WO2018011869A1 - 観察装置 - Google Patents

観察装置 Download PDF

Info

Publication number
WO2018011869A1
WO2018011869A1 PCT/JP2016/070472 JP2016070472W WO2018011869A1 WO 2018011869 A1 WO2018011869 A1 WO 2018011869A1 JP 2016070472 W JP2016070472 W JP 2016070472W WO 2018011869 A1 WO2018011869 A1 WO 2018011869A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
illumination
region
illumination light
light
Prior art date
Application number
PCT/JP2016/070472
Other languages
English (en)
French (fr)
Inventor
平田 唯史
日暮 正樹
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018527273A priority Critical patent/JP6704049B2/ja
Priority to PCT/JP2016/070472 priority patent/WO2018011869A1/ja
Publication of WO2018011869A1 publication Critical patent/WO2018011869A1/ja
Priority to US16/238,585 priority patent/US11016279B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0088Inverse microscopes

Definitions

  • the present invention relates to an observation apparatus, and more particularly to an observation apparatus for phase difference images having an autofocus function.
  • an observation apparatus using a phase difference observation method having an autofocus function is known (for example, see Patent Documents 1 and 2).
  • the contrast of the image is measured while changing the distance in the optical axis direction between the specimen and the objective lens, and the position of the objective lens where the contrast is maximized is the focus where the objective lens is focused on the specimen. Detect as position.
  • Patent Document 1 a peak that satisfies a predetermined condition is specified as a peak at a true focus position.
  • Patent Document 2 two images that are defocused from the focal plane of the objective lens to the front side and the rear side are acquired, and the true focus position is specified based on the difference in contrast between the two images.
  • One aspect of the present invention includes a stage on which a specimen is placed, an illumination optical system that irradiates the specimen on the stage with illumination light, an objective optical system that images the illumination light transmitted through the specimen, An autofocus mechanism that detects a focus position at which the focus of the objective optical system is aligned with the sample based on the contrast of the image of the sample acquired by the objective optical system, and the illumination optical system includes the illumination light A mask that restricts the emission to the first emission region and the second emission region; and an emission region switching unit that selectively emits the illumination light from the first emission region and the second emission region.
  • the objective optical system includes a phase modulation region that is provided in a part of the pupil of the objective optical system and modulates the phase of the illumination light, and a light shielding region that is provided around the pupil and blocks the illumination light.
  • the region emits illumination light that irradiates the specimen in a direction along the optical axis of the objective optical system, and is disposed at a position where the emitted illumination light is projected onto the phase modulation region.
  • the emission area emits illumination light that is irradiated obliquely to the specimen with respect to the optical axis of the objective optical system, and is disposed at a position where a part of the emitted illumination light is projected onto the light shielding area.
  • the autofocus mechanism changes the relative position in the optical axis direction of the stage and the objective optical system while emitting the illumination light from the second emission area by the emission area switching means, and thereby a plurality of the relative positions.
  • An observation device that causes the objective optical system to image the illumination light at a position.
  • an image of the specimen is acquired by imaging the illumination light that has been irradiated onto the specimen on the stage from the illumination optical system and transmitted through the specimen with the objective optical system.
  • the emission area switching means between the first emission area and the second emission area, the illumination to the specimen is changed between phase difference illumination and oblique illumination. Can be switched between.
  • phase contrast illumination illumination light is irradiated from the first emission region onto the specimen in a direction along the optical axis of the objective optical system.
  • the illumination light refracted by the sample does not pass through the phase modulation region, and the illumination light not refracted by the sample passes through the phase modulation region and the phase is modulated.
  • the phase difference image of the sample is acquired by the objective optical system.
  • oblique illumination illumination light is irradiated from the second emission region to the specimen obliquely with respect to the optical axis.
  • the illumination light is partially vignetted by the light shielding area. Thereby, a three-dimensional sample image with a shadow is acquired by the objective optical system.
  • the autofocus mechanism changes the focus position of the objective optical system with respect to the specimen in the optical axis direction while illuminating the specimen with oblique illumination.
  • a plurality of images are captured, and a plurality of images having different contrasts are acquired.
  • the contrast peak of the image appears only at the focus position where the focal point of the objective optical system matches the sample. Therefore, the focus position can be accurately detected by a simple process of simply comparing the magnitudes of the contrast, and autofocus can be performed quickly.
  • the second emission region may be disposed radially outside the first emission region with respect to the optical axis of the objective optical system.
  • the illumination light emitted obliquely from the second emission region is changed to the second emission region. Can be incident on the objective optical system at the opposite edge.
  • the illumination optical system includes a collimating optical system that converts the illumination light emitted from the first emission region and the second emission region into parallel light, and the first emission region and The second emission region may be disposed on a focal plane of the collimating optical system.
  • the illumination optical system is opposed to the first emission region disposed in front of the mask and opposed to the first emission region, and opposed to the second emission region in front of the mask.
  • a second light source arranged, and the emission region switching means may turn on one of the first light source and the second light source and turn off the other. In this way, it is possible to switch between phase difference illumination and oblique illumination with a simple operation that simply switches on and off the two light sources.
  • the emission region switching means includes a limiting member that is disposed in front of the mask and restricts the passage of the illumination light to a predetermined passage region, and includes the first emission region and the second emission region.
  • the restricting member may be moved between two positions that are each independently located in the predetermined passage region.
  • FIG. 1 is an overall configuration diagram of an observation apparatus according to a first embodiment of the present invention. It is a figure which shows an example of arrangement
  • the observation apparatus 100 includes a horizontal stage 2 on which a container 1 containing a specimen X is placed, and an illumination light L ⁇ b> 1 on the specimen X disposed above the stage 2.
  • the illumination optical system 3 that irradiates L2, the objective optical system 4 that images illumination light L1 and L2 that are arranged below the stage 2 and transmitted through the sample X, and the focus of the objective optical system 4 are automatically focused on the sample X.
  • An autofocus (AF) mechanism 5 is provided.
  • the container 1 is, for example, a cell culture flask having a top plate 1a, and is formed from an optically transparent resin as a whole.
  • the specimen X is, for example, a cell in the liquid Y.
  • the stage 2 is formed from an optically transparent material (for example, glass).
  • the illumination optical system 3 includes phase difference illumination that irradiates the specimen X with the annular illumination light L1, and oblique illumination that irradiates the specimen X with the illumination light L2 obliquely with respect to the optical axis A of the objective optical system 4.
  • the illumination optical system 3 includes a first light source (emission area switching means) 61 for phase contrast illumination, a second light source (emission area switching means) 62 for oblique illumination, a first light source 61 and a second light source 61.
  • the first light source 61 is an LED array composed of a plurality of LED light sources arranged in a ring around the central axis, and is arranged so that the central axis coincides with the optical axis A of the objective optical system 4.
  • Each LED light source emits light in a direction along the optical axis A toward the stage 2, thereby forming an annular illumination light L ⁇ b> 1 as a whole.
  • the plurality of LED light sources may be arranged densely as shown in FIG. 2, but may be arranged at intervals in the circumferential direction as shown in FIG.
  • the second light source 62 is an LED light source that emits the second illumination light L2 in the direction along the optical axis A of the objective optical system 4 toward the stage 2.
  • the second light source 62 is disposed on the outer side in the radial direction of the first light source 61, and is disposed at a position separated from the optical axis A in the radial direction with respect to the first light source 61.
  • the illumination mask 8 is made of a plate-like member having a light shielding property, and is disposed substantially horizontally between the first light source 61 and the second light source 62 and the stage 2.
  • the illumination mask 8 may be formed integrally with the diffusion plate 7 on one surface of the diffusion plate 7, or may be formed as a separate member from the diffusion plate 7.
  • the illumination mask 8 includes a first emission region 91 that allows the first illumination light L1 to pass therethrough and a second emission region 92 that allows the second illumination light L2 to pass therethrough.
  • the first emission area 91 is arranged such that the central axis coincides with the optical axis A of the objective optical system 4, and includes a ring-shaped opening that faces the first light source 61 through the diffusion plate 7.
  • the second emission region 92 is arranged on the radially outer side of the first emission region 91, and includes a circular opening facing the second light source 62 through the diffusion plate 7.
  • the first illumination light L1 emitted from the first light source 61 and diffused by the diffusing plate 7 is restricted from passing through the illumination mask 8 to the first emission region 91 and travels from the first emission region 91 to the stage 2. And injected.
  • the second illumination light L2 emitted from the second light source 62 and diffused by the diffusion plate 7 is restricted from passing through the illumination mask 8 to the second emission region 92 and travels from the second emission region 92 to the stage 2. And injected.
  • the first light source 61 and the second light source 62 are controlled by the AF mechanism 5 so that one of them is turned on and the other is turned off. Injected from the injection areas 91 and 92.
  • the collimating lens 10 includes the illumination mask 8 and the objective so that the first emission area 91 and the second emission area 92 are positioned on the focal plane of the collimating lens 10 and are coaxial with the optical axis A. It is arranged between the optical system 4.
  • the first illumination light L1 that passes through the first emission region 91 and gradually diffuses is converted into substantially parallel light by the collimator lens 10, and is irradiated on the specimen X coaxially with the optical axis A.
  • the second illumination light L ⁇ b> 2 that passes through the second emission region 92 and gradually diffuses is converted into parallel light by the collimator lens 10, and the sample X is irradiated obliquely with respect to the optical axis A.
  • the objective optical system 4 includes an objective lens 11 that condenses the first illumination light L1 and the second illumination light L2 that have passed through the specimen X, a pupil modulation element 12 that is provided on the pupil plane of the objective optical system 4, and An imaging lens 13 that forms an image of the illumination light L1 whose phase is modulated by the pupil modulation element 12 and an imaging element 14 that captures an image formed by the imaging lens 13 are provided.
  • the pupil modulation element 12 has a ring-shaped phase modulation region 15 that modulates the phase of the illumination light L ⁇ b> 1 and a ring-shaped shape that is provided around the phase modulation region 15 and blocks the illumination light L ⁇ b> 1 and L ⁇ b> 2.
  • Light shielding region 16 constitutes an aperture stop (hereinafter also referred to as the aperture stop 16) that serves as a pupil of the objective optical system 4. Therefore, the phase modulation area 15 is provided in a part of the pupil.
  • the phase modulation region 15 is composed of an annular phase film centered on the optical axis A, and delays (or advances) the phase of the illumination light L1 by 1 ⁇ 4 wavelength, and at the same time attenuates the illumination light L1. ing.
  • the phase modulation area 15 is provided at a position optically conjugate with the first emission area 91. Further, when the first illumination light L1 is emitted from the first emission region 91 in a state where nothing is placed on the stage 2, the projection of the first illumination light L1 projected onto the pupil modulation element 12 The first emission region 91 is arranged so that the region matches the phase modulation region 15.
  • the light shielding region 16 is provided on the radially outer side of the phase modulation region 15 with a space in the radial direction between the light shielding region 16 and the phase modulation region 15.
  • the second emission region 92 is arranged so that the portion overlaps with the inner edge of the light shielding region 16 and is vignetted by the inner edge of the light shielding region 16.
  • FIG. 6 illustrates the action of oblique illumination.
  • the second illumination light L ⁇ b> 2 is irradiated from the collimating lens 10 to the specimen X from obliquely above.
  • the light rays a and e transmitted through the region where the sample X does not exist and the light beam c incident perpendicularly to the surface of the sample X pass through the vicinity of the inner edge of the aperture stop 16 without being refracted, thereby forming a bright image.
  • the light beam b transmitted through the left end of the sample X in FIG. 6 is refracted and vignetted by the inner edge of the aperture stop 16. Further, in FIG.
  • the light beam d transmitted through the right end of the sample X is refracted and passes through a region closer to the center of the aperture stop 16, and forms a bright image by the imaging lens 13.
  • an image of a high-contrast sample X that is shaded and looks three-dimensional is acquired.
  • the AF mechanism 5 controls a moving mechanism (not shown) that relatively moves the stage 2 and the objective optical system 4 in the direction of the optical axis A, and the light sources 61 and 62 to execute the AF operation shown in FIG.
  • the AF mechanism 5 turns off the first light source 61 and turns on the second light source 62, whereby the second illumination light L2 out of the first illumination light L1 and the second illumination light L2.
  • Only the sample X is irradiated (step S1).
  • the AF mechanism 5 moves the stage 2 and the objective optical system 4 relative to each other by the moving mechanism, thereby changing the position of the focal point of the objective optical system 4 with respect to the specimen X in the optical axis A direction.
  • the multiple shots are executed (step S2). Thereby, a plurality of images of the specimen X illuminated with oblique illumination are acquired by the image sensor 14.
  • the AF mechanism 5 measures the contrast of each of the plurality of images, specifies the image with the maximum contrast, and the relative position of the stage 2 and the objective optical system 4 when the specified image is acquired. Is determined as the focus position (step S3).
  • the AF mechanism 5 relatively moves the stage 2 and the objective optical system 4 to the determined focus position.
  • the AF mechanism 5 illuminates the sample X with the first illumination light L1 by turning on the first light source 61 and turning off the second light source 62 (step S4). Thereby, the phase difference image focused on the specimen X is acquired by the image sensor 14 (step S5).
  • Such an AF mechanism 5 is realized by, for example, a computer including a central processing unit (CPU), a main storage device, and an auxiliary storage device that stores an AF program for causing the CPU to execute the above AF operation.
  • CPU central processing unit
  • main storage device main storage device
  • auxiliary storage device that stores an AF program for causing the CPU to execute the above AF operation.
  • FIG. 9 shows the relationship between the contrast of the image and the shift amount of the relative position of the stage 2 and the objective optical system 4 from the focus position.
  • contrast peaks appear not only at the focus position but also at other positions as indicated by broken lines in FIG.
  • oblique illumination as indicated by the solid line in FIG. 9
  • the contrast is maximized at the focus position, and the amount of deviation from the focus position is increased. A single peak appears. Therefore, the relative position where the contrast is maximized can be detected as the focus position.
  • the second injection region 92 is circular, but the shape of the second injection region 92 is not limited to this.
  • the second emission region 92 may have a rectangular shape as shown in FIG. 10 or a semicircular shape as shown in FIG.
  • the two light sources 61 and 62 that respectively emit the first illumination light L1 and the second illumination light L2 are provided.
  • a halogen lamp is provided.
  • a single lamp light source 63 such as Reference numeral 17 denotes a collector lens that collects illumination light emitted from the lamp light source 63.
  • the illumination optical system 31 of this modification is Koehler illumination.
  • the illumination optical system 31 has an opening (passage region) 18 a that allows illumination light to pass between the collector lens 17 and the illumination mask 8, and goes to one of the first emission region 91 and the second emission region 92.
  • a movable shading plate (injection area switching means, limiting member) 18 that allows illumination light to pass through is provided.
  • the other part of the light shielding plate 18 is made of a light shielding material, and the passage of the illumination light through the light shielding plate 18 is limited only to the opening 18a.
  • the light-shielding plate 18 is located between an imaging position (upper stage) and an AF position (lower stage) where the first emission area 91 and the second emission area 92 are each independently located in the opening 18a. And is slidable in the horizontal direction.
  • the photographing position is a position where the first emission region 91 is located in the opening 18a and the second emission region 92 is covered by the light shielding plate 18 when viewed in the optical axis A direction.
  • the AF position is a position where the second emission region 92 is located in the opening 18a and the first emission region 91 is covered by the light shielding plate 18 when viewed in the optical axis A direction.
  • the AF mechanism 5 places the light shielding plate 18 at the AF position during AF, and places the light shielding plate 18 at the photographing position when photographing the phase difference image. Even in this case, it is possible to switch between the oblique illumination and the phase difference illumination by a simple operation by simply sliding the light shielding plate 18.
  • the observation apparatus 200 is different from the first embodiment in that the illumination optical system 32 is provided below the stage 2 as shown in FIG.
  • the first light source 61 surrounds the objective optical system 4 and is arranged so that the optical axis A of the objective optical system 4 and the central axis coincide.
  • the second light source 62 is disposed on the radially outer side of the first light source 61.
  • the first light source 61 and the second light source 62 emit illumination lights L1 and L2 in the direction along the optical axis A toward the stage 2, respectively.
  • the illumination mask 81 further has an opening 81a in which the objective optical system 4 is disposed at the center.
  • the illumination mask 81 is disposed between the first light source 61 and the second light source 62 and the stage 2 and surrounds the objective optical system 4.
  • the second injection region 92 may have the shape shown in FIG. 10 or FIG.
  • the collimating lens 101 is provided with an opening 101a at the center where the objective optical system 4 is disposed.
  • the collimating lens 101 surrounds the objective optical system 4 between the light sources 61 and 62 and the stage 2 and is arranged coaxially with the optical axis A of the objective optical system 4.
  • the first illumination light L1 and the second illumination light L2 that have passed through the first emission region 91 and the second emission region 92, respectively, are converted into substantially parallel light by the collimator lens 101, respectively, and light from the objective optical system 4
  • the light is emitted from the collimating lens 101 obliquely toward the axis A.
  • the first illumination light L1 and the second illumination light L2 are transmitted through the stage 2 and the bottom wall of the container 1, reflected by the top plate 1a of the container 1, and irradiated toward the specimen X from obliquely above.
  • the first illumination light L1 and the second illumination light L2 that have passed through the specimen X, the bottom wall of the container 1 and the stage 2 are collected by the objective lens 11, imaged by the imaging lens 13, and imaged by the imaging device 14. Taken.
  • the first emission region 91 is arranged so that the projection region of the first illumination light L1 projected onto the pupil modulation element 12 matches the phase modulation region 15.
  • the second emission region 92 is arranged so that a part of the light beam of the second illumination light L2 projected onto the pupil modulation element 12 overlaps with the inner edge of the light shielding region 16 and is vignetted by the inner edge of the light shielding region 16. ing.
  • the observation apparatus 200 can be reduced in size. There is an advantage that you can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

本発明の観察装置(100)は、標本(X)に照明光を照射する照明光学系(3)と、位相変調領域(15)および遮光領域(16)を有し標本(X)を透過した照明光を撮像する対物光学系(4)と、オートフォーカス機構(5)とを備え、照明光学系(4)は、照明光が位相変調領域(15)に投影される位置に配置された第1の射出領域(91)および照明光の一部が遮光領域(16)に投影される位置に配置された第2の射出領域(92)から択一的に照明光を射出し、オートフォーカス機構(5)は、第2の射出領域(92)から照明光を射出させながら対物光学系(4)に撮像させ、取得された画像のコントラストに基づいて対物光学系(4)のフォーカス位置を検出する。

Description

観察装置
 本発明は、観察装置に関し、特にオートフォーカス機能を有する位相差画像用の観察装置に関するものである。
 従来、オートフォーカス機能を有する位相差観察法を用いた観察装置が知られている(例えば、特許文献1および2参照。)。オートフォーカス動作においては、標本と対物レンズとの間の光軸方向の距離を変化させながら画像のコントラストを測定し、コントラストが最大となる対物レンズの位置を、対物レンズの焦点が標本に合うフォーカス位置として検出する。
 位相差観察法の場合、コントラストのピークが複数存在し、コントラストが最大となる位置がフォーカス位置であるとは限らないため、いずれのピークが真のフォーカス位置におけるものであるかを特定することが難しい。特許文献1では、所定の条件を満たすピークを真のフォーカス位置におけるピークとして特定している。特許文献2では、対物レンズの焦点面から前側および後側にそれぞれ焦点がずれた2枚の画像を取得し、2枚の画像のコントラストの差に基づいて真のフォーカス位置を特定している。
特告昭62-32761号公報 特許第3362928号公報
 しかしながら、特許文献1,2の観察装置の場合、オートフォーカスの処理が複雑となるうえ、処理に時間がかかり、フォーカス位置への位置合わせに時間を要するという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、簡単な処理で迅速にオートフォーカスを行うことができる観察装置を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、標本が載置されるステージと、該ステージ上の前記標本に照明光を照射する照明光学系と、前記標本を透過した前記照明光を撮像する対物光学系と、該対物光学系によって取得された前記標本の画像のコントラストに基づいて、前記対物光学系の焦点が前記標本に合うフォーカス位置を検出するオートフォーカス機構とを備え、前記照明光学系が、前記照明光の射出を第1の射出領域および第2の射出領域に制限するマスクと、前記照明光を前記第1の射出領域および前記第2の射出領域から択一的に射出させる射出領域切替手段とを備え、前記対物光学系が、該対物光学系の瞳の一部に設けられ前記照明光の位相を変調する位相変調領域と、前記瞳の周囲に設けられ前記照明光を遮る遮光領域とを備え、前記第1の射出領域は、前記標本に前記対物光学系の光軸に沿う方向に照射される照明光を射出するとともに、射出された照明光が前記位相変調領域に投影される位置に配置され、前記第2の射出領域は、前記標本に前記対物光学系の光軸に対して斜め方向に照射される照明光を射出するとともに、射出された照明光の一部が前記遮光領域に投影される位置に配置され、前記オートフォーカス機構は、前記射出領域切替手段によって前記第2の射出領域から前記照明光を射出させながら、前記ステージおよび前記対物光学系の光軸方向の相対位置を変化させて複数の前記相対位置で前記対物光学系に前記照明光を撮像させる観察装置である。
 本態様によれば、照明光学系からステージ上の標本に照射され該標本を透過した照明光が対物光学系によって撮像されることによって、標本の画像が取得される。このときに、照明光がマスクを通過する領域を第1の射出領域と第2の射出領域との間で射出領域切替手段により替えることで、標本への照明を位相差照明と偏斜照明との間で切り替えることができる。
 具体的には、位相差照明において、第1の射出領域から標本に対物光学系の光軸に沿う方向に照明光が照射される。対物光学系の瞳において、標本によって屈折された照明光は位相変調領域を透過せず、標本によって屈折されなかった照明光は位相変調領域を透過して位相が変調される。これにより、標本の位相差画像が対物光学系によって取得される。一方、偏斜照明において、第2の射出領域から標本に光軸に対して斜めに照明光が照射される。対物光学系の瞳において、照明光は遮光領域によって部分的にケラレる。これにより、影の付いた立体的な標本の画像が対物光学系によって取得される。
 この場合に、フォーカス位置を検出するオートフォーカス動作において、オートフォーカス機構は、偏斜照明で標本を照明しながら、標本に対する対物光学系の焦点の位置を光軸方向に変化させて対物光学系に複数回撮像させ、コントラストの異なる複数の画像を取得させる。偏斜照明において、画像のコントラストのピークは、対物光学系の焦点が標本に合うフォーカス位置にのみ現れる。したがって、コントラストの大小を比較するだけの簡単な処理でフォーカス位置を正確に検出することができ、迅速にオートフォーカスを行うことができる。
 上記態様においては、前記第2の射出領域が、前記第1の射出領域よりも前記対物光学系の光軸に対して径方向外側に配置されていてもよい。
 このようにすることで、第2の射出領域を対物光学系から径方向に離れた位置に配置することによって、第2の射出領域から斜めに射出される照明光を、第2の射出領域とは反対側の縁において対物光学系に入射させることができる。
 上記態様においては、前記照明光学系が、前記第1の射出領域および前記第2の射出領域から射出された前記照明光を平行光に変換するコリメート光学系を備え、前記第1の射出領域および前記第2の射出領域が、前記コリメート光学系の焦平面上に配置されていてもよい。
 このようにすることで、標本への照明光の照射角度を揃えることができる。
 上記態様においては、前記照明光学系が、前記マスクの前段において前記第1の射出領域と対向して配置される第1の光源と、前記マスクの前段において前記第2の射出領域と対向して配置される第2の光源とを備え、前記射出領域切替手段が、前記第1の光源および前記第2の光源のうち、一方を点灯させ、他方を消灯させてもよい。
 このようにすることで、2つの光源の点灯および消灯を切り替えるだけの簡単な動作で位相差照明と偏斜照明とを切り替えることができる。
 上記態様においては、前記射出領域切替手段が、前記マスクの前段に配置され前記照明光の通過を所定の通過領域に制限する制限部材を備え、前記第1の射出領域および前記第2の射出領域がそれぞれ単独で前記所定の通過領域に位置する2つの位置の間で前記制限部材を移動させてもよい。
 このようにすることで、制限部材を2つの位置の間で移動させるだけの簡単な動作で位相差照明と偏斜照明とを切り替えることができる。
 本発明によれば、簡単な処理で迅速にオートフォーカスを行うことができるという効果を奏する。
本発明の第1の実施形態に係る観察装置の全体構成図である。 図1の観察装置の照明光学系が備える光源の配置の一例を示す図である。 図1の観察装置の照明光学系が備える光源の配置の他の例を示す図である。 図1の観察装置の照明光学系が備える照明マスクを光軸に沿う方向に見た図である。 図1の観察装置の対物光学系が備える瞳変調素子を光軸に沿う方向に見た図である。 偏斜照明の作用を説明する図である。 偏斜照明によって照明された標本の画像の一例を示す図である。 図1の観察装置のオートフォーカス機構によるオートフォーカス動作を示すフローチャートである。 標本に対する対物光学系の焦点の位置と画像のコントラストとの関係を示すグラフである。 図4の照明マスクの変形例を示す図である。 図4の照明マスクのもう1つの変形例を示す図である。 図1の観察装置の変形例の全体構成図である。 図12の観察装置の照明光学系が備える遮光板の移動を説明する図である。 本発明の第2の実施形態に係る観察装置の全体構成図である。 図14の観察装置の照明光学系が備える照明マスクを光軸方向に見た図である。
(第1の実施形態)
 本発明の第1の実施形態に係る観察装置100について図1から図13を参照して説明する。
 本実施形態に係る観察装置100は、図1に示されるように、標本Xを収容した容器1を載置する水平なステージ2と、該ステージ2の上方に配置され標本Xに照明光L1,L2を照射する照明光学系3と、ステージ2の下方に配置され標本Xを透過した照明光L1,L2を撮像する対物光学系4と、対物光学系4の焦点を標本Xに自動的に合せるオートフォーカス(AF)機構5とを備えている。
 容器1は、例えば、天板1aを有する細胞培養フラスコであり、全体的に光学的に透明な樹脂から形成されている。標本Xは、例えば、液体Y中の細胞である。
 ステージ2は、光学的に透明な材質(例えば、ガラス)から形成されている。
 照明光学系3は、標本Xに輪帯状の照明光L1を照射する位相差照明と、対物光学系4の光軸Aに対して斜めに標本Xに照明光L2を照射する偏斜照明の2種類の方式を有する。照明光学系3は、位相差照明用の第1の光源(射出領域切替手段)61と、偏斜照明用の第2の光源(射出領域切替手段)62と、第1の光源61および第2の光源62から発せられた照明光L1,L2を拡散させる拡散板7と、該拡散板7によって拡散された照明光L1,L2の通過を制限する照明マスク(マスク)8と、該照明マスク8を通過した照明光L1,L2を平行光に変換するコリメートレンズ(コリメート光学系)10とを備えている。
 第1の光源61は、中心軸回りに環状に配列された複数のLED光源からなるLEDアレイであり、中心軸が対物光学系4の光軸Aと一致するように配置されている。各LED光源がステージ2に向かって光軸Aに沿う方向に光を発することによって、全体として輪帯状の照明光L1が形成される。複数のLED光源は、図2に示されるように、密に配列されていてもよいが、図3に示されるように、周方向に間隔をあけて配列されていてもよい。
 第2の光源62は、ステージ2に向かって対物光学系4の光軸Aに沿う方向に第2の照明光L2を発するLED光源である。第2の光源62は、第1の光源61の径方向外側に配置され、第1の光源61よりも光軸Aから径方向に離間した位置に配置されている。
 照明マスク8は、遮光性を有する板状の部材からなり、第1の光源61および第2の光源62と、ステージ2との間に略水平に配置されている。照明マスク8は、拡散板7の一面に該拡散板7と一体に形成されていてもよく、拡散板7とは別体の部材として形成されていてもよい。
 照明マスク8は、図4に示されるように、第1の照明光L1を通過させる第1の射出領域91と、第2の照明光L2を通過させる第2の射出領域92とを有している。第1の射出領域91は、中心軸が対物光学系4の光軸Aと一致するように配置され、拡散板7を介して第1の光源61と対向する輪帯状の開口部からなる。第2の射出領域92は、第1の射出領域91の径方向外側に配置され、拡散板7を介して第2の光源62と対向する円状の開口部からなる。
 第1の光源61から発せられ拡散板7によって拡散された第1の照明光L1は、照明マスク8の通過を第1の射出領域91に制限され、第1の射出領域91からステージ2に向かって射出される。第2の光源62から発せられ拡散板7によって拡散された第2の照明光L2は、照明マスク8の通過を第2の射出領域92に制限され、第2の射出領域92からステージ2に向かって射出される。
 ここで、後述するように、第1の光源61および第2の光源62は一方が点灯し、他方が消灯するようにAF機構5によって制御されることによって、照明光L1,L2は択一的に射出領域91,92から射出される。
 コリメートレンズ10は、該コリメートレンズ10の焦平面上に第1の射出領域91および第2の射出領域92が位置するように、かつ、光軸Aと同軸となるように、照明マスク8と対物光学系4との間に配置されている。これにより、第1の射出領域91を通過し次第に拡散する第1の照明光L1は、コリメートレンズ10によって略平行光に変換され、光軸Aと同軸で標本Xに照射される。一方、第2の射出領域92を通過し次第に拡散する第2の照明光L2は、コリメートレンズ10によって平行光に変換され、光軸Aに対して斜めに標本Xに照射される。
 対物光学系4は、標本Xを透過した第1の照明光L1および第2の照明光L2を集光する対物レンズ11と、対物光学系4の瞳面に設けられた瞳変調素子12と、該瞳変調素子12によって位相が変調された照明光L1を結像する結像レンズ13と、該結像レンズ13によって結ばれた像を撮影する撮像素子14とを備えている。
 瞳変調素子12は、図5に示されるように、照明光L1の位相を変調する輪帯状の位相変調領域15と、該位相変調領域15の周囲に設けられ照明光L1,L2を遮る輪帯状の遮光領域16とを有している。遮光領域16は、対物光学系4の瞳となる明るさ絞り(以下、明るさ絞り16ともいう。)を構成している。したがって、位相変調領域15は、瞳の一部に設けられている。
 位相変調領域15は、光軸Aを中心とする輪帯状の位相膜からなり、照明光L1の位相を1/4波長だけ遅らせる(または進ませる)と同時に、照明光L1を減衰させるようになっている。位相変調領域15は、第1の射出領域91と光学的に共役な位置に設けられている。また、ステージ2上に何も載置されていない状態で第1の射出領域91から第1の照明光L1を射出したときに、瞳変調素子12へ投影される第1の照明光L1の投影領域が位相変調領域15と合致するように、第1の射出領域91は配置されている。これにより、第1の射出領域91から射出された第1の照明光L1のうち、標本Xによって回折されない直接光が位相変調領域15に入射し、標本Xによって回折された回折光が位相変調領域15の内側または外側の領域を通過するようになっている。
 遮光領域16は、位相変調領域15との間に径方向に間隔をあけて位相変調領域15の径方向外側に設けられている。ステージ2上に何も載置されていない状態で第2の射出領域92から第2の照明光L2を射出したときに、瞳変調素子12へ投影される第2の照明光L2の光束の一部が遮光領域16の内縁と重なり該遮光領域16の内縁によってケラレるように、第2の射出領域92は配置されている。
 図6は、偏斜照明の作用を説明している。
 第2の照明光L2は、図6に示されるように、コリメートレンズ10から標本Xに斜め上方から照射される。標本Xが存在しない領域を透過した光線a,eおよび標本Xの表面に垂直に入射した光線cは、屈折されることなく、明るさ絞り16の内縁の近傍を通過するので、明るい像を結ぶ。一方、図6において標本Xの左端を透過した光線bは、屈折して明るさ絞り16の内縁によってケラレる。さらに、図6において標本Xの右端を透過した光線dは、屈折して明るさ絞り16のより中心に近い領域を通過し、結像レンズ13によって明るい像を結ぶ。
 上記の結果、図7に示されるように、影が付き立体的に見える高コントラストの標本Xの画像が取得される。
 AF機構5は、ステージ2および対物光学系4を光軸A方向に相対移動させる移動機構(図示略)および光源61,62を制御して、図8に示されるAF動作を実行する。
 AF動作において、AF機構5は、第1の光源61を消灯させ、第2の光源62を点灯させることによって、第1の照明光L1および第2の照明光L2のうち第2の照明光L2のみを標本Xに照射する(ステップS1)。続いて、AF機構5は、移動機構によってステージ2および対物光学系4を相対移動させることにより標本Xに対する対物光学系4の焦点の位置を光軸A方向に変化させながら、撮像素子14に複数回撮影を実行させる(ステップS2)。これにより、偏斜照明で照明された標本Xの複数枚の画像が撮像素子14によって取得される。
 次に、AF機構5は、複数枚の画像の各々のコントラストを測定し、コントラストが最大となる画像を特定し、特定された画像が取得されたときのステージ2および対物光学系4の相対位置をフォーカス位置に決定する(ステップS3)。次に、AF機構5は、決定されたフォーカス位置にステージ2および対物光学系4を相対移動させる。次に、AF機構5は、第1の光源61を点灯させ、第2の光源62を消灯させることによって、第1の照明光L1を標本Xに照射する(ステップS4)。これにより、標本Xに焦点が合った位相差画像が撮像素子14によって取得される(ステップS5)。
 このようなAF機構5は、例えば、中央演算処理装置(CPU)と、主記憶装置と、上記のAF動作をCPUに実行させるためのAFプログラムを格納した補助記憶装置とを備えるコンピュータによって実現される。
 図9は、画像のコントラストと、ステージ2および対物光学系4の相対位置のフォーカス位置からのずれ量との関係を示している。位相差照明を用いた場合、図9において破線で示されるように、フォーカス位置のみならず他の位置にもコントラストのピークが現れる。これに対し、偏斜照明を用いた場合、図9において実線で示されるように、フォーカス位置においてコントラストが最大となり、フォーカス位置からのずれ量が大きくになるしたがってコントラストが低下し、フォーカス位置のみに単一のピークが現れる。したがって、コントラストが最大となる相対位置をフォーカス位置として検出することができる。
 このように、本実施形態によれば、AF動作において偏斜照明のみを用いており、さらに、偏斜照明と位相差照明との切り替えは2つの光源61,62の点灯および消灯を切り替えるだけの簡単な動作で行われる。これにより、複雑な処理を必要とすることなく正確にかつ迅速にフォーカス位置を検出することができ、迅速にAF動作を行うことができるという利点がある。
 本実施形態においては、第2の射出領域92が円状であることとしたが、第2の射出領域92の形状はこれに限定されるものではない。例えば、第2の射出領域92は、図10に示されるような矩形状であってもよく、図11に示されるような半円状であってもよい。
 本実施形態においては、第1の照明光L1および第2の照明光L2をそれぞれ発する2つの光源61,62を備えることとしたが、これに代えて、図12に示されるように、ハロゲンランプのような単一のランプ光源63を用いてもよい。符号17は、ランプ光源63から発せられる照明光を集光させるコレクタレンズである。図12から分かるように、本変形例の照明光学系31は、ケーラー照明となっている。
 照明光学系31は、コレクタレンズ17と照明マスク8との間に、照明光を通過させる開口部(通過領域)18aを有し第1の射出領域91および第2の射出領域92のいずれかへ照明光を通過させる可動式の遮光板(射出領域切替手段、制限部材)18を備える。遮光板18のその他の部分は遮光性の材料から形成されており、照明光の遮光板18の通過は開口部18aのみに制限されている。
 遮光板18は、図13に示されるように、第1の射出領域91および第2の射出領域92がそれぞれ単独で開口部18aに位置する撮影位置(上段)とAF位置(下段)との間で水平方向にスライド可能に設けられている。撮影位置は、光軸A方向に見たときに、第1の射出領域91が開口部18aに位置し、第2の射出領域92が遮光板18によって覆われる位置である。AF位置は、光軸A方向に見たときに、第2の射出領域92が開口部18aに位置し、第1の射出領域91が遮光板18によって覆われる位置である。AF機構5は、光源61,62を点灯および消灯させることに代えて、AF時に遮光板18をAF位置に配置させ、位相差画像の撮影時に遮光板18を撮影位置に配置させる。
 このようにしても、遮光板18をスライドさせるだけの簡単な動作によって偏斜照明と位相差照明とを切り替えることができる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る観察装置200について図14および図15を参照して説明する。
 本実施形態においては、第1の実施形態と異なる点において主に説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る観察装置200は、図14に示されるように、照明光学系32がステージ2の下方に設けられている点において、第1の実施形態と異なっている。
 第1の光源61は、対物光学系4を囲み、対物光学系4の光軸Aと中心軸とが一致するように配置されている。第2の光源62は、第1の光源61の径方向外側に配置されている。第1の光源61および第2の光源62は、ステージ2に向かって光軸Aに沿う方向に照明光L1,L2をそれぞれ発する。
 照明マスク81は、図15に示されるように、対物光学系4が配置される開口部81aを中心部にさらに有している。照明マスク81は、第1の光源61および第2の光源62と、ステージ2との間に配置され、対物光学系4を囲んでいる。第2の射出領域92は、図10または図11に示される形状であってもよい。
 コリメートレンズ101は、対物光学系4が配置される開口部101aが中心部に設けられている。コリメートレンズ101は、光源61,62とステージ2との間に、対物光学系4を囲み該対物光学系4の光軸Aと同軸に配置されている。
 第1の射出領域91および第2の射出領域92をそれぞれ通過した第1の照明光L1および第2の照明光L2は、コリメートレンズ101によって略平行光にそれぞれ変換され、対物光学系4の光軸Aに向かって斜めにコリメートレンズ101から射出される。その後、第1の照明光L1および第2の照明光L2は、ステージ2および容器1の底壁を透過し、容器1の天板1aにおいて反射され、標本Xに向かって斜め上方から照射される。標本X、容器1の底壁およびステージ2を透過した第1の照明光L1および第2の照明光L2は、対物レンズ11によって集光され、結像レンズ13によって結像され、撮像素子14によって撮影される。
 ここで、瞳変調素子12へ投影される第1の照明光L1の投影領域が位相変調領域15と合致するように、第1の射出領域91は配置されている。また、瞳変調素子12へ投影される第2の照明光L2の光束の一部が遮光領域16の内縁と重なり該遮光領域16の内縁によってケラレるように、第2の射出領域92は配置されている。
 本実施形態のその他の構成および作用は、第1の実施形態と同一であるので説明を省略する。
 本実施形態によれば、第1の実施形態の効果に加えて、照明光学系32および対物光学系4の両方がステージ2の下方に配置されているので、観察装置200を小型化することができるという利点がある。
100,200 観察装置
1 容器
1a 天板
2 ステージ
3,31,32 照明光学系
4 対物光学系
5 オートフォーカス機構
61,62,63 光源
7 拡散板
8,81 照明マスク
91 第1の射出領域
92 第2の射出領域
10,101 コリメートレンズ(コリメート光学系)
11 対物レンズ
12 瞳変調素子
13 結像レンズ
14 撮像素子
15 位相変調領域
16 遮光領域、明るさ絞り
17 コレクタレンズ
18 遮光板(射出領域切替手段、制限部材)
18a 開口部(通過領域)

Claims (5)

  1.  標本が載置されるステージと、
     該ステージ上の前記標本に照明光を照射する照明光学系と、
     前記標本を透過した前記照明光を撮像する対物光学系と、
     該対物光学系によって取得された前記標本の画像のコントラストに基づいて、前記対物光学系の焦点が前記標本に合うフォーカス位置を検出するオートフォーカス機構とを備え、
     前記照明光学系が、前記照明光の射出を第1の射出領域および第2の射出領域に制限するマスクと、前記照明光を前記第1の射出領域および前記第2の射出領域から択一的に射出させる射出領域切替手段とを備え、
     前記対物光学系が、該対物光学系の瞳の一部に設けられ前記照明光の位相を変調する位相変調領域と、前記瞳の周囲に設けられ前記照明光を遮る遮光領域とを備え、
     前記第1の射出領域は、前記標本に前記対物光学系の光軸に沿う方向に照射される照明光を射出するとともに、射出された照明光が前記位相変調領域に投影される位置に配置され、
     前記第2の射出領域は、前記標本に前記対物光学系の光軸に対して斜め方向に照射される照明光を射出するとともに、射出された照明光の一部が前記遮光領域に投影される位置に配置され、
     前記オートフォーカス機構は、前記射出領域切替手段によって前記第2の射出領域から前記照明光を射出させながら、前記ステージおよび前記対物光学系の光軸方向の相対位置を変化させて複数の前記相対位置で前記対物光学系に前記照明光を撮像させる観察装置。
  2.  前記第2の射出領域が、前記第1の射出領域よりも前記対物光学系の光軸に対して径方向外側に配置されている請求項1に記載の観察装置。
  3.  前記照明光学系が、前記第1の射出領域および前記第2の射出領域から射出された前記照明光を平行光に変換するコリメート光学系を備え、
     前記第1の射出領域および前記第2の射出領域が、前記コリメート光学系の焦平面上に配置されている請求項1または請求項2に記載の観察装置。
  4.  前記照明光学系が、前記マスクの前段において前記第1の射出領域と対向して配置される第1の光源と、前記マスクの前段において前記第2の射出領域と対向して配置される第2の光源とを備え、
     前記射出領域切替手段が、前記第1の光源および前記第2の光源のうち、一方を点灯させ、他方を消灯させる請求項1から請求項3のいずれかに記載の観察装置。
  5.  前記射出領域切替手段が、前記マスクの前段に配置され前記照明光の通過を所定の通過領域に制限する制限部材を備え、前記第1の射出領域および前記第2の射出領域がそれぞれ単独で前記所定の通過領域に位置する2つの位置の間で前記制限部材を移動させる請求項1から請求項3のいずれかに記載の観察装置。
PCT/JP2016/070472 2016-07-11 2016-07-11 観察装置 WO2018011869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018527273A JP6704049B2 (ja) 2016-07-11 2016-07-11 観察装置および標本観察方法
PCT/JP2016/070472 WO2018011869A1 (ja) 2016-07-11 2016-07-11 観察装置
US16/238,585 US11016279B2 (en) 2016-07-11 2019-01-03 Observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070472 WO2018011869A1 (ja) 2016-07-11 2016-07-11 観察装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/238,585 Continuation US11016279B2 (en) 2016-07-11 2019-01-03 Observation device

Publications (1)

Publication Number Publication Date
WO2018011869A1 true WO2018011869A1 (ja) 2018-01-18

Family

ID=60951680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070472 WO2018011869A1 (ja) 2016-07-11 2016-07-11 観察装置

Country Status (3)

Country Link
US (1) US11016279B2 (ja)
JP (1) JP6704049B2 (ja)
WO (1) WO2018011869A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220670A1 (ja) * 2017-05-29 2018-12-06 オリンパス株式会社 観察装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268197A (ja) * 1996-09-19 1998-10-09 Olympus Optical Co Ltd 光制御部材を有する光学顕微鏡
JP2006174764A (ja) * 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
JP2015082100A (ja) * 2013-10-24 2015-04-27 株式会社キーエンス 顕微鏡およびその制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1243903A (fr) * 1959-09-09 1960-10-21 Saint Gobain Filtre et procédé pour l'observation des objets de phase
US4342905A (en) 1979-08-31 1982-08-03 Nippon Kogaku K.K. Automatic focusing device of a microscope
JPS6232761A (ja) 1985-08-05 1987-02-12 Nec Corp 密着形イメ−ジセンサ
JP3362928B2 (ja) 1993-10-05 2003-01-07 オリンパス光学工業株式会社 自動焦点検出装置
JPH07134243A (ja) 1993-11-09 1995-05-23 Olympus Optical Co Ltd 自動焦点検出装置および位相差検鏡用自動焦点検出装置
JP2000010013A (ja) * 1998-06-24 2000-01-14 Nikon Corp 位相差顕微鏡及び重ね合わせ測定装置
JP3544914B2 (ja) * 2000-03-17 2004-07-21 住友化学工業株式会社 光学顕微鏡装置および顕微鏡観察方法。
JP4883086B2 (ja) * 2006-07-04 2012-02-22 株式会社ニコン 顕微鏡装置
JP5147645B2 (ja) * 2008-10-30 2013-02-20 キヤノン株式会社 撮像装置
JP5757458B2 (ja) * 2011-04-12 2015-07-29 株式会社ニコン 顕微鏡システム、サーバー及びプログラム
JP5969867B2 (ja) * 2012-09-11 2016-08-17 株式会社キーエンス 光学顕微鏡
JP6268826B2 (ja) * 2013-09-04 2018-01-31 株式会社ニコン 構造化照明装置及び構造化照明顕微鏡装置
JP2015072303A (ja) 2013-10-01 2015-04-16 京セラ株式会社 顕微鏡
JP6219214B2 (ja) 2014-03-31 2017-10-25 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP6031731B2 (ja) * 2014-07-18 2016-11-24 レーザーテック株式会社 検査装置及びオートフォーカス方法
EP3211469B1 (en) 2015-03-31 2019-09-25 Olympus Corporation Observation device and observation method
DE112015007195T5 (de) 2015-12-18 2018-08-30 Olympus Corporation Beobachtungsvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268197A (ja) * 1996-09-19 1998-10-09 Olympus Optical Co Ltd 光制御部材を有する光学顕微鏡
JP2006174764A (ja) * 2004-12-22 2006-07-06 Olympus Corp 透過照明装置、それを備えた顕微鏡、及び透過照明方法
JP2015082100A (ja) * 2013-10-24 2015-04-27 株式会社キーエンス 顕微鏡およびその制御方法

Also Published As

Publication number Publication date
US20190137749A1 (en) 2019-05-09
US11016279B2 (en) 2021-05-25
JP6704049B2 (ja) 2020-06-03
JPWO2018011869A1 (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6635052B2 (ja) 構造化照明顕微鏡、及び観察方法
JP6633650B2 (ja) 観察装置
WO2016158780A1 (ja) 観察装置および観察方法
JP4538633B2 (ja) Dlp式スリット光走査顕微鏡
EP2315065B1 (en) Microscope
JP6206560B2 (ja) システム
JP6370626B2 (ja) 照明光学系、照明装置、及び照明光学素子
JP2017167535A (ja) ライトフィールド顕微鏡および照明方法
JP6619025B2 (ja) 観察装置
US9715096B2 (en) Microscope apparatus
WO2018220670A1 (ja) 観察装置
US20090073555A1 (en) Scanning microscope and method for manipulating samples by means of a manipulating light beam in a scanning microscope
JP6226577B2 (ja) 共焦点レーザ走査型顕微鏡
JP2007033381A (ja) 光学式検査装置及びその照明方法
WO2018011869A1 (ja) 観察装置
JP2009288075A (ja) 収差測定装置及び収差測定方法
EP3282300B1 (en) Microscope
JP2021085815A (ja) 光照射装置、検査システム、及び、光照射方法
JP2019056734A (ja) 多点共焦点顕微鏡
JP2012141452A (ja) 自動合焦機構および顕微鏡装置
JP6619026B2 (ja) 観察装置
JP2006010316A (ja) 検査用光源装置
JP2007285945A (ja) 赤外顕微鏡
JP2006163122A (ja) 光学顕微鏡及びオートフォーカス方法ならびにそれを用いた観察方法。
KR20190023324A (ko) 다중모드 영상의 획득이 가능한 영상 획득 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908773

Country of ref document: EP

Kind code of ref document: A1