WO2016159304A1 - ペルフルオロポリエーテルの還元方法 - Google Patents

ペルフルオロポリエーテルの還元方法 Download PDF

Info

Publication number
WO2016159304A1
WO2016159304A1 PCT/JP2016/060811 JP2016060811W WO2016159304A1 WO 2016159304 A1 WO2016159304 A1 WO 2016159304A1 JP 2016060811 W JP2016060811 W JP 2016060811W WO 2016159304 A1 WO2016159304 A1 WO 2016159304A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
peroxyperfluoropolyether
fluoride
independently
perfluoropolyether
Prior art date
Application number
PCT/JP2016/060811
Other languages
English (en)
French (fr)
Inventor
真也 高野
孝史 野村
健一 勝川
内藤 真人
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201680012727.9A priority Critical patent/CN107406587B/zh
Publication of WO2016159304A1 publication Critical patent/WO2016159304A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/32Compounds having groups or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/322Polymers modified by chemical after-treatment with inorganic compounds containing hydrogen

Definitions

  • the present invention relates to a method for reducing perfluoropolyether and a method for producing a perfluoropolyether alkyl ester including the reduction method of the present invention.
  • Perfluoropolyether compounds have excellent physical properties and are used in a wide range of applications, for example, as lubricants, water / oil repellents, antifouling agents, release agents and the like.
  • perfluoropolyether alkyl esters are useful per se, but are also useful as intermediates for the synthesis of various perfluoropolyether compounds. It is known that this perfluoropolyether alkyl ester can be produced, for example, through a step of reducing a peroxyperfluoropolyether (that is, a perfluoropolyether compound containing an —O—O— bond).
  • Patent Document 1 discloses a catalyst supported on a metal fluoride. Transition metals (Pd, Pt, Rh, etc.) are disclosed, and Patent Document 2 discloses a Group 8 metal supported on a graphite-like material.
  • the transition metal catalyst supported on the metal fluoride described in Patent Document 1 and the Group 8 metal catalyst supported on the graphite-like material described in Patent Document 2 may maintain the catalytic activity for a certain period of time.
  • the present invention provides a method capable of reducing peroxyperfluoropolyether efficiently by reducing catalyst poisoning by hydrogen fluoride even when a conventional catalyst that is inexpensive and easy to recycle is used.
  • the purpose is to do.
  • a method for reducing peroxyperfluoropolyether using hydrogen in the presence of a transition metal catalyst wherein the method is carried out in the presence of a catalyst activity lowering inhibitor.
  • a method for producing a perfluoropolyether alkyl ester comprising reducing peroxyperfluoropolyether by the method of the present invention.
  • a fluoropolyether acyl fluoride having an HCF 2 -group at its end comprising reducing peroxyperfluoropolyether by the above-described reduction method of the present invention,
  • a method for producing a fluoropolyetheracyl fluoride-containing composition containing 5.00 to 30.00 mol% of the entire fluoride is provided.
  • a fluoropolyether containing 5.00 to 30.00 mol% of a fluoropolyether acyl fluoride having an HCF 2 — group at its terminal with respect to the whole fluoropolyether acyl fluoride.
  • Ether acyl fluoride-containing compositions are provided.
  • the catalyst activity lowering preventive agent even when a conventional catalyst such as Pd / C is used in the reduction reaction of peroxyperfluoropolyether, the catalyst coverage by hydrogen fluoride is reduced. It is possible to suppress the poison and reduce the peroxyperfluoropolyether satisfactorily.
  • the method of the present invention is a method of reducing peroxyperfluoropolyether using hydrogen in the presence of a transition metal catalyst, and is characterized in that it is carried out in the presence of a catalyst activity lowering inhibitor.
  • the “catalyst activity lowering preventive agent” means a compound that can prevent the catalyst activity from being lowered, for example, a compound that supplements hydrogen fluoride that poisons the catalyst, or that inhibits contact between the catalyst and hydrogen fluoride. Including compounds.
  • the amount of the catalyst activity lowering inhibitor used in the method of the present invention is not particularly limited, but may be preferably 1 to 50% by mass, more preferably 5 to 20% by mass, based on peroxyperfluoropolyether.
  • the catalyst activity lowering inhibitor is an ortho ester, sodium fluoride or potassium fluoride, preferably an ortho ester.
  • orthoesters examples include the following formula: The compound represented by these is mentioned.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • Each R 2 is independently an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • R 1 is a hydrogen atom, that is, the orthoester is a trialkyl formate.
  • R 1 is a hydrogen atom and R 2 is a methyl group, that is, the orthoester is trimethyl orthoformate.
  • the mechanism by which the orthoester suppresses poisoning by hydrogen fluoride is considered as follows. It is considered that the orthoester reacts with hydrogen fluoride generated by the reduction reaction of peroxyperfluoropolyether and consumes hydrogen fluoride, thereby suppressing catalyst poisoning by hydrogen fluoride.
  • the reaction between the ortho ester and hydrogen fluoride is considered to occur as shown in Scheme 2 below.
  • the reduction reaction takes place in the fluorous layer, and the catalyst exists in the fluorous layer, but hydrogen fluoride is highly soluble in the orthoester layer and excluded from the fluorous layer, thus hindering the contact between hydrogen fluoride and the catalyst. It is also considered that non-poisoning of the catalyst is suppressed.
  • Both sodium fluoride and potassium fluoride are considered to suppress poisoning of the catalyst by adsorbing hydrogen fluoride.
  • Sodium fluoride is more preferable from the viewpoint of deliquescence.
  • the transition metal catalyst used in the present invention is not particularly limited. As described above, in the method of the present invention, the catalyst activity lowering inhibitor is used, and the poisoning of the catalyst is suppressed by its effect. Therefore, even with conventional transition metal catalysts such as Pd supported on carbon, It can be used satisfactorily.
  • the transition metal used for the transition metal catalyst is not particularly limited, but examples include Group 8 metals such as Pd, Pt, Rh, Ru, and preferably Pd, Rh, Ru.
  • the transition metal catalyst may be only one kind or a mixture of two or more kinds.
  • the amount of the transition metal catalyst used in the method of the present invention is not particularly limited, but is, for example, 0.01 to 15% by mass, preferably 0.1 to 10.0% by mass, based on the peroxyperfluoropolyether. More preferably, it is 1.0 to 10.0% by mass, for example 1.0 to 5.0% by mass.
  • the above transition metal catalyst is preferably supported on a support.
  • the carrier include carbon, alumina (Al 2 O 3 ), metal fluoride, alkaline earth metal sulfate or nitrate, fibril, ethylenediamine complex, polyethyleneimine, and the like.
  • the carrier various carbon carriers can be used, and activated carbon, amorphous carbon, graphite, diamond, and the like can be used.
  • the metal fluorides for example, CaF 2, SrF 2, BaF 2, MgF 2, AlF 3 and the like.
  • alkaline earth metal sulfate or nitrate examples include CaSO 4 , Ca (NO 2 ) 2 , SrSO 4 , Sr (NO 2 ) 2 , BaSO 4 , Ba (NO 2 ) 2 and the like.
  • a general carbon support such as activated carbon, an alkaline earth metal sulfate or carbonate is preferred.
  • graphite or metal fluoride is preferred from the viewpoint of the catalytic activity and hydrogen fluoride resistance.
  • the amount of the transition metal in the transition metal supported catalyst used in the present invention is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass with respect to the transition metal supported catalyst. %.
  • the hydrogen used in the method of the present invention is preferably a gas.
  • the peroxyperfluoropolyether that can be used in the method of the present invention is not particularly limited as long as it is a perfluoropolyether compound having at least one —O—O— bond in the molecule.
  • the peroxyperfluoropolyether compound used in the present invention comprises the following structure (IV): - (C 4 F 8 O) a - (C 3 F 6 O) b - (C 2 F 4 O) c - (CF 2 O) d - (C 4 F 8 -O-O) p - (C 3 F 6 —O—O) q — (C 2 F 4 —O—O) r — (CF 2 —O—O) s ⁇
  • a, b, c, d, p, q, r and s are each independently an integer of 0 or 1 and the sum of a, b, c and d is at least 1. There is no particular limitation as long as the sum of p, q, r, and s is at least 1.
  • a, b, c, d, p, q, r and s are each independently an integer of 0 to 200, for example, an integer of 1 to 200, more preferably 0 independently.
  • the order of presence of each repeating unit in parentheses with subscripts a, b, c, d, p, q, r or s is arbitrary in the formula.
  • a and b are each independently an integer of 0 to 30, for example 1 to 20, and c and d are each independently 1 to 200, preferably 5 to 200, More preferably, it is an integer of 10 or more and 200 or less, p and q are each independently an integer of 0 or more and 30 or less, for example 1 or more and 20 or less, and r and s are each independently 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more. It is an integer of 200 or less.
  • — (C 4 F 8 O) — represents — (CF 2 CF 2 CF 2 O) —, — (CF (CF 3 ) CF 2 CF 2 O) —, — (CF 2 CF (CF 3 ) CF 2 O) —, — (CF 2 CF 2 CF (CF 3 ) O) —, — (C (CF 3 ) 2 CF 2 O) —, — (CF 2 C (CF 3 )) 2 O)-,-(CF (CF 3 ) CF (CF 3 ) O)-,-(CF (C 2 F 5 ) CF 2 O)-and-(CF 2 CF (C 2 F 5 ) O)-
  • — (CF 2 CF 2 CF 2 O) — is preferable.
  • — (C 3 F 6 O) — is any one of — (CF 2 CF 2 CF 2 O) —, — (CF (CF 3 ) CF 2 O) — and — (CF 2 CF (CF 3 ) O) —.
  • — (C 2 F 4 O) — may be either — (CF 2 CF 2 O) — or — (CF (CF 3 ) O) —, preferably — (CF 2 CF 2 O)-.
  • the peroxyperfluoropolyether compound is — (CF 2 CF 2 O) c — (CF 2 O) d — (CF 2 CF 2 —O—O) r — (CF 2 —O—O) s ⁇
  • the structure represented by is included.
  • the peroxyperfluoropolyether compound is — (OC 2 F 4 —R 11 ) n ′ — (O) n ′′ —
  • R 11 is a group selected from OC 2 F 4 , OC 3 F 6 and OC 4 F 8 , or a combination of 2 or 3 groups independently selected from these groups
  • n ′ is an integer of 2 to 100, preferably an integer of 2 to 50
  • n ′′ is an integer of 1 to 50, preferably an integer of 2 to 30, more preferably an integer of 2 to 10,
  • the order of presence of each repeating unit with n ′ or n ′ and parenthesized is arbitrary in the formula. )
  • the structure represented by is included.
  • the combination of 2 or 3 groups independently selected from the above OC 2 F 4 , OC 3 F 6 and OC 4 F 8 is not particularly limited.
  • the end group of the peroxyperfluoropolyether compound can be — (CF 2 ) 1 —R 5 .
  • R 5 is —F, —COF, —CF 3-m Cl m
  • m is an integer of 1 to 3
  • l is an integer of 0 to 4, for example, an integer of 1 to 4. .
  • R 5 is directly bonded to the perfluoropolyether structure.
  • the peroxyperfluoropolyether compound is not particularly limited, and can be produced, for example, by polymerizing tetrafluoroethylene or hexafluoropropene in the presence of oxygen. Such reactions are described, for example, in US Pat. No. 3,442,942, US Pat. No. 3,650,928, or US Pat. No. 3,665,041.
  • the amount of —O—O— bond in peroxyperfluoropolyether can be expressed by oxidizing power (PO).
  • PO means grams of active oxygen per 100 g of peroxyperfluoropolyether.
  • the active oxygen gram can be measured by methods well known to those skilled in the art, specifically by redox titration (eg, redox titration with thiosulfate) or 19 F-NMR.
  • the PO value may be preferably 0.1 to 5.0, 0.3 to 2.0, more preferably 0.5 to 1.0.
  • the number average molecular weight of the peroxyperfluoropolyether used in the present invention is not particularly limited, but is, for example, 200 to 100,000, preferably 1,000 to 50,000, more preferably 2,000 to 30,000, still more preferably. Can be between 3,000 and 20,000.
  • the reaction temperature in the present invention is not particularly limited, but is, for example, in the range of 15 ° C to 200 ° C, preferably 50 ° C to 150 ° C, more preferably 80 ° C to 150 ° C.
  • the reaction pressure in the present invention is not particularly limited, but is, for example, between 1 and 50 atmospheres, preferably between 1 and 10 atmospheres.
  • Reduction of the peroxyperfluoropolyether of the present invention provides a perfluoropolyether acyl fluoride (see, for example, Scheme 1 above).
  • the perfluoropolyether acyl fluoride obtained by the reduction reaction of the present invention has the following formula (II): X- (C 4 F 8 O) a - (C 3 F 6 O) b - (C 2 F 4 O) c - (CF 2 O) d -Y [Where: a, b, c and d are each independently an integer of 0 or 1 or more, preferably an integer of 0 or more and 200 or less, for example, an integer of 1 or more and 200 or less, more preferably 0 or more and 100 or less.
  • An integer for example an integer from 1 to 100, the sum of a, b, c and d is at least 1 and the order of presence of each repeating unit in parentheses with the suffix a, b, c or d Is optional in the formula, X is A -R 5, R 5 is -F, -COF, -CF 3-m Cl m , m is an integer of 1 to 3, Y is — (CF 2 ) n —COF; n is an integer of 0 to 3, for example, an integer of 1 to 3. ] It is represented by
  • a and b are each independently an integer of 0 or more and 30 or less, for example 1 or more and 20 or less, and c and d are each independently 1 or more and 200 or less, preferably 5 or more and 200 or less. Preferably, it is an integer of 10 or more and 200 or less, and the order of presence of each repeating unit in parentheses with the suffix a, b, c or d is arbitrary in the formula.
  • the molecular weight of the perfluoropolyether acyl fluoride can be, for example, 100 to 100,000, preferably 500 to 30,000, more preferably 2,000 to 20,000, and still more preferably 3,000 to 20,000.
  • a composition containing the perfluoropolyether acyl fluoride is obtained.
  • the composition may contain a fluoropolyether acyl fluoride having an HCF 2 -group. That is, when the peroxyperfluoropolyether is reduced using the method of the present invention, a composition containing a fluoropolyether acyl fluoride having an HCF 2 -group at its end can be obtained.
  • the present invention provides a fluoropolyether acyl fluoride terminated with an HCF 2 -group, comprising reducing peroxyperfluoropolyether by the above-described reduction method, with respect to the entire fluoropolyether acyl fluoride.
  • a method for producing a fluoropolyetheracyl fluoride-containing composition containing 5.00 to 30.00 mol% is provided.
  • the fluoropolyether acyl fluoride having an HCF 2 — group at the end is preferably represented by the following formula (III): X ′′ — (C 4 F 8 O) a — (C 3 F 6 O) b — (C 2 F 4 O) c — (CF 2 O) d —Y [Where: a and b are each independently 0 or more and 30 or less, c and d are each independently 1 or more and 200 or less, The order of presence of each repeating unit in parentheses with subscripts a, b, c or d is arbitrary in the formula, X ′′ is —R 6 ; R 6 is —CHF 2 ; m is an integer of 1 to 3, Y is — (CF 2 ) n —COF; n is an integer of 0 to 3. ] It may be a fluoropolyether acyl fluoride represented by:
  • the content of the fluoropolyether acyl fluoride having an HCF 2 -group is preferably 5.00 to 30.00 mol%, more preferably more than 5.00 mol%, based on the entire fluoropolyether acyl fluoride. It may be 00 mol% or less, for example 8.00 to 25.00 mol%.
  • the content of the fluoropolyether acyl fluoride having an HCF 2 -group in the composition can be adjusted by changing the concentration of the catalyst activity reducing agent used.
  • the fluoropolyether acyl fluoride having an HCF 2 -group can be introduced with any functional group by reacting with a base. Therefore, the end of the fluoropolyether acyl fluoride can be modified on the order of several percent.
  • the present invention also provides a fluoropolyether acyl fluoride-containing composition, wherein the fluoropolyether acyl fluoride having an HCF 2 -group is 5% relative to the total fluoropolyether acyl fluoride in the composition.
  • a fluoropolyetheracyl fluoride-containing composition containing 0.000 to 30.00 mol%.
  • the fluoropolyetheracyl fluoride-containing composition can be obtained by the production method of the present invention described above.
  • Fluoropolyether acyl fluorides other than fluoropolyether acyl fluoride having an HCF 2 -group included in the composition are mainly the above-described X- (C 4 F 8 O) a- (C 3 F 6 O).
  • b - (C 2 F 4 O ) c - (CF 2 O) may be a perfluoropolyether acyl fluoride represented by d -Y.
  • the content of the perfluoropolyether acyl fluoride can be preferably 70 to 90.0 mol%.
  • Another fluoropolyether acyl fluoride includes perfluoropolyether acyl fluoride having a carboxy group (—COOH) at the terminal.
  • the content of the perfluoropolyether acyl fluoride is preferably 0 to 10.0 mol%, more preferably 1.0 to 7.0 mol%.
  • the present invention provides a method for producing a perfluoropolyether alkyl ester, which comprises reducing peroxyperfluoropolyether by the above method.
  • the perfluoropolyether alkyl ester can be obtained by reacting the perfluoropolyether acyl fluoride obtained above with an alcohol or an orthoester and esterifying it.
  • the above reduction reaction and esterification can be carried out simultaneously by using orthoester as the catalyst activity lowering inhibitor.
  • the perfluoropolyether acyl fluoride obtained by the reduction reaction reacts with the orthoester present in the system and / or the alcohol produced by supplementing the hydrogen fluoride with the perfluoropolyether alkyl. Esters are obtained.
  • the perfluoropolyether alkyl ester obtained by the method of the present invention has the following formula (I): X ′ — (C 4 F 8 O) a — (C 3 F 6 O) b — (C 2 F 4 O) c — (CF 2 O) d —Y ′ [Where: a, b, c and d are each independently an integer of 0 or 1 or more, preferably an integer of 0 or more and 200 or less, for example, an integer of 1 or more and 200 or less, more preferably 0 or more and 100 or less.
  • X ′ is —R 5 ;
  • R 5 is -F, -COOR 2 , -CF 3-m Cl m ,
  • m is an integer of 1 to 3
  • Y ′ is — (CF 2 ) n —COOR 2 ;
  • n is an integer of 0 to 3, for example, an integer of 1 to 3
  • Each R 2 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. ] It is represented by
  • a and b are each independently an integer of 0 or more and 30 or less, for example 1 or more and 20 or less, and c and d are each independently 1 or more and 200 or less, preferably 5 or more and 200 or less. Preferably, it is an integer of 10 or more and 200 or less, and the order of presence of each repeating unit in parentheses with the suffix a, b, c or d is arbitrary in the formula.
  • the obtained perfluoropolyether methyl ester-containing material was analyzed by 19 F-NMR. As a result, no signal of the fluorine substituent adjacent to the peroxy bond was observed, and the methyl ester terminal was 70.8%, the carboxylic acid terminal was 7.2%, and the —CHF 2 terminal was 22.0%.
  • the obtained perfluoropolyether methyl ester-containing material was analyzed by 19 F-NMR. As a result, a signal of the fluorine substituent adjacent to the peroxy bond was observed, and the conversion of the reaction was 28.9%.
  • the present invention can be suitably used in the production of a perfluoropolyether compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

 本発明は、遷移金属触媒存在下、水素を用いてペルオキシペルフルオロポリエーテルを還元する方法であって、触媒活性低下防止剤の存在下で行われることを特徴とする方法提供する。

Description

ペルフルオロポリエーテルの還元方法
 本発明は、ペルフルオロポリエーテルの還元方法および本発明の還元方法を含むペルフルオロポリエーテルアルキルエステルの製造方法に関する。
 ペルフルオロポリエーテル化合物は、優れた物性を有し、例えば潤滑剤、撥水撥油剤、防汚剤、離型剤等として幅広い用途に用いられている。特に、ペルフルオロポリエーテルアルキルエステルは、それ自体も有用であるが、様々なペルフルオロポリエーテル化合物を合成するための中間体としても有用である。このペルフルオロポリエーテルアルキルエステルは、例えばペルオキシペルフルオロポリエーテル(即ち、-O-O-結合を含むペルフルオロポリエーテル化合物)を還元する工程を経て製造できることが知られている。
 従来、上記のペルオキシペルフルオロポリエーテルの還元は、遷移金属触媒、例えば炭素に担持された遷移金属触媒(例えば、Pd/C等)の存在下、水素原子と接触させることにより行われてきた。この還元反応は下記スキーム1で表される。
 スキーム1
Figure JPOXMLDOC01-appb-C000001
[式中、Rfは、任意のペルフルオロ基である。]
 上記スキームに示されるように、この還元反応においては、副生成物としてフッ化水素が生成する。このフッ化水素により触媒が被毒し、触媒活性が低下するという問題がある。
 上記の問題に対して、フッ化水素の存在下であっても長時間触媒活性を維持する触媒の研究がなされており、このような触媒として、例えば特許文献1には、金属フッ化物に担持された遷移金属(Pd、Pt、Rh等)が開示されており、また、特許文献2は、黒鉛状材料上に担持された第8族金属が開示されている。
特開2004-67683号公報 特表2010-523617号公報
 特許文献1に記載の金属フッ化物に担持された遷移金属触媒、および特許文献2に記載の黒鉛状材料上に担持された第8族金属触媒等は、ある程度の期間触媒活性を持続することができるが、従来のPd/Cのような炭素担持触媒と比較して、高価であり、リサイクルが困難であるという問題がある。従って、より安価で効率的なペルオキシペルフルオロポリエーテルの還元方法が求められている。
 そこで、本発明は、安価でリサクルが容易な従来の触媒を用いた場合であっても、フッ化水素による触媒被毒を低減し、効率良くペルオキシペルフルオロポリエーテルを還元することができる方法を提供することを目的とする。
 本発明者らは、上記の問題について鋭意検討した結果、触媒を改良するのではなく、反応系の設計に着目し、ペルオキシペルフルオロポリエーテルの還元反応を、触媒活性低下防止剤の存在下で行うことにより、フッ化水素による触媒被毒を抑制することができることを見出し、本発明に至った。
 本発明の第1の要旨によれば、遷移金属触媒存在下、水素を用いてペルオキシペルフルオロポリエーテルを還元する方法であって、触媒活性低下防止剤の存在下で行われることを特徴とする方法が提供される。
 本発明の第2の要旨によれば、上記本発明の方法によりペルオキシペルフルオロポリエーテルを還元することを含む、ペルフルオロポリエーテルアルキルエステルの製造方法が提供される。
 本発明の第3の要旨によれば、本発明の上記還元方法により、ペルオキシペルフルオロポリエーテルを還元することを含む、HCF-基を末端に有するフルオロポリエーテルアシルフロライドを、フルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含む、フルオロポリエーテルアシルフロライド含有組成物の製造方法が提供される。
 本発明の第4の要旨によれば、HCF-基を末端に有するフルオロポリエーテルアシルフロライドを、フルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含む、フルオロポリエーテルアシルフロライド含有組成物が提供される。
 本発明によれば、触媒活性低下防止剤を用いることにより、ペルオキシペルフルオロポリエーテルの還元反応において、従来のPd/Cのような触媒を用いた場合であっても、フッ化水素による触媒の被毒を抑制し、良好にペルオキシペルフルオロポリエーテルを還元することが可能になる。
 以下、本発明の方法を説明する。
 本発明の方法は、遷移金属触媒存在下、水素を用いてペルオキシペルフルオロポリエーテルを還元する方法であって、触媒活性低下防止剤の存在下で行われることを特徴とする。
 本発明において、「触媒活性低下防止剤」とは、触媒活性の低下を防止できる化合物を意味し、例えば触媒を被毒するフッ化水素を補足する化合物、触媒とフッ化水素の接触を阻害する化合物等を含む。
 本発明の方法において用いられる触媒活性低下防止剤の量は、特に限定されないが、ペルオキシペルフルオロポリエーテルに対して、好ましくは1~50質量%、より好ましくは5~20質量%であり得る。
 好ましい態様において、触媒活性低下防止剤は、オルトエステル、フッ化ナトリウムまたはフッ化カリウムであり、好ましくはオルトエステルである。
 オルトエステルの例としては、下記式:
Figure JPOXMLDOC01-appb-C000002
で表される化合物が挙げられる。
 上記式中、Rは、水素原子または炭素数1~6のアルキル基である。炭素数1~6のアルキル基は、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基である。
 Rは、それぞれ独立して、炭素数1~6のアルキル基であり、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基である。
 好ましい態様において、Rは水素原子であり、即ち、上記オルトエステルはギ酸トリアルキルである。
 さらに好ましい態様において、Rは水素原子であり、Rはメチル基であり、即ち、上記オルトエステルは、オルトギ酸トリメチルである。
 本発明はいかなる理論にも拘束されないが、上記オルトエステルがフッ化水素による被毒を抑制するメカニズムは以下のように考えられる。上記オルトエステルは、ペルオキシペルフルオロポリエーテルの還元反応で生じたフッ化水素と反応し、フッ化水素を消費することにより、フッ化水素による触媒被毒を抑制することができると考えられる。オルトエステルとフッ化水素の反応は、下記スキーム2に示されるように生じると考えられる。
 スキーム2
Figure JPOXMLDOC01-appb-C000003
 また、還元反応はフルオラス層で起こり、触媒はフルオラス層に存在するが、フッ化水素はオルトエステル層への溶解性が高く、フルオラス層から除外されるため、フッ化水素と触媒の接触が阻害され、触媒の非毒が抑制されるとも考えられる。
 フッ化ナトリウムおよびフッ化カリウムは、共にフッ化水素を吸着することにより触媒の被毒を抑制すると考えられる。潮解性の観点からフッ化ナトリウムがより好ましい。
 本発明で用いられる遷移金属触媒は、特に限定されない。上記したように本発明の方法では、触媒活性低下防止剤を用いており、その効果により触媒の被毒が抑制されるので、炭素に担持したPd等の従来の遷移金属触媒であっても、良好に用いることができる。
 遷移金属触媒に用いられる遷移金属としては、特に限定されないが、第8族の金属、例えばPd、Pt、Rh、Ru等が挙げられ、好ましくはPd、Rh、Ruである。遷移金属触媒は、1種のみであっても、2種以上の混合物であってもよい。
 本発明の方法において用いられる遷移金属触媒の使用量は、特に限定されないが、ペルオキシペルフルオロポリエーテルに対して、例えば、0.01~15質量%、好ましくは0.1~10.0質量%、より好ましくは1.0~10.0質量%、例えば1.0~5.0質量%である。
 上記の遷移金属触媒は、好ましくは担体に担持されている。担体としては、例えば炭素、アルミナ(Al)、金属フッ化物、アルカリ土類金属の硫酸塩または硝酸塩、フィブリル、エチレンジアミン複合体、ポリエチレンイミン等が挙げられる。
 上記担体としての炭素は、種々の炭素担体を用いることができ、活性炭、不定形炭素、グラファイトおよびダイヤモンド等を用いることができる。
 上記金属フッ化物としては、例えば、CaF、SrF、BaF、MgF、AlF等が挙げられる。
 上記アルカリ土類金属の硫酸塩または硝酸塩としては、例えばCaSO、Ca(NO、SrSO、Sr(NO、BaSO、Ba(NO等が挙げられる。
 再利用の容易さの観点からは、活性炭などの一般的な炭素担体、アルカリ土類金属の硫酸塩または炭酸塩が好ましい。また、触媒活性の大きさ、フッ化水素耐性の観点からは、グラファイトまたは金属フッ化物が好ましい。
 本発明で用いられる遷移金属担持触媒における遷移金属の量は、特に限定されないが、遷移金属担持触媒に対して、好ましくは0.1~10質量%であり、より好ましくは0.5~5質量%である。
 本発明の方法に用いられる水素は、好ましくは気体である。
 本発明の方法に用いることができるペルオキシペルフルオロポリエーテルは、分子内に少なくとも1つの-O-O-結合を有するペルフルオロポリエーテル化合物であれば特に限定されない。
 一の態様において、本発明で用いられるペルオキシペルフルオロポリエーテル化合物は、下記の構造(IV)を含む。
 -(CO)-(CO)-(CO)-(CFO)-(C-O-O)-(C-O-O)-(C-O-O)-(CF-O-O)
 上記式中、a、b、c、d、p、q、rおよびsは、それぞれ独立して0または1以上の整数であって、a、b、cおよびdの和が少なくとも1であり、p、q、rおよびsの和が少なくとも1であれば特に限定されるものではない。好ましくは、a、b、c、d、p、q、rおよびsは、それぞれ独立して0以上200以下の整数、例えば1以上200以下の整数であり、より好ましくは、それぞれ独立して0以上100以下の整数、例えば1以上100以下の整数である。添字a、b、c、d、p、q、rまたはsを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意である。
 一の態様において、aおよびbは、それぞれ独立して0以上30以下、例えば1以上20以下の整数であり、cおよびdは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数であり、
 pおよびqは、それぞれ独立して0以上30以下、例えば1以上20以下の整数であり、rおよびsは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数である。
 上記の繰り返し単位のうち、-(CO)-は、-(CFCFCFCFO)-、-(CF(CF)CFCFO)-、-(CFCF(CF)CFO)-、-(CFCFCF(CF)O)-、-(C(CFCFO)-、-(CFC(CFO)-、-(CF(CF)CF(CF)O)-、-(CF(C)CFO)-および-(CFCF(C)O)-のいずれであってもよいが、好ましくは-(CFCFCFCFO)-である。-(CO)-は、-(CFCFCFO)-、-(CF(CF)CFO)-および-(CFCF(CF)O)-のいずれであってもよいが、好ましくは-(CFCFCFO)-である。また、-(CO)-は、-(CFCFO)-および-(CF(CF)O)-のいずれであってもよいが、好ましくは-(CFCFO)-である。
 一の態様において、上記ペルオキシペルフルオロポリエーテル化合物は、
-(CFCFO)-(CFO)-(CFCF-O-O)-(CF-O-O)
で表される構造を含む。
 別の態様において、上記ペルオキシペルフルオロポリエーテル化合物は、
-(OC-R11n’-(O)n”
(式中、R11は、OC、OCおよびOCから選択される基であるか、あるいは、これらの基から独立して選択される2または3つの基の組み合わせであり、
 n’は、2~100の整数、好ましくは2~50の整数であり、
 n”は、1~50の整数、好ましくは2~30の整数であり、より好ましくは2~10の整数であり、
 n’またはn’を付して括弧でくくられた各繰り返し単位の存在順序は式中において任意である。)
で表される構造を含む。上記OC、OCおよびOCから独立して選択される2または3つの基の組み合わせとしては、特に限定されないが、例えば-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、および-OCOCOC-等が挙げられる。上記式中、OC、OCおよびOCは、直鎖または分枝鎖のいずれであってもよく、好ましくは直鎖である。
 一の態様において、上記ペルオキシペルフルオロポリエーテル化合物の末端基は、-(CF-Rであり得る。式中、Rは、-F、-COF、-CF3-mClであり、mは1~3の整数であり、lは、0~4の整数、例えば1~4の整数である。尚、lが0の場合、Rは、直接上記ペルフルオロポリエーテル構造に結合する。
 上記ペルオキシペルフルオロポリエーテル化合物は、特に限定されないが、例えば、テトラフルオロエチレンまたはヘキサフルオロプロペンを酸素の存在下で重合させることにより製造することができる。かかる反応は、例えば米国特許第3,442,942号明細書、米国特許第3,650,928号明細書、または米国特許第3,665,041号明細書に記載されている。
 ペルオキシペルフルオロポリエーテル中の-O-O-結合の量は、酸化力(PO)により表すことができる。
 POとは、ペルオキシペルフルオロポリエーテル100gあたりの活性酸素グラムを意味する。活性酸素グラムは、当業者によく知られた方法、具体的には酸化還元滴定(例えば、チオ硫酸塩による酸化還元滴定)または19F-NMRにより測定することができる。
 本発明において、PO値は、好ましくは0.1~5.0、0.3~2.0、より好ましくは0.5~1.0であり得る。
 本発明に用いられるペルオキシペルフルオロポリエーテルの数平均分子量は、特に限定されないが、例えば200~100,000、好ましくは1,000~50,000、より好ましくは2,000~30,000、さらに好ましくは3,000~20,000であり得る。
 本発明における反応温度は、特に限定されないが、例えば15℃~200℃、好ましくは50℃~150℃、より好ましくは80℃~150℃の範囲内である。
 本発明における反応圧力は、特に限定されないが、例えば1~50気圧の間、好ましくは1~10気圧の間である。
 本発明のペルオキシペルフルオロポリエーテルの還元により、ペルフルオロポリエーテルアシルフロライドが得られる(例えば、上記スキーム1を参照)。
 一の態様において、本発明の還元反応により得られるペルフルオロポリエーテルアシルフロライドは、下記式(II):
 X-(CO)-(CO)-(CO)-(CFO)-Y
[式中:
 a、b、cおよびdは、それぞれ独立して0または1以上の整数であり、好ましくは0以上200以下の整数、例えば1以上200以下の整数であり、より好ましくは、0以上100以下の整数、例えば1以上100以下の整数であり、a、b、cおよびdの和が少なくとも1であり、添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、
 Xは、
-Rであり、
 Rは、-F、-COF、-CF3-mClであり、
 mは1~3の整数であり、
 Yは、-(CF-COFであり、
 nは、0~3の整数、例えば1~3の整数である。]
で表される。
 好ましい態様において、aおよびbは、それぞれ独立して0以上30以下、例えば1以上20以下の整数であり、cおよびdは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数であり、添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意である。
 ペルフルオロポリエーテルアシルフロライドの分子量は、例えば100~100,000、好ましくは500~30,000、より好ましくは2,000~20,000、さらに好ましくは3,000~20,000であり得る。
 また、本発明の方法においては、上記のペルフルオロポリエーテルアシルフロライドを含む組成物が得られるが、この組成物は、HCF-基を有するフルオロポリエーテルアシルフロライドを含み得る。即ち、本発明の方法を用いてペルオキシペルフルオロポリエーテルを還元する場合、HCF-基を末端に有するフルオロポリエーテルアシルフロライドを含む組成物を得ることができる。
 従って、本発明は、上記の還元方法により、ペルオキシペルフルオロポリエーテルを還元することを含む、HCF-基を末端に有するフルオロポリエーテルアシルフロライドを、フルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含む、フルオロポリエーテルアシルフロライド含有組成物の製造方法を提供する。
 上記のHCF-基を末端に有するフルオロポリエーテルアシルフロライドは、好ましくは、下記式(III):
 X”-(CO)-(CO)-(CO)-(CFO)-Y
[式中:
 aおよびbは、それぞれ独立して0以上30以下であり、
 cおよびdは、それぞれ独立して1以上200以下であり、
 添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、
 X”は、-Rであり、
 Rは、-CHFであり、
 mは1~3の整数であり、
 Yは、-(CF-COFであり、
 nは、0~3の整数である。]
で表されるフルオロポリエーテルアシルフロライドであり得る。
 HCF-基を有するフルオロポリエーテルアシルフロライドの含有量は、フルオロポリエーテルアシルフロライド全体に対して、好ましくは5.00~30.00mol%、より好ましくは5.00mol%を超え30.00mol%以下、例えば8.00~25.00mol%であり得る。
 組成物中のHCF-基を有するフルオロポリエーテルアシルフロライドの含有量は、用いる触媒活性低下剤の濃度を変更することにより調整することができる。
 HCF-基を有するフルオロポリエーテルアシルフロライドは、塩基と反応させることにより、任意の官能基を導入することが可能になる。従って、フルオロポリエーテルアシルフロライドを数%オーダーで末端変性することができる。
 従って、本発明はまた、フルオロポリエーテルアシルフロライド含有組成物であって、HCF-基を有するフルオロポリエーテルアシルフロライドが、組成物中のフルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含まれている、フルオロポリエーテルアシルフロライド含有組成物を提供する。
 一の態様において、上記のフルオロポリエーテルアシルフロライド含有組成物は、上記した本発明の製造方法により得ることができる。
 組成物に含まれる、HCF-基を有するフルオロポリエーテルアシルフロライド以外のフルオロポリエーテルアシルフロライドは、主に上記したX-(CO)-(CO)-(CO)-(CFO)-Yで表されるペルフルオロポリエーテルアシルフロライドであり得る。このペルフルオロポリエーテルアシルフロライドの含有量は、好ましくは70~90.0mol%であり得る。
 また、別のフルオロポリエーテルアシルフロライドとしては、末端にカルボキシ基(-COOH)を有するペルフルオロポリエーテルアシルフロライドが挙げられる。このペルフルオロポリエーテルアシルフロライドの含有量は、好ましくは0~10.0mol%、より好ましくは1.0~7.0mol%であり得る。
 本発明は、上記の方法によりペルオキシペルフルオロポリエーテルを還元することを含む、ペルフルオロポリエーテルアルキルエステルの製造方法を提供する。
 ペルフルオロポリエーテルアルキルエステルは、上記で得られたペルフルオロポリエーテルアシルフロライドを、アルコールまたはオルトエステルと反応させてエステル化することにより得ることができる。
 好ましい態様において、触媒活性低下防止剤としてオルトエステルを用いることにより、上記還元反応と、エステル化を同時に行うことができる。この場合、還元反応により得られたペルフルオロポリエーテルアシルフロライドと、系内に存在するオルトエステルおよび/またはオルトエステルがフッ化水素を補足することにより生じたアルコールとが反応し、ペルフルオロポリエーテルアルキルエステルが得られる。
 一の態様において、本発明の方法により得られるペルフルオロポリエーテルアルキルエステルは、下記式(I):
 X’-(CO)-(CO)-(CO)-(CFO)-Y’
[式中:
 a、b、cおよびdは、それぞれ独立して0または1以上の整数であり、好ましくは0以上200以下の整数、例えば1以上200以下の整数であり、より好ましくは、0以上100以下の整数、例えば1以上100以下の整数であり、a、b、cおよびdの和が少なくとも1であり、添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、
 X’は、-Rであり、
 Rは、-F、-COOR、-CF3-mClであり、
 mは1~3の整数であり、
 Y’は、-(CF-COORであり、
 nは、0~3の整数、例えば1~3の整数であり、
 Rは、それぞれ独立して、水素原子または炭素数1~6のアルキル基である。]
で表される。
 好ましい態様において、aおよびbは、それぞれ独立して0以上30以下、例えば1以上20以下の整数であり、cおよびdは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数であり、添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意である。
 以上、本発明の方法について説明したが、本発明は上記に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。
 実施例1
 オートクレーブに、ペルオキシペルフルオロポリエーテル(100g、数平均分子量=15600、PO=0.83)、Pd/C触媒(2.12g、エヌ・イーケムキャット(株)製、触媒重量に対して5wt%のPdを含む)、オルトギ酸トリメチル(18.86g)および水素ガス(0.36g)を導入した。
 120℃で12時間撹拌した後、オートクレーブを開放した。得られた反応液を濾過し、揮発分を留去することで目的とするペルフルオロポリエーテルメチルエステル含有物(82.35g)を得た。
 得られたペルフルオロポリエーテルメチルエステル含有物を19F-NMRで分析した。その結果、ペルオキシ結合に隣接するフッ素置換基のシグナルは観測されず、メチルエステル末端が70.8%、カルボン酸末端が7.2%、-CHF末端が22.0%であった。
 反応器内をパージした気体をGC/MSを用いて分析したところ、CHFのシグナルが確認された。
 200mLガラス製反応容器に、先程の操作で得られたペルフルオロポリエーテルメチルエステル含有物(82.35g)およびメタノール(15.84g)を導入し、メタノールの還流温度で4時間撹拌した後、揮発分を留去した。
 上の操作で得られたペルフルオロポリエーテルメチルエステル含有物を19F-NMRで分析したところ、メチルエステル末端が76.4%、カルボン酸末端が1.6%、-CHF末端が22.0%であった。これにより、ペルオキシペルフルオロポリエーテルが、高転化率で、ペルフルオロポリエーテルメチルエステルに変換されていることが確認された。
 比較例1
 オートクレーブに、ペルオキシペルフルオロポリエーテル(100g、数平均分子量=15600、PO=0.83)、Pd/C触媒(2.12g、エヌ・イーケムキャット(株)製、触媒重量に対して5wt%のPdを含む)、炭酸水素ナトリウム(17.79g)および水素ガス(0.36g)を導入した。
 120℃で12時間撹拌した後、オートクレーブを開放した。得られた反応液を濾過し、揮発分を留去することで目的とするペルフルオロポリエーテルメチルエステル含有物を得た。
 得られたペルフルオロポリエーテルメチルエステル含有物を19F-NMRで分析した。その結果、ペルオキシ結合に隣接するフッ素置換基のシグナルが観測され、反応の転化率は28.9%であった。
 本発明は、ペルフルオロポリエーテル化合物の製造において好適に用いることができる。

Claims (15)

  1.  遷移金属触媒存在下、水素を用いてペルオキシペルフルオロポリエーテルを還元する方法であって、触媒活性低下防止剤の存在下で行われることを特徴とする方法。
  2.  触媒活性低下防止剤が、オルトエステルである、請求項1に記載の方法。
  3.  オルトエステルが、オルトギ酸トリアルキルである、請求項2に記載の方法。
  4.  オルトギ酸トリアルキルが、オルトギ酸トリメチルである、請求項3に記載の方法。
  5.  ペルオキシペルフルオロポリエーテル化合物が、下記の構造(IV):
     -(CO)-(CO)-(CO)-(CFO)-(C-O-O)-(C-O-O)-(C-O-O)-(CF-O-O)
    [式中:
     a、b、c、d、p、q、rおよびsは、それぞれ独立して0または1以上の整数であって、a、b、cおよびdの和は少なくとも1であり、p、q、rおよびsの和は少なくとも1であり、
     添字a、b、c、d、p、q、rまたはsを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意である。]
    を含むことを特徴とする、請求項1~4のいずれか1項に記載の方法。
  6.  遷移金属が、Pd、Pt、Rh、Ruおよびそれらの混合物から選択される、請求項1~5のいずれか1項に記載の方法。
  7.  遷移金属触媒の使用量が、ペルオキシペルフルオロポリエーテルに対して、0.1~10.0質量%の範囲である、請求項1~6のいずれか1項に記載の方法。
  8.  遷移金属触媒の使用量が、ペルオキシペルフルオロポリエーテルに対して、1.0~10.0質量%の範囲である、請求項1~7のいずれか1項に記載の方法。
  9.  還元反応の温度が、15~200℃である、請求項1~8のいずれか1項に記載の方法。
  10.  還元反応の温度が、50~150℃である、請求項1~9のいずれか1項に記載の方法。
  11.  請求項1~10のいずれかに記載の方法によりペルオキシペルフルオロポリエーテルを還元することを含む、ペルフルオロポリエーテルアルキルエステルの製造方法。
  12.  ペルフルオロポリエーテルアルキルエステルが、下記式(I):
     X’-(CO)-(CO)-(CO)-(CFO)-Y’
    [式中:
     a、b、cおよびdは、それぞれ独立して0または1以上の整数であって、a、b、cおよびdの和は少なくとも1であり、添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、
     X’は、-Rであり、
     Rは、-F、-COOR、-CF3-mClであり、
     mは1~3の整数であり、
     Y’は、-(CF-COORであり、
     nは、0~3の整数であり、
     Rは、それぞれ独立して、水素原子または炭素数1~6のアルキル基である。]
    で表される化合物であることを特徴とする、請求項11に記載の方法。
  13.  ペルフルオロポリエーテルアルキルエステルが、下記式(I’):
     X’-(CO)-(CO)-(CO)-(CFO)-Y’
    [式中:
     aおよびbは、それぞれ独立して0以上30以下であり、
     cおよびdは、それぞれ独立して1以上200以下であり、
     添字a、b、cまたはdを付して括弧でくくられた各繰り返し単位の存在順序は式中において任意であり、
     X’は、-Rであり、
     Rは、-F、-COOR、-CF3-mClであり、
     mは1~3の整数であり、
     Y’は、-(CF-COORであり、
     nは、0~3の整数であり、
     Rは、それぞれ独立して、水素原子または炭素数1~6のアルキル基である。]
    で表される化合物であることを特徴とする、請求項11または12に記載の方法。
  14.  請求項1~10のいずれかに記載の方法により、ペルオキシペルフルオロポリエーテルを還元することを含む、HCF-基を末端に有するフルオロポリエーテルアシルフロライドを、フルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含む、フルオロポリエーテルアシルフロライド含有組成物の製造方法。
  15.  HCF-基を末端に有するフルオロポリエーテルアシルフロライドを、フルオロポリエーテルアシルフロライド全体に対して、5.00~30.00mol%含む、フルオロポリエーテルアシルフロライド含有組成物。
PCT/JP2016/060811 2015-03-31 2016-03-31 ペルフルオロポリエーテルの還元方法 WO2016159304A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680012727.9A CN107406587B (zh) 2015-03-31 2016-03-31 全氟聚醚的还原方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-073635 2015-03-31
JP2015073635 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159304A1 true WO2016159304A1 (ja) 2016-10-06

Family

ID=57005122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060811 WO2016159304A1 (ja) 2015-03-31 2016-03-31 ペルフルオロポリエーテルの還元方法

Country Status (3)

Country Link
JP (1) JP6024846B1 (ja)
CN (1) CN107406587B (ja)
WO (1) WO2016159304A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507340A (zh) * 2020-11-17 2022-05-17 中昊晨光化工研究院有限公司 一种全氟聚醚及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649200A (ja) * 1992-05-29 1994-02-22 Ausimont Spa 官能化したペルフルオロポリオキシアルキレンの製造方法
JPH07188408A (ja) * 1993-11-17 1995-07-25 Ausimont Spa ペルフルオロポリエーテル類の製造法
JP2004067683A (ja) * 2002-08-01 2004-03-04 Solvay Solexis Spa アシルフルオライド末端基を有するペルフルオロポリエーテル類の製造法
JP2004068007A (ja) * 2002-08-01 2004-03-04 Solvay Solexis Spa アルデヒド、アルコール、アミン末端基を有するペルフルオロポリエーテル類の製造法
JP2010523617A (ja) * 2007-04-10 2010-07-15 ソルヴェイ・ソレクシス・エッセ・ピ・ア カルボニルパーフルオロポリエーテルを調製する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707367A1 (de) * 1987-03-07 1988-09-15 Hoechst Ag Umsetzung von hexafluorpropenoxid mit fluorierten carbonsaeurefluoriden

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649200A (ja) * 1992-05-29 1994-02-22 Ausimont Spa 官能化したペルフルオロポリオキシアルキレンの製造方法
JPH07188408A (ja) * 1993-11-17 1995-07-25 Ausimont Spa ペルフルオロポリエーテル類の製造法
JP2004067683A (ja) * 2002-08-01 2004-03-04 Solvay Solexis Spa アシルフルオライド末端基を有するペルフルオロポリエーテル類の製造法
JP2004068007A (ja) * 2002-08-01 2004-03-04 Solvay Solexis Spa アルデヒド、アルコール、アミン末端基を有するペルフルオロポリエーテル類の製造法
JP2010523617A (ja) * 2007-04-10 2010-07-15 ソルヴェイ・ソレクシス・エッセ・ピ・ア カルボニルパーフルオロポリエーテルを調製する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507340A (zh) * 2020-11-17 2022-05-17 中昊晨光化工研究院有限公司 一种全氟聚醚及其制备方法
CN114507340B (zh) * 2020-11-17 2023-06-23 中昊晨光化工研究院有限公司 一种全氟聚醚及其制备方法

Also Published As

Publication number Publication date
CN107406587A (zh) 2017-11-28
CN107406587B (zh) 2020-03-03
JP2016194068A (ja) 2016-11-17
JP6024846B1 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6024845B1 (ja) ペルフルオロポリエーテルアシルフロライドの製造方法
WO2007080949A1 (ja) 含フッ素エーテルアルコールおよびその製造法
JP2014070163A (ja) 表面改質剤、処理基材、化合物の製造方法、及び化合物
JP4108369B2 (ja) 一方に末端基−ch2ohおよび他方に塩素を含む末端基を有するフルオロポリオキシアルキレンの製造方法
EP1477509B1 (en) Preparation of perfluoropolyethers having at least one -CH2OH or -CH(CF3)OH end group
JP6024846B1 (ja) ペルフルオロポリエーテルの還元方法
JP2006289157A (ja) カーボネート合成触媒及びカーボネート製造方法
WO2004052832A1 (ja) フッ素化されたアダマンタン誘導体
WO2003106023A1 (ja) ポリフルオロアルキルエチルアイオダイド製造用金属銅触媒及びポリフルオロアルキルエチルアイオダイドの製造方法
WO2002044138A1 (fr) Procede servant a preparer un compose de fluorure de fluorosulfonyle
KR20120077634A (ko) 산화탈수소촉매 및 이를 이용한 프로판으로부터 프로필렌의 제조방법
JP2001500880A (ja) ペルフルオロ炭素置換メタノールの生成法
JP2011236146A (ja) 炭酸ジアリールの製造方法およびポリカーボネートの製造方法
JPH0649200A (ja) 官能化したペルフルオロポリオキシアルキレンの製造方法
JP5520089B2 (ja) エーテルカルボキシレートの製造方法
CN103189342B (zh) 含氟乙烯基醚化合物及其制备方法
EP2325157B1 (en) Method for producing a perfluoro compound having hydroxyl groups
JP2004231657A (ja) フルオロハロゲンエーテルの製造方法
JP2011184379A (ja) エーテルカルボキシレートの製造方法
JP5264154B2 (ja) 含フッ素化合物の製造方法
JPWO2002026679A1 (ja) フッ素化アルコールの製造方法
JP2011084501A (ja) 環状不飽和化合物の製造方法
WO2022138511A1 (ja) 含フッ素ポリエーテル化合物の製造方法
JP2011084513A (ja) アリル化合物の製造方法
JP2021042171A (ja) カルボン酸エステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773184

Country of ref document: EP

Kind code of ref document: A1