WO2016158780A1 - 観察装置および観察方法 - Google Patents

観察装置および観察方法 Download PDF

Info

Publication number
WO2016158780A1
WO2016158780A1 PCT/JP2016/059686 JP2016059686W WO2016158780A1 WO 2016158780 A1 WO2016158780 A1 WO 2016158780A1 JP 2016059686 W JP2016059686 W JP 2016059686W WO 2016158780 A1 WO2016158780 A1 WO 2016158780A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
light
light source
illumination light
source unit
Prior art date
Application number
PCT/JP2016/059686
Other languages
English (en)
French (fr)
Inventor
高橋 晋太郎
平田 唯史
靖展 伊賀
真一 瀧本
三由 貴史
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to KR1020177015010A priority Critical patent/KR20170078810A/ko
Priority to CN201680003912.1A priority patent/CN107003507A/zh
Priority to JP2017509921A priority patent/JP6251454B2/ja
Priority to EP16772661.1A priority patent/EP3211469B1/en
Publication of WO2016158780A1 publication Critical patent/WO2016158780A1/ja
Priority to US15/607,666 priority patent/US10281704B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only
    • G02B21/084Condensers for incident illumination only having annular illumination around the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to an observation apparatus and an observation method.
  • an observation apparatus using a phase difference observation method or a differential interference observation method is known (for example, see Patent Document 1).
  • Patent Document 1 needs to dispose a photographing optical system and an illumination optical system with a subject interposed therebetween, and there is a disadvantage that the apparatus becomes large and complicated.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an observation apparatus and an observation method capable of observing a subject such as a cell without labeling without increasing the size of the apparatus. It is said.
  • One embodiment of the present invention includes a light source unit that emits illumination light from the bottom to the top of a sample, and transmitted light that is reflected by the illumination light emitted from the light source unit and transmitted through the sample.
  • An observation apparatus including an imaging optical system for imaging under the sample is provided.
  • the illumination light emitted from the light source unit is emitted upward from below the sample, and then reflected from above the sample so as to pass through the sample from above.
  • the transmitted light that has passed through the sample is photographed by a photographing optical system disposed below the sample. Since both the light source unit and the photographing optical system are arranged below the sample, it is possible to observe the subject such as a cell without labeling by photographing the transmitted light without increasing the size of the apparatus.
  • the imaging optical system includes an objective lens that condenses the transmitted light that has passed through the sample, and the light source unit emits illumination light from above the sample lens in the radial direction above the sample. May be.
  • the illumination light emitted toward the upper part of the sample from the light source unit arranged radially outward of the objective lens arranged below the sample is reflected above the sample,
  • the transmitted light that is incident on the sample obliquely from above the optical axis of the objective lens and passes through the sample is photographed by the photographing optical system.
  • the light source unit may be able to emit illumination light independently from different positions in the radial direction of the objective lens.
  • the incident angle of the reflected light reflected by the same reflecting surface disposed above the sample is changed.
  • the reflected light of the illumination light emitted from a position close to the radial direction of the objective lens enters the sample at a small angle with respect to the optical axis, while the illumination emitted from a position far from the radial direction of the objective lens
  • the reflected light of the light enters the sample at a large angle with respect to the optical axis.
  • the light source unit may be capable of emitting illumination light simultaneously from different positions in the circumferential direction of the objective lens. By doing in this way, illumination light is simultaneously irradiated from multiple positions in the circumferential direction of the objective lens, and illumination unevenness can be reduced.
  • the light source unit may include a plurality of light sources that are arranged around the objective lens and can be lit independently.
  • the circumferential direction position of illumination light can be determined by lighting any one of a plurality of light sources.
  • the image of the sample illuminated from a different direction can be image
  • the oblique illumination image it is possible to photograph images with different shades.
  • the light source unit includes a light source disposed below the sample, and a light shielding member having an opening that transmits only illumination light at a specific radial position among illumination light from the light source. You may have. By doing so, the illumination light from the light source is blocked by the light shielding member, and only the illumination light passing through the opening is reflected above the sample and is incident on the sample. Therefore, the direction or angle of the reflected light incident on the sample can be changed by adjusting the position of the opening of the light shielding member without switching the lighting position of the light source.
  • the light source unit may include a diffusion plate that diffuses illumination light. By doing in this way, the illumination light uniformly diffused by the diffusion plate can be irradiated to the sample.
  • the said sample may be accommodated in the container which consists of an optically transparent material, and the said illumination light may be reflected by the top plate inner surface of the said container arrange
  • the illumination light emitted from the light source unit is reflected on the inner surface of the top plate of the container simply by placing the container having the top plate containing the sample inside the light source unit and the imaging optical system.
  • the sample in the container can be irradiated.
  • the illumination light may be reflected by a reflecting member disposed above the sample.
  • a light source is provided by arranging a reflective member above the sample. The illumination light emitted from the part can be reflected by the reflecting member and irradiated onto the sample in the container.
  • the sample may be immersed in the solution, and the illumination light may be reflected by the liquid surface above the solution.
  • Another aspect of the present invention includes an emission step of emitting illumination light from the bottom to the top of the sample, a reflection step of reflecting the illumination light emitted by the emission step above the sample, and the reflection step.
  • an observation method including a transmission step of transmitting reflected illumination light to the sample, and an imaging step of photographing the transmitted light transmitted through the sample by the transmission step below the sample.
  • FIG. 5 is a partial longitudinal sectional view showing a modification of the observation apparatus in FIG. 1 and showing a case where illumination light is limited by a light shielding member.
  • the observation apparatus 1 As shown in FIG. 1, the observation apparatus 1 according to the present embodiment is disposed below a stage 3 on which a container 2 containing a sample X is placed, and passes through the stage 3 from above.
  • An objective lens 4 that condenses incoming light is provided, a photographing optical system 6 that captures the light that has passed through the sample X, and a radial outer side of the objective lens 4.
  • a light source unit 5 for emitting light.
  • An optically transparent material such as a glass plate 3a is disposed on the stage 3 so as to cover the objective lens 4 and the light source unit 5, and the container 2 is placed on the upper surface of the glass plate 3a. It has become.
  • the container 2 is, for example, a cell culture flask having a top plate 2a, and is made of an optically transparent resin as a whole.
  • the light source unit 5 includes a plurality of LED light sources (light sources) 7 disposed around the objective lens 4 at intervals in the circumferential direction and the radial direction, and the LED light sources 7.
  • a plurality of condenser lenses 8 for condensing the illumination light generated in each LED light source 7 and a diffusion plate 9 for diffusing the illumination light condensed by the condenser lens 8 are provided. .
  • the light source unit 5 can turn on specific LED light sources 7 independently (FIGS. 1 and 2 show the LED light sources 7 that are turned on by hatching). That is, by turning on only the LED light sources 7 at different positions in the radial direction of the objective lens 4, the glass plate 3a and the bottom surface 2b of the container 2 are transmitted from the bottom to the top as shown by the solid line in FIG. Thereafter, the angle of the illumination light reflected on the inner surface of the top plate 2a of the container 2 and transmitted through the sample X, the bottom surface 2b of the container 2 and the glass plate 3a from the oblique upper side and incident on the objective lens 4 is indicated by a broken line. Can be switched to.
  • the sample X can be illuminated only from a specific direction in the circumferential direction. As shown in FIG. 2, lighting is performed by lighting LED light sources 7 arranged in two or more directions in the circumferential direction of the objective lens 4, in particular, in an axially symmetric direction with respect to the optical axis S of the objective lens 4. It is possible to irradiate the sample X with illumination light with reduced unevenness.
  • the sample X is accommodated in the container 2 and adhered to the bottom surface 2b as shown in FIG.
  • the container 2 is placed on the glass plate 3a of the stage 3 so that the bottom surface 2b is on the lower side.
  • any one of the LED light sources 7 of the light source unit 5 is operated to generate illumination light.
  • the illumination light generated in the LED light source 7 is condensed by the condenser lens 8 disposed corresponding to the LED light source 7 and diffused by the diffusion plate 9, and the glass plate 3 a and the bottom surface 2 b of the container 2. Is transmitted from the bottom to the top (injection step), reflected on the inner surface of the top plate 2a of the container 2 and irradiated to the sample X from obliquely above (reflection step).
  • the transmitted light of the illumination light that has passed through the sample X passes through the bottom surface 2b of the container 2 and the glass plate 3a from the top to the bottom, and enters the objective lens 4 (transmission).
  • the illumination light is refracted and scattered by the shape and refractive index of the sample X, or is attenuated by the transmittance of the sample X, thereby becoming transmitted light carrying the information of the sample X by the objective lens 4.
  • the light is condensed and photographed by an image sensor (not shown) (imaging step).
  • the observation apparatus 1 since the photographing optical system 6 including the light source unit 5 and the objective lens 4 is arranged below the sample X, conventionally, a light source is provided on both sides of the sample. Compared with the transmitted light observation apparatus in which the optical section and the photographing optical system are arranged, there is an advantage that the light source section 5 and the photographing optical system 6 can be concentrated only on one side of the sample X, and the apparatus can be thinned. . Even in such a thin observation device 1, there is an advantage that an object such as a cell can be observed without labeling by photographing the transmitted light.
  • Illumination light from the light source unit 5 is emitted from the outside in the radial direction of the objective lens 4 and reflected on the inner surface of the top plate 2 a of the container 2, so that the sample X is irradiated obliquely from above and condensed by the objective lens 4. Therefore, by appropriately setting the incident angle to the sample X, it is possible to form a bright and dark image on the image of the sample X and to obtain an easy-to-see image even for a transparent subject such as a cell. is there.
  • the light source unit 5 includes a plurality of LED light sources 7 that are radially arranged around the objective lens 4 and can be turned on independently.
  • the irradiation angle of the illumination light incident on the sample X can be changed.
  • the incident angle is smaller than the capture angle of the objective lens 4
  • bright field illumination with less illumination unevenness is obtained
  • the incident angle is greater than the capture angle of the objective lens 4
  • dark field illumination in which the fine structure is emphasized.
  • an incident angle equivalent to the capture angle of the objective lens 4 it is possible to use oblique illumination in which the sample X can be seen three-dimensionally.
  • the light source unit 5 includes a plurality of LED light sources 7 that are arranged in the circumferential direction around the objective lens 4 and can be lit independently. By making it different, the irradiation direction of the illumination light incident on the sample X can be changed. Thereby, the direction of the shadow of the image of the sample X to be formed can be changed, and the appearance can be changed.
  • lighting unevenness is reduced by simultaneously lighting a plurality of LED light sources 7 at different positions in the circumferential direction, in particular by simultaneously lighting a plurality of LED light sources 7 arranged in an axial symmetry.
  • lighting unevenness is reduced by simultaneously lighting a plurality of LED light sources 7 at different positions in the circumferential direction, in particular by simultaneously lighting a plurality of LED light sources 7 arranged in an axial symmetry.
  • the diffusion plate 9 is provided corresponding to each LED light source 7, the illumination light emitted from the LED light source 7 is uniformly diffused, and illumination light with uniform intensity with little illumination unevenness is obtained.
  • Sample X can be irradiated.
  • the plurality of LED light sources 7 are arranged in an array and are turned on independently to switch the illumination angle, illumination direction, and the like of the illumination light.
  • the light source unit 5 includes a light source 7 disposed around the objective lens 4, and a light shielding member 10 disposed above the light source 7 and shielding illumination light from the light source 7. You may decide.
  • the light shielding member 10 has an opening 11 that opens in a part in the circumferential direction or a part in the radial direction, and a transmission hole 12 that transmits light that has been reflected by the inner surface of the top plate 2a of the container 2 and transmitted through the sample X.
  • the position of the opening 11 can be adjusted, and the irradiation angle and irradiation direction of the illumination light can be changed.
  • the light source unit 5 may include an LED light source 7, a condensing lens 8, and a diffuser plate 9 arranged in an array as described above, but does not require a function of switching the light emission position of the illumination light. As long as it is a light source capable of emitting illumination light from a wider range than the opening 11, a light source provided with an arbitrary light source may be adopted.
  • FIG. 4A to FIG. 4C are examples having a circular opening 11, and show examples in which the radial direction and the number of openings 11 are different.
  • FIG. 5A shows a case where the opening 11 is fan-shaped
  • FIG. 5B shows a case where the opening 11 is annular. Any size, position and shape of the opening 11 can be employed.
  • the sample X is accommodated in the container 2 having the top plate 2a such as a cell culture flask, and the illumination light is reflected on the inner surface of the top plate 2a of the container 2.
  • the present invention is limited to this. It is not a thing.
  • the sample 2 is stored in a container 13 that does not have the top plate 2a, such as a petri dish (without a lid), as shown in FIG.
  • the reflective member 14 as described above may be arranged, and the reflective light 14 may reflect the illumination light transmitted through the bottom surface 13b from the bottom to the top.
  • the reflecting member 14 may be provided so as to be insertable / removable at an upper position of the sample X by linear movement or swinging.
  • a solution for example, a culture medium or phosphorous
  • L acid buffer solution or the like
  • the sample X may be immersed in the solution by putting a solution L (for example, a culture medium or a phosphate buffer solution) L in the container 2.
  • a light shielding member 15 made of a material that shields light may be provided above the top plate 2a.
  • the LED light source 7, the condenser lens 8, and the diffusion plate 9 are arranged substantially horizontally along the glass plate 3 a, but instead of this, FIG. As shown, the LED light source 7, the condenser lens 8, and the diffusion plate 9 may be arranged to be inclined toward the optical axis S. By doing in this way, the loss of the illumination light emitted from the LED light source 7 can be suppressed, and illumination light can be efficiently irradiated to the sample X.
  • the light source unit 5 is illustrated as having the diffusion plate 9, but the diffusion plate 9 may not be provided.

Abstract

 装置を大型化させることなく、細胞等の被写体を標識せずに観察することができる観察装置および観察方法を提供する。試料(X)の下方から上方に向けて照明光を射出する光源部(5)と、該光源部(5)から射出された照明光が試料(X)の上方で反射されて試料(X)を透過した透過光を集光する対物レンズ(4)を有し、該対物レンズ(4)によって集光された透過光を試料(X)の下方において撮影する撮影光学系(6)とを備える観察装置(1)を提供する。

Description

観察装置および観察方法
 本発明は、観察装置および観察方法に関するものである。
 従来、細胞等の被写体を標識せずに観察する装置として、位相差観察法や微分干渉観察法を用いた観察装置が知られている(例えば、特許文献1参照。)。
特開平7-261089号公報
 しかしながら、特許文献1の観察装置は、被写体を挟んで撮影光学系と照明光学系とを配置する必要があり、装置が大型化、複雑化するという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、装置を大型化させることなく、細胞等の被写体を標識せずに観察することができる観察装置および観察方法を提供することを目的としている。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、試料の下方から上方に向けて照明光を射出する光源部と、該光源部から射出された照明光が前記試料の上方で反射されて前記試料を透過した透過光を前記試料の下方において撮影する撮影光学系とを備える観察装置を提供する。
 本態様によれば、光源部から発せられた照明光は試料の下方から上方に向けて射出された後、試料の上方において反射されて試料を上方から下方に透過させられる。試料を透過した透過光は、試料の下方に配置されている撮影光学系によって撮影される。光源部および撮影光学系の両方を試料の下方に配置したので、装置を大型化させることなく、透過光を撮影することにより細胞等の被写体を標識せずに観察することができる。
 上記態様においては、前記撮影光学系が、前記試料を透過した透過光を集光する対物レンズを備え、前記光源部が、前記対物レンズの径方向外方から前記試料の上方に照明光を射出してもよい。
 このようにすることで、試料の下方に配置された対物レンズの径方向外方に配置された光源部から試料の上方に向けて射出された照明光が、試料の上方においては反射されて、対物レンズの光軸に対して斜め上方から試料に入射し、試料を透過した透過光が撮影光学系により撮影される。試料への入射角度を適切に設定することにより、試料の像に明暗を形成することができ、細胞等の透明な被写体についても見やすい像を取得することができる。
 上記態様においては、前記光源部が、前記対物レンズの径方向に異なる位置から独立して照明光を射出可能であってもよい。
 このようにすることで、光源部から射出される照明光の径方向位置を異ならせることで、試料の上方に配置された同一の反射面によって反射された反射光の試料への入射角度を変化させることができる。すなわち、対物レンズの径方向の近い位置から射出された照明光の反射光は、光軸に対して小さい角度をなして試料に入射する一方、対物レンズの径方向に遠い位置から射出された照明光の反射光は、光軸に対して大きな角度をなして試料に入射する。これにより、対物レンズの取り込み角より小さい入射角の場合は、照明ムラの少ない明視野照明とし、また対物レンズの取り込み角より大きい入射角の場合は、微細構造が強調される暗視野照明とし、さらに対物レンズの取り込み角と同等の入射角の場合は、試料が立体的に見える偏斜照明とすることができる。
 上記態様においては、前記光源部が、前記対物レンズの周方向に異なる位置から同時に照明光を射出可能であってもよい。
 このようにすることで、対物レンズの周方向に複数位置から同時に照明光が照射され、照明ムラを低減することができる。
 上記態様においては、前記光源部が、前記対物レンズの周囲に配列され、独立して点灯可能な複数の光源を備えていてもよい。
 このようにすることで、複数の光源の内のいずれかを点灯させることにより、照明光の周方向位置を決定することができる。そして、点灯させる光源の周方向位置を切り替えることにより、異なる方向から照明された試料の像を撮影することができる。特に、上記偏斜照明の像においては、異なる陰影の付き方の像を撮影することができる。
 上記態様においては、前記光源部が、前記試料の下方に配置される光源と、該光源からの照明光のうち、特定の径方向位置の照明光のみを透過させる開口部を有する遮光部材とを備えていてもよい。
 このようにすることで、光源からの照明光が遮光部材によって遮られ、開口部を通過する照明光のみが、試料の上方において反射されて試料に入射させられる。したがって、光源の点灯位置を切り替えることなく、遮光部材の開口部の位置を調節することにより、試料に入射させる反射光の方向あるいは角度を変化させることができる。
 上記態様においては、前記光源部が、照明光を拡散させる拡散板を備えていてもよい。
 このようにすることで、拡散板によって均一に拡散された照明光を試料に照射させることができる。
 上記態様においては、前記試料が、光学的に透明な材質からなる容器内に収容され、前記照明光が前記試料の上方に配置されている前記容器の天板内面によって反射されてもよい。
 このようにすることで、内部に試料を収容した天板を有する容器を光源部および撮影光学系の上方に配置するだけで、光源部から射出された照明光を容器の天板内面において反射させ、容器内の試料に照射させることができる。
 上記態様においては、前記照明光が、前記試料の上方に配置された反射部材によって反射されてもよい。
 このようにすることで、シャーレ(蓋なし)のように天板を有しない容器や細胞培養バッグ内に収容された試料を観察する場合において、試料の上方に反射部材を配置することにより、光源部から射出された照明光を反射部材において反射させ、容器内の試料に照射させることができる。
 上記態様においては、前記試料が、溶液内に浸されており、前記照明光が、前記溶液上方の液面によって反射されてもよい。
 このようにすることで、天板を有しない容器や、反射部材を配置できない容器内に収容された試料を観察する場合において、光源部から射出された照明光を溶液の液面において反射させ、容器内の試料に照射させることができる。
 本発明の他の態様は、試料の下方から上方に向けて照明光を射出する射出ステップと、該射出ステップにより射出された照明光を前記試料の上方において反射する反射ステップと、該反射ステップにより反射された照明光を前記試料に透過させる透過ステップと、該透過ステップにより前記試料を透過した透過光を前記試料の下方において撮影する撮影ステップとを含む観察方法を提供する。
 本発明によれば、装置を大型化させることなく、細胞等の被写体を標識せずに観察することができるという効果を奏する。
本発明の一実施形態に係る観察装置を示す部分的な縦断面図である。 図1の観察装置の光源部におけるLED光源の配置の一例を示す平面図である。 図1の観察装置の変形例であって、遮光部材により照明光を制限する場合を示す部分的な縦断面図である。 図3の遮光部材の例であって、円形の単一の開口部を有する場合を示す平面図である。 図3の遮光部材の例であって、開口部の径方向位置が図4Aとは異なる場合を示す平面図である。 図3の遮光部材の例であって、開口部を2つ備える場合を示す平面図である。 図3の遮光部材の他の例であって、扇形状の開口部を有する場合を示す平面図である。 図3の遮光部材の他の例であって、円環状の開口部を有する場合を示す平面図である。 図1の観察装置の他の変形例を示す部分的な縦断面図である。 図1の観察装置の他の変形例を示す部分的な縦断面図である。 図1の観察装置の他の変形例を示す部分的な縦断面図である。 図1の観察装置の他の変形例を示す部分的な縦断面図である。
 本発明の一実施形態に係る観察装置1について図面を参照して以下に説明する。
 本実施形態に係る観察装置1は、図1に示されるように、試料Xを収容した容器2を載置するステージ3と、該ステージ3の下方に配置され、ステージ3を上方から透過して来る光を集光する対物レンズ4を備え、試料Xを透過した光を撮影する撮影光学系6と、対物レンズ4の径方向外方に配置され、ステージ3を透過して上方に照明光を射出する光源部5とを備えている。
 ステージ3には、対物レンズ4および光源部5の上方を覆うように、光学的に透明な材質、例えば、ガラス板3aが配置され、容器2はガラス板3aの上面に載置されるようになっている。
 容器2は、例えば、天板2aを有する細胞培養フラスコであり、全体的に光学的に透明な樹脂により構成されている。
 光源部5は、図1および図2に示されるように、対物レンズ4の周囲に、周方向および径方向に間隔をあけて複数配置されたLED光源(光源)7と、各LED光源7に対応して配置され、各LED光源7において発生した照明光を集光する複数の集光レンズ8と、該集光レンズ8により集光された照明光を拡散させる拡散板9とを備えている。
 光源部5は、特定のLED光源7を独立して点灯させることができるようになっている(図1および図2は、点灯しているLED光源7をハッチングによって示している。)。
 すなわち、対物レンズ4の径方向に異なる位置のLED光源7のみを点灯させることで、図1に実線で示されるように、ガラス板3aおよび容器2の底面2bを下から上に向かって透過した後、容器2の天板2a内面において反射して、斜め上方から試料X、容器2の底面2bおよびガラス板3aを透過して対物レンズ4に入射する照明光の角度を、破線で示されるように切り替えることができるようになっている。
 対物レンズ4の周方向に特定位置のLED光源7のみを点灯させることにより、試料Xに対して周方向の特定の方向からのみ照明することができるようになっている。図2に示されるように、対物レンズ4の周方向に2以上の方向、特に、対物レンズ4の光軸Sに対して軸対称の方向に配置されたLED光源7を点灯させることにより、照明ムラを低減した照明光を試料Xに対して照射することができるようになっている。
 このように構成された本実施形態に係る観察装置1を用いた観察方法について、以下に説明する。
 本実施形態に係る観察装置1を用いて細胞のように透明な試料Xの観察を行うには、図1に示されるように、試料Xを容器2内に収容し、底面2bに接着させた状態で、容器2を底面2bが下側になるようにステージ3のガラス板3a上に載置する。
 そして、この状態で、光源部5のいずれかのLED光源7を作動させて照明光を発生させる。LED光源7において発生した照明光は、該LED光源7に対応して配置されている集光レンズ8によって集光され、拡散板9によって拡散された状態で、ガラス板3aおよび容器2の底面2bを下から上に向かって透過し(射出ステップ)、容器2の天板2a内面において反射して試料Xに対して斜め上方から照射される(反射ステップ)。
 試料Xに照射された照明光のうち、試料Xを透過した照明光の透過光が容器2の底面2bおよびガラス板3aを上から下に向かって透過して、対物レンズ4に入射する(透過ステップ)。この際、照明光は試料Xの形状や屈折率によって屈折、散乱され、あるいは、試料Xの透過率によって減光されることで、試料Xの情報を載せた透過光となって対物レンズ4により集光され、図示しない撮像素子によって撮影される(撮影ステップ)。
 このように、本実施形態に係る観察装置1によれば、試料Xの下方に光源部5および対物レンズ4を含む撮影光学系6を配置しているので、従来、試料を挟んだ両側に光源部と撮影光学系とを配置していた透過光の観察装置と比較すると、試料Xの片側のみに光源部5および撮影光学系6を集約し、装置を薄型化することができるという利点がある。そのように薄型化した観察装置1においても、透過光を撮影することにより細胞等の被写体を標識せずに観察することができるという利点がある。
 光源部5からの照明光は、対物レンズ4の径方向外方から射出され容器2の天板2a内面において反射することにより、試料Xに対して斜め上方から照射されて対物レンズ4により集光されるので、試料Xへの入射角度を適切に設定することにより、試料Xの像に明暗を形成することができ、細胞等の透明な被写体についても見やすい像を取得することができるという利点がある。
 本実施形態においては、光源部5が、対物レンズ4の周囲に径方向に配列され、独立して点灯可能な複数のLED光源7を備えているので、図1に破線で示されるように、点灯するLED光源7の径方向位置を異ならせることにより、試料Xに入射する照明光の照射角度を変化させることができる。これにより、対物レンズ4の取り込み角より小さい入射角の場合は、照明ムラの少ない明視野照明とし、また対物レンズ4の取り込み角より大きい入射角の場合は、微細構造が強調される暗視野照明とし、さらに対物レンズ4の取り込み角と同等の入射角の場合は、試料Xが立体的に見える偏斜照明とすることができる。
 本実施形態においては、光源部5が、対物レンズ4の周囲に周方向に配列され、独立して点灯可能な複数のLED光源7を備えているので、点灯するLED光源7の周方向位置を異ならせることにより、試料Xに入射する照明光の照射方向を変化させることができる。これにより、形成される試料Xの像の陰影の方向を変化させ、見え方を変更することができる。
 図2に示されるように、周方向に異なる位置の複数のLED光源7を同時に点灯させることにより、特に、軸対称に配置される複数のLED光源7を同時に点灯させることにより、照明ムラを低減してムラの少ない試料Xの画像を取得することができるという利点がある。
 本実施形態においては、各LED光源7に対応して拡散板9が備えられているので、LED光源7から発せられた照明光が均一に拡散され,照明ムラの少ない均一な強度の照明光を試料Xに照射することができる。
 本実施形態においては、複数のLED光源7をアレイ状に配列し、独立して点灯させることで、照明光の照射角度や照射方向等を切り替えることとしたが、これに代えて、図3から図5Bに示されるように、光源部5が、対物レンズ4の周囲に配置される光源7と、該光源7の上方に配置され、光源7からの照明光を遮蔽する遮光部材10とを備えることにしてもよい。
 すなわち、遮光部材10にはその周方向の一部あるいは径方向の一部に開口する開口部11と、容器2の天板2a内面において反射して試料Xを透過した光を透過させる透過孔12とが設けられており、遮光部材10を入れ替えることで、開口部11の位置を調節して、照明光の照射角度や照射方向を変更することができる。この場合には、光源部5としては、上記と同様にアレイ状に配列されたLED光源7、集光レンズ8および拡散板9を備えるものでもよいが、照明光の発光位置を切り替える機能は不要であり、開口部11より広い範囲から照明光を射出可能な光源であれば、任意の光源を備えるものを採用してもよい。
 図4Aから図4Cは円形の開口部11を有する例であり、径方向や開口部11の個数が異なる例を示している。図5Aは開口部11が扇形状の場合、図5Bは開口部11が円環状の場合をそれぞれ示している。開口部11の大きさ、位置および形状は任意のものを採用することができる。
 本実施形態においては、細胞培養フラスコのような天板2aを有する容器2内に試料Xを収容し、容器2の天板2a内面において照明光を反射させることとしたが、これに限定されるものではない。例えば、容器2として、シャーレ(蓋なし)のように天板2aを有しない容器13に試料Xを収容した場合には、図6に示されるように、シャーレの上部開口を閉塞する位置にミラーのような反射部材14を配置し、反射部材14によって底面13bを下から上に向かって透過した照明光を反射することにしてもよい。反射部材14は、直動によりあるいは揺動により試料Xの上方位置に挿脱可能に設けられていてもよい。
 容器2として、シャーレ(蓋なし)のように天板2aを有しない容器13に試料Xを収容した場合には、図7に示されるように、容器13内に溶液(例えば、培養培地やリン酸緩衝液等)Lを入れて試料Xを溶液内に浸し、溶液上方の液面によって底面13bを下から上に向かって透過した照明光を反射することにしてもよい。天板2aを有する容器2に試料Xを収容した場合も、容器2内に溶液(例えば、培養培地やリン酸緩衝液等)Lを入れて試料Xを溶液内に浸してもよい。
 本実施形態においては、図8に示されるように、天板2aの上方に光を遮蔽する材質からなる遮光部材15を備えていてもよい。
 このようにすることで、外部からの外光が遮光部材15によって遮蔽されるため、外光が天板2aから容器2内に入射することを抑制し、効率的に観察を行うことができる。
 本実施形態においては、光源部5として、LED光源7、集光レンズ8および拡散板9をガラス板3aに沿うように略水平に配置したものを例示したが、これに代えて、図9に示されるように、LED光源7、集光レンズ8および拡散板9を光軸Sに向けて傾けて配置してもよい。
 このようにすることで、LED光源7から発せられる照明光のロスを抑制し、効率的に照明光を試料Xに照射することができる。
 本実施形態においては、光源部5として、拡散板9を備えるものを例示したが、拡散板9を備えていなくてもよい。
 1 観察装置
 2 容器
 2a 天板
 4 対物レンズ
 5 光源部
 6 撮影光学系
 7 LED光源
 9 拡散板
 10 遮光部材
 11 開口部
 14 反射部材
 X 試料

Claims (11)

  1.  試料の下方から上方に向けて照明光を射出する光源部と、
     該光源部から射出された照明光が前記試料の上方で反射されて前記試料を透過した透過光を前記試料の下方において撮影する撮影光学系とを備える観察装置。
  2.  前記撮影光学系が、前記試料を透過した透過光を集光する対物レンズを備え、
     前記光源部が、前記対物レンズの径方向外方から前記試料の上方に照明光を射出する請求項1に記載の観察装置。
  3.  前記光源部が、前記対物レンズの径方向に異なる位置から独立して照明光を射出可能である請求項2に記載の観察装置。
  4.  前記光源部が、前記対物レンズの周方向に異なる位置から同時に照明光を射出可能である請求項2に記載の観察装置。
  5.  前記光源部が、前記対物レンズの周囲に配列され、独立して点灯可能な複数の光源を備える請求項3または請求項4に記載の観察装置。
  6.  前記光源部が、前記試料の下方に配置される光源と、該光源からの照明光のうち、特定の径方向位置の照明光のみを透過させる開口部を有する遮光部材とを備える請求項2に記載の観察装置。
  7.  前記光源部が、照明光を拡散させる拡散板を備える請求項1から請求項6のいずれかに記載の観察装置。
  8.  前記試料が、光学的に透明な材質からなる容器内に収容され、
     前記照明光が前記試料の上方に配置されている前記容器の天板内面によって反射される請求項1から請求項7のいずれかに記載の観察装置。
  9.  前記照明光が、前記試料の上方に配置された反射部材によって反射される請求項1から請求項7のいずれかに記載の観察装置。
  10.  前記試料が、溶液内に浸されており、
     前記照明光が、前記溶液の上方の液面によって反射される請求項1から請求項7のいずれかに記載の観察装置。
  11.  試料の下方から上方に向けて照明光を射出する射出ステップと、
     該射出ステップにより射出された照明光を前記試料の上方において反射する反射ステップと、
     該反射ステップにより反射された照明光を前記試料に透過させる透過ステップと、
     該透過ステップにより前記試料を透過した透過光を前記試料の下方において撮影する撮影ステップとを含む観察方法。
PCT/JP2016/059686 2015-03-31 2016-03-25 観察装置および観察方法 WO2016158780A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177015010A KR20170078810A (ko) 2015-03-31 2016-03-25 관찰 장치 및 관찰 방법
CN201680003912.1A CN107003507A (zh) 2015-03-31 2016-03-25 观察装置以及观察方法
JP2017509921A JP6251454B2 (ja) 2015-03-31 2016-03-25 観察装置および観察方法
EP16772661.1A EP3211469B1 (en) 2015-03-31 2016-03-25 Observation device and observation method
US15/607,666 US10281704B2 (en) 2015-03-31 2017-05-29 Observation apparatus and observation method to observe a sample with reflected light transmitted through the sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072979 2015-03-31
JP2015072979 2015-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/607,666 Continuation US10281704B2 (en) 2015-03-31 2017-05-29 Observation apparatus and observation method to observe a sample with reflected light transmitted through the sample

Publications (1)

Publication Number Publication Date
WO2016158780A1 true WO2016158780A1 (ja) 2016-10-06

Family

ID=57004288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059686 WO2016158780A1 (ja) 2015-03-31 2016-03-25 観察装置および観察方法

Country Status (6)

Country Link
US (1) US10281704B2 (ja)
EP (1) EP3211469B1 (ja)
JP (2) JP6251454B2 (ja)
KR (1) KR20170078810A (ja)
CN (1) CN107003507A (ja)
WO (1) WO2016158780A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062215A1 (ja) * 2016-09-30 2018-04-05 オリンパス株式会社 観察装置
EP3396429A1 (en) 2017-04-27 2018-10-31 Olympus Corporation Observation device and observation method
WO2018220670A1 (ja) * 2017-05-29 2018-12-06 オリンパス株式会社 観察装置
CN110133826A (zh) * 2018-02-08 2019-08-16 奥林巴斯株式会社 信息取得装置
US20190391303A1 (en) * 2016-12-12 2019-12-26 Nippon Electric Glass Co., Ltd. Transparent article
JP2020000193A (ja) * 2018-06-29 2020-01-09 澁谷工業株式会社 細胞観察装置
JP2020086295A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP2020086293A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
EP3521892A4 (en) * 2016-09-29 2020-07-29 Olympus Corporation OBSERVATION DEVICE
US10762327B2 (en) 2017-09-28 2020-09-01 Olympus Corporation Image-processing device and cell observation system
US10877256B2 (en) 2015-12-18 2020-12-29 Olympus Corporation Observation device
US10914931B2 (en) 2015-12-11 2021-02-09 Olympus Corporation Observation device
US11016279B2 (en) 2016-07-11 2021-05-25 Olympus Corporation Observation device
US11037293B2 (en) 2017-01-06 2021-06-15 Olympus Corporation Cell observation system
US11137588B2 (en) 2016-09-30 2021-10-05 Olympus Corporation Observation apparatus which illuminates and observes a specimen from below
US11150456B2 (en) 2016-09-06 2021-10-19 Olympus Corporation Observation apparatus
US11163143B2 (en) 2016-09-06 2021-11-02 Olympus Corporation Observation apparatus
JP2022509823A (ja) * 2018-11-30 2022-01-24 コーニング インコーポレイテッド 細胞培養監視のための小型光学結像システム
WO2023166655A1 (ja) * 2022-03-03 2023-09-07 オリンパス株式会社 照明ユニットおよび撮影システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889723B2 (ja) * 2015-12-23 2021-06-18 上海吉倍生物技術有限公司Shanghai GenBase Biotechnology Co., Ltd. 細胞培養装置
JP6127301B1 (ja) * 2016-01-08 2017-05-17 株式会社ジェイテックコーポレーション 回転培養装置及び該回転培養装置に用いる培養ベッセル
JP6981381B2 (ja) * 2018-08-09 2021-12-15 株式会社サタケ 穀粒品位判別装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232614A (ja) * 1989-03-06 1990-09-14 Res Dev Corp Of Japan 暗視野顕微鏡の照明方法とその装置
JP2006174764A (ja) * 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
JP2011008188A (ja) * 2009-06-29 2011-01-13 Olympus Corp 光学顕微鏡
JP2011141444A (ja) * 2010-01-07 2011-07-21 Nikon Corp 顕微鏡システム
WO2012029817A1 (ja) * 2010-08-30 2012-03-08 三洋電機株式会社 観察装置、観察プログラム及び観察システム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178212A (en) 1981-04-27 1982-11-02 Nippon Kogaku Kk <Nikon> Microscope optical system
DE3906555A1 (de) * 1989-03-02 1989-07-06 Zeiss Carl Fa Auflicht-objektbeleuchtungseinrichtung
US5751475A (en) 1993-12-17 1998-05-12 Olympus Optical Co., Ltd. Phase contrast microscope
JPH07261089A (ja) 1994-03-24 1995-10-13 Olympus Optical Co Ltd 位相差顕微鏡
EP1008884B1 (en) * 1997-08-29 2006-09-27 Olympus Optical Co., Ltd. Transmission illuminator for microscopes
JP2001166219A (ja) 1999-12-07 2001-06-22 Fine Opt Kk 皮膚観察装置
DE10017823B4 (de) * 2000-04-10 2004-08-26 Till I.D. Gmbh Mikroskopische Beleuchtungsvorrichtung
JP4535645B2 (ja) 2001-07-06 2010-09-01 株式会社 ジャパン・ティッシュ・エンジニアリング 接着細胞選別装置、細胞増殖能評価装置、それらのプログラム及びそれらの方法
JP4434649B2 (ja) * 2003-03-27 2010-03-17 株式会社Eci 観察器具及びそれを用いた観察方法
US20070177255A1 (en) * 2003-03-27 2007-08-02 Shiro Kanegasaki Observing tool and observing method using the same
JP4411866B2 (ja) 2003-06-02 2010-02-10 株式会社ニコン 顕微鏡装置
JP4329423B2 (ja) 2003-06-17 2009-09-09 株式会社ニコン 顕微鏡装置
WO2004109361A1 (ja) 2003-06-02 2004-12-16 Nikon Corporation 顕微鏡装置
JP4740554B2 (ja) 2004-05-12 2011-08-03 オリンパス株式会社 培養顕微鏡装置
US7799559B2 (en) 2003-10-24 2010-09-21 Olympus Corporation Culture microscope apparatus
JP2004318185A (ja) 2004-08-20 2004-11-11 Olympus Corp 光制御部材を有する光学顕微鏡
JP4932703B2 (ja) 2005-03-22 2012-05-16 株式会社メディネット 細胞培養評価システム、細胞培養評価方法および細胞培養評価プログラム
JP2007264410A (ja) 2006-03-29 2007-10-11 Nidec Copal Corp 肌観察装置
JP5039355B2 (ja) 2006-10-13 2012-10-03 株式会社カネカ 自動培養装置
KR100813915B1 (ko) 2006-10-31 2008-03-18 전자부품연구원 세포 배양 관찰 장치
JP2008209726A (ja) * 2007-02-27 2008-09-11 Olympus Corp 照明装置
JP2009217222A (ja) * 2008-03-06 2009-09-24 Takashi Goto 反射型透過照明補助装置付観察台
EP2312367A1 (en) * 2009-10-16 2011-04-20 Olympus Corporation Laser scanning microscope
JP5775068B2 (ja) * 2010-04-23 2015-09-09 浜松ホトニクス株式会社 細胞観察装置および細胞観察方法
WO2013047315A1 (ja) 2011-09-30 2013-04-04 三洋電機株式会社 ビームスプリッタおよび観察装置
KR101384843B1 (ko) 2012-09-07 2014-05-07 주식회사 나노엔텍 현미경 및 그 제어방법
WO2014041820A1 (ja) 2012-09-13 2014-03-20 京セラオプテック株式会社 顕微鏡
WO2016158782A1 (ja) 2015-03-31 2016-10-06 オリンパス株式会社 観察装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232614A (ja) * 1989-03-06 1990-09-14 Res Dev Corp Of Japan 暗視野顕微鏡の照明方法とその装置
JP2006174764A (ja) * 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
JP2011008188A (ja) * 2009-06-29 2011-01-13 Olympus Corp 光学顕微鏡
JP2011141444A (ja) * 2010-01-07 2011-07-21 Nikon Corp 顕微鏡システム
WO2012029817A1 (ja) * 2010-08-30 2012-03-08 三洋電機株式会社 観察装置、観察プログラム及び観察システム

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914931B2 (en) 2015-12-11 2021-02-09 Olympus Corporation Observation device
US10877256B2 (en) 2015-12-18 2020-12-29 Olympus Corporation Observation device
US11016279B2 (en) 2016-07-11 2021-05-25 Olympus Corporation Observation device
US11150456B2 (en) 2016-09-06 2021-10-19 Olympus Corporation Observation apparatus
US11163143B2 (en) 2016-09-06 2021-11-02 Olympus Corporation Observation apparatus
EP3521892A4 (en) * 2016-09-29 2020-07-29 Olympus Corporation OBSERVATION DEVICE
WO2018062215A1 (ja) * 2016-09-30 2018-04-05 オリンパス株式会社 観察装置
US11137588B2 (en) 2016-09-30 2021-10-05 Olympus Corporation Observation apparatus which illuminates and observes a specimen from below
JPWO2018062215A1 (ja) * 2016-09-30 2019-07-18 オリンパス株式会社 観察装置
US11226476B2 (en) 2016-09-30 2022-01-18 Olympus Corporation Specimen observation apparatus
US20190391303A1 (en) * 2016-12-12 2019-12-26 Nippon Electric Glass Co., Ltd. Transparent article
US11555950B2 (en) * 2016-12-12 2023-01-17 Nippon Electric Glass Co., Ltd. Transparent article
US11037293B2 (en) 2017-01-06 2021-06-15 Olympus Corporation Cell observation system
JP6993100B2 (ja) 2017-04-27 2022-01-13 オリンパス株式会社 観察装置および観察方法
EP3396429A1 (en) 2017-04-27 2018-10-31 Olympus Corporation Observation device and observation method
CN108802991A (zh) * 2017-04-27 2018-11-13 奥林巴斯株式会社 观察装置、观察方法和记录介质
JP2018185454A (ja) * 2017-04-27 2018-11-22 オリンパス株式会社 観察装置および観察方法
US10613310B2 (en) 2017-04-27 2020-04-07 Olympus Corporation Observation device and observation method
JPWO2018220670A1 (ja) * 2017-05-29 2020-03-26 オリンパス株式会社 観察装置
US11460682B2 (en) 2017-05-29 2022-10-04 Evident Corporation Observation device
WO2018220670A1 (ja) * 2017-05-29 2018-12-06 オリンパス株式会社 観察装置
US10762327B2 (en) 2017-09-28 2020-09-01 Olympus Corporation Image-processing device and cell observation system
CN110133826B (zh) * 2018-02-08 2022-04-01 奥林巴斯株式会社 信息取得装置
JP2019139025A (ja) * 2018-02-08 2019-08-22 オリンパス株式会社 情報取得装置
CN110133826A (zh) * 2018-02-08 2019-08-16 奥林巴斯株式会社 信息取得装置
US10838186B2 (en) 2018-02-08 2020-11-17 Olympus Corporation Information acquisition apparatus
JP7219390B2 (ja) 2018-06-29 2023-02-08 澁谷工業株式会社 細胞観察装置
JP2020000193A (ja) * 2018-06-29 2020-01-09 澁谷工業株式会社 細胞観察装置
JP2020086293A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP2020086295A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP7268991B2 (ja) 2018-11-29 2023-05-08 株式会社キーエンス 拡大観察装置
JP7268992B2 (ja) 2018-11-29 2023-05-08 株式会社キーエンス 拡大観察装置
JP2022509823A (ja) * 2018-11-30 2022-01-24 コーニング インコーポレイテッド 細胞培養監視のための小型光学結像システム
US11921102B2 (en) 2018-11-30 2024-03-05 Corning Incorporated Compact optical imaging system for cell culture monitoring
WO2023166655A1 (ja) * 2022-03-03 2023-09-07 オリンパス株式会社 照明ユニットおよび撮影システム

Also Published As

Publication number Publication date
JPWO2016158780A1 (ja) 2017-08-17
US10281704B2 (en) 2019-05-07
US20170261732A1 (en) 2017-09-14
CN107003507A (zh) 2017-08-01
EP3211469B1 (en) 2019-09-25
EP3211469A4 (en) 2018-01-17
KR20170078810A (ko) 2017-07-07
JP6251454B2 (ja) 2017-12-20
JP2018072845A (ja) 2018-05-10
EP3211469A1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6251454B2 (ja) 観察装置および観察方法
CN109791275B (zh) 观察装置
JP2018072845A5 (ja)
JP6728368B2 (ja) 観察装置
JP6514832B2 (ja) 観察装置
JPWO2016125281A1 (ja) 構造化照明顕微鏡、観察方法、及び制御プログラム
US20150293012A1 (en) Receptacle and system for optically analyzing a sample without optical lenses
US11460682B2 (en) Observation device
JP6619025B2 (ja) 観察装置
WO2018062215A1 (ja) 観察装置
JP6543002B2 (ja) 培養観察システム
JP2012147739A (ja) 観察装置
JPWO2018047583A1 (ja) 観察装置
JP5201185B2 (ja) 観察光学系およびレーザ加工装置
JP6535494B2 (ja) 撮像装置、撮像方法および培養容器
WO2018011869A1 (ja) 観察装置
WO2017103976A1 (ja) 観察装置
JP2013134491A (ja) 顕微鏡および光透過ユニット
JP2010286510A (ja) 観察装置
TW201541119A (zh) 螢光顯微鏡用透光載具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772661

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016772661

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017509921

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177015010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE