WO2016169436A1 - 利用生物质气化炉滤渣制备锂离子电池负极材料的方法 - Google Patents

利用生物质气化炉滤渣制备锂离子电池负极材料的方法 Download PDF

Info

Publication number
WO2016169436A1
WO2016169436A1 PCT/CN2016/079380 CN2016079380W WO2016169436A1 WO 2016169436 A1 WO2016169436 A1 WO 2016169436A1 CN 2016079380 W CN2016079380 W CN 2016079380W WO 2016169436 A1 WO2016169436 A1 WO 2016169436A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter residue
ion battery
lithium ion
preparing
biomass gasifier
Prior art date
Application number
PCT/CN2016/079380
Other languages
English (en)
French (fr)
Inventor
周欢欢
程宇婷
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to CA2983604A priority Critical patent/CA2983604A1/en
Priority to EP16782583.5A priority patent/EP3288103A4/en
Priority to JP2017554258A priority patent/JP6730312B2/ja
Priority to AU2016250999A priority patent/AU2016250999B2/en
Priority to RU2017140186A priority patent/RU2661911C1/ru
Publication of WO2016169436A1 publication Critical patent/WO2016169436A1/zh
Priority to US15/787,697 priority patent/US20180040878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery material production technology, in particular to a method for preparing a lithium ion battery anode material by using a biomass synthesis oil plant gasifier filter residue.
  • Lithium-ion batteries are widely used in various fields due to their high energy, high operating voltage, small self-discharge, wide operating temperature range, no memory effect, green environmental protection and long life, such as: mobile phones, computers, digital cameras, electric Cars, hybrid cars, new energy vehicles, ship power and aerodynamics.
  • Lithium-ion battery anode materials have an important impact on the safety, cycle life and energy density of lithium batteries.
  • lithium ion battery anode materials mainly include carbon materials, tin-based materials, silicon materials and lithium titanate. Due to poor cycle stability of tin-based materials, silicon materials have serious volume effects and low capacity and high cost of lithium titanate.
  • Commercial lithium-ion battery anode materials are mainly carbon materials.
  • the carbon anode material includes natural graphite, artificial graphite, mesocarbon microspheres and hard carbon materials, wherein the hard carbon material becomes superior in its irregular capacity, high rate performance, excellent cycle performance and safety performance. Research hotspots.
  • Common hard carbon materials mainly include resin carbon, organic polymer pyrolytic carbon and hydrothermal synthetic carbon microspheres.
  • the raw materials are mainly polymer compounds and fossil fuel asphalt.
  • Hard carbon materials are used as anode materials for lithium ion batteries. Disadvantages: 1) The high-frequency raw material cost of the polymer compound is easy to cause environmental pollution; 2) The first coulombic efficiency of the hard carbon material is low.
  • the object of the present invention is to provide a method for preparing a lithium ion battery anode material by using a biomass synthesis oil plant gasifier filter residue, which can obtain an economical and clean lithium ion battery anode material and improve the lithium ion battery anode.
  • the first coulombic efficiency of the material is to provide a method for preparing a lithium ion battery anode material by using a biomass synthesis oil plant gasifier filter residue, which can obtain an economical and clean lithium ion battery anode material and improve the lithium ion battery anode.
  • the technical solution adopted by the present invention is: a method for preparing a lithium ion battery anode material by using a biomass gasifier filter residue, comprising the following steps:
  • step 2) adding polyethyleneimine and ethanol to the residue obtained in step 2), shaking, further dispersing the filter residue, thoroughly shaking, washing away polyethyleneimine and ethanol, and then filtering, and filtering the residue;
  • step 4 adding nitric acid with a mass fraction of 55 to 70% to the residue obtained in step 3), stirring and oxidizing and modifying at a temperature of 35 to 45 ° C, then washing away the nitric acid, filtering and drying to obtain a lithium ion battery.
  • Anode material added nitric acid with a mass fraction of 55 to 70% to the residue obtained in step 3), stirring and oxidizing and modifying at a temperature of 35 to 45 ° C, then washing away the nitric acid, filtering and drying to obtain a lithium ion battery.
  • Anode material Anode material.
  • the surfactant is sodium dodecylbenzenesulfonate, sodium cetylbenzenesulfonate, sodium lauryl sulfate, sodium dodecyl diphenyl ether disulfonate A combination of one or more of sodium lauryl fatty acid, F127, P123, sorbitan oleate.
  • the filter residue: surfactant: water 100: 0.5 to 5: 200 to 1000; and the grinding time is 15 to 120 minutes.
  • the method for preparing a negative electrode material for a lithium ion battery by using a biomass gasifier filter according to claim 1 or 2, wherein in the step 3), according to the mass ratio, the filter residue: polyethyleneimine: ethanol 10:4 to 10:200 to 1000; the oscillation time is 0.5 to 3 hours.
  • the filter residue: nitric acid 1: 5 to 15, and the stirring time is 0.5 to 3 h.
  • the lithium ion battery negative electrode material has a particle diameter of 50 to 200 nm and a specific surface area of 15 to 25 m 2 /g.
  • the particle size of the filter residue after the grinding is 5 to 20 ⁇ m.
  • the chemical composition of the biomass gasifier filter residue and its mass content are as follows: C: 65 to 70%, SiO 2 : 13 to 18%, CaO: 3 to 6%, Al 2 O 3 : 4 to 7%, Fe 2 O 3 : 1 to 2%, Na 2 O: 1 to 2%, K 2 O: 1 to 2%, and the balance is a very small amount of impurities such as MgO and ZnO.
  • the filter residue and the hydrochloric acid are stirred at a temperature of 35 to 45 ° C, and the stirring time is 0.5 to 2 h.
  • the present invention has the following advantages:
  • the lithium ion battery anode material prepared by the invention has low ash content, low specific surface area, can reduce the boundary reaction during charging and discharging, and has a small charge coulomb loss for the first time; and the nanometer ball diameter can be closely packed to form a high density.
  • the electrodes, and the spherical arrangement facilitate the insertion and deintercalation of lithium ions.
  • the lithium ion battery anode material prepared by the invention contains a small amount of SiO 2 powder in addition to the hard carbon material, and the presence of the SiO 2 powder reduces the first irreversible capacity, but the presence of SiO 2 decreases the specific capacity.
  • the microstructure of nano-scale carbon makes the insertion depth of lithium ions small and the process is short. It can not only be embedded in the interlayer of each particle, but also embedded in the gap of the crystal grain, which improves the specific capacitance of the battery. This just compensates for the decrease in specific capacitance caused by the presence of SiO 2 .
  • the large irreversible capacity for the first time is the main reason for hindering the large-scale commercial use of hard carbon on lithium ion batteries, and the presence of SiO 2 powder in the present invention compensates for this defect.
  • the lithium ion battery anode material prepared by the invention is a hard carbon material, has strong safety performance, good cycle performance (72% of initial capacity can still be achieved after 80 cycles), and has a high specific capacity (initial specific capacity is 426 mAh/ g); due to the HNO 3 pre-oxidation and N-doping modification of the filter residue during the preparation process, no other impurities were introduced, which made the first Coulomb efficiency more than 80%, which greatly improved the first coulombic efficiency compared with other hard carbon materials.
  • the present invention utilizes a biomass synthesis oil plant gasifier filter residue as a raw material to prepare a lithium ion battery hard carbon anode material, because the carbon residue in the filter residue is high and microscopically spherical, and the preparation process does not require complicated chemical synthesis, only In addition to the steps of impurity modification, the cumbersome intermediate synthesis step in the preparation process of the conventional anode material is omitted, the chemical raw materials are saved, and the price advantage is more favorable in the market.
  • the filter residue material used in the invention is derived from waste in the chemical process, and the cost is low, and the recycling can reduce the pollution to the environment; the invention not only provides a novel clean renewable low-cost resource as the preparation of the hard carbon material.
  • the raw materials also provide an effective process to increase the first coulombic efficiency of the hard carbon material; the present invention has great market advantages in terms of raw material source, price and product performance.
  • Figure 1 is an SEM image of a biomass gasifier filter residue.
  • the biomass gasifier filter residue in the following examples is a gasification filter residue of a biomass synthesis oil plant.
  • the source is: after the pulverized biomass material is in contact with the reaction components in the gasification furnace, the gas product is taken out by the gas product. After the gas product is washed with water, the washing liquid is filtered to obtain the biomass gasifier filter residue of the present invention; the chemical composition and mass content of the biomass gasifier filter residue are as follows: C: 65 to 70% , SiO 2 : 13 to 18%, CaO: 3 to 6%, Al 2 O 3 : 4 to 7%, Fe 2 O 3 : 1 to 2%, Na 2 O: 1 to 2%, K 2 O: 1 ⁇ 2%, the rest is a very small amount of impurities such as MgO, ZnO; as shown in Figure 1, the biomass gasifier filter residue is microscopically spherical.
  • a method for preparing a lithium ion battery anode material by using a biomass gasifier filter residue comprising the following steps:
  • the filter residue sodium cetylbenzene sulfonate: deionized water was mixed at a mass ratio of 100:1:500, ground in an agate mortar for 20 min, and added with deionized water for 3 times to remove cetylbenzenesulfonate.
  • Sodium salt filtered to obtain filter residue (intermediate product 1) for use; then, to the filter residue (intermediate product 1), the mass ratio of the residue (intermediate product 1): hydrochloric acid is 1:10, and the hydrochloric acid with a mass fraction of 25% is added.
  • the mixture was stirred for 40 min in a 40 ° C thermostatic magnetic stirrer, thoroughly removed, then filtered and placed in clean water for 4 times until the pH of the solution showed neutrality, and the residue (intermediate product 2) was obtained; then, the residue (intermediate product 2) Placed in a ultrasonic oscillator, a mixture of polyethyleneimine and ethanol is added in a ratio of 10:5:500 by weight of the residue (intermediate product 2): polyethyleneimine:ethanol, shaken well for 1 hour, and washed with water. After 3 times, polyethyleneimine and ethanol were removed and filtered for use.
  • a method for preparing a lithium ion battery anode material by using a biomass gasifier filter residue comprising the following steps:
  • the filter residue: sodium lauryl sulfate: deionized water was mixed at a mass ratio of 100:2:700, ground in an agate mortar for 40 min, stirred and washed three times with deionized water to remove sodium lauryl sulfate, and filtered.
  • the filter residue (intermediate product 1) is reserved; then, to the filter residue (intermediate product 1), a mass fraction of 20% hydrochloric acid is added according to the mass ratio of the filter residue (intermediate product 1): hydrochloric acid 1:20, and the constant temperature magnetic force at 40 ° C Stir in the stirrer for 1 h, thoroughly remove the impurities, filter the filter residue and wash it in clean water for 4 times until the pH of the solution shows neutrality, and then filter residue (intermediate product 2); then, filter residue (intermediate product 2) is placed In the ultrasonic oscillator, a mixture of polyethyleneimine and ethanol is added in a ratio of the weight ratio of the filter residue (intermediate product 2): polyethyleneimine: ethanol to 10:8:1000, and after fully shaking for 3 hours, it is washed 4 times with water.
  • a method for preparing a lithium ion battery anode material by using a biomass gasifier filter residue comprising the following steps:
  • the filter residue: sorbitan oleate: deionized water was mixed at a mass ratio of 100:4:1000, ground in an agate mortar for 1 hour, and washed with deionized water for 3 times to remove the sorbitan oleate. After filtration, the filter residue (intermediate product 1) is reserved; then, to the filter residue (intermediate product 1), hydrochloric acid is added to a mass fraction of 25% by mass ratio of hydrochloric acid (intermediate product 1): hydrochloric acid at a ratio of 1:15 at 40 ° C. The mixture was stirred in a constant temperature magnetic stirrer for 1.5 h, and the impurities were thoroughly removed.
  • the filter residue was filtered and washed in clean water for 4 times until the pH of the solution showed neutrality, and the residue (intermediate product 2) was obtained; then, the residue (intermediate product 2) was obtained.
  • a mixture of polyethyleneimine and ethanol is added in a ratio of 10:4:300 by weight of the residue (intermediate product 2): polyethyleneimine:ethanol, and fully shaken for 2 hours.
  • the polyethyleneimine and ethanol were removed, and the filter residue was taken up after filtration; finally, HNO 3 with a mass fraction of 60% was added to the obtained filter residue at a mass ratio of filter residue:nitric acid of 1:15, and the mixture was stirred at 40 ° C for 1.5.
  • Table 1 the performance parameters of the negative electrode material of the lithium ion battery are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括:1)将生物质气化炉滤渣与表面活性剂混合后进行研磨,充分研磨后水洗去除表面活性剂后抽滤,滤渣备用;2)向步骤1)所得滤渣中加入盐酸,充分除杂,过滤并将滤渣洗至中性后备用;3)向步骤2)所得滤渣中加入聚乙烯亚胺和乙醇的混合液后进行振荡,充分振荡后洗去聚乙烯亚胺和乙醇,过滤,滤渣备用;4)向步骤3)所得滤渣中加入质量分数为55~70%的硝酸,在35~45℃温度下充分搅拌进行改性,洗去硝酸,过滤后干燥得到锂离子电池负极材料。获得了容量高,首次效率高,循环性能好,安全无污染的锂离子电池负极材料;此工艺流程简单,成本低,能够适应于放大生产。

Description

利用生物质气化炉滤渣制备锂离子电池负极材料的方法 技术领域
本发明涉及锂离子电池材料生产技术,具体地指一种利用生物质合成油厂气化炉滤渣制备锂离子电池负极材料的方法。
背景技术
锂离子电池因其具有能量大、工作电压高、自放电小、工作温度范围宽、无记忆效应、绿色环保及寿命长等优点而广泛应用于各个领域,如:手机,电脑,数码相机,电动车,混合动力汽车,新能源汽车,船舰动力及航空动力等领域。
锂离子电池负极材料对锂电池的安全性、循环寿命和能量密度有重要影响。目前,锂离子电池负极材料主要包括碳材料、锡基材料、硅材料及钛酸锂,由于锡基材料循环稳定性差,硅材料存在严重的体积效应及钛酸锂的低容量高成本,使得目前商业化的锂离子电池负极材料主要以碳材料为主。碳负极材料包括天然石墨、人造石墨、中间相炭微球及硬碳材料,其中硬碳材料以其无规则排序所具有的较高容量、好的倍率性能及优良的循环性能和安全性能而成为研究的热点。
常用的硬碳材料主要包括树脂碳、有机聚合物热解碳及水热合成炭微球,其原料来源主要是高分子化合物及化石燃料的沥青,硬碳材料用作锂离子电池负极材料存在以下缺点:1)其高分子化合物原料成本高,且容易对环境造成污染;2)硬碳材料的首次库伦效率较低。
发明内容
本发明的目的就是要提供一种利用生物质合成油厂气化炉滤渣制备锂离子电池负极材料的方法,采用该方法可获得经济、清洁的锂离子电池负极材料,且提升了锂离子电池负极材料的首次库伦效率。
为实现上述目的,本发明采用的技术方案是:一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括以下步骤:
1)将生物质气化炉滤渣与表面活性剂水溶液混合后进行研磨,以分散所述生物质气 化炉滤渣,充分研磨后水洗去除表面活性剂,然后抽滤,滤渣备用;
2)向步骤1)所得滤渣中加入盐酸后进行搅拌,充分除杂,然后过滤,并将滤渣洗至中性后备用;
3)向步骤2)所得滤渣中加入聚乙烯亚胺和乙醇后进行振荡,进一步分散所述滤渣,充分振荡后洗去聚乙烯亚胺和乙醇,然后过滤,滤渣备用;
4)向步骤3)所得滤渣中加入质量分数为55~70%的硝酸,在35~45℃温度下充分搅拌进行氧化和改性,然后洗去硝酸,过滤后干燥,即可得到锂离子电池负极材料。
进一步地,所述步骤1)中,表面活性剂为十二烷基苯磺酸钠、十六烷基苯磺酸钠、十二烷基硫酸钠、十二烷基二苯醚二磺酸钠、十二烷基脂肪酸钠、F127、P123、山梨糖醇酐油酸酯中的一种或几种的组合。
进一步地,所述步骤1)中,按质量比计算,滤渣∶表面活性剂∶水=100∶0.5~5∶200~1000;研磨时间为15~120min。
进一步地,所述步骤2)中,盐酸的质量分数为20~25%,按质量比计算,中间产物1∶盐酸=1∶8~20。
5、根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤3)中,按质量比计算,滤渣∶聚乙烯亚胺∶乙醇=10∶4~10∶200~1000;振荡时间为0.5~3h。
进一步地,所述步骤4)中,按质量比计算,滤渣∶硝酸=1∶5~15,搅拌时间为0.5~3h。
进一步地,所述步骤4)中,锂离子电池负极材料的粒径为50~200nm,比表面积为15~25m2/g。
进一步地,所述步骤1)中,经研磨后的滤渣颗粒粒径为5~20μm。
进一步地,所述步骤1)中,生物质气化炉滤渣的化学成分及其质量含量如下:C:65~70%,SiO2:13~18%,CaO:3~6%,Al2O3:4~7%,Fe2O3:1~2%,Na2O:1~2%,K2O:1~2%,其余为极少量的MgO、ZnO等杂质。
更进一步地,所述步骤2)中,在35~45℃温度下对滤渣和盐酸进行搅拌,搅拌时间为0.5~2h。
与现有技术相比,本发明具有以下优点:
其一,本发明制得的锂离子电池负极材料灰分低,比表面积低,能够减小充放电过程中的边界反应,首次充电库伦损失小;且其纳米级的球径能够紧密堆积形成高密度电极,并且球状的排列利于锂离子的插入和脱嵌。
其二,本发明制得的锂离子电池负极材料中除了含有硬碳材料,还含有少量的SiO2粉体,SiO2粉体的存在减少了首次不可逆容量,但是SiO2的存在使得比容量降低;另一方面纳米级碳的微观结构使得锂离子的嵌入深度小、过程短,它不仅可以嵌入到各粒子的片层间,还能嵌入到晶粒的缝隙中,提高了电池的比电容,这刚好弥补了SiO2存在引起的比电容降低。对于硬碳材料,首次不可逆容量较大是阻碍硬碳在锂离子电池上大规模商业化使用的主要原因,而本发明中SiO2粉体的存在弥补了这一缺陷。
其三,本发明制得的锂离子电池负极材料为硬碳材料,安全性能强,循环性能好(循环80次后仍然能达到初始容量的72%),比容量高(初始比容量为426mAh/g);由于制备过程中对滤渣进行了HNO3预氧化和N掺杂修饰,未引入其他杂质,使得首次库伦效率达80%以上,与其他硬碳材料相比大幅提高了首次库伦效率,获得了容量高、首次效率高、循环性能好、倍率性能、安全无污染的锂离子电池负极材料。
其四,本发明利用生物质合成油厂气化炉滤渣为原料制备锂离子电池硬碳负极材料,因滤渣中含碳量高,微观上呈球状,制备过程不需要复杂的化学合成,只需除杂改性等步骤,从而省去了传统负极材料制备过程中繁琐的中间合成步骤,节省了化工原料,在市场上更具价格优势。
其五,本发明所用滤渣材料来源于化工过程中的废弃物,成本低廉,并且回收利用可减少对环境的污染;本发明不但提供了一种新型的清洁可再生低廉资源作为硬碳材料的制备原料,也提供了一种有效的工艺方法来提高硬碳材料的首次库伦效率;本发明在原料来源、价格及产品性能方面均具有很大的市场优势。
附图说明
图1为一种生物质气化炉滤渣的SEM图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明,便于更清楚地了解本发明, 但它们不对本发明构成限定。
以下实施例中的生物质气化炉滤渣为生物质合成油厂的气化滤渣,来源方式为:粉碎后的生物质材料与气化炉中的反应组分接触后,被气体产物带出气化炉,对气体产物进行过水洗涤后,过滤洗涤液即得到本发明中的生物质气化炉滤渣;该生物质气化炉滤渣的化学成分及其质量含量如下:C:65~70%,SiO2:13~18%,CaO:3~6%,Al2O3:4~7%,Fe2O3:1~2%,Na2O:1~2%,K2O:1~2%,其余为极少量的MgO,ZnO等杂质;如图1所示,该生物质气化炉滤渣微观上呈球状。
实施例1
一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括以下步骤:
将滤渣∶十六烷基苯磺酸钠∶去离子水按100∶1∶500的质量比混合,放入玛瑙研钵中研磨20min,加入去离子水搅拌洗涤3次去除十六烷基苯磺酸钠,过滤后得到滤渣(中间产物1)备用;然后,往滤渣(中间产物1)中按滤渣(中间产物1)∶盐酸的质量比为1∶10加入质量分数为25%的盐酸,在40℃的恒温磁力搅拌器中密闭搅拌40min,充分除杂,然后过滤并置于清水中洗涤4次,直至溶液PH显示中性,得滤渣(中间产物2);接着,将滤渣(中间产物2)置于超声波振荡器中,按滤渣(中间产物2)∶聚乙烯亚胺∶乙醇的质量比为10∶5∶500的比例加入聚乙烯亚胺和乙醇的混合液,充分振荡1h,用水洗涤3次后,除去聚乙烯亚胺和乙醇,过滤后备用;最后,在所得滤渣中按滤渣∶硝酸的质量比为1∶5的比例加入质量分数65%的HNO3,40℃下密闭搅拌30min后,充分洗涤3次后,过滤干燥得到产物锂离子电池负极材料,该锂离子电池负极材料的性能参数见下表1。
实施例2
一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括以下步骤:
将滤渣∶十二烷基硫酸钠:去离子水按100∶2∶700的质量比混合,放入玛瑙研钵中研磨40min,加入去离子水搅拌洗涤3次去除十二烷基硫酸钠,过滤后得滤渣(中间产物1)备用;然后,往滤渣(中间产物1)中按滤渣(中间产物1):盐酸的质量比1∶20加入质量分数为20%的盐酸,在40℃的恒温磁力搅拌器中密闭搅拌1h,充分除杂,将滤渣滤出后置于清水中洗涤4次,直至溶液PH显示中性,得滤渣(中间产物2);接着,将滤渣(中间产物2)置于超声波振荡器中,按滤渣(中间产物2):聚乙烯亚胺: 乙醇的质量比为10∶8∶1000的比例加入聚乙烯亚胺和乙醇的混合液,充分振荡3h后,用水洗涤4次,除去聚乙烯亚胺和乙醇,过滤后备用;最后,在所得滤渣中按滤渣:硝酸的质量比为1∶8的比例加入质量分数55%的HNO3,40℃下密闭搅拌1h后,充分洗涤4次后,过滤干燥得到产物锂离子电池负极材料,该锂离子电池负极材料的性能参数见下表1。
实施例3
一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括以下步骤:
将滤渣∶梨糖醇酐油酸酯∶去离子水按100∶4∶1000的质量比混合,放入玛瑙研钵中研磨1h,加入去离子水搅拌洗涤3次去除梨糖醇酐油酸酯,过滤后得滤渣(中间产物1)备用;然后,往滤渣(中间产物1)中按滤渣(中间产物1)∶盐酸的质量比1∶15加入质量分数为25%的盐酸,在40℃的恒温磁力搅拌器中密闭搅拌1.5h,充分除杂,将滤渣滤出后置于清水中洗涤4次,直至溶液PH显示中性,得滤渣(中间产物2);接着,将滤渣(中间产物2)置于超声波振荡器中,按滤渣(中间产物2)∶聚乙烯亚胺∶乙醇的质量比为10∶4∶300的比例加入聚乙烯亚胺和乙醇的混合液,充分振荡2h后,用水洗涤3次除去聚乙烯亚胺和乙醇,过滤后滤渣备用;最后,在所得滤渣中按滤渣∶硝酸的质量比为1∶15的比例加入质量分数60%的HNO3,40℃下密闭搅拌1.5h后,充分洗涤4次后,过滤干燥得到产物锂离子电池负极材料,该锂离子电池负极材料的性能参数见下表1。
表1
Figure PCTCN2016079380-appb-000001
从表1中对比本发明产品与现有产品的性能参数数据可以看出,本发明制备的锂离子电池负极材料的比容量比现有产品高,粒度为纳米级别微球,振实密度低,杂质含量也很低,首次库伦效率高,符合锂离子电池电极材料的要求。

Claims (10)

  1. 一种利用生物质气化炉滤渣制备锂离子电池负极材料的方法,包括以下步骤:
    1)将生物质气化炉滤渣与表面活性剂水溶液混合后进行研磨,以分散所述生物质气化炉滤渣,充分研磨后水洗去除表面活性剂,然后抽滤,滤渣备用;
    2)向步骤1)所得滤渣中加入盐酸后进行搅拌,充分除杂,然后过滤,并将滤渣洗至中性后备用;
    3)向步骤2)所得滤渣中加入聚乙烯亚胺和乙醇后进行振荡,进一步分散所述滤渣,充分振荡后洗去聚乙烯亚胺和乙醇,然后过滤,滤渣备用;
    4)向步骤3)所得滤渣中加入质量分数为55~70%的硝酸,在35~45℃温度下充分搅拌进行氧化和改性,然后洗去硝酸,过滤后干燥,即可得到锂离子电池负极材料。
  2. 根据权利要求1所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤1)中,表面活性剂为十二烷基苯磺酸钠、十六烷基苯磺酸钠、十二烷基硫酸钠、十二烷基二苯醚二磺酸钠、十二烷基脂肪酸钠、F127、P123、山梨糖醇酐油酸酯中的一种或几种的组合。
  3. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤1)中,按质量比计算,滤渣∶表面活性剂∶水=100∶0.5~5∶200~1000;研磨时间为15~120min。
  4. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤2)中,盐酸的质量分数为20~25%,按质量比计算,中间产物1∶盐酸=1∶8~20。
  5. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤3)中,按质量比计算,滤渣∶聚乙烯亚胺∶乙醇=10∶4~10∶200~1000;振荡时间为0.5~3h。
  6. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤4)中,按质量比计算,滤渣∶硝酸=1∶5~15,搅拌时间为0.5~3h。
  7. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤4)中,锂离子电池负极材料的粒径为50~200nm,比表面积为15~25m2/g。
  8. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤1)中,经研磨后的滤渣颗粒粒径为5~20μm。
  9. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤1)中,生物质气化炉滤渣的化学成分及其质量含量如下:C:65~70%,SiO2:13~18%,CaO:3~6%,Al2O3:4~7%,Fe2O3:1~2%,Na2O:1~2%,K2O:1~2%,其余为极少量的MgO、ZnO等杂质。
  10. 根据权利要求1或2所述利用生物质气化炉滤渣制备锂离子电池负极材料的方法,其特征在于:所述步骤2)中,在35~45℃温度下对滤渣和盐酸进行搅拌,搅拌时间为0.5~2h。
PCT/CN2016/079380 2015-04-21 2016-04-15 利用生物质气化炉滤渣制备锂离子电池负极材料的方法 WO2016169436A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2983604A CA2983604A1 (en) 2015-04-21 2016-04-15 Method for preparing negative electrode material of lithium-ion battery by using biomass gasification furnace filter residue
EP16782583.5A EP3288103A4 (en) 2015-04-21 2016-04-15 Method for preparing negative electrode material of lithium-ion battery by using biomass gasification furnace filter residue
JP2017554258A JP6730312B2 (ja) 2015-04-21 2016-04-15 バイオマスガス化炉残渣を利用するリチウムイオン電池の負極材の調製方法
AU2016250999A AU2016250999B2 (en) 2015-04-21 2016-04-15 Method for preparing negative electrode material of lithium-ion battery by using biomass gasification furnace filter residue
RU2017140186A RU2661911C1 (ru) 2015-04-21 2016-04-15 Способ получения материала отрицательного электрода литий-ионной батареи с использованием фильтрационного остатка печи для газификации биомассы
US15/787,697 US20180040878A1 (en) 2015-04-21 2017-10-18 Method for preparing anode material for lithium-ion batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510190215.9 2015-04-21
CN201510190215.9A CN104766952B (zh) 2015-04-21 2015-04-21 利用生物质气化炉滤渣制备锂离子电池负极材料的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/787,697 Continuation-In-Part US20180040878A1 (en) 2015-04-21 2017-10-18 Method for preparing anode material for lithium-ion batteries

Publications (1)

Publication Number Publication Date
WO2016169436A1 true WO2016169436A1 (zh) 2016-10-27

Family

ID=53648669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079380 WO2016169436A1 (zh) 2015-04-21 2016-04-15 利用生物质气化炉滤渣制备锂离子电池负极材料的方法

Country Status (8)

Country Link
US (1) US20180040878A1 (zh)
EP (1) EP3288103A4 (zh)
JP (1) JP6730312B2 (zh)
CN (1) CN104766952B (zh)
AU (1) AU2016250999B2 (zh)
CA (1) CA2983604A1 (zh)
RU (1) RU2661911C1 (zh)
WO (1) WO2016169436A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766952B (zh) * 2015-04-21 2017-01-25 武汉凯迪工程技术研究总院有限公司 利用生物质气化炉滤渣制备锂离子电池负极材料的方法
CN105552372B (zh) * 2016-01-27 2018-02-13 太原理工大学 一种n掺杂碳微米纤维材料及其制备方法和应用
CN108630912B (zh) * 2018-03-11 2023-04-11 贵州中科星城石墨有限公司 一种锂离子电池用硅碳负极材料及其制备方法
CN108987720B (zh) * 2018-08-01 2021-02-12 吉林大学 碳/氧化锌复合材料及其制备方法和应用
CN110112376B (zh) * 2019-03-25 2021-06-15 华南农业大学 一种多孔氧化亚硅/碳复合负极材料的制备方法和应用
CN113528833A (zh) * 2021-07-12 2021-10-22 廊坊师范学院 一种利用芦苇生物质回收废旧锂离子电池正极材料的方法
CN113528832A (zh) * 2021-07-12 2021-10-22 廊坊师范学院 一种利用柑橘类水果绿色高效回收废旧锂离子电池正极材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293305A (ja) * 1995-04-20 1996-11-05 Mitsubishi Chem Corp 非水系二次電池
CN102637920A (zh) * 2012-04-09 2012-08-15 中国科学院过程工程研究所 废触体作为锂离子电池负极材料的应用
CN102709621A (zh) * 2012-05-24 2012-10-03 上海应用技术学院 一种从废旧锂离子电池中回收高纯碳材料的方法
CN104766952A (zh) * 2015-04-21 2015-07-08 武汉凯迪工程技术研究总院有限公司 利用生物质气化炉滤渣制备锂离子电池负极材料的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985410B2 (ja) * 1995-03-06 2012-07-25 ソニー株式会社 非水電解液二次電池用負極材料の製造方法
JP3565994B2 (ja) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
JP4187804B2 (ja) * 1997-04-03 2008-11-26 ソニー株式会社 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
RU2133527C1 (ru) * 1998-02-11 1999-07-20 Акционерное общество закрытого типа "Карбид" Пироуглеродсодержащий материал для анода литий-ионного аккумулятора и способ его изготовления
TW429638B (en) * 1999-08-11 2001-04-11 Fey George Ting Kuo Preparations of negative electrode and carbon materials for secondary batteries
US6887462B2 (en) * 2001-04-09 2005-05-03 Chiron Corporation HSA-free formulations of interferon-beta
CN1846322A (zh) * 2003-09-09 2006-10-11 日本能源株式会社 非水电解液二次电池、用于该电池的碳材及该碳材的前体
US8119288B2 (en) * 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
EP2127638A1 (en) * 2008-05-30 2009-12-02 Santen Pharmaceutical Co., Ltd Method and composition for treating ocular hypertension and glaucoma
JP5641385B2 (ja) * 2009-07-27 2014-12-17 独立行政法人物質・材料研究機構 樹枝状部分を有する金属ナノ粒子及びその製法
JP6253408B2 (ja) * 2011-06-24 2017-12-27 住友化学株式会社 リチウムイオン二次電池用正極活物質の製造方法
CN102633251A (zh) * 2012-04-13 2012-08-15 西安交通大学 一种利用兰炭固体废弃物制备的锂离子电池负极材料及其制备方法
TWI514656B (zh) * 2012-08-30 2015-12-21 Kureha Corp 非水電解質二次電池用碳質材料及其製造方法、與使用上述碳質材料之負極及非水電解質二次電池
KR101433720B1 (ko) * 2012-09-17 2014-08-27 비나텍주식회사 고밀도 바이오매스를 이용한 리튬이차전지용 하드카본 제조방법 및 이에 의하여 제조되는 리튬이차전지용 하드카본
RU143066U1 (ru) * 2014-03-13 2014-07-10 Черепанов Владимир Борисович ПРИЗМАТИЧЕСКИЙ ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР С КАТОДОМ ИЗ КОБАЛЬТАТА ЛИТИЯ LiCоО2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293305A (ja) * 1995-04-20 1996-11-05 Mitsubishi Chem Corp 非水系二次電池
CN102637920A (zh) * 2012-04-09 2012-08-15 中国科学院过程工程研究所 废触体作为锂离子电池负极材料的应用
CN102709621A (zh) * 2012-05-24 2012-10-03 上海应用技术学院 一种从废旧锂离子电池中回收高纯碳材料的方法
CN104766952A (zh) * 2015-04-21 2015-07-08 武汉凯迪工程技术研究总院有限公司 利用生物质气化炉滤渣制备锂离子电池负极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3288103A4 *

Also Published As

Publication number Publication date
EP3288103A4 (en) 2018-11-14
CA2983604A1 (en) 2016-10-27
JP6730312B2 (ja) 2020-07-29
RU2661911C1 (ru) 2018-07-23
CN104766952B (zh) 2017-01-25
US20180040878A1 (en) 2018-02-08
CN104766952A (zh) 2015-07-08
AU2016250999A1 (en) 2017-11-16
JP2018516433A (ja) 2018-06-21
EP3288103A1 (en) 2018-02-28
AU2016250999B2 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2016169436A1 (zh) 利用生物质气化炉滤渣制备锂离子电池负极材料的方法
CN108054366B (zh) 一种锂离子电池负极材料及其制备方法
CN104124431B (zh) 一种锂离子电池用石墨负极材料及其制备方法
CN104393294A (zh) 一种花状二硫化钼微球的制备方法
CN101609884B (zh) 一种锂离子电池负极材料SnS2的制备方法
CN106025279B (zh) 一种高容量多孔球型石墨化碳负极材料及其制备方法
CN103896260A (zh) 一种基于石墨烯的锂离子电池复合负极材料的制备方法
CN102351163B (zh) 一种锂离子电池纳米炭微球负极材料及其制备方法
CN103008653B (zh) 一种炭包覆铅复合材料及其制备方法
CN106450305A (zh) 一种锂离子电池负极材料CoP/C的制备方法
CN105244561A (zh) 以废旧多元动力锂电池为原料制备高电压多元材料的方法
CN107317027B (zh) 一种添加有4bs晶种的铅酸蓄电池正极铅膏
CN104953113B (zh) 一种电池用碳包覆纳米四氧化三铁的制造方法
CN107644992A (zh) 一种钠掺杂的富锂锰基正极材料及其制备方法和用途
CN105280901B (zh) 球形多孔硅碳复合颗粒的制备方法
CN108134068B (zh) 二氧化钛-氧化石墨烯复合材料、其制备方法及应用
CN111533186B (zh) 一种球形扩层二硫化钼的制备方法及其应用
CN103531809A (zh) 一种核壳结构颗粒与石墨烯复合材料的制备方法和应用
CN105047860B (zh) 电池负极二氧化钛中间相碳微球复合材料及其制备方法
WO2023184995A1 (zh) 核壳结构的三元正极材料及其制备方法和应用
CN106684334B (zh) 一种三维网状二氧化钛/硅复合材料的制备方法
CN106058194B (zh) 镶嵌状聚苯胺/H2Ti12O25纳米片复合材料及其制备方法
CN109285999A (zh) 一种cnt改性杂化磷酸盐正极材料及其制备方法
CN104600269A (zh) 一种石墨烯/氧缺位钛酸锂复合材料的制备方法
TWI621298B (zh) 高功率鋰電池正極材料之製備方法及鋰電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2983604

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016250999

Country of ref document: AU

Date of ref document: 20160415

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017140186

Country of ref document: RU