WO2018004124A1 - 듀얼 액추에이터 - Google Patents

듀얼 액추에이터 Download PDF

Info

Publication number
WO2018004124A1
WO2018004124A1 PCT/KR2017/004795 KR2017004795W WO2018004124A1 WO 2018004124 A1 WO2018004124 A1 WO 2018004124A1 KR 2017004795 W KR2017004795 W KR 2017004795W WO 2018004124 A1 WO2018004124 A1 WO 2018004124A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuators
ois
actuator
magnet
carrier
Prior art date
Application number
PCT/KR2017/004795
Other languages
English (en)
French (fr)
Inventor
김희승
전기훈
이환휘
노요한
Original Assignee
자화전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자 주식회사 filed Critical 자화전자 주식회사
Priority to CN201790001008.7U priority Critical patent/CN209182564U/zh
Publication of WO2018004124A1 publication Critical patent/WO2018004124A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a dual actuator, and more particularly to a dual actuator disposed in a structure in which magnetic field interference is minimized.
  • the magnet or coil
  • the coil or magnet
  • the optical actuator is generally applied with a magnet in the movable body and a coil in the fixed body.
  • the dual actuator is composed of two independent actuators in which AF or / and OIS are driven by the electromagnetic force.
  • the specific face direction (Fig. 1) Since two actuators are provided at close distances so that S) faces each other, the electromagnetic force generated by one actuator affects the magnetic field configuration of one actuator and the magnetic fields between adjacent magnets affect each other. Can be generated.
  • the distance between the magnet 30 provided in one actuator 10 and the magnet 30 provided in the other actuator 11 is substantially close. Since it is located at, it is influenced by the attraction force or repulsive force due to mutual magnetic force, and the carrier 20 (lens mounting) is intended even when the power of the appropriate size and direction is applied to the coil 40 by the feedback control by the Hall sensor 50. There is a problem that the carrier 20 does not move to the correct position.
  • the horizontality of the carrier 20 on which the lens is mounted should be maintained at all times, but as described above, the mutual influence of the electromagnetic force generated from each other or from other actuators will be maintained. As a result, a tilt is generated in the carrier 20, which causes a problem that the efficiency of precision control is reduced.
  • the present invention was devised to solve the above-mentioned problems in the above background, and by arranging an electromagnetic field configuration related to AF or OIS driving in a direction other than the surface direction in which two actuators constituting the dual actuators face each other, By minimizing the influence of the magnetic field, the objective is to implement a dual actuator that can optimize the independent AF or OIS driving of each actuator.
  • Two actuators, one or more of each of the AF magnets provided in the first and second actuators are configured to be provided in a direction different from the direction in which the first and second actuators face.
  • the AF driving unit of the present invention may be installed in a direction facing the AF magnet and may include an AF coil for generating an electromagnetic force in the AF magnet.
  • one or more of the first or second actuator of the present invention includes an OIS carrier provided in each of two perpendicular directions and moving in a direction perpendicular to the optical axis, wherein the first actuator or the first actuator At least one of the two actuators is provided with an OIS coil for generating an electromagnetic force in its OIS magnet, one or more of each of the OIS magnets provided in the first and second actuators and the direction in which the first and second actuators face It may be configured to be provided in the other direction.
  • At least one of the AF magnets of the first and second actuators of the present invention is provided on one side of the actuator, in which case the OIS magnet is located in the corner region opposite the position where the AF magnet of the actuator is provided. It can be configured to.
  • At least one of the AF magnets of the first and second actuators of the present invention is positioned at a corner region of the actuator.
  • the dual actuator according to another aspect of the present invention includes an OIS carrier which moves in a direction perpendicular to the optical axis and is provided with an OIS magnet, and an OIS driver which moves the OIS carrier in a direction perpendicular to the optical axis, and is disposed to face each other.
  • OIS carrier which moves in a direction perpendicular to the optical axis and is provided with an OIS magnet
  • OIS driver which moves the OIS carrier in a direction perpendicular to the optical axis, and is disposed to face each other.
  • One or more of each OIS magnet provided in the first and second actuators, including the first and second actuators may be provided in a direction different from the direction in which the first and second actuators face.
  • the electromagnetic field configuration for driving the AF or OIS is provided in a direction that does not face each other, thereby minimizing the mutual influence of the electromagnetic force generated between the individual actuators or the magnetic field of the magnet, etc. It can provide the effect of optimizing each independent AF or OIS drive.
  • the horizontality of the AF carrier or OIS carrier on which the lens is mounted is always maintained, thereby creating an effect that can prevent the problems caused by the tilt defect at the source. Can be.
  • FIG. 1 is a view showing the structure of a conventional dual actuator
  • Figure 2 is an exploded coupling view showing the configuration of the actuator according to an embodiment of the present invention
  • FIG. 3 is a view showing the configuration of a dual actuator according to a preferred embodiment of the present invention constituted by the actuator shown in FIG.
  • Figure 4 is an exploded coupling view showing the configuration of the actuator according to another preferred embodiment of the present invention.
  • FIG. 5 is a view showing the configuration of a dual actuator according to another preferred embodiment of the present invention constituted by the actuator shown in FIG.
  • Figure 6 is an exploded coupling view showing the configuration of the actuator according to another preferred embodiment of the present invention.
  • FIG. 7 is a view showing the configuration of a dual actuator according to another preferred embodiment of the present invention constituted by the actuator shown in FIG.
  • FIG. 2 is an exploded view showing the configuration of the individual actuator 100 according to an embodiment of the present invention.
  • the actuator 100 of the present invention shown in FIG. 2 is an individual actuator constituting the dual actuator 1000 of the present invention.
  • the actuator 100 of the present invention includes an AF carrier 110 and an AF magnet. 111, the main frame 120, the AF coil 121, the yoke 125, and the plurality of balls 130 may be configured.
  • An AF magnet 111 for AF driving is provided in the AF carrier 110, and a back yoke (not shown) may be further installed on the rear surface of the AF magnet 111 to concentrate magnetic force.
  • the AF carrier 110 shown in the drawing corresponds to a configuration corresponding to the moving object of the AF driving, which moves in the optical axis direction by the electromagnetic force generated by the AF driving unit, that is, the AF coil 121.
  • a lens (not shown) is mounted on the AF carrier 110 so that the AF carrier 110 moves in parallel with the AF carrier 110. As the lens moves, the lens also moves in the optical axis direction (Z-axis direction) and the autofocus function is realized by adjusting the distance to the image sensor through this movement.
  • the AF function may be mounted on the AF carrier 110 or may be provided to accommodate the AF carrier 110 and move in the X and Y axis directions perpendicular to the optical axis direction Z.
  • OIS carrier 200 for driving OIS may be further included.
  • the lens (or lens assembly) may be mounted in the mounting space 205 of the OIS carrier 200.
  • the OIS carrier 200 When the AF carrier 110 moves in the optical axis direction, the OIS carrier 200 is also included in the optical axis. Since the lens is also moved in the optical axis direction, the focus is adjusted accordingly, and when the OIS drive is performed for image stabilization, the OIS carrier 200 is shaken in the direction perpendicular to the optical axis direction on the AF carrier 110. Movement in the direction to compensate for the movement of the image degradation caused by the camera shake is eliminated by this movement.
  • the dual actuator 1000 of the present invention is configured to minimize the magnetic influence and interference between the individual actuators 100, the individual actuators constituting the dual actuator 1000 is a device in which the AF function alone is implemented as well In addition, it is applicable to both a device in which the OIS function is implemented alone or a device incorporating the AF and the OIS.
  • the heterogeneous devices may be implemented as dual actuators by an optional combination.
  • Main frame 120 of the present invention is a configuration corresponding to the AF carrier 110, if the AF carrier 110 is a moving object for the AF drive from the relative point of view the main frame 120 corresponds to a fixed body.
  • the main frame 120 may be provided with a configuration for driving AF, that is, an AF coil 121, an FPCB 123, a yoke 125, a hall sensor 127, and a drive chip 128.
  • the AF driver for the AF drive generates an electromagnetic force corresponding to the size and direction of the power applied from the outside to move the AF carrier 110 with the AF magnet 111 in the optical axis direction.
  • the hall sensor 127 detects the position of the AF magnet 111 (the position of the AF carrier, that is, the position of the lens) using a hall effect, and transmits a signal corresponding thereto to the drive chip 128 of the present invention.
  • the drive chip 128 controls the power of the proper size and direction to be applied to the AF coil 121 by using the input signal of the hall sensor 127.
  • the autofocus function is implemented by feedback control of the correct position of the lens with respect to the optical axis direction.
  • the AF coil 121, the drive chip 128, and the hall sensor 127 may be mounted on the FPCB 123 connected to an external module, a power supply unit, or a device.
  • the mainframe 120 may be dualized into the second subframe 120-1 and the second main frame 120-2, and may be implemented as a single unified object. .
  • a plurality of balls 130 are arranged between the AF carrier 110 and the main frame 120 (the second subframe 120-1) in a direction corresponding to the optical axis direction.
  • the AF carrier 110 and the main frame 120 are maintained in a spaced apart state corresponding to the diameter of the ball.
  • the AF carrier 110 and the mainframe 120 maintain the proper intervals and maintain the point contact with the ball of the AF carrier 110 continuously in the main frame 120 is provided in the AF carrier 110
  • the magnet 111 and the yoke 125 for generating an attraction force is provided.
  • the ball means 230 may be interposed between the above-described AF carrier 110 and the OIS carrier 200, and point contact with the ball means 230 is made. And by rolling (rolling) movement of the ball means 230, the OIS carrier 200 is moved in a direction perpendicular to the optical axis flexibly with a minimum friction force.
  • the OIS carrier 200 of the present invention is provided with an OIS magnet 210 in each of directions perpendicular to the optical axis and orthogonal to each other.
  • the OIS magnet 210 receives a force in a direction perpendicular to the optical axis by the electromagnetic force of the OIS coil 220 mounted on the main frame 120, and the OIS magnet 210 mounted with the OIS magnet 210 by this force ( 200 is moved in the combined direction of the direction perpendicular to the optical axis.
  • the lens may be mounted on the OIS carrier 200, so that the lens (lens assembly) may be moved by a direction perpendicular to the optical axis direction of the OIS carrier 200.
  • the movement in the same direction is overcome by the movement, such as image blur due to hand shake.
  • FIG. 3 is a view showing the configuration of a dual actuator 1000 according to a preferred embodiment of the present invention constituted by the actuator 200 of the present invention shown in FIG.
  • the dual actuator 1000 of the present invention includes a first actuator 100 and a second actuator 500. As illustrated in the drawing, the first actuator 100 and the first actuator 100 are formed. The two actuators 500 are configured to face each other based on a specific surface direction S.
  • At least one of the AF magnets 111 provided in the first actuator 100 and the AF magnets 111 provided in the second actuator 500 may face the first and second actuators 100 and 500. It is arrange
  • the magnetic fields formed by the respective AF magnets 111 may be configured not to interfere with each other, thereby minimizing the influence of the magnetic force between the AF magnets 111, and thus the individual actuators 100. Independent AF driving is achieved.
  • the AF magnets 111 provided in the actuators 100 and 500 are the first and the second.
  • the AF coil 121 of each of the actuators 100 and 500 is also different from the direction in which the first and second actuators 100 and 500 face. It is preferable to comprise so that.
  • the individual actuators 100 constituting the dual actuators 1000 of the present invention are actuators in which only a single AF function is implemented, the AF magnets 111 provided in each actuator are shown in FIG. 3.
  • the actuators 100 and 500 may be disposed in a direction in which each of the three directions, which are directions other than the direction S facing each other, is combined.
  • the AF magnet 111 is positioned on the left side of the first actuator 100 and the second actuator 500 is disposed on the right side of the second actuator 500. ) May be configured to position the AF magnet 111.
  • the AF magnet 111 and the second actuator 500 of the first actuator 100 may be considered in consideration of the direction of the magnetic field formed by the AF coil and the magnetic field region.
  • AF magnets 111 may be configured to be disposed in the upper and lower or lower and upper positions respectively.
  • the embodiment shown in Figure 3 shows an actuator form in which the individual actuator 100 is integrated with AF and OIS driving, but according to the embodiment, the individual actuator 100 constituting the dual actuator 1000 Only the OIS function may be an actuator implemented alone.
  • at least one of the respective OIS magnets 210 provided in the first actuator 100 or the second actuator 500 is different from the direction S in which the first and second actuators 100 and 500 face each other. It is comprised so that a direction may be provided.
  • the dual actuator 1000 of the present invention is implemented by the actuator 100 in which AF and OIS are integrated as in the embodiment shown in FIG. 3, the AF magnet 111 and of course, the OIS magnet 210 are interconnected.
  • the AF magnet 111 is configured to be provided on one side of the four sides of the actuators 100 and 500 instead of the facing direction S so that the influence of the magnetic field therebetween, and the OIS magnet 210 is the AF of the actuator. It is preferable that the magnet 111 be configured to be located at a corner region opposite to the position where the magnet 111 is provided.
  • the AF magnet 111 of the first actuator 100 is disposed below the drawing reference, and the AF magnet 111 of the second actuator 500 is arranged upwardly based on the drawing. It may also be configured to.
  • the OIS magnet 210 is preferably provided in a direction perpendicular to each other so that the OIS carrier 200 can move in the direction orthogonal to each other and their combined direction.
  • the actuators 100 and 500 constituting the dual actuator 1000 of the present invention are Two types of actuators, one of which implements AF only, one that implements OIS only, or ones that implement both AF and OIS, can be combined, and two actuators of the same type that implement the same function can be combined. Of course you can.
  • Figure 4 is a view showing the configuration of the actuator according to another preferred embodiment of the present invention
  • Figure 5 is a view showing a dual actuator (1000) configured by the actuator (100, 500) shown in FIG.
  • Actuator 100 of the present invention shown in Figure 4 is configured for the AF drive, that is, the AF magnet 111 and AF coil 121, etc. are configured to be located in the corner region of the actuator 100 and other detailed configuration And their functions are substantially the same as the embodiment shown in FIG.
  • the actuators 100 and 500 according to the exemplary embodiment of the present invention shown in FIG. 4 are disposed to be implemented as the dual actuators 1000, the AF magnets 111 as well as the OIS magnets 210 may have two actuators ( It is preferable to implement the arrangement in which the 100 and 500 may be spaced as far as possible in the direction S facing each other.
  • FIG. 6 is a view showing the configuration of an actuator according to another preferred embodiment of the present invention
  • Figure 7 is a view showing a dual actuator (1000) configured by the actuator (100, 500) shown in FIG. .
  • the embodiment of the present invention shown in FIG. 6 includes a structure in which the OIS carrier 210 is supported by the wire 250, and the OIS carrier 210 is elastically supported by the wire 250 to compensate for image stabilization. Movement, compensation movement and home position restoration are performed.
  • OIS coil 220 for driving the OIS is provided in the form lying on the bottom of the corner portion, OIS magnet 210 is provided in the OIS carrier 200, the OIS coil ( 220) in the direction facing.
  • the AF carrier 110 is located inside the OIS carrier 200, and the AF carrier 110 having the AF magnet 111 is controlled by feedback control of the AF coil 121 and the driving driver 128. Autofocus is realized by linear movement in the optical axis direction.
  • the AF magnet 111 may be disposed in a direction S in which the two actuators 100 and 500 face each other. It is preferable to configure so that) is not located.
  • electromagnetic fields for AF or OIS driving are not disposed on all four sides of the actuator 100 which is generally quadrilateral.
  • the components forming the electromagnetic field are two individual actuators 100. , 500 may not be disposed in the surface direction S facing each other, thereby minimizing magnetic field interference or influence between the individual actuators 100 and 500.
  • first and second are only terms of a tool concept used to relatively distinguish components from each other, and thus are used to indicate a specific order, priority, and the like. It should not be interpreted as being a term.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명에 의한 듀얼 액추에이터는 광축을 따라 이동하며 AF마그네트가 구비되는 AF캐리어와, 상기 AF캐리어를 광축방향으로 이동시키는 AF구동부를 각각 포함하며 상호 대면하여 배치되는 제1 및 제2액추에이터를 포함하고, 상기 제1 및 제2액추에이터에 구비된 각 AF마그네트 중 하나 이상은 상기 제1 및 제2액추에이터가 대면하는 방향과 다른 방향에 구비되는 것을 특징으로 한다.

Description

듀얼 액추에이터
본 발명은 듀얼 액추에이터에 관한 것으로서, 더욱 구체적으로는 자계 간섭이 최소화되는 구조로 배치된 듀얼 액추에이터에 관한 것이다.
영상 처리에 대한 하드웨어 기술이 발전하고 영상 촬영 등에 대한 사용자 니즈가 높아짐에 따라, 독립된 카메라 장치는 물론, 휴대폰, 스마트폰 등과 같은 모바일 단말에 장착된 카메라 모듈 등에 오토포커스(AF, Auto Focus), 손떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현되고 있으며, 근래에는 이러한 AF 또는 OIS 기능이 탑재된 2개의 액추에이터를 연결시키는 듀얼 액추에이터도 개시되고 있다.
AF 및 OIS를 구동하는 방법은 여러 가지가 있을 수 있으나, 상대적 관계에 있는 이동체와 고정체 중 하나의 객체에 마그네트(또는 코일)를 장착하고, 다른 객체에는 코일(또는 마그네트)을 장착하여 그 코일과 마그네트 사이에서 발생되는 전자기력에 의하여 이동체가 고정체를 기준으로 이동하도록 하는 방법이 일반적으로 채용된다.
광학용 액추에이터는 AF 및 OIS 구동의 신뢰성을 높이고, 구동의 정밀성을 향상시키기 위하여 통상적으로 이동체에 마그네트를 구비시키고 고정체에 코일을 구비시키는 형태가 일반적으로 적용된다.
듀얼 액추에이터는 이와 같이 전자기력에 의하여 AF 또는/및 OIS가 구동되는 독립된 두 개의 액추에이터로 이루어지는데, 하나의 독립된 액추에이터의 경우와는 달리 두 개의 액추에이터가 구비되는 듀얼 액추에이터의 경우 특정 면부 방향(도 1의 S)이 상호 대면하도록 상당히 근접한 거리에 두 개의 액추에이터가 구비되므로 하나의 액추에이터에서 발생되는 전자기력이 다른 하나의 액추에이터에 구비된 자계 구성에 영향을 미치고 인접된 자석 사이의 자계가 상호 영향을 미치는 문제점이 발생될 수 있다.
즉, 도 1에 도시된 바와 같이 종래의 듀얼 액추에이터(70)의 경우, 하나의 액추에이터(10)에 구비된 마그네트(30)가 다른 액추에이터(11)에 구비된 마그네트(30)와 상당힌 근접한 거리에 위치하므로 상호 자력에 의한 인력 내지 척력의 영향을 받게 되어 홀센서(50)에 의한 피드백 제어로 적절한 크기와 방향의 전원이 코일(40)에 인가되어도 캐리어(20)(렌즈 장착)가 의도된 정확한 위치로 캐리어(20)가 이동하지 않는 문제가 발생한다.
또한, 정확한 AF 또는 OIS의 구동을 정밀하게 수행하기 위해서는 렌즈가 탑재되는 캐리어(20)의 수평성이 항시적으로 유지되어야 하나 상기와 같이 자석 상호 간 또는 다른 액추에이터에서 발생되는 전자기력에 의한 상호 영향에 의하여 캐리어(20)에 틸트가 발생되어 정밀 제어의 효율이 저하되는 문제가 발생한다.
종래에는 이러한 문제의식 없이 듀얼 액추에이터(70)를 구현하는 경우, 단순히 독립된 액추에이터를 병렬적으로 연결하여 사용하고 있으므로 상기와 같이 AF 또는 OIS의 구동 성능 저하, 캐리어의 틸트 불량 등에 의한 정밀 제어 성능 저하 등의 문제가 발생하게 된다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 듀얼 액추에이터를 구성하는 2개의 액추에이터가 대면하는 면부 방향 이외의 다른 방향에 AF 또는 OIS 구동과 관련된 전자계 구성을 배치함으로써, 상호 자계 등의 영향을 최소화시킴으로써, 액추에이터 각각의 독립된 AF 또는 OIS 구동을 최적화시킬 수 있는 듀얼 액추에이터를 구현하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 듀얼 액추에이터는 광축을 따라 이동하며 AF마그네트가 구비되는 AF캐리어와, 상기 AF캐리어를 광축방향으로 이동시키는 AF구동부를 각각 포함하며 상호 대면하여 배치되는 제1 및 제2액추에이터를 포함하고, 상기 제1 및 제2액추에이터에 구비된 각 AF마그네트 중 하나 이상은 상기 제1 및 제2액추에이터가 대면하는 방향과 다른 방향에 구비되도록 구성된다.
여기에서 본 발명의 상기 AF구동부는 상기 AF마그네트와 대면하는 방향에 설치되며 상기 AF마그네트에 전자기력을 발생시키는 AF코일을 포함할 수 있다.
또한, 본 발명의 상기 제1 또는 제2액추에이터 중 하나 이상은 수직을 이루는 두 방향 각각에 OIS마그네트가 구비되며 광축과 수직을 이루는 방향으로 이동하는 OIS캐리어를 포함하고, 상기 제1액추에이터 또는 상기 제2액추에이터 중 하나 이상은 자신의 OIS마그네트에 전자기력을 발생시키는 OIS코일이 구비되며, 상기 제1 및 제2액추에이터에 구비된 각 OIS마그네트 중 하나 이상은 상기 제1 및 제2 액추에이터가 대면하는 방향과 다른 방향에 구비되도록 구성될 수 있다.
바람직하게, 본 발명의 상기 제1 및 제2액추에이터의 AF마그네트 중 하나 이상은, 해당 액추에이터의 일 측면에 구비되며 이 경우 상기 OIS마그네트는 해당 액추에이터의 AF마그네트가 구비된 위치의 반대편 모서리 영역에 위치하도록 구성될 수 있다.
또한, 본 발명의 상기 제1 및 제2액추에이터의 AF마그네트 중 하나 이상은 해당 액추에이터의 모서리 영역 부분에 위치하도록 구성하는 것이 바람직하다.
본 발명의 다른 측면에 의한 듀얼 액추에이터는 광축과 수직한 방향으로 이동하며 OIS마그네트가 구비되는 OIS캐리어와, 상기 OIS캐리어를 광축과 수직한 방향으로 이동시키는 OIS구동부를 각각 포함하며 상호 대면하여 배치되는 제1 및 제2액추에이터를 포함하고, 상기 제1 및 제2액추에이터에 구비된 각 OIS마그네트 중 하나 이상은 상기 제1 및 제2액추에이터가 대면하는 방향과 다른 방향에 구비되도록 구성될 수 있다.
본 발명의 바람직한 일 실시예에 의할 때, AF 또는 OIS 구동을 위한 전자계 구성이 상호 대면하지 않는 방향에 구비됨으로써, 개별 액추에이터 사이에서 발생되는 전자기력 또는 마그네트의 자계 등에 의한 상호 영향을 최소화시킴으로써, 액추에이터 각각의 독립된 AF 또는 OIS 구동을 최적화시킬 수 있는 효과를 제공할 수 있다.
인접한 개별 액추에이터에 구비된 자석 간의 자력이 최소화되도록 함으로써, 렌즈가 탑재되는 AF 캐리어 또는 OIS 캐리어의 수평성을 항시적으로 유지하여 틸트 불량에 의하여 발생되는 문제점을 원천적으로 방지할 수 있는 효과를 창출할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 듀얼 액추에이터의 구조를 도시한 도면,
도 2는 본 발명의 바람직한 일 실시예에 의한 액추에이터의 구성을 도시한 분해 결합도,
도 3은 도 2에 도시된 액추에이터에 의하여 구성되는 본 발명의 바람직한 일 실시예에 의한 듀얼 액추에이터의 구성을 도시한 도면,
도 4는 본 발명의 바람직한 다른 실시예에 의한 액추에이터의 구성을 도시한 분해 결합도,
도 5는 도 4에 도시된 액추에이터에 의하여 구성되는 본 발명의 바람직한 다른 실시예에 의한 듀얼 액추에이터의 구성을 도시한 도면,
도 6은 본 발명의 바람직한 또 다른 실시예에 의한 액추에이터의 구성을 도시한 분해 결합도,
도 7은 도 6에 도시된 액추에이터에 의하여 구성되는 본 발명의 바람직한 또 다른 실시예에 의한 듀얼 액추에이터의 구성을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는 본 발명의 바람직한 일 실시예에 의한 개별 액추에이터(100)의 구성을 도시한 분해 결합도이다.
도 2에 도시된 본 발명의 액추에이터(100)는 본 발명의 듀얼 액추에이터(1000)를 구성하는 개별 액추에이터로서, 도면에 도시된 바와 같이 본 발명의 액추에이터(100)는 AF캐리어(110), AF마그네트(111), 메인프레임(120), AF코일(121), 요크(125) 및 복수 개의 볼(130)을 포함하여 구성될 수 있다.
AF구동을 위한 AF마그네트(111)는 상기 AF캐리어(110)에 구비되며 이 AF마그네트(111)의 후면으로는 자력의 집중을 위한 백요크(미도시)가 더 설치될 수 있다. 도면에 도시된 AF캐리어(110)는 AF구동의 이동체에 해당하는 구성으로서 AF구동부 즉, AF코일(121)에 의하여 발생된 전자기력에 의하여 광축 방향으로 이동하는 구성에 해당한다.
AF기능만이 단독으로 구현되는 액추에이터(100)에서는 상기 AF캐리어(110)에 렌즈(미도시)가 탑재되어 AF캐리어(110)와 그 물리적 이동을 함께 하게 되므로 AF캐리어(110)가 광축 방향으로 이동함에 따라 렌즈 또한, 광축 방향(Z축 방향)으로 이동하게 되고 이러한 이동을 통하여 이미지 센서와의 거리가 조정됨으로써 자동초점기능이 구현된다.
AF기능과 OIS 기능이 통합된 실시형태에서는 상기 AF캐리어(110)에 탑재되거나 또는 AF캐리어(110)를 수용하는 형태로 구비되며 광축 방향(Z)과 수직을 이루는 X, Y축 방향으로 이동하는 OIS 구동을 위한 OIS캐리어(200)가 더 포함될 수 있다.
이 경우, 실시형태에 따라 렌즈(또는 렌즈조립체)는 OIS캐리어(200)의 탑재공간(205)에 탑재될 수 있는데 AF캐리어(110)가 광축 방향으로 이동하는 경우 OIS캐리어(200)도 함께 광축방향으로 이동하게 되므로 이에 따라 렌즈 또한 광축 방향으로 이동하게 됨으로써 초점이 조절되며, 손떨림 보정을 위한 OIS 구동이 이루어지는 경우 OIS캐리어(200)는 AF캐리어(110) 상부에서 광축 방향과 수직한 방향으로 손떨림에 의한 움직임을 보상하는 방향으로 이동하게 되는데 이러한 이동에 의하여 손떨림에 의한 이미지 열화 현상이 해소된다.
본 발명의 듀얼 액추에이터(1000)는 개별 액추에이터(100) 사이의 자계 영향과 간섭을 최소화시키기 위한 구성으로서 듀얼 액추에이터(1000)를 구성하는 개별 액추에이터(100)는 AF기능이 단독으로 구현된 장치는 물론, OIS기능이 단독으로 구현된 장치 또는 AF와 OIS가 통합되어 구현된 장치 모두에 적용 가능함은 물론이며 선택적 조합에 의하여 이종의 장치가 듀얼 액추에이터로 구현될 수 있다.
본 발명의 메인프레임(120)은 AF캐리어(110)에 상응하는 구성으로서, AF캐리어(110)가 AF구동에 대한 이동체라면 상대적인 관점에서 상기 메인프레임(120)은 고정체에 해당한다.
상기 메인프레임(120)에는 AF구동을 위한 구성 즉, AF코일(121), FPCB(123), 요크(125), 홀센서(127) 및 드라이브 칩(128) 등이 구비될 수 있다. AF구동을 위한 AF구동부는 외부에서 인가되는 전원의 크기와 방향에 상응하는 전자기력을 발생시켜 AF마그네트(111)가 구비된 AF캐리어(110)를 광축 방향으로 이동시키는 기능을 수행한다.
홀센서(127)는 홀효과(hall effect)를 이용하여 AF마그네트(111)의 위치(AF캐리어의 위치 즉, 렌즈의 위치)를 감지하고 이에 대응되는 신호를 본 발명의 드라이브 칩(128)으로 전달하며, 드라이브 칩(128)은 입력된 홀 센서(127)의 신호를 이용하여 적절한 크기와 방향의 전원이 AF코일(121) 측으로 인가되도록 제어한다.
이러한 방법을 통하여 광축 방향을 기준으로 렌즈의 정확한 위치를 피드백 제어함으로써 자동초점 기능이 구현된다. 상기 AF코일(121), 드라이브 칩(128) 및 홀센서(127)는 외부 모듈, 전원부, 장치 등과 연결되는 FPCB(123) 상에 탑재될 수 있다.
메인프레임(120)은 도 3에 도시된 바와 같이 제2서브프레임(120-1)과 제2메인프레임(120-2)으로 이원화될 수 있음은 물론, 단일화된 하나의 객체로 구현될 수 있다.
도 2에 도시된 바와 같이 상기 AF캐리어(110)와 메인프레임(120)(제2서브프레임(120-1) 사이에는 광축 방향과 대응되는 방향으로 배열되는 복수 개의 볼(130)이 위치하며, 이 복수 개의 볼(130)에 의하여 상기 AF캐리어(110)와 메인프레임(120)은 볼의 직경에 대응되는 만큼의 이격된 상태가 유지된다.
AF캐리어(110)와 메인프레임(120)이 적정 간격을 유지하고 AF캐리어(110)의 볼에 대한 점접촉이 지속적으로 유지될 수 있도록 메인프레임(120)에는 AF캐리어(110)에 구비된 AF마그네트(111)와 인력을 발생시키는 요크(125)가 구비된다.
도 2의 오른쪽 그림에 도시된 바와 같이 상술된 AF캐리어(110)와 OIS 캐리어(200) 사이에는 볼수단(230)이 개재될 수 있으며, 이 볼수단(230)과의 점접촉(point contact)과 볼수단(230)의 구름(rolling) 운동에 의하여 OIS캐리어(200)는 최소화된 마찰력으로 유연하게 광축과 수직한 방향으로 이동하게 된다.
손떨림 보정은 광축과 수직한 방향에서 이루어지므로 본 발명의 OIS캐리어(200)는 광축과 수직하며 상호 직교하는 방향 각각에 OIS마그네트(210)가 구비된다. 이 OIS마그네트(210)는 메인프레임(120)에 장착되는 OIS코일(220)과의 전자기력에 의하여 광축과 수직한 방향으로 힘을 받게 되고 이 힘에 의하여 OIS마그네트(210)가 장착된 OIS캐리어(200)가 광축과 수직한 방향의 조합된 방향으로 이동하게 된다.
앞서 설명된 바와 같이 AF와 OIS가 통합된 실시형태의 경우 렌즈는 OIS캐리어(200)에 장착될 수 있으므로 이러한 OIS캐리어(200)의 광축 방향과 수직을 이루는 방향의 이동에 의하여 렌즈(렌즈조립체) 또한 동일한 방향으로 이동하며 이러한 이동에 의하여 손떨림에 의한 영상 흐려짐 등의 현상이 극복된다.
도 3은 도 2에 도시된 본 발명의 액추에이터(200)에 의하여 구성되는 본 발명의 바람직한 일 실시예에 의한 듀얼 액추에이터(1000)의 구성을 도시한 도면이다.
도 3에 도시된 바와 같이 본 발명의 듀얼 액추에이터(1000)는 제1액추에이터(100) 및 제2액추에이터(500)를 포함하여 구성되는데, 도면에 도시된 바와 같이 상기 제1액추에이터(100)와 제2액추에이터(500)는 특정 면부 방향(S)을 기준으로 상호 대면하여 구성된다.
이 때, 제1액추에이터(100)에 구비된 AF마그네트(111), 제2액추에이터(500)에 구비된 AF마그네트(111) 중 하나 이상은 상기 제1 및 제2액추에이터(100, 500)가 대면하는 면부 방향(S)과 다른 방향에 구비되도록 배치된다.
이와 같이 배치하는 경우 각 AF마그네트(111)에 의하여 형성되는 자계가 상호 간섭되지 않도록 구성할 수 있어 AF마그네트들(111) 상호 간에 미치는 자력의 영향을 최소화할 수 있게 되고 이를 통하여 개별 액추에이터(100)의 독립된 AF구동이 이루어지게 된다.
AF마그네트(111)에 전자기력을 발생시키는 AF코일(121)은 AF마그네트(111)와 대향하는 방향에 구비되므로 각 액추에이터(100, 500)에 구비되는 AF마그네트(111)가, 제1 및 제2액추에이터(100, 500)가 대면하는 방향과 다른 방향에 구비되는 경우 각 액추에이터(100, 500)의 AF코일(121) 또한, 제1 및 제2액추에이터(100, 500)가 대면하는 방향과 다른 방향에 구비되도록 구성하는 것이 바람직하다.
실시형태에 따라 본 발명의 듀얼 액추에이터(1000)를 구성하는 개별 액추에이터(100)가 단독의 AF 기능만이 구현된 액추에이터인 경우 각 액추에이터에 구비되는 AF마그네트(111)는 도 3에 도시된 예를 포함하여, 액추에이터들(100, 500)이 대면하는 방향(S) 이외의 다른 방향인 세 개의 방향 각각을 조합하는 방향에 배치될 수 있다.
물리적으로 가장 멀리 이격시키는 방법을 고려할 때, 도 3 기준, 제1액추에이터(100)의 좌측면부에 AF마그네트(111)가 위치하도록 구성하고 제2액추에이터(500)의 우측면부에 제2액추에이터(500)의 AF마그네트(111)가 위치하도록 구성할 수 있다.
또한, 권선된 형태로 AF코일(121)이 구현되는 경우 AF코일에 의하여 형성되는 자기장의 방향과 자기장 영역을 함께 고려하여 제1액추에이터(100)의 AF마그네트(111)와 제2액추에이터(500)의 AF마그네트(111)는 각각 상부와 하부 또는 하부와 상부의 위치에 배치되도록 구성할 수 있다.
한편, 도 3에 도시된 실시예는 개별 액추에이터(100)가 AF와 OIS구동이 통합된 액추에이터 형태를 도시하고 있으나, 실시형태에 따라 이와는 달리 듀얼 액추에이터(1000)를 구성하는 개별 액추에이터(100)가 OIS기능만이 단독으로 구현된 액추에이터일 수 있다. 이 경우에는 제1액추에이터(100) 또는 제2액추에이터(500)에 구비된 각 OIS마그네트(210) 중 하나 이상은 상기 제1 및 제2 액추에이터(100, 500)가 대면하는 방향(S)과 다른 방향에 구비되도록 구성한다.
또한, 도 3에 도시된 실시예와 같이 AF와 OIS가 통합된 액추에이터(100)에 의하여 본 발명의 듀얼 액추에이터(1000)가 구현되는 경우, AF마그네트(111)는 물론, OIS마그네트(210) 상호 간의 자계 영향이 최소화될 수 있도록 AF마그네트(111)는 해당 액추에이터(100, 500)의 네 측면 중 대면방향(S)이 아닌 일 측면에 구비하도록 구성하고, OIS마그네트(210)는 해당 액추에이터의 AF마그네트(111)가 구비된 위치의 반대편의 모서리 영역에 위치하도록 구성하는 것이 바람직하다.
실시형태에 따라 도면에 도시된 방향과는 달리 제1액추에이터(100)의 AF마그네트(111)는 도면 기준 아래 방향에, 제2액추에이터(500)의 AF마그네트(111)는 도면 기준 윗방향에 배치되도록 구성할 수도 있다.
이 경우 OIS 마그네트(210)는 OIS캐리어(200)가 상호 직교하는 방향 및 이들의 조합된 방향으로 이동할 수 있도록 상호 직각을 이루는 방향으로 구비되는 것이 바람직하다.
도면에 도시된 본 발명의 실시예는 본 발명의 기술 사상을 구현하는 하나의 일 예를 도시한 것으로서 도면에는 도시되지 않았으나, 본 발명의 듀얼 액추에이터(1000)를 구성하는 액추에이터(100, 500)는 AF만이 구현된 액추에이터, OIS만 구현된 액추에이터 또는 AF와 OIS가 모두 구현된 액추에이터 중 두 종류의 액추에이터가 조합적으로 구성될 수 있으며, 동일 기능이 구현된 동종의 2개의 액추에이터가 조합적으로 구성될 수도 있음은 물론이다.
도 4는 본 발명의 바람직한 다른 실시예에 의한 액추에이터의 구성을 도시한 도면이며, 도 5는 도 4에 도시된 액추에이터(100, 500)에 의하여 구성되는 듀얼 액추에이터(1000)를 도시한 도면이다.
도 4에 도시된 본 발명의 액추에이터(100)는 AF구동을 위한 구성 즉, AF마그네트(111)와 AF코일(121) 등이 액추에이터(100)의 모서리 영역 부분에 위치하도록 구성되며 그 외 세부 구성들과 그 구성들의 기능은 도 2에 도시된 실시예와 실질적으로 동일하다.
도 4에 도시된 본 발명의 실시예에 의한 액추에이터(100, 500)를 배치하여 듀얼 액추에이터(1000)로 구현하는 경우에도, AF마그네트(111)는 물론, OIS마그네트(210)가, 두 액추에이터(100, 500)가 상호 대면하는 방향(S)에서 가능한 멀리 이격될 수 있는 배치로 구현하는 것이 바람직하다.
도 6은 본 발명의 바람직한 또 다른 실시예에 의한 액추에이터의 구성을 도시한 도면이며, 도 7는 도 6에 도시된 액추에이터(100, 500)에 의하여 구성되는 듀얼 액추에이터(1000)를 도시한 도면이다.
도 6에 도시된 본 발명의 실시예는 OIS캐리어(210)가 와이어(250)에 의하여 지지되는 구조를 포함하고 있으며, OIS캐리어(210)는 이 와이어(250)에 의하여 탄성 지지됨으로써 손떨림 보정에 의한 이동, 보상 이동 및 원위치 복원 등이 이루어진다.
도 6에 도시된 실시예에서는 OIS구동을 위한 OIS코일(220)이 모서리 부분 바닥면에 누워져 있는 형태로 구비되며, OIS마그네트(210)는 OIS캐리어(200)에 구비되되, 상기 OIS코일(220)와 대면하는 방향에 위치한다.
상기 실시예에서는 AF캐리어(110)가 OIS캐리어(200) 내측에 위치하며, AF코일(121) 및 구동 드라이버(128)의 피드백 제어에 의하여 AF마그네트(111)가 구비된 AF캐리어(110)가 광축 방향으로 선형 이동하여 자동초점이 구현된다.
도 7에 도시된 바와 같이 도 6에 도시된 본 발명의 액추에이터(100)에 의하여 듀얼 액추에이터(1000)를 구현하는 경우, 두 액추에이터(100, 500)가 대면하는 방향(S)에 AF마그네트(111)가 위치하지 않도록 구성하는 것이 바람직하다.
도 2 내지 도 7에 도시된 본 발명의 실시예들은 전체적으로 4각 형상을 이루는 액추에이터(100)의 4면 모두에 AF 또는 OIS 구동을 위한 전자계 구성들이 배치되지 않는다는 것에 특징이 있다.
이와 같이 4면 모두에 AF 또는 OIS 구동을 위한 전자계 구성들이 배치되지 않도록 구성함으로써, 2개의 개별 액추에이터(100)를 인접시켜 듀얼 액추에이터(1000)를 구현하더라도 전자계를 이루는 구성이 2개의 개별 액추에이터(100, 500)가 대면하는 면부 방향(S)에 배치되지 않을 수 있어 개별 액추에이터(100, 500) 상호 간의 자계 간섭이나 영향을 최소화시킬 수 있게 된다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1 및 제2 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.

Claims (6)

  1. 광축을 따라 이동하며 AF마그네트가 구비되는 AF캐리어와, 상기 AF캐리어를 광축방향으로 이동시키는 AF구동부를 각각 포함하며 상호 대면하여 배치되는 제1 및 제2액추에이터를 포함하고,
    상기 제1 및 제2액추에이터에 구비된 각 AF마그네트 중 하나 이상은 상기 제1 및 제2액추에이터가 대면하는 방향과 다른 방향에 구비되는 것을 특징으로 하는 듀얼 액추에이터.
  2. 제 1항에 있어서, 상기 AF구동부는,
    상기 AF마그네트와 대면하는 방향에 설치되며 상기 AF마그네트에 전자기력을 발생시키는 AF코일을 포함하는 것을 특징으로 하는 듀얼 액추에이터.
  3. 제 2항에 있어서, 상기 제1 또는 제2액추에이터 중 하나 이상은,
    수직을 이루는 두 방향 각각에 OIS마그네트가 구비되며 광축과 수직을 이루는 방향으로 이동하는 OIS캐리어를 포함하고,
    상기 제1액추에이터 또는 상기 제2액추에이터 중 하나 이상은 자신의 OIS마그네트에 전자기력을 발생시키는 OIS코일이 구비되며,
    상기 제1 및 제2액추에이터에 구비된 각 OIS마그네트 중 하나 이상은 상기 제1 및 제2 액추에이터가 대면하는 방향과 다른 방향에 구비되는 것을 특징으로 하는 듀얼 액추에이터.
  4. 제 3항에 있어서, 상기 제1 및 제2액추에이터의 AF마그네트 중 하나 이상은,
    해당 액추에이터의 일 측면에 구비되며,
    상기 OIS마그네트는 해당 액추에이터의 AF마그네트가 구비된 위치의 반대편 모서리 영역에 위치하는 것을 특징으로 하는 듀얼 액추에이터.
  5. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 제1 및 제2액추에이터의 AF마그네트 중 하나 이상은,
    해당 액추에이터의 모서리 영역 부분에 위치하는 것을 특징으로 하는 듀얼 액추에이터.
  6. 광축과 수직한 방향으로 이동하며 OIS마그네트가 구비되는 OIS캐리어와, 상기 OIS캐리어를 광축과 수직한 방향으로 이동시키는 OIS구동부를 각각 포함하며 상호 대면하여 배치되는 제1 및 제2액추에이터를 포함하고,
    상기 제1 및 제2액추에이터에 구비된 각 OIS마그네트 중 하나 이상은 상기 제1 및 제2액추에이터가 대면하는 방향과 다른 방향에 구비되는 것을 특징으로 하는 듀얼 액추에이터.
PCT/KR2017/004795 2016-06-29 2017-05-10 듀얼 액추에이터 WO2018004124A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790001008.7U CN209182564U (zh) 2016-06-29 2017-05-10 双致动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160081946A KR20180002433A (ko) 2016-06-29 2016-06-29 듀얼 액추에이터
KR10-2016-0081946 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018004124A1 true WO2018004124A1 (ko) 2018-01-04

Family

ID=60785220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004795 WO2018004124A1 (ko) 2016-06-29 2017-05-10 듀얼 액추에이터

Country Status (3)

Country Link
KR (1) KR20180002433A (ko)
CN (1) CN209182564U (ko)
WO (1) WO2018004124A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265681B1 (ko) 2019-12-19 2021-06-16 자화전자(주) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
WO2024014714A1 (ko) * 2022-07-15 2024-01-18 엘지이노텍 주식회사 렌즈 구동 장치, 카메라 장치 및 광학기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156432A (ja) * 2012-01-30 2013-08-15 Nidec Copal Corp レンズ駆動装置
US20150316744A1 (en) * 2014-04-30 2015-11-05 Lite-On Electronics (Guangzhou) Limited Voice coil motor array module
KR20160006146A (ko) * 2015-12-28 2016-01-18 자화전자(주) 카메라 렌즈 모듈
JP2016045488A (ja) * 2014-08-19 2016-04-04 キヤノン株式会社 像振れ補正装置及びその制御方法
KR101620020B1 (ko) * 2014-07-08 2016-05-23 자화전자(주) 공유 요크를 이용한 듀얼 렌즈 엑츄에이터 및 이를 포함하는 카메라 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156432A (ja) * 2012-01-30 2013-08-15 Nidec Copal Corp レンズ駆動装置
US20150316744A1 (en) * 2014-04-30 2015-11-05 Lite-On Electronics (Guangzhou) Limited Voice coil motor array module
KR101620020B1 (ko) * 2014-07-08 2016-05-23 자화전자(주) 공유 요크를 이용한 듀얼 렌즈 엑츄에이터 및 이를 포함하는 카메라 모듈
JP2016045488A (ja) * 2014-08-19 2016-04-04 キヤノン株式会社 像振れ補正装置及びその制御方法
KR20160006146A (ko) * 2015-12-28 2016-01-18 자화전자(주) 카메라 렌즈 모듈

Also Published As

Publication number Publication date
CN209182564U (zh) 2019-07-30
KR20180002433A (ko) 2018-01-08

Similar Documents

Publication Publication Date Title
WO2018155964A1 (ko) Ois 카메라 모듈
WO2017155214A1 (ko) 3위치 지지구조의 자동초점 조절장치
WO2017217659A1 (ko) 일체형 요크가 구비된 ois 액추에이터
WO2018117414A1 (ko) 비대칭 지지 구조의 자동초점 조절장치
WO2015133725A1 (ko) 카메라 렌즈 모듈
WO2015060637A1 (ko) 카메라 렌즈 모듈
WO2015147385A1 (ko) 자동 초점 및 손떨림 보정기능을 구비한 카메라 모듈
WO2018066775A2 (ko) Ois를 위한 반사계 구동장치
WO2014157998A1 (en) Camera lens module
WO2014003281A1 (en) Camera module
US20210141188A1 (en) Lens driving device, and camera module and optical device including same
WO2014137102A1 (ko) 휴대 단말기의 카메라 렌즈 모듈
WO2018139748A1 (ko) 카메라의 아이리스 구동장치
WO2017105010A1 (ko) 광학용 액추에이터
WO2020218746A1 (ko) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
KR102316052B1 (ko) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
WO2016137081A1 (ko) 손 떨림 보정 장치 및 이를 포함하는 카메라 렌즈 모듈
WO2021010652A1 (ko) 댐퍼 및 이를 포함하는 카메라용 액추에이터
WO2022142684A1 (zh) 防抖结构、防抖系统及摄像装置
WO2018004124A1 (ko) 듀얼 액추에이터
KR20210010033A (ko) 카메라용 액추에이터
KR20190002149A (ko) 틸트 성능이 개선된 통합액추에이터
WO2014109475A1 (ko) 소형 카메라 모듈
WO2022102934A1 (ko) 줌 구동 액추에이터
WO2015141943A1 (ko) 휴대단말기용 카메라 액추에이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820401

Country of ref document: EP

Kind code of ref document: A1