WO2024014714A1 - 렌즈 구동 장치, 카메라 장치 및 광학기기 - Google Patents

렌즈 구동 장치, 카메라 장치 및 광학기기 Download PDF

Info

Publication number
WO2024014714A1
WO2024014714A1 PCT/KR2023/007780 KR2023007780W WO2024014714A1 WO 2024014714 A1 WO2024014714 A1 WO 2024014714A1 KR 2023007780 W KR2023007780 W KR 2023007780W WO 2024014714 A1 WO2024014714 A1 WO 2024014714A1
Authority
WO
WIPO (PCT)
Prior art keywords
ois
holder
magnet
coil
disposed
Prior art date
Application number
PCT/KR2023/007780
Other languages
English (en)
French (fr)
Inventor
노연호
박태봉
이준택
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220087509A external-priority patent/KR20240010232A/ko
Priority claimed from KR1020220118228A external-priority patent/KR20240039666A/ko
Priority claimed from KR1020220124541A external-priority patent/KR20240044928A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024014714A1 publication Critical patent/WO2024014714A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • This embodiment relates to a lens driving device, a camera device, and an optical device.
  • a camera device is a device that takes photos or videos of a subject, and is mounted on optical devices such as smartphones, drones, vehicles, etc.
  • Camera devices are equipped with an autofocus function that automatically adjusts focus depending on the distance to the subject.
  • a hand shake correction function is applied to prevent the focus from shaking due to the user's hand shaking.
  • the autofocus function and image stabilization function can be performed through electromagnetic interaction between a magnet and a coil.
  • a magnet that does not require electrical connection is placed in a moving part and a coil is placed in a fixed part.
  • the magnet which has a large weight compared to the coil, is placed in the moving part.
  • the height of the camera device in the optical axis direction increases as the guide structure for OIS-x-axis driving and the guide structure for OIS-y-axis driving are arranged in separate layers.
  • Patent Document 1 KR 10-2015-0118005 A
  • This embodiment seeks to provide a lens driving device that reduces current consumption for performing the autofocus function and image stabilization function by placing a coil that is lighter in weight than the magnet in the moving part.
  • a lens driving device whose height in the optical axis direction is minimized by forming a guide structure for OIS-x-axis driving and a guide structure for OIs-y-axis driving in one piece.
  • a lens driving device includes a base; a first holder disposed within the base; a second holder disposed within the first holder; First to third magnets disposed on the base; a first coil disposed in the first holder and interacting with the first magnet; a second coil disposed in the second holder and interacting with the second magnet; And it may include a third coil disposed in the second holder and interacting with the third magnet.
  • the first holder moves in the optical axis direction
  • the second holder moves perpendicular to the optical axis direction.
  • the second holder may move in a first direction
  • the second holder may move in a second direction perpendicular to both the optical axis direction and the first direction due to interaction between the third coil and the third magnet.
  • the second holder may move in the optical axis direction together with the first holder by interaction between the first coil and the first magnet.
  • the base includes first and second sides disposed on opposite sides of each other, and third and fourth sides disposed on opposite sides of each other, and the first magnet is disposed on the first side of the base, The second magnet may be placed on the second side of the base, and the third magnet may be placed on the third side of the base.
  • the second holder includes a first side and a second side disposed on opposite sides of each other, and a third side and a fourth side disposed on opposite sides, and the first coil is connected to the first side and the fourth side of the second holder. It is disposed between the first magnet, the second coil is disposed between the second side of the second holder and the second magnet, and the third coil is disposed between the third side of the second holder and the second magnet. It can be placed between 3 magnets.
  • a first substrate including a first portion disposed on the first holder, a second portion disposed on the second side of the second holder, and a third portion disposed on the third side of the second holder. wherein the first coil is disposed on the first portion of the first substrate, the second coil is disposed on the second portion of the first substrate, and the third coil is disposed on the first portion of the first substrate. It may be placed in the third part.
  • the first substrate may include a fourth portion disposed between the fourth side of the second holder and the first holder, and the fourth portion of the first substrate may include a terminal.
  • the lens driving device includes a second substrate disposed on the base, the second substrate includes a body portion disposed on the base, and an extension portion extending from the body portion, and the extension portion is a portion of the first substrate. It includes a first terminal coupled to the terminal, the body portion includes a second terminal electrically connected to the first terminal, and at least a portion of the extension portion can move with the first holder.
  • the lens driving device may include a first ball disposed between the base and the first holder.
  • the lens driving device may include a yoke disposed on the first portion of the first substrate and generating attractive force with the first magnet.
  • the lens driving device may include a second ball disposed between the first holder and the second holder.
  • the lens driving device includes a first elastic member disposed on an upper surface of the second holder; a second elastic member disposed on the lower surface of the first holder; and a third elastic member connecting the first elastic member and the second elastic member, wherein the first holder includes a body portion and a pressing portion coupled to the upper surface of the body portion, and the second elastic member is It is disposed on the lower surface of the body portion, and the second ball may be disposed between the pressing portion of the first holder and the second holder.
  • the second ball may guide the second holder to move in a first direction and a second direction perpendicular to the optical axis direction with respect to the first holder.
  • the lens driving device includes a first sensor disposed on the first portion of the first substrate and detecting the first magnet; a second sensor disposed on the second portion of the first substrate and detecting the second magnet; and a third sensor disposed in the third portion of the first substrate and detecting the third magnet.
  • a camera device includes a printed circuit board; an image sensor disposed on the printed circuit board; a lens driving device disposed on the printed circuit board; And it may include a lens coupled to the lens driving device.
  • An optical device includes a main body; a camera device disposed on the main body; and a display disposed on the main body and outputting at least one of a video and an image captured by the camera device.
  • a lens driving device includes a fixing part; a first moving part disposed within the fixing part; a second moving part disposed within the first moving part; a first driving unit that moves the first moving unit in the optical axis direction; a second driving unit that moves the second moving unit in a first direction perpendicular to the optical axis direction; a third driving unit that moves the second moving unit in a second direction perpendicular to the optical axis direction and the first direction; a first ball disposed between the first moving part and the second moving part so as to overlap the first moving part and the second moving part in the optical axis direction; a wire disposed parallel to the optical axis direction; a first elastic member connecting a first region of the wire and the first moving part; And it may include a second elastic member connecting the second region of the wire and the second moving part.
  • the second area of the wire may be placed higher than the first area.
  • the first movable unit may include an upper plate disposed higher than the second movable unit, and the first ball may be disposed between the upper plate of the first movable unit and the second movable unit.
  • the first elastic member includes an outer part coupled to the first moving part
  • the second elastic member includes an inner part coupled to the second moving part, and in the optical axis direction, the first region of the wire
  • the distance between and the second area may be longer than the distance between the outer portion of the first elastic member and the inner portion of the second elastic member.
  • the first elastic member includes an outer part coupled to the first moving part, a coupling part coupled to the wire, and a connection part connecting the outer part and the coupling part, and the coupling part of the first elastic member includes the first elastic member. 1 It may be placed lower than the outer portion of the elastic member.
  • the second elastic member includes an inner part coupled to the second moving part, a coupling part coupled to the wire, and a connection part connecting the inner part and the coupling part, and the coupling part of the second elastic member includes the first part. 2 It may be placed higher than the inner portion of the elastic member.
  • the first ball When viewed from above, the first ball may be disposed in a space formed through the inner portion, the coupling portion, and the connecting portion of the second elastic member.
  • the second moving part includes a first protrusion and a second protrusion formed on the upper surface of the second moving part
  • the inner part of the second elastic member includes a first region coupled to the first protrusion, and a first region coupled to the second protrusion. It includes a second area
  • the wire includes a first wire disposed in a first corner area of the fixing part
  • the coupling part of the second elastic member includes a first coupling part coupled to the first wire.
  • the connecting portion of the second elastic member includes a first connecting portion connecting the first region of the inner portion and the first coupling portion, and a second connecting portion connecting the second region of the inner portion and the first coupling portion. can do.
  • the coupling portion of the first elastic member includes a first coupling portion coupled to the first wire, and the connecting portion of the first elastic member includes the outer portion of the first elastic member and the first coupling portion of the first elastic member. It includes a first connection part and a second connection part for connecting the coupling part, and when viewed from below, the first and second connection parts of the first elastic member are a virtual axis connecting the optical axis and the first corner area of the fixing part. It may be symmetrical based on a straight line.
  • the wire includes first to fourth wires respectively disposed in first to fourth corner areas of the fixing part, and the first elastic member includes first to fourth elastic members corresponding to the first to fourth wires. It may include a unit, wherein the first to fourth elastic units are spaced apart from each other, and the second elastic member may be formed integrally.
  • the first driving unit includes a first coil disposed on the first moving portion and a first magnet disposed on the fixing portion
  • the second driving portion includes a second coil disposed on the second moving portion, and It may include a second magnet disposed on the fixing part.
  • the third driving unit may include a third coil disposed on the second moving unit and a third magnet disposed on the fixed unit.
  • a first substrate including a first part disposed on the first movable part, a second part disposed on a first side of the second movable part, and a third part disposed on a second side of the second movable part. wherein the first coil is disposed on the first portion of the first substrate, the second coil is disposed on the second portion of the first substrate, and the third coil is disposed on the first portion of the first substrate. It can be placed in the third section.
  • a second substrate including a body portion disposed on the fixing portion and an extension portion extending from the body portion, the extension portion including a terminal coupled to a terminal of the first substrate, and at least a portion of the extension portion It can move together with the first moving part.
  • a camera device includes a printed circuit board; an image sensor disposed on the printed circuit board; The lens driving device disposed on the printed circuit board; And it may include a lens coupled to the lens driving device.
  • An optical device includes a main body; the camera device disposed on the main body; and a display disposed on the main body and outputting at least one of a video and an image captured by the camera device.
  • a lens driving device includes a fixing part; a first moving part disposed within the fixing part; a second moving part disposed within the first moving part; a first driving unit that moves the first moving unit in the optical axis direction; a second driving unit that moves the second moving unit in a first direction perpendicular to the optical axis direction; a third driving unit that moves the second moving unit in a second direction perpendicular to the optical axis direction and the first direction; a ball disposed between the fixed part and the first moving part; and an elastic member connecting the first moving part and the second moving part, wherein the first driving part may include a first coil disposed on the first moving portion and a first magnet disposed on the fixing portion. You can.
  • the ball may not overlap the second moving part in the optical axis direction.
  • the elastic member may include a first elastic member coupled to the first moving part, a second elastic member coupled to the second moving part, and a wire connecting the first elastic member and the second elastic member. You can.
  • the first elastic member may include an outer part coupled to the first moving part, a coupling part coupled to the wire, and a connection part connecting the outer part and the coupling part.
  • the outer portion of the first elastic member and the coupling portion of the first elastic member may be arranged at the same height.
  • the second elastic member may include an inner part coupled to the second moving part, a coupling part coupled to the wire, and a connection part connecting the inner part and the coupling part of the second elastic member.
  • the inner portion of the second elastic member and the coupling portion of the first elastic member may be arranged at the same height.
  • the second driving unit may include a second coil disposed on the second moving portion and a second magnet disposed on the fixed portion.
  • the third driving unit may include a third coil disposed on the second moving unit and a third magnet disposed on the fixed unit.
  • a first substrate including a first part disposed on the first movable part, a second part disposed on a first side of the second movable part, and a third part disposed on a second side of the second movable part. wherein the first coil is disposed on the first portion of the first substrate, the second coil is disposed on the second portion of the first substrate, and the third coil is disposed on the first portion of the first substrate. It can be placed in the third section.
  • a second substrate including a body portion disposed on the fixing portion and an extension portion extending from the body portion, the extension portion including a terminal coupled to a terminal of the first substrate, and at least a portion of the extension portion It can move together with the first moving part.
  • the ball guides the first moving part to move in the optical axis direction with respect to the fixing part, and the elastic member guides the second moving part to move in the first direction and the second direction with respect to the first moving part. I can guide you.
  • It may include a yoke disposed between the first coil and the first moving part and on which the first magnet and attractive force act.
  • a camera device includes a printed circuit board; an image sensor disposed on the printed circuit board; The lens driving device disposed on the printed circuit board; And it may include a lens coupled to the lens driving device.
  • An optical device includes a main body; the camera device disposed on the main body; and a display disposed on the main body and outputting at least one of a video and an image captured by the camera device.
  • the current consumption for performing the autofocus function and image stabilization function can be reduced as the coil, which is lighter in weight than the magnet, is placed in the moving part.
  • the guide structure for OIS-x-axis driving and the guide structure for OIs-y-axis driving are formed integrally, the height of the lens driving device in the optical axis direction can be minimized.
  • the height at which the camera device protrudes from the smartphone can be minimized.
  • the OIS guide structure of the second embodiment of the present invention can maintain the OIS guide balls in close contact without a separate preload member.
  • FIG. 1 is a conceptual diagram of a lens driving device according to a first embodiment of the present invention.
  • Figure 2 is a perspective view of a lens driving device according to a first embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2.
  • Figure 4 is a cross-sectional view taken along line B-B of Figure 2.
  • Figure 5 is an exploded perspective view of the lens driving device according to the first embodiment of the present invention.
  • Figure 6 is a perspective view of the lens driving device according to the first embodiment of the present invention with the cover removed.
  • Figure 7 is an enlarged view showing a portion of Figure 6.
  • FIG. 8 is a perspective view of the lens driving device in the state of FIG. 6 when viewed from a direction different from that of FIG. 6.
  • Figure 9 is a perspective view of the lens driving device according to the first embodiment of the present invention with the fixing part and some components omitted.
  • Figure 10 is a bottom perspective view of the moving part of the lens driving device according to the first embodiment of the present invention.
  • Figure 11 is a bottom perspective view with the cover of the moving part and related components of the lens driving device according to the first embodiment of the present invention removed.
  • Figure 12 is a perspective view showing the base and second substrate of the lens driving device according to the first embodiment of the present invention.
  • Figure 13 is a perspective view showing the moving part and the second substrate of the lens driving device according to the first embodiment of the present invention.
  • FIG. 14 is a bottom perspective view of the lens driving device in the state of FIG. 13 when viewed from a direction different from that of FIG. 13.
  • FIG. 15 is a bottom perspective view of the lens driving device of FIG. 14 with the cover and the second substrate removed.
  • FIG. 16 is a bottom perspective view of the lens driving device of FIG. 15 with the first holder removed.
  • FIG. 17 is a bottom view of the lens driving device in the state of FIG. 16.
  • Figure 18 is a plan view of the lens driving device according to the first embodiment of the present invention with the cover and the pressing portion of the first holder removed.
  • Figure 19 is a perspective view showing the second moving part, the substrate, and related configurations of the lens driving device according to the first embodiment of the present invention.
  • FIG. 20 is a bottom view and a partially enlarged view of the lens driving device in the state of FIG. 19.
  • Figure 21 is a perspective view of the first holder, the second substrate, and related configurations of the lens driving device according to the first embodiment of the present invention.
  • Figure 22 is a bottom perspective view showing the driving unit, substrate, elastic member, etc. of the lens driving device according to the first embodiment of the present invention.
  • Figure 23 is a plan view showing the driving unit, substrate, and elastic member of the lens driving device according to the first embodiment of the present invention.
  • Figure 24 is a perspective view showing the first substrate and coil of the lens driving device according to the first embodiment of the present invention.
  • Figure 25 is a perspective view showing the second substrate of the lens driving device according to the first embodiment of the present invention.
  • Figure 26 is a cross-sectional perspective view with the pressing portion of the first holder of the lens driving device according to the first embodiment of the present invention removed.
  • FIG. 27 is a cross-sectional perspective view of FIG. 26 with components such as a pressing portion of the first holder added.
  • Figure 28 to 30 are diagrams for explaining autofocus driving of the lens driving device according to the first embodiment of the present invention.
  • Figure 28 is a cross-sectional view showing the moving part in an initial state in which no current is applied to the first coil.
  • Figure 29 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the first coil.
  • Figure 30 is a cross-sectional view showing the moving part moving downward in the optical axis direction when a reverse current is applied to the first coil.
  • FIGS. 31 to 33 are diagrams for explaining the hand shake correction operation of the lens driving device according to the first embodiment of the present invention.
  • Figure 31 is a cross-sectional view showing the moving part in an initial state in which no current is applied to the second coil and the third coil.
  • Figure 32 is a cross-sectional view showing the second moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the second coil.
  • Figure 33 is a cross-sectional view showing the second moving part moving in the y-axis direction perpendicular to both the optical axis and the x-axis when current is applied to the third coil.
  • Figure 34 is an exploded perspective view of a camera device according to the first embodiment of the present invention.
  • Figure 35 is a perspective view of an optical device according to the first embodiment of the present invention.
  • Figure 36 is a perspective view of an optical device according to a modification.
  • Figure 37 is a conceptual diagram of a lens driving device according to a second embodiment of the present invention.
  • Figure 38 is a perspective view of a lens driving device according to a second embodiment of the present invention.
  • Figure 39 is a cross-sectional view taken along line A-A of Figure 38.
  • Figure 40 is a cross-sectional view viewed from B-B in Figure 38.
  • Figure 41 is a cross-sectional view taken along line C-C of Figure 38.
  • Figure 42 is a cross-sectional view from above of the lens driving device according to the second embodiment of the present invention cut in a cross-section perpendicular to the optical axis.
  • Figure 43 is an exploded perspective view of a lens driving device according to a second embodiment of the present invention.
  • Figure 44 is a perspective view with the cover removed from the lens driving device according to the second embodiment of the present invention.
  • Figure 45 is an enlarged view of a portion of Figure 44.
  • Figure 46a is a perspective view of Figure 44 seen from another direction.
  • Figure 46b is a perspective view showing the metal member of the AF moving part in Figure 46 omitted.
  • Figure 47 is a perspective view showing the fixing part and related configuration of the lens driving device according to the second embodiment of the present invention.
  • Figure 48 is a perspective view showing the moving part and related configuration of the lens driving device according to the second embodiment of the present invention.
  • Figure 49 is a front view of Figure 48 seen from the front.
  • Figure 50 is a cross-sectional perspective view showing the AF guide ball and related components of the lens driving device according to the second embodiment of the present invention.
  • Figure 51 is a perspective view of Figure 48 seen from another direction.
  • Figure 52 is a perspective view with the cover in Figure 51 removed.
  • Figure 53 is a bottom view of the AF moving unit and related components of the lens driving device according to the second embodiment of the present invention.
  • Figure 54 is a bottom perspective view of Figure 53 seen from another direction.
  • Figure 55 is an enlarged view of a portion of Figure 54.
  • Figure 56 is a perspective view showing the OIS moving part and related configuration of the lens driving device according to the second embodiment of the present invention.
  • Figure 57a is an enlarged view of a portion of Figure 56.
  • Figure 57b is a cross-sectional view taken along line A-A of Figure 57a.
  • Figure 58a is a cross-sectional view showing the pressing structure of the OIS guide ball of the lens driving device according to the second embodiment of the present invention.
  • Figure 58b is a cross-sectional view showing the connection structure of the elastic member and wire of the lens driving device according to the second embodiment of the present invention.
  • Figure 59 is a bottom perspective view of Figure 56 seen from another direction.
  • Figure 60 is a perspective view showing the inner substrate and outer substrate of the lens driving device according to the second embodiment of the present invention.
  • Figure 61 is a perspective view showing the elastic member and wire of the lens driving device according to the second embodiment of the present invention.
  • Figures 62 to 64 are diagrams for explaining autofocus driving of the lens driving device according to the second embodiment of the present invention.
  • Figure 62 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the AF coil.
  • Figure 63 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the AF coil.
  • Figure 64 is a cross-sectional view showing the moving part moving downward in the optical axis direction when a reverse current is applied to the AF coil.
  • Figures 65 to 67 are diagrams for explaining the hand shake correction operation of the lens driving device according to the second embodiment of the present invention.
  • Figure 65 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the OIS-x coil and OIS-y coil.
  • Figure 66 is a cross-sectional view showing the OIS moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the OIS-x coil.
  • Figure 67 is a cross-sectional view showing how current is applied to the OIS-y coil and the OIS moving part moves in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • Figure 68 is an exploded perspective view of a camera device according to a second embodiment of the present invention.
  • Figure 69 is a perspective view of an optical device according to a second embodiment of the present invention.
  • Figure 70 is a perspective view of an optical device according to a modification.
  • Figure 71 is a conceptual diagram of a lens driving device according to a third embodiment of the present invention.
  • Figure 72 is a perspective view of a lens driving device according to a third embodiment of the present invention.
  • Figure 73 is a cross-sectional view taken along line A-A of Figure 72.
  • Figure 74 is a cross-sectional view viewed from B-B in Figure 72.
  • Figure 75 is a cross-sectional view taken along line C-C of Figure 72.
  • Figure 76 is an enlarged view of a portion of Figure 75.
  • Figure 77 is a cross-sectional view from above of the lens driving device according to the third embodiment of the present invention cut in a cross-section perpendicular to the optical axis.
  • Figure 78 is an exploded perspective view of a lens driving device according to a third embodiment of the present invention.
  • Figure 79 is a perspective view with the cover removed from the lens driving device according to the third embodiment of the present invention.
  • Figure 80 is an enlarged view showing a portion of Figure 79.
  • Figure 81 is a perspective view of Figure 80 seen from another direction.
  • Figure 82 is a perspective view showing the fixing part and related configuration of the lens driving device according to the third embodiment of the present invention.
  • Figure 83 is a perspective view showing the moving part and related configuration of the lens driving device according to the third embodiment of the present invention.
  • Figure 84 is a front view of Figure 83 seen from the front.
  • Figure 85 is a cross-sectional perspective view showing the AF guide ball and related configuration of the lens driving device according to the third embodiment of the present invention.
  • Figure 86 is a perspective view of Figure 83 seen from another direction.
  • Figure 87 is a perspective view with the cover in Figure 86 removed.
  • Figure 88 is a bottom view of the AF moving unit and related components of the lens driving device according to the third embodiment of the present invention.
  • Figure 89 is a bottom perspective view of Figure 88 seen from another direction.
  • Figure 90 is a perspective view showing the OIS moving part and related configuration of the lens driving device according to the third embodiment of the present invention.
  • Figure 91 is a cross-sectional view showing the arrangement structure of the elastic member of the lens driving device according to the third embodiment of the present invention.
  • Figure 92 is a bottom perspective view of Figure 90 seen from another direction.
  • Figure 93 is a perspective view showing the inner substrate and outer substrate of the lens driving device according to the third embodiment of the present invention.
  • Figure 94 is a perspective view showing the elastic member and wire of the lens driving device according to the third embodiment of the present invention.
  • Figures 95 to 97 are diagrams for explaining autofocus driving of the lens driving device according to the third embodiment of the present invention.
  • Figure 95 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the AF coil.
  • Figure 96 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the AF coil.
  • Figure 97 is a cross-sectional view showing a state in which a reverse current is applied to the AF coil and the moving part moves downward in the optical axis direction.
  • Figures 98 to 100 are diagrams for explaining the image stabilization operation of the lens driving device according to the third embodiment of the present invention.
  • Figure 98 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the OIS-x coil and OIS-y coil.
  • Figure 99 is a cross-sectional view showing the OIS moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the OIS-x coil.
  • Figure 100 is a cross-sectional view showing how current is applied to the OIS-y coil and the OIS moving part moves in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • Figure 101 is an exploded perspective view of a camera device according to a third embodiment of the present invention.
  • Figure 102 is a perspective view of an optical device according to a third embodiment of the present invention.
  • Figure 103 is a perspective view of an optical device according to a modification.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, order, or order of the component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
  • top or bottom means that the two components are directly adjacent to each other. This includes not only the case of contact, but also the case where one or more other components are formed or disposed between the two components.
  • top or bottom when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
  • the 'Optical Axis (see OA in FIG. 28) direction' used below is defined as the optical axis direction of the lens and/or image sensor coupled to the lens driving device.
  • the 'vertical direction' used below may be a direction parallel to or the same direction as the optical axis direction.
  • the vertical direction may correspond to the 'z-axis direction'.
  • the 'horizontal direction' used below may be a direction perpendicular to the vertical direction. That is, the horizontal direction may be a direction perpendicular to the optical axis. Therefore, the horizontal direction may include the 'x-axis direction' and the 'y-axis direction'.
  • the 'auto focus (AF) function' used below is used to adjust the distance to the image sensor by moving the lens in the optical axis direction according to the distance to the subject so that a clear image of the subject can be obtained on the image sensor. It is defined as a function that automatically focuses on In addition, 'closed-loop auto focus (CLAF) control' detects the distance between the image sensor and the lens to improve the accuracy of focus control and controls the position of the lens in real time. It is defined as
  • the 'optical image stabilization (OIS) function' used below is a function that moves or tilts the lens in a direction perpendicular to the optical axis to offset hand shaking in order to prevent the image or video from shaking due to the user's hand shaking.
  • OIS optical image stabilization
  • CLAF closed-loop auto focus
  • one of the “AF moving unit 1200” and the “OIS moving unit 1300” may be referred to as the “first moving unit” and the other may be referred to as the “second moving unit.”
  • AF driving unit (1400) OIS-x driving unit (1500)
  • OIS-y driving unit (1600) one of the “AF driving unit (1400)”, “OIS-x driving unit (1500)”, and “OIS-y driving unit (1600)” will be referred to as the “first driving unit”, the other will be referred to as the “second driving unit”, and the other will be referred to as the “second driving unit”.
  • one of the "AF magnet (1410)", “OIS-x magnet (1510)”, and “OIS-y magnet (1610)” is called the “first magnet”, the other is called the “second magnet”, and the other is called the “second magnet”.
  • AF coil (1420) one of the "AF coil (1420)", “OIS-x coil (1520)”, and “OIS-y coil (1620)” is called the “first coil”, the other is called the “second coil”, and the other is called the “second coil”.
  • AF sensor (1430) one of the "AF sensor (1430)", “OIS-x sensor (1530)”, and “OIS-y sensor (1630)” is called the “first sensor”, the other is called the “second sensor”, and the other is called the “second sensor”.
  • first substrate 1710 one of the “inner substrate 1710” and the “outer substrate 1720” may be referred to as the “first substrate” and the other may be referred to as the “second substrate.”
  • one of the “AF guide ball 1810” and the “OIS guide ball 1820” may be referred to as the “first ball” and the other may be referred to as the “second ball.”
  • first elastic member one of the “lower elastic member 1910” and the “upper elastic member 1920” may be referred to as the “first elastic member” and the other may be referred to as the “second elastic member.”
  • one of the “AF moving unit 2200” and the “OIS moving unit 2300” may be referred to as the “first moving unit” and the other may be referred to as the “second moving unit.”
  • AF driving unit (2400) OIS-x driving unit (2500)
  • OIS-y driving unit (2600) one of the “AF driving unit (2400)”, “OIS-x driving unit (2500)”, and “OIS-y driving unit (2600)” will be referred to as the “first driving unit”, the other will be referred to as the “second driving unit”, and the other will be referred to as the “second driving unit”.
  • one of the "AF magnet (2410)", “OIS-x magnet (2510)”, and “OIS-y magnet (2610)” is called the “first magnet”, the other is called the “second magnet”, and the other is called the “second magnet”.
  • one of the "AF coil (2420)", “OIS-x coil (2520)”, and “OIS-y coil (2620)” is called the “first coil”, the other is called the “second coil”, and the other is called the “second coil”.
  • AF sensor (2430) one of the "AF sensor (2430)", “OIS-x sensor (2530)”, and “OIS-y sensor (2630)” is called the “first sensor”, the other is called the “second sensor”, and the other is called the “second sensor”.
  • one of the “inner substrate 2710” and the “outer substrate 2720” may be referred to as the “first substrate” and the other may be referred to as the “second substrate.”
  • one of the “lower elastic member 2910” and the “upper elastic member 2920” may be referred to as the “first elastic member” and the other may be referred to as the “second elastic member.”
  • Figure 1 is a conceptual diagram of a lens driving device according to a first embodiment of the present invention
  • Figure 2 is a perspective view of a lens driving device according to a first embodiment of the present invention
  • Figure 3 is a cross-sectional view viewed from A-A of Figure 2
  • Figure 4 is a cross-sectional view viewed from B-B of Figure 2
  • Figure 5 is an exploded perspective view of the lens driving device according to the first embodiment of the present invention
  • Figure 6 is a cover of the lens driving device according to the first embodiment of the present invention.
  • Figure 7 is an enlarged view of a part of Figure 6
  • Figure 8 is a perspective view of the lens driving device in the state of Figure 6 viewed from a different direction than Figure 6
  • Figure 9 is a view of the lens driving device in the state of Figure 6.
  • Figure 10 is a bottom perspective view of the moving part of the lens driving device according to the first embodiment of the present invention
  • Figure 11 is the present invention.
  • Figure 12 shows the base and the second substrate of the lens driving device according to the first embodiment of the present invention.
  • FIG. 13 is a perspective view showing the moving part and the second substrate of the lens driving device according to the first embodiment of the present invention
  • FIG. 14 is a perspective view of the lens driving device in the state of FIG. 13 viewed from a direction different from that of FIG. 13.
  • FIG. 15 is a bottom perspective view of the lens driving device in the state of FIG. 14 with the cover and the second substrate removed
  • FIG. 16 is a bottom perspective view of the lens driving device in the state of FIG. 15 with the first holder removed.
  • FIG. 17 is a bottom view of the lens driving device in the state of FIG. 16, FIG.
  • FIG. 18 is a top view of the lens driving device according to the first embodiment of the present invention with the cover and the pressing portion of the first holder removed
  • FIG. 19 is a perspective view showing the second moving part, the substrate, and related configurations of the lens driving device according to the first embodiment of the present invention
  • Figure 20 is a bottom view and a partially enlarged view of the lens driving device in the state of Figure 19
  • Figure 21 is It is a perspective view of the first holder, the second substrate, and related components of the lens driving device according to the first embodiment of the present invention
  • Figure 22 is a driving unit, substrate, elastic member, etc. of the lens driving device according to the first embodiment of the present invention.
  • Figure 23 is a plan view showing the driving unit, substrate and elastic member of the lens driving device according to the first embodiment of the present invention
  • Figure 24 is a lens driving device according to the first embodiment of the present invention.
  • Figure 25 is a perspective view showing the second substrate of the lens driving device according to the first embodiment of the present invention
  • Figure 26 is a lens according to the first embodiment of the present invention. It is a cross-sectional perspective view with the pressing part of the first holder of the driving device removed
  • FIG. 27 is a cross-sectional perspective view with the pressing part of the first holder in FIG. 26 added.
  • the lens driving device 10 may be a voice coil motor (VCM).
  • VCM voice coil motor
  • the lens driving device 10 may be a lens driving motor.
  • the lens driving device 10 may be a lens driving actuator.
  • the lens driving device 10 may include an AF module.
  • the lens driving device 10 may include an OIS module.
  • the lens driving device 10 may include a fixing unit 100.
  • the fixed part 100 may be a relatively fixed part when the movable part moves.
  • the movable part can move relative to the fixed part 100.
  • the lens driving device 10 may include a base 110.
  • the fixing part 100 may include a base 110.
  • the base 110 may be placed below the first holder 210.
  • the base 110 may be placed below the second holder 310.
  • Base 110 may be combined with cover 120.
  • the first holder 210 and the second holder 310 may be placed on the base 110.
  • the first holder 210 and the second holder 310 may be placed on the lower plate of the base 110.
  • the first holder 210 and the second holder 310 may be placed within the base 110.
  • the first holder 210 and the second holder 310 may be disposed within the side plate of the base 110.
  • all of the first to third magnets 410, 510, and 610 may be placed on the base 110. All of the first to third magnets 410, 510, and 610 may be disposed on the fixing unit 100. That is, all of the first to third magnets 410, 510, and 610 can maintain a fixed state during the autofocus operation. Additionally, during the hand shake correction operation, all of the first to third magnets 410, 510, and 610 may remain fixed. In an autofocus operation, the first magnet 410 is fixed and the first coil 420 can move. In the hand shake correction operation, the second and third magnets 510 and 610 are fixed and the second and third coils 520 and 620 can move.
  • Base 110 may include a lower plate.
  • Base 110 may include a side plate.
  • the side plates may be 'lateral'.
  • the side plate of the base 110 may extend from the upper surface of the lower plate.
  • the side plate of the base 110 may include a plurality of side plates.
  • the side plate of the base 110 may include four side plates. However, one or more of the four side plates of the base 110 may be omitted.
  • the side plate of the base 110 may include first to fourth side plates 111, 112, 113, and 114.
  • the base 110 may include a first side plate 111 and a second side plate 112 disposed on opposite sides of each other, and a third side plate 113 and a fourth side plate 114 disposed on opposite sides of each other.
  • the sides of the base 110 may include a plurality of sides.
  • the sides of the base 110 may include four sides. However, one or more of the four sides of the base 110 may be omitted.
  • Sides of the base 110 may include first to fourth sides.
  • the base 110 may include first and second sides disposed on opposite sides of each other, and third and fourth side portions disposed on opposite sides of each other.
  • the first magnet 410 may be placed on the first side plate of the base 110.
  • the second magnet 510 may be placed on the second side plate of the base 110.
  • the third magnet 610 may be placed on the third side plate of the base 110.
  • the first side plate 111 of the base 110 may include a groove 111a.
  • the groove 111a may be the ‘first ball receiving groove’.
  • the first ball 810 may be placed in the groove 111a.
  • the groove 111a may be in direct contact with the first ball 810.
  • the groove 111a may be arranged in the optical axis direction.
  • the groove 111a may include a plurality of grooves.
  • the groove 111a may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 111a may include a first groove that contacts the first ball 810 at two points, and a second groove that contacts the first ball 810 at one point. As a modified example, both the first groove and the second groove may contact the first ball 810 at two points.
  • the second side plate 112 of the base 110 may include a protrusion 112a.
  • the protrusion 112a may protrude outward.
  • Leg portions 722 of the second substrate 720 may be disposed on the upper and lower sides of the protrusion 112a.
  • a groove may be formed in the protrusion 112a to prevent interference even when the leg portion 722 of the second substrate 720 moves.
  • Base 110 may include steps 115 .
  • the step 115 may be formed at the lower end of the outer surface of the base 110.
  • the step 115 may protrude from the outer surface of the base 110.
  • the side plate 122 of the cover 120 may be disposed on the step 115 of the base 110.
  • the lens driving device 10 may include a cover 120.
  • the fixing part 100 may include a cover 120.
  • Cover 120 may be placed on base 110.
  • Cover 120 may be coupled to base 110.
  • Cover 120 may be fixed to base 110.
  • the cover 120 can accommodate the first holder 210 therein.
  • the cover 120 can accommodate the second holder 310 therein.
  • Cover 120 may be a shield member.
  • the cover 120 may be a shield can.
  • Cover 120 may include a top plate 141.
  • the upper plate 141 may be placed on the moving part. The upward movement of the moving part may be limited by the moving part coming into contact with the upper plate 141.
  • the top plate 141 may include a hole through which light passes.
  • Cover 120 may include a side plate 142.
  • the side plate 142 may extend from the upper plate 141.
  • the side plate 142 may be placed on the base 110.
  • the side plate 142 may be disposed on a stepped portion protruding from the lower end of the outer surface of the base 110.
  • the side plate 142 may include a plurality of side plates.
  • the side plate 142 may include four side plates.
  • the side plate 142 may include a first side plate and a second side plate disposed on opposite sides of each other, and a third side plate and a fourth side plate disposed on opposite sides of each other.
  • the lens driving device 10 may include a moving part.
  • the movable part may be disposed on the fixed part 100.
  • the movable part may be disposed within the fixed part 100.
  • the movable part may be disposed on the fixed part 100.
  • the movable part may be movably disposed on the fixed part 100.
  • the moving part can be moved relative to the fixed part 100 by the driving part.
  • the moving part can move during AF operation.
  • the moving part can move when OIS is running.
  • a lens may be coupled to the moving part.
  • the lens driving device 10 may include a first moving unit 200.
  • the first moving unit 200 may be an ‘AF moving unit’.
  • the first moving part 200 may be disposed on the fixed part 100.
  • the first moving part 200 may be disposed within the fixing part 100.
  • the first moving part 200 may be disposed on the fixing part 100.
  • the first moving part 200 may be disposed between the fixing part 100 and the second moving part 300.
  • the first moving part 200 may be movably disposed on the fixing part 100.
  • the first moving part 200 can move in the optical axis direction with respect to the fixing part 100 by the first driving part.
  • the first moving unit 200 can move during AF operation.
  • the lens driving device 10 may include a first holder 210.
  • the first moving unit 200 may include a first holder 210.
  • the first holder 210 may be an ‘AF holder’.
  • the first holder 210 may be an ‘AF carrier’.
  • the first holder 210 may be placed within the base 110.
  • the first holder 210 may be placed on the base 110.
  • the first holder 210 may be placed within the cover 120.
  • the first holder 210 may be disposed between the base 110 and the second holder 310.
  • the first holder 210 may be arranged to be movable in the optical axis direction.
  • the lens driving device 10 may include a body portion 211.
  • the first holder 210 may include a body portion 211.
  • the body portion 211 may be formed separately from the pressing portion 212.
  • a second elastic member 870 may be coupled to the body portion 211.
  • the first holder 210 may include a metal member 211a.
  • the body portion 211 may include a metal member 211a.
  • the metal member 211a may be insert-molded into the body portion 211. At least a portion of the metal member 211a may be disposed on the upper surface of the body portion 211.
  • the metal member 211a may be disposed to reinforce the strength of the body portion 211.
  • the first holder 210 may include a groove 211b.
  • the body portion 211 may include a groove 211b.
  • the groove 211b may be a ‘first ball receiving groove’.
  • the first ball 810 may be placed in the groove 211b.
  • the groove 211b may be in direct contact with the first ball 810.
  • the groove 211b may be arranged in the optical axis direction.
  • the groove 211b may include a plurality of grooves.
  • the groove 211b may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 211b may include a first groove that contacts the first ball 810 at two points, and a second groove that contacts the first ball 810 at one point. As a modified example, both the first groove and the second groove may contact the first ball 810 at two points.
  • the first holder 210 may include a protrusion 211c.
  • the body portion 211 may include a protrusion 211c.
  • the protrusion 211c may be formed on the outer surface of the first holder 210.
  • the protrusion 211c may protrude outward from the first holder 210.
  • Leg portions 722 may be disposed on the upper and lower surfaces of the protrusion 211c.
  • the first holder 210 may include a protrusion 211d.
  • the body portion 211 may include a protrusion 211d.
  • the protrusion 211d may be formed on the protrusion 211c.
  • the protrusion 211d may be formed to protrude from the protrusion 211c.
  • the protrusion 211c may be formed on one or more of the upper and lower surfaces of the protrusion 211c.
  • the protrusion 211c may be formed so that the leg portion 722 is caught. Through this, the protrusion 211c can prevent the leg portion 722 from being displaced from its original position.
  • the first holder 210 may include a hole 211e.
  • the body portion 211 may include a hole 211e.
  • the hole 211e may be formed in the upper plate of the body portion 211.
  • a pressing portion 212 may be inserted into the hole 211e.
  • the protrusion 212a of the pressing portion 212 may be inserted into the hole 211e.
  • the lens driving device 10 may include a pressing portion 212.
  • the first holder 210 may include a pressing portion 212.
  • the pressing portion 212 may be coupled to the upper surface of the body portion 211.
  • the pressing portion 212 may be coupled to the body portion 211.
  • the pressing portion 212 may be inserted into and coupled to the body portion 211 from the upper side.
  • the pressing unit 212 may pressurize the second ball 820.
  • the pressing portion 212 may be in direct contact with the second ball 820.
  • the first holder 210 may include a protrusion 212a.
  • the pressing portion 212 may include a protrusion 212a.
  • the protrusion 212a may be coupled to the hole 211e of the body portion 211.
  • the protrusion 212a may include a plurality of protrusions.
  • Protrusion 212a may include four protrusions.
  • the first holder 210 may include a groove 212b.
  • the pressing portion 212 may include a groove 212b.
  • the groove 212b may be a ‘second ball receiving groove’.
  • the groove 212b may be formed in the protrusion 212a.
  • the groove 212b may be formed on the lower surface of the protrusion 212a.
  • the groove 212b may be formed concavely on the lower surface of the protrusion 212a.
  • a second ball 820 may be placed in the groove 212b.
  • the groove 212b may be in direct contact with the second ball 820.
  • the lens driving device 10 may include a cover 220 .
  • the first moving part 200 may include a cover 220.
  • the cover 220 may be combined with the first holder 210.
  • the cover 220 may be coupled to the lower surface of the first holder 210.
  • the cover 220 may be coupled to the first holder 210 from the lower side.
  • Cover 220 may include a hook 221.
  • the hook 221 of the cover 220 may be coupled to the first holder 210.
  • the hook 211 of the cover 220 may protrude upward and be coupled to the side of the first holder 210.
  • the lens driving device 10 may include a second moving unit 300.
  • the second moving unit 300 may be an ‘OIS moving unit’.
  • the second moving part 300 may be disposed on the fixing part 100.
  • the second moving part 300 may be disposed within the fixing part 100.
  • the second moving part 300 may be disposed on the fixing part 100.
  • the second moving part 300 may be disposed within the first moving part 200.
  • the second moving part 300 may be arranged to be movable.
  • the second moving unit 300 can move in a direction perpendicular to the optical axis with respect to the fixing unit 100 and the first moving unit 200 by the second driving unit.
  • the second moving unit 300 can move when OIS is driven.
  • the lens driving device 10 may include a second holder 310.
  • the second moving unit 300 may include a second holder 310.
  • the second holder 310 may be an ‘OIS holder’.
  • the second holder 310 may be an 'OIS carrier'.
  • the second holder 310 may be placed within the first holder 210.
  • the second holder 310 may be placed within the base 110.
  • the second holder 310 may be placed on the base 110.
  • the second holder 310 may be placed within the cover 120.
  • the second holder 310 may be arranged to be movable in a direction perpendicular to the optical axis.
  • the second holder 310 may include an outer surface.
  • the second holder 310 may include multiple sides.
  • the second holder 310 may include first and second sides disposed on opposite sides of each other, and third and fourth sides disposed on opposite sides.
  • the first coil 420 may be disposed between the first side of the second holder 310 and the first magnet 410.
  • the second coil 520 may be disposed between the second side of the second holder 310 and the second magnet 510.
  • the third coil 620 may be disposed between the third side of the second holder 310 and the third magnet 610.
  • the second holder 310 may include a first groove 311.
  • the first groove 311 may be a ‘first elastic member interference prevention groove’.
  • the first groove 311 may be formed on the upper surface of the second holder 310.
  • the first groove 311 may be formed concavely on the upper surface of the second holder 310.
  • the first groove 311 may be disposed at a position corresponding to the first elastic member 860 to prevent the second holder 310 and the first elastic member 860 from interfering with each other.
  • the second holder 310 may include a second groove 312.
  • the second groove 312 may be a ‘second ball receiving groove’.
  • a second ball 820 may be placed in the second groove 312.
  • the second groove 312 may be in direct contact with the second ball 820.
  • the second groove 312 may be arranged in a direction perpendicular to the optical axis.
  • the second groove 312 may be depressed in the optical axis direction.
  • the second groove 312 may include a plurality of grooves.
  • the second groove 312 may include four grooves.
  • the second groove 312 may contact the second ball 820 at one point. Alternatively, the second groove 312 may contact the second ball 820 at two points.
  • the number of contact points between the second holder 310 and the second ball 820 may vary depending on the movement of the second ball 820.
  • the second groove 312 may be formed in the first groove 311.
  • the second groove 312 may be further recessed from the first groove 311.
  • the second holder 310 may include a side stopper 313.
  • the side stopper 313 may limit the lateral stroke of the second holder 310. That is, when the second holder 310 moves to its maximum, the side stopper 313 of the second holder 310 may contact one or more of the first holder 210 and the bates 110.
  • the side stopper 313 may be formed on the outer surface of the second holder 310. The side stopper 313 may protrude outward from the side of the second holder 310.
  • the lens driving device 10 may include a driving unit.
  • the driving unit may move the moving unit with respect to the fixed unit 100.
  • the driving unit may include an AF driving unit.
  • the driving unit may include an OIS driving unit.
  • the driving unit may include a coil and a magnet.
  • the lens driving device 10 may include a first driving unit.
  • the first driving unit may be an ‘AF driving unit’.
  • the first driving unit may move the first holder 210 in the optical axis direction.
  • the first driving unit can move the first holder 210 in the optical axis direction through electromagnetic force.
  • the first driving unit may include a coil and a magnet.
  • the first holder 210 and the second holder 310 can move in the optical axis direction due to the interaction between the first coil 420 and the first magnet 410.
  • the first coil 420, the first holder 210, and the second holder 310 can move in the optical axis direction as one unit.
  • the lens driving device 10 may include a first magnet 410.
  • the first driving part may include a first magnet 410.
  • the first magnet 410 may be an ‘AF magnet’.
  • the first magnet 410 may be placed on the base 110.
  • the first magnet 410 may be placed on the cover 120.
  • the first magnet 410 may be placed on the side plate 122 of the cover 120.
  • the first magnet 410 may be placed on the outer surface of the base 110.
  • the first magnet 410 may be placed on the inner surface of the base 110.
  • the first magnet 410 may be fixed to the base 110.
  • the first magnet 410 may be coupled to the base 110.
  • the first magnet 410 may be attached to the base 110 with adhesive.
  • the first magnet 410 may be placed within the cover 120.
  • the first magnet 410 may interact with the first coil 420.
  • the first magnet 410 may electromagnetically interact with the first coil 420.
  • the first magnet 410 may be placed in a position corresponding to the first coil 420.
  • the first magnet 410 may face the first coil 420.
  • the first magnet 410 may face the first coil 420.
  • the first magnet 410 may overlap the first coil 420 in a direction perpendicular to the optical axis.
  • the first magnet 410 may be a 4-pole magnet.
  • the first magnet 410 may include a four-pole magnetized magnet.
  • the first magnet 410 may include a first magnet portion including an N pole and an S pole, and a second magnet portion including an N pole and an S pole.
  • the first magnet portion and the second magnet portion may be arranged in a vertical direction.
  • the first magnet portion and the second magnet portion may be spaced apart in the vertical direction, and a neutral portion may be disposed between the first magnet portion and the second magnet portion.
  • the lens driving device 10 may include a first coil 420.
  • the first driving unit may include a first coil 420.
  • the first coil 420 may be an ‘AF coil’.
  • the first coil 420 may interact with the first magnet 410.
  • the first coil 420 can move in the optical axis direction.
  • the first coil 420 can move in the optical axis direction through interaction with the first magnet 410.
  • the first coil 420 may face the first magnet 410.
  • the first coil 420 may face the first magnet 410.
  • the first coil 420 may be disposed at a position corresponding to the first magnet 410.
  • the first coil 420 may overlap the first magnet 410 in a direction perpendicular to the optical axis.
  • the first coil 420 may be disposed on the first substrate 710.
  • the first coil 420 may be disposed in the first portion 711 of the first substrate 740.
  • the first coil 420 may be placed in the first holder 210.
  • the first coil 420 may be
  • the lens driving device 10 may include a first sensor 430.
  • the first driving unit may include a first sensor 430.
  • the first sensor 430 may be an ‘AF sensor’.
  • the first sensor 430 may be a Hall sensor.
  • the first sensor 430 may be disposed on the substrate 740.
  • the first sensor 430 may be disposed in the first portion 711 of the substrate 740.
  • the first sensor 430 can detect the first magnet 410.
  • the first sensor 430 can detect the movement of the first magnet 410.
  • the movement amount or position of the first magnet 410 detected by the first sensor 430 may be used as feedback for autofocus driving.
  • the first sensor 430 may be a driver IC.
  • the driver IC may include a sensing unit.
  • the sensing unit may include a Hall element (Hall IC).
  • the driver IC may be electrically connected to the first coil 420.
  • the driver IC may supply current to the first coil 420.
  • the first sensor 430 may be disposed within the first coil 420.
  • the first sensor 430 may overlap the neutral portion of the first magnet 410 in a direction perpendicular to the optical axis.
  • the first sensor 430 may be disposed outside the first coil 420.
  • the lens driving device 10 may include a second driving unit.
  • the second drive unit may be the ‘OIS-x drive unit’.
  • the second driving unit may move the second holder 310 in a first direction perpendicular to the optical axis.
  • the second driving unit may move the second holder 310 in a first direction perpendicular to the optical axis through electromagnetic force.
  • the first direction may be the x-axis direction.
  • the second driving unit may include a coil and a magnet.
  • the second holder 310 can move in a first direction perpendicular to the optical axis direction due to the interaction between the second coil 520 and the second magnet 510.
  • the first direction may be the x-axis direction.
  • the second coil 520 and the second holder 310 can move integrally in the x-axis direction.
  • the lens driving device 10 may include a second magnet 510.
  • the second driving part may include a second magnet 510.
  • the second magnet 510 may be an 'OIS-x magnet'.
  • the second magnet 510 may be placed on the base 110.
  • the second magnet 510 may be placed on the outer surface of the base 110.
  • the second magnet 510 may be placed on the inner surface of the base 110.
  • the second magnet 510 may be fixed to the base 110.
  • the second magnet 510 may be coupled to the base 110.
  • the second magnet 510 may be attached to the base 110 with adhesive.
  • the second magnet 510 may be placed within the cover 120.
  • the second magnet 510 may interact with the second coil 520.
  • the second magnet 510 may interact electromagnetically with the second coil 520.
  • the second magnet 510 may be placed in a position corresponding to the second coil 520.
  • the second magnet 510 may face the second coil 520.
  • the second magnet 510 may face the second coil 520.
  • the second magnet 510 may overlap the second coil 520 in a direction perpendicular to the optical axis.
  • the second magnet 610 may be a two-pole magnet.
  • the second magnet 510 may include a two-pole magnetized magnet.
  • the second magnet 510 may include an N pole and an S pole.
  • the lens driving device 10 may include a second coil 520.
  • the second driving unit may include a second coil 520.
  • the second coil 520 may be an ‘OIS-x coil’.
  • the second coil 520 may interact with the second magnet 510.
  • the second coil 520 can move in the x-axis direction perpendicular to the optical axis.
  • the second coil 520 can move in the x-axis direction through interaction with the second magnet 510.
  • the second coil 520 may face the second magnet 510.
  • the second coil 520 may face the second magnet 510.
  • the second coil 520 may be disposed at a position corresponding to the second magnet 510.
  • the second coil 520 may overlap the second magnet 510 in a direction perpendicular to the optical axis.
  • the second coil 520 may be disposed on the first substrate 710.
  • the second coil 520 may be disposed on the second portion 712 of the first substrate 710.
  • the second coil 520 may be placed in the second holder 310.
  • the second coil 520 may be disposed on the second moving part 300.
  • the lens driving device 10 may include a second sensor 530.
  • the second driving unit may include a second sensor 530.
  • the second sensor 530 may be an ‘OIS-x sensor’.
  • the second sensor 530 may be disposed on the first substrate 710.
  • the second sensor 530 may be disposed in the second portion 712 of the first substrate 710.
  • the second sensor 530 may include a Hall sensor.
  • the second sensor 530 can detect the second magnet 510.
  • the second sensor 530 can detect the magnetic force of the second magnet 510.
  • the second sensor 530 may be disposed within the second coil 520.
  • the second sensor 530 may overlap the second coil 520 in the optical axis direction.
  • the second sensor 530 may face the second magnet 510.
  • the second sensor 530 may be placed in a position corresponding to the second magnet 510.
  • the second sensor 530 can detect the movement of the second magnet 510.
  • the movement amount or position of the second magnet 510 detected by the second sensor 530 may be used
  • the lens driving device 10 may include a third driving unit.
  • the third drive unit may be the 'OIS-y drive unit'.
  • the third driving unit may move the second holder 310 in a second direction perpendicular to both the optical axis and the first direction.
  • the third driving unit may move the second holder 310 in a second direction perpendicular to both the optical axis and the first direction through electromagnetic force.
  • the second direction may be the y-axis direction.
  • the third driving unit may include a coil and a magnet.
  • the second holder 310 can be moved in a second direction perpendicular to both the optical axis direction and the first direction by interaction between the third coil 620 and the third magnet 610.
  • the second direction may be the y-axis direction.
  • the third coil 620 and the second holder 310 can move integrally in the y-axis direction.
  • the lens driving device 10 may include a third magnet 610.
  • the third driving part may include a third magnet 610.
  • the third magnet 610 may be an 'OIS-y magnet'.
  • the third magnet 610 may be placed on the base 110.
  • the third magnet 610 may be placed on the outer surface of the base 110.
  • the third magnet 610 may be placed on the inner surface of the base 110.
  • the third magnet 610 may be fixed to the base 110.
  • the third magnet 610 may be coupled to the base 110.
  • the third magnet 610 may be attached to the base 110 with adhesive.
  • the third magnet 610 may be placed within the cover 120.
  • the third magnet 610 may interact with the third coil 620.
  • the third magnet 610 may electromagnetically interact with the third coil 620.
  • the third magnet 610 may be placed in a position corresponding to the third coil 620.
  • the third magnet 610 may face the third coil 620.
  • the third magnet 610 may face the third coil 620.
  • the third magnet 610 may overlap the third coil 620 in a direction perpendicular to the optical axis.
  • the third magnet 610 may be a two-pole magnet.
  • the third magnet 610 may include a two-pole magnetized magnet.
  • the third magnet 610 may include an N pole and an S pole.
  • the lens driving device 10 may include a third coil 620.
  • the third driving unit may include a third coil 620.
  • the third coil 620 may be an ‘OIS-y coil’.
  • the third coil 620 may interact with the third magnet 610.
  • the third coil 620 may be disposed on the opposite side of the first coil 420 based on the optical axis.
  • the third coil 620 can move in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • the third coil 620 can move in the y-axis direction through interaction with the third magnet 610.
  • the third coil 620 may face the third magnet 610.
  • the third coil 620 may face the third magnet 610.
  • the third coil 620 may be disposed in a position corresponding to the third magnet 610.
  • the third coil 620 may overlap the third magnet 610 in a direction perpendicular to the optical axis.
  • the third coil 620 may be disposed on the first substrate 710.
  • the third coil 620 may be disposed in the third portion 713 of the first substrate 710.
  • the third coil 620 may be placed in the second holder 310.
  • the third coil 620 may be disposed on the second moving part 300.
  • the lens driving device 10 may include a third sensor 630.
  • the third driving unit may include a third sensor 630.
  • the third sensor 630 may be an ‘OIS-y sensor’.
  • the third sensor 630 may be disposed on the first substrate 710.
  • the third sensor 630 may be disposed in the third portion 713 of the first substrate 710.
  • the third sensor 630 may include a Hall sensor.
  • the third sensor 630 can detect the third magnet 610.
  • the third sensor 630 can detect the magnetic force of the third magnet 610.
  • the third sensor 630 may be disposed within the third coil 620.
  • the third sensor 630 may overlap the third coil 620 in the optical axis direction.
  • the third sensor 630 may face the third magnet 610.
  • the third sensor 630 may be placed in a position corresponding to the third magnet 610.
  • the third sensor 630 can detect the movement of the third magnet 610.
  • the movement amount or position of the third magnet 610 detected by the third sensor 630 may be used
  • the lens driving device 10 may include a substrate.
  • the substrate may include a flexible substrate.
  • the substrate may be electrically connected to the coil.
  • the substrate may be electrically connected to the sensor.
  • the lens driving device 10 may include a first substrate 710.
  • the first substrate 710 may be electrically connected to the coils 420, 520, and 620.
  • the first substrate 710 may be electrically connected to the sensors 430, 530, and 630.
  • the first substrate 710 may connect the first holder 210 and the second holder 310.
  • the first substrate 710 can elastically connect the first holder 210 and the second holder 310.
  • the first substrate 710 may be supported by the second holder 310 to be movable relative to the first holder 210 .
  • the first substrate 710 may guide the second holder 310 to move in a direction perpendicular to the optical axis with respect to the first holder 210.
  • the first substrate 710 may include a flexible substrate.
  • the first substrate 710 may include a flexible printed circuit board (FPCB).
  • the first substrate 710 may include an elastic portion.
  • the first substrate 710 may include an elastic member.
  • the first substrate 710 may include a first portion 711.
  • the first part 711 may be placed in the first holder 210.
  • the first coil 420 may be disposed in the first portion 711 of the first substrate 710.
  • the first sensor 430 may be disposed on the first portion 711 of the first substrate 710.
  • the yoke 830 may be disposed in the first portion 711 of the first substrate 710.
  • the first substrate 710 may include a second portion 712.
  • the second part 712 may be placed in the second holder 310.
  • the second portion 712 may be disposed on the second side of the second holder 310.
  • the second coil 520 may be disposed on the second portion 712 of the first substrate 710.
  • the second sensor 530 may be disposed in the second portion 712 of the first substrate 710.
  • the first substrate 710 may include a third portion 713.
  • the third part 713 may be placed in the second holder 310.
  • the third portion 713 may be disposed on the third side of the third holder 310.
  • the third coil 620 may be disposed in the third portion 713 of the first substrate 710.
  • the third sensor 630 may be disposed in the third portion 713 of the first substrate 710.
  • the first substrate 710 may include a fourth portion 714.
  • the fourth portion 714 may be disposed between the second holder 310 and the first holder 210.
  • the fourth portion 714 may be disposed between the fourth side of the second holder 310 and the first holder 210.
  • the first substrate 710 may include a terminal 714a.
  • the fourth portion 714 of the first substrate 710 may include a terminal 714a.
  • Terminal 714a may be electrically connected to coils 420, 520, and 620.
  • Terminal 714a may be electrically connected to sensors 430, 530, and 630.
  • the first substrate 710 may include a hole 714b.
  • the fourth portion 714 of the first substrate 710 may include a hole 714b.
  • the hole 714b may be formed through the fourth portion 714 of the first substrate 710.
  • the hole 714b may be disposed at a position corresponding to the side stopper 313 of the second holder 310.
  • the first substrate 710 may not interfere with the side stopper 313 of the second holder 310 due to the hole 714b.
  • the lens driving device 10 may include a second substrate 720.
  • the second substrate 720 may be placed on the base 110 .
  • the second substrate 720 may be electrically connected to the coils 420, 520, and 620.
  • the second substrate 720 may be electrically connected to the sensors 430, 530, and 630.
  • the second substrate 720 may connect the first holder 210 and the base 110.
  • the second substrate 720 can elastically connect the first holder 210 and the base 110.
  • the second substrate 720 may be supported movably with respect to the base 110 by the first holder 210 .
  • the second substrate 720 may guide the first holder 210 to move in the optical axis direction with respect to the base 110.
  • the second substrate 720 may include a flexible substrate.
  • the second substrate 720 may include a flexible printed circuit board (FPCB).
  • the second substrate 720 may include an elastic portion.
  • the second substrate 720 may include an elastic member.
  • the second substrate 720 may include a body portion 721.
  • the body portion 721 may be disposed on the base 110.
  • the body portion 721 may be formed to surround the side of the base 110.
  • the body portion 721 may be disposed on three sides of the base 110.
  • the body portion 721 may include two terminal portions.
  • the two terminal units may be disposed opposite to each other with respect to the optical axis.
  • the terminal portion may include a first terminal 721a.
  • the second substrate 720 may include a first terminal 721a.
  • the body portion 720 of the second substrate 720 may include a first terminal 721a.
  • the first terminal 721a may be coupled to the terminal 714a of the first substrate 710.
  • the first terminal 721a may be connected to the terminal 714a of the first substrate 710 through solder.
  • the first terminal 721a may be coupled to the terminal 714a of the first substrate 710 through a conductive member.
  • the first terminal 721a may be connected to the terminal 714a of the first substrate 710.
  • the first terminal 721a may be electrically connected to the terminal 714a of the first substrate 710.
  • the second substrate 720 may include leg portions 722.
  • the leg portion 722 may be an ‘extension portion’.
  • the leg portion 722 may extend from the body portion 721. At least a portion of the leg portion 722 may move together with the first holder 210.
  • the extension portion may extend from the body portion 721. At least a portion of the extension part can move together with the first holder 210.
  • the leg portion 722 may include a plurality of leg portions.
  • the leg portion 722 may include a first leg portion and a second leg portion. The second leg portion may be disposed below the first leg portion.
  • the second substrate 720 may include a second terminal 722a.
  • the leg portion 722 of the second substrate 720 may include a second terminal 722a.
  • the second terminal 722a may be electrically connected to the first terminal 721a.
  • the second terminal 722a may be disposed at the lower end of the base 110.
  • the second terminal 722a may be coupled to the printed circuit board (50).
  • the second terminal 722a may be coupled to the terminal of the printed circuit board (50) through solder.
  • Second terminal 722a ) may be coupled to the terminal of the printed circuit board (50) through a conductive member.
  • the second terminal (722a) may be connected to the terminal of the printed circuit board (50).
  • the second terminal (722a) may be connected to the terminal of the printed circuit board (50). It can be electrically connected to the terminal of the circuit board (50).
  • the lens driving device 10 may include a guide member.
  • the guide member may include a ball.
  • the guide member may include a pin.
  • the guide member may include a cylindrical member. The guide member may guide the movement of the moving part with respect to the fixed part 100 in a specific direction.
  • the lens driving device 10 may include a first ball 810.
  • the first ball 810 may be an ‘AF guide ball’.
  • the first ball 810 may guide the movement of the first holder 210 relative to the base 110 in the optical axis direction.
  • the first ball 810 may be placed between the base 110 and the first holder 210.
  • the first ball 810 may be disposed between the base 110 and the first holder 210 in a first direction.
  • the first ball 810 may be placed in the groove 111a of the base 110.
  • the first ball 810 may be placed in the first groove 211b of the first holder 210.
  • the first ball 810 is a 1-1 ball that contacts the base 110 and the first holder 210 at 4 points, and a 1st ball that contacts the base 110 and the first holder 210 at 3 points.
  • -Can include 2 balls.
  • the first ball 810 may have a spherical shape.
  • the first ball 810 may be formed of metal. Grease may be applied to the surface of the first ball 810.
  • the first ball 810 may include a plurality of balls.
  • the first ball 810 may include 8 balls. Four first balls 810 may be placed on one side of the first magnet 410, and the remaining four first balls 810 may be placed on the other side of the first magnet 410.
  • the lens driving device 10 may include a second ball 820.
  • the second ball 820 may be an ‘OIS guide ball’.
  • the second ball 820 may guide the movement of the second holder 310 relative to the first holder 210 in a direction perpendicular to the optical axis.
  • the second ball 820 may be disposed between the first holder 210 and the second holder 310.
  • the second ball 820 may be disposed between the first holder 210 and the second holder 310 in the optical axis direction.
  • the second ball 820 may be disposed between the pressing portion 212 of the first holder 210 and the second holder 310.
  • the second ball 820 may be pressed between the first holder 210 and the second holder 310 by the pressing force of the elastic member 850.
  • the pressing portion 212 may press the second ball 820 downward during the process of being coupled to the body portion 211.
  • the pressing unit 212 may press the second ball 820 in the direction of the second holder 310 during the process of being coupled to the body unit 211.
  • the second holder 310 can press the second ball 820 in the direction of the pressing unit 212 by the restoring force of the elastic member 850. Accordingly, the second ball 820 can be pressed between the pressing portion 212 and the second holder 310.
  • the second ball 820 may guide the second holder 310 to move in the first and second directions perpendicular to the optical axis direction with respect to the first holder 210. That is, the second ball 820 can guide the second holder 310 to move in the x-axis direction and the y-axis direction. In other words, the second ball 820 can guide movement in both the x-axis direction and the y-axis direction.
  • the present invention is provided with the ball guiding the x-axis direction and the ball guiding the y-axis direction as one body.
  • the size of the lens driving device 10 can be minimized.
  • the height of the lens driving device 10 in the optical axis direction may be reduced. Through this, the height protruding from the smartphone, that is, shoulder height, can be minimized.
  • the second ball 820 may include a plurality of balls.
  • the second ball 820 may include four balls.
  • the lens driving device 10 may include a yoke 830.
  • the yoke 830 may be disposed in the first portion 711 of the first substrate 710.
  • An attractive force may be generated between the yoke 830 and the first magnet 410.
  • the yoke 830 may be placed in a position corresponding to the first magnet 410.
  • the yoke 830 may be formed of metal.
  • the first ball 810 may be pressed between the base 110 and the first holder 210 by the attractive force between the yoke 830 and the first magnet 410. That is, the contact state of the first ball 810 with the base 110 and the first holder 210 can be maintained by the attractive force between the yoke 830 and the first magnet 410.
  • the lens driving device 10 may include an elastic member 850.
  • the elastic member 850 may be formed to press the second ball 820.
  • the elastic member 850 may be formed to guide both the OIS-x-axis drive and the OIS-y-axis drive using only the second ball 820.
  • the elastic member 850 may include a leaf spring.
  • the elastic member 850 may include a wire.
  • the elastic member 850 may have elasticity.
  • the elastic member 850 may be formed of metal.
  • the lens driving device 10 may include a first elastic member 860.
  • the first elastic member 860 may be an ‘upper elastic member’.
  • the first elastic member 860 may be a leaf spring.
  • the first elastic member 860 may have elasticity.
  • the first elastic member 860 may be disposed on the upper surface of the second holder 310.
  • the first elastic member 860 may be disposed in the second holder 310.
  • the first elastic member 860 may be disposed on the upper part of the second holder 310.
  • the first elastic member 860 may be disposed on the second holder 310.
  • the first elastic member 860 may be disposed perpendicular to the optical axis.
  • the lens driving device 10 may include a second elastic member 870.
  • the second elastic member 870 may be a ‘lower elastic member’.
  • the second elastic member 870 may be a leaf spring.
  • the second elastic member 870 may have elasticity.
  • the second elastic member 870 may be disposed on the lower surface of the first holder 210.
  • the second elastic member 870 may be disposed in the first holder 210.
  • the second elastic member 870 may be disposed below the first holder 210.
  • the second elastic member 870 may be disposed below the first holder 210.
  • the second elastic member 870 may be disposed on the lower surface of the body portion 721.
  • the second elastic member 870 may be coupled to the lower surface of the body portion 721.
  • the second elastic member 870 may be arranged perpendicular to the optical axis.
  • the lens driving device 10 may include a third elastic member 880.
  • the third elastic member 880 may be a ‘side elastic member’.
  • the third elastic member 880 may be a wire.
  • the third elastic member 880 may be a wire spring.
  • the third elastic member 880 may be a suspension wire.
  • the third elastic member 880 may have elasticity.
  • the third elastic member 880 may connect the first elastic member 860 and the second elastic member 870.
  • the third elastic member 880 may elastically connect the first elastic member 860 and the second elastic member 870.
  • the third elastic member 880 may be arranged parallel to the optical axis.
  • Figure 28 to 30 are diagrams for explaining autofocus driving of the lens driving device according to the first embodiment of the present invention.
  • Figure 28 is a cross-sectional view showing the moving part in an initial state in which no current is applied to the first coil.
  • Figure 29 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the first coil.
  • Figure 30 is a cross-sectional view showing the moving part moving downward in the optical axis direction when a reverse current is applied to the first coil.
  • the moving part may be disposed at a position spaced apart from both the upper plate 121 and the base 110 of the cover 120 in an initial position where no current is applied to the first coil 420. At this time, the moving part may be the first moving part 200. Additionally, the moving unit may include first and second moving units 200 and 300.
  • the first coil 420 When a forward current is applied to the first coil 420, the first coil 420 can move upward in the optical axis direction due to electromagnetic interaction between the first coil 420 and the first magnet 410 (see Figure 29). see a). At this time, the first holder 210 together with the first coil 420 may move upward in the optical axis direction. Furthermore, the second holder 310 and the lens together with the first holder 210 can move upward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the first coil 420 When a reverse current is applied to the first coil 420, the first coil 420 may move downward in the optical axis direction due to electromagnetic interaction between the first coil 420 and the first magnet 410 (see Figure 30). see b). At this time, the first holder 210 together with the first coil 420 may move downward in the optical axis direction. Furthermore, the second holder 310 and the lens together with the first holder 210 can move downward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the first sensor 430 moves together with the first coil 420 and detects the strength of the magnetic field of the first magnet 410 to determine the amount of movement in the optical axis direction of the lens. Location can be detected.
  • the movement amount or position of the lens in the optical axis direction detected by the first sensor 430 may be used for autofocus feedback control.
  • optical image stabilization (OIS) operation of the lens driving device according to the first embodiment of the present invention will be described with reference to the drawings.
  • FIGS. 31 to 33 are diagrams for explaining the hand shake correction operation of the lens driving device according to the first embodiment of the present invention.
  • Figure 31 is a cross-sectional view showing the moving part in an initial state in which no current is applied to the second coil and the third coil.
  • Figure 32 is a cross-sectional view showing the second moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the second coil.
  • Figure 33 is a cross-sectional view showing the second moving part moving in the y-axis direction perpendicular to both the optical axis and the x-axis when current is applied to the third coil.
  • the moving part may be placed in an initial position where no current is applied to the second coil 520 and the third coil 620. At this time, the moving part may be the second moving part 300.
  • the second coil 520 When current is applied to the second coil 520, the second coil 520 may move in the x-axis direction perpendicular to the optical axis due to electromagnetic interaction between the second coil 520 and the second magnet 510 ( (see a in Figure 32). At this time, the second holder 310 together with the second coil 520 may move in the x-axis direction. Furthermore, the lens can move in the x-axis direction together with the second holder 310. More specifically, when a forward current is applied to the second coil 520, the second coil 520, the second holder 310, and the lens may move in one direction on the x-axis. Additionally, when a reverse current is applied to the second coil 520, the second coil 520, the second holder 310, and the lens may move in other directions on the x-axis.
  • the third coil 620 When current is applied to the third coil 620, the third coil 620 can move in the y-axis direction perpendicular to the optical axis due to electromagnetic interaction between the third coil 620 and the third magnet 610 ( See b in Figure 33). At this time, the second holder 310 together with the third coil 620 may move in the y-axis direction. Furthermore, the lens can move in the y-axis direction together with the second holder 310. More specifically, when a forward current is applied to the third coil 620, the third coil 620, the second holder 310, and the lens may move in one direction on the y-axis. Additionally, when a reverse current is applied to the third coil 620, the third coil 620, the second holder 310, and the lens may move in other directions on the y-axis.
  • the second sensor 530 can detect the amount of movement or position of the second coil 520 by detecting the strength of the magnetic field of the second magnet 510.
  • the movement amount or position detected by the second sensor 530 may be used for hand shake correction feedback control in the x-axis direction.
  • the third sensor 630 can detect the amount of movement or position of the third coil 620 by detecting the strength of the magnetic field of the third magnet 610.
  • the amount of movement or position detected by the third sensor 630 can be used for y-axis direction image stabilization feedback control.
  • Figure 34 is an exploded perspective view of a camera device according to the first embodiment of the present invention.
  • the camera device 10A may include a camera module.
  • Camera device 10A may include a lens module 20.
  • the lens module 20 may include at least one lens.
  • the lens may be placed in a position corresponding to the image sensor 60.
  • the lens module 20 may include a lens and a barrel.
  • the lens module 20 may be coupled to the holder 210 of the lens driving device 10.
  • the lens module 20 may be coupled to the holder 210 by screwing and/or adhesive.
  • the lens module 20 can be moved integrally with the holder 210.
  • Camera device 10A may include a filter 30.
  • the filter 30 may serve to block light in a specific frequency band from light passing through the lens module 20 from entering the image sensor 60 .
  • Filter 30 may be arranged parallel to the x-y plane.
  • the filter 30 may be disposed between the lens module 20 and the image sensor 60.
  • Filter 30 may be placed on sensor base 40.
  • the filter 30 may be disposed on the base 110.
  • Filter 30 may include an infrared filter. The infrared filter can block light in the infrared region from being incident on the image sensor 60.
  • Camera device 10A may include a sensor base 40.
  • the sensor base 40 may be disposed between the lens driving device 10 and the printed circuit board 50.
  • the sensor base 40 may include a protrusion 41 on which the filter 30 is disposed.
  • An opening may be formed in the portion of the sensor base 40 where the filter 30 is disposed to allow light passing through the filter 30 to enter the image sensor 60 .
  • the adhesive member may couple or adhere the base 310 of the lens driving device 10 to the sensor base 40.
  • the adhesive member may additionally serve to prevent foreign substances from entering the interior of the lens driving device 10.
  • the adhesive member may include one or more of epoxy, thermosetting adhesive, and ultraviolet curing adhesive.
  • the camera device 10A may include a printed circuit board (PCB) 50.
  • the printed circuit board 50 may be a board or a circuit board.
  • a lens driving device 10 may be disposed on the printed circuit board 50.
  • a sensor base 40 may be disposed between the printed circuit board 50 and the lens driving device 10.
  • the printed circuit board 50 may be electrically connected to the lens driving device 10.
  • An image sensor 60 may be disposed on the printed circuit board 50.
  • the printed circuit board 50 may be equipped with various circuits, elements, and control units to convert the image formed on the image sensor 60 into an electrical signal and transmit it to an external device.
  • the camera device 10A may include an image sensor 60.
  • the image sensor 60 may be configured to form an image by entering light that has passed through the lens and filter 30.
  • the image sensor 60 may be mounted on the printed circuit board 50.
  • the image sensor 60 may be electrically connected to the printed circuit board 50.
  • the image sensor 60 may be coupled to the printed circuit board 50 using surface mounting technology (SMT).
  • SMT surface mounting technology
  • the image sensor 60 may be coupled to the printed circuit board 50 using flip chip technology.
  • the image sensor 60 may be arranged so that its optical axis coincides with that of the lens. That is, the optical axis of the image sensor 60 and the optical axis of the lens may be aligned.
  • the image sensor 60 can convert light irradiated to the effective image area of the image sensor 60 into an electrical signal.
  • the image sensor 60 may be one of a charge coupled device (CCD), a metal oxide semiconductor (MOS), a CPD, and a CID.
  • CCD charge coupled device
  • MOS
  • Camera device 10A may include a motion sensor 70.
  • the motion sensor 70 may be mounted on the printed circuit board 50.
  • the motion sensor 70 may be electrically connected to the control unit 80 through a circuit pattern provided on the printed circuit board 50.
  • the motion sensor 70 may output rotational angular velocity information resulting from the movement of the camera device 10A.
  • the motion sensor 70 may include a 2-axis or 3-axis gyro sensor, or an angular velocity sensor.
  • the camera device 10A may include a control unit 80.
  • the control unit 80 may be disposed on the printed circuit board 50.
  • the control unit 80 may be electrically connected to the coil 330 of the lens driving device 10.
  • the control unit 80 can individually control the direction, intensity, and amplitude of the current supplied to the coil 330.
  • the control unit 80 may control the lens driving device 10 to perform an autofocus function and/or an image stabilization function. Furthermore, the control unit 80 may perform autofocus feedback control and/or camera shake correction feedback control for the lens driving device 10.
  • Camera device 10A may include a connector 90.
  • the connector 90 may be electrically connected to the printed circuit board 50.
  • the connector 90 may include a port for electrical connection to an external device.
  • Figure 35 is a perspective view of an optical device according to a first embodiment of the present invention
  • Figure 36 is a perspective view of an optical device according to a modification.
  • Optical devices (1) include cell phones, mobile phones, portable terminals, mobile terminals, smart phones, smart pads, portable smart devices, digital cameras, laptop computers, digital broadcasting terminals, and PDAs (Personal Digital Assistants). , PMP (Portable Multimedia Player), and navigation may be included.
  • the optical device 1 may include any device for taking images or photos.
  • the optical device 1 may include a body 20.
  • the optical device 1 may include a camera device 10A.
  • the camera device 10A may be placed in the main body 20.
  • the camera device 10A can photograph a subject.
  • the optical device 1 may include a display.
  • the display may be placed on the main body 20.
  • the display may output one or more of a video or an image captured by the camera device 10A.
  • the display may be placed on the first side of the main body 20.
  • the camera device 10A may be disposed on one or more of the first side of the main body 20 and the second side opposite the first side.
  • the camera device 10A may have triple cameras arranged vertically.
  • the camera device 10A-1 may have triple cameras arranged in the horizontal direction.
  • Figure 37 is a conceptual diagram of a lens driving device according to a second embodiment of the present invention
  • Figure 38 is a perspective view of a lens driving device according to a second embodiment of the present invention
  • Figure 39 is a cross-sectional view viewed from A-A of Figure 38
  • FIG. 40 is a cross-sectional view viewed from B-B of FIG. 38
  • FIG. 41 is a cross-sectional view viewed from C-C of FIG. 38
  • FIG. 42 is a cross-sectional view of the lens driving device according to the second embodiment of the present invention cut in a cross-section perpendicular to the optical axis and viewed from above.
  • Figure 43 is an exploded perspective view of the lens driving device according to the second embodiment of the present invention
  • Figure 44 is a perspective view of the lens driving device according to the second embodiment of the present invention with the cover removed
  • Figure 45 is a It is an enlarged view of a part of 44
  • Figure 46a is a perspective view of Figure 44 seen from another direction
  • Figure 46b is a perspective view showing the metal member of the AF moving part omitted in Figure 46
  • Figure 47 is a perspective view of Figure 44 seen from another direction.
  • It is a perspective view showing the fixing part and related components of the lens driving device according to the second embodiment of the invention
  • Figure 48 is a perspective view showing the moving section and related components of the lens driving device according to the second embodiment of the present invention.
  • FIG. 49 is a front view of FIG. 48 from the front
  • FIG. 50 is a cross-sectional perspective view showing the AF guide ball and related configuration of the lens driving device according to the second embodiment of the present invention
  • FIG. 51 is a view of FIG. 48 from another direction.
  • Figure 52 is a perspective view with the cover removed in Figure 51
  • Figure 53 is a bottom view of the AF moving unit and related components of the lens driving device according to the second embodiment of the present invention
  • Figure 54 is a bottom perspective view of FIG. 53 as seen from another direction
  • FIG. 55 is an enlarged view of a portion of FIG. 54
  • FIG. 56 is a configuration related to the OIS moving unit of the lens driving device according to the second embodiment of the present invention.
  • Figure 57a is an enlarged view of a portion of Figure 56
  • Figure 57b is a cross-sectional view viewed from A-A of Figure 57a
  • Figure 58a is a view of the lens driving device according to the second embodiment of the present invention.
  • It is a cross-sectional view showing the pressing structure of the OIS guide ball
  • Figure 58b is a cross-sectional view showing the coupling structure of the elastic member and wire of the lens driving device according to the second embodiment of the present invention
  • Figure 59 is a view of Figure 56 from another direction.
  • Figure 60 is a perspective view showing the inner substrate and the outer substrate of the lens driving device according to the second embodiment of the present invention
  • Figure 61 is an elastic member of the lens driving device according to the second embodiment of the present invention. It is a perspective view showing the and wires.
  • the lens driving device 1010 may be a voice coil motor (VCM).
  • VCM voice coil motor
  • the lens driving device 1010 may be a lens driving motor.
  • the lens driving device 1010 may be a lens driving actuator.
  • the lens driving device 1010 may include an AF module.
  • the lens driving device 1010 may include an OIS module.
  • the lens driving device 1010 may include a fixing unit 1100.
  • the fixed part 1100 may be a relatively fixed part when the movable part moves.
  • the movable part can move relative to the fixed part 1100.
  • the lens driving device 1010 may include a base 1110.
  • the fixing part 1100 may include a base 1110.
  • the base 1110 may be placed below the AF holder 1210.
  • the base 1110 may be placed below the OIS holder 1310.
  • Base 1110 may be combined with cover 1120.
  • the AF holder 1210 and the OIS holder 1310 may be placed on the base 1110.
  • the AF holder 1210 and the OIS holder 1310 may be placed on the lower plate of the base 1110.
  • the AF holder 1210 and the OIS holder 1310 may be placed within the base 1110.
  • the AF holder 1210 and the OIS holder 1310 may be placed within the side plate of the base 1110.
  • the AF magnet 1410, OIS-x magnet 1510, and OIS-y magnet 1610 can all be placed on the base 1110.
  • the AF magnet 1410, OIS-x magnet 1510, and OIS-y magnet 1610 may all be placed in the fixing unit 1100. That is, during autofocus operation, the AF magnet 1410, OIS-x magnet 1510, and OIS-y magnet 1610 can all maintain a fixed state. Additionally, during the hand shake correction operation, the AF magnet 1410, OIS-x magnet 1510, and OIS-y magnet 1610 can all remain fixed.
  • the AF magnet 1410 is fixed and the AF coil 1420 can move.
  • the OIS-x and OIS-y magnets (1510, 1610) are fixed and the OIS-x and OIS-y coils (1520, 1620) can move.
  • Base 1110 may include a lower plate.
  • Base 1110 may include a side plate.
  • the side plates may be 'lateral'.
  • the side plate of the base 1110 may extend from the upper surface of the lower plate.
  • the side plate of the base 1110 may include a plurality of side plates.
  • the side plate of the base 1110 may include four side plates. However, one or more of the four side plates of the base 1110 may be omitted.
  • the side plate of the base 1110 may include first to fourth side plates 1111, 1112, 1113, and 1114.
  • the base 1110 may include a first side plate 1111 and a second side plate 1113 disposed on opposite sides of each other, and a third side plate 1112 and a fourth side plate 1114 disposed on opposite sides of each other.
  • the sides of the base 1110 may include a plurality of sides.
  • the sides of the base 1110 may include four sides. However, one or more of the four sides of the base 1110 may be omitted.
  • Sides of the base 1110 may include first to fourth sides.
  • the base 1110 may include first and second sides disposed on opposite sides of each other, and third and fourth side portions disposed on opposite sides of each other.
  • the AF magnet 1410 may be placed on the first side plate 1111 of the base 1110.
  • the OIS-x magnet 1510 may be placed on the second side plate 1113 of the base 1110.
  • the OIS-y magnet 1610 may be placed on the third side plate 1112 of the base 1110.
  • the first side plate 1111 of the base 1110 may include a groove 1111a.
  • the groove 1111a may be an ‘AF guide ball receiving groove’.
  • An AF guide ball 1810 may be placed in the groove 1111a.
  • the groove 1111a may directly contact the AF guide ball 1810.
  • the groove 1111a may be arranged in the optical axis direction.
  • the groove 1111a may include a plurality of grooves.
  • the groove 1111a may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 1111a may include a first groove that contacts the AF guide ball 1810 at two points, and a second groove that contacts the AF guide ball 1810 at one point. As a modified example, both the first groove and the second groove may contact the AF guide ball 1810 at two points.
  • the second side plate 1113 of the base 1110 may include a protrusion.
  • the protrusion may protrude outward.
  • Extension portions 1722 of the outer substrate 1720 may be disposed on the upper and lower sides of the protrusion.
  • a groove may be formed in the protrusion to prevent interference even when the extension portion 1722 of the outer substrate 1720 moves.
  • the base 1110 may include a step 1115.
  • the step 1115 may be formed at the lower end of the outer surface of the base 1110.
  • the step 1115 may protrude from the outer surface of the base 1110.
  • the side plate 1122 of the cover 1120 may be disposed on the step 1115 of the base 1110.
  • the lens driving device 1010 may include a cover 1120.
  • the fixing part 1100 may include a cover 1120.
  • Cover 1120 may be placed on base 1110.
  • Cover 1120 may be coupled to base 1110.
  • Cover 1120 may be fixed to base 1110.
  • the cover 1120 can accommodate the AF holder 1210 inside.
  • the cover 1120 can accommodate the OIS holder 1310 inside.
  • the cover 1120 may be a shield member.
  • the cover 1120 may be a shield can.
  • Cover 1120 may include a top plate 1141.
  • the upper plate 1141 may be placed on the moving part. The upward movement of the moving part may be limited by the moving part coming into contact with the upper plate 1141.
  • the top plate 1141 may include a hole through which light passes.
  • Cover 1120 may include a side plate 1142.
  • the side plate 1142 may extend from the top plate 1141.
  • the side plate 1142 may be placed on the base 1110.
  • the side plate 1142 may be disposed on a stepped portion protruding from the lower end of the outer surface of the base 1110.
  • the side plate 1142 may include a plurality of side plates.
  • the side plate 1142 may include four side plates.
  • the side plate 1142 may include a first side plate and a second side plate disposed on opposite sides of each other, and a third side plate and a fourth side plate disposed on opposite sides of each other.
  • the lens driving device 1010 may include a moving part.
  • the movable part may be disposed on the fixed part 1100.
  • the movable part may be disposed within the fixed part 1100.
  • the movable part may be disposed on the fixed part 1100.
  • the movable part may be movably disposed on the fixed part 1100.
  • the moving part can be moved relative to the fixed part 1100 by the driving part.
  • the moving part can move during AF operation.
  • the moving part can move when OIS is running.
  • a lens may be coupled to the moving part.
  • the lens driving device 1010 may include an AF moving unit 1200.
  • the AF moving unit 1200 may be disposed on the fixed unit 1100.
  • the AF moving unit 1200 may be disposed within the fixing unit 1100.
  • the AF moving unit 1200 may be disposed on the fixing unit 1100.
  • the AF moving unit 1200 may be disposed between the fixed unit 1100 and the OIS moving unit 1300.
  • the AF moving unit 1200 may be movably disposed on the fixing unit 1100.
  • the AF moving unit 1200 can move in the optical axis direction with respect to the fixing unit 1100 by the AF driving unit 1400.
  • the AF moving unit 1200 can move during AF operation.
  • the lens driving device 1010 may include an AF holder 1210.
  • the AF moving unit 1200 may include an AF holder 1210.
  • the AF holder 1210 may be an 'AF carrier'.
  • the AF holder 1210 may be placed within the base 1110.
  • AF holder 1210 may be placed on the base 1110.
  • the AF holder 1210 may be placed within the cover 1120.
  • the AF holder 1210 may be placed between the base 1110 and the OIS holder 1310.
  • the AF holder 1210 may be arranged to be movable in the optical axis direction.
  • the AF holder 1210 may include protrusions.
  • the protrusion may be coupled to the lower elastic member 1910.
  • the lower elastic member 1910 may include a hole coupled to the protrusion of the AF holder 1210.
  • the AF holder 1210 may include a groove that accommodates the adhesive instead of a protrusion.
  • the lower elastic member 1910 may include a hole disposed in the groove of the AF holder 1210.
  • the protrusions of the AF holder 1210 may be formed on the lower surface of the AF holder 1210.
  • the protrusion of the AF holder 1210 may protrude from the lower surface of the AF holder 1210.
  • the protrusions of the AF holder 1210 may include a plurality of protrusions.
  • the protrusions of the AF holder 1210 may include first protrusions 1211 and second protrusions 1212.
  • the outer portion 1911 of the lower elastic member 1910 may include a first region coupled to the first protrusion 1211 and a second region 1212 coupled to the first protrusion 1212.
  • the wire 1930 may include a first wire 1931 disposed in the first corner area of the fixing part 1100.
  • the coupling portion 1912 of the lower elastic member 1910 may include a first coupling portion coupled to the first wire 1931.
  • the connection portion 1913 of the lower elastic member 1910 includes a first connection portion 1913-1 and a second connection portion connecting the outer portion 1911 of the lower elastic member 1910 and the first coupling portion of the lower elastic member 1910. 1913-2) may be included.
  • the connection portion 1913 of the lower elastic member 1910 includes a first connection portion 1913-1 connecting the first region of the outer portion 1911 and the first coupling portion, and a first coupling portion 1913-1 connecting the second region of the outer portion 1911 and the first coupling portion. It may include a second connection part 1913-2 for connecting. That is, the connecting portion 1913 of the lower elastic member 1910 may be provided with two connecting portions to connect one outer portion 1911 and one coupling portion 1912.
  • the first and second connection parts 1913-1 and 1913-2 of the lower elastic member 1910 are symmetrical with respect to an imaginary straight line connecting the optical axis and the first corner area of the fixing part 1100. It can be.
  • the wire 1930 may include a second wire 1933 disposed in the second corner area of the fixing part 1100.
  • the coupling portion 1912 of the lower elastic member 1910 may include a second coupling portion coupled to the second wire 1933.
  • the wire 1930 may include a third wire 1932 disposed in the third corner area of the fixing part 1100.
  • the coupling portion 1912 of the lower elastic member 1910 may include a third coupling portion coupled to the third wire 1932.
  • the wire 1930 may include a fourth wire 1934 disposed in the fourth corner area of the fixing part 1100.
  • the coupling portion 1912 of the lower elastic member 1910 may include a fourth coupling portion coupled to the fourth wire 1934.
  • the first corner area of the fixing unit 1100 may be placed diagonally opposite the second corner area, and the third corner area may be placed diagonally opposite the fourth corner area.
  • AF holder 1210 may include a protrusion 1213.
  • the protrusion 1213 may be formed on the outer surface of the AF holder 1210.
  • the protrusion 1213 may protrude outward from the AF holder 1210.
  • Extension portions 1722 of the outer substrate 1720 may be disposed on the upper and lower surfaces of the protrusion 1213.
  • AF holder 1210 may include a groove 1214.
  • the groove 1214 may be an ‘AF guide ball receiving groove’.
  • An AF guide ball 1810 may be placed in the groove 1214.
  • the groove 1214 may directly contact the AF guide ball 1810.
  • the groove 1214 may be arranged in the optical axis direction.
  • Groove 1214 may include a plurality of grooves.
  • Groove 1214 may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 1214 may include a first groove that contacts the AF guide ball 1810 at two points, and a second groove that contacts the AF guide ball 1810 at one point. As a modified example, both the first groove and the second groove may contact the AF guide ball 1810 at two points.
  • the AF holder 1210 may include a protrusion 1215a.
  • the protrusion 1215a may protrude from the lower surface of the upper plate of the AF holder 1210.
  • An OIS guide ball 1820 may be disposed on the lower surface of the protrusion 1215a.
  • the protrusion 1215a may include a plurality of protrusions.
  • Protrusion 1215a may include four protrusions.
  • the AF holder 1210 may include a groove 1215.
  • the groove 1215 may be an ‘OIS guide ball receiving groove’.
  • the groove 1215 may be formed in the protrusion 1215a.
  • the groove 1215 may be formed on the lower surface of the protrusion 1215a.
  • the groove 1215 may be formed concavely on the lower surface of the protrusion 1215a.
  • An OIS guide ball 1820 may be placed in the groove 1215.
  • the groove 1215 may be in direct contact with the OIS guide ball 1820.
  • AF holder 1210 may include a metal member 1216.
  • the metal member 1216 may be insert-molded into the AF holder 1210. At least a portion of the metal member 1216 may be disposed on the upper surface of the AF holder 1210. The metal member 1216 may be disposed to reinforce the strength of the AF holder 1210.
  • AF holder 1210 may include a groove 1217.
  • the groove 1217 may be a “metal member receiving groove.”
  • the groove 1217 may be formed on the upper surface of the AF holder 1210.
  • the groove 1217 may be formed concavely on the upper surface of the AF holder 1210.
  • a metal member 1216 may be placed in the groove 1217.
  • the groove 1217 may be formed in a shape corresponding to the metal member 1216.
  • the lens driving device 1010 may include a cover 1220.
  • the AF moving unit 1200 may include a cover 1220.
  • the cover 1220 may be combined with the AF holder 1210.
  • the cover 1220 may be coupled to the lower surface of the AF holder 1210.
  • the cover 1220 may be coupled to the AF holder 1210 from the lower side.
  • Cover 1220 may include a hook 1221.
  • the hook 1221 of the cover 1220 may be coupled to the AF holder 1210.
  • the hook 1221 of the cover 1220 may protrude upward and be coupled to the side of the AF holder 1210.
  • the lens driving device 1010 may include an OIS moving unit 1300.
  • the OIS moving unit 1300 may be disposed on the fixed unit 1100.
  • the OIS moving unit 1300 may be disposed within the fixed unit 1100.
  • the OIS moving unit 1300 may be disposed on the fixed unit 1100.
  • the OIS moving unit 1300 may be disposed within the AF moving unit 1200.
  • the OIS moving unit 1300 may be arranged to be movable.
  • the OIS moving unit 1300 can move in the x-axis direction perpendicular to the optical axis with respect to the fixed unit 1100 and the AF moving unit 1200 by the OIS-x driving unit 1500.
  • the OIS moving unit 1300 can move in the y-axis direction perpendicular to the optical axis with respect to the fixed unit 1100 and the AF moving unit 1200 by the OIS-y driving unit 1600.
  • the OIS moving unit 1300 can move when OIS is driven.
  • the lens driving device 1010 may include an OIS holder 1310.
  • the OIS moving unit 1300 may include an OIS holder 1310.
  • the OIS holder 1310 may be an 'OIS carrier'.
  • the OIS holder 1310 may be placed within the AF holder 1210.
  • the OIS holder 1310 may be placed within the base 1110.
  • the OIS holder 1310 may be placed on the base 1110.
  • the OIS holder 1310 may be placed within the cover 1120.
  • the OIS holder 1310 may be arranged to be movable in a direction perpendicular to the optical axis.
  • the OIS holder 1310 may include an outer surface.
  • OIS holder 1310 may include multiple sides.
  • the OIS holder 1310 may include first and second sides disposed on opposite sides of each other, and third and fourth sides disposed on opposite sides of each other.
  • the AF coil 1420 may be disposed between the first side of the OIS holder 1310 and the AF magnet 1410.
  • the OIS-x coil 1520 may be disposed between the second side of the OIS holder 1310 and the OIS-x magnet 1510.
  • the OIS-y coil 1620 may be disposed between the third side of the OIS holder 1310 and the OIS-y magnet 1610.
  • the AF coil 1420 may be disposed on the first side of the OIS holder 1310.
  • the OIS-x coil 1520 may be disposed on the second side of the OIS holder 1310.
  • the OIS-y coil 1620 may be disposed on the third side of the OIS holder 1310.
  • the OIS holder 1310 may include a groove 1311.
  • the groove 1311 may be an ‘upper elastic member interference prevention groove’.
  • the groove 1311 may be formed on the upper surface of the OIS holder 1310.
  • the groove 1311 may be formed concavely on the upper surface of the OIS holder 1310.
  • the groove 1311 may be disposed at a position corresponding to the upper elastic member 1920 to prevent the OIS holder 1310 and the upper elastic member 1920 from interfering with each other.
  • the OIS holder 1310 may include a groove 1312.
  • the groove 1312 may be an ‘OIS guide ball receiving groove’.
  • An OIS guide ball 1820 may be placed in the groove 1312.
  • the groove 1312 may be in direct contact with the OIS guide ball 1820.
  • the groove 1312 may be arranged in a direction perpendicular to the optical axis.
  • the groove 1312 may be recessed in the optical axis direction.
  • Groove 1312 may include a plurality of grooves.
  • Groove 1312 may include four grooves.
  • the groove 1312 may contact the OIS guide ball 1820 at one point. Alternatively, the groove 1312 may contact the OIS guide ball 1820 at two points.
  • the number of contact points between the OIS holder 1310 and the OIS guide ball 1820 may vary depending on the movement of the OIS guide ball 1820.
  • Groove 1312 may be formed in groove 1311. Groove 1312 may be further recessed from groove 1311.
  • One of the grooves 1311 and 1312 of the OIS holder 1310 may be referred to as a 'first groove' and the other may be referred to as a 'second groove'.
  • the OIS holder 1310 may include a lateral stopper.
  • the side stopper may limit the sideward stroke of the OIS holder 1310. That is, when the OIS holder 1310 moves to the maximum, the lateral stopper of the OIS holder 1310 may contact one or more of the AF holder 1210 and the base 1110.
  • the side stopper may be formed on the outer surface of the OIS holder 1310. The side stopper may protrude outward from the side of the OIS holder 1310.
  • the OIS holder 1310 may include protrusions.
  • the protrusion may be combined with the upper elastic member 1920.
  • the upper elastic member 1920 may include a hole coupled to the protrusion of the OIS holder 1310.
  • the OIS holder 1310 may include a groove for receiving the adhesive instead of a protrusion.
  • the upper elastic member 1920 may include a hole disposed in the groove of the OIS holder 1310.
  • the protrusions of the OIS holder 1310 may be formed on the upper surface of the OIS holder 1310.
  • the protrusion of the OIS holder 1310 may protrude from the upper surface of the OIS holder 1310.
  • the protrusions of the OIS holder 1310 may include a plurality of protrusions.
  • the protrusions of the OIS holder 1310 may include first protrusions 1314 and second protrusions 1315.
  • the inner portion 1921 of the upper elastic member 1920 may include a first region coupled to the first protrusion 1314 and a second region 1212 coupled to the second protrusion 1315.
  • the wire 1930 may include a first wire 1931 disposed in the first corner area of the fixing part 1100.
  • the coupling portion 1922 of the upper elastic member 1920 may include a first coupling portion coupled to the first wire 1931.
  • connection part 1923 of the upper elastic member 1920 is a first connection part 1923-1 and a second connection part connecting the inner part 1921 of the upper elastic member 1920 and the first coupling part of the upper elastic member 1920 ( 1923-2) may be included.
  • the connection portion 1923 of the upper elastic member 1920 includes a first connection portion 1923-1 connecting the first region of the inner portion 1921 and the first coupling portion, and a first coupling portion 1923-1 connecting the second region of the inner portion 1921 and the first coupling portion. It may include a second connection part (1923-2) for connecting. That is, the connection portion 1923 of the upper elastic member 1920 may be provided with a two-strand connection portion to connect one inner portion 1921 and one coupling portion 1922.
  • the first and second connection parts 1923-1 and 1923-2 of the upper elastic member 1920 are symmetrical with respect to an imaginary straight line connecting the optical axis and the first corner area of the fixing part 1100. It can be.
  • the coupling portion 1922 of the upper elastic member 1920 may include a second coupling portion coupled to the second wire 1933.
  • the coupling portion 1922 of the upper elastic member 1920 may include a third coupling portion coupled to the third wire 1932.
  • the coupling portion 1922 of the upper elastic member 1920 may include a fourth coupling portion coupled to the fourth wire 1934.
  • the lens driving device 1010 may include a driving unit.
  • the driving unit may move the moving unit with respect to the fixed unit 1100.
  • the driving unit may include an AF driving unit 1400.
  • the driving unit may include an OIS driving unit (1500, 1600).
  • the driving unit may include a coil and a magnet.
  • the lens driving device 1010 may include an AF driving unit 1400.
  • the AF driving unit 1400 can move the AF moving unit 1200 in the optical axis direction.
  • the AF driving unit 1400 can move the AF holder 1210 in the optical axis direction.
  • the AF driving unit 1400 can move the AF holder 1210 in the optical axis direction through electromagnetic force.
  • the AF driving unit 1400 may include a coil and a magnet.
  • the AF holder 1210 and the OIS holder 1310 can move in the optical axis direction due to the interaction between the AF coil 1420 and the AF magnet 1410.
  • the AF coil 1420, AF holder 1210, and OIS holder 1310 can move in the optical axis direction as one unit.
  • the lens driving device 1010 may include an AF magnet 1410.
  • the AF driving unit 1400 may include an AF magnet 1410.
  • the AF magnet 1410 may be placed in the fixing unit 1100.
  • the AF magnet 1410 may be placed on the base 1110.
  • the AF magnet 1410 may be placed on the cover 1120.
  • the AF magnet 1410 may be placed on the side plate 1122 of the cover 1120.
  • the AF magnet 1410 may be placed on the outer surface of the base 1110.
  • the AF magnet 1410 may be placed on the inner surface of the base 1110.
  • the AF magnet 1410 may be fixed to the base 1110.
  • the AF magnet 1410 may be coupled to the base 1110.
  • the AF magnet 1410 may be attached to the base 1110 with adhesive.
  • the AF magnet 1410 may be placed within the cover 1120.
  • the AF magnet 1410 may interact with the AF coil 1420.
  • the AF magnet 1410 may electromagnetically interact with the AF coil 1420.
  • the AF magnet 1410 may be placed in a position corresponding to the AF coil 1420.
  • the AF magnet 1410 may face the AF coil 1420.
  • the AF magnet 1410 may face the AF coil 1420.
  • the AF magnet 1410 may overlap the AF coil 1420 in a direction perpendicular to the optical axis.
  • the AF magnet 1410 may be a 4-pole magnet.
  • the AF magnet 1410 may include a four-pole magnetized magnet.
  • the AF magnet 1410 may include a first magnet portion including an N pole and an S pole, and a second magnet portion including an N pole and an S pole.
  • the first magnet portion and the second magnet portion may be arranged in a vertical direction.
  • the first magnet portion and the second magnet portion may be spaced apart in the vertical direction, and a neutral portion may be disposed between the first magnet portion and the second magnet portion.
  • the lens driving device 1010 may include an AF coil 1420.
  • the AF driving unit 1400 may include an AF coil 1420.
  • the AF coil 1420 may interact with the AF magnet 1410.
  • the AF coil 1420 can move in the optical axis direction.
  • the AF coil 1420 can move in the optical axis direction through interaction with the AF magnet 1410.
  • the AF coil 1420 may face the AF magnet 1410.
  • the AF coil 1420 may face the AF magnet 1410.
  • the AF coil 1420 may face the AF magnet 1410.
  • the AF coil 1420 may be placed in a position corresponding to the AF magnet 1410.
  • the AF coil 1420 may overlap the AF magnet 1410 in a direction perpendicular to the optical axis.
  • the AF coil 1420 may be disposed on the inner substrate 1710.
  • the AF coil 1420 may be disposed in the first portion 1711 of the inner substrate 1710.
  • the AF coil 1420 may be placed in the AF
  • the AF magnet 1410 may be placed on the AF moving unit 1200 and the AF coil 1420 may be placed on the fixed unit 1100.
  • the AF magnet 1410 may be placed in the AF holder 1210.
  • the AF coil 1420 may be disposed on the base 1110 through a substrate.
  • the lens driving device 1010 may include an AF sensor 1430.
  • the AF driving unit 1400 may include an AF sensor 1430.
  • the AF sensor 1430 may be a Hall sensor.
  • the AF sensor 1430 may be disposed on the substrate 1740.
  • the AF sensor 1430 may be disposed in the first portion 1711 of the substrate 1740.
  • the AF sensor 1430 can detect the AF magnet 1410.
  • the AF sensor 1430 can detect the movement of the AF magnet 1410.
  • the movement amount or position of the AF magnet 1410 detected by the AF sensor 1430 may be used as feedback for autofocus driving.
  • the AF sensor 1430 may be a driver IC.
  • the driver IC may include a sensing unit.
  • the sensing unit may include a Hall element (Hall IC).
  • the driver IC may be electrically connected to the AF coil (1420).
  • the driver IC can supply current to the AF coil (1420).
  • the AF sensor 1430 may be disposed within the AF coil 1420.
  • the AF sensor 1430 may overlap the neutral portion of the AF magnet 1410 in a direction perpendicular to the optical axis.
  • the AF sensor 1430 may be disposed outside the AF coil 1420.
  • the lens driving device 1010 may include an OIS-x driving unit 1500.
  • the OIS-x driving unit 1500 can move the OIS moving unit 1300 in the x-axis direction perpendicular to the optical axis direction.
  • the OIS-x driver 1500 can move the OIS holder 1310 in the x-axis direction perpendicular to the optical axis.
  • the OIS-x driver 1500 can move the OIS holder 1310 in the x-axis direction perpendicular to the optical axis through electromagnetic force.
  • the OIS-x driving unit 1500 may include a coil and a magnet.
  • the OIS holder 1310 can move in the x-axis direction perpendicular to the optical axis direction due to the interaction between the OIS-x coil 1520 and the OIS-x magnet 1510.
  • the OIS-x coil (1520) and the OIS holder (1310) can move in the x-axis direction as one unit.
  • the lens driving device 1010 may include an OIS-x magnet 1510.
  • the OIS-x driving unit 1500 may include an OIS-x magnet 1510.
  • the OIS-x magnet 1510 may be placed on the fixing part 1100.
  • OIS-x magnet 1510 may be placed on the base 1110.
  • the OIS-x magnet 1510 may be placed on the outer surface of the base 1110.
  • the OIS-x magnet 1510 may be placed on the inner side of the base 1110.
  • OIS-x magnet 1510 can be fixed to the base 1110.
  • OIS-x magnet 1510 may be coupled to the base 1110.
  • the OIS-x magnet 1510 may be attached to the base 1110 with adhesive.
  • OIS-x magnet 1510 may be placed within the cover 1120.
  • OIS-x magnet 1510 may interact with OIS-x coil 1520.
  • the OIS-x magnet 1510 may electromagnetically interact with the OIS-x coil 1520.
  • the OIS-x magnet 1510 may be placed in a position corresponding to the OIS-x coil 1520.
  • the OIS-x magnet (1510) can face the OIS-x coil (1520).
  • the OIS-x magnet (1510) may face the OIS-x coil (1520).
  • the OIS-x magnet 1510 may overlap the OIS-x coil 1520 in a direction perpendicular to the optical axis.
  • the second magnet 1610 may be a two-pole magnet.
  • the OIS-x magnet 1510 may include a two-pole magnetized magnet.
  • the OIS-x magnet 1510 may include an N pole and an S pole.
  • the inner surface of the OIS-x magnet (1510) may be the N pole and the outer surface may be the S pole.
  • the lens driving device 1010 may include an OIS-x coil 1520.
  • the OIS-x driving unit 1500 may include an OIS-x coil 1520.
  • OIS-x coil 1520 may interact with OIS-x magnet 1510.
  • the OIS-x coil 1520 can move in the x-axis direction perpendicular to the optical axis.
  • the OIS-x coil (1520) can move in the x-axis direction through interaction with the OIS-x magnet (1510).
  • the OIS-x coil (1520) may face the OIS-x magnet (1510).
  • the OIS-x coil (1520) can face the OIS-x magnet (1510).
  • the OIS-x coil (1520) may be placed in a position corresponding to the OIS-x magnet (1510).
  • the OIS-x coil 1520 may overlap the OIS-x magnet 1510 in a direction perpendicular to the optical axis.
  • the OIS-x coil 1520 may be disposed on the inner substrate 1710.
  • the OIS-x coil 1520 may be disposed in the second portion 1713 of the inner substrate 1710.
  • the OIS-x coil 1520 may be placed in the OIS holder 1310.
  • the OIS-x coil 1520 may be placed on the OIS moving unit 1300.
  • the lens driving device 1010 may include an OIS-x sensor 1530.
  • the OIS-x driving unit 1500 may include an OIS-x sensor 1530.
  • the OIS-x sensor 1530 may be placed on the inner substrate 1710.
  • the OIS-x sensor 1530 may be disposed in the second portion 1713 of the inner substrate 1710.
  • the OIS-x sensor 1530 may include a Hall sensor.
  • the OIS-x sensor (1530) can detect the OIS-x magnet (1510).
  • the OIS-x sensor (1530) can detect the magnetic force of the OIS-x magnet (1510).
  • the OIS-x sensor 1530 may be placed within the OIS-x coil 1520.
  • the OIS-x sensor 1530 may overlap the OIS-x coil 1520 in the optical axis direction.
  • the OIS-x sensor 1530 may face the OIS-x magnet 1510.
  • the OIS-x sensor 1530 may be placed in a position corresponding to the OIS-x magnet 1510.
  • the OIS-x sensor 1530 can detect the movement of the OIS-x magnet 1510.
  • the movement amount or position of the OIS-x magnet 1510 detected by the OIS-x sensor 1530 may be used as feedback for image stabilization compensation drive in the x-axis direction.
  • the lens driving device 1010 may include an OIS-y driving unit 1600.
  • the OIS-y driving unit 1600 can move the OIS moving unit 1300 in the y-axis direction perpendicular to the optical axis direction and the x-axis direction.
  • the OIS-y driving unit 1600 can move the OIS holder 1310 in the y-axis direction perpendicular to both the optical axis and the x-axis direction.
  • the OIS-y driver 1600 can move the OIS holder 1310 in the y-axis direction perpendicular to both the optical axis and the x-axis direction through electromagnetic force.
  • the OIS-y driving unit 1600 may include a coil and a magnet.
  • the OIS holder 1310 can be moved in the y-axis direction perpendicular to both the optical axis direction and the x-axis direction due to the interaction of the OIS-y coil 1620 and the OIS-y magnet 1610. there is.
  • the OIS-y coil 1620 and the OIS holder 1310 can move in the y-axis direction as one unit.
  • the lens driving device 1010 may include an OIS-y magnet 1610.
  • the OIS-y driving unit 1600 may include an OIS-y magnet 1610.
  • the OIS-y magnet 1610 may be placed in the fixing unit 1100.
  • the OIS-y magnet 1610 may be placed on the base 1110.
  • the OIS-y magnet 1610 may be placed on the outer surface of the base 1110.
  • the OIS-y magnet 1610 may be placed on the inner surface of the base 1110.
  • OIS-y magnet 1610 may be fixed to the base 1110.
  • OIS-y magnet 1610 may be coupled to the base 1110.
  • the OIS-y magnet 1610 may be attached to the base 1110 with adhesive.
  • the OIS-y magnet 1610 may be placed within the cover 1120.
  • OIS-y magnet 1610 may interact with OIS-y coil 1620.
  • the OIS-y magnet 1610 may electromagnetically interact with the OIS-y coil 1620.
  • the OIS-y magnet 1610 may be placed in a position corresponding to the OIS-y coil 1620.
  • the OIS-y magnet (1610) may face the OIS-y coil (1620).
  • the OIS-y magnet 1610 may face the OIS-y coil 1620.
  • the OIS-y magnet 1610 may overlap the OIS-y coil 1620 in a direction perpendicular to the optical axis.
  • the OIS-y magnet 1610 may be a two-pole magnet.
  • the OIS-y magnet 1610 may include a two-pole magnetized magnet.
  • the OIS-y magnet 1610 may include an N pole and an S pole.
  • the inner surface of the OIS-y magnet 1610 may be an N pole and the outer surface may be an S pole.
  • the lens driving device 1010 may include an OIS-y coil 1620.
  • the OIS-y driving unit 1600 may include an OIS-y coil 1620.
  • OIS-y coil 1620 may interact with OIS-y magnet 1610.
  • the OIS-y coil 1620 may be placed on the opposite side of the AF coil 1420 based on the optical axis.
  • the OIS-y coil 1620 can move in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • the OIS-y coil (1620) can move in the y-axis direction through interaction with the OIS-y magnet (1610).
  • the OIS-y coil 1620 may face the OIS-y magnet 1610.
  • the OIS-y coil (1620) may face the OIS-y magnet (1610).
  • the OIS-y coil 1620 may be placed in a position corresponding to the OIS-y magnet 1610.
  • the OIS-y coil 1620 may overlap the OIS-y magnet 1610 in a direction perpendicular to the optical axis.
  • the OIS-y coil 1620 may be disposed on the inner substrate 1710.
  • the OIS-y coil 1620 may be disposed in the third portion 1712 of the inner substrate 1710.
  • the OIS-y coil 1620 may be placed in the OIS holder 1310.
  • the OIS-y coil 1620 may be disposed on the OIS moving unit 1300.
  • the lens driving device 1010 may include an OIS-y sensor 1630.
  • the OIS-y driving unit 1600 may include an OIS-y sensor 1630.
  • the OIS-y sensor 1630 may be disposed on the inner substrate 1710.
  • the OIS-y sensor 1630 may be disposed in the third portion 1712 of the inner substrate 1710.
  • the OIS-y sensor 1630 may include a Hall sensor.
  • the OIS-y sensor (1630) can detect the OIS-y magnet (1610).
  • the OIS-y sensor 1630 can detect the magnetic force of the OIS-y magnet 1610.
  • the OIS-y sensor 1630 may be disposed within the OIS-y coil 1620.
  • the OIS-y sensor 1630 may overlap with the OIS-y coil 1620 in the optical axis direction.
  • the OIS-y sensor 1630 may face the OIS-y magnet 1610.
  • the OIS-y sensor 1630 may be placed in a position corresponding to the OIS-y magnet 1610.
  • the OIS-y sensor 1630 can detect the movement of the OIS-y magnet 1610.
  • the movement amount or position of the OIS-y magnet 1610 detected by the OIS-y sensor 1630 can be used for feedback of hand shake correction drive in the y-axis direction.
  • the lens driving device 1010 may include a substrate.
  • the substrate may include a flexible substrate.
  • the substrate may be electrically connected to the coil.
  • the substrate may be electrically connected to the sensor.
  • the substrate may be formed ductile.
  • the substrate may be flexible.
  • the substrate may be a circuit board.
  • the substrate may be a printed circuit board.
  • the lens driving device 1010 may include an inner substrate 1710.
  • the inner substrate 1710 may be electrically connected to the coils 1420, 1520, and 1620.
  • the inner substrate 1710 may be electrically connected to the sensors 1430, 1530, and 1630.
  • the inner substrate 1710 can connect the AF holder 1210 and the OIS holder 1310.
  • the inner substrate 1710 can elastically connect the AF holder 1210 and the OIS holder 1310.
  • the inner substrate 1710 can support the OIS holder 1310 to be movable with respect to the AF holder 1210.
  • the inner substrate 1710 can guide the OIS holder 1310 to move in a direction perpendicular to the optical axis with respect to the AF holder 1210.
  • the inner substrate 1710 may include a flexible substrate.
  • the inner substrate 1710 may include a flexible printed circuit board (FPCB).
  • the inner substrate 1710 may include an elastic portion.
  • the inner substrate 1710 may include an elastic member.
  • the inner substrate 1710 may include a first portion 1711.
  • the first part 1711 may be disposed on the AF moving unit 1200.
  • the first part 1711 may be placed in the AF holder 1210.
  • the AF coil 1420 may be disposed in the first portion 1711 of the inner substrate 1710.
  • the AF sensor 1430 may be disposed in the first portion 1711 of the inner substrate 1710.
  • the yoke 1830 may be disposed on the first portion 1711 of the inner substrate 1710.
  • the inner substrate 1710 may include a second portion 1713.
  • the second part 1713 may be placed in the OIS holder 1310.
  • the second part 1713 may be disposed on the second side of the OIS holder 1310.
  • the OIS-x coil 1520 may be disposed in the second portion 1713 of the inner substrate 1710.
  • the OIS-x sensor 1530 may be disposed in the second portion 1713 of the inner substrate 1710.
  • the inner substrate 1710 may include a third portion 1712.
  • the third part 1712 may be placed in the OIS holder 1310.
  • the third portion 1712 may be disposed on the third side of the OIS holder 1310.
  • the OIS-y coil 1620 may be disposed in the third portion 1712 of the inner substrate 1710.
  • the OIS-y sensor 1630 may be disposed in the third portion 1712 of the inner substrate 1710.
  • the inner substrate 1710 may include a fourth portion 1714.
  • the fourth part 1714 may be disposed between the OIS holder 1310 and the AF holder 1210.
  • the fourth portion 1714 may be disposed between the fourth side of the OIS holder 1310 and the AF holder 1210.
  • 'first to fourth sides' of the OIS holder 1310 are only used to distinguish the sides from each other, so they may be called differently as needed.
  • the 'second side' may be referred to as the 'first side' and the 'third side' may be referred to as the 'second side'.
  • the inner substrate 1710 may include a terminal 1714a.
  • the fourth portion 1714 of the inner substrate 1710 may include a terminal 1714a.
  • Terminal 1714a may be electrically connected to coils 1420, 1520, and 1620.
  • Terminal 1714a may be electrically connected to sensors 1430, 1530, and 1630.
  • the inner substrate 1710 may include a hole 1714b.
  • the fourth portion 1714 of the inner substrate 1710 may include a hole 1714b.
  • the hole 1714b may be formed through the fourth portion 1714 of the inner substrate 1710.
  • the hole 1714b may be placed in a position corresponding to the lateral stopper of the OIS holder 1310.
  • the inner substrate 1710 may not interfere with the side stopper of the OIS holder 1310 due to the hole 1714b.
  • the lens driving device 1010 may include an outer substrate 1720.
  • the outer substrate 1720 may be placed on the base 1110.
  • the outer substrate 1720 may be electrically connected to the coils 1420, 1520, and 1620.
  • the outer substrate 1720 may be electrically connected to the sensors 1430, 1530, and 1630.
  • the outer substrate 1720 can connect the AF holder 1210 and the base 1110.
  • the outer substrate 1720 can elastically connect the AF holder 1210 and the base 1110.
  • the outer substrate 1720 can support the AF holder 1210 to be movable with respect to the base 1110.
  • the outer substrate 1720 can guide the AF holder 1210 to move in the optical axis direction with respect to the base 1110.
  • the outer substrate 1720 may include a flexible substrate.
  • the outer substrate 1720 may include a flexible printed circuit board (FPCB).
  • the outer substrate 1720 may include an elastic portion.
  • the outer substrate 1720 may include an elastic member.
  • the outer substrate 1720 may include a body portion 1721.
  • the body portion 1721 may be disposed on the fixing portion 1100.
  • the body portion 1721 may be disposed on the base 1110.
  • the body portion 1721 may be formed to surround the side of the base 1110.
  • the body portion 1721 may be disposed on three sides of the base 1110.
  • the body portion 1721 may include two terminal portions.
  • the two terminal units may be disposed opposite to each other with respect to the optical axis.
  • the terminal portion may include a terminal 1721a.
  • the outer substrate 1720 may include a terminal 1721a.
  • the body portion 1721 of the outer substrate 1720 may include a terminal 1721a.
  • Terminal 1721a may be electrically connected to terminal 1722a.
  • the terminal 1721a may be disposed at the bottom of the base 1110.
  • Terminal 1721a may be coupled to the printed circuit board 1050.
  • the terminal 1721a may be coupled to the terminal of the printed circuit board 1050 through solder.
  • the terminal 1721a may be coupled to the terminal of the printed circuit board 1050 through a conductive member.
  • Terminal 1721a may be connected to a terminal of the printed circuit board 1050.
  • the terminal 1721a may be electrically connected to a terminal of the printed circuit board 1050.
  • the outer substrate 1720 may include an extension portion 1722.
  • the extension part 1722 may be a 'leg part'.
  • the extension portion 1722 may extend from the body portion 1721. At least a portion of the extension part 1722 can move together with the AF moving part 1200. At least a portion of the extension portion 1722 can move together with the AF holder 1210.
  • the extension portion may extend from the body portion 1721.
  • the extension portion 1722 may include a plurality of leg portions.
  • the extension part 1722 may include a first leg part and a second leg part. The second leg portion may be disposed below the first leg portion.
  • the outer substrate 1720 may include a terminal 1722a.
  • the extension portion 1722 of the outer substrate 1720 may include a terminal 1722a.
  • the terminal 1722a may be coupled to the terminal 1714a of the inner substrate 1710.
  • the terminal 1722a may be connected to the terminal 1714a of the inner substrate 1710 through solder.
  • the terminal 1722a may be coupled to the terminal 1714a of the inner substrate 1710 through a conductive member.
  • the terminal 1722a may be connected to the terminal 1714a of the inner substrate 1710.
  • the terminal 1722a may be electrically connected to the terminal 1714a of the inner substrate 1710.
  • the lens driving device 1010 may include a guide member.
  • the guide member may include a ball.
  • the guide member may include a pin.
  • the guide member may include a cylindrical member. The guide member may guide the movement of the moving part with respect to the fixed part 1100 in a specific direction.
  • the lens driving device 1010 may include an AF guide ball 1810.
  • the AF guide ball 1810 can guide the movement of the AF holder 1210 relative to the base 1110 in the optical axis direction.
  • the AF guide ball 1810 may be placed between the base 1110 and the AF holder 1210.
  • the AF guide ball 1810 may be disposed between the base 1110 and the AF holder 1210 in the x-axis direction.
  • the AF guide ball 1810 may be placed in the groove 1111a of the base 1110.
  • the AF guide ball 1810 may be placed in the first groove 1214 of the AF holder 1210.
  • the AF guide ball 1810 is a 1-1 ball that contacts the base 1110 and the AF holder 1210 at 4 points, and a 1-2 ball that contacts the base 1110 and the AF holder 1210 at 3 points. Can contain balls.
  • the AF guide ball 1810 may have a spherical shape.
  • the AF guide ball 1810 may be formed of metal. Grease may be applied to the surface of the AF guide ball 1810.
  • the AF guide ball 1810 may include a plurality of balls.
  • the AF guide ball 1810 may include 8 balls. Four AF guide balls 1810 may be placed on one side of the AF magnet 1410, and the remaining four AF guide balls 1810 may be placed on the other side of the AF magnet 1410.
  • the lens driving device 1010 may include an OIS guide ball 1820.
  • the OIS guide ball 1820 can guide the movement of the OIS holder 1310 relative to the AF holder 1210 in a direction perpendicular to the optical axis.
  • the OIS guide ball 1820 may be placed between the AF holder 1210 and the OIS holder 1310.
  • the OIS guide ball 1820 may be disposed between the AF holder 1210 and the OIS holder 1310 in the optical axis direction.
  • the OIS guide ball 1820 may overlap the AF moving unit 1200 and the OIS moving unit 1300 in the optical axis direction.
  • the OIS guide ball 1820 may be disposed between the AF moving unit 1200 and the OIS moving unit 1300 in the optical axis direction.
  • the OIS guide ball 1820 may be placed between the AF holder 1210 and the OIS holder 1310.
  • the OIS guide ball 1820 may be pressed between the AF holder 1210 and the OIS holder 1310 by the pressing force of the elastic member.
  • the OIS guide ball 1820 can guide the OIS holder 1310 to move in the x-axis direction and y-axis direction perpendicular to the optical axis direction with respect to the AF holder 1210. That is, the OIS guide ball 1820 can guide the OIS holder 1310 to move in the x-axis direction and the y-axis direction. In other words, the OIS guide ball 1820 can guide movement in both the x-axis direction and the y-axis direction.
  • the present invention is provided with the ball guiding the x-axis direction and the ball guiding the y-axis direction as one body.
  • the size of the lens driving device 1010 can be minimized.
  • the height of the lens driving device 1010 in the optical axis direction may be reduced. Through this, the height protruding from the smartphone, that is, shoulder height, can be minimized.
  • the OIS guide ball 1820 may include a plurality of balls.
  • the OIS guide ball 1820 may include four balls.
  • the OIS guide ball 1820 When viewed from above, the OIS guide ball 1820 may be disposed within a space formed through the inner portion 1921, the coupling portion 1922, and the connecting portion 1923 of the upper elastic member 1920.
  • the inner portion 1921, the coupling portion 1922, and the connecting portion 1923 of the upper elastic member 1920 may form a closed curve.
  • the OIS guide ball 1820 may be placed in the space within the closed curve formed by the inner portion 1921, the coupling portion 1922, and the connecting portion 1923 of the upper elastic member 1920.
  • the lens driving device 1010 may include a yoke 1830.
  • the yoke 1830 may be disposed on the first portion 1711 of the inner substrate 1710.
  • An attractive force may be generated between the yoke (1830) and the AF magnet (1410).
  • the yoke 1830 may be placed in a position corresponding to the AF magnet 1410.
  • the yoke 1830 may be formed of metal.
  • the AF guide ball 1810 may be pressed between the base 1110 and the AF holder 1210 by the attractive force between the yoke 1830 and the AF magnet 1410. That is, the contact state of the AF guide ball 1810 with the base 1110 and the AF holder 1210 can be maintained by the attractive force between the yoke 1830 and the AF magnet 1410.
  • the lens driving device 1010 may include an elastic member.
  • the elastic member may be formed to press the OIS guide ball 1820.
  • the elastic member can be formed to guide both the OIS-x-axis drive and the OIS-y-axis drive using only the OIS guide ball 1820.
  • the elastic member may include a leaf spring.
  • the elastic member may include a wire.
  • the elastic member may have elasticity.
  • the elastic member may be formed of metal.
  • the lens driving device 1010 may include a lower elastic member 1910.
  • the lower elastic member 1910 may be a leaf spring.
  • the lower elastic member 1910 may have elasticity.
  • the lower elastic member 1910 may be disposed on the lower surface of the AF holder 1210.
  • the lower elastic member 1910 may be disposed in the AF holder 1210.
  • the lower elastic member 1910 may be disposed below the AF holder 1210.
  • the lower elastic member 1910 may be disposed below the AF holder 1210.
  • the lower elastic member 1910 may be disposed on the lower surface of the body portion 1721.
  • the lower elastic member 1910 may be coupled to the lower surface of the body portion 1721.
  • the lower elastic member 1910 may be disposed perpendicular to the optical axis.
  • the lower elastic member 1910 may include a plurality of elastic units spaced apart from each other.
  • the lower elastic member 1910 may include first to fourth wires 1931, 1932, 1933, and 1934 and corresponding first to fourth elastic units.
  • the first to fourth elastic units may be spaced apart from each other.
  • the lower elastic member 1910 may include an outer portion 1911.
  • the outer portion 1911 may be combined with the AF moving portion 1200.
  • the lower elastic member 1910 may include a coupling portion 1912.
  • the coupling portion 1912 may be coupled to the wire 1930.
  • the lower elastic member 1910 may include a connection portion 1913.
  • the connection portion 1913 may connect the outer portion 1911 and the coupling portion 1912.
  • the coupling portion 1912 of the lower elastic member 1910 may be disposed lower than the outer portion 1911 of the lower elastic member 1910.
  • one of the outer part 1911, the coupling part 1912, and the connecting part 1913 of the lower elastic member 1910 is referred to as the “first part,” the other is referred to as the “second part,” and the other is referred to as the “third part.” It can be called “part.”
  • one of the outer portion 1911, the coupling portion 1912, and the connecting portion 1913 of the lower elastic member 1910 is referred to as the “first region,” the other is referred to as the “second region,” and the other is referred to as the “third region.” It can be called “area.”
  • the lens driving device 1010 may include an upper elastic member 1920.
  • the upper elastic member 1920 may be a leaf spring.
  • the upper elastic member 1920 may have elasticity.
  • the upper elastic member 1920 may be disposed on the upper surface of the OIS holder 1310.
  • the upper elastic member 1920 may be disposed on the OIS holder 1310.
  • the upper elastic member 1920 may be disposed at the top of the OIS holder 1310.
  • the upper elastic member 1920 may be disposed on the OIS holder 1310.
  • the upper elastic member 1920 may be disposed perpendicular to the optical axis.
  • the upper elastic member 1920 may be formed integrally.
  • the upper elastic member 1920 may include an inner portion 1921.
  • the inner part 1921 may be combined with the OIS moving part 1300.
  • the upper elastic member 1920 may include a coupling portion 1922.
  • the coupling portion 1922 may be coupled to the wire 1930.
  • the upper elastic member 1920 may include a connection portion 1923.
  • the connection portion 1923 may connect the inner portion 1921 and the coupling portion 1922.
  • the coupling portion 1922 of the upper elastic member 1920 may be disposed higher than the inner portion 1921 of the upper elastic member 1920.
  • one of the inner part 1921, the coupling part 1922, and the connecting part 1923 of the upper elastic member 1920 is referred to as the “first part,” the other is referred to as the “second part,” and the other is referred to as the “third part.” It can be called “part.”
  • one of the inner portion 1921, the coupling portion 1922, and the connecting portion 1923 of the upper elastic member 1920 is referred to as the “first region,” the other is referred to as the “second region,” and the other is referred to as the “third region.” It can be called “area.”
  • the lower elastic member 1910 may connect the first region of the wire 1930 and the AF moving unit 1200.
  • the upper elastic member 1920 may connect the second region of the wire 1930 and the OIS moving unit 1300.
  • the second area of the wire 1930 may be placed higher than the first area. That is, the first area of the wire 1930 may be placed lower than the second area.
  • the distance between the first region (a) and the second region (d) of the wire 1930 is the outer portion 1911 (b) of the lower elastic member 1910. It may be longer than the distance between and the inner portion 1921(c) of the upper elastic member 1920.
  • the first region (a) of the wire 1930 may be disposed lower than the outer portion 1911 (b) of the lower elastic member 1910.
  • a first gap ga may be formed in the optical axis direction between the first area (a) of the wire 1930 and the outer portion 1911 (b) of the lower elastic member 1910.
  • the second region (d) of the wire 1930 may be placed higher than the inner portion 1921 (c) of the upper elastic member 1920.
  • a second gap (gb) may be formed in the optical axis direction between the second region (d) of the wire 1930 and the inner portion 1921 (c) of the upper elastic member 1920.
  • the OIS guide ball 1820 can be pressed between the AF moving part 1200 and the OIS moving part 1300 by the lower elastic member 1910, upper elastic member 1920, and wire 1930. there is. That is, through this structure, the OIS guide ball 1820 can be pressed between the AF holder 1210 and the OIS holder 1310 by the lower elastic member 1910, upper elastic member 1920, and wire 1930. there is.
  • the distance between the first region (a) and the second region (d) of the wire 1930 is the distance between the outer portion 1911 (b) of the lower elastic member 1910 and the upper elastic member 1920. It may be equal to the distance between the inner portion 1921 (c) of .
  • the first region (a) of the wire 1930 may be disposed at the same height as the outer portion 1911 (b) of the lower elastic member 1910.
  • the second region (d) of the wire 1930 may be disposed at the same height as the inner portion 1921 (c) of the upper elastic member 1920.
  • the lens driving device 1010 may include a wire 1930.
  • the wire 1930 may be a ‘side elastic member’.
  • Wire 1930 may be a wire spring.
  • Wire 1930 may be a suspension wire.
  • the wire 1930 may have elasticity.
  • the wire 1930 may connect the upper elastic member 1920 and the lower elastic member 1910.
  • the wire 1930 may elastically connect the upper elastic member 1920 and the lower elastic member 1910.
  • the wire 1930 may be arranged parallel to the optical axis.
  • the wire 1930 may be arranged parallel to the optical axis direction.
  • the wire 1930 may include a plurality of wires.
  • Wire 1930 may include four wires.
  • the wire 1930 may include first to fourth wires 1931, 1932, 1933, and 1934.
  • the wire 1930 may include first to fourth wires 1931, 1932, 1933, and 1934 respectively disposed in the first to fourth corner areas of the fixing part 1100.
  • Figures 62 to 64 are diagrams for explaining autofocus driving of the lens driving device according to the second embodiment of the present invention.
  • Figure 62 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the AF coil.
  • Figure 63 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the AF coil.
  • Figure 64 is a cross-sectional view showing the moving part moving downward in the optical axis direction when a reverse current is applied to the AF coil.
  • the moving part may be placed at a position spaced apart from both the top plate 1121 and the base 1110 of the cover 1120 in an initial position where no current is applied to the AF coil 1420.
  • the moving unit may be the AF moving unit 1200.
  • the moving unit may include an AF moving unit 1200 and an OIS moving unit 1300.
  • the AF coil 1420 When a forward current is applied to the AF coil 1420, the AF coil 1420 can move upward in the optical axis direction due to electromagnetic interaction between the AF coil 1420 and the AF magnet 1410 (see A in Figure 63). At this time, the AF holder 1210 along with the AF coil 1420 may move upward in the optical axis direction. Furthermore, the OIS holder 1310 and the lens along with the AF holder 1210 can move upward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the AF coil 1420 When a reverse current is applied to the AF coil 1420, the AF coil 1420 can move downward in the optical axis direction due to electromagnetic interaction between the AF coil 1420 and the AF magnet 1410 (see B in FIG. 64). At this time, the AF holder 1210 along with the AF coil 1420 may move downward in the optical axis direction. Furthermore, the OIS holder 1310 and the lens along with the AF holder 1210 can move downward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the AF sensor 1430 moves along with the AF coil 1420 and detects the strength of the magnetic field of the AF magnet 1410 to detect the amount of movement or position of the lens in the optical axis direction. You can.
  • the movement amount or position of the lens in the optical axis direction detected by the AF sensor 1430 can be used for autofocus feedback control.
  • optical image stabilization (OIS) operation of the lens driving device according to the second embodiment of the present invention will be described with reference to the drawings.
  • Figures 65 to 67 are diagrams for explaining the hand shake correction operation of the lens driving device according to the second embodiment of the present invention.
  • Figure 65 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the OIS-x coil and OIS-y coil.
  • Figure 66 is a cross-sectional view showing the OIS moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the OIS-x coil.
  • Figure 67 is a cross-sectional view showing how current is applied to the OIS-y coil and the OIS moving part moves in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • the moving part can be placed in an initial position where no current is applied to the OIS-x coil 1520 and the OIS-y coil 1620.
  • the moving part may be the OIS moving part 1300.
  • the OIS-x coil (1520) moves in the x-axis direction perpendicular to the optical axis due to electromagnetic interaction between the OIS-x coil (1520) and the OIS-x magnet (1510). It can be moved (see a in Figure 66). At this time, the OIS holder 1310 along with the OIS-x coil 1520 can move in the x-axis direction. Furthermore, the lens can move in the x-axis direction together with the OIS holder 1310. More specifically, when a forward current is applied to the OIS-x coil 1520, the OIS-x coil 1520, the OIS holder 1310, and the lens may move in one direction on the x-axis. Additionally, when a reverse current is applied to the OIS-x coil 1520, the OIS-x coil 1520, the OIS holder 1310, and the lens may move in other directions on the x-axis.
  • the OIS-y coil (1620) moves in the y-axis direction perpendicular to the optical axis due to electromagnetic interaction between the OIS-y coil (1620) and the OIS-y magnet (1610). It can be moved (see b in Figure 67).
  • the OIS holder 1310 along with the OIS-y coil 1620 can move in the y-axis direction.
  • the lens can move in the y-axis direction together with the OIS holder 1310. More specifically, when a forward current is applied to the OIS-y coil 1620, the OIS-y coil 1620, the OIS holder 1310, and the lens can move in one direction on the y-axis. Additionally, when a reverse current is applied to the OIS-y coil 1620, the OIS-y coil 1620, the OIS holder 1310, and the lens may move in other directions on the y-axis.
  • the OIS-x sensor 1530 can detect the amount of movement or position of the OIS-x coil 1520 by detecting the strength of the magnetic field of the OIS-x magnet 1510.
  • the movement amount or position detected by the OIS-x sensor 1530 can be used for hand shake correction feedback control in the x-axis direction.
  • the OIS-y sensor 1630 can detect the amount of movement or position of the OIS-y coil 1620 by detecting the strength of the magnetic field of the OIS-y magnet 1610.
  • the amount of movement or position detected by the OIS-y sensor 1630 can be used for y-axis direction image stabilization feedback control.
  • Figure 68 is an exploded perspective view of a camera device according to a second embodiment of the present invention.
  • the camera device 1010A may include a camera module.
  • the camera device 1010A may include a lens module 1020.
  • Lens module 1020 may include at least one lens. The lens may be placed in a position corresponding to the image sensor 1060.
  • the lens module 1020 may include a lens and a barrel.
  • the lens module 1020 may be coupled to the OIS holder 1310 of the lens driving device 1010.
  • the lens module 1020 may be coupled to the OIS holder 1310 by screwing and/or adhesive.
  • the lens module 1020 can be moved integrally with the OIS holder 1310.
  • Camera device 1010A may include a filter 1030.
  • the filter 1030 may serve to block light in a specific frequency band from light passing through the lens module 1020 from entering the image sensor 1060.
  • the filter 1030 may be arranged parallel to the x-y plane.
  • the filter 1030 may be disposed between the lens module 1020 and the image sensor 1060.
  • Filter 1030 may be placed on sensor base 1040.
  • filter 1030 may be disposed on base 1110.
  • Filter 1030 may include an infrared filter. The infrared filter may block light in the infrared region from being incident on the image sensor 1060.
  • Camera device 1010A may include a sensor base 1040.
  • the sensor base 1040 may be disposed between the lens driving device 1010 and the printed circuit board 1050.
  • the sensor base 1040 may include a protrusion 1041 on which the filter 1030 is disposed.
  • An opening may be formed in the portion of the sensor base 1040 where the filter 1030 is disposed to allow light passing through the filter 1030 to enter the image sensor 1060.
  • the adhesive member may couple or adhere the base 1310 of the lens driving device 1010 to the sensor base 1040.
  • the adhesive member may additionally serve to prevent foreign substances from entering the interior of the lens driving device 1010.
  • the adhesive member may include one or more of epoxy, thermosetting adhesive, and ultraviolet curing adhesive.
  • the camera device 1010A may include a printed circuit board (PCB) 1050.
  • the printed circuit board 1050 may be a board or circuit board.
  • a lens driving device 1010 may be disposed on the printed circuit board 1050.
  • a sensor base 1040 may be disposed between the printed circuit board 1050 and the lens driving device 1010.
  • the printed circuit board 1050 may be electrically connected to the lens driving device 1010.
  • An image sensor 1060 may be disposed on the printed circuit board 1050.
  • the printed circuit board 1050 may be equipped with various circuits, elements, and control units to convert the image formed on the image sensor 1060 into an electrical signal and transmit it to an external device.
  • the camera device 1010A may include an image sensor 1060.
  • the image sensor 1060 may be configured to form an image by entering light that has passed through a lens and a filter 1030.
  • the image sensor 1060 may be mounted on a printed circuit board 1050.
  • the image sensor 1060 may be electrically connected to the printed circuit board 1050.
  • the image sensor 1060 may be coupled to the printed circuit board 1050 using surface mounting technology (SMT).
  • SMT surface mounting technology
  • the image sensor 1060 may be coupled to the printed circuit board 1050 using flip chip technology.
  • the image sensor 1060 may be arranged so that its optical axis coincides with that of the lens. That is, the optical axis of the image sensor 1060 and the optical axis of the lens may be aligned.
  • the image sensor 1060 may convert light irradiated to an effective image area of the image sensor 1060 into an electrical signal.
  • the image sensor 1060 may be one of a charge coupled device (CCD), a metal oxide semiconductor (MOS), a CPD, and a CID.
  • CCD charge coupled device
  • MOS metal oxide semiconductor
  • CPD CPD
  • CID CID
  • Camera device 1010A may include a motion sensor 1070.
  • the motion sensor 1070 may be mounted on a printed circuit board 1050.
  • the motion sensor 1070 may be electrically connected to the control unit 1080 through a circuit pattern provided on the printed circuit board 1050.
  • the motion sensor 1070 may output rotational angular velocity information resulting from the movement of the camera device 1010A.
  • the motion sensor 1070 may include a 2-axis or 3-axis gyro sensor, or an angular velocity sensor.
  • the camera device 1010A may include a control unit 1080.
  • the control unit 1080 may be placed on the printed circuit board 1050.
  • the control unit 1080 may be electrically connected to the coil 1330 of the lens driving device 1010.
  • the control unit 1080 can individually control the direction, intensity, and amplitude of the current supplied to the coil 1330.
  • the control unit 1080 may control the lens driving device 1010 to perform an autofocus function and/or an image stabilization function. Furthermore, the control unit 1080 may perform autofocus feedback control and/or camera shake correction feedback control for the lens driving device 1010.
  • Camera device 1010A may include a connector 1090.
  • the connector 1090 may be electrically connected to the printed circuit board 1050.
  • the connector 1090 may include a port for electrical connection to an external device.
  • Figure 69 is a perspective view of an optical device according to a second embodiment of the present invention
  • Figure 70 is a perspective view of an optical device according to a modification.
  • the optical device 1001 is used in cell phones, mobile phones, portable terminals, mobile terminals, smart phones, smart pads, portable smart devices, digital cameras, laptop computers, digital broadcasting terminals, and PDAs (Personal Digital Assistants). , PMP (Portable Multimedia Player), and navigation may be included.
  • the optical device 1001 may include any device for taking images or photos.
  • the optical device 1001 may include a body 1020.
  • the optical device 1001 may include a camera device 1010A.
  • the camera device 1010A may be placed in the main body 1020.
  • the camera device 1010A can photograph a subject.
  • the optical device 1001 may include a display.
  • the display may be placed on the main body 1020.
  • the display may output one or more of a video or image captured by the camera device 1010A.
  • the display may be placed on the first side of the main body 1020.
  • the camera device 1010A may be disposed on one or more of the first side of the main body 1020 and the second side opposite the first side.
  • the camera device 1010A may have triple cameras arranged vertically.
  • the camera device 1010A-1 may have triple cameras arranged horizontally.
  • Figure 71 is a conceptual diagram of a lens driving device according to a third embodiment of the present invention
  • Figure 72 is a perspective view of a lens driving device according to a third embodiment of the present invention
  • Figure 73 is a cross-sectional view viewed from A-A of Figure 72
  • FIG. 74 is a cross-sectional view viewed from B-B in FIG. 72
  • FIG. 75 is a cross-sectional view viewed from C-C of FIG. 72
  • FIG. 76 is an enlarged view of a portion of FIG. 75
  • FIG. 77 is an enlarged view of a portion of FIG.
  • Figure 78 is an exploded perspective view of the lens driving device according to the third embodiment of the present invention
  • Figure 79 is a lens according to the third embodiment of the present invention.
  • Figure 80 is an enlarged view of a portion of Figure 79
  • Figure 81 is a perspective view of Figure 80 seen from another direction
  • Figure 82 is a third embodiment of the present invention.
  • Figure 83 is a perspective view showing the moving part and related structures of the lens driving device according to the third embodiment of the present invention
  • Figure 84 is a perspective view showing Figure 83.
  • Figure 85 is a cross-sectional perspective view showing the AF guide ball and related configuration of the lens driving device according to the third embodiment of the present invention
  • Figure 86 is a perspective view of Figure 83 seen from another direction
  • Figure 87 is a perspective view with the cover removed in Figure 86
  • Figure 88 is a bottom view of the AF moving unit and related components of the lens driving device according to the third embodiment of the present invention
  • Figure 89 is a view showing Figure 88 in another direction.
  • Figure 90 is a perspective view showing the OIS moving part and related configuration of the lens driving device according to the third embodiment of the present invention
  • Figure 91 is a perspective view of the lens driving device according to the third embodiment of the present invention.
  • Figure 92 is a bottom perspective view of Figure 90 seen from another direction
  • Figure 93 is a perspective view showing the inner and outer substrates of the lens driving device according to the third embodiment of the present invention.
  • Figure 94 is a perspective view showing the elastic member and wire of the lens driving device according to the third embodiment of the present invention.
  • the lens driving device 2010 may be a voice coil motor (VCM).
  • VCM voice coil motor
  • the lens driving device 2010 may be a lens driving motor.
  • the lens driving device 2010 may be a lens driving actuator.
  • the lens driving device 2010 may include an AF module.
  • the lens driving device 2010 may include an OIS module.
  • the lens driving device 2010 may include a fixing unit 2100.
  • the fixed part 2100 may be a relatively fixed part when the movable part moves.
  • the movable part can move relative to the fixed part 2100.
  • the lens driving device 2010 may include a base 2110.
  • the fixing part 2100 may include a base 2110.
  • the base 2110 may be placed below the AF holder 2210.
  • the base 2110 may be placed below the OIS holder 2310.
  • Base 2110 may be combined with cover 2120.
  • the AF holder 2210 and the OIS holder 2310 may be placed on the base 2110.
  • the AF holder 2210 and the OIS holder 2310 may be placed on the lower plate of the base 2110.
  • the AF holder 2210 and the OIS holder 2310 may be placed within the base 2110.
  • the AF holder 2210 and the OIS holder 2310 may be placed within the side plate of the base 2110.
  • the AF magnet 2410, OIS-x magnet 2510, and OIS-y magnet 2610 can all be placed on the base 2110.
  • the AF magnet 2410, OIS-x magnet 2510, and OIS-y magnet 2610 can all be placed in the fixing part 2100. That is, during autofocus operation, the AF magnet 2410, OIS-x magnet 2510, and OIS-y magnet 2610 can all maintain a fixed state. Additionally, during the hand shake correction operation, the AF magnet 2410, OIS-x magnet 2510, and OIS-y magnet 2610 can all remain fixed.
  • the AF magnet 2410 is fixed and the AF coil 2420 can move.
  • the OIS-x and OIS-y magnets (2510, 2610) are fixed and the OIS-x and OIS-y coils (2520, 2620) can move.
  • Base 2110 may include a lower plate.
  • Base 2110 may include a side plate.
  • the side plates may be 'lateral'.
  • the side plate of the base 2110 may extend from the upper surface of the lower plate.
  • the side plate of the base 2110 may include a plurality of side plates.
  • the side plate of the base 2110 may include four side plates. However, one or more of the four side plates of the base 2110 may be omitted.
  • the side plate of the base 2110 may include first to fourth side plates 2111, 2112, 2113, and 2114.
  • the base 2110 may include a first side plate 2111 and a second side plate 2113 disposed on opposite sides of each other, and a third side plate 2112 and a fourth side plate 2114 disposed on opposite sides of each other.
  • the sides of the base 2110 may include a plurality of sides.
  • the sides of base 2110 may include four sides. However, one or more of the four sides of the base 2110 may be omitted.
  • Sides of the base 2110 may include first to fourth sides.
  • the base 2110 may include first and second sides disposed on opposite sides of each other, and third and fourth side portions disposed on opposite sides of each other.
  • the AF magnet 2410 may be placed on the first side plate 2111 of the base 2110.
  • the OIS-x magnet 2510 may be placed on the second side plate 2113 of the base 2110.
  • the OIS-y magnet 2610 may be placed on the third side plate 2112 of the base 2110.
  • the first side plate 2111 of the base 2110 may include a groove 2111a.
  • the groove 2111a may be an ‘AF guide ball receiving groove’.
  • a ball 2810 may be placed in the groove 2111a.
  • the groove 2111a may be in direct contact with the ball 2810.
  • the groove 2111a may be arranged in the optical axis direction.
  • the groove 2111a may include a plurality of grooves.
  • the groove 2111a may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 2111a may include a first groove that contacts the ball 2810 at two points and a second groove that contacts the ball 2810 at one point. In a variation, both the first groove and the second groove may contact the ball 2810 at two points.
  • the second side plate 2113 of the base 2110 may include a protrusion.
  • the protrusion may protrude outward.
  • Extension portions 2722 of the outer substrate 2720 may be disposed on the upper and lower sides of the protrusion.
  • a groove may be formed in the protrusion to prevent interference even when the extension portion 2722 of the outer substrate 2720 moves.
  • the base 2110 may include a step 2115.
  • the step 2115 may be formed at the lower end of the outer surface of the base 2110.
  • the step 2115 may protrude from the outer surface of the base 2110.
  • the side plate 2122 of the cover 2120 may be disposed on the step 2115 of the base 2110.
  • the lens driving device 2010 may include a cover 2120.
  • the fixing part 2100 may include a cover 2120.
  • Cover 2120 may be placed on base 2110.
  • Cover 2120 may be coupled to base 2110.
  • Cover 2120 may be fixed to base 2110.
  • the cover 2120 can accommodate the AF holder 2210 inside.
  • the cover 2120 can accommodate the OIS holder 2310 inside.
  • the cover 2120 may be a shield member.
  • the cover 2120 may be a shield can.
  • Cover 2120 may include a top plate 2141.
  • the upper plate 2141 may be placed on the moving part. The upward movement of the moving part may be limited by the moving part coming into contact with the upper plate 2141.
  • the top plate 2141 may include a hole through which light passes.
  • Cover 2120 may include a side plate 2142.
  • the side plate 2142 may extend from the top plate 2141.
  • the side plate 2142 may be placed on the base 2110.
  • the side plate 2142 may be disposed on a stepped portion protruding from the lower end of the outer surface of the base 2110.
  • the side plate 2142 may include a plurality of side plates.
  • the side plate 2142 may include four side plates.
  • the side plate 2142 may include a first side plate and a second side plate disposed on opposite sides of each other, and a third side plate and a fourth side plate disposed on opposite sides of each other.
  • the lens driving device 2010 may include a moving part.
  • the movable part may be disposed on the fixed part 2100.
  • the movable part may be disposed within the fixed part 2100.
  • the movable part may be placed on the fixed part 2100.
  • the movable part may be movably disposed on the fixed part 2100.
  • the moving part can be moved relative to the fixed part 2100 by the driving part.
  • the moving part can move during AF operation.
  • the moving part can move when OIS is running.
  • a lens may be coupled to the moving part.
  • the lens driving device 2010 may include an AF moving unit 2200.
  • the AF moving unit 2200 may be disposed on the fixed unit 2100.
  • the AF moving unit 2200 may be disposed within the fixing unit 2100.
  • the AF moving unit 2200 may be disposed on the fixed unit 2100.
  • the AF moving unit 2200 may be disposed between the fixed unit 2100 and the OIS moving unit 2300.
  • the AF moving unit 2200 may be movably disposed on the fixed unit 2100.
  • the AF moving unit 2200 can move in the optical axis direction with respect to the fixing unit 2100 by the AF driving unit 2400.
  • the AF moving unit 2200 can move during AF operation.
  • the lens driving device 2010 may include an AF holder 2210.
  • the AF moving unit 2200 may include an AF holder 2210.
  • the AF holder 2210 may be an 'AF carrier'.
  • the AF holder 2210 may be placed within the base 2110.
  • the AF holder 2210 may be placed on the base 2110.
  • the AF holder 2210 may be placed within the cover 2120.
  • the AF holder 2210 may be placed between the base 2110 and the OIS holder 2310.
  • the AF holder 2210 may be arranged to be movable in the optical axis direction.
  • the AF holder 2210 may include protrusions.
  • the protrusion may be coupled to the lower elastic member 2910.
  • the lower elastic member 2910 may include a hole coupled to the protrusion of the AF holder 2210.
  • the AF holder 2210 may include a groove that accommodates the adhesive instead of a protrusion.
  • the lower elastic member 2910 may include a hole disposed in the groove of the AF holder 2210.
  • the protrusions of the AF holder 2210 may be formed on the lower surface of the AF holder 2210.
  • the protrusion of the AF holder 2210 may protrude from the lower surface of the AF holder 2210.
  • the protrusions of the AF holder 2210 may include a plurality of protrusions.
  • the protrusions of the AF holder 2210 may include first protrusions 2211 and second protrusions 2212.
  • the outer portion 2911 of the lower elastic member 2910 may include a first region coupled to the first protrusion 2211 and a second region 2212 coupled to the first protrusion 2212.
  • the wire 2930 may include a first wire 2931 disposed in the first corner area of the fixing part 2100.
  • the coupling portion 2912 of the lower elastic member 2910 may include a first coupling portion coupled to the first wire 2931.
  • connection portion 2913 of the lower elastic member 2910 includes a first connection portion 2913-1 and a second connection portion connecting the outer portion 2911 of the lower elastic member 2910 and the first coupling portion of the lower elastic member 2910. 2913-2).
  • the connecting portion 2913 of the lower elastic member 2910 includes a first connecting portion 2913-1 connecting the first region of the outer portion 2911 and the first coupling portion, and a first connecting portion 2913-1 connecting the second region and the first coupling portion of the outer portion 2911. It may include a second connection part 2913-2 for connecting. That is, the connection portion 2913 of the lower elastic member 2910 may be provided with a two-strand connection portion to connect one outer portion 2911 and one coupling portion 2912.
  • the first and second connection parts 2913-1 and 2913-2 of the lower elastic member 2910 are symmetrical with respect to an imaginary straight line connecting the optical axis and the first corner area of the fixing part 2100. It can be.
  • the wire 2930 may include a second wire 2933 disposed in the second corner area of the fixing part 2100.
  • the coupling portion 2912 of the lower elastic member 2910 may include a second coupling portion coupled to the second wire 2933.
  • the wire 2930 may include a third wire 2932 disposed in the third corner area of the fixing part 2100.
  • the coupling portion 2912 of the lower elastic member 2910 may include a third coupling portion coupled to the third wire 2932.
  • the wire 2930 may include a fourth wire 2934 disposed in the fourth corner area of the fixing part 2100.
  • the coupling portion 2912 of the lower elastic member 2910 may include a fourth coupling portion coupled to the fourth wire 2934.
  • the first corner area of the fixing part 2100 may be placed diagonally opposite the second corner area, and the third corner area may be placed diagonally opposite the fourth corner area.
  • AF holder 2210 may include a protrusion 2213.
  • the protrusion 2213 may be formed on the outer surface of the AF holder 2210.
  • the protrusion 2213 may protrude outward from the AF holder 2210.
  • An extension portion 2722 of the outer substrate 2720 may be disposed on the upper and lower surfaces of the protrusion 2213.
  • AF holder 2210 may include a groove 2214.
  • the groove 2214 may be an ‘AF guide ball receiving groove’.
  • a ball 2810 may be placed in the groove 2214.
  • Groove 2214 may be in direct contact with ball 2810.
  • the groove 2214 may be arranged in the optical axis direction.
  • Groove 2214 may include a plurality of grooves.
  • Groove 2214 may include two grooves. The two grooves may be arranged parallel to each other.
  • the groove 2214 may include a first groove that contacts the ball 2810 at two points and a second groove that contacts the ball 2810 at one point. In a variation, both the first groove and the second groove may contact the ball 2810 at two points.
  • AF holder 2210 may include a metal member 2216.
  • the metal member 2216 may be insert-molded into the AF holder 2210. At least a portion of the metal member 2216 may be disposed on the upper surface of the AF holder 2210. The metal member 2216 may be disposed to reinforce the strength of the AF holder 2210.
  • the lens driving device 2010 may include a cover 2220.
  • the AF moving unit 2200 may include a cover 2220.
  • the cover 2220 may be combined with the AF holder 2210.
  • the cover 2220 may be coupled to the lower surface of the AF holder 2210.
  • the cover 2220 may be coupled to the AF holder 2210 from the lower side.
  • Cover 2220 may include a hook 2221.
  • the hook 2221 of the cover 2220 may be coupled to the AF holder 2210.
  • the hook 2221 of the cover 2220 may protrude upward and be coupled to the side of the AF holder 2210.
  • the lens driving device 2010 may include an OIS moving unit 2300.
  • the OIS moving unit 2300 may be disposed on the fixed unit 2100.
  • the OIS moving unit 2300 may be disposed within the fixed unit 2100.
  • the OIS moving unit 2300 may be disposed on the fixed unit 2100.
  • the OIS moving unit 2300 may be disposed within the AF moving unit 2200.
  • the OIS moving unit 2300 may be arranged to be movable.
  • the OIS moving unit 2300 can move in the x-axis direction perpendicular to the optical axis with respect to the fixed unit 2100 and the AF moving unit 2200 by the OIS-x driving unit 2500.
  • the OIS moving unit 2300 can move in the y-axis direction perpendicular to the optical axis with respect to the fixed unit 2100 and the AF moving unit 2200 by the OIS-y driving unit 2600.
  • the OIS moving unit 2300 can move when OIS is driven.
  • the OIS moving part 2300 may be spaced apart from the fixed part 2100 and the AF moving part 2200.
  • the OIS moving unit 2300 may be spaced apart from the fixing unit 2100 and the AF moving unit 2200 in the optical axis direction.
  • the OIS moving unit 2300 may form a first gap with the fixing unit 2100 downward in the optical axis direction. Additionally, the OIS moving unit 2300 may form a second gap with the AF moving unit 2200 upward in the optical axis direction.
  • the lens driving device 2010 may include an OIS holder 2310.
  • the OIS moving unit 2300 may include an OIS holder 2310.
  • the OIS holder 2310 may be an 'OIS carrier'.
  • the OIS holder 2310 may be placed within the AF holder 2210.
  • the OIS holder 2310 may be placed within the base 2110.
  • the OIS holder 2310 may be placed on the base 2110.
  • the OIS holder 2310 may be placed within the cover 2120.
  • the OIS holder 2310 may be arranged to be movable in a direction perpendicular to the optical axis.
  • the OIS holder 2310 may include an outer surface.
  • OIS holder 2310 may include multiple sides.
  • the OIS holder 2310 may include first and second sides disposed on opposite sides of each other, and third and fourth sides disposed on opposite sides of each other.
  • the AF coil 2420 may be disposed between the first side of the OIS holder 2310 and the AF magnet 2410.
  • the OIS-x coil 2520 may be disposed between the second side of the OIS holder 2310 and the OIS-x magnet 2510.
  • the OIS-y coil 2620 may be disposed between the third side of the OIS holder 2310 and the OIS-y magnet 2610.
  • the AF coil 2420 may be disposed on the first side of the OIS holder 2310.
  • the OIS-x coil 2520 may be disposed on the second side of the OIS holder 2310.
  • the OIS-y coil 2620 may be placed on the third side of the OIS holder 2310.
  • the OIS holder 2310 may include a groove 2311.
  • the groove 2311 may be an ‘upper elastic member interference prevention groove’.
  • the groove 2311 may be formed on the upper surface of the OIS holder 2310.
  • the groove 2311 may be formed concavely on the upper surface of the OIS holder 2310.
  • the groove 2311 may be disposed at a position corresponding to the upper elastic member 2920 to prevent the OIS holder 2310 and the upper elastic member 2920 from interfering with each other.
  • the OIS holder 2310 may include a lateral stopper.
  • the side stopper may limit the sideward stroke of the OIS holder (2310). That is, when the OIS holder 2310 moves to the maximum, the lateral stopper of the OIS holder 2310 may contact one or more of the AF holder 2210 and the base 2110.
  • the side stopper may be formed on the outer surface of the OIS holder (2310). The side stopper may protrude outward from the side of the OIS holder 2310.
  • the OIS holder 2310 may include protrusions.
  • the protrusion may be combined with the upper elastic member 2920.
  • the upper elastic member 2920 may include a hole coupled to the protrusion of the OIS holder 2310.
  • the OIS holder 2310 may include a groove for receiving the adhesive instead of a protrusion.
  • the upper elastic member 2920 may include a hole disposed in the groove of the OIS holder 2310.
  • the protrusions of the OIS holder 2310 may be formed on the upper surface of the OIS holder 2310.
  • the protrusion of the OIS holder 2310 may protrude from the upper surface of the OIS holder 2310.
  • the protrusions of the OIS holder 2310 may include a plurality of protrusions.
  • the protrusions of the OIS holder 2310 may include first protrusions 2314 and second protrusions 2315.
  • the inner portion 2921 of the upper elastic member 2920 may include a first region coupled to the first protrusion 2314 and a second region 2212 coupled to the second protrusion 2315.
  • the wire 2930 may include a first wire 2931 disposed in the first corner area of the fixing part 2100.
  • the coupling portion 2922 of the upper elastic member 2920 may include a first coupling portion coupled to the first wire 2931.
  • connection part 2923 of the upper elastic member 2920 is a first connection part 2923-1 and a second connection part connecting the inner part 2921 of the upper elastic member 2920 and the first coupling part of the upper elastic member 2920 ( 2923-2).
  • the connection portion 2923 of the upper elastic member 2920 includes a first connection portion 2923-1 connecting the first region of the inner portion 2921 and the first coupling portion, and a first coupling portion 2923-1 connecting the second region of the inner portion 2921 and the first coupling portion. It may include a second connection part 2923-2 for connecting. That is, the connection portion 2923 of the upper elastic member 2920 may be provided with two connecting portions to connect one inner portion 2921 and one coupling portion 2922.
  • the first and second connection parts 2923-1 and 2923-2 of the upper elastic member 2920 are symmetrical with respect to an imaginary straight line connecting the optical axis and the first corner area of the fixing part 2100. It can be.
  • the coupling portion 2922 of the upper elastic member 2920 may include a second coupling portion coupled to the second wire 2933.
  • the coupling portion 2922 of the upper elastic member 2920 may include a third coupling portion coupled to the third wire 2932.
  • the coupling portion 2922 of the upper elastic member 2920 may include a fourth coupling portion coupled to the fourth wire 2934.
  • the lens driving device 2010 may include a driving unit.
  • the driving unit may move the moving unit with respect to the fixed unit 2100.
  • the driving unit may include an AF driving unit 2400.
  • the driving unit may include an OIS driving unit (2500, 2600).
  • the driving unit may include a coil and a magnet.
  • the lens driving device 2010 may include an AF driving unit 2400.
  • the AF driving unit 2400 can move the AF moving unit 2200 in the optical axis direction.
  • the AF driving unit 2400 can move the AF holder 2210 in the optical axis direction.
  • the AF driving unit 2400 can move the AF holder 2210 in the optical axis direction through electromagnetic force.
  • the AF driving unit 2400 may include a coil and a magnet.
  • the AF holder 2210 and the OIS holder 2310 can move in the optical axis direction due to the interaction between the AF coil 2420 and the AF magnet 2410.
  • the AF coil 2420, AF holder 2210, and OIS holder 2310 can move in the optical axis direction as one unit.
  • the lens driving device 2010 may include an AF magnet 2410.
  • the AF driving unit 2400 may include an AF magnet 2410.
  • the AF magnet 2410 may be placed in the fixing unit 2100.
  • the AF magnet 2410 may be placed on the base 2110.
  • the AF magnet 2410 may be placed on the cover 2120.
  • the AF magnet 2410 may be placed on the side plate 2122 of the cover 2120.
  • the AF magnet 2410 may be placed on the outer surface of the base 2110.
  • the AF magnet 2410 may be placed on the inner surface of the base 2110.
  • the AF magnet 2410 may be fixed to the base 2110.
  • the AF magnet 2410 may be coupled to the base 2110.
  • the AF magnet 2410 may be attached to the base 2110 with adhesive.
  • the AF magnet 2410 may be placed within the cover 2120.
  • the AF magnet 2410 may interact with the AF coil 2420.
  • the AF magnet 2410 may electromagnetically interact with the AF coil 2420.
  • the AF magnet 2410 may be placed in a position corresponding to the AF coil 2420.
  • the AF magnet 2410 may face the AF coil 2420.
  • the AF magnet 2410 may face the AF coil 2420.
  • the AF magnet 2410 may overlap the AF coil 2420 in a direction perpendicular to the optical axis.
  • the AF magnet 2410 may be a 4-pole magnet.
  • the AF magnet 2410 may include a four-pole magnetized magnet.
  • the AF magnet 2410 may include a first magnet portion including an N pole and an S pole, and a second magnet portion including an N pole and an S pole.
  • the first magnet portion and the second magnet portion may be arranged in a vertical direction.
  • the first magnet portion and the second magnet portion may be spaced apart in the vertical direction, and a neutral portion may be disposed between the first magnet portion and the second magnet portion.
  • the lens driving device 2010 may include an AF coil 2420.
  • the AF driving unit 2400 may include an AF coil 2420.
  • the AF coil 2420 may interact with the AF magnet 2410.
  • the AF coil 2420 can move in the optical axis direction.
  • the AF coil 2420 can move in the optical axis direction through interaction with the AF magnet 2410.
  • the AF coil 2420 may face the AF magnet 2410.
  • the AF coil (2420) may face the AF magnet (2410).
  • the AF coil 2420 may be placed in a position corresponding to the AF magnet 2410.
  • the AF coil 2420 may overlap the AF magnet 2410 in a direction perpendicular to the optical axis.
  • the AF coil 2420 may be disposed on the inner substrate 2710.
  • the AF coil 2420 may be disposed in the first portion 2711 of the inner substrate 2710.
  • the AF coil 2420 may be placed in the AF holder 2210.
  • the AF coil 2420 may be
  • the AF magnet 2410 has been described as being disposed on the fixed unit 2100 and the AF coil 2420 has been described as being disposed on the AF moving unit 2200.
  • the arrangement may be reversed. That is, in the modified example, the AF magnet 2410 may be placed on the AF moving unit 2200.
  • the AF coil 2420 may be disposed on the fixing unit 2100.
  • the lens driving device 2010 may include an AF sensor 2430.
  • the AF driving unit 2400 may include an AF sensor 2430.
  • the AF sensor 2430 may be a Hall sensor.
  • the AF sensor 2430 may be disposed on the substrate 2740.
  • the AF sensor 2430 may be disposed in the first portion 2711 of the substrate 2740.
  • the AF sensor 2430 can detect the AF magnet 2410.
  • the AF sensor 2430 can detect the movement of the AF magnet 2410.
  • the movement amount or position of the AF magnet 2410 detected by the AF sensor 2430 can be used as feedback for autofocus driving.
  • the AF sensor 2430 may be a driver IC.
  • the driver IC may include a sensing unit.
  • the sensing unit may include a Hall element (Hall IC).
  • the driver IC may be electrically connected to the AF coil (2420).
  • the driver IC can supply current to the AF coil (2420).
  • the AF sensor 2430 may be disposed within the AF coil 2420.
  • the AF sensor 2430 may overlap the neutral portion of the AF magnet 2410 in a direction perpendicular to the optical axis.
  • the AF sensor 2430 may be placed outside the AF coil 2420.
  • the lens driving device 2010 may include an OIS-x driving unit 2500.
  • the OIS-x driving unit 2500 can move the OIS moving unit 2300 in the x-axis direction perpendicular to the optical axis direction.
  • the OIS-x driver 2500 can move the OIS holder 2310 in the x-axis direction perpendicular to the optical axis.
  • the OIS-x driver 2500 can move the OIS holder 2310 in the x-axis direction perpendicular to the optical axis through electromagnetic force.
  • the OIS-x driving unit 2500 may include a coil and a magnet.
  • the OIS holder 2310 can move in the x-axis direction perpendicular to the optical axis due to the interaction between the OIS-x coil 2520 and the OIS-x magnet 2510.
  • the OIS-x coil (2520) and the OIS holder (2310) can move in the x-axis direction as one unit.
  • the lens driving device 2010 may include an OIS-x magnet 2510.
  • the OIS-x driving unit 2500 may include an OIS-x magnet (2510).
  • the OIS-x magnet 2510 may be placed on the fixing part 2100.
  • the OIS-x magnet 2510 may be placed on the base 2110.
  • the OIS-x magnet 2510 may be placed on the outer surface of the base 2110.
  • the OIS-x magnet 2510 may be placed on the inner surface of the base 2110.
  • the OIS-x magnet 2510 can be fixed to the base 2110.
  • OIS-x magnet 2510 can be coupled to the base 2110.
  • the OIS-x magnet 2510 may be attached to the base 2110 with adhesive.
  • the OIS-x magnet 2510 may be placed within the cover 2120.
  • the OIS-x magnet (2510) can interact with the OIS-x coil (2520).
  • the OIS-x magnet (2510) can electromagnetically interact with the OIS-x coil (2520).
  • the OIS-x magnet (2510) may be placed in a position corresponding to the OIS-x coil (2520).
  • the OIS-x magnet (2510) can face the OIS-x coil (2520).
  • the OIS-x magnet (2510) may face the OIS-x coil (2520).
  • the OIS-x magnet 2510 may overlap the OIS-x coil 2520 in a direction perpendicular to the optical axis.
  • the second magnet 2610 may be a two-pole magnet.
  • the OIS-x magnet 2510 may include a two-pole magnetized magnet.
  • the OIS-x magnet 2510 may include an N pole and an S pole.
  • the inner surface of the OIS-x magnet (2510) may be the N pole and the outer surface may be the S pole.
  • the lens driving device 2010 may include an OIS-x coil 2520.
  • the OIS-x driving unit 2500 may include an OIS-x coil 2520.
  • OIS-x coil 2520 can interact with OIS-x magnet 2510.
  • the OIS-x coil 2520 can move in the x-axis direction perpendicular to the optical axis.
  • the OIS-x coil (2520) can move in the x-axis direction through interaction with the OIS-x magnet (2510).
  • the OIS-x coil (2520) may face the OIS-x magnet (2510).
  • the OIS-x coil (2520) can face the OIS-x magnet (2510).
  • the OIS-x coil (2520) may be placed in a position corresponding to the OIS-x magnet (2510).
  • the OIS-x coil 2520 may overlap the OIS-x magnet 2510 in a direction perpendicular to the optical axis.
  • the OIS-x coil 2520 may be disposed on the inner substrate 2710.
  • the OIS-x coil 2520 may be disposed in the second portion 2713 of the inner substrate 2710.
  • the OIS-x coil (2520) can be placed in the OIS holder (2310).
  • the OIS-x coil 2520 may be placed on the OIS moving unit 2300.
  • the lens driving device 2010 may include an OIS-x sensor 2530.
  • the OIS-x driving unit 2500 may include an OIS-x sensor 2530.
  • the OIS-x sensor 2530 may be placed on the inner substrate 2710.
  • the OIS-x sensor 2530 may be disposed in the second portion 2713 of the inner substrate 2710.
  • the OIS-x sensor 2530 may include a Hall sensor.
  • the OIS-x sensor (2530) can detect the OIS-x magnet (2510).
  • the OIS-x sensor (2530) can detect the magnetic force of the OIS-x magnet (2510).
  • the OIS-x sensor 2530 may be placed within the OIS-x coil 2520.
  • the OIS-x sensor 2530 may overlap with the OIS-x coil 2520 in the optical axis direction.
  • the OIS-x sensor (2530) may face the OIS-x magnet (2510).
  • the OIS-x sensor 2530 may be placed in a position corresponding to the OIS-x magnet 2510.
  • the OIS-x sensor (2530) can detect the movement of the OIS-x magnet (2510).
  • the movement amount or position of the OIS-x magnet 2510 detected by the OIS-x sensor 2530 can be used as feedback for image stabilization compensation drive in the x-axis direction.
  • the lens driving device 2010 may include an OIS-y driving unit 2600.
  • the OIS-y driving unit 2600 can move the OIS moving unit 2300 in the optical axis direction and the y-axis direction perpendicular to the x-axis direction.
  • the OIS-y driving unit 2600 can move the OIS holder 2310 in the y-axis direction perpendicular to both the optical axis and the x-axis direction.
  • the OIS-y driver 2600 can move the OIS holder 2310 in the y-axis direction perpendicular to both the optical axis and the x-axis direction through electromagnetic force.
  • the OIS-y driving unit 2600 may include a coil and a magnet.
  • the OIS holder 2310 can be moved in the y-axis direction perpendicular to both the optical axis direction and the x-axis direction due to the interaction between the OIS-y coil 2620 and the OIS-y magnet 2610. there is.
  • the OIS-y coil 2620 and the OIS holder 2310 can move in the y-axis direction as one unit.
  • the lens driving device 2010 may include an OIS-y magnet 2610.
  • the OIS-y driving unit 2600 may include an OIS-y magnet (2610).
  • the OIS-y magnet 2610 may be placed in the fixing unit 2100.
  • the OIS-y magnet 2610 may be placed on the base 2110.
  • the OIS-y magnet 2610 may be placed on the outer surface of the base 2110.
  • the OIS-y magnet 2610 may be placed on the inner surface of the base 2110.
  • the OIS-y magnet 2610 may be fixed to the base 2110.
  • OIS-y magnet 2610 may be coupled to the base 2110.
  • the OIS-y magnet 2610 may be attached to the base 2110 with adhesive.
  • the OIS-y magnet 2610 may be placed within the cover 2120.
  • OIS-y magnet 2610 can interact with OIS-y coil 2620.
  • the OIS-y magnet 2610 may electromagnetically interact with the OIS-y coil 2620.
  • the OIS-y magnet 2610 may be placed in a position corresponding to the OIS-y coil 2620.
  • the OIS-y magnet (2610) can face the OIS-y coil (2620).
  • the OIS-y magnet 2610 may face the OIS-y coil 2620.
  • the OIS-y magnet 2610 may overlap the OIS-y coil 2620 in a direction perpendicular to the optical axis.
  • the OIS-y magnet 2610 may be a two-pole magnet.
  • the OIS-y magnet 2610 may include a two-pole magnetized magnet.
  • the OIS-y magnet 2610 may include an N pole and an S pole.
  • the inner surface of the OIS-y magnet (2610) may be an N pole and the outer surface may be an S pole.
  • the lens driving device 2010 may include an OIS-y coil 2620.
  • the OIS-y driving unit 2600 may include an OIS-y coil 2620.
  • OIS-y coil 2620 can interact with OIS-y magnet 2610.
  • the OIS-y coil 2620 may be placed on the opposite side of the AF coil 2420 based on the optical axis.
  • the OIS-y coil 2620 can move in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • the OIS-y coil (2620) can move in the y-axis direction through interaction with the OIS-y magnet (2610).
  • the OIS-y coil 2620 may face the OIS-y magnet 2610.
  • the OIS-y coil (2620) may face the OIS-y magnet (2610).
  • the OIS-y coil (2620) may be placed in a position corresponding to the OIS-y magnet (2610).
  • the OIS-y coil 2620 may overlap with the OIS-y magnet 2610 in a direction perpendicular to the optical axis.
  • the OIS-y coil 2620 may be disposed on the inner substrate 2710.
  • the OIS-y coil 2620 may be disposed in the third portion 2712 of the inner substrate 2710.
  • the OIS-y coil 2620 may be placed in the OIS holder 2310.
  • the OIS-y coil 2620 may be placed on the OIS moving unit 2300.
  • the lens driving device 2010 may include an OIS-y sensor 2630.
  • the OIS-y driving unit 2600 may include an OIS-y sensor 2630.
  • the OIS-y sensor 2630 may be disposed on the inner substrate 2710.
  • the OIS-y sensor 2630 may be disposed in the third portion 2712 of the inner substrate 2710.
  • the OIS-y sensor 2630 may include a Hall sensor.
  • the OIS-y sensor (2630) can detect the OIS-y magnet (2610).
  • the OIS-y sensor (2630) can detect the magnetic force of the OIS-y magnet (2610).
  • the OIS-y sensor 2630 may be disposed within the OIS-y coil 2620.
  • the OIS-y sensor 2630 may overlap with the OIS-y coil 2620 in the optical axis direction.
  • the OIS-y sensor (2630) may face the OIS-y magnet (2610).
  • the OIS-y sensor 2630 may be placed in a position corresponding to the OIS-y magnet 2610.
  • the OIS-y sensor (2630) can detect the movement of the OIS-y magnet (2610).
  • the movement amount or position of the OIS-y magnet 2610 detected by the OIS-y sensor 2630 can be used for feedback of hand shake correction drive in the y-axis direction.
  • the lens driving device 2010 may include a substrate.
  • the substrate may include a flexible substrate.
  • the substrate may be electrically connected to the coil.
  • the substrate may be electrically connected to the sensor.
  • the substrate may be formed ductile.
  • the substrate may be flexible.
  • the substrate may be a circuit board.
  • the substrate may be a printed circuit board.
  • the lens driving device 2010 may include an inner substrate 2710.
  • the inner substrate 2710 may be electrically connected to the coils 2420, 2520, and 2620.
  • the inner substrate 2710 may be electrically connected to the sensors 2430, 2530, and 2630.
  • the inner substrate 2710 can connect the AF holder 2210 and the OIS holder 2310.
  • the inner substrate 2710 can elastically connect the AF holder 2210 and the OIS holder 2310.
  • the inner substrate 2710 can support the OIS holder 2310 to be movable with respect to the AF holder 2210.
  • the inner substrate 2710 can guide the OIS holder 2310 to move in a direction perpendicular to the optical axis with respect to the AF holder 2210.
  • the inner substrate 2710 may include a flexible substrate.
  • the inner substrate 2710 may include a flexible printed circuit board (FPCB).
  • the inner substrate 2710 may include an elastic portion.
  • the inner substrate 2710 may include an elastic member.
  • the inner substrate 2710 may include a first portion 2711.
  • the first part 2711 may be disposed on the AF moving unit 2200.
  • the first part 2711 may be placed in the AF holder 2210.
  • the AF coil 2420 may be disposed in the first portion 2711 of the inner substrate 2710.
  • the AF sensor 2430 may be disposed in the first portion 2711 of the inner substrate 2710.
  • the yoke 2830 may be disposed on the first portion 2711 of the inner substrate 2710.
  • the inner substrate 2710 may include a second portion 2713.
  • the second part 2713 may be placed in the OIS holder 2310.
  • the second part 2713 may be disposed on the second side of the OIS holder 2310.
  • the OIS-x coil 2520 may be disposed in the second portion 2713 of the inner substrate 2710.
  • the OIS-x sensor 2530 may be disposed in the second portion 2713 of the inner substrate 2710.
  • the inner substrate 2710 may include a third portion 2712.
  • the third part 2712 may be placed in the OIS holder 2310.
  • the third portion 2712 may be disposed on the third side of the OIS holder 2310.
  • the OIS-y coil 2620 may be disposed in the third portion 2712 of the inner substrate 2710.
  • the OIS-y sensor 2630 may be disposed in the third portion 2712 of the inner substrate 2710.
  • the inner substrate 2710 may include a fourth portion 2714.
  • the fourth part 2714 may be disposed between the OIS holder 2310 and the AF holder 2210.
  • the fourth part 2714 may be disposed between the fourth side of the OIS holder 2310 and the AF holder 2210.
  • 'first to fourth sides' of the OIS holder 2310 are only used to distinguish the sides from each other, so they may be called differently as needed.
  • the 'second side' may be referred to as the 'first side' and the 'third side' may be referred to as the 'second side'.
  • the inner substrate 2710 may include a terminal 2714a.
  • the fourth portion 2714 of the inner substrate 2710 may include a terminal 2714a.
  • Terminal 2714a may be electrically connected to coils 2420, 2520, and 2620.
  • Terminal 2714a may be electrically connected to sensors 2430, 2530, and 2630.
  • the inner substrate 2710 may include a hole 2714b.
  • the fourth portion 2714 of the inner substrate 2710 may include a hole 2714b.
  • the hole 2714b may be formed through the fourth portion 2714 of the inner substrate 2710.
  • the hole 2714b may be placed in a position corresponding to the lateral stopper of the OIS holder 2310.
  • the inner substrate 2710 may not interfere with the side stopper of the OIS holder 2310 due to the hole 2714b.
  • the lens driving device 2010 may include an outer substrate 2720.
  • the outer substrate 2720 may be placed on the base 2110.
  • the outer substrate 2720 may be electrically connected to the coils 2420, 2520, and 2620.
  • the outer substrate 2720 may be electrically connected to the sensors 2430, 2530, and 2630.
  • the outer substrate 2720 can connect the AF holder 2210 and the base 2110.
  • the outer substrate 2720 can elastically connect the AF holder 2210 and the base 2110.
  • the outer substrate 2720 can support the AF holder 2210 to be movable with respect to the base 2110.
  • the outer substrate 2720 can guide the AF holder 2210 to move in the optical axis direction with respect to the base 2110.
  • the outer substrate 2720 may include a flexible substrate.
  • the outer substrate 2720 may include a flexible printed circuit board (FPCB).
  • the outer substrate 2720 may include an elastic portion.
  • the outer substrate 2720 may include an elastic member.
  • the outer substrate 2720 may include a body portion 2721.
  • the body portion 2721 may be disposed on the fixing portion 2100.
  • the body portion 2721 may be disposed on the base 2110.
  • the body portion 2721 may be formed to surround the side of the base 2110.
  • the body portion 2721 may be disposed on three sides of the base 2110.
  • the body portion 2721 may include two terminal portions.
  • the two terminal units may be disposed opposite to each other with respect to the optical axis.
  • the terminal portion may include a terminal 2721a.
  • the outer substrate 2720 may include a terminal 2721a.
  • the body portion 2721 of the outer substrate 2720 may include a terminal 2721a.
  • Terminal 2721a may be electrically connected to terminal 2722a.
  • the terminal 2721a may be disposed at the bottom of the base 2110.
  • Terminal 2721a may be coupled to the printed circuit board 2050.
  • the terminal 2721a may be coupled to the terminal of the printed circuit board 2050 through solder.
  • the terminal 2721a may be coupled to the terminal of the printed circuit board 2050 through a conductive member.
  • Terminal 2721a may be connected to a terminal of the printed circuit board 2050.
  • Terminal 2721a may be electrically connected to a terminal of the printed circuit board 2050.
  • the outer substrate 2720 may include an extension portion 2722.
  • the extension part 2722 may be a 'leg part'.
  • the extension portion 2722 may extend from the body portion 2721. At least a portion of the extension part 2722 can move together with the AF moving part 2200. At least a portion of the extension portion 2722 can move together with the AF holder 2210.
  • the extension portion may extend from the body portion 2721.
  • the extension portion 2722 may include a plurality of leg portions.
  • the extension part 2722 may include a first leg part and a second leg part. The second leg portion may be disposed below the first leg portion.
  • the outer substrate 2720 may include a terminal 2722a.
  • the extension portion 2722 of the outer substrate 2720 may include a terminal 2722a.
  • the terminal 2722a may be coupled to the terminal 2714a of the inner substrate 2710.
  • the terminal 2722a may be connected to the terminal 2714a of the inner substrate 2710 through solder.
  • the terminal 2722a may be coupled to the terminal 2714a of the inner substrate 2710 through a conductive member.
  • the terminal 2722a may be connected to the terminal 2714a of the inner substrate 2710.
  • the terminal 2722a may be electrically connected to the terminal 2714a of the inner substrate 2710.
  • the lens driving device 2010 may include a guide member.
  • the guide member may include a ball.
  • the guide member may include a pin.
  • the guide member may include a cylindrical member. The guide member may guide the movement of the moving part with respect to the fixed part 2100 in a specific direction.
  • Lens driving device 2010 may include a ball 2810.
  • the ball 2810 may be an ‘AF guide ball’.
  • the ball 2810 may be disposed between the fixing part 2100 and the AF moving part 2200.
  • the ball 2810 can guide the movement of the AF moving unit 2200 in the optical axis direction.
  • the ball 2810 can guide the AF moving unit 2200 to move in the optical axis direction with respect to the fixing unit 2100.
  • the ball 2810 can guide the movement of the AF holder 2210 relative to the base 2110 in the optical axis direction.
  • the ball 2810 may be placed between the base 2110 and the AF holder 2210.
  • the ball 2810 may be disposed between the base 2110 and the AF holder 2210 in the x-axis direction.
  • the ball 2810 may be placed in the groove 2111a of the base 2110.
  • the ball 2810 may not overlap the OIS moving part 2300 in the optical axis direction.
  • the ball 2810 may be placed in the first groove 2214 of the AF holder 2210.
  • the ball 2810 includes a 1-1 ball that contacts the base 2110 and the AF holder 2210 at 4 points, and a 1-2 ball that contacts the base 2110 and the AF holder 2210 at 3 points. It can be included.
  • Ball 2810 may be spherical in shape.
  • Ball 2810 may be formed of metal. Grease may be applied to the surface of the ball 2810.
  • Ball 2810 may include a plurality of balls. Ball 2810 may include eight balls. Four balls 2810 may be placed on one side of the AF magnet 2410 and the remaining four balls 2810 may be placed on the other side of the AF magnet 2410.
  • the lens driving device 2010 may include a yoke 2830.
  • the yoke 2830 may be disposed in the first portion 2711 of the inner substrate 2710.
  • the yoke 2830 may be disposed between the AF coil 2420 and the AF moving unit 2200.
  • the yoke (2830) can interact with the AF magnet (2410) and attractive forces.
  • An attractive force may be generated between the yoke (2830) and the AF magnet (2410).
  • the yoke 2830 may be placed in a position corresponding to the AF magnet 2410.
  • the yoke 2830 may be formed of metal.
  • the ball 2810 may be pressed between the base 2110 and the AF holder 2210 by the attractive force between the yoke 2830 and the AF magnet 2410. That is, the contact state of the ball 2810 with the base 2110 and the AF holder 2210 can be maintained by the attractive force between the yoke 2830 and the AF magnet 2410.
  • the lens driving device 2010 may include an elastic member 2900.
  • the elastic member 2900 can connect the AF moving part 2200 and the OIS moving part 2300.
  • the elastic member 2900 can elastically connect the AF moving part 2200 and the OIS moving part 2300.
  • the elastic member 2900 can support the OIS moving part 2300 to be movable with respect to the AF moving part 2200.
  • the elastic member 2900 can guide OIS operation.
  • the elastic member 2900 may guide the OIS moving unit 2300 to move in a direction perpendicular to the optical axis.
  • the elastic member 2900 may guide the OIS moving unit 2300 to move in the x-axis direction and the y-axis direction with respect to the AF moving unit 2200.
  • the elastic member 2900 may be formed to guide both OIS-x-axis drive and OIS-y-axis drive.
  • the elastic member 2900 may include a leaf spring.
  • the elastic member 2900 may include a wire.
  • the elastic member 2900 may have elasticity.
  • the elastic member 2900 may be formed of metal.
  • the primary resonance frequency of the elastic member 2900 may be 40 to 60 Hz.
  • the primary resonance frequency of the elastic member 2900 may be 30 to 70 Hz.
  • the spring stiffness of the elastic member 2900 may be determined by the weight of the moving object.
  • the spring stiffness of the elastic member 2900 may be determined by the target natural frequency [Hz] of the moving object.
  • the spring stiffness of the elastic member 2900 may be determined by the level of electromagnetic force. Overall, depending on the size of the lens, the weight of the moving object and the level of electromagnetic force vary greatly, so the spring stiffness can also vary significantly. However, in the case of a spring type such as the third embodiment of the present invention, the target natural frequency can be set to a value of at least 40Hz or higher in consideration of control characteristics.
  • the x-axis spring top Kx can be between 104 N/m (240 Hz) and 228 N/m (260 Hz). Additionally, the upper Ky of the y-axis spring may be 104 N/m (240 Hz) to 228 N/m (260 Hz). The upper part of the x-axis spring and the upper part of the y-axis spring may be the same.
  • the Z-axis spring constant Kz can be set to the maximum value that satisfies the Kx and Ky conditions.
  • the lens driving device 2010 may include a lower elastic member 2910.
  • the lower elastic member 2910 may be a leaf spring.
  • the lower elastic member 2910 may have elasticity.
  • the lower elastic member 2910 may be combined with the AF moving unit 2200.
  • the lower elastic member 2910 may be combined with the AF holder 2210.
  • the lower elastic member 2910 may be disposed on the lower surface of the AF holder 2210.
  • the lower elastic member 2910 may be disposed in the AF holder 2210.
  • the lower elastic member 2910 may be disposed below the AF holder 2210.
  • the lower elastic member 2910 may be disposed below the AF holder 2210.
  • the lower elastic member 2910 may be disposed below the AF holder 2210.
  • the lower elastic member 2910 may be disposed on the lower surface of the body portion 2721.
  • the lower elastic member 2910 may be coupled to the lower surface of the body portion 2721.
  • the lower elastic member 2910 may be disposed perpendicular to the optical axis.
  • the lower elastic member 2910 may include a plurality of elastic units spaced apart from each other.
  • the lower elastic member 2910 may include first to fourth elastic units corresponding to the first to fourth wires 2931, 2932, 2933, and 2934.
  • the first to fourth elastic units may be spaced apart from each other.
  • the lower elastic member 2910 may include an outer portion 2911.
  • the outer part 2911 may be combined with the AF moving part 2200.
  • the lower elastic member 2910 may include a coupling portion 2912.
  • the coupling portion 2912 may be coupled to the wire 2930.
  • the lower elastic member 2910 may include a connection portion 2913.
  • the connection portion 2913 may connect the outer portion 2911 and the coupling portion 2912.
  • the outer portion 2911 of the lower elastic member 2910 and the coupling portion 2912 of the lower elastic member 2910 may be arranged at the same height. However, in the UP position where the lens is placed on the image sensor, the OIS moving part 2300 may be placed in a downward position due to the weight of the lens. At this time, the coupling portion 2912 may be placed at a lower position than the outer portion 2911.
  • the lens driving device 2010 may include an upper elastic member 2920.
  • the upper elastic member 2920 may be a leaf spring.
  • the upper elastic member 2920 may have elasticity.
  • the upper elastic member 2920 may be combined with the OIS moving part 2300.
  • the upper elastic member 2920 may be combined with the OIS holder 2310.
  • the upper elastic member 2920 may be disposed on the upper surface of the OIS holder 2310.
  • the upper elastic member 2920 may be disposed on the OIS holder 2310.
  • the upper elastic member 2920 may be disposed on the upper part of the OIS holder 2310.
  • the upper elastic member 2920 may be disposed on the OIS holder 2310.
  • the upper elastic member 2920 may be disposed perpendicular to the optical axis.
  • the upper elastic member 2920 may be formed integrally.
  • the upper elastic member 2920 may include an inner portion 2921.
  • the inner part 2921 may be combined with the OIS moving part 2300.
  • the upper elastic member 2920 may include a coupling portion 2922.
  • the coupling portion 2922 may be coupled to the wire 2930.
  • the upper elastic member 2920 may include a connection portion 2923.
  • the connection portion 2923 may connect the inner portion 2921 and the coupling portion 2922.
  • the inner portion 2921 of the upper elastic member 2920 and the coupling portion 2922 of the lower elastic member 2910 may be arranged at the same height. However, in the UP position where the lens is placed on the image sensor, the OIS moving part 2300 may be placed in a downward position due to the weight of the lens. At this time, the inner portion 2921 may be placed at a lower position than the coupling portion 2922.
  • the lens driving device 2010 may include a wire 2930.
  • the wire 2930 may be a ‘side elastic member’.
  • Wire 2930 may be a wire spring.
  • Wire 2930 may be a suspension wire.
  • the wire 2930 may have elasticity.
  • the wire 2930 may connect the upper elastic member 2920 and the lower elastic member 2910.
  • the wire 2930 may elastically connect the upper elastic member 2920 and the lower elastic member 2910.
  • the wire 2930 may be arranged parallel to the optical axis.
  • the wire 2930 may be arranged parallel to the optical axis direction.
  • Wire 2930 may include a plurality of wires.
  • Wire 2930 may include four wires.
  • the wire 2930 may include first to fourth wires 2931, 2932, 2933, and 2934.
  • the wire 2930 may include first to fourth wires 2931, 2932, 2933, and 2934 respectively disposed in the first to fourth corner areas of the fixing part 2100.
  • Figures 95 to 97 are diagrams for explaining autofocus driving of the lens driving device according to the third embodiment of the present invention.
  • Figure 95 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the AF coil.
  • Figure 96 is a cross-sectional view showing the moving part moving upward in the optical axis direction when a forward current is applied to the AF coil.
  • Figure 97 is a cross-sectional view showing a state in which a reverse current is applied to the AF coil and the moving part moves downward in the optical axis direction.
  • the moving part may be placed in a position spaced apart from both the top plate 2121 and the base 2110 of the cover 2120 in an initial position where no current is applied to the AF coil 2420.
  • the moving unit may be the AF moving unit 2200.
  • the moving unit may include an AF moving unit 2200 and an OIS moving unit 2300.
  • the AF coil 2420 When a forward current is applied to the AF coil 2420, the AF coil 2420 can move upward in the optical axis direction due to electromagnetic interaction between the AF coil 2420 and the AF magnet 2410 (see A in Figure 96). At this time, the AF holder 2210 along with the AF coil 2420 may move upward in the optical axis direction. Furthermore, the OIS holder 2310 and the lens along with the AF holder 2210 can move upward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the AF coil 2420 When a reverse current is applied to the AF coil 2420, the AF coil 2420 can move downward in the optical axis direction due to electromagnetic interaction between the AF coil 2420 and the AF magnet 2410 (see B in FIG. 97). At this time, the AF holder 2210 along with the AF coil 2420 may move downward in the optical axis direction. Furthermore, the OIS holder 2310 and the lens along with the AF holder 2210 can move downward in the optical axis direction. Accordingly, the distance between the lens and the image sensor can be changed to adjust the focus of the image formed on the image sensor through the lens.
  • the AF sensor 2430 moves together with the AF coil 2420 and detects the strength of the magnetic field of the AF magnet 2410 to detect the amount of movement or position of the lens in the optical axis direction. You can.
  • the movement amount or position of the lens in the optical axis direction detected by the AF sensor 2430 can be used for autofocus feedback control.
  • optical image stabilization (OIS) operation of the lens driving device according to the third embodiment of the present invention will be described with reference to the drawings.
  • Figures 98 to 100 are diagrams for explaining the image stabilization operation of the lens driving device according to the third embodiment of the present invention.
  • Figure 98 is a cross-sectional view showing the moving part in the initial state in which no current is applied to the OIS-x coil and OIS-y coil.
  • Figure 99 is a cross-sectional view showing the OIS moving part moving in the x-axis direction perpendicular to the optical axis when current is applied to the OIS-x coil.
  • Figure 100 is a cross-sectional view showing how current is applied to the OIS-y coil and the OIS moving part moves in the y-axis direction perpendicular to both the optical axis and the x-axis.
  • the moving part can be placed in an initial position where no current is applied to the OIS-x coil 2520 and the OIS-y coil 2620.
  • the moving unit may be the OIS moving unit 2300.
  • the OIS-x coil (2520) moves in the x-axis direction perpendicular to the optical axis due to electromagnetic interaction between the OIS-x coil (2520) and the OIS-x magnet (2510). It can be moved (see A in Figure 99).
  • the OIS holder 2310 together with the OIS-x coil 2520 can move in the x-axis direction.
  • the lens can move in the x-axis direction together with the OIS holder 2310. More specifically, when a forward current is applied to the OIS-x coil 2520, the OIS-x coil 2520, the OIS holder 2310, and the lens can move in one direction on the x-axis. Additionally, when a reverse current is applied to the OIS-x coil 2520, the OIS-x coil 2520, the OIS holder 2310, and the lens may move in other directions on the x-axis.
  • the OIS-y coil (2620) moves in the y-axis direction perpendicular to the optical axis due to electromagnetic interaction between the OIS-y coil (2620) and the OIS-y magnet (2610). It can be moved (see B in Figure 100).
  • the OIS holder 2310 together with the OIS-y coil 2620 can move in the y-axis direction.
  • the lens can move in the y-axis direction together with the OIS holder 2310. More specifically, when a forward current is applied to the OIS-y coil 2620, the OIS-y coil 2620, the OIS holder 2310, and the lens can move in one direction on the y-axis. Additionally, when a reverse current is applied to the OIS-y coil 2620, the OIS-y coil 2620, the OIS holder 2310, and the lens may move in other directions on the y-axis.
  • the OIS-x sensor 2530 can detect the amount of movement or position of the OIS-x coil 2520 by detecting the strength of the magnetic field of the OIS-x magnet 2510.
  • the movement amount or position detected by the OIS-x sensor 2530 can be used for hand shake correction feedback control in the x-axis direction.
  • the OIS-y sensor 2630 can detect the amount of movement or position of the OIS-y coil 2620 by detecting the strength of the magnetic field of the OIS-y magnet 2610.
  • the amount of movement or position detected by the OIS-y sensor 2630 can be used for y-axis direction image stabilization feedback control.
  • Figure 101 is an exploded perspective view of a camera device according to a third embodiment of the present invention.
  • the camera device 2010A may include a camera module.
  • the camera device 2010A may include a lens module 2020.
  • the lens module 2020 may include at least one lens.
  • the lens may be placed in a position corresponding to the image sensor 2060.
  • the lens module 2020 may include a lens and a barrel.
  • the lens module 2020 may be coupled to the OIS holder 2310 of the lens driving device 2010.
  • the lens module 2020 may be coupled to the OIS holder 2310 by screwing and/or adhesive.
  • the lens module 2020 can be moved integrally with the OIS holder 2310.
  • Camera device 2010A may include a filter 2030.
  • the filter 2030 may serve to block light in a specific frequency band from light passing through the lens module 2020 from entering the image sensor 2060.
  • the filter 2030 may be arranged parallel to the x-y plane.
  • the filter 2030 may be disposed between the lens module 2020 and the image sensor 2060.
  • Filter 2030 may be placed on sensor base 2040.
  • the filter 2030 may be disposed on the base 2110.
  • Filter 2030 may include an infrared filter. The infrared filter may block light in the infrared region from being incident on the image sensor 2060.
  • the camera device 2010A may include a sensor base 2040.
  • the sensor base 2040 may be disposed between the lens driving device 2010 and the printed circuit board 2050.
  • the sensor base 2040 may include a protrusion 2041 on which the filter 2030 is disposed.
  • An opening may be formed in the portion of the sensor base 2040 where the filter 2030 is disposed to allow light passing through the filter 2030 to enter the image sensor 2060.
  • the adhesive member may couple or adhere the base 2310 of the lens driving device 2010 to the sensor base 2040.
  • the adhesive member may additionally serve to prevent foreign substances from entering the interior of the lens driving device 2010.
  • the adhesive member may include one or more of epoxy, thermosetting adhesive, and ultraviolet curing adhesive.
  • the camera device 2010A may include a printed circuit board (PCB) 2050.
  • the printed circuit board 2050 may be a board or a circuit board.
  • a lens driving device 2010 may be disposed on the printed circuit board 2050.
  • a sensor base 2040 may be disposed between the printed circuit board 2050 and the lens driving device 2010.
  • the printed circuit board 2050 may be electrically connected to the lens driving device 2010.
  • An image sensor 2060 may be disposed on the printed circuit board 2050.
  • the printed circuit board 2050 may be equipped with various circuits, elements, and control units to convert the image formed on the image sensor 2060 into an electrical signal and transmit it to an external device.
  • the camera device 2010A may include an image sensor 2060.
  • the image sensor 2060 may be configured to form an image by entering light that has passed through a lens and a filter 2030.
  • the image sensor 2060 may be mounted on a printed circuit board 2050.
  • the image sensor 2060 may be electrically connected to the printed circuit board 2050.
  • the image sensor 2060 may be coupled to the printed circuit board 2050 using surface mounting technology (SMT).
  • SMT surface mounting technology
  • the image sensor 2060 may be coupled to the printed circuit board 2050 using flip chip technology.
  • the image sensor 2060 may be arranged so that its optical axis coincides with that of the lens. That is, the optical axis of the image sensor 2060 and the optical axis of the lens may be aligned.
  • the image sensor 2060 may convert light irradiated to the effective image area of the image sensor 2060 into an electrical signal.
  • the image sensor 2060 may be one of a charge coupled device (CCD), a metal oxide semiconductor (MOS), a CPD, and a CID.
  • CCD charge coupled device
  • MOS metal oxide semiconductor
  • CPD CPD
  • CID CID
  • the camera device 2010A may include a motion sensor 2070.
  • the motion sensor 2070 may be mounted on a printed circuit board 2050.
  • the motion sensor 2070 may be electrically connected to the control unit 2080 through a circuit pattern provided on the printed circuit board 2050.
  • the motion sensor 2070 may output rotational angular velocity information resulting from the movement of the camera device 2010A.
  • the motion sensor 2070 may include a 2-axis or 3-axis gyro sensor, or an angular velocity sensor.
  • the camera device 2010A may include a control unit 2080.
  • the control unit 2080 may be disposed on a printed circuit board 2050.
  • the control unit 2080 may be electrically connected to the coil 2330 of the lens driving device 2010.
  • the control unit 2080 can individually control the direction, intensity, and amplitude of the current supplied to the coil 2330.
  • the control unit 2080 may control the lens driving device 2010 to perform an autofocus function and/or an image stabilization function. Furthermore, the control unit 2080 may perform autofocus feedback control and/or camera shake correction feedback control for the lens driving device 2010.
  • Camera device 2010A may include a connector 2090.
  • the connector 2090 may be electrically connected to the printed circuit board 2050.
  • the connector 2090 may include a port for electrical connection to an external device.
  • Figure 102 is a perspective view of an optical device according to a third embodiment of the present invention
  • Figure 103 is a perspective view of an optical device according to a modification.
  • Optical devices include cell phones, mobile phones, portable terminals, mobile terminals, smart phones, smart pads, portable smart devices, digital cameras, laptop computers, digital broadcasting terminals, and PDAs (Personal Digital Assistants). , PMP (Portable Multimedia Player), and navigation may be included.
  • the optical device 2001 may include any device for taking images or photos.
  • the optical device 2001 may include a main body 2020.
  • the optical device 2001 may include a camera device 2010A.
  • the camera device 2010A may be disposed in the main body 2020.
  • the camera device 2010A can photograph a subject.
  • Optical device 2001 may include a display.
  • the display may be placed on the main body 2020.
  • the display may output one or more of a video or image captured by the camera device 2010A.
  • the display may be placed on the first side of the main body 2020.
  • the camera device 2010A may be disposed on one or more of the first side of the main body 2020 and the second side opposite the first side.
  • the camera device 2010A may have triple cameras arranged vertically.
  • the camera device 2010A-1 may have triple cameras arranged horizontally.
  • first to third embodiments of the present invention have been separately described, but some components of the first to third embodiments may be replaced with each other. That is, some components of the first embodiment can be replaced with corresponding components of any one or more of the second and third embodiments. Some components of the second embodiment may be replaced with corresponding components of any one or more of the first and third embodiments. Some components of the third embodiment may be replaced with corresponding components of any one or more of the first and second embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명의 제1실시예는 베이스; 상기 베이스 내에 배치되는 제1홀더; 상기 제1홀더 내에 배치되는 제2홀더; 상기 베이스에 배치되는 제1 내지 제3마그네트; 상기 제1홀더에 배치되고 상기 제1마그네트와 상호작용하는 제1코일; 상기 제2홀더에 배치되고 상기 제2마그네트와 상호작용하는 제2코일; 및 상기 제2홀더에 배치되고 상기 제3마그네트와 상호작용하는 제3코일을 포함하는 렌즈 구동 장치에 관한 것이다.

Description

렌즈 구동 장치, 카메라 장치 및 광학기기
본 실시예는 렌즈 구동 장치, 카메라 장치 및 광학기기에 관한 것이다.
카메라 장치는 피사체를 사진이나 동영상으로 촬영하는 장치이며, 스마트폰과 같은 광학기기, 드론, 차량 등에 장착되고 있다.
카메라 장치에는 피사체의 거리에 따라 초점이 자동으로 조절되는 오토 포커스 기능이 적용되고 있다. 또한, 사용자의 손떨림에 의해 초점이 흔들리는 현상을 방지하는 손떨림 보정 기능이 적용되고 있다.
오토 포커스 기능과 손떨림 보정 기능은 마그네트와 코일의 전자기적 상호작용을 통해 수행될 수 있다.
그런데, 종래의 렌즈 구동 장치에서는 전기적 연결이 불필요한 마그네트를 이동부에 배치하고 코일을 고정부에 배치하고 있다. 이 경우, 코일 대비 무게가 큰 마그네트가 이동부에 배치되어 전류 소모가 커지는 문제가 있다.
특히, 최근에는 이미지 센서 고화소화에 따라 렌즈 직경이 증가되고 이에 따라 렌즈의 무게도 증가되어 문제가 가중되고 있다.
또한, 종래의 렌즈 구동 장치에서는 OIS-x축 구동을 위한 가이드 구조와 OIS-y축 구동을 위한 가이드 구조를 별개의 층으로 배치함에 따라 카메라 장치의 광축방향으로의 높이가 커지는 문제가 있다.
(특허문헌 1) KR 10-2015-0118005 A
본 실시예는 마그네트 대비 무게가 가벼운 코일을 이동부에 배치함에 따라 오토 포커스 기능과 손떨림 보정 기능의 수행을 위한 소모전류가 절감되는 렌즈 구동 장치를 제공하고자 한다.
또한, OIS-x축 구동을 위한 가이드 구조와 OIs-y축 구동을 위한 가이드 구조를 일체로 형성함에 따라 광축방향으로의 높이가 최소화된 렌즈 구동 장치를 제공하고자 한다.
본 발명의 제1실시예에 따른 렌즈 구동 장치는 베이스; 상기 베이스 내에 배치되는 제1홀더; 상기 제1홀더 내에 배치되는 제2홀더; 상기 베이스에 배치되는 제1 내지 제3마그네트; 상기 제1홀더에 배치되고 상기 제1마그네트와 상호작용하는 제1코일; 상기 제2홀더에 배치되고 상기 제2마그네트와 상호작용하는 제2코일; 및 상기 제2홀더에 배치되고 상기 제3마그네트와 상호작용하는 제3코일을 포함할 수 있다.
상기 제1코일과 상기 제1마그네트의 상호작용에 의해 상기 제1홀더는 광축방향으로 이동하고, 상기 제2코일과 상기 제2마그네트의 상호작용에 의해 상기 제2홀더는 상기 광축방향에 수직한 제1방향으로 이동하고, 상기 제3코일과 상기 제3마그네트의 상호작용에 의해 상기 제2홀더는 상기 광축방향과 상기 제1방향 모두에 수직한 제2방향으로 이동할 수 있다.
상기 제2홀더는 상기 제1코일과 상기 제1마그네트의 상호작용에 의해 상기 제1홀더와 함께 상기 광축방향으로 이동할 수 있다.
상기 베이스는 서로 반대편에 배치되는 제1측부와 제2측부와, 서로 반대편에 배치되는 제3측부와 제4측부를 포함하고, 상기 제1마그네트는 상기 베이스의 상기 제1측부에 배치되고, 상기 제2마그네트는 상기 베이스의 상기 제2측부에 배치되고, 상기 제3마그네트는 상기 베이스의 상기 제3측부에 배치될 수 있다.
상기 제2홀더는 서로 반대편에 배치되는 제1측면과 제2측면과, 서로 반대편에 배치되는 제3측면과 제4측면을 포함하고, 상기 제1코일은 상기 제2홀더의 상기 제1측면과 상기 제1마그네트 사이에 배치되고, 상기 제2코일은 상기 제2홀더의 상기 제2측면과 상기 제2마그네트 사이에 배치되고, 상기 제3코일은 상기 제2홀더의 상기 제3측면과 상기 제3마그네트 사이에 배치될 수 있다.
상기 제1홀더에 배치되는 제1부분과, 상기 제2홀더의 상기 제2측면에 배치되는 제2부분과, 상기 제2홀더의 상기 제3측면에 배치되는 제3부분을 포함하는 제1기판을 포함하고, 상기 제1코일은 상기 제1기판의 상기 제1부분에 배치되고, 상기 제2코일은 상기 제1기판의 상기 제2부분에 배치되고, 상기 제3코일은 상기 제1기판의 상기 제3부분에 배치될 수 있다.
상기 제1기판은 상기 제2홀더의 상기 제4측면과 상기 제1홀더 사이에 배치되는 제4부분을 포함하고, 상기 제1기판의 상기 제4부분은 단자를 포함할 수 있다.
상기 렌즈 구동 장치는 상기 베이스에 배치되는 제2기판을 포함하고, 상기 제2기판은 상기 베이스에 배치되는 몸체부와, 상기 몸체부로부터 연장되는 연장부를 포함하고, 상기 연장부는 상기 제1기판의 상기 단자와 결합되는 제1단자를 포함하고, 상기 몸체부는 상기 제1단자와 전기적으로 연결되는 제2단자를 포함하고, 상기 연장부의 적어도 일부는 상기 제1홀더와 함께 이동할 수 있다.
상기 렌즈 구동 장치는 상기 베이스와 상기 제1홀더 사이에 배치되는 제1볼을 포함할 수 있다.
상기 렌즈 구동 장치는 상기 제1기판의 상기 제1부분에 배치되고 상기 제1마그네트와 인력이 발생되는 요크를 포함할 수 있다.
상기 렌즈 구동 장치는 상기 제1홀더와 상기 제2홀더 사이에 배치되는 제2볼을 포함할 수 있다.
상기 렌즈 구동 장치는 상기 제2홀더의 상면에 배치되는 제1탄성부재; 상기 제1홀더의 하면에 배치되는 제2탄성부재; 및 상기 제1탄성부재와 상기 제2탄성부재를 연결하는 제3탄성부재를 포함하고, 상기 제1홀더는 몸체부와, 상기 몸체부의 상면에 결합되는 가압부를 포함하고, 상기 제2탄성부재는 상기 몸체부의 하면에 배치되고, 상기 제2볼은 상기 제1홀더의 상기 가압부와 상기 제2홀더 사이에 배치될 수 있다.
상기 제2볼은 상기 제2홀더가 상기 제1홀더에 대해 광축방향에 수직한 제1방향과 제2방향으로 이동하도록 가이드할 수 있다.
상기 렌즈 구동 장치는 상기 제1기판의 상기 제1부분에 배치되고 상기 제1마그네트를 감지하는 제1센서; 상기 제1기판의 상기 제2부분에 배치되고 상기 제2마그네트를 감지하는 제2센서; 및 상기 제1기판의 상기 제3부분에 배치되고 상기 제3마그네트를 감지하는 제3센서를 포함할 수 있다.
본 발명의 제1실시예에 따른 카메라 장치는 인쇄회로기판; 상기 인쇄회로기판에 배치되는 이미지 센서; 상기 인쇄회로기판에 배치되는 렌즈 구동 장치; 및 상기 렌즈 구동 장치에 결합되는 렌즈를 포함할 수 있다.
본 발명의 제1실시예에 따른 광학기기는 본체; 상기 본체에 배치되는 카메라 장치; 및 상기 본체에 배치되고 상기 카메라 장치에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력하는 디스플레이를 포함할 수 있다.
본 발명의 제2실시예에 따른 렌즈 구동 장치는 고정부; 상기 고정부 내에 배치되는 제1이동부; 상기 제1이동부 내에 배치되는 제2이동부; 상기 제1이동부를 광축방향으로 이동시키는 제1구동부; 상기 제2이동부를 상기 광축방향에 수직한 제1방향으로 이동시키는 제2구동부; 상기 제2이동부를 상기 광축방향과 상기 제1방향에 수직한 제2방향으로 이동시키는 제3구동부; 상기 광축방향으로 상기 제1이동부와 상기 제2이동부와 중첩되도록 상기 제1이동부와 상기 제2이동부 사이에 배치되는 제1볼; 상기 광축방향과 평행하게 배치되는 와이어; 상기 와이어의 제1영역과 상기 제1이동부를 연결하는 제1탄성부재; 및 상기 와이어의 제2영역과 상기 제2이동부를 연결하는 제2탄성부재를 포함할 수 있다.
상기 와이어의 상기 제2영역은 상기 제1영역보다 높게 배치될 수 있다.
상기 제1이동부는 상기 제2이동부보다 높게 배치되는 상판을 포함하고, 상기 제1볼은 상기 제1이동부의 상기 상판과 상기 제2이동부 사이에 배치될 수 있다.
상기 제1탄성부재는 상기 제1이동부와 결합되는 외측부를 포함하고, 상기 제2탄성부재는 상기 제2이동부와 결합되는 내측부를 포함하고, 상기 광축방향으로, 상기 와이어의 상기 제1영역과 상기 제2영역 사이의 거리는 상기 제1탄성부재의 상기 외측부와 상기 제2탄성부재의 상기 내측부 사이의 거리보다 길 수 있다.
상기 제1탄성부재는 상기 제1이동부와 결합되는 외측부와, 상기 와이어와 결합되는 결합부와, 상기 외측부와 상기 결합부를 연결하는 연결부를 포함하고, 상기 제1탄성부재의 상기 결합부는 상기 제1탄성부재의 상기 외측부보다 낮게 배치될 수 있다.
상기 제2탄성부재는 상기 제2이동부와 결합되는 내측부와, 상기 와이어와 결합되는 결합부와, 상기 내측부와 상기 결합부를 연결하는 연결부를 포함하고, 상기 제2탄성부재의 상기 결합부는 상기 제2탄성부재의 상기 내측부보다 높게 배치될 수 있다.
위에서 볼 때, 상기 제1볼은 상기 제2탄성부재의 상기 내측부, 상기 결합부 및 상기 연결부를 통해 형성되는 공간 내에 배치될 수 있다.
상기 제2이동부는 상기 제2이동부의 상면에 형성되는 제1돌기와 제2돌기를 포함하고, 상기 제2탄성부재의 상기 내측부는 상기 제1돌기와 결합되는 제1영역과, 상기 제2돌기와 결합되는 제2영역을 포함하고, 상기 와이어는 상기 고정부의 제1코너영역에 배치되는 제1와이어를 포함하고, 상기 제2탄성부재의 상기 결합부는 상기 제1와이어와 결합되는 제1결합부를 포함하고, 상기 제2탄성부재의 상기 연결부는 상기 내측부의 상기 제1영역과 상기 제1결합부를 연결하는 제1연결부와, 상기 내측부의 상기 제2영역과 상기 제1결합부를 연결하는 제2연결부를 포함할 수 있다.
상기 제1탄성부재의 상기 결합부는 상기 제1와이어와 결합되는 제1결합부를 포함하고, 상기 제1탄성부재의 상기 연결부는 상기 제1탄성부재의 상기 외측부와 상기 제1탄성부재의 상기 제1결합부를 연결하는 제1연결부와 제2연결부를 포함하고, 아래에서 볼 때, 상기 제1탄성부재의 상기 제1 및 제2연결부는 광축과 상기 고정부의 상기 제1코너영역을 연결하는 가상의 직선을 기준으로 대칭일 수 있다.
상기 와이어는 상기 고정부의 제1 내지 제4코너영역에 각각 배치되는 제1 내지 제4와이어를 포함하고, 상기 제1탄성부재는 상기 제1 내지 제4와이어와 대응하는 제1 내지 제4탄성유닛을 포함하고, 상기 제1 내지 제4탄성유닛은 서로 이격되고, 상기 제2탄성부재는 일체로 형성될 수 있다.
상기 제1구동부는 상기 제1이동부에 배치되는 제1코일과, 상기 고정부에 배치되는 제1마그넷을 포함하고, 상기 제2구동부는 상기 제2이동부에 배치되는 제2코일과, 상기 고정부에 배치되는 제2마그넷을 포함할 수 있다.
상기 제3구동부는 상기 제2이동부에 배치되는 제3코일과, 상기 고정부에 배치되는 제3마그넷을 포함할 수 있다.
상기 제1이동부에 배치되는 제1부분과, 상기 제2이동부의 제1측면에 배치되는 제2부분과, 상기 제2이동부의 제2측면에 배치되는 제3부분을 포함하는 제1기판을 포함하고, 상기 제1코일은 상기 제1기판의 상기 제1부분에 배치되고, 상기 제2코일은 상기 제1기판의 상기 제2부분에 배치되고, 상기 제3코일은 상기 제1기판의 상기 제3부분에 배치될 수 있다.
상기 고정부에 배치되는 몸체부와, 상기 몸체부로부터 연장되는 연장부를 포함하는 제2기판을 포함하고, 상기 연장부는 상기 제1기판의 단자와 결합되는 단자를 포함하고, 상기 연장부의 적어도 일부는 상기 제1이동부와 함께 이동할 수 있다.
본 발명의 제2실시예에 따른 카메라 장치는 인쇄회로기판; 상기 인쇄회로기판에 배치되는 이미지 센서; 상기 인쇄회로기판에 배치되는 상기 렌즈 구동 장치; 및 상기 렌즈 구동 장치에 결합되는 렌즈를 포함할 수 있다.
본 발명의 제2실시예에 따른 광학기기는 본체; 상기 본체에 배치되는 상기 카메라 장치; 및 상기 본체에 배치되고 상기 카메라 장치에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력하는 디스플레이를 포함할 수 있다.
본 발명의 제3실시예에 따른 렌즈 구동 장치는 고정부; 상기 고정부 내에 배치되는 제1이동부; 상기 제1이동부 내에 배치되는 제2이동부; 상기 제1이동부를 광축방향으로 이동시키는 제1구동부; 상기 제2이동부를 상기 광축방향에 수직한 제1방향으로 이동시키는 제2구동부; 상기 제2이동부를 상기 광축방향과 상기 제1방향에 수직한 제2방향으로 이동시키는 제3구동부; 상기 고정부와 상기 제1이동부 사이에 배치되는 볼; 및 상기 제1이동부와 상기 제2이동부를 연결하는 탄성부재를 포함하고, 상기 제1구동부는 상기 제1이동부에 배치되는 제1코일과, 상기 고정부에 배치되는 제1마그넷을 포함할 수 있다.
상기 볼은 상기 광축방향으로 상기 제2이동부와 중첩되지 않을 수 있다.
상기 탄성부재는 상기 제1이동부와 결합되는 제1탄성부재와, 상기 제2이동부와 결합되는 제2탄성부재와, 상기 제1탄성부재와 상기 제2탄성부재를 연결하는 와이어를 포함할 수 있다.
상기 제1탄성부재는 상기 제1이동부와 결합되는 외측부와, 상기 와이어와 결합되는 결합부와, 상기 외측부와 상기 결합부를 연결하는 연결부를 포함할 수 있다.
상기 제1탄성부재의 상기 외측부와 상기 제1탄성부재의 상기 결합부는 같은 높이로 배치될 수 있다.
상기 제2탄성부재는 상기 제2이동부와 결합되는 내측부와, 상기 와이어와 결합되는 결합부와, 상기 내측부와 상기 제2탄성부재의 상기 결합부를 연결하는 연결부를 포함할 수 있다.
상기 제2탄성부재의 상기 내측부와 상기 제1탄성부재의 상기 결합부는 같은 높이로 배치될 수 있다.
상기 제2구동부는 상기 제2이동부에 배치되는 제2코일과, 상기 고정부에 배치되는 제2마그넷을 포함할 수 있다.
상기 제3구동부는 상기 제2이동부에 배치되는 제3코일과, 상기 고정부에 배치되는 제3마그넷을 포함할 수 있다.
상기 제1이동부에 배치되는 제1부분과, 상기 제2이동부의 제1측면에 배치되는 제2부분과, 상기 제2이동부의 제2측면에 배치되는 제3부분을 포함하는 제1기판을 포함하고, 상기 제1코일은 상기 제1기판의 상기 제1부분에 배치되고, 상기 제2코일은 상기 제1기판의 상기 제2부분에 배치되고, 상기 제3코일은 상기 제1기판의 상기 제3부분에 배치될 수 있다.
상기 고정부에 배치되는 몸체부와, 상기 몸체부로부터 연장되는 연장부를 포함하는 제2기판을 포함하고, 상기 연장부는 상기 제1기판의 단자와 결합되는 단자를 포함하고, 상기 연장부의 적어도 일부는 상기 제1이동부와 함께 이동할 수 있다.
상기 볼은 상기 제1이동부가 상기 고정부에 대해 상기 광축방향으로 이동하도록 가이드하고, 상기 탄성부재는 상기 제2이동부가 상기 제1이동부에 대해 상기 제1방향과 상기 제2방향으로 이동하도록 가이드할 수 있다.
상기 제1코일과 상기 제1이동부 사이에 배치되고 상기 제1마그넷과 인력이 작용하는 요크를 포함할 수 있다.
본 발명의 제3실시예에 따른 카메라 장치는 인쇄회로기판; 상기 인쇄회로기판에 배치되는 이미지 센서; 상기 인쇄회로기판에 배치되는 상기 렌즈 구동 장치; 및 상기 렌즈 구동 장치에 결합되는 렌즈를 포함할 수 있다.
본 발명의 제3실시예에 따른 광학기기는 본체; 상기 본체에 배치되는 상기 카메라 장치; 및 상기 본체에 배치되고 상기 카메라 장치에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력하는 디스플레이를 포함할 수 있다.
본 실시예를 통해, 마그네트 대비 무게가 가벼운 코일이 이동부에 배치됨에 따라 오토 포커스 기능과 손떨림 보정 기능의 수행을 위한 소모전류가 절감될 수 있다.
또한, OIS-x축 구동을 위한 가이드 구조와 OIs-y축 구동을 위한 가이드 구조가 일체로 형성됨에 따라 렌즈 구동 장치의 광축방향으로의 높이가 최소될 수 있다.
이를 통해, 스마트폰에서 카메라 장치가 돌출되는 높이가 최소화될 수 있다.
또한, 본 발명의 제2실시예의 OIS가이드 구조는 별도의 예압부재 없이 OIS가이드볼을 밀착 상태를 유지할 수 있다.
도 1은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 개념도이다.
도 2는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 사시도이다.
도 3은 도 2의 A-A에서 바라본 단면도이다.
도 4는 도 2의 B-B에서 바라본 단면도이다.
도 5는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 분해사시도이다.
도 6은 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이다.
도 7은 도 6의 일부를 확대해서 도시한 확대도이다.
도 8은 도 6의 상태의 렌즈 구동 장치를 도 6과 다른 방향에서 본 사시도이다.
도 9는 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 고정부와 일부 구성을 생략한 상태의 사시도이다.
도 10은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부의 저면사시도이다.
도 11은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성 중 덮개를 제거한 상태의 저면사시도이다.
도 12는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 베이스와 제2기판을 도시하는 사시도이다.
도 13은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부와 제2기판을 도시하는 사시도이다.
도 14는 도 13의 상태의 렌즈 구동 장치를 도 13과 다른 방향에서 본 저면사시도이다.
도 15는 도 14의 상태의 렌즈 구동 장치에서 덮개와 제2기판을 제거한 상태의 저면사시도이다.
도 16은 도 15의 상태의 렌즈 구동 장치에서 제1홀더를 제거한 상태의 저면사시도이다.
도 17은 도 16의 상태의 렌즈 구동 장치의 저면도이다.
도 18은 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 커버와 제1홀더의 가압부를 제거한 상태의 평면도이다.
도 19는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제2이동부와 기판과 관련 구성을 도시하는 사시도이다.
도 20은 도 19 상태의 렌즈 구동 장치의 저면도와 일부 확대도이다.
도 21은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1홀더와 제2기판과 관련 구성의 사시도이다.
도 22는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 구동부, 기판, 탄성부재 등을 도시하는 저면사시도이다.
도 23은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 구동부, 기판 및 탄성부재를 도시하는 평면도이다.
도 24는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1기판과 코일을 도시하는 사시도이다.
도 25는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제2기판을 도시하는 사시도이다.
도 26은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1홀더의 가압부를 제거한 상태의 단면사시도이다.
도 27은 도 26에서 제1홀더의 가압부 등의 구성을 추가한 상태의 단면사시도이다.
도 28 내지 도 30은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 28은 제1코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 29는 제1코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 30은 제1코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
도 31 내지 도 33은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 31은 제2코일과 제3코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 32는 제2코일에 전류가 인가되어 제2이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 33은 제3코일에 전류가 인가되어 제2이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 34는 본 발명의 제1실시예에 따른 카메라 장치의 분해사시도이다.
도 35는 본 발명의 제1실시예에 따른 광학기기의 사시도이다.
도 36은 변형례에 따른 광학기기의 사시도이다.
도 37은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 개념도이다.
도 38은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 사시도이다.
도 39는 도 38의 A-A에서 바라본 단면도이다.
도 40은 도 38의 B-B에서 바라본 단면도이다.
도 41은 도 38의 C-C에서 바라본 단면도이다.
도 42는 본 발명의 제2실시예에 따른 렌즈 구동 장치를 광축에 수직한 단면으로 잘라 위에서 본 단면도이다.
도 43은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 분해사시도이다.
도 44는 본 발명의 제2실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이다.
도 45는 도 44의 일부를 확대해서 도시한 확대도이다.
도 46a는 도 44을 다른 방향에서 본 사시도이다.
도 46b는 도 46에서 AF이동부의 금속부재를 생략한 모습을 도시하는 사시도이다.
도 47은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 고정부와 관련 구성을 도시하는 사시도이다.
도 48은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성을 도시하는 사시도이다.
도 49는 도 48을 정면에서 본 정면도이다.
도 50은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 AF가이드볼과 관련 구성을 도시하는 단면사시도이다.
도 51은 도 48을 다른 방향에서 본 사시도이다.
도 52는 도 51에서 덮개를 제거한 상태의 사시도이다.
도 53은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 AF이동부와 관련 구성을 아래에서 본 저면도이다.
도 54는 도 53을 다른 방향에서 본 저면사시도이다.
도 55는 도 54의 일부를 확대해서 도시한 확대도이다.
도 56은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 OIS이동부와 관련 구성을 도시하는 사시도이다.
도 57a는 도 56의 일부를 확대해서 도시한 확대도이다.
도 57b는 도 57a의 A-A에서 바라본 단면도이다.
도 58a는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 OIS가이드볼의 가압구조를 도시하는 단면도이다.
도 58b는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어의 결합구조를 도시하는 단면도이다.
도 59는 도 56을 다른 방향에서 본 저면사시도이다.
도 60은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 내측기판과 외측기판을 도시하는 사시도이다.
도 61은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어를 도시하는 사시도이다.
도 62 내지 도 64는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 62은 AF코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 63은 AF코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 64은 AF코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
도 65 내지 도 67은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 65는 OIS-x코일과 OIS-y코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 66은 OIS-x코일에 전류가 인가되어 OIS이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 67은 OIS-y코일에 전류가 인가되어 OIS이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 68은 본 발명의 제2실시예에 따른 카메라 장치의 분해사시도이다.
도 69는 본 발명의 제2실시예에 따른 광학기기의 사시도이다.
도 70은 변형례에 따른 광학기기의 사시도이다.
도 71은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 개념도이다.
도 72는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 사시도이다.
도 73은 도 72의 A-A에서 바라본 단면도이다.
도 74는 도 72의 B-B에서 바라본 단면도이다.
도 75는 도 72의 C-C에서 바라본 단면도이다.
도 76은 도 75의 일부를 확대 도시한 확대도이다.
도 77은 본 발명의 제3실시예에 따른 렌즈 구동 장치를 광축에 수직한 단면으로 잘라 위에서 본 단면도이다.
도 78은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 분해사시도이다.
도 79는 본 발명의 제3실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이다.
도 80은 도 79의 일부를 확대해서 도시한 확대도이다.
도 81은 도 80을 다른 방향에서 본 사시도이다.
도 82는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 고정부와 관련 구성을 도시하는 사시도이다.
도 83은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성을 도시하는 사시도이다.
도 84는 도 83을 정면에서 본 정면도이다.
도 85는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 AF가이드볼과 관련 구성을 도시하는 단면사시도이다.
도 86은는 도 83을 다른 방향에서 본 사시도이다.
도 87은 도 86에서 덮개를 제거한 상태의 사시도이다.
도 88은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 AF이동부와 관련 구성을 아래에서 본 저면도이다.
도 89는 도 88을 다른 방향에서 본 저면사시도이다.
도 90은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 OIS이동부와 관련 구성을 도시하는 사시도이다.
도 91은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 탄성부재의 배치구조를 도시하는 단면도이다.
도 92는 도 90을 다른 방향에서 본 저면사시도이다.
도 93은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 내측기판과 외측기판을 도시하는 사시도이다.
도 94는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어를 도시하는 사시도이다.
도 95 내지 도 97은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 95는 AF코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 96은 AF코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 97은 AF코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
도 98 내지 도 100은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 98은 OIS-x코일과 OIS-y코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 99는 OIS-x코일에 전류가 인가되어 OIS이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 100은 OIS-y코일에 전류가 인가되어 OIS이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 101은 본 발명의 제3실시예에 따른 카메라 장치의 분해사시도이다.
도 102는 본 발명의 제3실시예에 따른 광학기기의 사시도이다.
도 103은 변형례에 따른 광학기기의 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다.
이하에서 사용되는 '광축(Optical Axis, 도 28의 OA 참조) 방향'은 렌즈 구동 장치에 결합되는 렌즈 및/또는 이미지 센서의 광축방향으로 정의한다.
이하에서 사용되는 '수직방향'은 광축방향과 평행한 방향 내지 같은 방향일 수 있다. 수직방향은 'z축 방향'과 대응할 수 있다. 이하에서 사용되는 '수평방향'은 수직방향과 수직한 방향일 수 있다. 즉, 수평방향은 광축에 수직한 방향일 수 있다. 따라서, 수평방향은 'x축 방향'과 'y축 방향'을 포함할 수 있다.
이하에서 사용되는 '오토 포커스(AF, auto focus) 기능'는 이미지 센서에 피사체의 선명한 영상이 얻어질 수 있도록 피사체의 거리에 따라 렌즈를 광축방향으로 이동시켜 이미지 센서와의 거리를 조절함으로써 피사체에 대한 초점을 자동으로 맞추는 기능으로 정의한다. 또한, '오토 포커스 피드백(CLAF, closed-loop auto focus) 제어'는 포커스 조절의 정확성을 향상시키기 위해 이미지 센서와 렌즈 사이의 거리를 감지하여 렌즈의 위치를 실시간으로 피드백(feedback, 되먹임) 제어하는 것으로 정의한다.
이하에서 사용되는 '손떨림 보정(OIS, optical image stabilization) 기능'은 사용자의 손떨림에 의해 이미지 또는 영상이 흔들리는 현상을 방지하기 위해 손떨림을 상쇄하도록 렌즈를 광축에 수직한 방향으로 이동 또는 틸트시키는 기능으로 정의한다. 또한, 또한, '손떨림 보정 피드백(CLAF, closed-loop auto focus) 제어'는 손떨림 보정의 정확성을 향상시키기 위해 이미지 센서에 대한 렌즈의 위치를 감지하여 렌즈의 위치를 실시간으로 피드백(feedback, 되먹임) 제어하는 것으로 정의한다.
이하에서는 "AF이동부(1200)"와 "OIS이동부(1300)" 중 하나를 "제1이동부"라 하고 다른 하나를 "제2이동부"라 할 수 있다.
이하에서는 "AF구동부(1400)", “OIS-x구동부(1500)" 및 "OIS-y구동부(1600)" 중 하나를 "제1구동부"라 하고 다른 하나를 "제2구동부"라 하고 다른 하나를 "제3구동부"라 할 수 있다.
이하에서는 "AF마그넷(1410)", "OIS-x마그넷(1510)" 및 "OIS-y마그넷(1610)" 중 하나를 "제1마그넷"이라 하고 다른 하나를 "제2마그넷"이라 하고 다른 하나를 "제3마그넷"이라 할 수 있다.
이하에서는 "AF코일(1420)", "OIS-x코일(1520)" 및 "OIS-y코일(1620)" 중 하나를 "제1코일"이라 하고 다른 하나를 "제2코일"이라 하고 다른 하나를 "제3코일"이라 할 수 있다.
이하에서는 "AF센서(1430)", "OIS-x센서(1530)" 및 "OIS-y센서(1630)" 중 하나를 "제1센서"라 하고 다른 하나를 "제2센서"라 하고 다른 하나를 "제3센서"라 할 수 있다.
이하에서는 "내측기판(1710)"과 "외측기판(1720)" 중 하나를 "제1기판"이라 하고 다른 하나를 "제2기판"이라 할 수 있다.
이하에서는 "AF가이드볼(1810)"과 "OIS가이드볼(1820)" 중 어느 하나를 "제1볼"이라 하고 다른 하나를 "제2볼"이라 할 수 있다.
이하에서는 "하부 탄성부재(1910)"와 "상부 탄성부재(1920)" 중 어느 하나를 "제1탄성부재"라 하고 다른 하나를 "제2탄성부재"라 할 수 있다.
이하에서는 "AF이동부(2200)"와 "OIS이동부(2300)" 중 하나를 "제1이동부"라 하고 다른 하나를 "제2이동부"라 할 수 있다.
이하에서는 "AF구동부(2400)", “OIS-x구동부(2500)" 및 "OIS-y구동부(2600)" 중 하나를 "제1구동부"라 하고 다른 하나를 "제2구동부"라 하고 다른 하나를 "제3구동부"라 할 수 있다.
이하에서는 "AF마그넷(2410)", "OIS-x마그넷(2510)" 및 "OIS-y마그넷(2610)" 중 하나를 "제1마그넷"이라 하고 다른 하나를 "제2마그넷"이라 하고 다른 하나를 "제3마그넷"이라 할 수 있다.
이하에서는 "AF코일(2420)", "OIS-x코일(2520)" 및 "OIS-y코일(2620)" 중 하나를 "제1코일"이라 하고 다른 하나를 "제2코일"이라 하고 다른 하나를 "제3코일"이라 할 수 있다.
이하에서는 "AF센서(2430)", "OIS-x센서(2530)" 및 "OIS-y센서(2630)" 중 하나를 "제1센서"라 하고 다른 하나를 "제2센서"라 하고 다른 하나를 "제3센서"라 할 수 있다.
이하에서는 "내측기판(2710)"과 "외측기판(2720)" 중 하나를 "제1기판"이라 하고 다른 하나를 "제2기판"이라 할 수 있다.
이하에서는 "하부 탄성부재(2910)"와 "상부 탄성부재(2920)" 중 어느 하나를 "제1탄성부재"라 하고 다른 하나를 "제2탄성부재"라 할 수 있다.
이하에서는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 구성을 도면을 참조하여 설명한다.
도 1은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 개념도이고, 도 2는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 사시도이고, 도 3은 도 2의 A-A에서 바라본 단면도이고, 도 4는 도 2의 B-B에서 바라본 단면도이고, 도 5는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 분해사시도이고, 도 6은 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이고, 도 7은 도 6의 일부를 확대해서 도시한 확대도이고, 도 8은 도 6의 상태의 렌즈 구동 장치를 도 6과 다른 방향에서 본 사시도이고, 도 9는 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 고정부와 일부 구성을 생략한 상태의 사시도이고, 도 10은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부의 저면사시도이고, 도 11은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성 중 덮개를 제거한 상태의 저면사시도이고, 도 12는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 베이스와 제2기판을 도시하는 사시도이고, 도 13은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 이동부와 제2기판을 도시하는 사시도이고, 도 14는 도 13의 상태의 렌즈 구동 장치를 도 13과 다른 방향에서 본 저면사시도이고, 도 15는 도 14의 상태의 렌즈 구동 장치에서 덮개와 제2기판을 제거한 상태의 저면사시도이고, 도 16은 도 15의 상태의 렌즈 구동 장치에서 제1홀더를 제거한 상태의 저면사시도이고, 도 17은 도 16의 상태의 렌즈 구동 장치의 저면도이고, 도 18은 본 발명의 제1실시예에 따른 렌즈 구동 장치에서 커버와 제1홀더의 가압부를 제거한 상태의 평면도이고, 도 19는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제2이동부와 기판과 관련 구성을 도시하는 사시도이고, 도 20은 도 19 상태의 렌즈 구동 장치의 저면도와 일부 확대도이고, 도 21은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1홀더와 제2기판과 관련 구성의 사시도이고, 도 22는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 구동부, 기판, 탄성부재 등을 도시하는 저면사시도이고, 도 23은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 구동부, 기판 및 탄성부재를 도시하는 평면도이고, 도 24는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1기판과 코일을 도시하는 사시도이고, 도 25는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제2기판을 도시하는 사시도이고, 도 26은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 제1홀더의 가압부를 제거한 상태의 단면사시도이고, 도 27은 도 26에서 제1홀더의 가압부 등의 구성을 추가한 상태의 단면사시도이다.
렌즈 구동 장치(10)는 보이스 코일 모터(VCM, Voice Coil Motor)일 수 있다. 렌즈 구동 장치(10)는 렌즈 구동 모터일 수 있다. 렌즈 구동 장치(10)는 렌즈 구동 액츄에이터일 수 있다. 렌즈 구동 장치(10)는 AF 모듈을 포함할 수 있다. 렌즈 구동 장치(10)는 OIS 모듈을 포함할 수 있다.
렌즈 구동 장치(10)는 고정부(100)를 포함할 수 있다. 고정부(100)는 이동부의 이동시에 상대적으로 고정된 부분일 수 있다. 이동부는 고정부(100)에 대해 이동할 수 있다.
렌즈 구동 장치(10)는 베이스(110)를 포함할 수 있다. 고정부(100)는 베이스(110)를 포함할 수 있다. 베이스(110)는 제1홀더(210)의 아래에 배치될 수 있다. 베이스(110)는 제2홀더(310)의 아래에 배치될 수 있다. 베이스(110)는 커버(120)와 결합될 수 있다. 제1홀더(210)와 제2홀더(310)는 베이스(110) 상에 배치될 수 있다. 제1홀더(210)와 제2홀더(310)는 베이스(110)의 하판 상에 배치될 수 있다. 제1홀더(210)와 제2홀더(310)는 베이스(110) 내에 배치될 수 있다. 제1홀더(210)와 제2홀더(310)는 베이스(110)의 측판 내에 배치될 수 있다.
본 발명의 제1실시예에서는 제1 내지 제3마그네트(410, 510, 610) 모두가 베이스(110)에 배치될 수 있다. 제1 내지 제3마그네트(410, 510, 610) 모두가 고정부(100)에 배치될 수 있다. 즉, 오토 포커스 동작에서 제1 내지 제3마그네트(410, 510, 610) 모두 고정된 상태를 유지할 수 있다. 또한, 손떨림 보정 동작에서 제1 내지 제3마그네트(410, 510, 610) 모두 고정된 상태를 유지할 수 있다. 오토 포커스 동작에서 제1마그네트(410)는 고정되고 제1코일(420)이 이동할 수 있다. 손떨림 보정 동작에서 제2 및 제3마그네트(510, 610)는 고정되고 제2 및 제3코일(520, 620)이 이동할 수 있다.
베이스(110)는 하판을 포함할 수 있다. 베이스(110)는 측판을 포함할 수 있다. 측판은 '측부'일 수 있다. 베이스(110)의 측판은 하판의 상면으로부터 연장될 수 있다.
베이스(110)의 측판은 복수의 측판을 포함할 수 있다. 베이스(110)의 측판은 4개의 측판을 포함할 수 있다. 다만, 베이스(110)의 4개의 측판 중 하나 이상은 생략될 수 있다. 베이스(110)의 측판은 제1 내지 제4측판(111, 112, 113, 114)을 포함할 수 있다. 베이스(110)는 서로 반대편에 배치되는 제1측판(111)과 제2측판(112)과, 서로 반대편에 배치되는 제3측판(113)과 제4측판(114)을 포함할 수 있다.
베이스(110)의 측부는 복수의 측부를 포함할 수 있다. 베이스(110)의 측부는 4개의 측부를 포함할 수 있다. 다만, 베이스(110)의 4개의 측부 중 하나 이상은 생략될 수 있다. 베이스(110)의 측부는 제1 내지 제4측부를 포함할 수 있다. 베이스(110)는 서로 반대편에 배치되는 제1측부와 제2측부와, 서로 반대편에 배치되는 제3측부와 제4측부를 포함할 수 있다.
제1마그네트(410)는 베이스(110)의 제1측판에 배치될 수 있다. 제2마그네트(510)는 베이스(110)의 제2측판에 배치될 수 있다. 제3마그네트(610)는 베이스(110)의 제3측판에 배치될 수 있다.
베이스(110)의 제1측판(111)은 홈(111a)을 포함할 수 있다. 홈(111a)은 '제1볼 수용홈'일 수 있다. 홈(111a)에는 제1볼(810)이 배치될 수 있다. 홈(111a)은 제1볼(810)과 직접 접촉할 수 있다. 홈(111a)은 광축방향으로 배치될 수 있다. 홈(111a)은 복수의 홈을 포함할 수 있다. 홈(111a)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(111a)은 제1볼(810)과 2점에서 접촉되는 제1홈과, 제1볼(810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 제1볼(810)과 2점에서 접촉할 수 있다.
베이스(110)의 제2측판(112)은 돌출부(112a)를 포함할 수 있다. 돌출부(112a)는 외측으로 돌출될 수 있다. 돌출부(112a)의 상측과 하측으로 제2기판(720)의 레그부(722)가 배치될 수 있다. 돌출부(112a)에는 제2기판(720)의 레그부(722)가 이동하는 경우에도 간섭되지 않도록 홈이 형성될 수 있다.
베이스(110)는 단차(115)를 포함할 수 있다. 단차(115)는 베이스(110)의 외측면의 하단부에 형성될 수 있다. 단차(115)는 베이스(110)의 외측면으로부터 돌출될 수 있다. 베이스(110)의 단차(115)에는 커버(120)의 측판(122)이 배치될 수 있다.
렌즈 구동 장치(10)는 커버(120)를 포함할 수 있다. 고정부(100)는 커버(120)를 포함할 수 있다. 커버(120)는 베이스(110)에 배치될 수 있다. 커버(120)는 베이스(110)에 결합될 수 있다. 커버(120)는 베이스(110)에 고정될 수 있다. 커버(120)는 제1홀더(210)를 내부에 수용할 수 있다. 커버(120)는 제2홀더(310)를 내부에 수용할 수 있다. 커버(120)는 쉴드부재일 수 있다. 커버(120)는 쉴드캔일 수 있다.
커버(120)는 상판(141)을 포함할 수 있다. 상판(141)은 이동부 상에 배치될 수 있다. 이동부의 상측 이동은 이동부가 상판(141)에 접촉되는 것에 의해 제한될 수 있다. 상판(141)은 광이 통과하는 홀을 포함할 수 있다.
커버(120)는 측판(142)을 포함할 수 있다. 측판(142)은 상판(141)으로부터 연장될 수 있다. 측판(142)은 베이스(110)에 배치될 수 있다. 측판(142)은 베이스(110)의 외측면의 하단부에 돌출형성되는 단차부에 배치될 수 있다. 측판(142)은 복수의 측판을 포함할 수 있다. 측판(142)은 4개의 측판을 포함할 수 있다. 측판(142)은 서로 반대편에 배치되는 제1측판과 제2측판과, 서로 반대편에 배치되는 제3측판과 제4측판을 포함할 수 있다.
렌즈 구동 장치(10)는 이동부를 포함할 수 있다. 이동부는 고정부(100)에 배치될 수 있다. 이동부는 고정부(100) 내에 배치될 수 있다. 이동부는 고정부(100) 상에 배치될 수 있다. 이동부는 고정부(100)에 이동가능하게 배치될 수 있다. 이동부는 구동부에 의해 고정부(100)를 기준으로 이동할 수 있다. 이동부는 AF 구동시에 이동할 수 있다. 이동부는 OIS 구동시에 이동할 수 있다. 이동부에는 렌즈가 결합될 수 있다.
렌즈 구동 장치(10)는 제1이동부(200)를 포함할 수 있다. 제1이동부(200)는 'AF이동부'일 수 있다. 제1이동부(200)는 고정부(100)에 배치될 수 있다. 제1이동부(200)는 고정부(100) 내에 배치될 수 있다. 제1이동부(200)는 고정부(100) 상에 배치될 수 있다. 제1이동부(200)는 고정부(100)와 제2이동부(300) 사이에 배치될 수 있다. 제1이동부(200)는 고정부(100)에 이동가능하게 배치될 수 있다. 제1이동부(200)는 제1구동부에 의해 고정부(100)에 대해 광축방향으로 이동할 수 있다. 제1이동부(200)는 AF 구동시에 이동할 수 있다.
렌즈 구동 장치(10)는 제1홀더(210)를 포함할 수 있다. 제1이동부(200)는 제1홀더(210)를 포함할 수 있다. 제1홀더(210)는 'AF홀더'일 수 있다. 제1홀더(210)는 'AF캐리어'일 수 있다. 제1홀더(210)는 베이스(110) 내에 배치될 수 있다. 제1홀더(210)는 베이스(110) 상에 배치될 수 있다. 제1홀더(210)는 커버(120) 내에 배치될 수 있다. 제1홀더(210)는 베이스(110)와 제2홀더(310) 사이에 배치될 수 있다. 제1홀더(210)는 광축방향으로 이동가능하게 배치될 수 있다.
렌즈 구동 장치(10)는 몸체부(211)를 포함할 수 있다. 제1홀더(210)는 몸체부(211)를 포함할 수 있다. 몸체부(211)는 가압부(212)와 별도로 형성될 수 있다. 몸체부(211)에는 제2탄성부재(870)가 결합될 수 있다.
제1홀더(210)는 금속부재(211a)를 포함할 수 있다. 몸체부(211)는 금속부재(211a)를 포함할 수 있다. 금속부재(211a)는 몸체부(211)에 인서트 사출될 수 있다. 금속부재(211a)의 적어도 일부는 몸체부(211)의 상면에 배치될 수 있다. 금속부재(211a)는 몸체부(211)의 강도를 보강하기 위해 배치될 수 있다.
제1홀더(210)는 홈(211b)을 포함할 수 있다. 몸체부(211)는 홈(211b)을 포함할 수 있다. 홈(211b)은 '제1볼 수용홈'일 수 있다. 홈(211b)에는 제1볼(810)이 배치될 수 있다. 홈(211b)은 제1볼(810)과 직접 접촉할 수 있다. 홈(211b)은 광축방향으로 배치될 수 있다. 홈(211b)은 복수의 홈을 포함할 수 있다. 홈(211b)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(211b)은 제1볼(810)과 2점에서 접촉되는 제1홈과, 제1볼(810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 제1볼(810)과 2점에서 접촉할 수 있다.
제1홀더(210)는 돌출부(211c)를 포함할 수 있다. 몸체부(211)는 돌출부(211c)를 포함할 수 있다. 돌출부(211c)는 제1홀더(210)의 외측면에 형성될 수 있다. 돌출부(211c)는 제1홀더(210)로부터 외측으로 돌출될 수 있다. 돌출부(211c)의 상면과 하면에는 레그부(722)가 배치될 수 있다.
제1홀더(210)는 돌기(211d)를 포함할 수 있다. 몸체부(211)는 돌기(211d)를 포함할 수 있다. 돌기(211d)는 돌출부(211c)에 형성될 수 있다. 돌기(211d)는 돌출부(211c)에 돌출 형성될 수 있다. 돌기(211c)는 돌출부(211c)의 상면과 하면 중 어느 한 면 이상에 형성될 수 있다. 돌기(211c)는 레그부(722)가 걸리도록 형성될 수 있다. 이를 통해, 돌기(211c)는 레그부(722)가 정위치에서 이탈되는 현상을 방지할 수 있다.
제1홀더(210)는 홀(211e)을 포함할 수 있다. 몸체부(211)는 홀(211e)을 포함할 수 있다. 홀(211e)은 몸체부(211)의 상판에 형성될 수 있다. 홀(211e)에는 가압부(212)가 삽입될 수 있다. 홀(211e)에는 가압부(212)의 돌기(212a)가 삽입될 수 있다.
렌즈 구동 장치(10)는 가압부(212)를 포함할 수 있다. 제1홀더(210)는 가압부(212)를 포함할 수 있다. 가압부(212)는 몸체부(211)의 상면에 결합될 수 있다. 가압부(212)는 몸체부(211)에 결합될 수 있다. 가압부(212)는 몸체부(211)에 상측에서 삽입되어 결합될 수 있다. 가압부(212)는 제2볼(820)을 가압할 수 있다. 가압부(212)는 제2볼(820)과 직접 접촉할 수 있다.
제1홀더(210)는 돌기(212a)를 포함할 수 있다. 가압부(212)는 돌기(212a)를 포함할 수 있다. 돌기(212a)는 몸체부(211)의 홀(211e)에 결합될 수 있다. 돌기(212a)는 복수의 돌기를 포함할 수 있다. 돌기(212a)는 4개의 돌기를 포함할 수 있다.
제1홀더(210)는 홈(212b)을 포함할 수 있다. 가압부(212)는 홈(212b)을 포함할 수 있다. 홈(212b)은 '제2볼 수용홈'일 수 있다. 홈(212b)은 돌기(212a)에 형성될 수 있다. 홈(212b)은 돌기(212a)의 하면에 형성될 수 있다. 홈(212b)은 돌기(212a)의 하면에 오목하게 형성될 수 있다. 홈(212b)에는 제2볼(820)이 배치될 수 있다. 홈(212b)은 제2볼(820)과 직접 접촉할 수 있다.
렌즈 구동 장치(10)는 덮개(220)를 포함할 수 있다. 제1이동부(200)는 덮개(220)를 포함할 수 있다. 덮개(220)는 제1홀더(210)와 결합될 수 있다. 덮개(220)는 제1홀더(210)의 하면에 결합될 수 있다. 덮개(220)는 제1홀더(210)에 하측에서 결합될 수 있다. 덮개(220)는 후크(221)를 포함할 수 있다. 덮개(220)의 후크(221)는 제1홀더(210)에 결합될 수 있다. 덮개(220)의 후크(211)는 상측으로 돌출되어 제1홀더(210)의 측면에 결합될 수 있다.
렌즈 구동 장치(10)는 제2이동부(300)를 포함할 수 있다. 제2이동부(300)는 'OIS이동부'일 수 있다. 제2이동부(300)는 고정부(100)에 배치될 수 있다. 제2이동부(300)는 고정부(100) 내에 배치될 수 있다. 제2이동부(300)는 고정부(100) 상에 배치될 수 있다. 제2이동부(300)는 제1이동부(200) 내에 배치될 수 있다. 제2이동부(300)는 이동가능하게 배치될 수 있다. 제2이동부(300)는 제2구동부에 의해 고정부(100)와 제1이동부(200)에 대해 광축에 수직한 방향으로 이동할 수 있다. 제2이동부(300)는 OIS 구동시에 이동할 수 있다.
렌즈 구동 장치(10)는 제2홀더(310)를 포함할 수 있다. 제2이동부(300)는 제2홀더(310)를 포함할 수 있다. 제2홀더(310)는 'OIS홀더'일 수 있다. 제2홀더(310)는 'OIS캐리어'일 수 있다. 제2홀더(310)는 제1홀더(210) 내에 배치될 수 있다. 제2홀더(310)는 베이스(110) 내에 배치될 수 있다. 제2홀더(310)는 베이스(110) 상에 배치될 수 있다. 제2홀더(310)는 커버(120) 내에 배치될 수 있다. 제2홀더(310)는 광축에 수직한 방향으로 이동가능하게 배치될 수 있다.
제2홀더(310)는 외측면을 포함할 수 있다. 제2홀더(310)는 복수의 측면을 포함할 수 있다. 제2홀더(310)는 서로 반대편에 배치되는 제1측면과 제2측면과, 서로 반대편에 배치되는 제3측면과 제4측면을 포함할 수 있다. 제1코일(420)은 제2홀더(310)의 제1측면과 상기 제1마그네트(410) 사이에 배치될 수 있다. 제2코일(520)은 제2홀더(310)의 제2측면과 상기 제2마그네트(510) 사이에 배치될 수 있다. 제3코일(620)은 제2홀더(310)의 제3측면과 제3마그네트(610) 사이에 배치될 수 있다.
제2홀더(310)는 제1홈(311)을 포함할 수 있다. 제1홈(311)은 '제1탄성부재 간섭방지홈'일 수 있다. 제1홈(311)은 제2홀더(310)의 상면에 형성될 수 있다. 제1홈(311)은 제2홀더(310)의 상면에 오목하게 형성될 수 있다. 제1홈(311)은 제2홀더(310)와 제1탄성부재(860)가 간섭되는 것을 방지하도록 제1탄성부재(860)와 대응하는 위치에 배치될 수 있다.
제2홀더(310)는 제2홈(312)을 포함할 수 있다. 제2홈(312)은 '제2볼 수용홈'일 수 있다. 제2홈(312)에는 제2볼(820)이 배치될 수 있다. 제2홈(312)은 제2볼(820)과 직접 접촉할 수 있다. 제2홈(312)은 광축에 수직한 방향으로 배치될 수 있다. 제2홈(312)은 광축방향으로 함몰될 수 있다. 제2홈(312)은 복수의 홈을 포함할 수 있다. 제2홈(312)은 4개의 홈을 포함할 수 있다. 제2홈(312)은 제2볼(820)과 1점에서 접촉할 수 있다. 또는 제2홈(312)은 제2볼(820)과 2점에서 접촉할 수 있다. 제2볼(820)의 이동에 의해 제2홀더(310)와 제2볼(820)이 접촉하는 지점의 개수가 달라질 수 있다. 제2홈(312)은 제1홈(311)에 형성될 수 있다. 제2홈(312)은 제1홈(311)으로부터 추가로 함몰될 수 있다.
제2홀더(310)는 측방 스토퍼(313)를 포함할 수 있다. 측방 스토퍼(313)는 제2홀더(310)의 측방으로의 스트로크를 제한할 수 있다. 즉, 제2홀더(310)가 최대로 이동하면 제2홀더(310)의 측방 스토퍼(313)가 제1홀더(210) 및 베잇스(110) 중 어느 하나 이상에 접촉할 수 있다. 측방 스토퍼(313)는 제2홀더(310)의 외측면에 형성될 수 있다. 측방 스토퍼(313)는 제2홀더(310)의 측면으로부터 외측으로 돌출될 수 있다.
렌즈 구동 장치(10)는 구동부를 포함할 수 있다. 구동부는 고정부(100)에 대해 이동부를 이동시킬 수 있다. 구동부는 AF 구동부를 포함할 수 있다. 구동부는 OIS 구동부를 포함할 수 있다. 구동부는 코일과 마그네트를 포함할 수 있다.
렌즈 구동 장치(10)는 제1구동부를 포함할 수 있다. 제1구동부는 'AF구동부'일 수 있다. 제1구동부는 제1홀더(210)를 광축방향으로 이동시킬 수 있다. 제1구동부는 전자기력을 통해 제1홀더(210)를 광축방향으로 이동시킬 수 있다. 제1구동부는 코일과 마그네트를 포함할 수 있다.
본 발명의 제1실시예에서는 제1코일(420)과 제1마그네트(410)의 상호작용에 의해 제1홀더(210)와 제2홀더(310)는 광축방향으로 이동할 수 있다. 제1코일(420), 제1홀더(210) 및 제2홀더(310)가 일체로 광축방향으로 이동할 수 있다.
렌즈 구동 장치(10)는 제1마그네트(410)를 포함할 수 있다. 제1구동부는 제1마그네트(410)를 포함할 수 있다. 제1마그네트(410)는 'AF마그네트'일 수 있다. 제1마그네트(410)는 베이스(110)에 배치될 수 있다. 제1마그네트(410)는 커버(120)에 배치될 수 있다. 제1마그네트(410)는 커버(120)의 측판(122)에 배치될 수 있다. 제1마그네트(410)는 베이스(110)의 외측면에 배치될 수 있다. 제1마그네트(410)는 베이스(110)의 내측면에 배치될 수 있다. 제1마그네트(410)는 베이스(110)에 고정될 수 있다. 제1마그네트(410)는 베이스(110)에 결합될 수 있다. 제1마그네트(410)는 베이스(110)에 접착제로 접착될 수 있다. 제1마그네트(410)는 커버(120) 내에 배치될 수 있다. 제1마그네트(410)는 제1코일(420)과 상호작용할 수 있다. 제1마그네트(410)는 제1코일(420)과 전자기적 상호작용할 수 있다. 제1마그네트(410)는 제1코일(420)과 대응하는 위치에 배치될 수 있다. 제1마그네트(410)는 제1코일(420)과 마주볼 수 있다. 제1마그네트(410)는 제1코일(420)과 대향할 수 있다. 제1마그네트(410)는 제1코일(420)과 광축에 수직한 방향으로 오버랩될 수 있다.
제1마그네트(410)는 4극 마그네트일 수 있다. 제1마그네트(410)는 4극 착자 마그네트를 포함할 수 있다. 제1마그네트(410)는 N극과 S극을 포함하는 제1마그네트부와, N극과 S극을 포함하는 제2마그네트부를 포함할 수 있다. 제1마그네트부와 제2마그네트부는 수직방향으로 배치될 수 있다. 제1마그네트부와 제2마그네트부는 수직방향으로 이격 배치되고 제1마그네트부와 제2마그네트부 사이에 중립부가 배치될 수 있다.
렌즈 구동 장치(10)는 제1코일(420)을 포함할 수 있다. 제1구동부는 제1코일(420)을 포함할 수 있다. 제1코일(420)은 'AF코일'일 수 있다. 제1코일(420)은 제1마그네트(410)와 상호작용할 수 있다. 제1코일(420)은 광축방향으로 이동할 수 있다. 제1코일(420)은 제1마그네트(410)와의 상호작용을 통해 광축방향으로 이동할 수 있다. 제1코일(420)은 제1마그네트(410)와 대향할 수 있다. 제1코일(420)은 제1마그네트(410)와 마주볼 수 있다. 제1코일(420)은 제1마그네트(410)와 대응하는 위치에 배치될 수 있다. 제1코일(420)은 광축에 수직한 방향으로 제1마그네트(410)와 오버랩될 수 있다. 제1코일(420)은 제1기판(710)에 배치될 수 있다. 제1코일(420)은 제1기판(740)의 제1부분(711)에 배치될 수 있다. 제1코일(420)은 제1홀더(210)에 배치될 수 있다. 제1코일(420)은 제1이동부(200)에 배치될 수 있다.
렌즈 구동 장치(10)는 제1센서(430)을 포함할 수 있다. 제1구동부는 제1센서(430)을 포함할 수 있다. 제1센서(430)는 'AF센서'일 수 있다. 제1센서(430)는 홀센서일 수 있다. 제1센서(430)는 기판(740)에 배치될 수 있다. 제1센서(430)는 기판(740)의 제1부분(711)에 배치될 수 있다. 제1센서(430)는 제1마그네트(410)를 감지할 수 있다. 제1센서(430)는 제1마그네트(410)의 이동을 감지할 수 있다. 제1센서(430)에 의해 감지된 제1마그네트(410)의 이동량 또는 위치는 오토 포커스 구동의 피드백을 위해 사용될 수 있다.
제1센서(430)는 드라이버 IC일 수 있다. 드라이버 IC는 센싱부를 포함할 수 있다. 센싱부는 홀 소자(Hall IC)를 포함할 수 있다. 드라이버 IC는 제1코일(420)과 전기적으로 연결될 수 있다. 드라이버 IC는 제1코일(420)에 전류를 공급할 수 있다.
제1센서(430)는 제1코일(420) 내에 배치될 수 있다. 제1센서(430)는 광축에 수직한 방향으로 제1마그네트(410)의 중립부와 오버랩될 수 있다. 변형례로, 제1센서(430)는 제1코일(420)의 외측에 배치될 수 있다.
렌즈 구동 장치(10)는 제2구동부를 포함할 수 있다. 제2구동부는 'OIS-x구동부'일 수 있다. 제2구동부는 제2홀더(310)를 광축에 수직한 제1방향으로 이동시킬 수 있다. 제2구동부는 전자기력을 통해 제2홀더(310)를 광축에 수직한 제1방향으로 이동시킬 수 있다. 이때, 제1방향은 x축 방향일 수 있다. 제2구동부는 코일과 마그네트를 포함할 수 있다.
본 발명의 제1실시예는 제2코일(520)과 제2마그네트(510)의 상호작용에 의해 제2홀더(310)는 광축방향에 수직한 제1방향으로 이동할 수 있다. 이때, 제1방향은 x축 방향일 수 있다. 제2코일(520)과 제2홀더(310)는 일체로 x축 방향으로 이동할 수 있다.
렌즈 구동 장치(10)는 제2마그네트(510)을 포함할 수 있다. 제2구동부는 제2마그네트(510)을 포함할 수 있다. 제2마그네트(510)는 'OIS-x마그네트'일 수 있다. 제2마그네트(510)는 베이스(110)에 배치될 수 있다. 제2마그네트(510)는 베이스(110)의 외측면에 배치될 수 있다. 제2마그네트(510)는 베이스(110)의 내측면에 배치될 수 있다. 제2마그네트(510)는 베이스(110)에 고정될 수 있다. 제2마그네트(510)는 베이스(110)에 결합될 수 있다. 제2마그네트(510)는 베이스(110)에 접착제로 접착될 수 있다. 제2마그네트(510)는 커버(120) 내에 배치될 수 있다. 제2마그네트(510)는 제2코일(520)과 상호작용할 수 있다. 제2마그네트(510)는 제2코일(520)과 전자기적 상호작용할 수 있다. 제2마그네트(510)는 제2코일(520)과 대응하는 위치에 배치될 수 있다. 제2마그네트(510)는 제2코일(520)과 마주볼 수 있다. 제2마그네트(510)는 제2코일(520)과 대향할 수 있다. 제2마그네트(510)는 제2코일(520)과 광축에 수직한 방향으로 오버랩될 수 있다.
제2마그네트(610)는 2극 마그네트일 수 있다. 제2마그네트(510)는 2극 착자 마그네트를 포함할 수 있다. 제2마그네트(510)는 N극과 S극을 포함할 수 있다.
렌즈 구동 장치(10)는 제2코일(520)을 포함할 수 있다. 제2구동부는 제2코일(520)을 포함할 수 있다. 제2코일(520)은 'OIS-x코일'일 수 있다. 제2코일(520)은 제2마그네트(510)와 상호작용할 수 있다. 제2코일(520)은 광축에 수직한 x축 방향으로 이동할 수 있다. 제2코일(520)은 제2마그네트(510)와의 상호작용을 통해 x축 방향으로 이동할 수 있다. 제2코일(520)은 제2마그네트(510)와 대향할 수 있다. 제2코일(520)은 제2마그네트(510)와 마주볼 수 있다. 제2코일(520)은 제2마그네트(510)와 대응하는 위치에 배치될 수 있다. 제2코일(520)은 광축에 수직한 방향으로 제2마그네트(510)와 오버랩될 수 있다. 제2코일(520)은 제1기판(710)에 배치될 수 있다. 제2코일(520)은 제1기판(710)의 제2부분(712)에 배치될 수 있다. 제2코일(520)은 제2홀더(310)에 배치될 수 있다. 제2코일(520)은 제2이동부(300)에 배치될 수 있다.
렌즈 구동 장치(10)는 제2센서(530)를 포함할 수 있다. 제2구동부는 제2센서(530)를 포함할 수 있다. 제2센서(530)는 'OIS-x센서'일 수 있다. 제2센서(530)는 제1기판(710)에 배치될 수 있다. 제2센서(530)는 제1기판(710)의 제2부분(712)에 배치될 수 있다. 제2센서(530)는 홀센서(Hall sensor)를 포함할 수 있다. 제2센서(530)는 제2마그네트(510)를 감지할 수 있다. 제2센서(530)는 제2마그네트(510)의 자기력을 감지할 수 있다. 제2센서(530)는 제2코일(520) 내에 배치될 수 있다. 제2센서(530)는 광축방향으로 제2코일(520)과 오버랩될 수 있다. 제2센서(530)는 제2마그네트(510)와 대향할 수 있다. 제2센서(530)는 제2마그네트(510)와 대응하는 위치에 배치될 수 있다. 제2센서(530)는 제2마그네트(510)의 이동을 감지할 수 있다. 제2센서(530)에 의해 감지된 제2마그네트(510)의 이동량 또는 위치는 x축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(10)는 제3구동부를 포함할 수 있다. 제3구동부는 'OIS-y구동부'일 수 있다. 제3구동부는 제2홀더(310)를 광축과 제1방향 모두에 수직한 제2방향으로 이동시킬 수 있다. 제3구동부는 전자기력을 통해 제2홀더(310)를 광축과 제1방향 모두에 수직한 제2방향으로 이동시킬 수 있다. 이때, 제2방향은 y축 방향일 수 있다. 제3구동부는 코일과 마그네트를 포함할 수 있다.
본 발명의 제1실시예에서 제3코일(620)과 제3마그네트(610)의 상호작용에 의해 제2홀더(310)는 광축방향과 제1방향 모두에 수직한 제2방향으로 이동할 수 있다. 이때, 제2방향은 y축 방향일 수 있다. 제3코일(620)과 제2홀더(310)는 일체로 y축 방향으로 이동할 수 있다.
렌즈 구동 장치(10)는 제3마그네트(610)를 포함할 수 있다. 제3구동부는 제3마그네트(610)를 포함할 수 있다. 제3마그네트(610)는 'OIS-y마그네트'일 수 있다. 제3마그네트(610)는 베이스(110)에 배치될 수 있다. 제3마그네트(610)는 베이스(110)의 외측면에 배치될 수 있다. 제3마그네트(610)는 베이스(110)의 내측면에 배치될 수 있다. 제3마그네트(610)는 베이스(110)에 고정될 수 있다. 제3마그네트(610)는 베이스(110)에 결합될 수 있다. 제3마그네트(610)는 베이스(110)에 접착제로 접착될 수 있다. 제3마그네트(610)는 커버(120) 내에 배치될 수 있다. 제3마그네트(610)는 제3코일(620)과 상호작용할 수 있다. 제3마그네트(610)는 제3코일(620)과 전자기적 상호작용할 수 있다. 제3마그네트(610)는 제3코일(620)과 대응하는 위치에 배치될 수 있다. 제3마그네트(610)는 제3코일(620)과 마주볼 수 있다. 제3마그네트(610)는 제3코일(620)과 대향할 수 있다. 제3마그네트(610)는 제3코일(620)과 광축에 수직한 방향으로 오버랩될 수 있다.
제3마그네트(610)는 2극 마그네트일 수 있다. 제3마그네트(610)는 2극 착자 마그네트를 포함할 수 있다. 제3마그네트(610)는 N극과 S극을 포함할 수 있다.
렌즈 구동 장치(10)는 제3코일(620)을 포함할 수 있다. 제3구동부는 제3코일(620)을 포함할 수 있다. 제3코일(620)은 'OIS-y코일'일 수 있다. 제3코일(620)은 제3마그네트(610)와 상호작용할 수 있다. 제3코일(620)은 광축을 기준으로 제1코일(420)의 반대편에 배치될 수 있다. 제3코일(620)은 광축과 x축 모두에 수직한 y축 방향으로 이동할 수 있다. 제3코일(620)은 제3마그네트(610)와의 상호작용을 통해 y축 방향으로 이동할 수 있다. 제3코일(620)은 제3마그네트(610)와 대향할 수 있다. 제3코일(620)은 제3마그네트(610)와 마주볼 수 있다. 제3코일(620)은 제3마그네트(610)와 대응하는 위치에 배치될 수 있다. 제3코일(620)은 광축에 수직한 방향으로 제3마그네트(610)와 오버랩될 수 있다. 제3코일(620)은 제1기판(710)에 배치될 수 있다. 제3코일(620)은 제1기판(710)의 제3부분(713)에 배치될 수 있다. 제3코일(620)은 제2홀더(310)에 배치될 수 있다. 제3코일(620)은 제2이동부(300)에 배치될 수 있다.
렌즈 구동 장치(10)는 제3센서(630)를 포함할 수 있다. 제3구동부는 제3센서(630)를 포함할 수 있다. 제3센서(630)는 'OIS-y센서'일 수 있다. 제3센서(630)는 제1기판(710)에 배치될 수 있다. 제3센서(630)는 제1기판(710)의 제3부분(713)에 배치될 수 있다. 제3센서(630)는 홀센서(Hall sensor)를 포함할 수 있다. 제3센서(630)는 제3마그네트(610)를 감지할 수 있다. 제3센서(630)는 제3마그네트(610)의 자기력을 감지할 수 있다. 제3센서(630)는 제3코일(620) 내에 배치될 수 있다. 제3센서(630)는 광축방향으로 제3코일(620)과 오버랩될 수 있다. 제3센서(630)는 제3마그네트(610)와 대향할 수 있다. 제3센서(630)는 제3마그네트(610)와 대응하는 위치에 배치될 수 있다. 제3센서(630)는 제3마그네트(610)의 이동을 감지할 수 있다. 제3센서(630)에 의해 감지된 제3마그네트(610)의 이동량 또는 위치는 y축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(10)는 기판을 포함할 수 있다. 기판은 연성의 기판을 포함할 수 있다. 기판은 코일과 전기적으로 연결될 수 있다. 기판은 센서와 전기적으로 연결될 수 있다.
렌즈 구동 장치(10)는 제1기판(710)을 포함할 수 있다. 제1기판(710)은 코일(420, 520, 620)과 전기적으로 연결될 수 있다. 제1기판(710)은 센서(430, 530, 630)와 전기적으로 연결될 수 있다. 제1기판(710)은 제1홀더(210)와 제2홀더(310)를 연결할 수 있다. 제1기판(710)은 제1홀더(210)와 제2홀더(310)를 탄성적으로 연결할 수 있다. 제1기판(710)은 제2홀더(310)가 제1홀더(210)에 대해 이동가능하게 지지할 수 있다. 제1기판(710)은 제2홀더(310)가 제1홀더(210)에 대해 광축에 수직한 방향으로 이동하게 가이드할 수 있다. 제1기판(710)은 연성의 기판을 포함할 수 있다. 제1기판(710)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 제1기판(710)은 탄성이 있는 부분을 포함할 수 있다. 제1기판(710)은 탄성부재를 포함할 수 있다.
제1기판(710)은 제1부분(711)을 포함할 수 있다. 제1부분(711)은 제1홀더(210)에 배치될 수 있다. 제1코일(420)은 제1기판(710)의 제1부분(711)에 배치될 수 있다. 제1센서(430)는 제1기판(710)의 제1부분(711)에 배치될 수 있다. 요크(830)는 제1기판(710)의 제1부분(711)에 배치될 수 있다.
제1기판(710)은 제2부분(712)을 포함할 수 있다. 제2부분(712)은 제2홀더(310)에 배치될 수 있다. 제2부분(712)은 제2홀더(310)의 제2측면에 배치될 수 있다. 제2코일(520)은 제1기판(710)의 제2부분(712)에 배치될 수 있다. 제2센서(530)는 제1기판(710)의 제2부분(712)에 배치될 수 있다.
제1기판(710)은 제3부분(713)을 포함할 수 있다. 제3부분(713)은 제2홀더(310)에 배치될 수 있다. 제3부분(713)은 제3홀더(310)의 제3측면에 배치될 수 있다. 제3코일(620)은 제1기판(710)의 제3부분(713)에 배치될 수 있다. 제3센서(630)는 제1기판(710)의 제3부분(713)에 배치될 수 있다.
제1기판(710)은 제4부분(714)을 포함할 수 있다. 제4부분(714)은 제2홀더(310)와 제1홀더(210) 사이에 배치될 수 있다. 제4부분(714)은 제2홀더(310)의 제4측면과 제1홀더(210) 사이에 배치될 수 있다.
제1기판(710)은 단자(714a)를 포함할 수 있다. 제1기판(710)의 제4부분(714)은 단자(714a)를 포함할 수 있다. 단자(714a)는 코일(420, 520, 620)과 전기적으로 연결될 수 있다. 단자(714a)는 센서(430, 530, 630)과 전기적으로 연결될 수 있다.
제1기판(710)은 홀(714b)를 포함할 수 있다. 제1기판(710)의 제4부분(714)은 홀(714b)를 포함할 수 있다. 홀(714b)은 제1기판(710)의 제4부분(714)에 관통 형성될 수 있다. 홀(714b)은 제2홀더(310)의 측방 스토퍼(313)와 대응하는 위치에 배치될 수 있다. 홀(714b)에 의해 제1기판(710)은 제2홀더(310)의 측방 스토퍼(313)와 간섭되지 않을 수 있다.
렌즈 구동 장치(10)는 제2기판(720)을 포함할 수 있다. 제2기판(720)은 베이스(110)에 배치될 수 있다. 제2기판(720)은 코일(420, 520, 620)과 전기적으로 연결될 수 있다. 제2기판(720)은 센서(430, 530, 630)와 전기적으로 연결될 수 있다. 제2기판(720)은 제1홀더(210)와 베이스(110)를 연결할 수 있다. 제2기판(720)은 제1홀더(210)와 베이스(110)를 탄성적으로 연결할 수 있다. 제2기판(720)은 제1홀더(210)가 베이스(110)에 대해 이동가능하게 지지할 수 있다. 제2기판(720)은 제1홀더(210)가 베이스(110)에 대해 광축방향으로 이동하게 가이드할 수 있다. 제2기판(720)은 연성의 기판을 포함할 수 있다. 제2기판(720)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 제2기판(720)은 탄성이 있는 부분을 포함할 수 있다. 제2기판(720)은 탄성부재를 포함할 수 있다.
제2기판(720)은 몸체부(721)를 포함할 수 있다. 몸체부(721)는 베이스(110)에 배치될 수 있다. 몸체부(721)는 베이스(110)의 측면을 감싸도록 형성될 수 있다. 몸체부(721)는 베이스(110)의 3개의 측면에 배치될 수 있다. 몸체부(721)는 2개의 단자부를 포함할 수 있다. 2개의 단자부는 광축에 대해 서로 반대편에 배치될 수 있다. 단자부는 제1단자(721a)를 포함할 수 있다.
제2기판(720)은 제1단자(721a)를 포함할 수 있다. 제2기판(720)의 몸체부(720)는 제1단자(721a)를 포함할 수 있다. 제1단자(721a)는 제1기판(710)의 단자(714a)와 결합될 수 있다. 제1단자(721a)는 제1기판(710)의 단자(714a)와 솔더를 통해 결합될 수 있다. 제1단자(721a)는 제1기판(710)의 단자(714a)와 통전성 부재를 통해 결합될 수 있다. 제1단자(721a)는 제1기판(710)의 단자(714a)와 연결될 수 있다. 제1단자(721a)는 제1기판(710)의 단자(714a)와 전기적으로 연결될 수 있다.
제2기판(720)은 레그부(722)를 포함할 수 있다. 레그부(722)는 '연장부'일 수 있다. 레그부(722)는 몸체부(721)로부터 연장될 수 있다. 레그부(722)의 적어도 일부는 제1홀더(210)와 함께 이동할 수 있다. 연장부는 몸체부(721)로부터 연장될 수 있다. 연장부의 적어도 일부는 제1홀더(210)와 함께 이동할 수 있다. 레그부(722)는 복수의 레그부를 포함할 수 있다. 레그부(722)는 제1레그부와 제2레그부를 포함할 수 있다. 제2레그부는 제1레그부의 아래에 배치될 수 있다.
제2기판(720)은 제2단자(722a)를 포함할 수 있다. 제2기판(720)의 레그부(722)는 제2단자(722a)를 포함할 수 있다. 제2단자(722a)는 제1단자(721a)와 전기적으로 연결될 수 있다. 제2단자(722a)는 베이스(110)의 하단부에 배치될 수 있다. 제2단자(722a)는 인쇄회로기판((50)에 결합될 수 있다. 제2단자(722a)는 솔더를 통해 인쇄회로기판((50)의 단자에 결합될 수 있다. 제2단자(722a)는 통전성 부재를 통해 인쇄회로기판((50)의 단자에 결합될 수 있다. 제2단자(722a)는 인쇄회로기판((50)의 단자에 연결될 수 있다. 제2단자(722a)는 인쇄회로기판((50)의 단자에 전기적으로 연결될 수 있다.
렌즈 구동 장치(10)는 가이드 부재를 포함할 수 있다. 가이드 부재는 볼을 포함할 수 있다. 가이드 부재는 핀을 포함할 수 있다. 가이드 부재는 원통형 부재를 포함할 수 있다. 가이드 부재는 고정부(100)에 대한 이동부의 이동을 특정 방향으로 가이드할 수 있다.
렌즈 구동 장치(10)는 제1볼(810)을 포함할 수 있다. 제1볼(810)은 'AF가이드 볼'일 수 있다. 제1볼(810)은 제1홀더(210)의 베이스(110)에 대한 이동을 광축방향으로 가이드할 수 있다. 제1볼(810)은 베이스(110)와 제1홀더(210) 사이에 배치될 수 있다. 제1볼(810)은 제1방향으로 베이스(110)와 제1홀더(210) 사이에 배치될 수 있다. 제1볼(810)은 베이스(110)의 홈(111a)에 배치될 수 있다. 제1볼(810)은 제1홀더(210)의 제1홈(211b)에 배치될 수 있다. 제1볼(810)은 베이스(110)와 제1홀더(210)에 4점으로 접촉하는 제1-1볼과, 베이스(110)와 제1홀더(210)에 3점으로 접촉하는 제1-2볼을 포함할 수 있다. 제1볼(810)은 구형상일 수 있다. 제1볼(810)은 금속으로 형성될 수 있다. 제1볼(810)의 표면에는 구리스가 도포될 수 있다.
제1볼(810)은 복수의 볼을 포함할 수 있다. 제1볼(810)는 8개의 볼을 포함할 수 있다. 4개의 제1볼(810)은 제1마그네트(410)의 일측에 배치되고 나머지 4개의 제1볼(810)은 제1마그네트(410)의 타측에 배치될 수 있다.
렌즈 구동 장치(10)는 제2볼(820)을 포함할 수 있다. 제2볼(820)은 'OIS가이드 볼'일 수 있다. 제2볼(820)은 제2홀더(310)의 제1홀더(210)에 대한 이동을 광축에 수직한 방향으로 가이드할 수 있다. 제2볼(820)은 제1홀더(210)와 제2홀더(310) 사이에 배치될 수 있다. 제2볼(820)은 광축방향으로 제1홀더(210)와 제2홀더(310) 사이에 배치될 수 있다.
제2볼(820)은 제1홀더(210)의 가압부(212)와 제2홀더(310) 사이에 배치될 수 있다. 제2볼(820)은 탄성부재(850)의 가압력에 의해 제1홀더(210)와 제2홀더(310) 사이에서 가압될 수 있다. 가압부(212)는 몸체부(211)에 결합되는 과정에서 제2볼(820)을 하방으로 가압할 수 있다. 가압부(212)는 몸체부(211)에 결합되는 과정에서 제2볼(820)을 제2홀더(310)의 방향으로 가압할 수 있다. 이때, 탄성부재(850)의 복원력에 의해 제2홀더(310)는 제2볼(820)을 가압부(212)의 방향으로 가압할 수 있다. 따라서, 제2볼(820)은 가압부(212)와 제2홀더(310) 사이에서 가압될 수 있다.
제2볼(820)은 제2홀더(310)가 제1홀더(210)에 대해 광축방향에 수직한 제1방향과 제2방향으로 이동하도록 가이드할 수 있다. 즉, 제2볼(820)은 제2홀더(310)를 x축 방향과 y축 방향으로 이동하도록 가이드할 수 있다. 다시 말해, 제2볼(820)은 x축 방향과 y축 방향 모두에 대한 이동을 가이드할 수 있다. 참고로, x축 방향을 가이드하는 볼과 y축 방향을 가이드하는 볼을 별도로 구비하는 비교예와 비교할 때 x축 방향을 가이드하는 볼과 y축 방향을 가이드하는 볼을 일체로 구비한 본 발명의 제1실시예에서 렌즈 구동 장치(10)의 크기가 최소화될 수 있다. 특히, 렌즈 구동 장치(10)의 광축방향으로의 높이가 축소될 수 있다. 이를 통해, 스마트폰에서 돌출되는 높이 즉 어깨높이가 최소화될 수 있다. 제2볼(820)은 복수의 볼을 포함할 수 있다. 제2볼(820)은 4개의 볼을 포함할 수 있다.
렌즈 구동 장치(10)는 요크(830)를 포함할 수 있다. 요크(830)는 제1기판(710)의 제1부분(711)에 배치될 수 있다. 요크(830)와 제1마그네트(410) 사이에는 인력이 발생될 수 있다. 요크(830)는 제1마그네트(410)와 대응하는 위치에 배치될 수 있다. 요크(830)는 금속으로 형성될 수 있다. 요크(830)와 제1마그네트(410) 사이의 인력에 의해 제1볼(810)이 베이스(110)와 제1홀더(210) 사이에서 가압될 수 있다. 즉, 요크(830)와 제1마그네트(410) 사이의 인력에 의해 제1볼(810)의 베이스(110)와 제1홀더(210)에 대한 접촉 상태가 유지될 수 있다.
렌즈 구동 장치(10)는 탄성부재(850)를 포함할 수 있다. 탄성부재(850)는 제2볼(820)을 가압하도록 형성될 수 있다. 탄성부재(850)는 제2볼(820)만으로 OIS-x축 구동과 OIS-y축 구동 모두를 가이드하도록 형성될 수 있다. 탄성부재(850)는 판스프링을 포함할 수 있다. 탄성부재(850)는 와이어를 포함할 수 있다. 탄성부재(850)는 탄성을 가질 수 있다. 탄성부재(850)는 금속으로 형성될 수 있다.
렌즈 구동 장치(10)는 제1탄성부재(860)를 포함할 수 있다. 제1탄성부재(860)는 '상부 탄성부재'일 수 있다. 제1탄성부재(860)는 판스프링일 수 있다. 제1탄성부재(860)는 탄성을 가질 수 있다. 제1탄성부재(860)는 제2홀더(310)의 상면에 배치될 수 있다. 제1탄성부재(860)는 제2홀더(310)에 배치될 수 있다. 제1탄성부재(860)는 제2홀더(310)의 상부에 배치될 수 있다. 제1탄성부재(860)는 제2홀더(310)의 위에 배치될 수 있다. 제1탄성부재(860)는 광축에 수직하게 배치될 수 있다.
렌즈 구동 장치(10)는 제2탄성부재(870)를 포함할 수 있다. 제2탄성부재(870)는 '하부 탄성부재'일 수 있다. 제2탄성부재(870)는 판스프링일 수 있다. 제2탄성부재(870)는 탄성을 가질 수 있다. 제2탄성부재(870)는 제1홀더(210)의 하면에 배치될 수 있다. 제2탄성부재(870)는 제1홀더(210)에 배치될 수 있다. 제2탄성부재(870)는 제1홀더(210)의 하부에 배치될 수 있다. 제2탄성부재(870)는 제1홀더(210)의 아래에 배치될 수 있다. 제2탄성부재(870)는 몸체부(721)의 하면에 배치될 수 있다. 제2탄성부재(870)는 몸체부(721)의 하면에 결합될 수 있다. 제2탄성부재(870)는 광축에 수직하게 배치될 수 있다.
렌즈 구동 장치(10)는 제3탄성부재(880)를 포함할 수 있다. 제3탄성부재(880)는 '측부 탄성부재'일 수 있다. 제3탄성부재(880)는 와이어일 수 있다. 제3탄성부재(880)는 와이어 스프링일 수 있다. 제3탄성부재(880)는 서스펜션 와이어일 수 있다. 제3탄성부재(880)는 탄성을 가질 수 있다. 제3탄성부재(880)는 제1탄성부재(860)와 제2탄성부재(870)를 연결할 수 있다. 제3탄성부재(880)는 제1탄성부재(860)와 제2탄성부재(870)를 탄성적으로 연결할 수 있다. 제3탄성부재(880)는 광축과 평행하게 배치될 수 있다.
이하에서는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 오토 포커스(AF, auto focus) 구동을 도면을 참조하여 설명한다.
도 28 내지 도 30은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 28은 제1코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 29는 제1코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 30은 제1코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
이동부는 제1코일(420)에 전류가 인가되지 않은 초기위치에서 커버(120)의 상판(121)과 베이스(110) 모두와 이격된 위치에 배치될 수 있다. 이때, 이동부는 제1이동부(200)일 수 있다. 또한, 이동부는 제1 및 제2이동부(200, 300)를 포함할 수 있다.
제1코일(420)에 정방향 전류가 인가되면 제1코일(420)과 제1마그네트(410)의 전자기적 상호작용에 의해 제1코일(420)은 광축방향 상측으로 이동할 수 있다(도 29의 a 참조). 이때, 제1코일(420)과 함께 제1홀더(210)가 광축방향 상측으로 이동할 수 있다. 나아가, 제1홀더(210)와 함께 제2홀더(310)와 렌즈가 광축방향 상측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
제1코일(420)에 역방향 전류가 인가되면 제1코일(420)과 제1마그네트(410)의 전자기적 상호작용에 의해 제1코일(420)은 광축방향 하측으로 이동할 수 있다(도 30의 b 참조). 이때, 제1코일(420)과 함께 제1홀더(210)가 광축방향 하측으로 이동할 수 있다. 나아가, 제1홀더(210)와 함께 제2홀더(310)와 렌즈가 광축방향 하측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
한편, 제1코일(420)의 이동 과정에서 제1센서(430)는 제1코일(420)과 함께 이동하며 제1마그네트(410)의 자기장의 세기를 감지해서 렌즈의 광축방향으로의 이동량이나 위치를 감지할 수 있다. 제1센서(430)에서 감지된 렌즈의 광축방향으로의 이동량이나 위치는 오토 포커스 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제1실시예에 따른 렌즈 구동 장치의 손떨림 보정(OIS, optical image stabilization) 구동을 도면을 참조하여 설명한다.
도 31 내지 도 33은 본 발명의 제1실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 31은 제2코일과 제3코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 32는 제2코일에 전류가 인가되어 제2이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 33은 제3코일에 전류가 인가되어 제2이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 31에 도시된 바와 같이 이동부는 제2코일(520)과 제3코일(620)에 전류가 인가되지 않은 초기위치에 배치될 수 있다. 이때, 이동부는 제2이동부(300)일 수 있다.
제2코일(520)에 전류가 인가되면 제2코일(520)과 제2마그네트(510)의 전자기적 상호작용에 의해 제2코일(520)은 광축에 수직한 x축 방향으로 이동할 수 있다(도 32의 a 참조). 이때, 제2코일(520)과 함께 제2홀더(310)가 x축 방향으로 이동할 수 있다. 나아가, 제2홀더(310)와 함께 렌즈가 x축 방향으로 이동할 수 있다. 보다 상세히, 제2코일(520)에 정방향 전류가 인가되는 경우 제2코일(520), 제2홀더(310) 및 렌즈는 x축 상의 일방향으로 이동할 수 있다. 또한, 제2코일(520)에 역방향 전류가 인가되는 경우 제2코일(520), 제2홀더(310) 및 렌즈는 x축 상의 타방향으로 이동할 수 있다.
제3코일(620)에 전류가 인가되면 제3코일(620)과 제3마그네트(610)의 전자기적 상호작용에 의해 제3코일(620)은 광축에 수직한 y축 방향으로 이동할 수 있다(도 33의 b 참조). 이때, 제3코일(620)과 함께 제2홀더(310)가 y축 방향으로 이동할 수 있다. 나아가, 제2홀더(310)와 함께 렌즈가 y축 방향으로 이동할 수 있다. 보다 상세히, 제3코일(620)에 정방향 전류가 인가되는 경우 제3코일(620), 제2홀더(310) 및 렌즈는 y축 상의 일방향으로 이동할 수 있다. 또한, 제3코일(620)에 역방향 전류가 인가되는 경우 제3코일(620), 제2홀더(310) 및 렌즈는 y축 상의 타방향으로 이동할 수 있다.
한편, 제2센서(530)는 제2마그네트(510)의 자기장의 세기를 감지해서 제2코일(520)의 이동량이나 위치를 감지할 수 있다. 제2센서(530)에서 감지된 이동량이나 위치는 x축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다. 제3센서(630)는 제3마그네트(610)의 자기장의 세기를 감지해서 제3코일(620)의 이동량이나 위치를 감지할 수 있다. 제3센서(630)에서 감지된 이동량이나 위치는 y축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제1실시예에 따른 카메라 장치를 도면을 참조하여 설명한다.
도 34는 본 발명의 제1실시예에 따른 카메라 장치의 분해사시도이다.
카메라 장치(10A)는 카메라 모듈을 포함할 수 있다.
카메라 장치(10A)는 렌즈 모듈(20)을 포함할 수 있다. 렌즈 모듈(20)은 적어도 하나의 렌즈를 포함할 수 있다. 렌즈는 이미지 센서(60)와 대응하는 위치에 배치될 수 있다. 렌즈 모듈(20)은 렌즈 및 배럴을 포함할 수 있다. 렌즈 모듈(20)은 렌즈 구동 장치(10)의 홀더(210)에 결합될 수 있다. 렌즈 모듈(20)은 홀더(210)에 나사 결합 및/또는 접착제에 의해 결합될 수 있다. 렌즈 모듈(20)은 홀더(210)와 일체로 이동할 수 있다.
카메라 장치(10A)는 필터(30)를 포함할 수 있다. 필터(30)는 렌즈 모듈(20)을 통과하는 광에서 특정 주파수 대역의 광이 이미지 센서(60)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(30)는 x-y평면과 평행하도록 배치될 수 있다. 필터(30)는 렌즈 모듈(20)과 이미지 센서(60) 사이에 배치될 수 있다. 필터(30)는 센서 베이스(40)에 배치될 수 있다. 변형례로, 필터(30)는 베이스(110)에 배치될 수 있다. 필터(30)는 적외선 필터를 포함할 수 있다. 적외선 필터는 이미지 센서(60)에 적외선 영역의 광이 입사되는 것을 차단할 수 있다.
카메라 장치(10A)는 센서 베이스(40)를 포함할 수 있다. 센서 베이스(40)는 렌즈 구동 장치(10)와 인쇄회로기판(50) 사이에 배치될 수 있다. 센서 베이스(40)는 필터(30)가 배치되는 돌출부(41)를 포함할 수 있다. 필터(30)가 배치되는 센서 베이스(40)의 부분에는 필터(30)를 통과하는 광이 이미지 센서(60)에 입사할 수 있도록 개구가 형성될 수 있다. 접착 부재는 렌즈 구동 장치(10)의 베이스(310)를 센서 베이스(40)에 결합 또는 접착시킬 수 있다. 접착 부재는 추가로 렌즈 구동 장치(10)의 내부로 이물질이 유입되지 않도록 하는 역할을 할 수 있다. 접착 부재는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 중 어느 하나 이상을 포함할 수 있다.
카메라 장치(10A)는 인쇄회로기판(PCB, Printed Circuit Board)(50)을 포함할 수 있다. 인쇄회로기판(50)은 기판 또는 회로기판일 수 있다. 인쇄회로기판(50)에는 렌즈 구동 장치(10)가 배치될 수 있다. 인쇄회로기판(50)과 렌즈 구동 장치(10) 사이에는 센서 베이스(40)가 배치될 수 있다. 인쇄회로기판(50)은 렌즈 구동 장치(10)와 전기적으로 연결될 수 있다. 인쇄회로기판(50)에는 이미지 센서(60)가 배치될 수 있다. 인쇄회로기판(50)에는 이미지 센서(60)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
카메라 장치(10A)는 이미지 센서(60)를 포함할 수 있다. 이미지 센서(60)는 렌즈와 필터(30)를 통과한 광이 입사하여 이미지가 결상되는 구성일 수 있다. 이미지 센서(60)는 인쇄회로기판(50)에 실장될 수 있다. 이미지 센서(60)는 인쇄회로기판(50)에 전기적으로 연결될 수 있다. 일례로, 이미지 센서(60)는 인쇄회로기판(50)에 표면 실장 기술(SMT, Surface Mounting Technology)에 의해 결합될 수 있다. 다른 예로, 이미지 센서(60)는 인쇄회로기판(50)에 플립 칩(flip chip) 기술에 의해 결합될 수 있다. 이미지 센서(60)는 렌즈와 광축이 일치되도록 배치될 수 있다. 즉, 이미지 센서(60)의 광축과 렌즈의 광축은 얼라인먼트(alignment) 될 수 있다. 이미지 센서(60)는 이미지 센서(60)의 유효화상 영역에 조사되는 광을 전기적 신호로 변환할 수 있다. 이미지 센서(60)는 CCD(charge coupled device, 전하 결합 소자), MOS(metal oxide semi-conductor, 금속 산화물 반도체), CPD 및 CID 중 어느 하나일 수 있다.
카메라 장치(10A)는 모션 센서(70)를 포함할 수 있다. 모션 센서(70)는 인쇄회로기판(50)에 실장될 수 있다. 모션 센서(70)는 인쇄회로기판(50)에 제공되는 회로 패턴을 통하여 제어부(80)와 전기적으로 연결될 수 있다. 모션 센서(70)는 카메라 장치(10A)의 움직임에 의한 회전 각속도 정보를 출력할 수 있다. 모션 센서(70)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서를 포함할 수 있다.
카메라 장치(10A)는 제어부(80)를 포함할 수 있다. 제어부(80)는 인쇄회로기판(50)에 배치될 수 있다. 제어부(80)는 렌즈 구동 장치(10)의 코일(330)과 전기적으로 연결될 수 있다. 제어부(80)는 코일(330)에 공급하는 전류의 방향, 세기 및 진폭 등을 개별적으로 제어할 수 있다. 제어부(80)는 렌즈 구동 장치(10)를 제어하여 오토 포커스 기능 및/또는 손떨림 보정 기능을 수행할 수 있다. 나아가, 제어부(80)는 렌즈 구동 장치(10)에 대한 오토 포커스 피드백 제어 및/또는 손떨림 보정 피드백 제어를 수행할 수 있다.
카메라 장치(10A)는 커넥터(90)를 포함할 수 있다. 커넥터(90)는 인쇄회로기판(50)과 전기적으로 연결될 수 있다. 커넥터(90)는 외부 장치와 전기적으로 연결되기 위한 포트(port)를 포함할 수 있다.
이하에서는 본 발명의 제1실시예에 따른 광학기기를 도면을 참조하여 설명한다.
도 35는 본 발명의 제1실시예에 따른 광학기기의 사시도이고, 도 36은 변형례에 따른 광학기기의 사시도이다.
광학기기(1)는 핸드폰, 휴대폰, 휴대 단말기, 이동 단말기, 스마트폰(smart phone), 스마트 패드, 휴대용 스마트 기기, 디지털 카메라, 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 네비게이션 중 어느 하나 이상을 포함할 수 있다. 광학기기(1)는 영상 또는 사진을 촬영하기 위한 어떠한 장치도 포함할 수 있다.
광학기기(1)는 본체(20)를 포함할 수 있다. 광학기기(1)는 카메라 장치(10A)를 포함할 수 있다. 카메라 장치(10A)는 본체(20)에 배치될 수 있다. 카메라 장치(10A)는 피사체를 촬영할 수 있다. 광학기기(1)는 디스플레이를 포함할 수 있다. 디스플레이는 본체(20)에 배치될 수 있다. 디스플레이는 카메라 장치(10A)에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력할 수 있다. 디스플레이는 본체(20)의 제1면에 배치될 수 있다. 카메라 장치(10A)는 본체(20)의 제1면과, 제1면의 반대편의 제2면 중 어느 하나 이상에 배치될 수 있다. 도 22에 도시된 바와 같이 카메라 장치(10A)는 트리플 카메라가 세로 방향으로 배치될 수 있다. 도 23에 도시된 바와 같이 카메라 장치(10A-1)는 트리플 카메라가 가로 방향으로 배치될 수 있다.
이하에서는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 구성을 도면을 참조하여 설명한다.
도 37은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 개념도이고, 도 38은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 사시도이고, 도 39는 도 38의 A-A에서 바라본 단면도이고, 도 40은 도 38의 B-B에서 바라본 단면도이고, 도 41은 도 38의 C-C에서 바라본 단면도이고, 도 42는 본 발명의 제2실시예에 따른 렌즈 구동 장치를 광축에 수직한 단면으로 잘라 위에서 본 단면도이고, 도 43은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 분해사시도이고, 도 44는 본 발명의 제2실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이고, 도 45는 도 44의 일부를 확대해서 도시한 확대도이고, 도 46a는 도 44을 다른 방향에서 본 사시도이고, 도 46b는 도 46에서 AF이동부의 금속부재를 생략한 모습을 도시하는 사시도이고, 도 47은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 고정부와 관련 구성을 도시하는 사시도이고, 도 48은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성을 도시하는 사시도이고, 도 49는 도 48를 정면에서 본 정면도이고, 도 50은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 AF가이드볼과 관련 구성을 도시하는 단면사시도이고, 도 51은 도 48를 다른 방향에서 본 사시도이고, 도 52는 도 51에서 덮개를 제거한 상태의 사시도이고, 도 53은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 AF이동부와 관련 구성을 아래에서 본 저면도이고, 도 54는 도 53을 다른 방향에서 본 저면사시도이고, 도 55는 도 54의 일부를 확대해서 도시한 확대도이고, 도 56은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 OIS이동부와 관련 구성을 도시하는 사시도이고, 도 57a는 도 56의 일부를 확대해서 도시한 확대도이고, 도 57b는 도 57a의 A-A에서 바라본 단면도이고, 도 58a는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 OIS가이드볼의 가압구조를 도시하는 단면도이고, 도 58b는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어의 결합구조를 도시하는 단면도이고, 도 59는 도 56을 다른 방향에서 본 저면사시도이고, 도 60은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 내측기판과 외측기판을 도시하는 사시도이고, 도 61은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어를 도시하는 사시도이다.
렌즈 구동 장치(1010)는 보이스 코일 모터(VCM, Voice Coil Motor)일 수 있다. 렌즈 구동 장치(1010)는 렌즈 구동 모터일 수 있다. 렌즈 구동 장치(1010)는 렌즈 구동 액츄에이터일 수 있다. 렌즈 구동 장치(1010)는 AF 모듈을 포함할 수 있다. 렌즈 구동 장치(1010)는 OIS 모듈을 포함할 수 있다.
렌즈 구동 장치(1010)는 고정부(1100)를 포함할 수 있다. 고정부(1100)는 이동부의 이동시에 상대적으로 고정된 부분일 수 있다. 이동부는 고정부(1100)에 대해 이동할 수 있다.
렌즈 구동 장치(1010)는 베이스(1110)를 포함할 수 있다. 고정부(1100)는 베이스(1110)를 포함할 수 있다. 베이스(1110)는 AF홀더(1210)의 아래에 배치될 수 있다. 베이스(1110)는 OIS홀더(1310)의 아래에 배치될 수 있다. 베이스(1110)는 커버(1120)와 결합될 수 있다. AF홀더(1210)와 OIS홀더(1310)는 베이스(1110) 상에 배치될 수 있다. AF홀더(1210)와 OIS홀더(1310)는 베이스(1110)의 하판 상에 배치될 수 있다. AF홀더(1210)와 OIS홀더(1310)는 베이스(1110) 내에 배치될 수 있다. AF홀더(1210)와 OIS홀더(1310)는 베이스(1110)의 측판 내에 배치될 수 있다.
본 발명의 제2실시예에서는 AF마그넷(1410), OIS-x마그넷(1510) 및 OIS-y마그넷(1610) 모두가 베이스(1110)에 배치될 수 있다. AF마그넷(1410), OIS-x마그넷(1510) 및 OIS-y마그넷(1610) 모두가 고정부(1100)에 배치될 수 있다. 즉, 오토 포커스 동작에서 AF마그넷(1410), OIS-x마그넷(1510) 및 OIS-y마그넷(1610) 모두 고정된 상태를 유지할 수 있다. 또한, 손떨림 보정 동작에서 AF마그넷(1410), OIS-x마그넷(1510) 및 OIS-y마그넷(1610) 모두 고정된 상태를 유지할 수 있다. 오토 포커스 동작에서 AF마그넷(1410)은 고정되고 AF코일(1420)이 이동할 수 있다. 손떨림 보정 동작에서 OIS-x 및 OIS-y마그넷(1510, 1610)은 고정되고 OIS-x 및 OIS-y코일(1520, 1620)이 이동할 수 있다.
베이스(1110)는 하판을 포함할 수 있다. 베이스(1110)는 측판을 포함할 수 있다. 측판은 '측부'일 수 있다. 베이스(1110)의 측판은 하판의 상면으로부터 연장될 수 있다.
베이스(1110)의 측판은 복수의 측판을 포함할 수 있다. 베이스(1110)의 측판은 4개의 측판을 포함할 수 있다. 다만, 베이스(1110)의 4개의 측판 중 하나 이상은 생략될 수 있다. 베이스(1110)의 측판은 제1 내지 제4측판(1111, 1112, 1113, 1114)을 포함할 수 있다. 베이스(1110)는 서로 반대편에 배치되는 제1측판(1111)과 제2측판(1113)과, 서로 반대편에 배치되는 제3측판(1112)과 제4측판(1114)을 포함할 수 있다.
베이스(1110)의 측부는 복수의 측부를 포함할 수 있다. 베이스(1110)의 측부는 4개의 측부를 포함할 수 있다. 다만, 베이스(1110)의 4개의 측부 중 하나 이상은 생략될 수 있다. 베이스(1110)의 측부는 제1 내지 제4측부를 포함할 수 있다. 베이스(1110)는 서로 반대편에 배치되는 제1측부와 제2측부와, 서로 반대편에 배치되는 제3측부와 제4측부를 포함할 수 있다.
AF마그넷(1410)은 베이스(1110)의 제1측판(1111)에 배치될 수 있다. OIS-x마그넷(1510)은 베이스(1110)의 제2측판(1113)에 배치될 수 있다. OIS-y마그넷(1610)은 베이스(1110)의 제3측판(1112)에 배치될 수 있다.
베이스(1110)의 제1측판(1111)은 홈(1111a)을 포함할 수 있다. 홈(1111a)은 'AF가이드볼 수용홈'일 수 있다. 홈(1111a)에는 AF가이드볼(1810)이 배치될 수 있다. 홈(1111a)은 AF가이드볼(1810)과 직접 접촉할 수 있다. 홈(1111a)은 광축방향으로 배치될 수 있다. 홈(1111a)은 복수의 홈을 포함할 수 있다. 홈(1111a)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(1111a)은 AF가이드볼(1810)과 2점에서 접촉되는 제1홈과, AF가이드볼(1810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 AF가이드볼(1810)과 2점에서 접촉할 수 있다.
베이스(1110)의 제2측판(1113)은 돌출부를 포함할 수 있다. 돌출부는 외측으로 돌출될 수 있다. 돌출부의 상측과 하측으로 외측기판(1720)의 연장부(1722)가 배치될 수 있다. 돌출부에는 외측기판(1720)의 연장부(1722)가 이동하는 경우에도 간섭되지 않도록 홈이 형성될 수 있다.
베이스(1110)는 단차(1115)를 포함할 수 있다. 단차(1115)는 베이스(1110)의 외측면의 하단부에 형성될 수 있다. 단차(1115)는 베이스(1110)의 외측면으로부터 돌출될 수 있다. 베이스(1110)의 단차(1115)에는 커버(1120)의 측판(1122)이 배치될 수 있다.
렌즈 구동 장치(1010)는 커버(1120)를 포함할 수 있다. 고정부(1100)는 커버(1120)를 포함할 수 있다. 커버(1120)는 베이스(1110)에 배치될 수 있다. 커버(1120)는 베이스(1110)에 결합될 수 있다. 커버(1120)는 베이스(1110)에 고정될 수 있다. 커버(1120)는 AF홀더(1210)를 내부에 수용할 수 있다. 커버(1120)는 OIS홀더(1310)를 내부에 수용할 수 있다. 커버(1120)는 쉴드부재일 수 있다. 커버(1120)는 쉴드캔일 수 있다.
커버(1120)는 상판(1141)을 포함할 수 있다. 상판(1141)은 이동부 상에 배치될 수 있다. 이동부의 상측 이동은 이동부가 상판(1141)에 접촉되는 것에 의해 제한될 수 있다. 상판(1141)은 광이 통과하는 홀을 포함할 수 있다.
커버(1120)는 측판(1142)을 포함할 수 있다. 측판(1142)은 상판(1141)으로부터 연장될 수 있다. 측판(1142)은 베이스(1110)에 배치될 수 있다. 측판(1142)은 베이스(1110)의 외측면의 하단부에 돌출형성되는 단차부에 배치될 수 있다. 측판(1142)은 복수의 측판을 포함할 수 있다. 측판(1142)은 4개의 측판을 포함할 수 있다. 측판(1142)은 서로 반대편에 배치되는 제1측판과 제2측판과, 서로 반대편에 배치되는 제3측판과 제4측판을 포함할 수 있다.
렌즈 구동 장치(1010)는 이동부를 포함할 수 있다. 이동부는 고정부(1100)에 배치될 수 있다. 이동부는 고정부(1100) 내에 배치될 수 있다. 이동부는 고정부(1100) 상에 배치될 수 있다. 이동부는 고정부(1100)에 이동가능하게 배치될 수 있다. 이동부는 구동부에 의해 고정부(1100)를 기준으로 이동할 수 있다. 이동부는 AF 구동시에 이동할 수 있다. 이동부는 OIS 구동시에 이동할 수 있다. 이동부에는 렌즈가 결합될 수 있다.
렌즈 구동 장치(1010)는 AF이동부(1200)를 포함할 수 있다. AF이동부(1200)는 고정부(1100)에 배치될 수 있다. AF이동부(1200)는 고정부(1100) 내에 배치될 수 있다. AF이동부(1200)는 고정부(1100) 상에 배치될 수 있다. AF이동부(1200)는 고정부(1100)와 OIS이동부(1300) 사이에 배치될 수 있다. AF이동부(1200)는 고정부(1100)에 이동가능하게 배치될 수 있다. AF이동부(1200)는 AF구동부(1400)에 의해 고정부(1100)에 대해 광축방향으로 이동할 수 있다. AF이동부(1200)는 AF 구동시에 이동할 수 있다.
렌즈 구동 장치(1010)는 AF홀더(1210)를 포함할 수 있다. AF이동부(1200)는 AF홀더(1210)를 포함할 수 있다. AF홀더(1210)는 'AF캐리어'일 수 있다. AF홀더(1210)는 베이스(1110) 내에 배치될 수 있다. AF홀더(1210)는 베이스(1110) 상에 배치될 수 있다. AF홀더(1210)는 커버(1120) 내에 배치될 수 있다. AF홀더(1210)는 베이스(1110)와 OIS홀더(1310) 사이에 배치될 수 있다. AF홀더(1210)는 광축방향으로 이동가능하게 배치될 수 있다.
AF홀더(1210)는 돌기를 포함할 수 있다. 돌기는 하부 탄성부재(1910)와 결합될 수 있다. 하부 탄성부재(1910)는 AF홀더(1210)의 돌기와 결합되는 홀을 포함할 수 있다. 변형례로, AF홀더(1210)는 돌기 대신 접착제를 수용하는 홈을 포함할 수 있다. 이때, 하부 탄성부재(1910)는 AF홀더(1210)의 홈에 배치되는 홀을 포함할 수 있다. AF홀더(1210)의 돌기는 AF홀더(1210)의 하면에 형성될 수 있다. AF홀더(1210)의 돌기는 AF홀더(1210)의 하면으로부터 돌출될 수 있다.
AF홀더(1210)의 돌기는 복수의 돌기를 포함할 수 있다. AF홀더(1210)의 돌기는 제1돌기(1211)와 제2돌기(1212)를 포함할 수 있다. 하부 탄성부재(1910)의 외측부(1911)는 제1돌기(1211)와 결합되는 제1영역과, 제1돌기(1212)와 결합되는 제2영역(1212)을 포함할 수 있다. 와이어(1930)는 고정부(1100)의 제1코너영역에 배치되는 제1와이어(1931)를 포함할 수 있다. 하부 탄성부재(1910)의 결합부(1912)는 제1와이어(1931)와 결합되는 제1결합부를 포함할 수 있다. 하부 탄성부재(1910)의 연결부(1913)는 하부 탄성부재(1910)의 외측부(1911)와 하부 탄성부재(1910)의 제1결합부를 연결하는 제1연결부(1913-1)와 제2연결부(1913-2)를 포함할 수 있다. 하부 탄성부재(1910)의 연결부(1913)는 외측부(1911)의 제1영역과 제1결합부를 연결하는 제1연결부(1913-1)와, 외측부(1911)의 제2영역과 제1결합부를 연결하는 제2연결부(1913-2)를 포함할 수 있다. 즉, 하부 탄성부재(1910)의 연결부(1913)는 하나의 외측부(1911)와 하나의 결합부(1912)를 연결하기 위해 2개의 가닥의 연결부가 구비될 수 있다.
아래에서 볼 때, 하부 탄성부재(1910)의 제1 및 제2연결부(1913-1, 1913-2)는 광축과 고정부(1100)의 제1코너영역을 연결하는 가상의 직선을 기준으로 대칭일 수 있다.
와이어(1930)는 고정부(1100)의 제2코너영역에 배치되는 제2와이어(1933)를 포함할 수 있다. 하부 탄성부재(1910)의 결합부(1912)는 제2와이어(1933)와 결합되는 제2결합부를 포함할 수 있다. 와이어(1930)는 고정부(1100)의 제3코너영역에 배치되는 제3와이어(1932)를 포함할 수 있다. 하부 탄성부재(1910)의 결합부(1912)는 제3와이어(1932)와 결합되는 제3결합부를 포함할 수 있다. 와이어(1930)는 고정부(1100)의 제4코너영역에 배치되는 제4와이어(1934)를 포함할 수 있다. 하부 탄성부재(1910)의 결합부(1912)는 제4와이어(1934)와 결합되는 제4결합부를 포함할 수 있다. 고정부(1100)의 제1코너영역은 제2코너영역의 대각방향 반대편에 배치되고 제3코너영역은 제4코너영역의 대각방향 반대편에 배치될 수 있다.
AF홀더(1210)는 돌출부(1213)를 포함할 수 있다. 돌출부(1213)는 AF홀더(1210)의 외측면에 형성될 수 있다. 돌출부(1213)는 AF홀더(1210)로부터 외측으로 돌출될 수 있다. 돌출부(1213)의 상면과 하면에는 외측기판(1720)의 연장부(1722)가 배치될 수 있다.
AF홀더(1210)는 홈(1214)을 포함할 수 있다. 홈(1214)은 'AF가이드볼 수용홈'일 수 있다. 홈(1214)에는 AF가이드볼(1810)이 배치될 수 있다. 홈(1214)은 AF가이드볼(1810)과 직접 접촉할 수 있다. 홈(1214)은 광축방향으로 배치될 수 있다. 홈(1214)은 복수의 홈을 포함할 수 있다. 홈(1214)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(1214)은 AF가이드볼(1810)과 2점에서 접촉되는 제1홈과, AF가이드볼(1810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 AF가이드볼(1810)과 2점에서 접촉할 수 있다.
AF홀더(1210)는 돌기(1215a)를 포함할 수 있다. 돌기(1215a)는 AF홀더(1210)의 상판의 하면으로부터 돌출될 수 있다. 돌기(1215a)의 하면에는 OIS가이드볼(1820)이 배치될 수 있다. 돌기(1215a)는 복수의 돌기를 포함할 수 있다. 돌기(1215a)는 4개의 돌기를 포함할 수 있다.
AF홀더(1210)는 홈(1215)을 포함할 수 있다. 홈(1215)은 'OIS가이드볼 수용홈'일 수 있다. 홈(1215)은 돌기(1215a)에 형성될 수 있다. 홈(1215)은 돌기(1215a)의 하면에 형성될 수 있다. 홈(1215)은 돌기(1215a)의 하면에 오목하게 형성될 수 있다. 홈(1215)에는 OIS가이드볼(1820)이 배치될 수 있다. 홈(1215)은 OIS가이드볼(1820)과 직접 접촉할 수 있다.
AF홀더(1210)는 금속부재(1216)를 포함할 수 있다. 금속부재(1216)는 AF홀더(1210)에 인서트 사출될 수 있다. 금속부재(1216)의 적어도 일부는 AF홀더(1210)의 상면에 배치될 수 있다. 금속부재(1216)는 AF홀더(1210)의 강도를 보강하기 위해 배치될 수 있다.
AF홀더(1210)는 홈(1217)을 포함할 수 있다. 홈(1217)은 "금속부재 수용홈"일 수 있다. 홈(1217)은 AF홀더(1210)의 상면에 형성될 수 있다. 홈(1217)은 AF홀더(1210)의 상면에 오목하게 형성될 수 있다. 홈(1217)에는 금속부재(1216)가 배치될 수 있다. 홈(1217)은 금속부재(1216)와 대응하는 형상으로 형성될 수 있다.
렌즈 구동 장치(1010)는 덮개(1220)를 포함할 수 있다. AF이동부(1200)는 덮개(1220)를 포함할 수 있다. 덮개(1220)는 AF홀더(1210)와 결합될 수 있다. 덮개(1220)는 AF홀더(1210)의 하면에 결합될 수 있다. 덮개(1220)는 AF홀더(1210)에 하측에서 결합될 수 있다. 덮개(1220)는 후크(1221)를 포함할 수 있다. 덮개(1220)의 후크(1221)는 AF홀더(1210)에 결합될 수 있다. 덮개(1220)의 후크(1221)는 상측으로 돌출되어 AF홀더(1210)의 측면에 결합될 수 있다.
렌즈 구동 장치(1010)는 OIS이동부(1300)를 포함할 수 있다. OIS이동부(1300)는 고정부(1100)에 배치될 수 있다. OIS이동부(1300)는 고정부(1100) 내에 배치될 수 있다. OIS이동부(1300)는 고정부(1100) 상에 배치될 수 있다. OIS이동부(1300)는 AF이동부(1200) 내에 배치될 수 있다. OIS이동부(1300)는 이동가능하게 배치될 수 있다. OIS이동부(1300)는 OIS-x구동부(1500)에 의해 고정부(1100)와 AF이동부(1200)에 대해 광축에 수직한 x축 방향으로 이동할 수 있다. OIS이동부(1300)는 OIS-y구동부(1600)에 의해 고정부(1100)와 AF이동부(1200)에 대해 광축에 수직한 y축 방향으로 이동할 수 있다. OIS이동부(1300)는 OIS 구동시에 이동할 수 있다.
렌즈 구동 장치(1010)는 OIS홀더(1310)를 포함할 수 있다. OIS이동부(1300)는 OIS홀더(1310)를 포함할 수 있다. OIS홀더(1310)는 'OIS캐리어'일 수 있다. OIS홀더(1310)는 AF홀더(1210) 내에 배치될 수 있다. OIS홀더(1310)는 베이스(1110) 내에 배치될 수 있다. OIS홀더(1310)는 베이스(1110) 상에 배치될 수 있다. OIS홀더(1310)는 커버(1120) 내에 배치될 수 있다. OIS홀더(1310)는 광축에 수직한 방향으로 이동가능하게 배치될 수 있다.
OIS홀더(1310)는 외측면을 포함할 수 있다. OIS홀더(1310)는 복수의 측면을 포함할 수 있다. OIS홀더(1310)는 서로 반대편에 배치되는 제1측면과 제2측면과, 서로 반대편에 배치되는 제3측면과 제4측면을 포함할 수 있다. AF코일(1420)은 OIS홀더(1310)의 제1측면과 AF마그넷(1410) 사이에 배치될 수 있다. OIS-x코일(1520)은 OIS홀더(1310)의 제2측면과 OIS-x마그넷(1510) 사이에 배치될 수 있다. OIS-y코일(1620)은 OIS홀더(1310)의 제3측면과 OIS-y마그넷(1610) 사이에 배치될 수 있다. AF코일(1420)은 OIS홀더(1310)의 제1측면에 배치될 수 있다. OIS-x코일(1520)은 OIS홀더(1310)의 제2측면에 배치될 수 있다. OIS-y코일(1620)은 OIS홀더(1310)의 제3측면에 배치될 수 있다.
OIS홀더(1310)는 홈(1311)을 포함할 수 있다. 홈(1311)은 '상부 탄성부재 간섭방지홈'일 수 있다. 홈(1311)은 OIS홀더(1310)의 상면에 형성될 수 있다. 홈(1311)은 OIS홀더(1310)의 상면에 오목하게 형성될 수 있다. 홈(1311)은 OIS홀더(1310)와 상부 탄성부재(1920)가 간섭되는 것을 방지하도록 상부 탄성부재(1920)와 대응하는 위치에 배치될 수 있다.
OIS홀더(1310)는 홈(1312)을 포함할 수 있다. 홈(1312)은 'OIS가이드볼 수용홈'일 수 있다. 홈(1312)에는 OIS가이드볼(1820)이 배치될 수 있다. 홈(1312)은 OIS가이드볼(1820)과 직접 접촉할 수 있다. 홈(1312)은 광축에 수직한 방향으로 배치될 수 있다. 홈(1312)은 광축방향으로 함몰될 수 있다. 홈(1312)은 복수의 홈을 포함할 수 있다. 홈(1312)은 4개의 홈을 포함할 수 있다. 홈(1312)은 OIS가이드볼(1820)과 1점에서 접촉할 수 있다. 또는 홈(1312)은 OIS가이드볼(1820)과 2점에서 접촉할 수 있다. OIS가이드볼(1820)의 이동에 의해 OIS홀더(1310)와 OIS가이드볼(1820)이 접촉하는 지점의 개수가 달라질 수 있다. 홈(1312)은 홈(1311)에 형성될 수 있다. 홈(1312)은 홈(1311)으로부터 추가로 함몰될 수 있다.
OIS홀더(1310)의 홈(1311)과 홈(1312) 중 어느 하나를 '제1홈'이라 하고 다른 하나를 '제2홈'이라 할 수 있다.
OIS홀더(1310)는 측방 스토퍼를 포함할 수 있다. 측방 스토퍼는 OIS홀더(1310)의 측방으로의 스트로크를 제한할 수 있다. 즉, OIS홀더(1310)가 최대로 이동하면 OIS홀더(1310)의 측방 스토퍼가 AF홀더(1210) 및 베이스(1110) 중 어느 하나 이상에 접촉할 수 있다. 측방 스토퍼는 OIS홀더(1310)의 외측면에 형성될 수 있다. 측방 스토퍼는 OIS홀더(1310)의 측면으로부터 외측으로 돌출될 수 있다.
OIS홀더(1310)는 돌기를 포함할 수 있다. 돌기는 상부 탄성부재(1920)와 결합될 수 있다. 상부 탄성부재(1920)는 OIS홀더(1310)의 돌기와 결합되는 홀을 포함할 수 있다. 변형례로, OIS홀더(1310)는 돌기 대신 접착제를 수용하는 홈을 포함할 수 있다. 이때, 상부 탄성부재(1920)는 OIS홀더(1310)의 홈에 배치되는 홀을 포함할 수 있다. OIS홀더(1310)의 돌기는 OIS홀더(1310)의 상면에 형성될 수 있다. OIS홀더(1310)의 돌기는 OIS홀더(1310)의 상면으로부터 돌출될 수 있다.
OIS홀더(1310)의 돌기는 복수의 돌기를 포함할 수 있다. OIS홀더(1310)의 돌기는 제1돌기(1314)와 제2돌기(1315)를 포함할 수 있다. 상부 탄성부재(1920)의 내측부(1921)는 제1돌기(1314)와 결합되는 제1영역과, 제2돌기(1315)와 결합되는 제2영역(1212)을 포함할 수 있다. 와이어(1930)는 고정부(1100)의 제1코너영역에 배치되는 제1와이어(1931)를 포함할 수 있다. 상부 탄성부재(1920)의 결합부(1922)는 제1와이어(1931)와 결합되는 제1결합부를 포함할 수 있다. 상부 탄성부재(1920)의 연결부(1923)는 상부 탄성부재(1920)의 내측부(1921)와 상부 탄성부재(1920)의 제1결합부를 연결하는 제1연결부(1923-1)와 제2연결부(1923-2)를 포함할 수 있다. 상부 탄성부재(1920)의 연결부(1923)는 내측부(1921)의 제1영역과 제1결합부를 연결하는 제1연결부(1923-1)와, 내측부(1921)의 제2영역과 제1결합부를 연결하는 제2연결부(1923-2)를 포함할 수 있다. 즉, 상부 탄성부재(1920)의 연결부(1923)는 하나의 내측부(1921)와 하나의 결합부(1922)를 연결하기 위해 2개의 가닥의 연결부가 구비될 수 있다.
아래에서 볼 때, 상부 탄성부재(1920)의 제1 및 제2연결부(1923-1, 1923-2)는 광축과 고정부(1100)의 제1코너영역을 연결하는 가상의 직선을 기준으로 대칭일 수 있다.
상부 탄성부재(1920)의 결합부(1922)는 제2와이어(1933)와 결합되는 제2결합부를 포함할 수 있다. 상부 탄성부재(1920)의 결합부(1922)는 제3와이어(1932)와 결합되는 제3결합부를 포함할 수 있다. 상부 탄성부재(1920)의 결합부(1922)는 제4와이어(1934)와 결합되는 제4결합부를 포함할 수 있다.
렌즈 구동 장치(1010)는 구동부를 포함할 수 있다. 구동부는 고정부(1100)에 대해 이동부를 이동시킬 수 있다. 구동부는 AF구동부(1400)를 포함할 수 있다. 구동부는 OIS구동부(1500, 1600)를 포함할 수 있다. 구동부는 코일과 마그넷을 포함할 수 있다.
렌즈 구동 장치(1010)는 AF구동부(1400)를 포함할 수 있다. AF구동부(1400)는 AF이동부(1200)를 광축방향으로 이동시킬 수 있다. AF구동부(1400)는 AF홀더(1210)를 광축방향으로 이동시킬 수 있다. AF구동부(1400)는 전자기력을 통해 AF홀더(1210)를 광축방향으로 이동시킬 수 있다. AF구동부(1400)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제2실시예에서는 AF코일(1420)과 AF마그넷(1410)의 상호작용에 의해 AF홀더(1210)와 OIS홀더(1310)는 광축방향으로 이동할 수 있다. AF코일(1420), AF홀더(1210) 및 OIS홀더(1310)가 일체로 광축방향으로 이동할 수 있다.
렌즈 구동 장치(1010)는 AF마그넷(1410)을 포함할 수 있다. AF구동부(1400)는 AF마그넷(1410)을 포함할 수 있다. AF마그넷(1410)은 고정부(1100)에 배치될 수 있다. AF마그넷(1410)은 베이스(1110)에 배치될 수 있다. AF마그넷(1410)은 커버(1120)에 배치될 수 있다. AF마그넷(1410)은 커버(1120)의 측판(1122)에 배치될 수 있다. AF마그넷(1410)은 베이스(1110)의 외측면에 배치될 수 있다. AF마그넷(1410)은 베이스(1110)의 내측면에 배치될 수 있다. AF마그넷(1410)은 베이스(1110)에 고정될 수 있다. AF마그넷(1410)은 베이스(1110)에 결합될 수 있다. AF마그넷(1410)은 베이스(1110)에 접착제로 접착될 수 있다. AF마그넷(1410)은 커버(1120) 내에 배치될 수 있다. AF마그넷(1410)은 AF코일(1420)과 상호작용할 수 있다. AF마그넷(1410)은 AF코일(1420)과 전자기적 상호작용할 수 있다. AF마그넷(1410)은 AF코일(1420)과 대응하는 위치에 배치될 수 있다. AF마그넷(1410)은 AF코일(1420)과 마주볼 수 있다. AF마그넷(1410)은 AF코일(1420)과 대향할 수 있다. AF마그넷(1410)은 AF코일(1420)과 광축에 수직한 방향으로 오버랩될 수 있다.
AF마그넷(1410)은 4극 마그넷일 수 있다. AF마그넷(1410)은 4극 착자 마그넷을 포함할 수 있다. AF마그넷(1410)은 N극과 S극을 포함하는 제1마그넷부와, N극과 S극을 포함하는 제2마그넷부를 포함할 수 있다. 제1마그넷부와 제2마그넷부는 수직방향으로 배치될 수 있다. 제1마그넷부와 제2마그넷부는 수직방향으로 이격 배치되고 제1마그넷부와 제2마그넷부 사이에 중립부가 배치될 수 있다.
렌즈 구동 장치(1010)는 AF코일(1420)을 포함할 수 있다. AF구동부(1400)는 AF코일(1420)을 포함할 수 있다. AF코일(1420)은 AF마그넷(1410)과 상호작용할 수 있다. AF코일(1420)은 광축방향으로 이동할 수 있다. AF코일(1420)은 AF마그넷(1410)과의 상호작용을 통해 광축방향으로 이동할 수 있다. AF코일(1420)은 AF마그넷(1410)과 대향할 수 있다. AF코일(1420)은 AF마그넷(1410)과 마주볼 수 있다. AF코일(1420)은 AF마그넷(1410)과 대응하는 위치에 배치될 수 있다. AF코일(1420)은 광축에 수직한 방향으로 AF마그넷(1410)과 오버랩될 수 있다. AF코일(1420)은 내측기판(1710)에 배치될 수 있다. AF코일(1420)은 내측기판(1710)의 제1부분(1711)에 배치될 수 있다. AF코일(1420)은 AF홀더(1210)에 배치될 수 있다. AF코일(1420)은 AF이동부(1200)에 배치될 수 있다.
변형례로, AF마그넷(1410)은 AF이동부(1200)에 배치되고 AF코일(1420)은 고정부(1100)에 배치될 수 있다. AF마그넷(1410)은 AF홀더(1210)에 배치될 수 있다. AF코일(1420)은 기판을 통해 베이스(1110)에 배치될 수 있다.
렌즈 구동 장치(1010)는 AF센서(1430)를 포함할 수 있다. AF구동부(1400)는 AF센서(1430)를 포함할 수 있다. AF센서(1430)는 홀센서일 수 있다. AF센서(1430)는 기판(1740)에 배치될 수 있다. AF센서(1430)는 기판(1740)의 제1부분(1711)에 배치될 수 있다. AF센서(1430)는 AF마그넷(1410)을 감지할 수 있다. AF센서(1430)는 AF마그넷(1410)의 이동을 감지할 수 있다. AF센서(1430)에 의해 감지된 AF마그넷(1410)의 이동량 또는 위치는 오토 포커스 구동의 피드백을 위해 사용될 수 있다.
AF센서(1430)는 드라이버 IC일 수 있다. 드라이버 IC는 센싱부를 포함할 수 있다. 센싱부는 홀 소자(Hall IC)를 포함할 수 있다. 드라이버 IC는 AF코일(1420)과 전기적으로 연결될 수 있다. 드라이버 IC는 AF코일(1420)에 전류를 공급할 수 있다.
AF센서(1430)는 AF코일(1420) 내에 배치될 수 있다. AF센서(1430)는 광축에 수직한 방향으로 AF마그넷(1410)의 중립부와 오버랩될 수 있다. 변형례로, AF센서(1430)는 AF코일(1420)의 외측에 배치될 수 있다.
렌즈 구동 장치(1010)는 OIS-x구동부(1500)를 포함할 수 있다. OIS-x구동부(1500)는 OIS이동부(1300)를 광축방향에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(1500)는 OIS홀더(1310)를 광축에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(1500)는 전자기력을 통해 OIS홀더(1310)를 광축에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(1500)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제2실시예는 OIS-x코일(1520)과 OIS-x마그넷(1510)의 상호작용에 의해 OIS홀더(1310)는 광축방향에 수직한 x축방향으로 이동할 수 있다. OIS-x코일(1520)과 OIS홀더(1310)는 일체로 x축 방향으로 이동할 수 있다.
렌즈 구동 장치(1010)는 OIS-x마그넷(1510)을 포함할 수 있다. OIS-x구동부(1500)는 OIS-x마그넷(1510)을 포함할 수 있다. OIS-x마그넷(1510)은 고정부(1100)에 배치될 수 있다. OIS-x마그넷(1510)은 베이스(1110)에 배치될 수 있다. OIS-x마그넷(1510)은 베이스(1110)의 외측면에 배치될 수 있다. OIS-x마그넷(1510)은 베이스(1110)의 내측면에 배치될 수 있다. OIS-x마그넷(1510)은 베이스(1110)에 고정될 수 있다. OIS-x마그넷(1510)은 베이스(1110)에 결합될 수 있다. OIS-x마그넷(1510)은 베이스(1110)에 접착제로 접착될 수 있다. OIS-x마그넷(1510)은 커버(1120) 내에 배치될 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 상호작용할 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 전자기적 상호작용할 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 대응하는 위치에 배치될 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 마주볼 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 대향할 수 있다. OIS-x마그넷(1510)은 OIS-x코일(1520)과 광축에 수직한 방향으로 오버랩될 수 있다.
제2마그넷(1610)은 2극 마그넷일 수 있다. OIS-x마그넷(1510)은 2극 착자 마그넷을 포함할 수 있다. OIS-x마그넷(1510)은 N극과 S극을 포함할 수 있다. OIS-x마그넷(1510)의 내면은 N극이고 외면은 S극일 수 있다.
렌즈 구동 장치(1010)는 OIS-x코일(1520)을 포함할 수 있다. OIS-x구동부(1500)는 OIS-x코일(1520)을 포함할 수 있다. OIS-x코일(1520)은 OIS-x마그넷(1510)과 상호작용할 수 있다. OIS-x코일(1520)은 광축에 수직한 x축 방향으로 이동할 수 있다. OIS-x코일(1520)은 OIS-x마그넷(1510)과의 상호작용을 통해 x축 방향으로 이동할 수 있다. OIS-x코일(1520)은 OIS-x마그넷(1510)과 대향할 수 있다. OIS-x코일(1520)은 OIS-x마그넷(1510)과 마주볼 수 있다. OIS-x코일(1520)은 OIS-x마그넷(1510)과 대응하는 위치에 배치될 수 있다. OIS-x코일(1520)은 광축에 수직한 방향으로 OIS-x마그넷(1510)과 오버랩될 수 있다. OIS-x코일(1520)은 내측기판(1710)에 배치될 수 있다. OIS-x코일(1520)은 내측기판(1710)의 제2부분(1713)에 배치될 수 있다. OIS-x코일(1520)은 OIS홀더(1310)에 배치될 수 있다. OIS-x코일(1520)은 OIS이동부(1300)에 배치될 수 있다.
렌즈 구동 장치(1010)는 OIS-x센서(1530)를 포함할 수 있다. OIS-x구동부(1500)는 OIS-x센서(1530)를 포함할 수 있다. OIS-x센서(1530)는 내측기판(1710)에 배치될 수 있다. OIS-x센서(1530)는 내측기판(1710)의 제2부분(1713)에 배치될 수 있다. OIS-x센서(1530)는 홀센서(Hall sensor)를 포함할 수 있다. OIS-x센서(1530)는 OIS-x마그넷(1510)을 감지할 수 있다. OIS-x센서(1530)는 OIS-x마그넷(1510)의 자기력을 감지할 수 있다. OIS-x센서(1530)는 OIS-x코일(1520) 내에 배치될 수 있다. OIS-x센서(1530)는 광축방향으로 OIS-x코일(1520)과 오버랩될 수 있다. OIS-x센서(1530)는 OIS-x마그넷(1510)과 대향할 수 있다. OIS-x센서(1530)는 OIS-x마그넷(1510)과 대응하는 위치에 배치될 수 있다. OIS-x센서(1530)는 OIS-x마그넷(1510)의 이동을 감지할 수 있다. OIS-x센서(1530)에 의해 감지된 OIS-x마그넷(1510)의 이동량 또는 위치는 x축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(1010)는 OIS-y구동부(1600)를 포함할 수 있다. OIS-y구동부(1600)는 OIS이동부(1300)를 광축방향과 x축방향에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(1600)는 OIS홀더(1310)를 광축과 x축방향 모두에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(1600)는 전자기력을 통해 OIS홀더(1310)를 광축과 x축방향 모두에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(1600)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제2실시예에서 OIS-y코일(1620)과 OIS-y마그넷(1610)의 상호작용에 의해 OIS홀더(1310)는 광축방향과 x축방향 모두에 수직한 y축방향으로 이동할 수 있다. OIS-y코일(1620)과 OIS홀더(1310)는 일체로 y축 방향으로 이동할 수 있다.
렌즈 구동 장치(1010)는 OIS-y마그넷(1610)을 포함할 수 있다. OIS-y구동부(1600)는 OIS-y마그넷(1610)을 포함할 수 있다. OIS-y마그넷(1610)은 고정부(1100)에 배치될 수 있다. OIS-y마그넷(1610)은 베이스(1110)에 배치될 수 있다. OIS-y마그넷(1610)은 베이스(1110)의 외측면에 배치될 수 있다. OIS-y마그넷(1610)은 베이스(1110)의 내측면에 배치될 수 있다. OIS-y마그넷(1610)은 베이스(1110)에 고정될 수 있다. OIS-y마그넷(1610)은 베이스(1110)에 결합될 수 있다. OIS-y마그넷(1610)은 베이스(1110)에 접착제로 접착될 수 있다. OIS-y마그넷(1610)은 커버(1120) 내에 배치될 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 상호작용할 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 전자기적 상호작용할 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 대응하는 위치에 배치될 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 마주볼 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 대향할 수 있다. OIS-y마그넷(1610)은 OIS-y코일(1620)과 광축에 수직한 방향으로 오버랩될 수 있다.
OIS-y마그넷(1610)은 2극 마그넷일 수 있다. OIS-y마그넷(1610)은 2극 착자 마그넷을 포함할 수 있다. OIS-y마그넷(1610)은 N극과 S극을 포함할 수 있다. OIS-y마그넷(1610)의 내면은 N극이고 외면은 S극일 수 있다.
렌즈 구동 장치(1010)는 OIS-y코일(1620)을 포함할 수 있다. OIS-y구동부(1600)는 OIS-y코일(1620)을 포함할 수 있다. OIS-y코일(1620)은 OIS-y마그넷(1610)과 상호작용할 수 있다. OIS-y코일(1620)은 광축을 기준으로 AF코일(1420)의 반대편에 배치될 수 있다. OIS-y코일(1620)은 광축과 x축 모두에 수직한 y축 방향으로 이동할 수 있다. OIS-y코일(1620)은 OIS-y마그넷(1610)과의 상호작용을 통해 y축 방향으로 이동할 수 있다. OIS-y코일(1620)은 OIS-y마그넷(1610)과 대향할 수 있다. OIS-y코일(1620)은 OIS-y마그넷(1610)과 마주볼 수 있다. OIS-y코일(1620)은 OIS-y마그넷(1610)과 대응하는 위치에 배치될 수 있다. OIS-y코일(1620)은 광축에 수직한 방향으로 OIS-y마그넷(1610)과 오버랩될 수 있다. OIS-y코일(1620)은 내측기판(1710)에 배치될 수 있다. OIS-y코일(1620)은 내측기판(1710)의 제3부분(1712)에 배치될 수 있다. OIS-y코일(1620)은 OIS홀더(1310)에 배치될 수 있다. OIS-y코일(1620)은 OIS이동부(1300)에 배치될 수 있다.
렌즈 구동 장치(1010)는 OIS-y센서(1630)를 포함할 수 있다. OIS-y구동부(1600)는 OIS-y센서(1630)를 포함할 수 있다. OIS-y센서(1630)는 내측기판(1710)에 배치될 수 있다. OIS-y센서(1630)는 내측기판(1710)의 제3부분(1712)에 배치될 수 있다. OIS-y센서(1630)는 홀센서(Hall sensor)를 포함할 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)을 감지할 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)의 자기력을 감지할 수 있다. OIS-y센서(1630)는 OIS-y코일(1620) 내에 배치될 수 있다. OIS-y센서(1630)는 광축방향으로 OIS-y코일(1620)과 오버랩될 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)과 대향할 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)과 대응하는 위치에 배치될 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)의 이동을 감지할 수 있다. OIS-y센서(1630)에 의해 감지된 OIS-y마그넷(1610)의 이동량 또는 위치는 y축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(1010)는 기판을 포함할 수 있다. 기판은 연성의 기판을 포함할 수 있다. 기판은 코일과 전기적으로 연결될 수 있다. 기판은 센서와 전기적으로 연결될 수 있다. 기판은 연성으로 형성될 수 있다. 기판은 가요성을 가질 수 있다. 기판은 회로기판일 수 있다. 기판은 인쇄회로기판일 수 있다.
렌즈 구동 장치(1010)는 내측기판(1710)을 포함할 수 있다. 내측기판(1710)은 코일(1420, 1520, 1620)과 전기적으로 연결될 수 있다. 내측기판(1710)은 센서(1430, 1530, 1630)와 전기적으로 연결될 수 있다. 내측기판(1710)은 AF홀더(1210)와 OIS홀더(1310)를 연결할 수 있다. 내측기판(1710)은 AF홀더(1210)와 OIS홀더(1310)를 탄성적으로 연결할 수 있다. 내측기판(1710)은 OIS홀더(1310)가 AF홀더(1210)에 대해 이동가능하게 지지할 수 있다. 내측기판(1710)은 OIS홀더(1310)가 AF홀더(1210)에 대해 광축에 수직한 방향으로 이동하게 가이드할 수 있다. 내측기판(1710)은 연성의 기판을 포함할 수 있다. 내측기판(1710)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 내측기판(1710)은 탄성이 있는 부분을 포함할 수 있다. 내측기판(1710)은 탄성부재를 포함할 수 있다.
내측기판(1710)은 제1부분(1711)을 포함할 수 있다. 제1부분(1711)은 AF이동부(1200)에 배치될 수 있다. 제1부분(1711)은 AF홀더(1210)에 배치될 수 있다. AF코일(1420)은 내측기판(1710)의 제1부분(1711)에 배치될 수 있다. AF센서(1430)는 내측기판(1710)의 제1부분(1711)에 배치될 수 있다. 요크(1830)는 내측기판(1710)의 제1부분(1711)에 배치될 수 있다.
내측기판(1710)은 제2부분(1713)을 포함할 수 있다. 제2부분(1713)은 OIS홀더(1310)에 배치될 수 있다. 제2부분(1713)은 OIS홀더(1310)의 제2측면에 배치될 수 있다. OIS-x코일(1520)은 내측기판(1710)의 제2부분(1713)에 배치될 수 있다. OIS-x센서(1530)는 내측기판(1710)의 제2부분(1713)에 배치될 수 있다.
내측기판(1710)은 제3부분(1712)을 포함할 수 있다. 제3부분(1712)은 OIS홀더(1310)에 배치될 수 있다. 제3부분(1712)은 OIS홀더(1310)의 제3측면에 배치될 수 있다. OIS-y코일(1620)은 내측기판(1710)의 제3부분(1712)에 배치될 수 있다. OIS-y센서(1630)는 내측기판(1710)의 제3부분(1712)에 배치될 수 있다.
내측기판(1710)은 제4부분(1714)을 포함할 수 있다. 제4부분(1714)은 OIS홀더(1310)와 AF홀더(1210) 사이에 배치될 수 있다. 제4부분(1714)은 OIS홀더(1310)의 제4측면과 AF홀더(1210) 사이에 배치될 수 있다.
다만, 본 명세서에 기재된 OIS홀더(1310)의 '제1 내지 제4측면'에서 '제1 내지 제4'는 측면을 서로 구분하기 위한 것일 뿐이므로 필요에 따라 다르게 호칭될 수 있다. 예를 들어, '제2측면'을 '제1측면'으로 호칭하고 '제3측면'을 '제2측면'으로 호칭할 수 있다.
내측기판(1710)은 단자(1714a)를 포함할 수 있다. 내측기판(1710)의 제4부분(1714)은 단자(1714a)를 포함할 수 있다. 단자(1714a)는 코일(1420, 1520, 1620)과 전기적으로 연결될 수 있다. 단자(1714a)는 센서(1430, 1530, 1630)과 전기적으로 연결될 수 있다.
내측기판(1710)은 홀(1714b)를 포함할 수 있다. 내측기판(1710)의 제4부분(1714)은 홀(1714b)를 포함할 수 있다. 홀(1714b)은 내측기판(1710)의 제4부분(1714)에 관통 형성될 수 있다. 홀(1714b)은 OIS홀더(1310)의 측방 스토퍼와 대응하는 위치에 배치될 수 있다. 홀(1714b)에 의해 내측기판(1710)은 OIS홀더(1310)의 측방 스토퍼와 간섭되지 않을 수 있다.
렌즈 구동 장치(1010)는 외측기판(1720)을 포함할 수 있다. 외측기판(1720)은 베이스(1110)에 배치될 수 있다. 외측기판(1720)은 코일(1420, 1520, 1620)과 전기적으로 연결될 수 있다. 외측기판(1720)은 센서(1430, 1530, 1630)와 전기적으로 연결될 수 있다. 외측기판(1720)은 AF홀더(1210)와 베이스(1110)를 연결할 수 있다. 외측기판(1720)은 AF홀더(1210)와 베이스(1110)를 탄성적으로 연결할 수 있다. 외측기판(1720)은 AF홀더(1210)가 베이스(1110)에 대해 이동가능하게 지지할 수 있다. 외측기판(1720)은 AF홀더(1210)가 베이스(1110)에 대해 광축방향으로 이동하게 가이드할 수 있다. 외측기판(1720)은 연성의 기판을 포함할 수 있다. 외측기판(1720)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 외측기판(1720)은 탄성이 있는 부분을 포함할 수 있다. 외측기판(1720)은 탄성부재를 포함할 수 있다.
외측기판(1720)은 몸체부(1721)를 포함할 수 있다. 몸체부(1721)는 고정부(1100)에 배치될 수 있다. 몸체부(1721)는 베이스(1110)에 배치될 수 있다. 몸체부(1721)는 베이스(1110)의 측면을 감싸도록 형성될 수 있다. 몸체부(1721)는 베이스(1110)의 3개의 측면에 배치될 수 있다. 몸체부(1721)는 2개의 단자부를 포함할 수 있다. 2개의 단자부는 광축에 대해 서로 반대편에 배치될 수 있다. 단자부는 단자(1721a)를 포함할 수 있다.
외측기판(1720)은 단자(1721a)를 포함할 수 있다. 외측기판(1720)의 몸체부(1721)는 단자(1721a)를 포함할 수 있다. 단자(1721a)는 단자(1722a)와 전기적으로 연결될 수 있다. 단자(1721a)는 베이스(1110)의 하단부에 배치될 수 있다. 단자(1721a)는 인쇄회로기판(1050)에 결합될 수 있다. 단자(1721a)는 솔더를 통해 인쇄회로기판(1050)의 단자에 결합될 수 있다. 단자(1721a)는 통전성 부재를 통해 인쇄회로기판(1050)의 단자에 결합될 수 있다. 단자(1721a)는 인쇄회로기판(1050)의 단자에 연결될 수 있다. 단자(1721a)는 인쇄회로기판(1050)의 단자에 전기적으로 연결될 수 있다.
외측기판(1720)은 연장부(1722)를 포함할 수 있다. 연장부(1722)는 '레그부'일 수 있다. 연장부(1722)는 몸체부(1721)로부터 연장될 수 있다. 연장부(1722)의 적어도 일부는 AF이동부(1200)와 함께 이동할 수 있다. 연장부(1722)의 적어도 일부는 AF홀더(1210)와 함께 이동할 수 있다. 연장부는 몸체부(1721)로부터 연장될 수 있다. 연장부(1722)는 복수의 레그부를 포함할 수 있다. 연장부(1722)는 제1레그부와 제2레그부를 포함할 수 있다. 제2레그부는 제1레그부의 아래에 배치될 수 있다.
외측기판(1720)은 단자(1722a)를 포함할 수 있다. 외측기판(1720)의 연장부(1722)는 단자(1722a)를 포함할 수 있다. 단자(1722a)는 내측기판(1710)의 단자(1714a)와 결합될 수 있다. 단자(1722a)는 내측기판(1710)의 단자(1714a)와 솔더를 통해 결합될 수 있다. 단자(1722a)는 내측기판(1710)의 단자(1714a)와 통전성 부재를 통해 결합될 수 있다. 단자(1722a)는 내측기판(1710)의 단자(1714a)와 연결될 수 있다. 단자(1722a)는 내측기판(1710)의 단자(1714a)와 전기적으로 연결될 수 있다.
렌즈 구동 장치(1010)는 가이드 부재를 포함할 수 있다. 가이드 부재는 볼을 포함할 수 있다. 가이드 부재는 핀을 포함할 수 있다. 가이드 부재는 원통형 부재를 포함할 수 있다. 가이드 부재는 고정부(1100)에 대한 이동부의 이동을 특정 방향으로 가이드할 수 있다.
렌즈 구동 장치(1010)는 AF가이드볼(1810)을 포함할 수 있다. AF가이드볼(1810)은 AF홀더(1210)의 베이스(1110)에 대한 이동을 광축방향으로 가이드할 수 있다. AF가이드볼(1810)은 베이스(1110)와 AF홀더(1210) 사이에 배치될 수 있다. AF가이드볼(1810)은 x축방향으로 베이스(1110)와 AF홀더(1210) 사이에 배치될 수 있다. AF가이드볼(1810)은 베이스(1110)의 홈(1111a)에 배치될 수 있다. AF가이드볼(1810)은 AF홀더(1210)의 제1홈(1214)에 배치될 수 있다. AF가이드볼(1810)은 베이스(1110)와 AF홀더(1210)에 4점으로 접촉하는 제1-1볼과, 베이스(1110)와 AF홀더(1210)에 3점으로 접촉하는 제1-2볼을 포함할 수 있다. AF가이드볼(1810)은 구형상일 수 있다. AF가이드볼(1810)은 금속으로 형성될 수 있다. AF가이드볼(1810)의 표면에는 구리스가 도포될 수 있다.
AF가이드볼(1810)은 복수의 볼을 포함할 수 있다. AF가이드볼(1810)는 8개의 볼을 포함할 수 있다. 4개의 AF가이드볼(1810)은 AF마그넷(1410)의 일측에 배치되고 나머지 4개의 AF가이드볼(1810)은 AF마그넷(1410)의 타측에 배치될 수 있다.
렌즈 구동 장치(1010)는 OIS가이드볼(1820)을 포함할 수 있다. OIS가이드볼(1820)은 OIS홀더(1310)의 AF홀더(1210)에 대한 이동을 광축에 수직한 방향으로 가이드할 수 있다. OIS가이드볼(1820)은 AF홀더(1210)와 OIS홀더(1310) 사이에 배치될 수 있다. OIS가이드볼(1820)은 광축방향으로 AF홀더(1210)와 OIS홀더(1310) 사이에 배치될 수 있다. OIS가이드볼(1820)은 광축방향으로 AF이동부(1200)와 OIS이동부(1300)와 중첩될 수 있다. OIS가이드볼(1820)은 광축방향으로 AF이동부(1200)와 OIS이동부(1300) 사이에 배치될 수 있다.
OIS가이드볼(1820)은 AF홀더(1210)와 OIS홀더(1310) 사이에 배치될 수 있다. OIS가이드볼(1820)은 탄성부재의 가압력에 의해 AF홀더(1210)와 OIS홀더(1310) 사이에서 가압될 수 있다.
OIS가이드볼(1820)은 OIS홀더(1310)가 AF홀더(1210)에 대해 광축방향에 수직한 x축방향과 y축방향으로 이동하도록 가이드할 수 있다. 즉, OIS가이드볼(1820)은 OIS홀더(1310)를 x축 방향과 y축 방향으로 이동하도록 가이드할 수 있다. 다시 말해, OIS가이드볼(1820)은 x축 방향과 y축 방향 모두에 대한 이동을 가이드할 수 있다. 참고로, x축 방향을 가이드하는 볼과 y축 방향을 가이드하는 볼을 별도로 구비하는 비교예와 비교할 때 x축 방향을 가이드하는 볼과 y축 방향을 가이드하는 볼을 일체로 구비한 본 발명의 제2실시예에서 렌즈 구동 장치(1010)의 크기가 최소화될 수 있다. 특히, 렌즈 구동 장치(1010)의 광축방향으로의 높이가 축소될 수 있다. 이를 통해, 스마트폰에서 돌출되는 높이 즉 어깨높이가 최소화될 수 있다. OIS가이드볼(1820)은 복수의 볼을 포함할 수 있다. OIS가이드볼(1820)은 4개의 볼을 포함할 수 있다.
위에서 볼 때, OIS가이드볼(1820)은 상부 탄성부재(1920)의 내측부(1921), 결합부(1922) 및 연결부(1923)를 통해 형성되는 공간 내에 배치될 수 있다. 위에서 볼 때, 상부 탄성부재(1920)의 내측부(1921), 결합부(1922) 및 연결부(1923)는 폐곡선을 형성할 수 있다. 이때, OIS가이드볼(1820)은 상부 탄성부재(1920)의 내측부(1921), 결합부(1922) 및 연결부(1923)가 형성한 폐곡선 내의 공간에 배치될 수 있다.
렌즈 구동 장치(1010)는 요크(1830)를 포함할 수 있다. 요크(1830)는 내측기판(1710)의 제1부분(1711)에 배치될 수 있다. 요크(1830)와 AF마그넷(1410) 사이에는 인력이 발생될 수 있다. 요크(1830)는 AF마그넷(1410)과 대응하는 위치에 배치될 수 있다. 요크(1830)는 금속으로 형성될 수 있다. 요크(1830)와 AF마그넷(1410) 사이의 인력에 의해 AF가이드볼(1810)이 베이스(1110)와 AF홀더(1210) 사이에서 가압될 수 있다. 즉, 요크(1830)와 AF마그넷(1410) 사이의 인력에 의해 AF가이드볼(1810)의 베이스(1110)와 AF홀더(1210)에 대한 접촉 상태가 유지될 수 있다.
렌즈 구동 장치(1010)는 탄성부재를 포함할 수 있다. 탄성부재는 OIS가이드볼(1820)을 가압하도록 형성될 수 있다. 탄성부재는 OIS가이드볼(1820)만으로 OIS-x축 구동과 OIS-y축 구동 모두를 가이드하도록 형성될 수 있다. 탄성부재는 판스프링을 포함할 수 있다. 탄성부재는 와이어를 포함할 수 있다. 탄성부재는 탄성을 가질 수 있다. 탄성부재는 금속으로 형성될 수 있다.
렌즈 구동 장치(1010)는 하부 탄성부재(1910)를 포함할 수 있다. 하부 탄성부재(1910)는 판스프링일 수 있다. 하부 탄성부재(1910)는 탄성을 가질 수 있다. 하부 탄성부재(1910)는 AF홀더(1210)의 하면에 배치될 수 있다. 하부 탄성부재(1910)는 AF홀더(1210)에 배치될 수 있다. 하부 탄성부재(1910)는 AF홀더(1210)의 하부에 배치될 수 있다. 하부 탄성부재(1910)는 AF홀더(1210)의 아래에 배치될 수 있다. 하부 탄성부재(1910)는 몸체부(1721)의 하면에 배치될 수 있다. 하부 탄성부재(1910)는 몸체부(1721)의 하면에 결합될 수 있다. 하부 탄성부재(1910)는 광축에 수직하게 배치될 수 있다.
하부 탄성부재(1910)는 서로 이격되는 복수의 탄성유닛을 포함할 수 있다. 하부 탄성부재(1910)는 제1 내지 제4와이어(1931, 1932, 1933, 1934)와 대응하는 제1 내지 제4탄성유닛을 포함할 수 있다. 제1 내지 제4탄성유닛은 서로 이격될 수 있다.
하부 탄성부재(1910)는 외측부(1911)를 포함할 수 있다. 외측부(1911)는 AF이동부(1200)와 결합될 수 있다. 하부 탄성부재(1910)는 결합부(1912)를 포함할 수 있다. 결합부(1912)는 와이어(1930)와 결합될 수 있다. 하부 탄성부재(1910)는 연결부(1913)를 포함할 수 있다. 연결부(1913)는 외측부(1911)와 결합부(1912)를 연결할 수 있다. 하부 탄성부재(1910)의 결합부(1912)는 하부 탄성부재(1910)의 외측부(1911)보다 낮게 배치될 수 있다.
이하에서 하부 탄성부재(1910)의 외측부(1911), 결합부(1912) 및 연결부(1913) 중 하나를 "제1부분"이라 하고 다른 하나를 "제2부분"이라 하고 다른 하나를 "제3부분"이라 할 수 있다. 이하에서 하부 탄성부재(1910)의 외측부(1911), 결합부(1912) 및 연결부(1913) 중 하나를 "제1영역"이라 하고 다른 하나를 "제2영역"이라 하고 다른 하나를 "제3영역"이라 할 수 있다.
렌즈 구동 장치(1010)는 상부 탄성부재(1920)를 포함할 수 있다. 상부 탄성부재(1920)는 판스프링일 수 있다. 상부 탄성부재(1920)는 탄성을 가질 수 있다. 상부 탄성부재(1920)는 OIS홀더(1310)의 상면에 배치될 수 있다. 상부 탄성부재(1920)는 OIS홀더(1310)에 배치될 수 있다. 상부 탄성부재(1920)는 OIS홀더(1310)의 상부에 배치될 수 있다. 상부 탄성부재(1920)는 OIS홀더(1310)의 위에 배치될 수 있다. 상부 탄성부재(1920)는 광축에 수직하게 배치될 수 있다. 상부 탄성부재(1920)는 일체로 형성될 수 있다.
상부 탄성부재(1920)는 내측부(1921)를 포함할 수 있다. 내측부(1921)는 OIS이동부(1300)와 결합될 수 있다. 상부 탄성부재(1920)는 결합부(1922)를 포함할 수 있다. 결합부(1922)는 와이어(1930)와 결합될 수 있다. 상부 탄성부재(1920)는 연결부(1923)를 포함할 수 있다. 연결부(1923)는 내측부(1921)와 결합부(1922)를 연결할 수 있다. 상부 탄성부재(1920)의 결합부(1922)는 상부 탄성부재(1920)의 내측부(1921)보다 높게 배치될 수 있다.
이하에서 상부 탄성부재(1920)의 내측부(1921), 결합부(1922) 및 연결부(1923) 중 하나를 "제1부분"이라 하고 다른 하나를 "제2부분"이라 하고 다른 하나를 "제3부분"이라 할 수 있다. 이하에서 상부 탄성부재(1920)의 내측부(1921), 결합부(1922) 및 연결부(1923) 중 하나를 "제1영역"이라 하고 다른 하나를 "제2영역"이라 하고 다른 하나를 "제3영역"이라 할 수 있다.
하부 탄성부재(1910)는 와이어(1930)의 제1영역과 AF이동부(1200)를 연결할 수 있다. 상부 탄성부재(1920)는 와이어(1930)의 제2영역과 OIS이동부(1300)를 연결할 수 있다. 와이어(1930)의 제2영역은 제1영역보다 높게 배치될 수 있다. 즉, 와이어(1930)의 제1영역은 제2영역보다 낮게 배치될 수 있다.
도 58a와 도 58b에 도시된 바와 같이, 광축방향으로, 와이어(1930)의 제1영역(a)과 제2영역(d) 사이의 거리는 하부 탄성부재(1910)의 외측부(1911)(b)와 상부 탄성부재(1920)의 내측부(1921)(c) 사이의 거리보다 길 수 있다. 와이어(1930)의 제1영역(a)은 하부 탄성부재(1910)의 외측부(1911)(b)보다 낮게 배치될 수 있다. 와이어(1930)의 제1영역(a)과 하부 탄성부재(1910)의 외측부(1911)(b) 사이에는 광축방향으로 제1갭(ga)이 형성될 수 있다. 와이어(1930)의 제2영역(d)은 상부 탄성부재(1920)의 내측부(1921)(c)보다 높게 배치될 수 있다. 와이어(1930)의 제2영역(d)과 상부 탄성부재(1920)의 내측부(1921)(c) 사이에는 광축방향으로 제2갭(gb)이 형성될 수 있다.
이와 같은 구조를 통해 OIS가이드볼(1820)은 하부 탄성부재(1910), 상부 탄성부재(1920) 및 와이어(1930)에 의해 AF이동부(1200)와 OIS이동부(1300) 사이에서 가압될 수 있다. 즉, 이와 같은 구조를 통해 OIS가이드볼(1820)은 하부 탄성부재(1910), 상부 탄성부재(1920) 및 와이어(1930)에 의해 AF홀더(1210)와 OIS홀더(1310) 사이에서 가압될 수 있다.
변형례로, 광축방향으로, 와이어(1930)의 제1영역(a)과 제2영역(d) 사이의 거리는 하부 탄성부재(1910)의 외측부(1911)(b)와 상부 탄성부재(1920)의 내측부(1921)(c) 사이의 거리와 같을 수 있다.
변형례로, 와이어(1930)의 제1영역(a)은 하부 탄성부재(1910)의 외측부(1911)(b)와 같은 높이로 배치될 수 있다. 또는, 와이어(1930)의 제2영역(d)은 상부 탄성부재(1920)의 내측부(1921)(c)와 같은 높이로 배치될 수 있다.
렌즈 구동 장치(1010)는 와이어(1930)를 포함할 수 있다. 와이어(1930)는 '측부 탄성부재'일 수 있다. 와이어(1930)는 와이어 스프링일 수 있다. 와이어(1930)는 서스펜션 와이어일 수 있다. 와이어(1930)는 탄성을 가질 수 있다. 와이어(1930)는 상부 탄성부재(1920)와 하부 탄성부재(1910)를 연결할 수 있다. 와이어(1930)는 상부 탄성부재(1920)와 하부 탄성부재(1910)를 탄성적으로 연결할 수 있다. 와이어(1930)는 광축과 평행하게 배치될 수 있다. 와이어(1930)는 광축방향과 평행하게 배치될 수 있다.
와이어(1930)는 복수의 와이어를 포함할 수 있다. 와이어(1930)는 4개의 와이어를 포함할 수 있다. 와이어(1930)는 제1 내지 제4와이어(1931, 1932, 1933, 1934)를 포함할 수 있다. 와이어(1930)는 고정부(1100)의 제1 내지 제4코너영역에 각각 배치되는 제1 내지 제4와이어(1931, 1932, 1933, 1934)를 포함할 수 있다.
이하에서는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 오토 포커스(AF, auto focus) 구동을 도면을 참조하여 설명한다.
도 62 내지 도 64는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 62는 AF코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 63은 AF코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 64는 AF코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
이동부는 AF코일(1420)에 전류가 인가되지 않은 초기위치에서 커버(1120)의 상판(1121)과 베이스(1110) 모두와 이격된 위치에 배치될 수 있다. 이때, 이동부는 AF이동부(1200)일 수 있다. 또한, 이동부는 AF이동부(1200)와 OIS이동부(1300)를 포함할 수 있다.
AF코일(1420)에 정방향 전류가 인가되면 AF코일(1420)과 AF마그넷(1410)의 전자기적 상호작용에 의해 AF코일(1420)은 광축방향 상측으로 이동할 수 있다(도 63의 A 참조). 이때, AF코일(1420)과 함께 AF홀더(1210)가 광축방향 상측으로 이동할 수 있다. 나아가, AF홀더(1210)와 함께 OIS홀더(1310)와 렌즈가 광축방향 상측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
AF코일(1420)에 역방향 전류가 인가되면 AF코일(1420)과 AF마그넷(1410)의 전자기적 상호작용에 의해 AF코일(1420)은 광축방향 하측으로 이동할 수 있다(도 64의 B 참조). 이때, AF코일(1420)과 함께 AF홀더(1210)가 광축방향 하측으로 이동할 수 있다. 나아가, AF홀더(1210)와 함께 OIS홀더(1310)와 렌즈가 광축방향 하측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
한편, AF코일(1420)의 이동 과정에서 AF센서(1430)는 AF코일(1420)과 함께 이동하며 AF마그넷(1410)의 자기장의 세기를 감지해서 렌즈의 광축방향으로의 이동량이나 위치를 감지할 수 있다. AF센서(1430)에서 감지된 렌즈의 광축방향으로의 이동량이나 위치는 오토 포커스 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제2실시예에 따른 렌즈 구동 장치의 손떨림 보정(OIS, optical image stabilization) 구동을 도면을 참조하여 설명한다.
도 65 내지 도 67은 본 발명의 제2실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 65는 OIS-x코일과 OIS-y코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 66은 OIS-x코일에 전류가 인가되어 OIS이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 67은 OIS-y코일에 전류가 인가되어 OIS이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 65에 도시된 바와 같이 이동부는 OIS-x코일(1520)과 OIS-y코일(1620)에 전류가 인가되지 않은 초기위치에 배치될 수 있다. 이때, 이동부는 OIS이동부(1300)일 수 있다.
OIS-x코일(1520)에 전류가 인가되면 OIS-x코일(1520)과 OIS-x마그넷(1510)의 전자기적 상호작용에 의해 OIS-x코일(1520)은 광축에 수직한 x축 방향으로 이동할 수 있다(도 66의 a 참조). 이때, OIS-x코일(1520)과 함께 OIS홀더(1310)가 x축 방향으로 이동할 수 있다. 나아가, OIS홀더(1310)와 함께 렌즈가 x축 방향으로 이동할 수 있다. 보다 상세히, OIS-x코일(1520)에 정방향 전류가 인가되는 경우 OIS-x코일(1520), OIS홀더(1310) 및 렌즈는 x축 상의 일방향으로 이동할 수 있다. 또한, OIS-x코일(1520)에 역방향 전류가 인가되는 경우 OIS-x코일(1520), OIS홀더(1310) 및 렌즈는 x축 상의 타방향으로 이동할 수 있다.
OIS-y코일(1620)에 전류가 인가되면 OIS-y코일(1620)과 OIS-y마그넷(1610)의 전자기적 상호작용에 의해 OIS-y코일(1620)은 광축에 수직한 y축 방향으로 이동할 수 있다(도 67의 b 참조). 이때, OIS-y코일(1620)과 함께 OIS홀더(1310)가 y축 방향으로 이동할 수 있다. 나아가, OIS홀더(1310)와 함께 렌즈가 y축 방향으로 이동할 수 있다. 보다 상세히, OIS-y코일(1620)에 정방향 전류가 인가되는 경우 OIS-y코일(1620), OIS홀더(1310) 및 렌즈는 y축 상의 일방향으로 이동할 수 있다. 또한, OIS-y코일(1620)에 역방향 전류가 인가되는 경우 OIS-y코일(1620), OIS홀더(1310) 및 렌즈는 y축 상의 타방향으로 이동할 수 있다.
한편, OIS-x센서(1530)는 OIS-x마그넷(1510)의 자기장의 세기를 감지해서 OIS-x코일(1520)의 이동량이나 위치를 감지할 수 있다. OIS-x센서(1530)에서 감지된 이동량이나 위치는 x축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다. OIS-y센서(1630)는 OIS-y마그넷(1610)의 자기장의 세기를 감지해서 OIS-y코일(1620)의 이동량이나 위치를 감지할 수 있다. OIS-y센서(1630)에서 감지된 이동량이나 위치는 y축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제2실시예에 따른 카메라 장치를 도면을 참조하여 설명한다.
도 68은 본 발명의 제2실시예에 따른 카메라 장치의 분해사시도이다.
카메라 장치(1010A)는 카메라 모듈을 포함할 수 있다.
카메라 장치(1010A)는 렌즈 모듈(1020)을 포함할 수 있다. 렌즈 모듈(1020)은 적어도 하나의 렌즈를 포함할 수 있다. 렌즈는 이미지 센서(1060)와 대응하는 위치에 배치될 수 있다. 렌즈 모듈(1020)은 렌즈 및 배럴을 포함할 수 있다. 렌즈 모듈(1020)은 렌즈 구동 장치(1010)의 OIS홀더(1310)에 결합될 수 있다. 렌즈 모듈(1020)은 OIS홀더(1310)에 나사 결합 및/또는 접착제에 의해 결합될 수 있다. 렌즈 모듈(1020)은 OIS홀더(1310)와 일체로 이동할 수 있다.
카메라 장치(1010A)는 필터(1030)를 포함할 수 있다. 필터(1030)는 렌즈 모듈(1020)을 통과하는 광에서 특정 주파수 대역의 광이 이미지 센서(1060)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(1030)는 x-y평면과 평행하도록 배치될 수 있다. 필터(1030)는 렌즈 모듈(1020)과 이미지 센서(1060) 사이에 배치될 수 있다. 필터(1030)는 센서 베이스(1040)에 배치될 수 있다. 변형례로, 필터(1030)는 베이스(1110)에 배치될 수 있다. 필터(1030)는 적외선 필터를 포함할 수 있다. 적외선 필터는 이미지 센서(1060)에 적외선 영역의 광이 입사되는 것을 차단할 수 있다.
카메라 장치(1010A)는 센서 베이스(1040)를 포함할 수 있다. 센서 베이스(1040)는 렌즈 구동 장치(1010)와 인쇄회로기판(1050) 사이에 배치될 수 있다. 센서 베이스(1040)는 필터(1030)가 배치되는 돌출부(1041)를 포함할 수 있다. 필터(1030)가 배치되는 센서 베이스(1040)의 부분에는 필터(1030)를 통과하는 광이 이미지 센서(1060)에 입사할 수 있도록 개구가 형성될 수 있다. 접착 부재는 렌즈 구동 장치(1010)의 베이스(1310)를 센서 베이스(1040)에 결합 또는 접착시킬 수 있다. 접착 부재는 추가로 렌즈 구동 장치(1010)의 내부로 이물질이 유입되지 않도록 하는 역할을 할 수 있다. 접착 부재는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 중 어느 하나 이상을 포함할 수 있다.
카메라 장치(1010A)는 인쇄회로기판(PCB, Printed Circuit Board)(1050)을 포함할 수 있다. 인쇄회로기판(1050)은 기판 또는 회로기판일 수 있다. 인쇄회로기판(1050)에는 렌즈 구동 장치(1010)가 배치될 수 있다. 인쇄회로기판(1050)과 렌즈 구동 장치(1010) 사이에는 센서 베이스(1040)가 배치될 수 있다. 인쇄회로기판(1050)은 렌즈 구동 장치(1010)와 전기적으로 연결될 수 있다. 인쇄회로기판(1050)에는 이미지 센서(1060)가 배치될 수 있다. 인쇄회로기판(1050)에는 이미지 센서(1060)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
카메라 장치(1010A)는 이미지 센서(1060)를 포함할 수 있다. 이미지 센서(1060)는 렌즈와 필터(1030)를 통과한 광이 입사하여 이미지가 결상되는 구성일 수 있다. 이미지 센서(1060)는 인쇄회로기판(1050)에 실장될 수 있다. 이미지 센서(1060)는 인쇄회로기판(1050)에 전기적으로 연결될 수 있다. 일례로, 이미지 센서(1060)는 인쇄회로기판(1050)에 표면 실장 기술(SMT, Surface Mounting Technology)에 의해 결합될 수 있다. 다른 예로, 이미지 센서(1060)는 인쇄회로기판(1050)에 플립 칩(flip chip) 기술에 의해 결합될 수 있다. 이미지 센서(1060)는 렌즈와 광축이 일치되도록 배치될 수 있다. 즉, 이미지 센서(1060)의 광축과 렌즈의 광축은 얼라인먼트(alignment) 될 수 있다. 이미지 센서(1060)는 이미지 센서(1060)의 유효화상 영역에 조사되는 광을 전기적 신호로 변환할 수 있다. 이미지 센서(1060)는 CCD(charge coupled device, 전하 결합 소자), MOS(metal oxide semi-conductor, 금속 산화물 반도체), CPD 및 CID 중 어느 하나일 수 있다.
카메라 장치(1010A)는 모션 센서(1070)를 포함할 수 있다. 모션 센서(1070)는 인쇄회로기판(1050)에 실장될 수 있다. 모션 센서(1070)는 인쇄회로기판(1050)에 제공되는 회로 패턴을 통하여 제어부(1080)와 전기적으로 연결될 수 있다. 모션 센서(1070)는 카메라 장치(1010A)의 움직임에 의한 회전 각속도 정보를 출력할 수 있다. 모션 센서(1070)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서를 포함할 수 있다.
카메라 장치(1010A)는 제어부(1080)를 포함할 수 있다. 제어부(1080)는 인쇄회로기판(1050)에 배치될 수 있다. 제어부(1080)는 렌즈 구동 장치(1010)의 코일(1330)과 전기적으로 연결될 수 있다. 제어부(1080)는 코일(1330)에 공급하는 전류의 방향, 세기 및 진폭 등을 개별적으로 제어할 수 있다. 제어부(1080)는 렌즈 구동 장치(1010)를 제어하여 오토 포커스 기능 및/또는 손떨림 보정 기능을 수행할 수 있다. 나아가, 제어부(1080)는 렌즈 구동 장치(1010)에 대한 오토 포커스 피드백 제어 및/또는 손떨림 보정 피드백 제어를 수행할 수 있다.
카메라 장치(1010A)는 커넥터(1090)를 포함할 수 있다. 커넥터(1090)는 인쇄회로기판(1050)과 전기적으로 연결될 수 있다. 커넥터(1090)는 외부 장치와 전기적으로 연결되기 위한 포트(port)를 포함할 수 있다.
이하에서는 본 발명의 제2실시예에 따른 광학기기를 도면을 참조하여 설명한다.
도 69는 본 발명의 제2실시예에 따른 광학기기의 사시도이고, 도 70은 변형례에 따른 광학기기의 사시도이다.
광학기기(1001)는 핸드폰, 휴대폰, 휴대 단말기, 이동 단말기, 스마트폰(smart phone), 스마트 패드, 휴대용 스마트 기기, 디지털 카메라, 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 네비게이션 중 어느 하나 이상을 포함할 수 있다. 광학기기(1001)는 영상 또는 사진을 촬영하기 위한 어떠한 장치도 포함할 수 있다.
광학기기(1001)는 본체(1020)를 포함할 수 있다. 광학기기(1001)는 카메라 장치(1010A)를 포함할 수 있다. 카메라 장치(1010A)는 본체(1020)에 배치될 수 있다. 카메라 장치(1010A)는 피사체를 촬영할 수 있다. 광학기기(1001)는 디스플레이를 포함할 수 있다. 디스플레이는 본체(1020)에 배치될 수 있다. 디스플레이는 카메라 장치(1010A)에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력할 수 있다. 디스플레이는 본체(1020)의 제1면에 배치될 수 있다. 카메라 장치(1010A)는 본체(1020)의 제1면과, 제1면의 반대편의 제2면 중 어느 하나 이상에 배치될 수 있다. 도 69에 도시된 바와 같이 카메라 장치(1010A)는 트리플 카메라가 세로 방향으로 배치될 수 있다. 도 70에 도시된 바와 같이 카메라 장치(1010A-1)는 트리플 카메라가 가로 방향으로 배치될 수 있다.
이하에서는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 구성을 도면을 참조하여 설명한다.
도 71은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 개념도이고, 도 72는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 사시도이고, 도 73은 도 72의 A-A에서 바라본 단면도이고, 도 74는 도 72의 B-B에서 바라본 단면도이고, 도 75는 도 72의 C-C에서 바라본 단면도이고, 도 76은 도 75의 일부를 확대 도시한 확대도이고, 도 77은 본 발명의 제3실시예에 따른 렌즈 구동 장치를 광축에 수직한 단면으로 잘라 위에서 본 단면도이고, 도 78은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 분해사시도이고, 도 79는 본 발명의 제3실시예에 따른 렌즈 구동 장치에서 커버를 제거한 상태의 사시도이고, 도 80은 도 79의 일부를 확대해서 도시한 확대도이고, 도 81은 도 80을 다른 방향에서 본 사시도이고, 도 82는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 고정부와 관련 구성을 도시하는 사시도이고, 도 83은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 이동부와 관련 구성을 도시하는 사시도이고, 도 84는 도 83을 정면에서 본 정면도이고, 도 85는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 AF가이드볼과 관련 구성을 도시하는 단면사시도이고, 도 86은는 도 83을 다른 방향에서 본 사시도이고, 도 87은 도 86에서 덮개를 제거한 상태의 사시도이고, 도 88은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 AF이동부와 관련 구성을 아래에서 본 저면도이고, 도 89는 도 88을 다른 방향에서 본 저면사시도이고, 도 90은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 OIS이동부와 관련 구성을 도시하는 사시도이고, 도 91은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 탄성부재의 배치구조를 도시하는 단면도이고, 도 92는 도 90을 다른 방향에서 본 저면사시도이고, 도 93은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 내측기판과 외측기판을 도시하는 사시도이고, 도 94는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 탄성부재와 와이어를 도시하는 사시도이다.
렌즈 구동 장치(2010)는 보이스 코일 모터(VCM, Voice Coil Motor)일 수 있다. 렌즈 구동 장치(2010)는 렌즈 구동 모터일 수 있다. 렌즈 구동 장치(2010)는 렌즈 구동 액츄에이터일 수 있다. 렌즈 구동 장치(2010)는 AF 모듈을 포함할 수 있다. 렌즈 구동 장치(2010)는 OIS 모듈을 포함할 수 있다.
렌즈 구동 장치(2010)는 고정부(2100)를 포함할 수 있다. 고정부(2100)는 이동부의 이동시에 상대적으로 고정된 부분일 수 있다. 이동부는 고정부(2100)에 대해 이동할 수 있다.
렌즈 구동 장치(2010)는 베이스(2110)를 포함할 수 있다. 고정부(2100)는 베이스(2110)를 포함할 수 있다. 베이스(2110)는 AF홀더(2210)의 아래에 배치될 수 있다. 베이스(2110)는 OIS홀더(2310)의 아래에 배치될 수 있다. 베이스(2110)는 커버(2120)와 결합될 수 있다. AF홀더(2210)와 OIS홀더(2310)는 베이스(2110) 상에 배치될 수 있다. AF홀더(2210)와 OIS홀더(2310)는 베이스(2110)의 하판 상에 배치될 수 있다. AF홀더(2210)와 OIS홀더(2310)는 베이스(2110) 내에 배치될 수 있다. AF홀더(2210)와 OIS홀더(2310)는 베이스(2110)의 측판 내에 배치될 수 있다.
본 발명의 제3실시예에서는 AF마그넷(2410), OIS-x마그넷(2510) 및 OIS-y마그넷(2610) 모두가 베이스(2110)에 배치될 수 있다. AF마그넷(2410), OIS-x마그넷(2510) 및 OIS-y마그넷(2610) 모두가 고정부(2100)에 배치될 수 있다. 즉, 오토 포커스 동작에서 AF마그넷(2410), OIS-x마그넷(2510) 및 OIS-y마그넷(2610) 모두 고정된 상태를 유지할 수 있다. 또한, 손떨림 보정 동작에서 AF마그넷(2410), OIS-x마그넷(2510) 및 OIS-y마그넷(2610) 모두 고정된 상태를 유지할 수 있다. 오토 포커스 동작에서 AF마그넷(2410)은 고정되고 AF코일(2420)이 이동할 수 있다. 손떨림 보정 동작에서 OIS-x 및 OIS-y마그넷(2510, 2610)은 고정되고 OIS-x 및 OIS-y코일(2520, 2620)이 이동할 수 있다.
베이스(2110)는 하판을 포함할 수 있다. 베이스(2110)는 측판을 포함할 수 있다. 측판은 '측부'일 수 있다. 베이스(2110)의 측판은 하판의 상면으로부터 연장될 수 있다.
베이스(2110)의 측판은 복수의 측판을 포함할 수 있다. 베이스(2110)의 측판은 4개의 측판을 포함할 수 있다. 다만, 베이스(2110)의 4개의 측판 중 하나 이상은 생략될 수 있다. 베이스(2110)의 측판은 제1 내지 제4측판(2111, 2112, 2113, 2114)을 포함할 수 있다. 베이스(2110)는 서로 반대편에 배치되는 제1측판(2111)과 제2측판(2113)과, 서로 반대편에 배치되는 제3측판(2112)과 제4측판(2114)을 포함할 수 있다.
베이스(2110)의 측부는 복수의 측부를 포함할 수 있다. 베이스(2110)의 측부는 4개의 측부를 포함할 수 있다. 다만, 베이스(2110)의 4개의 측부 중 하나 이상은 생략될 수 있다. 베이스(2110)의 측부는 제1 내지 제4측부를 포함할 수 있다. 베이스(2110)는 서로 반대편에 배치되는 제1측부와 제2측부와, 서로 반대편에 배치되는 제3측부와 제4측부를 포함할 수 있다.
AF마그넷(2410)은 베이스(2110)의 제1측판(2111)에 배치될 수 있다. OIS-x마그넷(2510)은 베이스(2110)의 제2측판(2113)에 배치될 수 있다. OIS-y마그넷(2610)은 베이스(2110)의 제3측판(2112)에 배치될 수 있다.
베이스(2110)의 제1측판(2111)은 홈(2111a)을 포함할 수 있다. 홈(2111a)은 'AF가이드볼 수용홈'일 수 있다. 홈(2111a)에는 볼(2810)이 배치될 수 있다. 홈(2111a)은 볼(2810)과 직접 접촉할 수 있다. 홈(2111a)은 광축방향으로 배치될 수 있다. 홈(2111a)은 복수의 홈을 포함할 수 있다. 홈(2111a)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(2111a)은 볼(2810)과 2점에서 접촉되는 제1홈과, 볼(2810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 볼(2810)과 2점에서 접촉할 수 있다.
베이스(2110)의 제2측판(2113)은 돌출부를 포함할 수 있다. 돌출부는 외측으로 돌출될 수 있다. 돌출부의 상측과 하측으로 외측기판(2720)의 연장부(2722)가 배치될 수 있다. 돌출부에는 외측기판(2720)의 연장부(2722)가 이동하는 경우에도 간섭되지 않도록 홈이 형성될 수 있다.
베이스(2110)는 단차(2115)를 포함할 수 있다. 단차(2115)는 베이스(2110)의 외측면의 하단부에 형성될 수 있다. 단차(2115)는 베이스(2110)의 외측면으로부터 돌출될 수 있다. 베이스(2110)의 단차(2115)에는 커버(2120)의 측판(2122)이 배치될 수 있다.
렌즈 구동 장치(2010)는 커버(2120)를 포함할 수 있다. 고정부(2100)는 커버(2120)를 포함할 수 있다. 커버(2120)는 베이스(2110)에 배치될 수 있다. 커버(2120)는 베이스(2110)에 결합될 수 있다. 커버(2120)는 베이스(2110)에 고정될 수 있다. 커버(2120)는 AF홀더(2210)를 내부에 수용할 수 있다. 커버(2120)는 OIS홀더(2310)를 내부에 수용할 수 있다. 커버(2120)는 쉴드부재일 수 있다. 커버(2120)는 쉴드캔일 수 있다.
커버(2120)는 상판(2141)을 포함할 수 있다. 상판(2141)은 이동부 상에 배치될 수 있다. 이동부의 상측 이동은 이동부가 상판(2141)에 접촉되는 것에 의해 제한될 수 있다. 상판(2141)은 광이 통과하는 홀을 포함할 수 있다.
커버(2120)는 측판(2142)을 포함할 수 있다. 측판(2142)은 상판(2141)으로부터 연장될 수 있다. 측판(2142)은 베이스(2110)에 배치될 수 있다. 측판(2142)은 베이스(2110)의 외측면의 하단부에 돌출형성되는 단차부에 배치될 수 있다. 측판(2142)은 복수의 측판을 포함할 수 있다. 측판(2142)은 4개의 측판을 포함할 수 있다. 측판(2142)은 서로 반대편에 배치되는 제1측판과 제2측판과, 서로 반대편에 배치되는 제3측판과 제4측판을 포함할 수 있다.
렌즈 구동 장치(2010)는 이동부를 포함할 수 있다. 이동부는 고정부(2100)에 배치될 수 있다. 이동부는 고정부(2100) 내에 배치될 수 있다. 이동부는 고정부(2100) 상에 배치될 수 있다. 이동부는 고정부(2100)에 이동가능하게 배치될 수 있다. 이동부는 구동부에 의해 고정부(2100)를 기준으로 이동할 수 있다. 이동부는 AF 구동시에 이동할 수 있다. 이동부는 OIS 구동시에 이동할 수 있다. 이동부에는 렌즈가 결합될 수 있다.
렌즈 구동 장치(2010)는 AF이동부(2200)를 포함할 수 있다. AF이동부(2200)는 고정부(2100)에 배치될 수 있다. AF이동부(2200)는 고정부(2100) 내에 배치될 수 있다. AF이동부(2200)는 고정부(2100) 상에 배치될 수 있다. AF이동부(2200)는 고정부(2100)와 OIS이동부(2300) 사이에 배치될 수 있다. AF이동부(2200)는 고정부(2100)에 이동가능하게 배치될 수 있다. AF이동부(2200)는 AF구동부(2400)에 의해 고정부(2100)에 대해 광축방향으로 이동할 수 있다. AF이동부(2200)는 AF 구동시에 이동할 수 있다.
렌즈 구동 장치(2010)는 AF홀더(2210)를 포함할 수 있다. AF이동부(2200)는 AF홀더(2210)를 포함할 수 있다. AF홀더(2210)는 'AF캐리어'일 수 있다. AF홀더(2210)는 베이스(2110) 내에 배치될 수 있다. AF홀더(2210)는 베이스(2110) 상에 배치될 수 있다. AF홀더(2210)는 커버(2120) 내에 배치될 수 있다. AF홀더(2210)는 베이스(2110)와 OIS홀더(2310) 사이에 배치될 수 있다. AF홀더(2210)는 광축방향으로 이동가능하게 배치될 수 있다.
AF홀더(2210)는 돌기를 포함할 수 있다. 돌기는 하부 탄성부재(2910)와 결합될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)의 돌기와 결합되는 홀을 포함할 수 있다. 변형례로, AF홀더(2210)는 돌기 대신 접착제를 수용하는 홈을 포함할 수 있다. 이때, 하부 탄성부재(2910)는 AF홀더(2210)의 홈에 배치되는 홀을 포함할 수 있다. AF홀더(2210)의 돌기는 AF홀더(2210)의 하면에 형성될 수 있다. AF홀더(2210)의 돌기는 AF홀더(2210)의 하면으로부터 돌출될 수 있다.
AF홀더(2210)의 돌기는 복수의 돌기를 포함할 수 있다. AF홀더(2210)의 돌기는 제1돌기(2211)와 제2돌기(2212)를 포함할 수 있다. 하부 탄성부재(2910)의 외측부(2911)는 제1돌기(2211)와 결합되는 제1영역과, 제1돌기(2212)와 결합되는 제2영역(2212)을 포함할 수 있다. 와이어(2930)는 고정부(2100)의 제1코너영역에 배치되는 제1와이어(2931)를 포함할 수 있다. 하부 탄성부재(2910)의 결합부(2912)는 제1와이어(2931)와 결합되는 제1결합부를 포함할 수 있다. 하부 탄성부재(2910)의 연결부(2913)는 하부 탄성부재(2910)의 외측부(2911)와 하부 탄성부재(2910)의 제1결합부를 연결하는 제1연결부(2913-1)와 제2연결부(2913-2)를 포함할 수 있다. 하부 탄성부재(2910)의 연결부(2913)는 외측부(2911)의 제1영역과 제1결합부를 연결하는 제1연결부(2913-1)와, 외측부(2911)의 제2영역과 제1결합부를 연결하는 제2연결부(2913-2)를 포함할 수 있다. 즉, 하부 탄성부재(2910)의 연결부(2913)는 하나의 외측부(2911)와 하나의 결합부(2912)를 연결하기 위해 2개의 가닥의 연결부가 구비될 수 있다.
아래에서 볼 때, 하부 탄성부재(2910)의 제1 및 제2연결부(2913-1, 2913-2)는 광축과 고정부(2100)의 제1코너영역을 연결하는 가상의 직선을 기준으로 대칭일 수 있다.
와이어(2930)는 고정부(2100)의 제2코너영역에 배치되는 제2와이어(2933)를 포함할 수 있다. 하부 탄성부재(2910)의 결합부(2912)는 제2와이어(2933)와 결합되는 제2결합부를 포함할 수 있다. 와이어(2930)는 고정부(2100)의 제3코너영역에 배치되는 제3와이어(2932)를 포함할 수 있다. 하부 탄성부재(2910)의 결합부(2912)는 제3와이어(2932)와 결합되는 제3결합부를 포함할 수 있다. 와이어(2930)는 고정부(2100)의 제4코너영역에 배치되는 제4와이어(2934)를 포함할 수 있다. 하부 탄성부재(2910)의 결합부(2912)는 제4와이어(2934)와 결합되는 제4결합부를 포함할 수 있다. 고정부(2100)의 제1코너영역은 제2코너영역의 대각방향 반대편에 배치되고 제3코너영역은 제4코너영역의 대각방향 반대편에 배치될 수 있다.
AF홀더(2210)는 돌출부(2213)를 포함할 수 있다. 돌출부(2213)는 AF홀더(2210)의 외측면에 형성될 수 있다. 돌출부(2213)는 AF홀더(2210)로부터 외측으로 돌출될 수 있다. 돌출부(2213)의 상면과 하면에는 외측기판(2720)의 연장부(2722)가 배치될 수 있다.
AF홀더(2210)는 홈(2214)을 포함할 수 있다. 홈(2214)은 'AF가이드볼 수용홈'일 수 있다. 홈(2214)에는 볼(2810)이 배치될 수 있다. 홈(2214)은 볼(2810)과 직접 접촉할 수 있다. 홈(2214)은 광축방향으로 배치될 수 있다. 홈(2214)은 복수의 홈을 포함할 수 있다. 홈(2214)은 2개의 홈을 포함할 수 있다. 2개의 홈은 서로 평행하게 배치될 수 있다. 홈(2214)은 볼(2810)과 2점에서 접촉되는 제1홈과, 볼(2810)과 1점에서 접촉하는 제2홈을 포함할 수 있다. 변형례로, 제1홈과 제2홈 모두 볼(2810)과 2점에서 접촉할 수 있다.
AF홀더(2210)는 금속부재(2216)를 포함할 수 있다. 금속부재(2216)는 AF홀더(2210)에 인서트 사출될 수 있다. 금속부재(2216)의 적어도 일부는 AF홀더(2210)의 상면에 배치될 수 있다. 금속부재(2216)는 AF홀더(2210)의 강도를 보강하기 위해 배치될 수 있다.
렌즈 구동 장치(2010)는 덮개(2220)를 포함할 수 있다. AF이동부(2200)는 덮개(2220)를 포함할 수 있다. 덮개(2220)는 AF홀더(2210)와 결합될 수 있다. 덮개(2220)는 AF홀더(2210)의 하면에 결합될 수 있다. 덮개(2220)는 AF홀더(2210)에 하측에서 결합될 수 있다. 덮개(2220)는 후크(2221)를 포함할 수 있다. 덮개(2220)의 후크(2221)는 AF홀더(2210)에 결합될 수 있다. 덮개(2220)의 후크(2221)는 상측으로 돌출되어 AF홀더(2210)의 측면에 결합될 수 있다.
렌즈 구동 장치(2010)는 OIS이동부(2300)를 포함할 수 있다. OIS이동부(2300)는 고정부(2100)에 배치될 수 있다. OIS이동부(2300)는 고정부(2100) 내에 배치될 수 있다. OIS이동부(2300)는 고정부(2100) 상에 배치될 수 있다. OIS이동부(2300)는 AF이동부(2200) 내에 배치될 수 있다. OIS이동부(2300)는 이동가능하게 배치될 수 있다. OIS이동부(2300)는 OIS-x구동부(2500)에 의해 고정부(2100)와 AF이동부(2200)에 대해 광축에 수직한 x축 방향으로 이동할 수 있다. OIS이동부(2300)는 OIS-y구동부(2600)에 의해 고정부(2100)와 AF이동부(2200)에 대해 광축에 수직한 y축 방향으로 이동할 수 있다. OIS이동부(2300)는 OIS 구동시에 이동할 수 있다.
OIS이동부(2300)는 고정부(2100) 및 AF이동부(2200)와 이격될 수 있다. OIS이동부(2300)는 광축방향으로 고정부(2100) 및 AF이동부(2200)와 이격될 수 있다. OIS이동부(2300)는 광축방향 하측으로 고정부(2100)와 제1갭을 형성할 수 있다. 또한, OIS이동부(2300)는 광축방향 상측으로 AF이동부(2200)와 제2갭을 형성할 수 있다. 이를 통해, 광학기기의 자세에 의해 OIS이동부(2300)가 중력의 영향으로 쳐지는 경우에도 고정부(2100) 및 AF이동부(2200)와 간섭되는 현상이 방지될 수 있다.
렌즈 구동 장치(2010)는 OIS홀더(2310)를 포함할 수 있다. OIS이동부(2300)는 OIS홀더(2310)를 포함할 수 있다. OIS홀더(2310)는 'OIS캐리어'일 수 있다. OIS홀더(2310)는 AF홀더(2210) 내에 배치될 수 있다. OIS홀더(2310)는 베이스(2110) 내에 배치될 수 있다. OIS홀더(2310)는 베이스(2110) 상에 배치될 수 있다. OIS홀더(2310)는 커버(2120) 내에 배치될 수 있다. OIS홀더(2310)는 광축에 수직한 방향으로 이동가능하게 배치될 수 있다.
OIS홀더(2310)는 외측면을 포함할 수 있다. OIS홀더(2310)는 복수의 측면을 포함할 수 있다. OIS홀더(2310)는 서로 반대편에 배치되는 제1측면과 제2측면과, 서로 반대편에 배치되는 제3측면과 제4측면을 포함할 수 있다. AF코일(2420)은 OIS홀더(2310)의 제1측면과 AF마그넷(2410) 사이에 배치될 수 있다. OIS-x코일(2520)은 OIS홀더(2310)의 제2측면과 OIS-x마그넷(2510) 사이에 배치될 수 있다. OIS-y코일(2620)은 OIS홀더(2310)의 제3측면과 OIS-y마그넷(2610) 사이에 배치될 수 있다. AF코일(2420)은 OIS홀더(2310)의 제1측면에 배치될 수 있다. OIS-x코일(2520)은 OIS홀더(2310)의 제2측면에 배치될 수 있다. OIS-y코일(2620)은 OIS홀더(2310)의 제3측면에 배치될 수 있다.
OIS홀더(2310)는 홈(2311)을 포함할 수 있다. 홈(2311)은 '상부 탄성부재 간섭방지홈'일 수 있다. 홈(2311)은 OIS홀더(2310)의 상면에 형성될 수 있다. 홈(2311)은 OIS홀더(2310)의 상면에 오목하게 형성될 수 있다. 홈(2311)은 OIS홀더(2310)와 상부 탄성부재(2920)가 간섭되는 것을 방지하도록 상부 탄성부재(2920)와 대응하는 위치에 배치될 수 있다.
OIS홀더(2310)는 측방 스토퍼를 포함할 수 있다. 측방 스토퍼는 OIS홀더(2310)의 측방으로의 스트로크를 제한할 수 있다. 즉, OIS홀더(2310)가 최대로 이동하면 OIS홀더(2310)의 측방 스토퍼가 AF홀더(2210) 및 베이스(2110) 중 어느 하나 이상에 접촉할 수 있다. 측방 스토퍼는 OIS홀더(2310)의 외측면에 형성될 수 있다. 측방 스토퍼는 OIS홀더(2310)의 측면으로부터 외측으로 돌출될 수 있다.
OIS홀더(2310)는 돌기를 포함할 수 있다. 돌기는 상부 탄성부재(2920)와 결합될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)의 돌기와 결합되는 홀을 포함할 수 있다. 변형례로, OIS홀더(2310)는 돌기 대신 접착제를 수용하는 홈을 포함할 수 있다. 이때, 상부 탄성부재(2920)는 OIS홀더(2310)의 홈에 배치되는 홀을 포함할 수 있다. OIS홀더(2310)의 돌기는 OIS홀더(2310)의 상면에 형성될 수 있다. OIS홀더(2310)의 돌기는 OIS홀더(2310)의 상면으로부터 돌출될 수 있다.
OIS홀더(2310)의 돌기는 복수의 돌기를 포함할 수 있다. OIS홀더(2310)의 돌기는 제1돌기(2314)와 제2돌기(2315)를 포함할 수 있다. 상부 탄성부재(2920)의 내측부(2921)는 제1돌기(2314)와 결합되는 제1영역과, 제2돌기(2315)와 결합되는 제2영역(2212)을 포함할 수 있다. 와이어(2930)는 고정부(2100)의 제1코너영역에 배치되는 제1와이어(2931)를 포함할 수 있다. 상부 탄성부재(2920)의 결합부(2922)는 제1와이어(2931)와 결합되는 제1결합부를 포함할 수 있다. 상부 탄성부재(2920)의 연결부(2923)는 상부 탄성부재(2920)의 내측부(2921)와 상부 탄성부재(2920)의 제1결합부를 연결하는 제1연결부(2923-1)와 제2연결부(2923-2)를 포함할 수 있다. 상부 탄성부재(2920)의 연결부(2923)는 내측부(2921)의 제1영역과 제1결합부를 연결하는 제1연결부(2923-1)와, 내측부(2921)의 제2영역과 제1결합부를 연결하는 제2연결부(2923-2)를 포함할 수 있다. 즉, 상부 탄성부재(2920)의 연결부(2923)는 하나의 내측부(2921)와 하나의 결합부(2922)를 연결하기 위해 2개의 가닥의 연결부가 구비될 수 있다.
아래에서 볼 때, 상부 탄성부재(2920)의 제1 및 제2연결부(2923-1, 2923-2)는 광축과 고정부(2100)의 제1코너영역을 연결하는 가상의 직선을 기준으로 대칭일 수 있다.
상부 탄성부재(2920)의 결합부(2922)는 제2와이어(2933)와 결합되는 제2결합부를 포함할 수 있다. 상부 탄성부재(2920)의 결합부(2922)는 제3와이어(2932)와 결합되는 제3결합부를 포함할 수 있다. 상부 탄성부재(2920)의 결합부(2922)는 제4와이어(2934)와 결합되는 제4결합부를 포함할 수 있다.
렌즈 구동 장치(2010)는 구동부를 포함할 수 있다. 구동부는 고정부(2100)에 대해 이동부를 이동시킬 수 있다. 구동부는 AF구동부(2400)를 포함할 수 있다. 구동부는 OIS구동부(2500, 2600)를 포함할 수 있다. 구동부는 코일과 마그넷을 포함할 수 있다.
렌즈 구동 장치(2010)는 AF구동부(2400)를 포함할 수 있다. AF구동부(2400)는 AF이동부(2200)를 광축방향으로 이동시킬 수 있다. AF구동부(2400)는 AF홀더(2210)를 광축방향으로 이동시킬 수 있다. AF구동부(2400)는 전자기력을 통해 AF홀더(2210)를 광축방향으로 이동시킬 수 있다. AF구동부(2400)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제3실시예에서는 AF코일(2420)과 AF마그넷(2410)의 상호작용에 의해 AF홀더(2210)와 OIS홀더(2310)는 광축방향으로 이동할 수 있다. AF코일(2420), AF홀더(2210) 및 OIS홀더(2310)가 일체로 광축방향으로 이동할 수 있다.
렌즈 구동 장치(2010)는 AF마그넷(2410)을 포함할 수 있다. AF구동부(2400)는 AF마그넷(2410)을 포함할 수 있다. AF마그넷(2410)은 고정부(2100)에 배치될 수 있다. AF마그넷(2410)은 베이스(2110)에 배치될 수 있다. AF마그넷(2410)은 커버(2120)에 배치될 수 있다. AF마그넷(2410)은 커버(2120)의 측판(2122)에 배치될 수 있다. AF마그넷(2410)은 베이스(2110)의 외측면에 배치될 수 있다. AF마그넷(2410)은 베이스(2110)의 내측면에 배치될 수 있다. AF마그넷(2410)은 베이스(2110)에 고정될 수 있다. AF마그넷(2410)은 베이스(2110)에 결합될 수 있다. AF마그넷(2410)은 베이스(2110)에 접착제로 접착될 수 있다. AF마그넷(2410)은 커버(2120) 내에 배치될 수 있다. AF마그넷(2410)은 AF코일(2420)과 상호작용할 수 있다. AF마그넷(2410)은 AF코일(2420)과 전자기적 상호작용할 수 있다. AF마그넷(2410)은 AF코일(2420)과 대응하는 위치에 배치될 수 있다. AF마그넷(2410)은 AF코일(2420)과 마주볼 수 있다. AF마그넷(2410)은 AF코일(2420)과 대향할 수 있다. AF마그넷(2410)은 AF코일(2420)과 광축에 수직한 방향으로 오버랩될 수 있다.
AF마그넷(2410)은 4극 마그넷일 수 있다. AF마그넷(2410)은 4극 착자 마그넷을 포함할 수 있다. AF마그넷(2410)은 N극과 S극을 포함하는 제1마그넷부와, N극과 S극을 포함하는 제2마그넷부를 포함할 수 있다. 제1마그넷부와 제2마그넷부는 수직방향으로 배치될 수 있다. 제1마그넷부와 제2마그넷부는 수직방향으로 이격 배치되고 제1마그넷부와 제2마그넷부 사이에 중립부가 배치될 수 있다.
렌즈 구동 장치(2010)는 AF코일(2420)을 포함할 수 있다. AF구동부(2400)는 AF코일(2420)을 포함할 수 있다. AF코일(2420)은 AF마그넷(2410)과 상호작용할 수 있다. AF코일(2420)은 광축방향으로 이동할 수 있다. AF코일(2420)은 AF마그넷(2410)과의 상호작용을 통해 광축방향으로 이동할 수 있다. AF코일(2420)은 AF마그넷(2410)과 대향할 수 있다. AF코일(2420)은 AF마그넷(2410)과 마주볼 수 있다. AF코일(2420)은 AF마그넷(2410)과 대응하는 위치에 배치될 수 있다. AF코일(2420)은 광축에 수직한 방향으로 AF마그넷(2410)과 오버랩될 수 있다. AF코일(2420)은 내측기판(2710)에 배치될 수 있다. AF코일(2420)은 내측기판(2710)의 제1부분(2711)에 배치될 수 있다. AF코일(2420)은 AF홀더(2210)에 배치될 수 있다. AF코일(2420)은 AF이동부(2200)에 배치될 수 있다.
이상에서, AF마그넷(2410)은 고정부(2100)에 배치되고 AF코일(2420)은 AF이동부(2200)에 배치되는 것으로 설명되었으나 변형례에서 반대로 배치될 수 있다. 즉, 변형례에서 AF마그넷(2410)은 AF이동부(2200)에 배치될 수 있다. AF코일(2420)은 고정부(2100)에 배치될 수 있다.
렌즈 구동 장치(2010)는 AF센서(2430)를 포함할 수 있다. AF구동부(2400)는 AF센서(2430)를 포함할 수 있다. AF센서(2430)는 홀센서일 수 있다. AF센서(2430)는 기판(2740)에 배치될 수 있다. AF센서(2430)는 기판(2740)의 제1부분(2711)에 배치될 수 있다. AF센서(2430)는 AF마그넷(2410)을 감지할 수 있다. AF센서(2430)는 AF마그넷(2410)의 이동을 감지할 수 있다. AF센서(2430)에 의해 감지된 AF마그넷(2410)의 이동량 또는 위치는 오토 포커스 구동의 피드백을 위해 사용될 수 있다.
AF센서(2430)는 드라이버 IC일 수 있다. 드라이버 IC는 센싱부를 포함할 수 있다. 센싱부는 홀 소자(Hall IC)를 포함할 수 있다. 드라이버 IC는 AF코일(2420)과 전기적으로 연결될 수 있다. 드라이버 IC는 AF코일(2420)에 전류를 공급할 수 있다.
AF센서(2430)는 AF코일(2420) 내에 배치될 수 있다. AF센서(2430)는 광축에 수직한 방향으로 AF마그넷(2410)의 중립부와 오버랩될 수 있다. 변형례로, AF센서(2430)는 AF코일(2420)의 외측에 배치될 수 있다.
렌즈 구동 장치(2010)는 OIS-x구동부(2500)를 포함할 수 있다. OIS-x구동부(2500)는 OIS이동부(2300)를 광축방향에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(2500)는 OIS홀더(2310)를 광축에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(2500)는 전자기력을 통해 OIS홀더(2310)를 광축에 수직한 x축방향으로 이동시킬 수 있다. OIS-x구동부(2500)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제3실시예는 OIS-x코일(2520)과 OIS-x마그넷(2510)의 상호작용에 의해 OIS홀더(2310)는 광축방향에 수직한 x축방향으로 이동할 수 있다. OIS-x코일(2520)과 OIS홀더(2310)는 일체로 x축 방향으로 이동할 수 있다.
렌즈 구동 장치(2010)는 OIS-x마그넷(2510)을 포함할 수 있다. OIS-x구동부(2500)는 OIS-x마그넷(2510)을 포함할 수 있다. OIS-x마그넷(2510)은 고정부(2100)에 배치될 수 있다. OIS-x마그넷(2510)은 베이스(2110)에 배치될 수 있다. OIS-x마그넷(2510)은 베이스(2110)의 외측면에 배치될 수 있다. OIS-x마그넷(2510)은 베이스(2110)의 내측면에 배치될 수 있다. OIS-x마그넷(2510)은 베이스(2110)에 고정될 수 있다. OIS-x마그넷(2510)은 베이스(2110)에 결합될 수 있다. OIS-x마그넷(2510)은 베이스(2110)에 접착제로 접착될 수 있다. OIS-x마그넷(2510)은 커버(2120) 내에 배치될 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 상호작용할 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 전자기적 상호작용할 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 대응하는 위치에 배치될 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 마주볼 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 대향할 수 있다. OIS-x마그넷(2510)은 OIS-x코일(2520)과 광축에 수직한 방향으로 오버랩될 수 있다.
제2마그넷(2610)은 2극 마그넷일 수 있다. OIS-x마그넷(2510)은 2극 착자 마그넷을 포함할 수 있다. OIS-x마그넷(2510)은 N극과 S극을 포함할 수 있다. OIS-x마그넷(2510)의 내면은 N극이고 외면은 S극일 수 있다.
렌즈 구동 장치(2010)는 OIS-x코일(2520)을 포함할 수 있다. OIS-x구동부(2500)는 OIS-x코일(2520)을 포함할 수 있다. OIS-x코일(2520)은 OIS-x마그넷(2510)과 상호작용할 수 있다. OIS-x코일(2520)은 광축에 수직한 x축 방향으로 이동할 수 있다. OIS-x코일(2520)은 OIS-x마그넷(2510)과의 상호작용을 통해 x축 방향으로 이동할 수 있다. OIS-x코일(2520)은 OIS-x마그넷(2510)과 대향할 수 있다. OIS-x코일(2520)은 OIS-x마그넷(2510)과 마주볼 수 있다. OIS-x코일(2520)은 OIS-x마그넷(2510)과 대응하는 위치에 배치될 수 있다. OIS-x코일(2520)은 광축에 수직한 방향으로 OIS-x마그넷(2510)과 오버랩될 수 있다. OIS-x코일(2520)은 내측기판(2710)에 배치될 수 있다. OIS-x코일(2520)은 내측기판(2710)의 제2부분(2713)에 배치될 수 있다. OIS-x코일(2520)은 OIS홀더(2310)에 배치될 수 있다. OIS-x코일(2520)은 OIS이동부(2300)에 배치될 수 있다.
렌즈 구동 장치(2010)는 OIS-x센서(2530)를 포함할 수 있다. OIS-x구동부(2500)는 OIS-x센서(2530)를 포함할 수 있다. OIS-x센서(2530)는 내측기판(2710)에 배치될 수 있다. OIS-x센서(2530)는 내측기판(2710)의 제2부분(2713)에 배치될 수 있다. OIS-x센서(2530)는 홀센서(Hall sensor)를 포함할 수 있다. OIS-x센서(2530)는 OIS-x마그넷(2510)을 감지할 수 있다. OIS-x센서(2530)는 OIS-x마그넷(2510)의 자기력을 감지할 수 있다. OIS-x센서(2530)는 OIS-x코일(2520) 내에 배치될 수 있다. OIS-x센서(2530)는 광축방향으로 OIS-x코일(2520)과 오버랩될 수 있다. OIS-x센서(2530)는 OIS-x마그넷(2510)과 대향할 수 있다. OIS-x센서(2530)는 OIS-x마그넷(2510)과 대응하는 위치에 배치될 수 있다. OIS-x센서(2530)는 OIS-x마그넷(2510)의 이동을 감지할 수 있다. OIS-x센서(2530)에 의해 감지된 OIS-x마그넷(2510)의 이동량 또는 위치는 x축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(2010)는 OIS-y구동부(2600)를 포함할 수 있다. OIS-y구동부(2600)는 OIS이동부(2300)를 광축방향과 x축방향에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(2600)는 OIS홀더(2310)를 광축과 x축방향 모두에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(2600)는 전자기력을 통해 OIS홀더(2310)를 광축과 x축방향 모두에 수직한 y축방향으로 이동시킬 수 있다. OIS-y구동부(2600)는 코일과 마그넷을 포함할 수 있다.
본 발명의 제3실시예에서 OIS-y코일(2620)과 OIS-y마그넷(2610)의 상호작용에 의해 OIS홀더(2310)는 광축방향과 x축방향 모두에 수직한 y축방향으로 이동할 수 있다. OIS-y코일(2620)과 OIS홀더(2310)는 일체로 y축 방향으로 이동할 수 있다.
렌즈 구동 장치(2010)는 OIS-y마그넷(2610)을 포함할 수 있다. OIS-y구동부(2600)는 OIS-y마그넷(2610)을 포함할 수 있다. OIS-y마그넷(2610)은 고정부(2100)에 배치될 수 있다. OIS-y마그넷(2610)은 베이스(2110)에 배치될 수 있다. OIS-y마그넷(2610)은 베이스(2110)의 외측면에 배치될 수 있다. OIS-y마그넷(2610)은 베이스(2110)의 내측면에 배치될 수 있다. OIS-y마그넷(2610)은 베이스(2110)에 고정될 수 있다. OIS-y마그넷(2610)은 베이스(2110)에 결합될 수 있다. OIS-y마그넷(2610)은 베이스(2110)에 접착제로 접착될 수 있다. OIS-y마그넷(2610)은 커버(2120) 내에 배치될 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 상호작용할 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 전자기적 상호작용할 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 대응하는 위치에 배치될 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 마주볼 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 대향할 수 있다. OIS-y마그넷(2610)은 OIS-y코일(2620)과 광축에 수직한 방향으로 오버랩될 수 있다.
OIS-y마그넷(2610)은 2극 마그넷일 수 있다. OIS-y마그넷(2610)은 2극 착자 마그넷을 포함할 수 있다. OIS-y마그넷(2610)은 N극과 S극을 포함할 수 있다. OIS-y마그넷(2610)의 내면은 N극이고 외면은 S극일 수 있다.
렌즈 구동 장치(2010)는 OIS-y코일(2620)을 포함할 수 있다. OIS-y구동부(2600)는 OIS-y코일(2620)을 포함할 수 있다. OIS-y코일(2620)은 OIS-y마그넷(2610)과 상호작용할 수 있다. OIS-y코일(2620)은 광축을 기준으로 AF코일(2420)의 반대편에 배치될 수 있다. OIS-y코일(2620)은 광축과 x축 모두에 수직한 y축 방향으로 이동할 수 있다. OIS-y코일(2620)은 OIS-y마그넷(2610)과의 상호작용을 통해 y축 방향으로 이동할 수 있다. OIS-y코일(2620)은 OIS-y마그넷(2610)과 대향할 수 있다. OIS-y코일(2620)은 OIS-y마그넷(2610)과 마주볼 수 있다. OIS-y코일(2620)은 OIS-y마그넷(2610)과 대응하는 위치에 배치될 수 있다. OIS-y코일(2620)은 광축에 수직한 방향으로 OIS-y마그넷(2610)과 오버랩될 수 있다. OIS-y코일(2620)은 내측기판(2710)에 배치될 수 있다. OIS-y코일(2620)은 내측기판(2710)의 제3부분(2712)에 배치될 수 있다. OIS-y코일(2620)은 OIS홀더(2310)에 배치될 수 있다. OIS-y코일(2620)은 OIS이동부(2300)에 배치될 수 있다.
렌즈 구동 장치(2010)는 OIS-y센서(2630)를 포함할 수 있다. OIS-y구동부(2600)는 OIS-y센서(2630)를 포함할 수 있다. OIS-y센서(2630)는 내측기판(2710)에 배치될 수 있다. OIS-y센서(2630)는 내측기판(2710)의 제3부분(2712)에 배치될 수 있다. OIS-y센서(2630)는 홀센서(Hall sensor)를 포함할 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)을 감지할 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)의 자기력을 감지할 수 있다. OIS-y센서(2630)는 OIS-y코일(2620) 내에 배치될 수 있다. OIS-y센서(2630)는 광축방향으로 OIS-y코일(2620)과 오버랩될 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)과 대향할 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)과 대응하는 위치에 배치될 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)의 이동을 감지할 수 있다. OIS-y센서(2630)에 의해 감지된 OIS-y마그넷(2610)의 이동량 또는 위치는 y축 방향으로의 손떨림 보정 구동의 피드백을 위해 사용될 수 있다.
렌즈 구동 장치(2010)는 기판을 포함할 수 있다. 기판은 연성의 기판을 포함할 수 있다. 기판은 코일과 전기적으로 연결될 수 있다. 기판은 센서와 전기적으로 연결될 수 있다. 기판은 연성으로 형성될 수 있다. 기판은 가요성을 가질 수 있다. 기판은 회로기판일 수 있다. 기판은 인쇄회로기판일 수 있다.
렌즈 구동 장치(2010)는 내측기판(2710)을 포함할 수 있다. 내측기판(2710)은 코일(2420, 2520, 2620)과 전기적으로 연결될 수 있다. 내측기판(2710)은 센서(2430, 2530, 2630)와 전기적으로 연결될 수 있다. 내측기판(2710)은 AF홀더(2210)와 OIS홀더(2310)를 연결할 수 있다. 내측기판(2710)은 AF홀더(2210)와 OIS홀더(2310)를 탄성적으로 연결할 수 있다. 내측기판(2710)은 OIS홀더(2310)가 AF홀더(2210)에 대해 이동가능하게 지지할 수 있다. 내측기판(2710)은 OIS홀더(2310)가 AF홀더(2210)에 대해 광축에 수직한 방향으로 이동하게 가이드할 수 있다. 내측기판(2710)은 연성의 기판을 포함할 수 있다. 내측기판(2710)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 내측기판(2710)은 탄성이 있는 부분을 포함할 수 있다. 내측기판(2710)은 탄성부재를 포함할 수 있다.
내측기판(2710)은 제1부분(2711)을 포함할 수 있다. 제1부분(2711)은 AF이동부(2200)에 배치될 수 있다. 제1부분(2711)은 AF홀더(2210)에 배치될 수 있다. AF코일(2420)은 내측기판(2710)의 제1부분(2711)에 배치될 수 있다. AF센서(2430)는 내측기판(2710)의 제1부분(2711)에 배치될 수 있다. 요크(2830)는 내측기판(2710)의 제1부분(2711)에 배치될 수 있다.
내측기판(2710)은 제2부분(2713)을 포함할 수 있다. 제2부분(2713)은 OIS홀더(2310)에 배치될 수 있다. 제2부분(2713)은 OIS홀더(2310)의 제2측면에 배치될 수 있다. OIS-x코일(2520)은 내측기판(2710)의 제2부분(2713)에 배치될 수 있다. OIS-x센서(2530)는 내측기판(2710)의 제2부분(2713)에 배치될 수 있다.
내측기판(2710)은 제3부분(2712)을 포함할 수 있다. 제3부분(2712)은 OIS홀더(2310)에 배치될 수 있다. 제3부분(2712)은 OIS홀더(2310)의 제3측면에 배치될 수 있다. OIS-y코일(2620)은 내측기판(2710)의 제3부분(2712)에 배치될 수 있다. OIS-y센서(2630)는 내측기판(2710)의 제3부분(2712)에 배치될 수 있다.
내측기판(2710)은 제4부분(2714)을 포함할 수 있다. 제4부분(2714)은 OIS홀더(2310)와 AF홀더(2210) 사이에 배치될 수 있다. 제4부분(2714)은 OIS홀더(2310)의 제4측면과 AF홀더(2210) 사이에 배치될 수 있다.
다만, 본 명세서에 기재된 OIS홀더(2310)의 '제1 내지 제4측면'에서 '제1 내지 제4'는 측면을 서로 구분하기 위한 것일 뿐이므로 필요에 따라 다르게 호칭될 수 있다. 예를 들어, '제2측면'을 '제1측면'으로 호칭하고 '제3측면'을 '제2측면'으로 호칭할 수 있다.
내측기판(2710)은 단자(2714a)를 포함할 수 있다. 내측기판(2710)의 제4부분(2714)은 단자(2714a)를 포함할 수 있다. 단자(2714a)는 코일(2420, 2520, 2620)과 전기적으로 연결될 수 있다. 단자(2714a)는 센서(2430, 2530, 2630)과 전기적으로 연결될 수 있다.
내측기판(2710)은 홀(2714b)를 포함할 수 있다. 내측기판(2710)의 제4부분(2714)은 홀(2714b)를 포함할 수 있다. 홀(2714b)은 내측기판(2710)의 제4부분(2714)에 관통 형성될 수 있다. 홀(2714b)은 OIS홀더(2310)의 측방 스토퍼와 대응하는 위치에 배치될 수 있다. 홀(2714b)에 의해 내측기판(2710)은 OIS홀더(2310)의 측방 스토퍼와 간섭되지 않을 수 있다.
렌즈 구동 장치(2010)는 외측기판(2720)을 포함할 수 있다. 외측기판(2720)은 베이스(2110)에 배치될 수 있다. 외측기판(2720)은 코일(2420, 2520, 2620)과 전기적으로 연결될 수 있다. 외측기판(2720)은 센서(2430, 2530, 2630)와 전기적으로 연결될 수 있다. 외측기판(2720)은 AF홀더(2210)와 베이스(2110)를 연결할 수 있다. 외측기판(2720)은 AF홀더(2210)와 베이스(2110)를 탄성적으로 연결할 수 있다. 외측기판(2720)은 AF홀더(2210)가 베이스(2110)에 대해 이동가능하게 지지할 수 있다. 외측기판(2720)은 AF홀더(2210)가 베이스(2110)에 대해 광축방향으로 이동하게 가이드할 수 있다. 외측기판(2720)은 연성의 기판을 포함할 수 있다. 외측기판(2720)은 FPCB(flexible printed circuit board)를 포함할 수 있다. 외측기판(2720)은 탄성이 있는 부분을 포함할 수 있다. 외측기판(2720)은 탄성부재를 포함할 수 있다.
외측기판(2720)은 몸체부(2721)를 포함할 수 있다. 몸체부(2721)는 고정부(2100)에 배치될 수 있다. 몸체부(2721)는 베이스(2110)에 배치될 수 있다. 몸체부(2721)는 베이스(2110)의 측면을 감싸도록 형성될 수 있다. 몸체부(2721)는 베이스(2110)의 3개의 측면에 배치될 수 있다. 몸체부(2721)는 2개의 단자부를 포함할 수 있다. 2개의 단자부는 광축에 대해 서로 반대편에 배치될 수 있다. 단자부는 단자(2721a)를 포함할 수 있다.
외측기판(2720)은 단자(2721a)를 포함할 수 있다. 외측기판(2720)의 몸체부(2721)는 단자(2721a)를 포함할 수 있다. 단자(2721a)는 단자(2722a)와 전기적으로 연결될 수 있다. 단자(2721a)는 베이스(2110)의 하단부에 배치될 수 있다. 단자(2721a)는 인쇄회로기판(2050)에 결합될 수 있다. 단자(2721a)는 솔더를 통해 인쇄회로기판(2050)의 단자에 결합될 수 있다. 단자(2721a)는 통전성 부재를 통해 인쇄회로기판(2050)의 단자에 결합될 수 있다. 단자(2721a)는 인쇄회로기판(2050)의 단자에 연결될 수 있다. 단자(2721a)는 인쇄회로기판(2050)의 단자에 전기적으로 연결될 수 있다.
외측기판(2720)은 연장부(2722)를 포함할 수 있다. 연장부(2722)는 '레그부'일 수 있다. 연장부(2722)는 몸체부(2721)로부터 연장될 수 있다. 연장부(2722)의 적어도 일부는 AF이동부(2200)와 함께 이동할 수 있다. 연장부(2722)의 적어도 일부는 AF홀더(2210)와 함께 이동할 수 있다. 연장부는 몸체부(2721)로부터 연장될 수 있다. 연장부(2722)는 복수의 레그부를 포함할 수 있다. 연장부(2722)는 제1레그부와 제2레그부를 포함할 수 있다. 제2레그부는 제1레그부의 아래에 배치될 수 있다.
외측기판(2720)은 단자(2722a)를 포함할 수 있다. 외측기판(2720)의 연장부(2722)는 단자(2722a)를 포함할 수 있다. 단자(2722a)는 내측기판(2710)의 단자(2714a)와 결합될 수 있다. 단자(2722a)는 내측기판(2710)의 단자(2714a)와 솔더를 통해 결합될 수 있다. 단자(2722a)는 내측기판(2710)의 단자(2714a)와 통전성 부재를 통해 결합될 수 있다. 단자(2722a)는 내측기판(2710)의 단자(2714a)와 연결될 수 있다. 단자(2722a)는 내측기판(2710)의 단자(2714a)와 전기적으로 연결될 수 있다.
렌즈 구동 장치(2010)는 가이드 부재를 포함할 수 있다. 가이드 부재는 볼을 포함할 수 있다. 가이드 부재는 핀을 포함할 수 있다. 가이드 부재는 원통형 부재를 포함할 수 있다. 가이드 부재는 고정부(2100)에 대한 이동부의 이동을 특정 방향으로 가이드할 수 있다.
렌즈 구동 장치(2010)는 볼(2810)을 포함할 수 있다. 볼(2810)은 'AF가이드볼'일 수 있다. 볼(2810)은 고정부(2100)와 AF이동부(2200) 사이에 배치될 수 있다. 볼(2810)은 AF이동부(2200)의 이동을 광축방향으로 가이드할 수 있다. 볼(2810)은 AF이동부(2200)가 고정부(2100)에 대해 광축방향으로 이동하도록 가이드할 수 있다. 볼(2810)은 AF홀더(2210)의 베이스(2110)에 대한 이동을 광축방향으로 가이드할 수 있다. 볼(2810)은 베이스(2110)와 AF홀더(2210) 사이에 배치될 수 있다. 볼(2810)은 x축방향으로 베이스(2110)와 AF홀더(2210) 사이에 배치될 수 있다. 볼(2810)은 베이스(2110)의 홈(2111a)에 배치될 수 있다. 볼(2810)은 광축방향으로 OIS이동부(2300)와 중첩되지 않을 수 있다. 볼(2810)은 AF홀더(2210)의 제1홈(2214)에 배치될 수 있다. 볼(2810)은 베이스(2110)와 AF홀더(2210)에 4점으로 접촉하는 제1-1볼과, 베이스(2110)와 AF홀더(2210)에 3점으로 접촉하는 제1-2볼을 포함할 수 있다. 볼(2810)은 구형상일 수 있다. 볼(2810)은 금속으로 형성될 수 있다. 볼(2810)의 표면에는 구리스가 도포될 수 있다.
볼(2810)은 복수의 볼을 포함할 수 있다. 볼(2810)는 8개의 볼을 포함할 수 있다. 4개의 볼(2810)은 AF마그넷(2410)의 일측에 배치되고 나머지 4개의 볼(2810)은 AF마그넷(2410)의 타측에 배치될 수 있다.
렌즈 구동 장치(2010)는 요크(2830)를 포함할 수 있다. 요크(2830)는 내측기판(2710)의 제1부분(2711)에 배치될 수 있다. 요크(2830)는 AF코일(2420)과 AF이동부(2200) 사이에 배치될 수 있다. 요크(2830)는 AF마그넷(2410)과 인력이 작용할 수 있다. 요크(2830)와 AF마그넷(2410) 사이에는 인력이 발생될 수 있다. 요크(2830)는 AF마그넷(2410)과 대응하는 위치에 배치될 수 있다. 요크(2830)는 금속으로 형성될 수 있다. 요크(2830)와 AF마그넷(2410) 사이의 인력에 의해 볼(2810)이 베이스(2110)와 AF홀더(2210) 사이에서 가압될 수 있다. 즉, 요크(2830)와 AF마그넷(2410) 사이의 인력에 의해 볼(2810)의 베이스(2110)와 AF홀더(2210)에 대한 접촉 상태가 유지될 수 있다.
렌즈 구동 장치(2010)는 탄성부재(2900)를 포함할 수 있다. 탄성부재(2900)는 AF이동부(2200)와 OIS이동부(2300)를 연결할 수 있다. 탄성부재(2900)는 AF이동부(2200)와 OIS이동부(2300)를 탄성적으로 연결할 수 있다. 탄성부재(2900)는 OIS이동부(2300)를 AF이동부(2200)에 대해 이동가능하게 지지할 수 있다. 탄성부재(2900)는 OIS구동을 가이드할 수 있다. 탄성부재(2900)는 OIS이동부(2300)를 광축에 수직한 방향으로 이동하도록 가이드할 수 있다. 탄성부재(2900)는 OIS이동부(2300)가 AF이동부(2200)에 대해 x축방향과 y축방향으로 이동하도록 가이드할 수 있다. 탄성부재(2900)는 OIS-x축 구동과 OIS-y축 구동 모두를 가이드하도록 형성될 수 있다. 탄성부재(2900)는 판스프링을 포함할 수 있다. 탄성부재(2900)는 와이어를 포함할 수 있다. 탄성부재(2900)는 탄성을 가질 수 있다. 탄성부재(2900)는 금속으로 형성될 수 있다. 탄성부재(2900)의 1차 공진주파수는 40 내지 60Hz일 수 있다. 탄성부재(2900)의 1차 공진주파수는 30 내지 70Hz일 수 있다.
탄성부재(2900)의 스프링 강성은 이동체의 무게에 의해 결정될 수 있다. 탄성부재(2900)의 스프링 강성은 이동체의 타겟 내추럴 프리퀀시(target Natural Frequency)[Hz]에 의해 결정될 수 있다. 탄성부재(2900)의 스프링 강성은 전자기력 수준에 의해 결정될 수 있다. 종합적으로, 렌즈의 사이즈에 따라 이동체의 무게와 전자기력 수준은 매우 큰 폭으로 변하기에 스프링 강성도 크게 달라질 수 있다. 다만, 타겟 내추럴 프리퀀시의 경우 제어 특성을 고려하여 본 발명의 제3실시예와 같은 스프링 타입의 경우 최소한 40Hz 이상의 값으로 설정할 수 있다.
이미지 센서 1/1” OIS 액추에이터의 경우, x축 스프링 상부 Kx는 104N/m(240Hz) 내지 228N/m(260Hz)일 수 있다. 또한, y축 스프링 상부 Ky는 104N/m(240Hz) 내지 228N/m(260Hz)일 수 있다. x축 스프링 상부와 y축 스프링 상부는 같을 수 있다. Z축 스프링 상수 Kz는 Kx, Ky조건을 만족하는 최대의 값으로 설정될 수 있다.
렌즈 구동 장치(2010)는 하부 탄성부재(2910)를 포함할 수 있다. 하부 탄성부재(2910)는 판스프링일 수 있다. 하부 탄성부재(2910)는 탄성을 가질 수 있다. 하부 탄성부재(2910)는 AF이동부(2200)와 결합될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)와 결합될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)의 하면에 배치될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)에 배치될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)의 하부에 배치될 수 있다. 하부 탄성부재(2910)는 AF홀더(2210)의 아래에 배치될 수 있다. 하부 탄성부재(2910)는 몸체부(2721)의 하면에 배치될 수 있다. 하부 탄성부재(2910)는 몸체부(2721)의 하면에 결합될 수 있다. 하부 탄성부재(2910)는 광축에 수직하게 배치될 수 있다.
하부 탄성부재(2910)는 서로 이격되는 복수의 탄성유닛을 포함할 수 있다. 하부 탄성부재(2910)는 제1 내지 제4와이어(2931, 2932, 2933, 2934)와 대응하는 제1 내지 제4탄성유닛을 포함할 수 있다. 제1 내지 제4탄성유닛은 서로 이격될 수 있다.
하부 탄성부재(2910)는 외측부(2911)를 포함할 수 있다. 외측부(2911)는 AF이동부(2200)와 결합될 수 있다. 하부 탄성부재(2910)는 결합부(2912)를 포함할 수 있다. 결합부(2912)는 와이어(2930)와 결합될 수 있다. 하부 탄성부재(2910)는 연결부(2913)를 포함할 수 있다. 연결부(2913)는 외측부(2911)와 결합부(2912)를 연결할 수 있다. 하부 탄성부재(2910)의 외측부(2911)와 하부 탄성부재(2910)의 결합부(2912)는 같은 높이로 배치될 수 있다. 다만, 렌즈가 이미지 센서 위에 배치되는 업(UP) 자세에서 렌즈의 무게에 의해 OIS이동부(2300)가 아래로 쳐진 상태로 배치될 수 있다. 이때, 결합부(2912)는 외측부(2911)보다 낮은 위치에 배치될 수 있다.
렌즈 구동 장치(2010)는 상부 탄성부재(2920)를 포함할 수 있다. 상부 탄성부재(2920)는 판스프링일 수 있다. 상부 탄성부재(2920)는 탄성을 가질 수 있다. 상부 탄성부재(2920)는 OIS이동부(2300)와 결합될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)와 결합될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)의 상면에 배치될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)에 배치될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)의 상부에 배치될 수 있다. 상부 탄성부재(2920)는 OIS홀더(2310)의 위에 배치될 수 있다. 상부 탄성부재(2920)는 광축에 수직하게 배치될 수 있다. 상부 탄성부재(2920)는 일체로 형성될 수 있다.
상부 탄성부재(2920)는 내측부(2921)를 포함할 수 있다. 내측부(2921)는 OIS이동부(2300)와 결합될 수 있다. 상부 탄성부재(2920)는 결합부(2922)를 포함할 수 있다. 결합부(2922)는 와이어(2930)와 결합될 수 있다. 상부 탄성부재(2920)는 연결부(2923)를 포함할 수 있다. 연결부(2923)는 내측부(2921)와 결합부(2922)를 연결할 수 있다. 상부 탄성부재(2920)의 내측부(2921)와 하부 탄성부재(2910)의 결합부(2922)는 같은 높이로 배치될 수 있다. 다만, 렌즈가 이미지 센서 위에 배치되는 업(UP) 자세에서 렌즈의 무게에 의해 OIS이동부(2300)가 아래로 쳐진 상태로 배치될 수 있다. 이때, 내측부(2921)는 결합부(2922)보다 낮은 위치에 배치될 수 있다.
렌즈 구동 장치(2010)는 와이어(2930)를 포함할 수 있다. 와이어(2930)는 '측부 탄성부재'일 수 있다. 와이어(2930)는 와이어 스프링일 수 있다. 와이어(2930)는 서스펜션 와이어일 수 있다. 와이어(2930)는 탄성을 가질 수 있다. 와이어(2930)는 상부 탄성부재(2920)와 하부 탄성부재(2910)를 연결할 수 있다. 와이어(2930)는 상부 탄성부재(2920)와 하부 탄성부재(2910)를 탄성적으로 연결할 수 있다. 와이어(2930)는 광축과 평행하게 배치될 수 있다. 와이어(2930)는 광축방향과 평행하게 배치될 수 있다.
와이어(2930)는 복수의 와이어를 포함할 수 있다. 와이어(2930)는 4개의 와이어를 포함할 수 있다. 와이어(2930)는 제1 내지 제4와이어(2931, 2932, 2933, 2934)를 포함할 수 있다. 와이어(2930)는 고정부(2100)의 제1 내지 제4코너영역에 각각 배치되는 제1 내지 제4와이어(2931, 2932, 2933, 2934)를 포함할 수 있다.
이하에서는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 오토 포커스(AF, auto focus) 구동을 도면을 참조하여 설명한다.
도 95 내지 도 97은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 오토 포커스 구동을 설명하기 위한 도면이다. 도 95는 AF코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 96은 AF코일에 정방향 전류가 인가되어 이동부가 광축방향 상측으로 이동한 모습을 도시하는 단면도이다. 도 97은 AF코일에 역방향 전류가 인가되어 이동부가 광축방향 하측으로 이동한 모습을 도시하는 단면도이다.
이동부는 AF코일(2420)에 전류가 인가되지 않은 초기위치에서 커버(2120)의 상판(2121)과 베이스(2110) 모두와 이격된 위치에 배치될 수 있다. 이때, 이동부는 AF이동부(2200)일 수 있다. 또한, 이동부는 AF이동부(2200)와 OIS이동부(2300)를 포함할 수 있다.
AF코일(2420)에 정방향 전류가 인가되면 AF코일(2420)과 AF마그넷(2410)의 전자기적 상호작용에 의해 AF코일(2420)은 광축방향 상측으로 이동할 수 있다(도 96의 A 참조). 이때, AF코일(2420)과 함께 AF홀더(2210)가 광축방향 상측으로 이동할 수 있다. 나아가, AF홀더(2210)와 함께 OIS홀더(2310)와 렌즈가 광축방향 상측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
AF코일(2420)에 역방향 전류가 인가되면 AF코일(2420)과 AF마그넷(2410)의 전자기적 상호작용에 의해 AF코일(2420)은 광축방향 하측으로 이동할 수 있다(도 97의 B 참조). 이때, AF코일(2420)과 함께 AF홀더(2210)가 광축방향 하측으로 이동할 수 있다. 나아가, AF홀더(2210)와 함께 OIS홀더(2310)와 렌즈가 광축방향 하측으로 이동할 수 있다. 이에 따라, 렌즈와 이미지 센서 사이의 거리가 변화되어 렌즈를 통해 이미지 센서에 결상되는 이미지의 초점이 조절될 수 있다.
한편, AF코일(2420)의 이동 과정에서 AF센서(2430)는 AF코일(2420)과 함께 이동하며 AF마그넷(2410)의 자기장의 세기를 감지해서 렌즈의 광축방향으로의 이동량이나 위치를 감지할 수 있다. AF센서(2430)에서 감지된 렌즈의 광축방향으로의 이동량이나 위치는 오토 포커스 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제3실시예에 따른 렌즈 구동 장치의 손떨림 보정(OIS, optical image stabilization) 구동을 도면을 참조하여 설명한다.
도 98 내지 도 100은 본 발명의 제3실시예에 따른 렌즈 구동 장치의 손떨림 보정 구동을 설명하기 위한 도면이다. 도 98은 OIS-x코일과 OIS-y코일에 전류가 인가되지 않은 초기상태에서의 이동부의 모습을 도시하는 단면도이다. 도 99는 OIS-x코일에 전류가 인가되어 OIS이동부가 광축에 수직한 x축 방향으로 이동한 모습을 도시하는 단면도이다. 도 100은 OIS-y코일에 전류가 인가되어 OIS이동부가 광축과 x축 모두에 수직한 y축 방향으로 이동한 모습을 도시하는 단면도이다.
도 98에 도시된 바와 같이 이동부는 OIS-x코일(2520)과 OIS-y코일(2620)에 전류가 인가되지 않은 초기위치에 배치될 수 있다. 이때, 이동부는 OIS이동부(2300)일 수 있다.
OIS-x코일(2520)에 전류가 인가되면 OIS-x코일(2520)과 OIS-x마그넷(2510)의 전자기적 상호작용에 의해 OIS-x코일(2520)은 광축에 수직한 x축 방향으로 이동할 수 있다(도 99의 A 참조). 이때, OIS-x코일(2520)과 함께 OIS홀더(2310)가 x축 방향으로 이동할 수 있다. 나아가, OIS홀더(2310)와 함께 렌즈가 x축 방향으로 이동할 수 있다. 보다 상세히, OIS-x코일(2520)에 정방향 전류가 인가되는 경우 OIS-x코일(2520), OIS홀더(2310) 및 렌즈는 x축 상의 일방향으로 이동할 수 있다. 또한, OIS-x코일(2520)에 역방향 전류가 인가되는 경우 OIS-x코일(2520), OIS홀더(2310) 및 렌즈는 x축 상의 타방향으로 이동할 수 있다.
OIS-y코일(2620)에 전류가 인가되면 OIS-y코일(2620)과 OIS-y마그넷(2610)의 전자기적 상호작용에 의해 OIS-y코일(2620)은 광축에 수직한 y축 방향으로 이동할 수 있다(도 100의 B 참조). 이때, OIS-y코일(2620)과 함께 OIS홀더(2310)가 y축 방향으로 이동할 수 있다. 나아가, OIS홀더(2310)와 함께 렌즈가 y축 방향으로 이동할 수 있다. 보다 상세히, OIS-y코일(2620)에 정방향 전류가 인가되는 경우 OIS-y코일(2620), OIS홀더(2310) 및 렌즈는 y축 상의 일방향으로 이동할 수 있다. 또한, OIS-y코일(2620)에 역방향 전류가 인가되는 경우 OIS-y코일(2620), OIS홀더(2310) 및 렌즈는 y축 상의 타방향으로 이동할 수 있다.
한편, OIS-x센서(2530)는 OIS-x마그넷(2510)의 자기장의 세기를 감지해서 OIS-x코일(2520)의 이동량이나 위치를 감지할 수 있다. OIS-x센서(2530)에서 감지된 이동량이나 위치는 x축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다. OIS-y센서(2630)는 OIS-y마그넷(2610)의 자기장의 세기를 감지해서 OIS-y코일(2620)의 이동량이나 위치를 감지할 수 있다. OIS-y센서(2630)에서 감지된 이동량이나 위치는 y축 방향 손떨림 보정 피드백 제어를 위해 사용될 수 있다.
이하에서는 본 발명의 제3실시예에 따른 카메라 장치를 도면을 참조하여 설명한다.
도 101은 본 발명의 제3실시예에 따른 카메라 장치의 분해사시도이다.
카메라 장치(2010A)는 카메라 모듈을 포함할 수 있다.
카메라 장치(2010A)는 렌즈 모듈(2020)을 포함할 수 있다. 렌즈 모듈(2020)은 적어도 하나의 렌즈를 포함할 수 있다. 렌즈는 이미지 센서(2060)와 대응하는 위치에 배치될 수 있다. 렌즈 모듈(2020)은 렌즈 및 배럴을 포함할 수 있다. 렌즈 모듈(2020)은 렌즈 구동 장치(2010)의 OIS홀더(2310)에 결합될 수 있다. 렌즈 모듈(2020)은 OIS홀더(2310)에 나사 결합 및/또는 접착제에 의해 결합될 수 있다. 렌즈 모듈(2020)은 OIS홀더(2310)와 일체로 이동할 수 있다.
카메라 장치(2010A)는 필터(2030)를 포함할 수 있다. 필터(2030)는 렌즈 모듈(2020)을 통과하는 광에서 특정 주파수 대역의 광이 이미지 센서(2060)로 입사하는 것을 차단하는 역할을 할 수 있다. 필터(2030)는 x-y평면과 평행하도록 배치될 수 있다. 필터(2030)는 렌즈 모듈(2020)과 이미지 센서(2060) 사이에 배치될 수 있다. 필터(2030)는 센서 베이스(2040)에 배치될 수 있다. 변형례로, 필터(2030)는 베이스(2110)에 배치될 수 있다. 필터(2030)는 적외선 필터를 포함할 수 있다. 적외선 필터는 이미지 센서(2060)에 적외선 영역의 광이 입사되는 것을 차단할 수 있다.
카메라 장치(2010A)는 센서 베이스(2040)를 포함할 수 있다. 센서 베이스(2040)는 렌즈 구동 장치(2010)와 인쇄회로기판(2050) 사이에 배치될 수 있다. 센서 베이스(2040)는 필터(2030)가 배치되는 돌출부(2041)를 포함할 수 있다. 필터(2030)가 배치되는 센서 베이스(2040)의 부분에는 필터(2030)를 통과하는 광이 이미지 센서(2060)에 입사할 수 있도록 개구가 형성될 수 있다. 접착 부재는 렌즈 구동 장치(2010)의 베이스(2310)를 센서 베이스(2040)에 결합 또는 접착시킬 수 있다. 접착 부재는 추가로 렌즈 구동 장치(2010)의 내부로 이물질이 유입되지 않도록 하는 역할을 할 수 있다. 접착 부재는 에폭시, 열경화성 접착제, 자외선 경화성 접착제 중 어느 하나 이상을 포함할 수 있다.
카메라 장치(2010A)는 인쇄회로기판(PCB, Printed Circuit Board)(2050)을 포함할 수 있다. 인쇄회로기판(2050)은 기판 또는 회로기판일 수 있다. 인쇄회로기판(2050)에는 렌즈 구동 장치(2010)가 배치될 수 있다. 인쇄회로기판(2050)과 렌즈 구동 장치(2010) 사이에는 센서 베이스(2040)가 배치될 수 있다. 인쇄회로기판(2050)은 렌즈 구동 장치(2010)와 전기적으로 연결될 수 있다. 인쇄회로기판(2050)에는 이미지 센서(2060)가 배치될 수 있다. 인쇄회로기판(2050)에는 이미지 센서(2060)에 결상되는 이미지를 전기적 신호로 변환하여 외부장치로 전송하기 위해, 각종 회로, 소자, 제어부 등이 구비될 수도 있다.
카메라 장치(2010A)는 이미지 센서(2060)를 포함할 수 있다. 이미지 센서(2060)는 렌즈와 필터(2030)를 통과한 광이 입사하여 이미지가 결상되는 구성일 수 있다. 이미지 센서(2060)는 인쇄회로기판(2050)에 실장될 수 있다. 이미지 센서(2060)는 인쇄회로기판(2050)에 전기적으로 연결될 수 있다. 일례로, 이미지 센서(2060)는 인쇄회로기판(2050)에 표면 실장 기술(SMT, Surface Mounting Technology)에 의해 결합될 수 있다. 다른 예로, 이미지 센서(2060)는 인쇄회로기판(2050)에 플립 칩(flip chip) 기술에 의해 결합될 수 있다. 이미지 센서(2060)는 렌즈와 광축이 일치되도록 배치될 수 있다. 즉, 이미지 센서(2060)의 광축과 렌즈의 광축은 얼라인먼트(alignment) 될 수 있다. 이미지 센서(2060)는 이미지 센서(2060)의 유효화상 영역에 조사되는 광을 전기적 신호로 변환할 수 있다. 이미지 센서(2060)는 CCD(charge coupled device, 전하 결합 소자), MOS(metal oxide semi-conductor, 금속 산화물 반도체), CPD 및 CID 중 어느 하나일 수 있다.
카메라 장치(2010A)는 모션 센서(2070)를 포함할 수 있다. 모션 센서(2070)는 인쇄회로기판(2050)에 실장될 수 있다. 모션 센서(2070)는 인쇄회로기판(2050)에 제공되는 회로 패턴을 통하여 제어부(2080)와 전기적으로 연결될 수 있다. 모션 센서(2070)는 카메라 장치(2010A)의 움직임에 의한 회전 각속도 정보를 출력할 수 있다. 모션 센서(2070)는 2축 또는 3축 자이로 센서(Gyro Sensor), 또는 각속도 센서를 포함할 수 있다.
카메라 장치(2010A)는 제어부(2080)를 포함할 수 있다. 제어부(2080)는 인쇄회로기판(2050)에 배치될 수 있다. 제어부(2080)는 렌즈 구동 장치(2010)의 코일(2330)과 전기적으로 연결될 수 있다. 제어부(2080)는 코일(2330)에 공급하는 전류의 방향, 세기 및 진폭 등을 개별적으로 제어할 수 있다. 제어부(2080)는 렌즈 구동 장치(2010)를 제어하여 오토 포커스 기능 및/또는 손떨림 보정 기능을 수행할 수 있다. 나아가, 제어부(2080)는 렌즈 구동 장치(2010)에 대한 오토 포커스 피드백 제어 및/또는 손떨림 보정 피드백 제어를 수행할 수 있다.
카메라 장치(2010A)는 커넥터(2090)를 포함할 수 있다. 커넥터(2090)는 인쇄회로기판(2050)과 전기적으로 연결될 수 있다. 커넥터(2090)는 외부 장치와 전기적으로 연결되기 위한 포트(port)를 포함할 수 있다.
이하에서는 본 발명의 제3실시예에 따른 광학기기를 도면을 참조하여 설명한다.
도 102는 본 발명의 제3실시예에 따른 광학기기의 사시도이고, 도 103은 변형례에 따른 광학기기의 사시도이다.
광학기기(2001)는 핸드폰, 휴대폰, 휴대 단말기, 이동 단말기, 스마트폰(smart phone), 스마트 패드, 휴대용 스마트 기기, 디지털 카메라, 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 및 네비게이션 중 어느 하나 이상을 포함할 수 있다. 광학기기(2001)는 영상 또는 사진을 촬영하기 위한 어떠한 장치도 포함할 수 있다.
광학기기(2001)는 본체(2020)를 포함할 수 있다. 광학기기(2001)는 카메라 장치(2010A)를 포함할 수 있다. 카메라 장치(2010A)는 본체(2020)에 배치될 수 있다. 카메라 장치(2010A)는 피사체를 촬영할 수 있다. 광학기기(2001)는 디스플레이를 포함할 수 있다. 디스플레이는 본체(2020)에 배치될 수 있다. 디스플레이는 카메라 장치(2010A)에 의해 촬영된 영상과 이미지 중 어느 하나 이상을 출력할 수 있다. 디스플레이는 본체(2020)의 제1면에 배치될 수 있다. 카메라 장치(2010A)는 본체(2020)의 제1면과, 제1면의 반대편의 제2면 중 어느 하나 이상에 배치될 수 있다. 도 102에 도시된 바와 같이 카메라 장치(2010A)는 트리플 카메라가 세로 방향으로 배치될 수 있다. 도 103에 도시된 바와 같이 카메라 장치(2010A-1)는 트리플 카메라가 가로 방향으로 배치될 수 있다.
이상에서 본 발명의 제1 내지 제3실시예를 구분해서 설명했으나, 제1 내지 제3실시예의 일부 구성은 서로 대체될 수 있다. 즉, 제1실시예의 일부 구성은 제2실시예와 제3실시예 중 어느 하나 이상의 대응하는 구성으로 대체될 수 있다. 제2실시예의 일부 구성은 제1실시예와 제3실시예 중 어느 하나 이상의 대응하는 구성으로 대체될 수 있다. 제3실시예의 일부 구성은 제1실시예와 제2실시예 중 어느 하나 이상의 대응하는 구성으로 대체될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 베이스;
    상기 베이스 내에 배치되는 제1홀더;
    상기 제1홀더 내에 배치되는 제2홀더;
    상기 베이스에 배치되는 제1 내지 제3마그네트;
    상기 제1홀더에 배치되고 상기 제1마그네트와 상호작용하는 제1코일;
    상기 제2홀더에 배치되고 상기 제2마그네트와 상호작용하는 제2코일; 및
    상기 제2홀더에 배치되고 상기 제3마그네트와 상호작용하는 제3코일을 포함하는 렌즈 구동 장치.
  2. 제1항에 있어서,
    상기 제1코일과 상기 제1마그네트의 상호작용에 의해 상기 제1홀더는 광축방향으로 이동하고,
    상기 제2코일과 상기 제2마그네트의 상호작용에 의해 상기 제2홀더는 상기 광축방향에 수직한 제1방향으로 이동하고,
    상기 제3코일과 상기 제3마그네트의 상호작용에 의해 상기 제2홀더는 상기 광축방향과 상기 제1방향 모두에 수직한 제2방향으로 이동하는 렌즈 구동 장치.
  3. 제2항에 있어서,
    상기 제2홀더는 상기 제1코일과 상기 제1마그네트의 상호작용에 의해 상기 제1홀더와 함께 상기 광축방향으로 이동하는 렌즈 구동 장치.
  4. 제1항에 있어서,
    상기 베이스는 서로 반대편에 배치되는 제1측부와 제2측부와, 서로 반대편에 배치되는 제3측부와 제4측부를 포함하고,
    상기 제1마그네트는 상기 베이스의 상기 제1측부에 배치되고,
    상기 제2마그네트는 상기 베이스의 상기 제2측부에 배치되고,
    상기 제3마그네트는 상기 베이스의 상기 제3측부에 배치되는 렌즈 구동 장치.
  5. 제1항에 있어서,
    상기 제2홀더는 서로 반대편에 배치되는 제1측면과 제2측면과, 서로 반대편에 배치되는 제3측면과 제4측면을 포함하고,
    상기 제1코일은 상기 제2홀더의 상기 제1측면과 상기 제1마그네트 사이에 배치되고,
    상기 제2코일은 상기 제2홀더의 상기 제2측면과 상기 제2마그네트 사이에 배치되고,
    상기 제3코일은 상기 제2홀더의 상기 제3측면과 상기 제3마그네트 사이에 배치되는 렌즈 구동 장치.
  6. 제5항에 있어서,
    상기 제1홀더에 배치되는 제1부분과, 상기 제2홀더의 상기 제2측면에 배치되는 제2부분과, 상기 제2홀더의 상기 제3측면에 배치되는 제3부분을 포함하는 제1기판을 포함하고,
    상기 제1코일은 상기 제1기판의 상기 제1부분에 배치되고,
    상기 제2코일은 상기 제1기판의 상기 제2부분에 배치되고,
    상기 제3코일은 상기 제1기판의 상기 제3부분에 배치되는 렌즈 구동 장치.
  7. 제6항에 있어서,
    상기 제1기판은 상기 제2홀더의 상기 제4측면과 상기 제1홀더 사이에 배치되는 제4부분을 포함하고,
    상기 제1기판의 상기 제4부분은 단자를 포함하는 렌즈 구동 장치.
  8. 제7항에 있어서,
    상기 베이스에 배치되는 제2기판을 포함하고,
    상기 제2기판은 상기 베이스에 배치되는 몸체부와, 상기 몸체부로부터 연장되는 연장부를 포함하고,
    상기 연장부는 상기 제1기판의 상기 단자와 결합되는 제1단자를 포함하고,
    상기 몸체부는 상기 제1단자와 전기적으로 연결되는 제2단자를 포함하고,
    상기 연장부의 적어도 일부는 상기 제1홀더와 함께 이동하는 렌즈 구동 장치.
  9. 제1항에 있어서,
    상기 베이스와 상기 제1홀더 사이에 배치되는 제1볼을 포함하는 렌즈 구동 장치.
  10. 제6항에 있어서,
    상기 제1기판의 상기 제1부분에 배치되고 상기 제1마그네트와 인력이 발생되는 요크를 포함하는 렌즈 구동 장치.
PCT/KR2023/007780 2022-07-15 2023-06-07 렌즈 구동 장치, 카메라 장치 및 광학기기 WO2024014714A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2022-0087509 2022-07-15
KR1020220087509A KR20240010232A (ko) 2022-07-15 2022-07-15 렌즈 구동 장치, 카메라 장치 및 광학기기
KR10-2022-0118228 2022-09-20
KR1020220118228A KR20240039666A (ko) 2022-09-20 2022-09-20 렌즈 구동 장치, 카메라 장치 및 광학기기
KR10-2022-0124541 2022-09-29
KR1020220124541A KR20240044928A (ko) 2022-09-29 2022-09-29 렌즈 구동 장치, 카메라 장치 및 광학기기

Publications (1)

Publication Number Publication Date
WO2024014714A1 true WO2024014714A1 (ko) 2024-01-18

Family

ID=89536910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007780 WO2024014714A1 (ko) 2022-07-15 2023-06-07 렌즈 구동 장치, 카메라 장치 및 광학기기

Country Status (1)

Country Link
WO (1) WO2024014714A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110089845A (ko) * 2008-10-14 2011-08-09 주식회사 홍콩 어플라이드 사이언스 앤드 테크놀로지 리서치 인스티튜드 멀티-드라이브 메커니즘 렌즈 작동장치
JP2012173713A (ja) * 2011-02-24 2012-09-10 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
KR20180002433A (ko) * 2016-06-29 2018-01-08 자화전자(주) 듀얼 액추에이터
KR20180027977A (ko) * 2016-09-07 2018-03-15 삼성전자주식회사 카메라 렌즈 어셈블리
KR20180042948A (ko) * 2016-10-19 2018-04-27 자화전자(주) 서스펜션 구조를 가지는 fpcb 및 이를 이용한 광학용 액추에이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110089845A (ko) * 2008-10-14 2011-08-09 주식회사 홍콩 어플라이드 사이언스 앤드 테크놀로지 리서치 인스티튜드 멀티-드라이브 메커니즘 렌즈 작동장치
JP2012173713A (ja) * 2011-02-24 2012-09-10 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
KR20180002433A (ko) * 2016-06-29 2018-01-08 자화전자(주) 듀얼 액추에이터
KR20180027977A (ko) * 2016-09-07 2018-03-15 삼성전자주식회사 카메라 렌즈 어셈블리
KR20180042948A (ko) * 2016-10-19 2018-04-27 자화전자(주) 서스펜션 구조를 가지는 fpcb 및 이를 이용한 광학용 액추에이터

Similar Documents

Publication Publication Date Title
WO2017196045A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 휴대용 디바이스
WO2018084584A1 (ko) 카메라 모듈, 듀얼 카메라 모듈, 광학기기 및 듀얼 카메라 모듈의 제조방법
WO2018128489A1 (ko) 듀얼 렌즈 구동 장치, 듀얼 카메라 모듈 및 광학기기
WO2017196047A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2009139543A1 (ko) 떨림 보정기능이 구비된 영상 촬영 장치
WO2018186674A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021107524A1 (ko) 카메라 엑추에이터 및 이를 포함하는 카메라 모듈
WO2018216955A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학 기기
WO2018147697A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2021020862A1 (ko) 카메라 액추에이터
WO2019045339A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2022203412A1 (ko) 액추에이터 장치
WO2021225362A1 (ko) 카메라 장치
WO2019004765A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019045439A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019027199A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021002654A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021221410A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2011002151A2 (ko) 떨림 보정기능이 구비된 영상 촬영 장치
WO2020111577A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2022164083A1 (ko) 액추에이터 장치
WO2022045721A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2022086158A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021149992A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2021187943A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839808

Country of ref document: EP

Kind code of ref document: A1