lens drive control apparatus including a vibration control unit for controlling the drive current input to the drive element for driving the lens to change the position of the lens from the initial position to the target position
  • the drive control device wherein the vibration control unit, the drive current is the target position during the 'drive current control period' between the control start time when the change of the drive current starts and the control end time when the change of the drive current ends.
  • Increasing the driving current one or more times so as to sustain each of the plurality of current levels existing between the target driving current level corresponding to and the initial driving current level corresponding to the initial position one or more times and the driving current It may be arranged to perform one or more steps of reducing.
  • the plurality of current levels may include the initial driving current level, the target driving current level, and a transient driving current level larger than the initial driving current level and smaller than the target driving current level.
  • the vibration control unit the driving current toggling the drive current by reciprocating at least one time between the transient drive current level and the initial drive current level; And to toggle the driving current by reciprocating one or more times between the target driving current level and the transient driving current level.
  • the level transition edge of the driving current may have a multi-step waveform consisting of a plurality of steps.
  • the lens AF drive control method for changing the drive current input to the drive element for driving the lens in order to change the position of the lens from the initial position to the target position
  • the drive current is a target drive current corresponding to the target position during a 'drive current control interval' between a control start point at which the change of the drive current starts and a control end point at which the change in the drive current ends.
  • Increasing the drive current one or more times so that each of the one or more current levels having a value different from the level and having a value different from the initial drive current level corresponding to the initial position is maintained at least once; Reducing the current may include one or more times.
  • the lens AF driving control method the driving current toggling one or more round trip between the first transient driving current level and the initial driving current level of the one or more current level during the driving current control section. ; And switching the driving current by reciprocating one or more times between the target driving current level and the first transient driving current level.
  • the level transition edge of the driving current may have a multi-step waveform consisting of a plurality of steps.
  • the lens AF drive control method for changing the drive current input to the drive element for driving the lens in order to change the position of the lens from the initial position to the target position
  • the method includes: a target drive current level at which the drive current corresponds to the target position during a 'drive current control interval' between a control start point at which the change of the drive current starts and a control end point at which the change in the drive current ends.
  • Increasing or decreasing the drive current so as to sustain one or more transient current levels existing between the initial drive current level corresponding to the initial position and a level transition edge of the drive current. ) May have a multi-step waveform consisting of a plurality of steps.
  • the lens when the lens is moved in the optical axis direction by using the driving element, a technique of stabilizing the position of the lens within a short time by quickly moving the lens to the target position can be provided.
  • Figure 1 shows the configuration of the AF drive control device and AF camera module according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a lens AF driving control method according to a first comparative example.
  • FIG 3 is a view for explaining a lens AF driving control method according to a second comparative example, the first embodiment of the present invention, the second embodiment of the present invention, and the third embodiment of the present invention.
  • FIG. 4 is a view for explaining a lens AF driving control method according to a third comparative example and a fourth embodiment of the present invention.
  • FIG. 5 is a view for explaining a lens AF driving control method according to a fifth embodiment of the present invention.
  • FIG. 6A shows a comparison of the effects according to the third embodiment and the fifth embodiment of the present invention.
  • FIG. 6B is an enlarged view of a portion A of FIG. 6A.
  • Figure 1 shows the configuration of the AF drive control device and AF camera module according to an embodiment of the present invention.
  • the camera module 2 supporting AF includes an AF drive control device (lens drive control device) 1, an AF command part 10, and a drive device (lens drive device) (ex: VCM). ) 50, and a lens 60.
  • the lens driving controller 1 may include a vibration controller 20, a digital-to-analog converter (DAC) 30, and a driving device driver 40.
  • the lens drive control device 1 may be provided in the form of an independent IC package.
  • the AF command unit 10 instructs to move the position of the lens from the first position (initial position or start position) to the second position (target position) according to a predetermined algorithm or according to a user input.
  • the command signal ' may be transmitted to the vibration controller 20 through the node N1.
  • the vibration control unit 20 generates a 'digital control signal' having a value related to the value of the current to be provided to the driving element (VCM) 50 in order to move the lens from the initial position to the target position, the node N2. It may be delivered to the DAC 30 through.
  • the digital control signal may have a value that varies from a value relating to an initial driving current Ii related to the initial position to a target driving current Id related to the target position.
  • the vibration control unit 20 may not only control the physical vibration generated when the lens position is moved, but also perform a function of controlling the target position itself of the lens.
  • the DAC 30 may generate an 'analog control signal' by converting the input digital control signal into an analog form.
  • the generated analog control signal may be provided to the driving device driver 40 through the node N3.
  • Driving element The driving unit 40 may be configured to output a 'drive current' sufficient to drive the driving element (VCM) 50 according to the input analog control signal.
  • the driving current may be transferred to the driving device VCM 50 through the node N4.
  • Driving element The driving unit 40 may include an amplifier such as an operational amplifier for this purpose.
  • the driving current output from the driving device (VCM) 50 may have a value proportional to the analog control signal.
  • the driving element (VCM) 50 may include a driving unit that moves based on the input driving current, and the driving unit is connected to the lens 60 to move the lens 60 together.
  • the driving device 50 may further include a fixing part which does not move in addition to the driving part.
  • the VCM illustrated in FIG. 1 may be replaced by another type of driving device having the same operation scheme.
  • FIG. 2 is a view for explaining a lens AF driving control method according to a first comparative example.
  • the horizontal axis represents time
  • the vertical axis represents the magnitude of the driving current
  • the horizontal axis represents time
  • the vertical axis represents the position of the lens along the optical axis direction of the lens.
  • FIG. 2A illustrates an example in which the driving current flowing through the node N4 of FIG. 1 is changed in the form of a 'step waveform' from the initial driving current Ii to the target driving current Id.
  • the target driving current Ii is immediately changed from the initial driving current Ii to the target driving current Id.
  • FIG. 2B illustrates a position change along the optical axis of the lens when the driving current changes as shown in FIG.
  • the displacement of the position of the lens 60 may have a close relationship with the displacement of the position of the driver of the driving element (VCM) 50.
  • the displacement of the position of the lens 60 may be the same as the displacement of the position of the driver of the driving element (VCM) 50.
  • the lens 60 may maintain the lens initial position Li, and the driving current may be the target driving current Id.
  • the lens 60 may maintain the lens target position Ld.
  • the phenomenon that the position of the lens 60 vibrates along the optical axis during a certain period of time after the driving current starts to change can be confirmed.
  • Such a mechanical vibration causes a problem that the transient period D T that the lens takes to reach the target position becomes long.
  • this transient period can be several times to several tens of times the period (1 / f N ) of the natural vibration frequency of the camera module including the lens.
  • the transient period D T means a time period from the start of the control at which the drive current is controlled to the first stabilization time t s at which the lens position does not deviate from a predetermined tolerance from the target position. can do.
  • the above-described definitions are examples and may be defined in other ways according to the situation.
  • FIG 3 is a view for explaining a lens AF driving control method according to a second comparative example, the first embodiment of the present invention, the second embodiment of the present invention, and the third embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the magnitude of the drive current
  • FIG. 3A is a diagram for explaining a lens AF driving control method according to a second comparative example.
  • the drive current is varied in a 'single step' form from the initial drive current Ii to the transient drive current Im less than the target drive current Id.
  • the single step means that the change of the driving current occurs only once in a step form.
  • the drive current is varied in a single step form from the transient drive current Im to the target drive current Id.
  • FIG. 3B is a diagram for explaining a lens AF driving control method according to the first embodiment of the present invention.
  • the drive current starts to change in a 'multi-step' form from the initial drive current Ii to the transient drive current Im.
  • the transient driving current Im is a predetermined value between the initial driving current Ii and the target driving current Id.
  • 'multi-step' means that the change of the driving current occurs twice or more in the form of a step.
  • the driving current starts to change in a 'multi-step' form from the transient driving current Im to the target driving current Id.
  • the driving current reaches the target driving current Id.
  • the second time t 2 may be regarded as the end of control. It can be understood that the driving current always increases or always decreases in the first embodiment according to FIG.
  • 3C is a diagram for explaining a lens AF driving control method according to a second embodiment of the present invention.
  • the drive current is different from the initial drive current Ii and is different from the target drive current Id. Can be increased or decreased to have a value of one or more transient drive currents.
  • the level of the transient drive current of at least one of the transient drive currents is the level of the initial drive current Ii and the target. May exist between the levels of the drive current (Id).
  • the level of the transient drive current of at least one of the transient drive currents is the level of the initial drive current Ii and the target. It may be outside the level of the driving current (Id).
  • the driving current may experience an increase and a decrease one or more times in the driving current control section.
  • the driving current is the [first] transient driving current Im, the second transient driving current Im2, the third transient driving current Im3, and the fourth transient driving from the initial driving current Ii.
  • An example of reaching the target driving current Id through the current Im4 and the fifth transient driving current Im5 is illustrated.
  • the second time t 2 may be regarded as the end of control.
  • 3D is a diagram for explaining a lens AF driving control method according to a third embodiment of the present invention.
  • the drive current changes from the initial drive current Ii to the transient drive current Im.
  • the third embodiment is the same as the second comparative example according to FIG. 3A except for the following. That is, the drive current reciprocates between the initial drive current Ii and the transient drive current Im 1 more than once between the control start time point t 0 and the first time point t 1 .
  • the driving current is controlled to be changed by reciprocating one or more times between the transient driving current Im and the target driving current Id between the first time point t 1 and the second time point t 2 .
  • 3D may be described as a special example of the second embodiment according to FIG. 3C.
  • the second time t 2 may be regarded as the end of control.
  • the driving current shown in (d) of FIG. 3 has a waveform having both a rising edge and a falling edge. On the rising edge, the driving current is increased so that the electromagnetic force due to the driving current dominantly moves the lens. At the falling edge, the driving current is reduced to reduce the electromagnetic force caused by the driving current. As a result, the elastic restoring force acting on the lens mainly acts to move the lens.
  • FIG. 4 is a view for explaining a lens AF driving control method according to a third comparative example and a fourth embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents the magnitude of the drive current.
  • FIG. 4A is a diagram for explaining a lens AF driving control method according to a third comparative example.
  • the driving current is changed from the initial driving current Ii to the target driving current Id.
  • the driving current is then controlled to change reciprocally one or more times between the initial driving current Ii and the target driving current Id.
  • FIG. 4B is a view for explaining a lens AF driving control method according to a fourth embodiment of the present invention.
  • the fourth embodiment differs from the following in comparison with the third comparative example. That is, when the drive current changes from the initial drive current Ii to the target drive current Id (rising edge), and / or when the drive current changes from the target drive current Id to the initial drive current Ii ( The falling edge) differs in that it changes into a multi-step waveform.
  • FIG. 5 is a view for explaining a lens AF driving control method according to a fifth embodiment of the present invention.
  • the horizontal axis represents time and the vertical axis represents the magnitude of the driving signal.
  • 5 shows an example in which the initial drive current is smaller than the target drive current, it can be understood that the opposite case can also be described.
  • the fifth embodiment can be derived by combining the above-described third and fourth embodiments.
  • the drive current can be changed by toggling one or more times from the initial drive current Ii to the transient drive current Im.
  • the toggle means the transition between the initial driving current level Ii and the transient driving current level Im.
  • the driving current may be changed by toggling one or more times from the transient driving current Im to the target driving current Id one or more times.
  • the toggle means the transition between the transient drive current level and the target drive current level.
  • the driving current may continue to maintain the target driving current level, which is the current level of the target driving current Id.
  • the above-described transient driving current may have a value between the initial driving current and the target driving current.
  • the time period between the control start time point t 0 at which the value of the drive current starts to change and the second time point t 2 at which the change in the drive current is terminated may be referred to as a 'drive current control period'.
  • the level of the driving current may alternate between the initial driving current level, the transient driving current level, and the target driving current level.
  • At least one of the rising edge and the falling edge section of the driving current may be changed to a multi-step waveform as shown in FIG. 5.
  • the rising edge and the falling edge are referred to as 'level transition edge'.
  • the rising edge and falling edge refer to a state of instantaneous change between two transitioning levels.
  • the transition time period may be redefined as a rising edge, a falling edge, or a level transition edge.
  • the size of each individual step of the multi-step may have a size obtained by dividing a difference value between the two levels into a plurality.
  • FIG. 6A shows a comparison of the effects according to the third embodiment and the fifth embodiment of the present invention.
  • the horizontal axis of FIG. 6A represents time and the vertical axis represents the position of the lens along the optical axis of the lens.
  • Graph 101 shows the positional change of the lens according to the fifth embodiment of the present invention
  • graph 102 shows the positional change of the lens according to the third embodiment of the present invention.
  • FIG. 6B is an enlarged view of a portion A of FIG. 6A.
  • the position of the lens according to the fifth embodiment is settled within the tolerance range after the stabilization time point t s _ c5.
  • the position of the lens according to the embodiment Referring to the graph 102, third example, and the vibration causing a departure from the tolerance range after the point in time (t s _c5), is finally stabilized to be the point in time (t s _c3). That is, it can be seen that the effect of the lens AF drive control method according to the fifth embodiment is superior to the effect of the lens AF drive control method according to the third embodiment.
  • graph 101 has a gentler instantaneous slope than graph 102 throughout the transient period.
  • the instantaneous slope of the graph 101 is more gentle because the rising edge and the falling edge of the driving current are changed to the multi-step waveform as shown in FIG.
  • the driving current implements the idea of having a multi-step waveform in the rising edge or falling edge section while following the above-described multi toggle control method. This can be extended to provide a sixth embodiment according to the present invention.
  • the drive current is (1) the initial drive current ( Ii), (2) target drive current Id, and (3) increase and decrease to have a value of one or more transient drive currents that are different from the initial drive current Ii and have a different level than the target drive current Id.
  • the rising edge and the falling edge of the driving current may be changed into a multi-step waveform in the driving current control section described above.
  • at least one of the one or more transient driving currents may have a level between the level of the initial driving current Ii and the level of the target driving current Id.
  • at least one of the one or more transient driving currents may have a level outside the level of the initial driving current Ii and the level of the target driving current Id.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법을 공개한다. 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 복수 개의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계 및 감소시키는 단계가 각각 1회 이상 포함된다.

Description

빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치
본 발명은 전자 제어 기술에 관한 것으로서, 특히 렌즈의 위치를 빠르게 이동하여 안정화시키는 기술에 관한 것이다.
다양한 종류의 사용자 기기들이 한 개의 통합 사용자 기기(이하, 간단히 사용자 기기), 예컨대 스마트폰 또는 태블릿에 통합되고 있다. 이때, 렌즈를 이용하는 카메라 모듈도 상기 사용자 기기에 대부분 장착되는 추세이다. 또한 렌즈로 촬영한 이미지를 처리하는 기술이 발전하면서 디지털 카메라에 대한 시장이 커지고 있다.
상술한 장치들에는 모두 렌즈가 장착되는데, 촬상면으로부터 피사체까지의 거리에 맞추어 초점을 이동하는 자동초점(auto focus; AF) 기술이 렌즈에 적용될 수 있다.
자동초점 기술은 렌즈에 결합되어 렌즈를 광축 방향으로 이동시키는 피에조 소자 또는 보이스 코일 액추에이터(보이스 코일 모듈)(VCM)와 같이 전기를 물리적인 힘으로 변환하는 '구동소자'를 이용하여 구현될 수 있다. 상기 구동소자는 전류를 입력으로 받고, 상기 렌즈를 광축 방향으로 이동시키는 힘을 출력할 수 있다. 상기 전류에 따른 힘에 의해 렌즈가 가속 또는 감속될 수 있다. 이러한 가속과 감속을 잘 제어함으로써 빠른 자동초점을 달성할 수 있다.
한편, 렌즈는 카메라 모듈에 장착되어 있는데, 이 렌즈가 연결되는 장착 연결부에는 렌즈에 작용하는 마찰력 또는 탄성복원력과 같은 물리적인 힘을 가하는 물리 요소들이 연결될 수 있다. 상기 구동소자를 제어할 때에 이러한 물리적인 힘 때문에 상기 렌즈의 변위가 언더 댐핑, 크리티컬 댐핑, 또는 오버 댐핑 현상을 겪을 수 있다. 즉, 렌즈를 '시작 위치(초기 위치)'로부터 목표 위치로 이동시키기 위하여 구동소자에 입력되는 전류를 스텝 파형의 형태로 변화시키게 되는 경우 렌즈가 상기 목표 위치보다 더 멀리 이동했다가 다시 시작 위치 쪽으로 돌아오는 현상을 반복하는 소위 기계적 진동(mechanical ringing) 현상이 발생하게 된다. 이러한 기계적 진동에 의해 렌즈가 상기 목표 위치에 안착하는데 걸리는 세틀링 시간(settling time)이 증가하는 문제가 발생한다. 이러한 문제를 해결하기 위해서, 구동소자에 입력되는 전류를 스텝 파형으로 변화시키는 대신에 램프 파형 형태로 변화시키는 기술 및 다양한 스텝 파형으로 변화시키는 기술이 제시되고 있다.
렌즈를 시작 위치로부터 목표 위치로 옮기기 위해 상기 구동소자의 입출력을 제어하기 시작하는 '제어시작시점(간단히, 시작시점)'부터, 상기 렌즈의 위치가 상기 목표 위치로부터 미리 결정된 +- 허용오차를 벗어나지 않는 최초의 '안정화 시점'까지 걸리는 '안정화 과도 기간'(간단히, '과도 기간' 또는 '세틀링 시간' 또는 '안착 시간')이 짧을수록 빠른 자동초점 기능이 수행되었다고 볼 수 있다.
자동초점 기능을 수행하는 경우 카메라 모듈의 렌즈가 목표 위치로부터 미리 결정된 허용오차를 벗어나지 않아야지만, 목표 위치에 대응하는 초점 거리에 대하여 안정적인 이미지를 얻을 수 있다. 따라서 상술한 '과도 기간'을 짧게 할 수 있는 빠른 자동초점 기술은 쾌적한 사용자 촬영 경험을 제공하기 위해 매우 중요한 기술이다.
상기 과도 기간은, 렌즈를 포함하는 카메라 모듈에 존재하는 기계적인 공진주파수와 매우 밀접한 관계를 갖는다. 이 공진주파수는 카메라 모듈의 내부 구성에 따른 고유의 특성을 가질 수 있다. 렌즈의 무게 및 초점 거리 이동에 필요한 렌즈의 변위와 같은 요소들은 카메라 모듈의 사용 목적에 따라 설계되어야 하며, 이러한 설계에는 일정한 제약이 따르기 때문에 상기 공진주파수를 마음대로 조절하는 데에는 한계가 있다. 또한, 카메라 모듈의 공진주파수는 사용 환경에 따라 조금씩 변화할 수도 있다. 따라서 이와 같이 주어진 공진주파수를 전제로 하여, 상기 공진주파수에도 불구하고 과도 기간을 단축시킬 수 있는 기술이 필요하다.
본 발명에서는 구동소자를 이용하여 렌즈를 광축 방향으로 이동시킬 때에, 렌즈를 목표 위치까지 빠르게 이동하여 짧은 시간 내에 렌즈의 위치를 안정화시키는 기술을 제공하고자 한다.
본 발명의 일 관점에 따른 렌즈 AF 구동제어방법은, 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법으로서, 상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 복수 개의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 포함하고 상기 구동전류를 감소시키는 단계를 1회 이상 포함할 수 있다.
이때, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨, 상기 목표 구동 전류 레벨, 및 상기 초기 구동 전류 레벨보다 크고 상기 목표 구동 전류 레벨보다 작은 과도 구동 전류 레벨을 포함할 수 있다.
이때, 상기 렌즈 AF 구동제어방법은, 상기 구동전류 제어구간 동안, 상기 구동전류가 상기 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및 상기 구동전류가 상기 목표 구동 전류 레벨과 상기 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계를 포함할 수 있다.
이때, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖도록 되어 있을 수 있다.
이때, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨 및 상기 목표 구동 전류 레벨만을 포함할 수 있다.
한편, 본 발명의 다른 관점에 따른 렌즈구동 제어장치는, 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 제어하는 진동 제어부를 포함하는 렌즈구동 제어장치로서, 상기 진동 제어부는, 상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 복수 개의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 수행하고 상기 구동전류를 감소시키는 단계를 1회 이상 수행하도록 되어 있을 수 있다.
이때, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨, 상기 목표 구동 전류 레벨, 및 상기 초기 구동 전류 레벨보다 크고 상기 목표 구동 전류 레벨보다 작은 과도 구동 전류 레벨을 포함할 수 있다.
이때, 상기 진동 제어부는, 상기 구동전류 제어구간 동안, 상기 구동전류가 상기 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및 상기 구동전류가 상기 목표 구동 전류 레벨과 상기 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계를 수행하도록 되어 있을 수 있다.
이때, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖도록 되어 있을 수 있다.
한편, 본 발명의 또 다른 관점에 따른 렌즈 AF 구동제어방법은, 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법으로서, 상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가, 상기 목표위치에 대응하는 목표 구동 전류 레벨과 다른 값을 가지며 상기 초기위치에 대응하는 초기 구동 전류 레벨과도 다른 값을 갖는 한 개 이상의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 포함하고 상기 구동전류를 감소시키는 단계를 1회 이상 포함할 수 있다.
이때, 상기 렌즈 AF 구동제어방법은, 상기 구동전류 제어구간 동안, 상기 구동전류가 상기 한 개 이상의 전류 레벨 중 제1 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및 상기 구동전류가 상기 목표 구동 전류 레벨과 상기 제1 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계를 포함할 수 있다.
이때, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖도록 되어 있을 수 있다.
한편, 본 발명의 또 다른 관점에 따른 렌즈 AF 구동제어방법은, 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법으로서, 상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 과도 전류 레벨을 1회 이상 지속하도록, 상기 구동전류를 증가시키거나 감소시키는 단계를 포함하며, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖도록 되어 있을 수 있다.
본 발명에 따르면 구동소자를 이용하여 렌즈를 광축 방향으로 이동시킬 때에, 렌즈를 목표 위치까지 빠르게 이동하여 짧은 시간 내에 렌즈의 위치를 안정화시키는 기술을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 AF 구동제어장치 및 AF 카메라 모듈의 구성도를 나타낸 것이다.
도 2는 제1비교예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
도 3은 제2비교예, 본 발명의 제1실시예, 본 발명의 제2실시예, 및 본 발명의 제3실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
도 4는 제3비교예 및 본 발명의 제4실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
도 5는 본 발명의 제5실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
도 6a는 상술한 제3실시예와 본 발명의 제5실시예에 따른 효과를 비교하여 나타낸 것이다.
도 6b는 도 6a의 영역(A) 부분을 확대하여 표시한 것이다.
이하, 본 발명의 실시예를 첨부한 도면을 참고하여 설명한다. 그러나 본 발명은 본 명세서에서 설명하는 실시예에 한정되지 않으며 여러 가지 다른 형태로 구현될 수 있다. 본 명세서에서 사용되는 용어는 실시예의 이해를 돕기 위한 것이며, 본 발명의 범위를 한정하고자 의도된 것이 아니다. 또한, 이하에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
도 1은 본 발명의 일 실시예에 따른 AF 구동제어장치 및 AF 카메라 모듈의 구성도를 나타낸 것이다.
도 1에서 AF를 지원하는 카메라 모듈(2)은 AF 구동제어장치(렌즈구동 제어장치)(1) 및 AF 명령부(AF Command Part)(10), 구동소자(렌즈 구동소자)(ex: VCM)(50), 및 렌즈(60)를 포함할 수 있다.
렌즈구동 제어장치(AF 구동 제어장치)(1)는 진동 제어부(ringing controller)(20), 디지털 아날로그 컨버터(DAC)(30), 및 구동소자 구동부(40)를 포함할 수 있다. 렌즈구동 제어장치(1)는 독립적인 IC 패키지 형태로 제공될 수 있다.
AF 명령부(10)는, 소정의 알고리즘에 따라, 또는 사용자 입력에 따라, 렌즈의 위치를 제1위치(초기 위치, 또는 시작 위치)에서 제2위치(목표 위치)로 이동시키도록 명령하는 '명령신호'를 노드(N1)를 통해 진동 제어부(20)에게 전달할 수 있다.
진동 제어부(20)는 렌즈를 상기 초기 위치에서 목표 위치로 이동시키기 위하여 구동소자(VCM)(50)에 제공되어야 하는 전류의 값에 관련된 값을 갖는 '디지털 제어신호'를 발생시켜 노드(N2)를 통해 DAC(30)에게 전달할 수 있다. 이 디지털 제어신호는 상기 초기 위치에 관련된 초기 구동 전류(Ii)에 관한 값에서부터 상기 목표 위치에 관련된 목표 구동 전류(Id)까지 변하는 값을 가질 수 있다. 진동 제어부(20)는 렌즈 위치 이동시 발생하는 물리적인 진동을 제어할 뿐만 아니라, 렌즈의 목표 위치 자체를 제어하는 기능을 수행할 수 있다.
DAC(30)는 입력된 상기 디지털 제어신호를 아날로그 형태로 바꾸어 '아날로그 제어신호'를 생성할 수 있다. 생성된 아날로그 제어신호는 노드(N3)를 통해 구동소자 구동부(40)에 제공될 수 있다.
구동소자 구동부(40)는 입력된 상기 아날로그 제어신호에 따라 구동소자(VCM)(50)를 구동하기에 충분한 '구동전류'를 출력하도록 되어 있을 수 있다. 상기 구동전류는 노드(N4)를 통해 구동소자(VCM)(50)에 전달될 수 있다. 구동소자 구동부(40)는 이를 위하여 연산증폭기와 같은 증폭소자를 포함할 수 있다. 예컨대 구동소자(VCM)(50)에서 출력하는 구동전류는 상기 아날로그 제어신호에 비례하는 값을 가질 수 있다.
구동소자(VCM)(50)는 입력된 상기 구동전류를 기초로 운동하는 구동부를 포함하고 있을 수 있으며, 상기 구동부는 렌즈(60)에 연결되어 있어서 렌즈(60)를 함께 이동시킬 수 있다. 구동소자(50)는 상기 구동부 이외에도 운동하지 않는 고정부를 더 포함할 수도 있다.
도 1에서 예시한 VCM은 동일한 동작 방식을 갖는 다른 종류의 구동소자로 대체될 수도 있다.
도 2는 제1비교예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
도 2의 (a)의 가로축은 시간을 나타내고, 세로축은 구동전류의 크기를 나타낸다.
도 2의 (b)의 가로축은 시간을 나타내고, 세로축은 렌즈의 광축 방향에 따른 상기 렌즈의 위치를 나타낸다.
도 2의 (a)는 도 1의 노드(N4)에 흐르는 구동전류가 초기 구동 전류(Ii)에서 목표 구동 전류(Id)로 '스텝 파형'의 형태로 변하도록 제어하는 예를 나타낸 것이다. 제어시작시점(t0)에서 초기 구동 전류(Ii)에서 목표 구동 전류(Id)로 즉시 변하게 된다.
도 2의 (b)는 도 2의 (a)와 같이 구동전류가 변화할 때의 렌즈의 광축에 따른 위치변화를 나타낸 것이다. 렌즈(60)의 위치의 변위는 구동소자(VCM)(50)의 구동부의 위치의 변위와 밀접한 관계를 가질 수 있다. 예컨대 렌즈(60)의 위치의 변위는 구동소자(VCM)(50)의 구동부의 위치의 변위와 동일할 수 있다.
도 2의 (b)에서 확인할 수 있듯이, 구동전류가 초기 구동 전류(Ii) 값을 지속적으로 유지할 때에는 렌즈(60)가 렌즈 초기 위치(Li)를 유지할 수 있고, 구동전류가 목표 구동 전류(Id) 값을 지속적으로 유지할 때에는 렌즈(60)가 렌즈 목표 위치(Ld)를 유지할 수 있다. 그러나 구동전류가 변화하기 시작한 후의 일정 기간 동안에는 렌즈(60)의 위치가 광축을 따라 진동하는 현상을 확인할 수 있다. 이러한 기계적 진동에 의해 렌즈가 목표 위치에 안착하는데까지 걸리는 과도 기간(DT)이 길어지는 문제가 있다. 보통 이러한 과도 기간은 상기 렌즈를 포함하는 카메라 모듈의 고유 진동주파수의 주기(1/fN)의 수 배 내지 수십 배에 달할 수 있다. 여기서 과도 기간(DT)은, 상기 구동전류의 제어를 시작하는 제어시작시점부터, 렌즈의 위치가 목표 위치로부터 미리 결정된 허용오차를 벗어나지 않는 최초의 안정화 시점(ts)까지의 시구간을 의미할 수 있다. 여기에서 상술한 정의는 예시이며, 상황에 맞게 다른 방식으로 정의될 수도 있다.
도 2에서는 초기 구동 전류가 목표 구동 전류보다 작은 경우의 예를 들었으나, 그 반대의 예, 즉 초기 구동 전류가 목표 구동 전류보다 큰 경우의 예도 마찬가지로 설명할 수 있음을 이해할 수 있다.
도 3은, 제2비교예, 본 발명의 제1실시예, 본 발명의 제2실시예, 및 본 발명의 제3실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
이하, 도 3에서는 초기 구동 전류가 목표 구동 전류보다 작은 경우의 예를 설명하지만, 그 반대의 예도 마찬가지로 설명할 수 있음을 이해할 수 있을 것이다.
도 3의 (a), (b), (c), 및 (d)의 가로축은 시간을 나타내고, 세로축은 구동전류의 크기를 나타낸다.
도 3의 (a)는 제2비교예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제2비교예에서, 제어시작시점(t0)에서, 구동전류는 초기 구동 전류(Ii)로부터, 목표 구동 전류(Id)보다 작은 과도 구동 전류(Im1)까지 '단일 스텝' 형태로 변동된다. 여기서 상기 단일 스텝이란 구동전류의 변화가 스텝 형태로 1회만 일어난다는 것을 의미한다. 그 다음, 제1시점(t1)에서 구동전류는 과도 구동 전류(Im1)로부터 목표 구동 전류(Id)까지 단일 스텝 형태로 변동된다.
도 3의 (b)는 본 발명의 제1실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제1실시예에서, 제어시작시점(t0)에서, 구동전류는 초기 구동 전류(Ii)로부터 과도 구동 전류(Im1)까지 '멀티 스텝' 형태로 변동되기 시작한다. 여기서 과도 구동 전류(Im1)는 초기 구동 전류(Ii)와 목표 구동 전류(Id)의 사이의 미리 결정된 값이다. 본 명세서에서 '멀티 스텝'이란 구동전류의 변화가 스텝 형태로 2회 이상 일어난다는 것을 의미한다. 그 다음, 제1시점(t1)에서 구동전류는 과도 구동 전류(Im1)로부터 목표 구동 전류(Id)까지 '멀티 스텝' 형태로 변동되기 시작한다. 제2시점(t2)에서 구동전류는 목표 구동 전류(Id)에 도달한다. 제1실시예에서 제2시점(t2)은 제어종료시점으로 간주할 수 있다. 도 3의 (b)에 따른 제1실시예에서는 구동전류가 항상 증가하거나 항상 감소하게 됨을 이해할 수 있다.
도 3의 (c)는 본 발명의 제2실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제2실시예에서, 제어시작시점(t0)부터 제2시점(t2)까지의 구동전류 제어구간 동안, 구동전류는 초기 구동 전류(Ii)와도 다르고 목표 구동 전류(Id)와도 다른 값을 갖는 한 개 이상의 과도 구동 전류의 값을 갖도록 증가하거나 감소할 수 있다. 특히, 제어시작시점(t0)부터 제2시점(t2)까지의 구동전류 제어구간 동안, 상기 과도 구동 전류 중 적어도 어느 하나의 과도 구동 전류의 레벨은 초기 구동 전류(Ii)의 레벨과 목표 구동 전류(Id)의 레벨 사이에 존재할 수 있다. 또는, 제어시작시점(t0)부터 제2시점(t2)까지의 구동전류 제어구간 동안, 상기 과도 구동 전류 중 적어도 어느 하나의 과도 구동 전류의 레벨은 초기 구동 전류(Ii)의 레벨과 목표 구동 전류(Id)의 레벨의 바깥에 존재할 수 있다.
이때, 제2실시예에서, 상기 구동전류 제어구간에서 구동전류는 증가 및 감소를 각각 1회 이상 겪을 수 있다. 도 3의 (c)에서는 구동전류가 초기 구동 전류(Ii)에서 [제1] 과도 구동 전류(Im1), 제2 과도 구동 전류(Im2), 제3 과도 구동 전류(Im3), 제4 과도 구동 전류(Im4), 및 제5 과도 구동 전류(Im5)를 거쳐 목표 구동 전류(Id)에 도달하는 예를 도시하였다. 이때, [제1] 과도 구동 전류(Im1) 내지 제5 과도 구동 전류(Im5)의 레벨 간의 상대적인 크고 작음에는 아무런 제약이 존재하지 않을 수 있다. 제2실시예에서 제2시점(t2)은 제어종료시점으로 간주할 수 있다.
도 3의 (d)는 본 발명의 제3실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제어시작시점(t0)에서 구동전류는 초기 구동 전류(Ii)에서 과도 구동 전류(Im1)로 변한다. 제3실시예에서는 아래의 점을 제외하고는 도 3의 (a)에 따른 제2비교예와 동일하다. 즉, 제어시작시점(t0)과 제1시점(t1) 사이에 구동전류가 초기 구동 전류(Ii)와 과도 구동 전류(Im1) 사이를 1회 이상 왕복한다. 그리고 제1시점(t1)과 제2시점(t2) 사이에 구동전류가 과도 구동 전류(Im1)와 목표 구동 전류(Id) 사이를 1회 이상 왕복하여 변하도록 제어된다.
도 3의 (d)는 도 3의 (c)에 따른 제2실시예의 특별한 예인 것으로 해설할 수도 있다. 제3실시예에서 제2시점(t2)은 제어종료시점으로 간주할 수 있다.
도 3의 (d)에 도시한 구동전류는 상승 에지와 하강 에지를 모두 갖는 파형을 갖는다. 상승 에지에서는 구동전류를 증가시켜 구동전류에 의한 전자기력이 주요하게(dominantly) 작용하여 렌즈를 움직이게 한다. 그리고 하강 에지에서는 구동전류를 감소시켜 구동전류에 의한 전자기력이 작아지게 되고 그 결과 렌즈에 작용하는 상기 탄성복원력이 주요하게 작용하여 렌즈를 움직이게 한다.
도 3의 (d)에서는 서로 다른 레벨 구간에서 토글이 반복하여 발생하기 때문에, 본 발명에서는 이를 '멀티 토글 제어' 방법이라고 지칭할 수 있다.
도 4는 제3비교예 및 본 발명의 제4실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다.
이하, 도 4에서는 초기 구동 전류가 목표 구동 전류보다 작은 경우의 예를 설명하지만, 그 반대의 예도 마찬가지로 설명할 수 있음을 이해할 수 있을 것이다.
도 4의 (a) 및 (b)의 가로축은 시간을 나타내고, 세로축은 구동전류의 크기를 나타낸다.
도 4의 (a)는 제3비교예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제3비교예에서, 제어시작시점(t0)에 구동전류는 초기 구동 전류(Ii)에서 목표 구동 전류(Id)로 변한다. 그 다음 구동전류는 초기 구동 전류(Ii)과 목표 구동 전류(Id) 사이를 1회 이상 왕복하여 변하도록 제어된다.
도 4의 (b)는 본 발명의 제4실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 제4실시예는 제3비교예와 비교하여 아래의 점이 다르다. 즉, 구동전류가 초기 구동 전류(Ii)에서 목표 구동 전류(Id)로 변할 때(상승 에지)에, 및/또는 구동전류가 목표 구동 전류(Id)에서 초기 구동 전류(Ii)로 변할 때(하강 에지)에, 멀티 스텝 파형으로 변한다는 점에서 다르다.
도 5는 본 발명의 제5실시예에 따른 렌즈 AF 구동제어방법을 설명하기 위한 도면이다. 도 5에서 가로축은 시간을 나타내고 세로축은 구동신호의 크기를 나타낸다. 도 5는 초기 구동 전류가 목표 구동 전류보다 작은 예를 나타내었는데, 이 반대의 경우도 마찬가지로 설명될 수 있다는 점을 이해할 수 있을 것이다.
제5실시예는 상술한 제3실시예와 제4실시예를 조합하여 도출될 수 있다.
제어시작시점(t0)에서, 구동전류는 초기 구동 전류(Ii)로부터 과도 구동 전류(Im1)까지 1회 이상 토글하여 변화할 수 있다. 여기서, 토글이란 초기 구동 전류 레벨(Ii)과 과도 구동 전류 레벨(Im1)을 오가는 것을 의미한다.
그 다음 제1시점(t1)에서, 구동전류는 과도 구동 전류(Im1)로부터 목표 구동 전류(Id)까지 1회 이상 토글하여 변화할 수 있다. 여기서, 토글이란 과도 구동 전류 레벨과 목표 구동 전류 레벨을 오가는 것을 의미한다.
그 다음 제2시점(=제어종료시점)(t2)부터, 구동전류는 목표 구동 전류(Id)의 전류 레벨인 목표 구동 전류 레벨을 계속 유지할 수 있다.
상술한 과도 구동 전류는 초기 구동 전류와 목표 구동 전류의 사이값을 가질 수 있다.
이때, 구동전류의 값을 변화시키기 시작하는 제어시작시점(t0)과 구동전류의 변화가 종료되는 제2시점(t2)까지의 시구간을 '구동전류 제어구간'이라고 지칭할 수 있다.
상술한 구동전류 제어구간에서 구동전류의 레벨은 초기 구동 전류 레벨, 과도 구동 전류 레벨, 및 목표 구동 전류 레벨 사이를 오갈 수 있다.
한편, 제5실시예에서는, 도 5와 같이 구동전류의 상승 에지와 하강 에지 구간 중 하나 이상을 멀티 스텝 파형으로 변화시킬 수 있다.
본 명세서에서 상기 상승 에지와 하강 에지를 통틀어 '레벨천이 에지(level transition edge)'라고 지칭한다. 일반적으로 상승 에지와 하강 에지는 천이하는 두 개의 레벨 사이에서 순간적으로 변화하는 상태를 의미한다. 그러나 본 명세서에서는 두 개의 레벨 간의 천이 시구간에, 상승하거나 하강하는 모양을 갖는 멀티 스텝 파형이 존재할 때에, 상기 천이 시구간을 상승 에지, 하강 에지, 또는 레벨천이 에지라고 재정의할 수 있다. 이때 상기 멀티 스텝의 각각의 개별 스텝의 크기는, 상기 두 개의 레벨의 차이값을 복수 개로 분할한 크기를 가질 수 있다.
도 6a는 상술한 제3실시예와 본 발명의 제5실시예에 따른 효과를 비교하여 나타낸 것이다.
도 6a의 가로축은 시간을 나타내고 세로축은 렌즈의 광축에 따른 상기 렌즈의 위치를 나타낸 것이다.
그래프(101)는 본 발명의 제5실시예에 따른 렌즈의 위치 변화를 나타낸 것이고, 그래프(102)는 본 발명의 제3실시예에 따른 렌즈의 위치 변화를 나타낸 것이다.
도 6b는 도 6a의 영역(A) 부분을 확대하여 표시한 것이다.
이하, 도 6a와 도 6b를 함께 참조하여 설명한다. 그래프(101)를 살펴보면 제5실시예에 따른 렌즈의 위치는 안정화 시점(ts_c5) 이후에는 허용오차 범위 내로 안착된다. 그러나 그래프(102)를 살펴보면 제3실시예에 따른 렌즈의 위치는 시점(ts_c5) 이후에도 허용오차 범위를 벗어나도록 진동하며, 시점(ts_c3)이 되어야 비로소 안정화된다. 즉, 제5실시예에 따른 렌즈 AF 구동제어방법의 효과가 제3실시예에 따른 렌즈 AF 구동제어방법의 효과보다 뛰어나다는 것을 알 수 있다.
이와 같이, 제5실시예가 제3실시예보다 더 좋은 효과를 나타내는 이유를 도 6a에 나타낸 그래프를 이용하여 설명할 수 있다. 그래프(101)는 과도 기간 전반에 걸쳐 그래프(102)보다 그 순간 기울기가 완만하다는 것을 쉽게 이해할 수 있다. 이와 같이 그래프(101)의 순간 기울기가 더 완만하게 나타난 것은, 도 5와 같이 구동전류의 상승 에지와 하강 에지를 멀티 스텝 파형으로 변화시켰기 때문이다. 이와 같이 레벨천이 에지에서 멀티 스텝 파형을 갖도록 하는 것이 본 발명의 일 아이디어이다.
상술한 제5실시예에서는 구동전류가 상술한 멀티 토글 제어 방법을 따르면서도, 상승 에지 또는 하강 에지 구간에서 멀티 스텝 파형을 갖는 아이디어를 구현한 것이다. 이를 확장하여 본 발명에 따른 제6실시예를 제시할 수 있다.
본 발명의 제6실시예에서는 제어시작시점(t0)과 구동전류의 변화가 종료되는 제2시점(t2)까지의 '구동전류 제어구간' 동안, 구동전류는 (1) 초기 구동 전류(Ii), (2) 목표 구동 전류(Id), 및 (3) 초기 구동 전류(Ii)와도 다르고 목표 구동 전류(Id)와도 다른 레벨을 갖는 한 개 이상의 과도 구동 전류의 값을 갖도록 증가하고 감소할 수 있다. 이때, 상술한 구동전류 제어구간에서 구동전류의 상승 에지와 하강 에지를 멀티 스텝 파형으로 변화시킬 수 있다. 이때, 특히, 상기 한 개 이상의 과도 구동 전류 중 적어도 어느 하나는 초기 구동 전류(Ii)의 레벨과 목표 구동 전류(Id)의 레벨 사이의 레벨을 가질 수 있다. 또는, 상기 한 개 이상의 과도 구동 전류 중 적어도 어느 하나는 초기 구동 전류(Ii)의 레벨과 목표 구동 전류(Id)의 레벨 바깥의 레벨을 가질 수 있다.
상술한 본 발명의 실시예들을 이용하여, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다. 특허청구범위의 각 청구항의 내용은 본 명세서를 통해 이해할 수 있는 범위 내에서 인용관계가 없는 다른 청구항에 결합될 수 있다.

Claims (12)

  1. 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법으로서,
    상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 복수 개의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 포함하고 상기 구동전류를 감소시키는 단계를 1회 이상 포함하는,
    렌즈 AF 구동제어방법.
  2. 제1항에 있어서, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨, 상기 목표 구동 전류 레벨, 및 상기 초기 구동 전류 레벨보다 크고 상기 목표 구동 전류 레벨보다 작은 과도 구동 전류 레벨을 포함하는, 렌즈 AF 구동제어방법.
  3. 제2항에 있어서,
    상기 구동전류 제어구간 동안,
    상기 구동전류가 상기 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및
    상기 구동전류가 상기 목표 구동 전류 레벨과 상기 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계
    를 포함하는,
    렌즈 AF 구동제어방법.
  4. 제1항에 있어서, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖는 것을 특징으로 하는, 렌즈 AF 구동제어방법.
  5. 제1항에 있어서, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨 및 상기 목표 구동 전류 레벨만을 포함하는, 렌즈 AF 구동제어방법.
  6. 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 제어하는 진동 제어부를 포함하는 렌즈구동 제어장치로서,
    상기 진동 제어부는, 상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가 상기 목표위치에 대응하는 목표 구동 전류 레벨과 상기 초기위치에 대응하는 초기 구동 전류 레벨 사이에 존재하는 복수 개의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 수행하고 상기 구동전류를 감소시키는 단계를 1회 이상 수행하도록 되어 있는,
    렌즈구동 제어장치.
  7. 제6항에 있어서, 상기 복수 개의 전류 레벨은, 상기 초기 구동 전류 레벨, 상기 목표 구동 전류 레벨, 및 상기 초기 구동 전류 레벨보다 크고 상기 목표 구동 전류 레벨보다 작은 과도 구동 전류 레벨을 포함하는, 렌즈구동 제어장치.
  8. 제7항에 있어서,
    상기 진동 제어부는,
    상기 구동전류 제어구간 동안,
    상기 구동전류가 상기 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및
    상기 구동전류가 상기 목표 구동 전류 레벨과 상기 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계
    를 수행하도록 되어 있는,
    렌즈구동 제어장치.
  9. 제6항에 있어서, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖는 것을 특징으로 하는, 렌즈구동 제어장치.
  10. 렌즈의 위치를 초기위치로부터 목표위치까지 변화시키기 위해, 상기 렌즈를 구동하는 구동소자에 입력되는 구동전류를 변화시키는 렌즈 AF 구동제어방법으로서,
    상기 구동전류의 변화가 시작되는 제어시작시점과 상기 구동전류의 변화가 종료하는 제어종료시점 사이의 '구동전류 제어구간' 동안, 상기 구동전류가, 상기 목표위치에 대응하는 목표 구동 전류 레벨과 다른 값을 가지며 상기 초기위치에 대응하는 초기 구동 전류 레벨과도 다른 값을 갖는 한 개 이상의 전류 레벨을 각각 1회 이상 지속하도록, 상기 구동전류를 증가시키는 단계를 1회 이상 포함하고 상기 구동전류를 감소시키는 단계를 1회 이상 포함하는,
    렌즈 AF 구동제어방법.
  11. 제10항에 있어서,
    상기 구동전류 제어구간 동안,
    상기 구동전류가 상기 한 개 이상의 전류 레벨 중 제1 과도 구동 전류 레벨과 상기 초기 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계; 및
    상기 구동전류가 상기 목표 구동 전류 레벨과 상기 제1 과도 구동 전류 레벨 사이를 1회 이상 왕복하여 토글하는 단계
    를 포함하는,
    렌즈 AF 구동제어방법.
  12. 제10항에 있어서, 상기 구동전류의 레벨천이 에지(level transition edge)는 복수 회의 스텝으로 이루어지는 멀티 스텝 파형을 갖는 것을 특징으로 하는, 렌즈 AF 구동제어방법.
PCT/KR2016/003399 2015-05-14 2016-04-01 빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치 WO2016182202A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018511570A JP6591662B2 (ja) 2015-05-14 2016-04-01 速い自動焦点のためのレンズ駆動制御方法及びこれのための装置
CN201680027745.4A CN107636530B (zh) 2015-05-14 2016-04-01 用于快速自动对焦的镜头驱动控制方法及用于其的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150067623A KR101578037B1 (ko) 2015-05-14 2015-05-14 빠른 af를 위한 렌즈 구동 제어 방법 및 이를 위한 장치
KR10-2015-0067623 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016182202A1 true WO2016182202A1 (ko) 2016-11-17

Family

ID=53503889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003399 WO2016182202A1 (ko) 2015-05-14 2016-04-01 빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치

Country Status (4)

Country Link
JP (1) JP6591662B2 (ko)
KR (1) KR101578037B1 (ko)
CN (1) CN107636530B (ko)
WO (1) WO2016182202A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004757A (ko) * 2015-07-03 2017-01-11 주식회사 지니틱스 렌즈 af 구동제어방법
KR101812281B1 (ko) 2016-06-30 2017-12-26 주식회사 동운아나텍 보이스 코일 모터 구동제어장치 및 그 방법
CN107846546A (zh) * 2016-09-18 2018-03-27 中兴通讯股份有限公司 一种摄像头模组的对焦补偿装置及其方法、摄像终端
CN106338807B (zh) * 2016-11-04 2019-10-25 Oppo广东移动通信有限公司 一种自动对焦方法、装置及终端
JP6780203B2 (ja) * 2018-10-29 2020-11-04 ビクター ハッセルブラッド アクチボラーグVictor Hasselblad Ab 制御装置、撮像装置、制御方法、及びプログラム
CN111082715B (zh) * 2019-12-31 2021-08-31 普冉半导体(上海)股份有限公司 音圈马达驱动器驱动电流分段控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201974A (ja) * 1992-12-28 1994-07-22 Canon Inc レンズ駆動制御装置
JPH08148108A (ja) * 1994-11-18 1996-06-07 Nikon Corp 自動焦点調整方法
JP2779048B2 (ja) * 1990-07-27 1998-07-23 日本電子株式会社 走査型電子顕微鏡のオートフォーカス方式
KR100831865B1 (ko) * 2007-07-13 2008-05-22 엘지이노텍 주식회사 카메라 모듈에서의 오토 포커싱 방법
JP4986551B2 (ja) * 2006-09-06 2012-07-25 三洋電機株式会社 レンズ駆動制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336450A (ja) * 1992-06-04 1993-12-17 Olympus Optical Co Ltd 光電変換装置
JP2963006B2 (ja) * 1994-06-01 1999-10-12 三洋電機株式会社 カメラ装置
JP2002350716A (ja) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 自動焦点調節装置、並びにこの装置を搭載したビデオカメラ及びデジタルスチルカメラ
JP2009169010A (ja) * 2008-01-15 2009-07-30 Panasonic Corp 撮像装置、携帯端末及びaf制御方法
JP5964542B2 (ja) * 2009-07-15 2016-08-03 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー フォーカス制御回路
CN104067169B (zh) * 2012-01-18 2016-04-06 富士胶片株式会社 镜头装置、驱动方法以及拍摄装置
JP6018403B2 (ja) * 2012-04-23 2016-11-02 ローム株式会社 スプリングリターン機構付きボイスコイルモータの駆動回路、それを用いたレンズモジュールおよび電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779048B2 (ja) * 1990-07-27 1998-07-23 日本電子株式会社 走査型電子顕微鏡のオートフォーカス方式
JPH06201974A (ja) * 1992-12-28 1994-07-22 Canon Inc レンズ駆動制御装置
JPH08148108A (ja) * 1994-11-18 1996-06-07 Nikon Corp 自動焦点調整方法
JP4986551B2 (ja) * 2006-09-06 2012-07-25 三洋電機株式会社 レンズ駆動制御装置
KR100831865B1 (ko) * 2007-07-13 2008-05-22 엘지이노텍 주식회사 카메라 모듈에서의 오토 포커싱 방법

Also Published As

Publication number Publication date
CN107636530A (zh) 2018-01-26
KR101578037B1 (ko) 2015-12-17
KR20150063333A (ko) 2015-06-09
JP6591662B2 (ja) 2019-10-16
JP2018520389A (ja) 2018-07-26
CN107636530B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2016182202A1 (ko) 빠른 자동초점을 위한 렌즈 구동 제어 방법 및 이를 위한 장치
US10686974B2 (en) Camera module electrical architecture
US8681231B2 (en) Camera with image stabilization function
WO2020173393A1 (zh) 驱动液体镜头的音圈马达及具有音圈马达的镜头组件
CN104781715B (zh) 用于致动光学系统中的至少一个光学元件的装置
WO2015147385A1 (ko) 자동 초점 및 손떨림 보정기능을 구비한 카메라 모듈
WO2011078614A2 (en) Camera module
CN104267559A (zh) 具有自动对焦调整的多镜头成像装置及方法
WO2017217659A1 (ko) 일체형 요크가 구비된 ois 액추에이터
WO2019235888A1 (ko) 카메라 모듈
WO2019151772A1 (ko) 카메라 모듈
WO2014142438A1 (en) Telephoto zoom lens system and electronic apparatus including the same
EP3210066B1 (en) Controlling focus lens assembly
WO2021246826A1 (ko) 카메라 모듈
KR20180042948A (ko) 서스펜션 구조를 가지는 fpcb 및 이를 이용한 광학용 액추에이터
WO2022102934A1 (ko) 줌 구동 액추에이터
WO2015157909A1 (zh) 音圈马达及调焦镜头
WO2018004124A1 (ko) 듀얼 액추에이터
KR20110016153A (ko) 카메라 모듈
WO2018004037A2 (ko) 보이스 코일 모터 구동제어장치 및 그 방법
CN115118842B (zh) 适于超分辨率拍摄的摄像模组
KR20170004757A (ko) 렌즈 af 구동제어방법
US10141880B2 (en) Driving circuit for voice coil motor having a first driver coupled to a first end of a coil and a second driver coupled to a second end of the coil
WO2021230683A1 (ko) 이미징 장치 및 이미징 방법
JP2006184565A (ja) 光学モジュールおよびこれを備えた撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018511570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792848

Country of ref document: EP

Kind code of ref document: A1