WO2014041820A1 - 顕微鏡 - Google Patents
顕微鏡 Download PDFInfo
- Publication number
- WO2014041820A1 WO2014041820A1 PCT/JP2013/005454 JP2013005454W WO2014041820A1 WO 2014041820 A1 WO2014041820 A1 WO 2014041820A1 JP 2013005454 W JP2013005454 W JP 2013005454W WO 2014041820 A1 WO2014041820 A1 WO 2014041820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- image
- microscope
- lens
- sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0088—Inverse microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/241—Devices for focusing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
- G02B21/025—Objectives with variable magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/14—Condensers affording illumination for phase-contrast observation
Definitions
- the present invention relates to a microscope that captures an image of a sample placed on a stage with an image sensor and displays the image on a display device such as a monitor.
- this type of microscope is used, for example, when observing cells such as keratin collected from the skin in order to select cosmetics suitable for the skin at the site of cosmetic sales.
- a light source for artificially irradiating light to a sample is provided below a stage on which the sample is arranged, and attached to a revolver above the stage.
- a digital camera is attached to the upper end of the observation optical system, and an image of the sample magnified by the observation optical system is picked up by the digital camera and displayed on the monitor of the personal computer.
- Patent Document 2 describes a microscope in which an image of a sample held in a holder unit is enlarged by an imaging optical system, and this is photographed by a camera unit and displayed on a display unit.
- the holder unit is mounted on an XY stage unit movable in an XY plane orthogonal to the direction of the optical axis of the imaging optical system, and the operation of the XY stage unit is controlled by the control unit, thereby displaying The position of the sample displayed on the display can be adjusted.
- Patent Document 3 there is known a phase contrast microscope capable of visualizing and observing a colorless and transparent specimen such as a living cell by utilizing light diffraction and interference. Yes.
- Cosmetics may be sold not only at stores but also by door-to-door sales. In this case, in order to observe cells such as keratin collected from the customer's skin at the visiting site, it is necessary to carry the microscope to the visiting site.
- the conventional microscope since the conventional microscope has a configuration in which the observation optical system and the digital camera are arranged in a straight line above the stage, its height dimension is large.
- the base is formed large and heavy in order to stably support the weight of the observation optical system and digital camera arranged above the stage. Therefore, it is not easy to carry a conventional microscope.
- An object of the present invention is to provide a microscope that is lightweight and compact and easy to carry.
- this type of microscope is configured so that the magnification of the sample image by the imaging optical system, that is, the magnification of the microscope can be changed, but in the conventional microscope, the moving speed of the stage driven by the driving means is the magnification. Regardless of the size, it was fixed. Therefore, as the magnification increases, the moving speed of the sample in the screen of the display device when the stage is moved increases, and it is difficult to adjust the position of the sample at high magnification.
- another object of the present invention is to provide a microscope capable of easily adjusting the position of the sample displayed on the display device regardless of the magnification.
- Still another object of the present invention made in view of such circumstances is to provide a phase contrast microscope that automatically performs focusing adjustment.
- the microscope according to the present invention is a microscope that captures an image of a sample with an imaging device and outputs the image to a display device.
- the microscope is provided on a horizontal stage on which the sample is arranged, and above the stage.
- the image lens has a magnification changing function
- the imaging lens is disposed between the lower mirror and the image sensor with the axial direction horizontal
- the illumination optical system, the stage, and the observation optical system are co-located. It is arranged in the shape of a letter.
- the microscope according to the present invention described in ⁇ 1> includes a ring diaphragm disposed in the illumination optical system and a phase plate disposed at a position optically conjugate with the ring diaphragm of the observation optical system. It is preferable to provide.
- an entrance pupil position of the imaging lens coincides with or substantially coincides with an exit pupil position of the objective lens.
- the imaging lens is disposed in the first group lens adjacent to the lower mirror, closer to the imaging element than the first group lens.
- a second group lens that can move relative to the first group lens in the axial direction, and an axial direction relative to the first group lens and the second group lens that is disposed closer to the imaging element than the second group lens.
- the relay lens has a third group lens that is relatively movable.
- the imaging element has a 1/4 inch size.
- the light source and the illumination optical system constitute Koehler illumination.
- the microscope according to the present invention described in ⁇ 1> preferably includes driving means for moving the stage along the optical axis direction.
- the microscope according to the present invention described in ⁇ 7> includes an input unit that inputs instruction information for instructing a moving direction of the stage, and an operation of the driving unit based on the instruction information input to the input unit.
- the input unit has an operation key capable of inputting a moving direction of the stage.
- the microscope according to the invention described in ⁇ 9> preferably includes a touch panel on which the display device displays an enlarged image of the sample and operation keys that can indicate the moving direction of the stage. .
- the display device has a touch panel capable of displaying an enlarged image of the sample and instructing a moving direction of the stage by a drag operation.
- the touch panel functions as a magnification changing unit that increases the magnification of the observation optical system by a pinch-out operation and decreases the magnification of the observation optical system by a pinch-in operation. Is preferred.
- the stage can be displaced along the optical path of the light source between the condenser lens and the objective lens, and the optical image of the sample is focused on the image plane. It is preferable to include a control unit that displaces the stage along the optical path.
- the microscope according to the invention described in ⁇ 13> further includes an input unit that detects an input for displacing the stage, and the control unit moves the stage along the optical path based on the detection of the input unit. It is also possible to displace.
- the microscope of the present invention described in ⁇ 13> preferably focuses the optical image by a contrast detection method.
- the microscope according to the present invention described in ⁇ 13> preferably focuses the optical image by a phase difference detection method.
- the microscope of the present invention since the illumination optical system, the stage, and the observation optical system are arranged in a U-shape, the microscope can be easily carried with a light and compact configuration.
- the microscope of the present invention by setting the moving speed of the stage driven by the driving means to a moving speed inversely proportional to the magnification when the magnification of the image displayed on the display device is changed, Regardless of the magnification, the moving speed of the sample within the screen of the display device when the stage is moved is constant, so that it is possible to easily adjust the position of the sample displayed on the display device.
- FIG. 1 It is a perspective view of the microscope which is one embodiment of the present invention. It is the side view which removed the side cover from the microscope shown in FIG. It is explanatory drawing which shows typically the optical system of the microscope shown in FIG. It is a front view which shows the display of the monitor shown in FIG. It is a perspective view of the microscope which is other embodiment of this invention. It is the side view which removed the side cover from the microscope shown in FIG. It is a front view which shows the display of the monitor shown in FIG. It is a side view of the phase contrast microscope concerning other embodiments of the present invention. It is a block diagram which shows typically the structure of the microscope shown in FIG. It is a screen displayed on a display device including a captured image and operation keys.
- a microscope 1 according to an embodiment of the present invention shown in FIG. 1 is an optical microscope, and is used, for example, when a cell such as a keratin collected from the skin is used as a sample and is visually enlarged and observed. It is done.
- the microscope 1 is housed in a case (housing) 2 formed of a resin material such as plastic, a metal plate, or the like to form one unit, and is a portable type that can be carried together with the case 2. .
- the sample insertion port 3 is provided in the side cover 2a of the case 2.
- a sample constituted by the preparation 4 is inserted into the sample insertion port 3.
- the microscope 1 enlarges the image of the sample, and an enlarged image of the sample is displayed on the monitor 5 that is a display device.
- the microscope 1 is a monitor type capable of observing an enlarged image of the sample on the monitor 5.
- the microscope 1 is used in a normal posture in which the side cover 2a is vertical and the preparation 4 inserted into the sample insertion port 3 is horizontal, as shown in FIGS. In the following description, it is assumed that the microscope 1 is in a normal posture.
- the microscope 1 includes a stage device 6, an illumination device 7, an observation optical device 8, an image sensor 9, and a control board 10.
- the stage device 6 includes a support frame 11 fixed to the case 2 and a stage 12 accommodated in the support frame 11.
- An opening 11a connected to the sample insertion port 3 of the case 2 is provided on the side surface of the support frame 11, and the preparation 4 inserted from the sample insertion port 3 (see FIG. 1) of the case 2 passes through the opening 11a.
- the stage 12 that is, the sample is placed on the stage 12 by inserting the preparation 4 from the sample insertion port 3.
- the stage 12 that is, the surface on which the preparation 4 of the stage 12 is arranged is horizontal.
- a drive unit (drive means) 13 is attached to the support frame 11.
- the stage 12 is driven by the drive unit 13 and can move in the horizontal direction (XY direction) and the vertical direction (Z-axis direction).
- the preparation 4 placed on the stage 12 also moves with the stage 12.
- the drive unit 13 for example, three electric motors (not shown) corresponding to XYZ directions are provided, and the rotational motions of these electric motors are converted into linear motions in each direction by a screw mechanism and transmitted to the stage 12.
- the illumination device 7 includes a light source 14 and an illumination optical system 15 and is disposed above the stage 12.
- the illumination device 7, that is, the light source 14 and the illumination optical system 15 constitute Koehler illumination that uniformly irradiates light toward the sample.
- the illumination optical system 15 includes a cylindrical illumination case 16 that is arranged with the axial direction horizontal.
- the connection adapter 17 and the upper mirror unit 18 are fixed above the support frame 11, and the illumination case 16 is fixed to the upper mirror unit 18 at one end thereof.
- the light source 14 is attached to the end of the illumination case 16 that is opposite to the upper mirror unit 18.
- a light emitting diode (LED: Light Emitting Diode) 14b mounted on the substrate 14a is used as the light source 14, but a light bulb using a filament can also be used.
- a light source lens 19 and a field lens 20 adjacent to the light source 14 are disposed inside the illumination case 16, and a plate-shaped field stop 21 is disposed between the light source lens 19 and the field lens 20.
- a condenser lens 22 is disposed above the stage 12 so that the axial direction is vertical, that is, orthogonal to the axial direction of the illumination case 16.
- the condenser lens 22 is fixed to the connection adapter 17.
- the illumination optical system 15 includes the light source lens 19, the field stop 21, the field lens 20, and the condenser lens 22, and is provided between the light source 14 and the stage 12.
- the upper mirror unit 18 is provided with an upper mirror 23 that is inclined 45 degrees with respect to both the direction perpendicular to the stage 12 and the axial direction of the illumination case 16.
- the optical axis of light irradiated horizontally from the light source 14 into the illumination case 16 is reflected by the upper mirror 23 between the light source 14 and the stage 12 and bent 90 degrees downward. Therefore, the light irradiated from the light source 14 is reflected by the upper mirror 23 and is irradiated perpendicularly to the sample placed on the stage 12.
- the illuminating device 7 is configured as an L-shaped Koehler illumination in which the direction of the optical axis is bent 90 degrees by the upper mirror 23 between the light source 14 and the stage 12.
- the observation optical device 8 that is an observation optical system includes an objective lens 24 and an imaging lens 25 having a magnification changing function, and is disposed below the stage 12.
- the objective lens 24 is disposed coaxially with the condenser lens 22 on the lower side of the stage 12.
- the objective lens 24 is fixed to the support frame 11 and the distance from the condenser lens 22 is constant.
- the imaging lens 25 is a relay lens that employs a zoom optical system for imaging the image obtained by the objective lens 24 on the image sensor 9 by changing the magnification.
- this optical system for example, the first group lens 28 is fixed, and the second group lens 29A and the third group lens 29B are movable relative to the first group lens 28 in the axial direction, respectively.
- a zoom lens having a zoom structure can be employed.
- This imaging lens 25 includes a fixed lens frame 25c in which the position of the first group lens 28 is fixed, and a second group lens 29A and a third group lens 29B that can be moved to a desired position in the axial direction in accordance with a zooming operation. And a held cam frame 25b.
- the imaging lens 25 further incorporates an image sensor mounting frame 25a that is fixed to the end of the image sensor 9 and is movable in the axial direction in response to a zooming operation.
- an image sensor mounting frame 25a that is fixed to the end of the image sensor 9 and is movable in the axial direction in response to a zooming operation.
- the cam frame 25b rotates by being driven by an electric motor (not shown)
- the second group lens 29A and the third group lens 29B move relative to each other according to a desired magnification
- the image sensor 9 also includes the image sensor mounting frame 25a.
- the image of the sample that has passed through the objective lens 24 can be formed on the image sensor 9 at an arbitrary magnification.
- the imaging lens 25 has a configuration in which the first group lens 28 is fixed and the second group lens 29A and the third group lens 29B are movable. All of the first group lens 28, the second group lens 29A, and the third group lens 29B may be movable.
- the lower mirror unit 26 is fixed below the support frame 11, and the imaging lens 25 is fixed to the lower mirror unit 26 at one end with the axial direction being horizontal. As described above, the imaging lens 25 is disposed below the stage 12 and at the lowermost part of the case 2 with the axial direction thereof being horizontal.
- the lower mirror unit 26 is provided with a lower mirror 27 that is inclined by 45 degrees with respect to both the direction perpendicular to the stage 12 and the axial direction of the imaging lens 25.
- the optical axis of the light that has passed through the objective lens 24 is reflected by the lower mirror 27 and bent 90 degrees between the objective lens 24 and the imaging lens 25, and the direction along the axial direction of the imaging lens 25.
- the first group lens 28 is disposed adjacent to the lower mirror 27.
- the image sensor 9 is fixed to the end of the lens frame 25a, that is, the end opposite to the lower mirror unit 26.
- a CCD image sensor Charge ⁇ ⁇ ⁇ ⁇ CoupledCharDevice Image Sensor
- a CMOS image sensor Complementary Metal Oxide Semiconductor Image Sensor mounted on the substrate 30 is used as the image pickup device 9, but other image pickup devices can also be used. .
- the observation optical device 8 having the image pickup device 9 fixed to the end in this way has an L-shape in which the direction of the optical axis is bent 90 degrees by the lower mirror 27 between the stage 12 and the image pickup device 9. It is configured.
- the imaging lens 25 is horizontally arranged by bending the optical axis by 90 degrees with the lower mirror 27, and therefore the imaging element 9 fixed to the end of the imaging lens 25.
- the substrate 30 on which this is mounted can be arranged vertically.
- the imaging element 9 is not limited to a configuration that is fixed to the end of the imaging lens 25, and the distance of the objective lens 24 along the optical axis is constant (fixed) with respect to the objective lens 24. It can also be fixed to the inner surface or the like. By adopting a structure in which the image pickup device 9 is fixed to the inner surface of the case 2 or the like, it is possible to suppress the vibration generated during the operation of the imaging lens 25 from being applied to the image pickup device 9 and improve the durability of the microscope 1. it can.
- a ring diaphragm 31 is disposed in the illumination optical system 15, and a phase plate 32 is disposed in the observation optical device 8.
- the ring diaphragm 31 is disposed between the upper mirror 23 and the condenser lens 22 at a position that coincides with the focal point of the condenser lens 22.
- the phase plate 32 is fixed at the exit pupil position of the objective lens 24 and is disposed at a position optically conjugate with the ring diaphragm 31 between the objective lens 24 and the lower mirror 27. ing. Therefore, the phase difference of the sample can be observed with the microscope 1 by using the illumination device 7, the ring diaphragm 31, and the phase plate 32 configured in Koehler illumination. That is, this microscope 1 can be used as a phase contrast microscope.
- the microscope 1 By using the microscope 1 as a phase contrast microscope, cells such as keratin collected from the skin can be clearly observed by converting the phase difference of light into contrast without staining.
- the objective lens 24 used in the phase contrast microscope employs an afocal optical system in which the emitted light is balanced, and includes a phase difference ring 33 in addition to the phase plate 32 on the emission side.
- the imaging lens 25 is designed so that the presence of the phase difference ring 33 does not affect the image formed on the imaging surface.
- the imaging lens 25 having a zooming function in the microscope 1 of the present invention has a mirror 27 for bending the optical axis by 90 degrees between the objective lens 24 and this arrangement space is ensured.
- the entrance pupil position P1 of the imaging lens 25 is positioned on the side of the objective lens 24 with respect to the mirror 27 and substantially coincides with the phase difference ring 33 provided on the objective lens 24, and the phase plate 32
- the conjugate point P2 is designed so as to be positioned on the right side in the drawing from the imaging surface of the imaging device 9, that is, on the side opposite to the imaging lens 25.
- a zoom optical system having a focal length of 23 mm to 160 mm is used as the imaging lens 25, and the imaging lens 25 is positioned 20 mm from the object side (objective lens 24 side) lens front surface of the first group lens 28. It is designed to position the entrance pupil position.
- the phase difference ring 33 is provided at the exit pupil position of the objective lens 24. Therefore, the entrance pupil position P1 of the imaging lens 25 matches or substantially matches the exit pupil position of the objective lens 24.
- a small 1 ⁇ 4 inch size imaging device 9 is used, and the magnification of the imaging lens 25 is reduced while the focal length of the imaging lens 25 is short, and the magnification operation is performed. Therefore, the size of the microscope 1 can be reduced and a wide range of magnification can be ensured without changing the position of the entrance pupil.
- the magnification of the microscope 1 is determined by the product of the optical magnification of the objective lens 24 and the optical magnification of the imaging lens 25.
- an image is formed on the imaging surface and displayed on the monitor 5.
- the magnification visually recognized by the observer is determined by an overall relationship with the size of the image sensor 9 and the size of the monitor 5 to be used.
- the objective lens 24 having a magnification of 20 is used, the magnification (zoom ratio) of the imaging lens 25 is set to about 7 times (focal length is about 23 mm to 160 mm), and the optical magnification is 3 times. If the image sensor 9 is captured on a 1/4 inch (5 million pixels) CCD or CMOS and displayed on a 14 inch monitor 5, an enlargement ratio of about 200 times to 1400 times is secured. It becomes possible to do. Further, the magnification of the objective lens 24 is changed from 20 times to 40 times, and a 2 times conversion lens is mounted between the imaging lens 25 and the image pickup device 9, thereby obtaining an enlargement ratio of about 5600 times at maximum. It becomes possible.
- a pair of bright-field transmission light sources 34 are provided between the condenser lens 22 and the ring diaphragm 31. By using only the bright-field transmission light source 34 without using the illumination device 7, the sample can be obtained with this microscope 1. Can be observed in a bright field. Further, a pair of dark field transmission light sources 35a is provided on the upper side of the stage 12, and a pair of dark field reflection light sources 35b is provided on the lower side of the stage 12. By using only the dark field light sources 35a and 35b, the microscope 1 can observe the sample in the dark field. As described above, the microscope 1 can observe the sample by switching the observation environment to phase difference observation, bright field observation, or dark field observation.
- the observation environment is configured to be switchable to phase difference observation, bright field observation, and dark field observation. However, it is sufficient that at least one observation can be performed. 1 can also be configured as a phase-contrast microscope.
- the control board 10 controls each device constituting the microscope 1 and is arranged vertically along the inner surface of the case 2.
- a light source 14 of the illumination device 7 Connected to the control board 10 are a light source 14 of the illumination device 7, a drive unit 13 that drives the stage 12, an electric motor that drives the imaging lens 25, and the image sensor 9.
- the control board 10 is connected to an external power source such as a commercial power source by wiring not shown.
- a power source such as a battery for supplying power to the control board 10 may be provided in the case 2.
- the monitor 5 that is a display device is connected to the control board 10 by a cable 36 (see FIG. 1).
- An enlarged image of the sample captured by the image sensor 9 is output to the monitor 5 via the control board 10 and the cable 36.
- the control board 10 is provided with a connector unit 37 connected to the monitor 5, and this connector unit 37 is arranged in a space inside the U-shape surrounded by the illumination device 7, the stage device 6 and the imaging lens 25. Has been.
- a tablet terminal (tablet computer) having a function as a computer having a CPU (Central Processing Unit) and a storage medium such as a memory or a hard disk is used as the monitor 5.
- a tablet terminal a desktop or notebook computer can be used, and an enlarged image can be displayed on a monitor connected to these computers.
- the screen of the monitor 5 is a touch panel.
- a touch panel (also called a touch screen or a touch screen) is a combination of a display panel such as a liquid crystal panel and a position input device such as a touch pad.
- the screen of the monitor 5 has an area for displaying operation keys for operating the microscope 1 in addition to an image display area 38 for displaying an enlarged image of the sample.
- operation keys for example, a pair of X direction position adjustment keys 41a and 41b for moving the stage 12 in the X direction and moving the visual field in the X direction, and the stage 12 for moving in the Y direction and moving the visual field in the Y direction.
- a pair of Y-direction position adjustment keys 42a and 42b, a pair of focus adjustment keys 43a and 43b for adjusting the focus of the image by moving the stage 12 in the Z direction along the optical axis direction, and the imaging lens 25 are operated to perform magnification.
- the magnification change keys 44a to 44d for changing the magnification by operating the imaging lens 25 are not limited to four preset magnification change keys, and an enlargement key for increasing the magnification and a reduction for reducing the magnification. It can also consist of keys.
- the enlarged image input to the monitor 5 can be further enlarged and displayed in the image display area 38.
- the enlarged image is enlarged and displayed up to 5600 times by electronic zoom.
- the illumination device 7 irradiates the sample with light, and an image of the sample generated thereby is magnified by the observation optical device 8 and connected to the image sensor 9. Imaged.
- the image pickup device 9 picks up an image of the sample formed on the image pickup device 9 and outputs it to the monitor 5. Then, an enlarged image of the sample imaged by the image sensor 9 is displayed on the monitor 5.
- the monitor 5, which is a tablet terminal, can be configured to be able to communicate data with an analysis device installed in a laboratory using a public line or the like.
- an enlarged image of the sample obtained by the microscope 1 can be transmitted from the monitor 5 to the analysis device, and the analysis result of the image by the analysis device can be received by the monitor 5.
- the autofocus unit 46 may be configured to use the imaging device 9 as a sensor for detecting the focus position and adjust the focus position by moving the stage 12 in the direction along the optical axis by the drive unit 13. .
- the path of light emitted from the light source 14, that is, the optical axis is bent into an L shape using the lower mirror 27 between the stage 12 and the imaging device 9.
- the stage 12 and the observation optical device 8 are arranged in an L shape. Therefore, the height dimension of the microscope 1 can be reduced as compared with the case where the observation optical device 8 is arranged perpendicular to the stage 12.
- the height dimension is reduced, it is not necessary to provide a large and heavy foundation, and therefore the weight of the microscope 1 can be reduced as compared with the case where the observation optical device 8 is arranged perpendicular to the stage 12. it can.
- the microscope 1 since the stage 12 and the observation optical device 8 are arranged in an L shape, the microscope 1 can be made light and compact and can be easily carried.
- the path of the optical axis is formed in an L shape using the upper mirror 23 between the light source 14 and the stage 12.
- the stage 12 and the illumination device 7 are arranged in an L shape. Accordingly, the illumination device 7, the stage 12, and the observation optical device 8 are arranged in a U-shape from the light source 14 through the stage 12 to the image pickup device 9. That is, the illumination device 7 that is Koehler illumination and the imaging lens 25 are arranged horizontally with respect to the stage 12, and these are arranged in a U-shape.
- the height of the microscope 1 can be reduced and the microscope 1 can be made compact. . Further, since the height dimension is reduced, it is not necessary to provide a large and heavy base, so that the microscope 1 can be compared with the case where the observation optical device 8 and the illumination device 7 are arranged perpendicular to the stage 12. The weight can be reduced.
- the illumination device 7, the stage 12, and the observation optical device 8 are arranged in a U-shape, so that the microscope 1 can be made lighter and more compact and easy to carry. .
- the observation optical device 8 and the image sensor 9 that are heavier than the illumination device 7 are arranged below the stage 12, so that the observation optical device 8 and the image sensor 9 are arranged on the stage 12.
- the center of gravity of the microscope 1 can be lowered as compared with the case where the illumination apparatus 7 is disposed below the stage 12. Thereby, since the center of gravity of the microscope 1 is stabilized, the microscope 1 can be made lighter and more compact without requiring a large and heavy foundation.
- the objective lens 24 is fixed to the support frame 11, and the stage 12 is moved in the optical axis direction with respect to the support frame 11 to adjust the focus. It is possible to eliminate the need to move the observation optical device 8, the image pickup device 9, and the like together with the objective lens 24. Therefore, the configuration of the microscope 1 can be simplified and the microscope 1 can be made lighter and more compact.
- the microscope 1 can be operated by operating various operation keys displayed on the touch panel type monitor 5.
- the microscope 1 can be operated by an operation terminal provided separately.
- a microscope 101 according to another embodiment of the present invention shown in FIG. 5 is an optical microscope. For example, when a cell such as a keratin collected from the skin is used as a sample and the sample is visually enlarged and observed. Used.
- the microscope 101 is housed in a case (housing) 102 formed of a resin material such as plastic, a metal plate, or the like to form a single unit, and is a portable type that can be carried together with the case 2. .
- a sample insertion port 103 is provided on the side cover 102 a of the case 102.
- the sample configured in the preparation 104 is inserted into the sample insertion port 103.
- the microscope 101 enlarges the image of the sample, and an enlarged image of the sample is displayed on the monitor 105 that is a display device.
- the microscope 101 is a monitor type capable of observing an enlarged image of the sample on the monitor 105.
- the microscope 101 includes a stage device 106, an illumination device 107, an observation optical device 108, an image sensor 109, and a control board 110.
- the stage device 106 includes a support frame 111 fixed to the case 102 and a stage 112 accommodated in the support frame 111.
- An opening 111a connected to the sample insertion port 103 of the case 102 is provided on the side surface of the support frame 111, and the preparation 104 inserted from the sample insertion port 103 of the case 102 is disposed on the stage 112 through the opening 111a. Is done. That is, the sample is placed on the stage 112 by inserting the preparation 104 from the sample insertion port 103.
- a driving unit (driving means) 113 is attached to the support frame 111.
- the stage 112 is driven by the drive unit 113 and can move in the XY direction and the Z-axis direction.
- the XY direction is a direction perpendicular to the optical axis of light irradiated from an illuminating device 107 described later and passes through the stage 112, and the Z direction is perpendicular to the XY direction, that is, a direction parallel to the optical axis.
- the drive unit 113 includes, for example, three electric motors (not shown) corresponding to XYZ directions, and the rotational motions of these electric motors are converted into linear motions in each direction by a screw mechanism and transmitted to the stage 112. Although the thing of the structure to be used can be used, you may use the drive unit of another structure.
- the illumination device 107 includes a light source 114 and an illumination optical system 115, and is disposed above the stage 112.
- the illumination device 107 is Koehler illumination that uniformly irradiates light toward the sample.
- the light generated by the light source 114 is uniformly adjusted by the illumination optical system 115 and is bent 90 degrees downward by the upper mirror 116 provided between the light source 114 and the stage 112 so that the stage 112 can be bent from above. Irradiated vertically.
- a light emitting diode LED: Light Emitting Diode
- the light source 114 is not limited to a light emitting diode, and a light bulb using a filament can also be used.
- the observation optical device 108 which is an observation optical system includes an objective lens 117 and a zoom tube lens 118 and is disposed below the stage 112.
- the objective lens 117 is disposed below the stage 112 and is fixed to the support frame 111.
- the zoom tube lens 118 is a zoom lens having a two-group configuration, for example, and includes a lens frame 118c in which the position of the first group lens is fixed and a cam frame 118b in which the second group lens is movably held at a desired position. .
- the cam frame 118b of the zoom tube lens 118 further incorporates an image sensor mounting frame 118a that fixes the image sensor 109 to the end and can move in the axial direction in response to a zooming operation.
- the cam frame 118b is rotated by being driven by an electric motor (not shown)
- the second group lens is moved according to a desired magnification
- the image pickup device mounting frame 118a is also moved and adjusted in the image pickup device 109, and passes through the objective lens 117.
- An image of the sample can be formed on the image sensor 109 at an arbitrary magnification.
- a lower mirror 119 is disposed between the objective lens 117 and the zoom tube lens 118, and the optical axis of the light that has passed through the objective lens 117 is reflected by the lower mirror 119, so that the objective lens 117 and the zoom tube lens are reflected.
- the zoom tube lens 118 is bent by 90 degrees and directed in the direction along the axial direction of the zoom tube lens 118.
- the image sensor 109 is fixed to the end of the zoom tube lens 118, that is, the end facing the opposite side of the lower mirror 119.
- a CCD image sensor Charge-Coupled Device Device Image Sensor
- a CMOS image sensor Complementary Metal Oxide Semiconductor Image Sensor mounted on the substrate 120 is used as the image sensor 109, but other image sensors can also be used. .
- the zoom tube lens 118 enlarges the image of the sample that has passed through the objective lens 117 and forms it on the image sensor 109.
- the zoom tube lens 118 can change the magnification of the image formed on the image sensor 109 by changing the interval between the image forming lenses by the operation of the cam mechanism.
- the zoom tube lens 118 can change the magnification of the microscope 101 in three stages of 120 times, 300 times, and 700 times.
- the zoom tube lens 118 has a function as an observation optical system that forms an image of a sample and a function as a magnification changing unit that changes the magnification of the observation optical system.
- the microscope 101 includes a ring diaphragm (not shown) provided in the illumination device 107 and a phase plate (not shown) provided in the observation optical device 108.
- the ring diaphragm and the phase plate are disposed at conjugate positions. That is, the microscope 101 is configured as a phase microscope including an illumination device 107 configured as Koehler illumination, a ring diaphragm, and a phase plate.
- the microscope 101 is configured as a phase contrast microscope, cells such as keratin collected from the skin can be clearly observed by converting the phase difference of light into contrast without staining.
- the microscope 101 is configured as a phase contrast microscope, but the microscope 101 is configured as a microscope for bright field observation or dark field observation, and the present invention is applied to this. You can also.
- the control board 110 serving as a control means is connected to the stage device 106, the illumination device 107, the zoom tube lens 118, and the image sensor 109, and controls these operations.
- the control board 110 is connected to an external power source such as a commercial power source via a wiring (not shown), and executes control of each device and the like with power supplied from the external power source.
- a power source such as a battery for supplying power to the control board 110 may be provided in the case 102 instead of the configuration in which the wiring is connected to an external power source.
- the monitor 105 which is a display device is connected to the control board 110 by a cable 121.
- a tablet terminal (tablet computer) having a function as a computer having a CPU (Central Processing Unit) and a storage medium such as a memory and a hard disk is used as the monitor 105.
- CPU Central Processing Unit
- the screen of the monitor 105 is a touch panel (also called a touch screen or a touch screen) in which a position input device such as a touch pad is combined with a display panel such as a liquid crystal panel. As shown in FIG. 7, the screen of the monitor 105 has an area for displaying operation keys for operating the microscope 101 in addition to an image display area 122 for displaying an enlarged image of the sample.
- a pair of X-direction position adjustment keys 123a and 123b for moving the stage 112 in the X direction and moving the field of view in the X direction and the stage 112 in the Y direction are moved as Y.
- a pair of Y-direction position adjustment keys 124a and 124b to be moved in the direction, a pair of focus adjustment keys 125a and 125b, and four magnification change keys 126a to 126d are displayed.
- the magnification change key 126a corresponds to the magnification 120 times of the zoom tube lens 118
- the magnification change key 126b corresponds to the magnification 300 times of the zoom tube lens 118
- the magnification change key 126c corresponds to the magnification 700 times of the zoom tube lens 118.
- the monitor 105 has an electronic zoom function for further enlarging the 700 ⁇ magnified image sent from the microscope 101 and displaying it at 1400 ⁇
- the magnification change key 126d corresponds to a magnification of 1400 ⁇ by this electronic zoom function. is doing.
- a shooting key 127 for storing an enlarged image in a storage medium of the monitor 105 that is a tablet terminal, buttons for various adjustments, and the like are displayed.
- the monitor 105 When each key displayed on the monitor 105 is touched with a fingertip, instruction information corresponding to the operation is input to the monitor 105 and a command signal corresponding to the instruction information is output to the control board 110.
- the control board 110 to which the command signal is input controls the operation of each device of the microscope 101 based on the input command signal.
- the monitor 105 has a function as an input unit for inputting instruction information for instructing the operation of the microscope 101 in addition to a function of displaying an enlarged image of the sample magnified by the microscope 101. .
- the illumination device 107 irradiates the sample with light, and an image of the sample generated thereby is magnified by the observation optical device 108 and formed on the image sensor 109.
- the image sensor 109 captures an image of the sample formed on this and outputs it to the monitor 105. As a result, an enlarged image of the sample imaged by the image sensor 109 is displayed in the image display area 122 of the monitor 105.
- magnification changing keys 126a to 126d displayed on the monitor 105 By selectively pressing any of the magnification changing keys 126a to 126d displayed on the monitor 105, the magnification of the enlarged image of the sample displayed on the monitor 105 is changed to a desired magnification suitable for the analysis of the sample. Can do. Further, by pressing the focus adjustment keys 125a and 125b displayed on the monitor 105, the stage 112 can be moved in the direction along the optical axis, and the focus of the image of the sample displayed on the monitor 105 can be adjusted. .
- the position of the sample displayed on the monitor 105 in the screen can be adjusted.
- the X-direction position adjustment keys 123 a and 123 b when one of the X-direction position adjustment keys 123 a and 123 b is pressed, instruction information for instructing movement of the stage 112 in the X direction is input to the monitor 105, and a command signal corresponding to the instruction information is received from the monitor 105. Input to the control board 110.
- the control board 110 controls the operation of the drive unit 113 so as to move the stage 112 in the direction based on the input command signal.
- the drive unit 113 is operated in accordance with the movement instruction in the X direction input to the monitor 105, and the stage 112 is driven by the drive unit 113 and moves in the X direction.
- the Y-direction position adjustment keys 124a and 124b of the monitor 105 are operated, instruction information for instructing the movement of the stage 112 in the Y direction is input to the monitor 105, and the control board 110 receives the command signal. Based on this, the operation of the drive unit 113 is controlled, and the stage 112 is driven by the drive unit 113 to move in the Y direction.
- the control board 110 controls the operation of the drive unit 113 so that the movement speed of the stage 112 becomes a movement speed inversely proportional to the magnification. That is, the control board 110 controls the operation of the drive unit 113 so that the moving speed of the stage 112 is slower when the magnification of the sample image displayed on the monitor 105 is increased than when the magnification is low. . As the magnification is increased to 120 times, 300 times, 700 times, and 1400 times, the moving speed of the stage 112 is reduced in inverse proportion to the magnification.
- the moving speed of the stage 112 in the XY direction when the magnification is 300 times is set to 0.4 times the moving speed of the stage 112 in the XY direction when the magnification is 120 times. Therefore, even if the magnification of the image displayed on the monitor 105 is changed, the position of the sample displayed on the screen of the monitor 105 by operating the X direction position adjustment keys 123a and 123b and the Y direction position adjustment keys 124a and 124b.
- the moving speed of the sample in the screen when moving is constant regardless of the magnification.
- information on the magnification of the image displayed on the monitor 105 is input from the monitor 105 to the control board 110.
- the moving speed of the stage 112 driven by the drive unit 113 is set to a speed inversely proportional to the magnification. I try to do it. Therefore, even if the magnification of the sample image displayed on the monitor 105 is changed, the moving speed of the stage 112 is set to a speed that is inversely proportional to the magnification, so that the moving speed of the sample in the screen of the monitor 105 becomes the magnification. Regardless, it is always constant.
- the monitor 105 having a screen configured as a touch panel is used, and the X direction position adjustment keys 123a and 123b and the Y direction position adjustment keys 124a and 124b are displayed on the screen to constitute input means.
- the input means is not limited to such a configuration, and the following configuration may be employed.
- the monitor 105 having a screen configured as a touch panel is used, and an instruction for instructing the moving direction and moving speed of the stage 112 by dragging the image of the sample displayed on the screen with a fingertip or the like. Information can be input.
- the control board 110 sets the moving speed and direction of the stage 112 so that the speed and direction of the drag operation of the fingertip or the like on the screen is the same as the moving speed and direction of the sample on the screen.
- the moving speed of the stage 112 with respect to the speed of the drag operation of the fingertip or the like on the screen is set to a speed inversely proportional to the magnification of the sample displayed on the screen. Therefore, regardless of the magnification of the sample displayed on the monitor 105, the sample displayed on the monitor 105 can be moved while always following a drag operation with a fingertip or the like on the screen of the monitor 105.
- the image of the sample displayed on the monitor 105 is visually checked on the screen. Since the position of the sample can be moved, the moving operation can be performed more easily regardless of the magnification.
- the screen is pinched out with a fingertip or the like to increase the magnification of the sample image displayed on the screen of the monitor 105 and the screen is pinched in with a fingertip or the like. Accordingly, the magnification can be reduced. With such a configuration, the operation of changing the magnification of the sample displayed on the monitor 105 can be easily performed while confirming the image of the sample displayed on the monitor 105.
- the monitor 105 having a touch panel when used, the desired portion of the enlarged image of the sample displayed on the monitor 105 is instructed with a fingertip or the like to move the instructed portion to the center of the screen. At the same time, it can be automatically enlarged to a predetermined magnification and displayed. As a result, an image necessary for analysis of the sample can be easily obtained, and the operation is facilitated.
- the input means is not limited to the configuration using the screen of the monitor 105 configured as a touch panel, and an operation key such as a mechanically operated cross key provided separately from the screen of the monitor 105 can also be used.
- Such operation keys may be provided on portions other than the screen of the monitor 105, or may be provided separately from the monitor 105 and connected to the monitor 105 or the control board 110 of the microscope 101. it can. By using such operation keys, the cost of the microscope 101 can be reduced using an inexpensive monitor that is not a touch panel.
- a tablet terminal is used as the monitor 105.
- the present invention is not limited to this, and a monitor connected to a desktop computer or a monitor of a notebook computer can also be used.
- phase contrast microscope 210 which is a microscope according to still another embodiment of the present invention, corresponding to the present invention described in ⁇ 12> to ⁇ 15> above will be described. It should be noted that the configuration of each part of the microscope 1 and the microscope 101 of the above-described embodiment can be applied to the phase-contrast microscope 210 in the present embodiment, instead of the structure of each part constituting the microscope.
- FIG. 8 is an external view of the imaging apparatus according to the present embodiment.
- the phase-contrast microscope 210 is used, for example, when a cell such as keratin collected from the skin is used as a sample, and the sample is visually magnified and observed.
- the phase-contrast microscope 210 is housed in a housing 211 formed of a resin material such as plastic, a metal plate, or the like, is configured as one unit, and can be carried together with the housing 211.
- a sample insertion port 213 is provided on the side surface 212 of the housing 211.
- a sample configured in the preparation 214 that is, a sample in which both the illumination light irradiation surface and the transmission surface are formed in a planar shape can be inserted.
- the phase contrast microscope 210 enlarges the image of the sample and causes the display device 215 to display an enlarged image of the sample.
- the phase contrast microscope 210 is used in a normal posture in which the side surface 212 is parallel to the vertical direction and the preparation 214 inserted into the sample insertion port 213 is horizontal. In the following description, it is assumed that the phase-contrast microscope 210 is maintained in a normal posture.
- the phase contrast microscope 210 includes a light source unit 216, a first mirror 217, an aperture stop 218, a condenser lens 219, a bright field transmission light source 220, a dark field transmission light source 221, a stage unit 222, an objective.
- a lens 223, a dark field reflection light source 224, a phase plate 225, a second mirror 226, an imaging optical system 227 having a zooming function, an image sensor 228, an image processing unit 229, and a control unit 230 are configured. .
- the light source unit 216 includes a light source 231 and an illumination optical system 232.
- the light source unit 216 is disposed above the phase-contrast microscope 210 so that the optical axis of the illumination optical system 232 is horizontal.
- the illumination optical system 232 emits illumination light emitted from the light source 231 as light that uniformly illuminates the preparation 214. That is, the light source unit 216 functions as Koehler illumination.
- the first mirror 217 is a plane mirror, and is fixed in a posture inclined by 45 ° with respect to the horizontal plane in the emission direction of the illumination light emitted from the light source unit 216.
- the first mirror 217 refracts the illumination light emitted from the light source unit 216 vertically downward.
- the aperture stop 218 is disposed at the front focal position of the condenser lens 219.
- the aperture stop 218 has, for example, a ring-shaped opening.
- the aperture stop 218 stops the illumination light and emits it vertically downward.
- the condenser lens 219 is disposed vertically below the aperture stop 218.
- the condenser lens 219 emits the illumination light that has passed through the aperture stop 218 so as to be condensed on the preparation 214.
- the bright field transmission light source 220 is provided between the aperture stop 218 and the condenser lens 219.
- the bright-field transmission light source 220 emits illumination light that irradiates the preparation 214 via the condenser lens 219.
- the dark field transmission light source 221 is provided between the condenser lens 219 and the stage unit 222.
- the dark field transmission light source 221 emits illumination light that directly irradiates the preparation 214.
- the stage unit 222 is provided on the optical path of the illumination light emitted from the condenser lens 219.
- the stage unit 222 includes a support frame 233, a stage 234, and a stage drive mechanism 235.
- the support frame 233 is fixed to the casing 211.
- An opening 236 connected to the sample insertion port 213 of the housing 211 is formed on the side surface of the support frame 233.
- the preparation 214 inserted from the sample insertion port 213 passes through the opening 236 and is placed on the stage 234.
- the stage 234 is accommodated in the support frame 233 so that the mounting surface is orthogonal to the optical axis of the condenser lens 219.
- the stage 234 can be displaced in three directions: two directions perpendicular to the optical axis of the condenser lens 219 (hereinafter referred to as X direction and Y direction) and a direction along the optical axis (hereinafter referred to as Z direction). Supported. Therefore, the stage 234 can be displaced along the direction (Z direction) along the optical path of the illumination light.
- the stage drive mechanism 235 displaces the stage 234 in the X direction, the Y direction, and the Z direction based on an instruction from the control unit 230.
- the stage driving mechanism 235 displaces the stage 234, the preparation 214 placed on the stage 234 is also displaced together with the stage 234.
- the objective lens 223 is coaxial with the condenser lens 219 and is disposed at a position where the stage unit 222 is sandwiched between the objective lens 219 and the condenser lens 219.
- the dark field reflection light source 224 is provided between the stage unit 222 and the objective lens 223.
- the dark field reflection light source 224 emits illumination light that directly irradiates the preparation 214.
- the phase plate 225 is disposed at the exit pupil position of the objective lens 223.
- the phase plate 225 is a phase plate shaped to match the opening of the aperture stop 218, and shifts the phase of incident light by a quarter wavelength. Therefore, when the illumination light is emitted from the light source unit 216, the linear light transmitted through the sample is condensed on the phase plate 225, so that the phase of the linear light is shifted by 1 ⁇ 4 wavelength, and most of the diffracted light that diffracts the sample. Passes through a region other than the phase plate 225.
- the second mirror 226 is a plane mirror disposed on the optical axis of the objective lens 223, and is fixed in a posture inclined by 90 ° with respect to the first mirror 217.
- the second mirror 226 refracts the optical image of the sample in the horizontal direction.
- the imaging optical system 227 having a zooming function is arranged in the direction of refraction of the optical image by the second mirror 226. Therefore, the optical axis of the imaging optical system 227 is parallel to the optical axis of the illumination optical system 232.
- the imaging optical system 227 includes a plurality of lenses 237 including tube lenses, and changes the focal length by displacing the lenses 237 along the optical axis in conjunction with each other.
- the imaging optical system 227 cooperates with the objective lens 223 to form an optical image of the sample on an image plane at a predetermined position.
- the imaging optical system 227 can change the magnification of the phase-contrast microscope 210 in the range of 120 to 700 times in cooperation with the objective lens 223.
- the image sensor 228 is arranged so as to overlap an image plane at a predetermined position. Therefore, the image sensor 228 is arranged so that the light receiving surface is parallel to the vertical direction.
- the image sensor 228 is, for example, a CCD image sensor or a CMOS image sensor, and images an optical image formed on the light receiving surface.
- the image sensor 228 generates a captured image as an image signal by capturing an optical image.
- the objective lens 223 used in the phase contrast microscope employs an afocal optical system in which the emitted light is balanced, and includes a phase plate 225 and a phase difference ring 245 on the exit side.
- the imaging optical system 227 is designed so that the presence of the phase difference ring 245 does not affect the image formed on the imaging surface of the image sensor 228.
- the imaging optical system 227 having a zooming function in the phase-contrast microscope 210 of the present invention secures this arrangement space because the mirror 226 for bending the optical axis by 90 degrees is disposed between the imaging optical system 227 and the objective lens 223.
- the entrance pupil position 246 of the imaging optical system 227 is positioned on the objective lens 223 side with respect to the reflection mirror 226, and the phase plate 225. It is desirable to design so that the conjugate point 247 is positioned on the right side of the image sensor 228 in the drawing, that is, on the opposite side of the imaging optical system 227.
- the magnification of the phase-contrast microscope 210 is determined by the product of the optical magnification of the objective lens 223 and the optical magnification of the imaging optical system 227. As in the present invention, an image is formed on the imaging surface and is displayed on the display device 215. When the image is displayed on the screen, the magnification visually recognized by the observer is determined by a comprehensive relationship with the size of the image sensor 228 and the size of the display device 215 to be used.
- the 20 ⁇ objective lens 223 is used, the magnification ratio (zoom ratio) of the imaging optical system 227 is set to about 7 times, and the optical magnification is designed to be 3 to 20 times.
- the image is taken in a 1 ⁇ 4 inch CCD or CMOS and displayed on a 14 inch monitor, an enlargement ratio of about 200 to 1400 times can be secured.
- the image processing unit 229 acquires a captured image from the image sensor 228 and performs predetermined image processing.
- the image processing unit 229 transmits the captured image subjected to the image processing to the display device 215. Further, the image processing unit 229 acquires various information from the acquired captured image, and transmits the acquired information to the control unit 230 as necessary.
- the control unit 230 controls each part constituting the phase-contrast microscope 210.
- the control unit 230 controls switching of light emission and extinction of the light source unit 216, the bright-field transmission light source 220, the dark-field transmission light source 221, and the dark-field reflection light source 224.
- the control unit 230 controls the displacement of the stage 234 in the X direction and the Y direction. Furthermore, as will be described later, the control unit 230 controls the displacement of the stage 234 in the Z direction so that the optical image of the sample is focused on the image plane.
- the display device 215 is a tablet terminal having a display, for example, and communicates with the phase-contrast microscope 210 in a wired or wireless manner. As described above, the display device 215 displays the captured image transmitted from the image processing unit 229 on the display.
- the display device 215 has a touch panel and can function as an input unit that detects various inputs for controlling the phase-contrast microscope 210.
- the display device 215 may be configured by a combination of desktop and notebook computers and an input unit such as a keyboard.
- the display device 215 displays a plurality of operation keys for operating the phase contrast microscope 210 in addition to the captured image 238 acquired from the phase contrast microscope 210.
- the display device 215 detects an input corresponding to the operation key and transmits it to the control unit 230.
- the operation keys include, for example, an X direction position adjustment key 239, a Y direction position adjustment key 240, a magnification selection key 241, an observation mode selection key 242, an autofocus key 243, and a manual focus key 244.
- the X-direction position adjustment key 239 displaces the stage 234 along the X direction when detecting an input to the key.
- the Y direction position adjustment key 240 displaces the stage 234 along the Y direction when detecting an input to the key.
- the magnification selection key 241 can select one of a plurality of magnifications. When an input to any of the keys is detected, the lens constituting the imaging optical system 227 is displaced so that the magnification corresponding to the key is obtained.
- the With the observation mode selection key 242 one of phase difference observation, bright field observation, and dark field observation can be selected, and illumination light to be used is selected according to the selected observation mode. When the user selects the phase difference observation mode, only the light source unit 216 emits light.
- the stage 234 When the user selects the bright field observation mode, only the bright field transmission light source 220 emits light. When the user selects the dark field observation mode, only the dark field transmission light source 221 and the dark field reflection light source 224 emit light.
- the autofocus key 243 detects an input to the key, the stage 234 is displaced along the Z direction as will be described later, and the focus adjustment of the optical image of the sample is performed.
- the manual focus key 244 detects an input to the key, the stage 234 is displaced by a unit change amount along the Z direction to enable manual focusing adjustment.
- the control unit 230 executes an autofocus function using a contrast detection method.
- the control unit 230 causes the image processing unit 229 to calculate the contrast value of the captured image.
- the control unit 230 controls the stage drive mechanism 235 so that the stage 234 is displaced by a unit displacement amount along the Z direction.
- the control unit 230 causes the image processing unit 229 to calculate the contrast value of the image captured after the stage 234 is displaced.
- the control unit 230 repeats the comparison of the displacement of the stage 234 and the contrast value until the contrast value becomes the maximum.
- the control unit 230 arranges the stage 234 at the position where the contrast value is maximized, and completes the autofocus function.
- the autofocus function can be executed by displacing the stage 234 on which the preparation 214 is placed along the optical axis.
- the size and shape of the sample are various for the purpose of observing various samples, so that it is difficult to execute autofocus by the displacement of the stage.
- the sample to be observed is limited to a sample in which both the irradiation surface and the transmission surface of the illumination light are formed in a planar shape, so that autofocus by displacement of the stage 234 is possible.
- the focus adjustment can be performed by inputting to the manual focus key 244, the user can perform fine adjustment after executing the autofocus function. By such fine adjustment, even if blurring occurs in the entire image, it is possible to focus the optical image on a desired part of the subject.
- autofocus is configured to be executed based on a contrast detection method, but may be configured to execute autofocus based on another method, such as a phase difference detection method. .
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
Abstract
試料の像を撮像素子(9)により撮像してモニタ(5)に出力する顕微鏡(1)を、試料が配置される水平なステージ(12)と、ステージ(12)の上方に設けられてステージ(12)に配置された試料に光を照射する光源(14)と、光源(14)とステージ(12)との間に設けられる照明光学系(15)と、ステージ(12)の上方にステージ(12)に垂直な方向に対して45度傾けて配置され、光源(14)とステージ(12)との間で光軸を90度曲げる上側ミラーと、対物レンズ(24)とレンズ系(28,29A,29B)とを備えてステージ(12)の下方に配置され、試料の像を撮像素子(9)に結像させる観察光学装置(8)と、ステージ(12)の下方に該ステージ(12)に垂直な方向に対して45度傾けて配置され、ステージ(12)と撮像素子(9)との間で光軸を90度曲げる下側ミラー(27)とを備え、結像レンズ(25)が倍率変更機能を有し、結像レンズ(25)が下側ミラー(27)と撮像素子(9)との間に軸方向を水平にして配置された構成として、その照明光学系(15)、ステージ(12)および観察光学装置(8)をコの字状に配置させる。
Description
本発明は、ステージに配置した試料の像を撮像素子により撮像してモニタ等の表示装置に表示する顕微鏡に関する。
従来から、この種の顕微鏡は、例えば、化粧品販売の現場において肌に合った化粧品を選定するため、皮膚から採取した角質等の細胞を観察する際などに用いられている。
このような顕微鏡としては、例えば特許文献1に示されるように、試料が配置されるステージの下方に、人工的に試料に光を照射する光源を設け、ステージの上方に、レボルバに取り付けられた複数の対物レンズを含んだ観察光学系を設けたものがある。この場合、観察光学系の上端にデジタルカメラが取り付けられ、観察光学系により拡大された試料の像がデジタルカメラにより撮像されてパソコンのモニタに表示される。
一方、このような顕微鏡では、撮像素子により撮像される試料の位置つまりモニタ等の表示装置に表示させる試料の位置を調整する際には、観察光学系に対して試料を左右に移動させる必要がある。近年では、電動モータ等を駆動源とした駆動手段によりステージを左右に駆動して、ステージとともに試料の位置を調整する構成が一般的である。
例えば、特許文献2には、ホルダ部に保持された試料の像を結像光学系で拡大し、これをカメラ部で撮影して表示部に表示するようにした顕微鏡が記載されている。この顕微鏡では、ホルダ部を、結像光学系の光軸の方向に直交するXY平面内で移動可能なXYステージ部に搭載し、このXYステージ部の作動を制御部で制御することにより、表示部に表示させる試料の位置を調整可能としている。
さらに、このような顕微鏡として、例えば特許文献3に示されるように、光の回折および干渉を利用して、生体細胞などの無色透明な標本を可視化して観察可能な位相差顕微鏡が知られている。
化粧品の販売は、店頭だけでなく、訪問販売により行なわれることがある。この場合、訪問先において、顧客の皮膚から採取した角質等の細胞を観察するためには、顕微鏡を訪問先にまで持ち運ぶ必要がある。
しかしながら、従来の顕微鏡は、観察光学系とデジタルカメラとをステージの上方に一直線上に並べて配置した構成となっているので、その高さ寸法が大きくなっている。また、ステージ上方に配置された観察光学系やデジタルカメラの重量を安定的に支えるために、土台が大きく重く形成されている。そのため、従来の顕微鏡は、その持ち運びが容易ではなかった。
本発明の目的は、軽量コンパクトで持ち運びが容易な顕微鏡を提供することにある。
一方、この種の顕微鏡では、結像光学系による試料の像の拡大率つまり顕微鏡の倍率が変更可能に構成されるが、従来の顕微鏡では、駆動手段により駆動されるステージの移動速度は、倍率の大小に拘わらず一定とされていた。そのため、倍率が大きくなるほど、ステージを移動させたときの、表示装置の画面内における試料の移動速度が大きくなり、高倍率時における試料の位置調整は困難であった。
したがって、本発明の他の目的は、倍率の大小に拘わらず、表示装置に表示させる試料の位置を容易に調整することができる顕微鏡を提供することにある。
さらに、特許文献3に示されるような位相差顕微鏡による試料の観察では、光学像の合焦調整を観察者が手動で行う必要があり、合焦調整は煩雑で、その精度は観察者の熟練度に応じて変動する。
したがって、かかる事情に鑑みてなされた本発明のさらに他の目的は、自動的に合焦調整を行う位相差顕微鏡を提供することにある。
<1> 本発明の顕微鏡は、試料の像を撮像素子により撮像して表示装置に出力する顕微鏡であって、前記試料が配置される水平なステージと、前記ステージの上方に設けられ、前記ステージに配置された前記試料に光を照射する光源と、前記光源と前記ステージとの間に設けられる照明光学系と、前記ステージの上方に該ステージに垂直な方向に対して45度傾けて配置され、前記光源と前記ステージとの間で光軸を90度曲げる上側ミラーと、対物レンズと結像レンズとを備えて前記ステージの下方に配置され、前記試料の像を前記撮像素子に結像させる観察光学系と、前記ステージの下方に該ステージに垂直な方向に対して45度傾けて配置され、前記ステージと前記撮像素子との間で光軸を90度曲げる下側ミラーとを備え、前記結像レンズが倍率変更機能を有し、該結像レンズが前記下側ミラーと前記撮像素子との間に軸方向を水平にして配置され、前記照明光学系、前記ステージ及び前記観察光学系がコの字状に配置されていることを特徴とする。
<2> <1>に記載の本発明の顕微鏡は、前記照明光学系に配置されたリング絞りと、前記観察光学系の前記リング絞りと光学的に共役な位置に配置される位相板とを備えるのが好ましい。
<3> <2>に記載の本発明の顕微鏡は、前記結像レンズの入射瞳位置が、前記対物レンズの射出瞳位置と一致もしくは略一致しているのが好ましい。
<4> <3>に記載の本発明の顕微鏡は、前記結像レンズは、前記下側ミラーに隣接する第1群レンズ、前記第1群レンズよりも前記撮像素子側に配置されて該第1群レンズに対して軸方向に相対移動可能な第2群レンズおよび前記第2群レンズよりも前記撮像素子側に配置されて前記第1群レンズと前記第2群レンズとに対して軸方向に相対移動可能な第3群レンズとを有するリレーレンズであるのが好ましい。
<5> <1>に記載の本発明の顕微鏡は、前記撮像素子が1/4インチサイズであるのが好ましい。
<6> <2>に記載の本発明の顕微鏡は、前記光源と前記照明光学系とがケーラー照明を構成するのが好ましい。
<7> <1>に記載の本発明の顕微鏡は、前記ステージを光軸方向に沿って移動させる駆動手段を備えるのが好ましい。
<8> <7>に記載の本発明の顕微鏡は、前記ステージの移動方向を指示する指示情報が入力される入力手段と、前記入力手段に入力された指示情報に基づいて前記駆動手段の作動を制御するとともに、前記表示装置に表示される画像の倍率が変更されたときには前記駆動手段に駆動される前記ステージの移動速度を前記倍率に反比例した移動速度に設定する制御手段と、を有するのが好ましい。
<9> <8>に記載の本発明の顕微鏡は、前記入力手段が、前記ステージの移動方向を入力可能な操作キーを有するのが好ましい。
<10> <9>に記載の本発明の顕微鏡は、前記表示装置が、前記試料の拡大画像を表示するとともに、前記ステージの移動方向を指示可能な操作キーを表示するタッチパネルを有するのが好ましい。
<11> <8>に記載の本発明の顕微鏡は、前記表示装置が、前記試料の拡大画像を表示するとともに、ドラッグ操作によって前記ステージの移動方向を指示可能なタッチパネルを有するのが好ましい。
<12> <10>に記載の本発明の顕微鏡は、前記タッチパネルが、ピンチアウト操作によって前記観察光学系の倍率を高めるとともにピンチイン操作によって前記観察光学系の倍率を低下させる倍率変更手段として機能するのが好ましい。
<13> <2>に記載の本発明の顕微鏡は、前記ステージがコンデンサレンズおよび前記対物レンズの間において前記光源の光路に沿って変位可能であり、前記試料の光学像を像面において合焦させるように、前記ステージを前記光路に沿って変位させる制御部を備えるのが好ましい。
<14> <13>に記載の本発明の顕微鏡は、前記ステージを変位させる入力を検出する入力部を更に備え、前記制御部は前記入力部の検出に基づいて前記ステージを前記光路に沿って変位させることも可能であるのが好ましい。
<15> <13>に記載の本発明の顕微鏡は、コントラスト検出方式によって前記光学像を合焦させるのが好ましい。
<16> <13>に記載の本発明の顕微鏡は、位相差検出方式によって前記光学像を合焦させるのが好ましい。
本発明の顕微鏡によれば、照明光学系、ステージ及び観察光学系がコの字状に配置されるので、顕微鏡を軽量コンパクトな構成として、その持ち運びを容易にすることができる。
また、本発明の顕微鏡によれば、表示装置に表示される画像の倍率が変更されたときに駆動手段に駆動されるステージの移動速度を倍率に反比例した移動速度に設定することにより、顕微鏡の倍率の大小に拘わらず、ステージを移動させたときの、表示装置の画面内における試料の移動速度が一定となるので、表示装置に表示させる試料の位置調整を容易にすることができる。
さらに、本発明の顕微鏡によれば、自動的に合焦調整が可能である。
以下、図面を参照して、本発明の実施の形態を詳細に例示説明する。
図1に示す本発明の一実施の形態である顕微鏡1は光学式の顕微鏡であり、例えば、皮膚から採取した角質等の細胞を試料とし、それを視覚的に拡大して観察する際に用いられる。この顕微鏡1は、プラスチック等の樹脂材料や金属板等により形成されるケース(筐体)2に収容されて1つのユニットとされており、ケース2ごと持ち運びが可能な可搬タイプとなっている。
ケース2の側面カバー2aには試料差込口3が設けられている。この試料差込口3にはプレパラート4に構成された試料が差し込まれる。プレパラート4が差し込まれると、顕微鏡1は試料の像を拡大し、試料の拡大画像が表示装置であるモニタ5に表示される。このように、この顕微鏡1は、モニタ5上で試料の拡大画像を観察することができるモニタタイプとなっている。
なお、顕微鏡1は、図1、図2に示すように、側面カバー2aが垂直となり、試料差込口3に差し込まれたプレパラート4が水平となる正規姿勢で用いられる。以下の説明においては、顕微鏡1が正規姿勢とされているものとする。
図2に示すように、この顕微鏡1は、ステージ装置6、照明装置7、観察光学装置8、撮像素子9および制御基板10を備えている。
ステージ装置6は、ケース2に固定された支持枠体11と、支持枠体11に収容されたステージ12とを備えている。支持枠体11の側面にはケース2の試料差込口3に連なる開口11aが設けられ、ケース2の試料差込口3(図1参照)から差し込まれたプレパラート4は、この開口11aを通ってステージ12に配置される。つまり、試料差込口3からプレパラート4を差し込むことで、試料がステージ12に配置される。この顕微鏡1の正規姿勢においては、ステージ12つまりステージ12のプレパラート4が配置される面は水平である。
支持枠体11には駆動ユニット(駆動手段)13が取り付けられている。ステージ12は、この駆動ユニット13により駆動されて、水平方向(XY方向)と垂直方向(Z軸方向)とに移動することができる。ステージ12が移動すると、当該ステージ12に載せられたプレパラート4もステージ12とともに移動する。駆動ユニット13としては、例えば、XYZの各方向に対応した3つの電動モータ(不図示)を備え、これらの電動モータの回転運動をねじ機構により各方向の直線運動に変換してステージ12に伝達する構成のものを用いることができるが、他の構造の駆動ユニットを用いてもよい。
図2と共に図3を参照して、照明装置7は、光源14と照明光学系15とを備え、ステージ12の上方に配置されている。本実施の形態においては、照明装置7つまり光源14と照明光学系15とは、試料に向けて均一に光を照射するケーラー照明を構成している。
照明光学系15は、軸方向を水平にして配置される円筒状の照明ケース16を備えている。支持枠体11の上方には接続アダプタ17と上側ミラーユニット18とが固定され、照明ケース16は、その一端において上側ミラーユニット18に固定されている。
光源14は、照明ケース16の上側ミラーユニット18とは反対側となる端部に取り付けられている。本実施の形態においては、光源14として、基板14aに搭載された発光ダイオード(LED:Light Emitting Diode)14bを用いるようにしているが、フィラメントを用いた電球などを用いることもできる。
図3に示すように、照明ケース16の内部には、光源14に隣接する光源レンズ19とフィールドレンズ20とが配置され、光源レンズ19とフィールドレンズ20との間には板状の視野絞り21が配置されている。また、ステージ12の上方には、軸方向を垂直つまり照明ケース16の軸方向と直交するようにコンデンサレンズ22が配置されている。このコンデンサレンズ22は接続アダプタ17に固定されている。照明光学系15は、このように、光源レンズ19、視野絞り21、フィールドレンズ20およびコンデンサレンズ22を備えて、光源14とステージ12との間に設けられている。
上側ミラーユニット18には、ステージ12に垂直な方向と照明ケース16の軸方向との双方に対して45度傾けられた上側ミラー23が設けられている。光源14から照明ケース16内に向けて水平に照射された光の光軸は、光源14とステージ12との間で、上側ミラー23で反射して、下方に向けて90度曲げられる。したがって、光源14から照射された光は、上側ミラー23で反射されてステージ12に配置された試料に垂直に照射される。
このように、照明装置7は、光源14とステージ12との間で、その光軸の方向が上側ミラー23により90度曲げられたL字形状のケーラー照明に構成されている。
図2、図3に示すように、観察光学系である観察光学装置8は、対物レンズ24と倍率変更機能を有する結像レンズ25とを備え、ステージ12の下方に配置されている。
対物レンズ24は、ステージ12の下方側にコンデンサレンズ22と同軸に配置されている。対物レンズ24は支持枠体11に固定され、コンデンサレンズ22との距離が一定とされている。
結像レンズ25は、対物レンズ24で得られた像を撮像素子9に拡大倍率を変更して結像させるためのズーム光学系を採用したリレーレンズとなっている。この光学系としては、例えば、第1群レンズ28を固定とし、第2群レンズ29Aと第3群レンズ29Bとをそれぞれ第1群レンズ28に対して軸方向に相対移動自在とした、3群ズーム構造のズームレンズを採用することができる。この結像レンズ25は、第1群レンズ28を位置固定した固定鏡枠25cと、変倍操作に応じて軸方向所望の位置に移動可能に第2群レンズ29Aと第3群レンズ29Bとを保持したカム枠25bとを備えている。そして、この結像レンズ25には、更に撮像素子9を端部に固定し変倍操作に応じて軸方向に移動可能な撮像素子取付枠25aが組み込まれている。図示しない電動モータにより駆動されてカム枠25bが回転すると、希望する倍率に応じて第2群レンズ29Aと第3群レンズ29Bとが相対的に移動すると共に、撮像素子9も撮像素子取付枠25aが移動調整され、対物レンズ24を通過した試料の像を任意の倍率にて撮像素子9に結像させることができる。
なお、本実施の形態においては、結像レンズ25を、第1群レンズ28を固定とし、第2群レンズ29Aおよび第3群レンズ29Bを可動とした構成としているが、これに限らず、第1群レンズ28、第2群レンズ29Aおよび第3群レンズ29Bの全てを可動とした構成とすることもできる。
支持枠体11の下方には下側ミラーユニット26が固定され、結像レンズ25は、軸方向を水平として、その一端において下側ミラーユニット26に固定されている。このように、結像レンズ25は、その軸方向を水平としてステージ12の下方であってケース2の最下部に配置されている。
下側ミラーユニット26には、ステージ12に垂直な方向と結像レンズ25の軸方向との双方に対して45度傾けられた下側ミラー27が配置されている。対物レンズ24を通過した光の光軸は、この下側ミラー27で反射して、対物レンズ24と結像レンズ25との間で90度曲げられ、結像レンズ25の軸方向に沿った方向に向けられる。なお、前述の第1群レンズ28は下側ミラー27に隣接して配置されている。
撮像素子9は、鏡枠25aの末端つまり下側ミラーユニット26とは反対側となる端部に固定されている。撮像素子9としては、例えば、基板30に搭載されたCCDイメージセンサ(Charge Coupled Device Image Sensor)やCMOSイメージセンサ(Complementary Metal Oxide Semiconductor Image Sensor)が用いられるが、他の撮像素子を用いることもできる。
このように端部に撮像素子9が固定された観察光学装置8は、ステージ12と撮像素子9との間で、その光軸の方向が下側ミラー27により90度曲げられたL字形状に構成されている。
ここで、この顕微鏡1は、下側ミラー27で光軸を90度曲げることにより、結像レンズ25を水平配置するようにしているので、結像レンズ25の端部に固定される撮像素子9とこれを搭載する基板30とを垂直に立てた配置とすることができる。撮像素子9を垂直に立てた配置とすることにより、撮像素子9や基板30を水平に寝かせて配置した場合に比べて、撮像素子9への塵等の異物の付着を抑制することができる。
なお、撮像素子9は、結像レンズ25の端部に固定する構成に限らず、対物レンズ24に対して、光軸に沿った距離が一定となる(固定される)ように、ケース2の内面等に固定することもできる。撮像素子9をケース2の内面等に固定する構造とすることにより、結像レンズ25の作動時に生じる振動等が撮像素子9に加わることを抑制して、この顕微鏡1の耐久性を高めることができる。
照明光学系15にはリング絞り31が配置され、観察光学装置8には位相板32が配置されている。リング絞り31は上側ミラー23とコンデンサレンズ22との間の、コンデンサレンズ22の焦点と一致する位置に配置されている。一方、位相板32は、対物レンズ24の射出瞳位置に固定されており、当該対物レンズ24と下側ミラー27との間の、リング絞り31に対して光学的に共役となる位置に配置されている。したがって、ケーラー照明に構成された照明装置7、リング絞り31および位相板32を用いることにより、この顕微鏡1で試料を位相差観察することができる。つまり、この顕微鏡1を、位相差顕微鏡として使用することができる。顕微鏡1を位相差顕微鏡として使用することにより、皮膚から採取した角質等の細胞を、染色することなく、光の位相差をコントラストに変換して明瞭に観察することができる。
通常、位相差顕微鏡に使用する対物レンズ24は出射光が平衡となるアフォーカル光学系を採用し、出射側には位相板32に加えて位相差リング33を備えている。そして結像レンズ25には、この位相差リング33の存在が撮像面に結像される像に影響を与えないような設計を行っている。
一方、本発明の顕微鏡1における変倍機能を有する結像レンズ25は、対物レンズ24との間に光軸を90度曲げるためのミラー27を有しているために、この配置空間を確保しつつ、上述した位相差リング33の影響を防止することが必要となる。そこで、結像レンズ25の入射瞳位置P1を、ミラー27に対して対物レンズ24の側であって、対物レンズ24に設けられた位相差リング33に略一致させて位置づけると共に、位相板32の共役点P2を撮像素子9の撮像面よりも図中右側、つまり結像レンズ25とは反対側に位置づけるように設計することが望ましい。本実施例では、結像レンズ25として、焦点距離23mmから160mmのズーム光学系を使用し、第1群レンズ28の物体側(対物レンズ24側)レンズ前面より20mmの位置に当該結像レンズ25の入射瞳位置を位置づけるよう設計している。なお、位相差リング33は、対物レンズ24の射出瞳位置に設けられており、したがって、結像レンズ25の入射瞳位置P1は対物レンズ24の射出瞳位置と一致もしくは略一致している。
このような構成により、撮像素子9として1/4インチサイズの小型のものを使用し、結像レンズ25の焦点距離が短かい分、結像レンズ25の入射瞳を長くしつつ、変倍動作によってもその入射瞳位置が変動しないようにして、この顕微鏡1の小型化と幅広い変倍率の確保とを両立させることができる。
また、顕微鏡1の倍率は、対物レンズ24の光学倍率と結像レンズ25の光学倍率との積で決まるが、本発明のように、撮像面に結像させ、それをモニタ5に表示させる場合には、観察者が視認する倍率は、撮像素子9の大きさや使用するモニタ5の大きさとの総合的な関係で決まる。
それゆえ、本発明では例えば対物レンズ24として20倍のものを使用し、結像レンズ25の変倍率(ズーム比)を7倍程度(焦点距離を約23mmから160mm)とし、その光学倍率を3から20倍に設計し、撮像素子9として1/4インチ(500万画素)のCCDもしくはCMOSに取り込んで14インチのモニタ5に表示する場合には、200倍から1400倍程度の拡大率を確保することが可能となる。さらに、対物レンズ24の倍率を20倍から40倍に変更し、結像レンズ25と撮像素子9との間に、2倍のコンバージョンレンズを装着することで、最大5600倍程度の拡大率を得ることが可能となる。
コンデンサレンズ22とリング絞り31との間には一対の明視野用透過光源34が設けられており、照明装置7を用いず、明視野用透過光源34のみを用いることにより、この顕微鏡1で試料を明視野で観察することができる。また、ステージ12の上側には一対の暗視野用透過光源35aが設けられ、ステージ12の下側には一対の暗視野用反射光源35bが設けられており、照明装置7を用いず、これらの暗視野用の光源35a,35bのみを用いることにより、この顕微鏡1で試料を暗視野で観察することができる。このように、この顕微鏡1は、観察環境を、位相差観察、明視野観察または暗視野観察に切替えて試料の観察を行うことができるようになっている。
なお、本実施の形態においては、観察環境を、位相差観察、明視野観察、暗視野観察に切り替えることができる構成とされているが、少なくともいずれか1つの観察ができればよく、例えば、この顕微鏡1を位相差顕微鏡に構成することもできる。
制御基板10は、この顕微鏡1を構成する各装置等を制御するものであり、ケース2の内面に沿って縦に配置されている。制御基板10には、照明装置7の光源14、ステージ12を駆動する駆動ユニット13、結像レンズ25を駆動する電動モータおよび撮像素子9等が接続されている。また、制御基板10は、図示しない配線により、商用電源等の外部電源に接続されている。なお、制御基板10に電力を供給するためのバッテリ等の電源をケース2内に設けるようにしてもよい。
表示装置であるモニタ5は、ケーブル36(図1参照)により制御基板10に接続される。撮像素子9が撮像した試料の拡大画像は、制御基板10とケーブル36とを介してモニタ5に出力される。制御基板10にはモニタ5と接続されるコネクタユニット37が設けられるが、このコネクタユニット37は、照明装置7、ステージ装置6および結像レンズ25に囲まれたコの字の内側のスペースに配置されている。
本実施の形態においては、モニタ5として、CPU(中央演算処理装置)と、メモリやハードディスク等の記憶媒体とを備えてコンピュータとしての機能を有するタブレット端末(タブレットコンピュータ)が用いられている。タブレット端末に代えて、デスクトップ型やノート型のコンピュータを用い、これらのコンピュータに接続されたモニタに拡大画像を表示させることもできる。
モニタ5の画面はタッチパネルとなっている。タッチパネル(タッチスクリーンやタッチ画面などとも呼ばれる)は、液晶パネルのような表示パネルにタッチパッドのような位置入力装置を組み合わせたものである。図4に示すように、モニタ5の画面は、試料の拡大画像を表示する画像表示領域38に加えて、顕微鏡1を操作する操作キーを表示する領域を有している。操作キーとしては、例えば、ステージ12をX方向に移動させて視野をX方向に移動させる一対のX方向位置調整キー41a,41b、ステージ12をY方向に移動させて視野をY方向に移動させる一対のY方向位置調整キー42a,42b、ステージ12を光軸方向に沿ったZ方向に移動させて画像のフォーカスを調整する一対のフォーカス調整キー43a,43b、結像レンズ25を作動させて倍率を所定の倍率に変更する4つの倍率変更キー44a~44d、拡大画像をタブレット端末であるモニタ5の記憶媒体等に記憶させる撮影キー45などが設けられている。これらのキーを指先でタッチ操作することにより、顕微鏡1の倍率、試料の視野位置、フォーカス等を調整することができる。なお、結像レンズ25を作動させて倍率を変更する倍率変更キー44a~44dは、予め設定された4つの倍率変更キーを設けるに限らず、倍率を増加させる拡大キーと、倍率を低下させる縮小キーとで構成することもできる。
モニタ5に設けた電子ズーム機能により、モニタ5に入力された拡大画像をさらに拡大して画像表示領域38に表示させることができる。本実施の形態では、拡大画像は電子ズームにより最大5600倍にまで拡大して表示するようにしている。
このような構成により、試料差込口3にプレパラート4を差し込むと、照明装置7により試料に光が照射され、これにより生じた試料の像が観察光学装置8により拡大されて撮像素子9に結像される。撮像素子9はこれに結像した試料の像を撮像し、モニタ5に向けて出力する。そして、撮像素子9により撮像された試料の拡大画像がモニタ5に表示される。
タブレット端末であるモニタ5は、公衆回線等を用いて研究所等に設置された解析装置とデータ通信可能に構成することもできる。この場合、顕微鏡1により得られた試料の拡大画像を、モニタ5から解析装置に送信することができ、また、解析装置による当該画像の解析結果をモニタ5で受け取ることができる。
さらに、ステージ装置6に設けたオートフォーカスユニット46を用いて、画像のフォーカスを自動的に調整する構成とすることもできる。オートフォーカスユニット46としては、例えば、フォーカス位置を検出するセンサとして撮像素子9を用い、駆動ユニット13によりステージ12を光軸に沿った方向に移動させてフォーカス位置を調整する構成とすることもできる。
図2、図3に示すように、本発明では、ステージ12と撮像素子9との間において、光源14が発した光の経路つまり光軸を、下側ミラー27を用いてL字状に曲げることにより、ステージ12と観察光学装置8とをL字状に配置するようにしている。したがって、観察光学装置8をステージ12に対して垂直に配置した場合に比べて、この顕微鏡1の高さ寸法を小さくすることができる。また、高さ寸法が小さくされることにより、大きくて重い土台を設ける必要がないので、観察光学装置8をステージ12に対して垂直に配置した場合に比べて、顕微鏡1を軽量化することができる。
このように、本発明では、ステージ12と観察光学装置8とをL字状に配置するようにしたので、顕微鏡1を軽量コンパクトにして、その持ち運びを容易にすることができる。
また、本発明では、ステージ12と観察光学装置8とをL字状に配置するのに加えて、光源14とステージ12との間において、上側ミラー23を用いて光軸の経路をL字状に曲げて、ステージ12と照明装置7とをL字状に配置するようにしている。これにより、光源14からステージ12を経て撮像素子9に至るまでの間において、照明装置7、ステージ12および観察光学装置8をコの字状に配置するようにしている。つまり、ステージ12に対してケーラー照明である照明装置7と結像レンズ25とを水平配置して、これらをコの字状に配置するようにしている。したがって、観察光学装置8と照明装置7とをステージ12に対して垂直に配置した場合に比べて、この顕微鏡1の高さ寸法を小さくして、当該顕微鏡1をコンパクトな形状にすることができる。また、高さ寸法が小さくされることにより、大きくて重い土台を設ける必要がないので、観察光学装置8と照明装置7とをステージ12に対して垂直に配置した場合に比べて、顕微鏡1を軽量化することができる。
このように、本発明では、照明装置7、ステージ12および観察光学装置8をコの字状に配置するようにしたので、顕微鏡1をさらに軽量コンパクトにして、その持ち運びを容易にすることができる。
さらに、本発明では、照明装置7よりも重量が重い観察光学装置8と撮像素子9とをステージ12の下方に配置するようにしているので、観察光学装置8と撮像素子9とをステージ12の上方に配置し、照明装置7をステージ12の下方に配置する場合に比べて、顕微鏡1の重心を低くすることができる。これにより、顕微鏡1の重心が安定するので、大きくて重い土台を不要として、この顕微鏡1をさらに軽量コンパクトにすることができる。
さらに、本発明では、対物レンズ24を支持枠体11に固定し、ステージ12を支持枠体11に対して光軸方向に移動させてフォーカスを調整する構成としたので、ステージ12に対して、対物レンズ24とともに観察光学装置8、撮像素子9等を移動させる必要を無くすことができる。したがって、この顕微鏡1の構成を簡素化して、当該顕微鏡1をより軽量コンパクトにすることができる。
本発明は、上記実施の形態に限定されることなく、種々の変形または変更が可能である。
例えば、上記実施の形態においては、タッチパネル式のモニタ5に表示された各種の操作キーを操作することにより、顕微鏡1を操作することができるようにしているが、これに限らず、モニタ5とは別に設けられた操作端末により顕微鏡1を操作する構成とすることもできる。
次に、上記<7>~<11>に記載の本発明に対応する、本発明の他の実施の形態に係る顕微鏡101について、図5~図7に基づいて説明する。なお、本実施の形態における顕微鏡101には、これを構成する各部の構成に代えて、上記した実施の形態の顕微鏡1の各部の構成を適用することもできる。
図5に示す本発明の他の実施の形態である顕微鏡101は光学式の顕微鏡であり、例えば、皮膚から採取した角質等の細胞を試料とし、それを視覚的に拡大して観察する際に用いられる。この顕微鏡101は、プラスチック等の樹脂材料や金属板等により形成されるケース(筐体)102に収容されて1つのユニットとされており、ケース2ごと持ち運びが可能な可搬タイプとなっている。
ケース102の側面カバー102aには試料差込口103が設けられている。この試料差込口103にはプレパラート104に構成された試料が差し込まれる。プレパラート104が差し込まれると、顕微鏡101は試料の像を拡大し、試料の拡大画像が表示装置であるモニタ105に表示される。このように、この顕微鏡101は、モニタ105上で試料の拡大画像を観察することができるモニタタイプとなっている。
図6に示すように、この顕微鏡101は、ステージ装置106、照明装置107、観察光学装置108、撮像素子109および制御基板110を備えている。
ステージ装置106は、ケース102に固定された支持枠体111と、支持枠体111に収容されたステージ112とを備えている。支持枠体111の側面にはケース102の試料差込口103に連なる開口111aが設けられ、ケース102の試料差込口103から差し込まれたプレパラート104は、この開口111aを通ってステージ112に配置される。つまり、試料差込口103からプレパラート104を差し込むことで、試料がステージ112に配置される。
支持枠体111には駆動ユニット(駆動手段)113が取り付けられている。ステージ112は、この駆動ユニット113により駆動されて、XY方向とZ軸方向とに移動することができる。XY方向とは、後述する照明装置107から照射されてステージ112を通過する光の光軸に対して垂直な方向であり、Z方向はXY方向に垂直つまり光軸に平行な方向である。ステージ112が移動すると、当該ステージ112に載せられたプレパラート104もステージ112とともに移動する。駆動ユニット113としては、例えば、XYZの各方向に対応した3つの電動モータ(不図示)を備え、これらの電動モータの回転運動をねじ機構により各方向の直線運動に変換してステージ112に伝達する構成のものを用いることができるが、他の構造の駆動ユニットを用いてもよい。
照明装置107は、光源114と照明光学系115とを備え、ステージ112の上方に配置されている。本実施の形態においては、照明装置107は、試料に向けて均一に光を照射するケーラー照明とされている。光源114が生じた光は、照明光学系115により均一に調整されるとともに、光源114とステージ112との間に設けられた上側ミラー116により下方に向けて90度曲げられ、ステージ112に上方から垂直に照射される。光源114としては、例えば発光ダイオード(LED:Light Emitting Diode)が用いられる。この光源114としては発光ダイオードに限らず、フィラメントを用いた電球などを用いることもできる。
観察光学系である観察光学装置108は、対物レンズ117とズームチューブレンズ118とを備え、ステージ112の下方に配置されている。
対物レンズ117は、ステージ112の下方に配置され、支持枠体111に固定されている。
ズームチューブレンズ118は、例えば2群構成のズームレンズであり、第1群レンズを位置固定した鏡枠118cと第2群レンズを所望の位置に移動自在に保持したカム枠118bとを備えている。そして、このズームチューブレンズ118のカム枠118bには、更に撮像素子109を端部に固定し変倍操作に応じて軸方向に移動可能な撮像素子取付枠118aが組み込まれている。図示しない電動モータにより駆動されてカム枠118bが回転すると、希望する倍率に応じて第2群レンズが移動すると共に、撮像素子109も撮像素子取付枠118aが移動調整され、対物レンズ117を通過した試料の像を任意の倍率にて撮像素子109に結像させることができる。
対物レンズ117とズームチューブレンズ118との間には下側ミラー119が配置され、対物レンズ117を通過した光の光軸は、この下側ミラー119で反射されて、対物レンズ117とズームチューブレンズ118との間で90度曲げられ、ズームチューブレンズ118の軸方向に沿った方向に向けられるようになっている。
撮像素子109は、ズームチューブレンズ118の末端つまり下側ミラー119とは反対側を向く端部に固定されている。撮像素子109としては、例えば、基板120に搭載されたCCDイメージセンサ(Charge Coupled Device Image Sensor)やCMOSイメージセンサ(Complementary Metal Oxide Semiconductor Image Sensor)が用いられるが、他の撮像素子を用いることもできる。
ズームチューブレンズ118は対物レンズ117を通過した試料の像を拡大して撮像素子109に結像させる。また、ズームチューブレンズ118は、カム機構の作動によって結像レンズの間隔が変えられることにより、撮像素子109に結像する像の倍率を変更することができる。例えば、本実施の形態においては、ズームチューブレンズ118は、この顕微鏡101の倍率を120倍、300倍、700倍の3段階に変更することができる。このように、ズームチューブレンズ118は、試料の像を結像させる観察光学系としての機能と、観察光学系の倍率を変更する倍率変更手段としての機能とを有している。
この顕微鏡101は、照明装置107に設けられたリング絞り(不図示)と、観察光学装置108に設けられた位相板(不図示)とを備えている。リング絞りと位相板は互いに共役な位置に配置されている。つまり、この顕微鏡101は、ケーラー照明に構成された照明装置107、リング絞りおよび位相板を備えた位相顕微鏡に構成されている。顕微鏡101を位相差顕微鏡として構成することにより、皮膚から採取した角質等の細胞を、染色することなく、光の位相差をコントラストに変換して明瞭に観察することができる。
なお、本実施の形態においては、顕微鏡101を位相差観顕微鏡に構成するようにしているが、顕微鏡101を明視野観察用や暗視野観察用の顕微鏡に構成し、これに本発明を適用することもできる。
制御手段である制御基板110は、ステージ装置106、照明装置107、ズームチューブレンズ118および撮像素子109に接続されており、これらの作動を制御する。制御基板110は、図示しない配線により商用電源等の外部電源に接続され、当該外部電源から供給された電力により各装置等の制御を実行する。なお、配線を外部電源に接続する構成に代えて、制御基板110に電力を供給するためのバッテリ等の電源をケース102内に設けるようにしてもよい。
表示装置であるモニタ105は、ケーブル121により制御基板110に接続されている。本実施の形態においては、モニタ105として、CPU(中央演算処理装置)と、メモリやハードディスク等の記憶媒体とを備えてコンピュータとしての機能を有するタブレット端末(タブレットコンピュータ)が用いられている。
モニタ105の画面は、液晶パネル等の表示パネルにタッチパッドのような位置入力装置を組み合わせたタッチパネル(タッチスクリーンやタッチ画面などとも呼ばれる)となっている。図7に示すように、モニタ105の画面は、試料の拡大画像を表示する画像表示領域122に加えて、顕微鏡101を操作する操作キーを表示する領域を有している。
モニタ105の画面には、操作キーとして、ステージ112をX方向に移動させて視野をX方向に移動させる一対のX方向位置調整キー123a,123b、ステージ112をY方向に移動させて視野をY方向に移動させる一対のY方向位置調整キー124a,124b、一対のフォーカス調整キー125a,125bおよび4つの倍率変更キー126a~126dが表示されている。倍率変更キー126aはズームチューブレンズ118の倍率120倍に対応し、倍率変更キー126bはズームチューブレンズ118の倍率300倍に対応し、倍率変更キー126cはズームチューブレンズ118の倍率700倍に対応している。モニタ105は、顕微鏡101から送られた700倍の拡大画像をさらに拡大して1400倍で表示する電子ズーム機能を有しており、倍率変更キー126dは、この電子ズーム機能による倍率1400倍に対応している。また、モニタ105の画面には、拡大画像をタブレット端末であるモニタ105の記憶媒体等に記憶させる撮影キー127や各種調整用のボタン等が表示されている。
モニタ105に表示された各キーが指先でタッチ操作されると、その操作に対応した指示情報がモニタ105に入力され、当該指示情報に対応した指令信号が制御基板110に向けて出力される。指令信号を入力した制御基板110は、入力された指令信号に基づいて顕微鏡101の各装置等の作動を制御する。このように、モニタ105は、顕微鏡101により拡大された試料の拡大画像を表示する機能に加えて、顕微鏡101の作動を指示する指示情報が入力される入力手段としての機能をも有している。モニタ105の画面をタッチパネルとし、当該画面に操作キーを表示させて入力手段を構成することにより、モニタ105とは別に入力手段を設けることを不要として、この顕微鏡101の構成を簡素化することができる。
試料差込口103にプレパラート104が差し込まれると、照明装置107により試料に光が照射され、これにより生じた試料の像が観察光学装置108により拡大されて撮像素子109に結像される。撮像素子109はこれに結像した試料の像を撮像し、モニタ105に向けて出力する。これにより、撮像素子109により撮像された試料の拡大画像がモニタ105の画像表示領域122に表示される。
モニタ105に表示された倍率変更キー126a~126dの何れかを選択的に押すことで、モニタ105に表示される試料の拡大画像の倍率を、試料の解析に適した所望の倍率に変更することができる。また、モニタ105に表示されたフォーカス調整キー125a,125bを押すことで、ステージ112を光軸に沿った方向に移動させて、モニタ105に表示された試料の画像のフォーカスを調整することができる。
一方、モニタ105に表示されたX方向位置調整キー123a,123bおよび/またはY方向位置調整キー124a,124bを押すことにより、モニタ105に表示された試料の画面内における位置を調整することができる。例えば、X方向位置調整キー123a,123bの何れか一方を押すと、ステージ112のX方向への移動を指示する指示情報がモニタ105に入力され、その指示情報に対応した指令信号がモニタ105から制御基板110に入力される。指令信号が入力されると、制御基板110は、入力された指令信号に基づいた方向にステージ112を移動させるように駆動ユニット113の作動を制御する。これにより、モニタ105に入力されたX方向への移動指示にしたがって駆動ユニット113が作動し、ステージ112は駆動ユニット113により駆動されてX方向に移動する。同様に、モニタ105のY方向位置調整キー124a,124bが操作された場合においても、ステージ112のY方向への移動を指示する指示情報がモニタ105に入力され、制御基板110がその指令信号に基づいて駆動ユニット113の作動を制御し、ステージ112は駆動ユニット113により駆動されてY方向に移動する。
ここで、制御基板110は、モニタ105に表示された画像の倍率が変更されたときには、ステージ112の移動速度が当該倍率に反比例した移動速度となるように、駆動ユニット113の作動を制御する。つまり、制御基板110は、モニタ105に表示される試料の画像の倍率が高められたときには、その倍率が低い場合よりも、ステージ112の移動速度が遅くなるように駆動ユニット113の作動を制御する。倍率が120倍、300倍、700倍、1400倍と高められるにつれて、ステージ112の移動速度は、当該倍率に反比例して低減される。例えば、倍率が300倍のときのステージ112のXY方向への移動速度は、倍率が120倍のときのステージ112のXY方向への移動速度の0.4倍の速度に設定される。したがって、モニタ105に表示される画像の倍率が変更されても、X方向位置調整キー123a,123bやY方向位置調整キー124a,124bを操作してモニタ105の画面内に表示される試料の位置を移動させるときの、当該試料の画面内における移動速度は、倍率に拘わらず一定となる。当該制御を行うために、制御基板110には、モニタ105から当該モニタ105に表示された画像の倍率の情報が入力される。
このように、本発明の顕微鏡101では、モニタ105に表示される試料の画像の倍率が変更されたときには、駆動ユニット113に駆動されるステージ112の移動速度が当該倍率に反比例した速度に設定されるようにしている。したがって、モニタ105に表示される試料の画像の倍率が変更されても、ステージ112の移動速度が倍率に反比例した速度に設定されることにより、モニタ105の画面内における試料の移動速度は倍率に拘わらず常に一定となる。これにより、倍率の大小に拘わらず、ステージ112を移動させたときの、モニタ105の画面内における試料の移動速度を一定として、モニタ105に表示させる試料の位置調整を容易にすることができる。また、倍率を変更する操作を行いながら、試料の位置を移動させる操作を行っても、モニタ105の画面内における試料の移動速度は常に一定となるので、その位置調整は容易である。
上記実施の形態では、モニタ105として、画面がタッチパネルに構成されたものを用い、その画面に、X方向位置調整キー123a,123bおよびY方向位置調整キー124a,124bを表示して入力手段を構成するようにしている。しかしながら、入力手段としては、このような構成に限らず、以下の構成とすることもできる。
すなわち、モニタ105として画面がタッチパネルに構成されたものを用いるとともに、その画面に表示された試料の画像上を、指先等でドラッグ操作することにより、ステージ112の移動方向および移動速度を指示する指示情報が入力される構成とすることができる。この場合、画面上での指先等のドラッグ操作の速度および方向と、画面上での試料の移動速度および方向とが同一となるように、ステージ112の移動速度および方向が制御基板110により設定される。この場合においても、画面上での指先等のドラッグ操作の速度に対するステージ112の移動速度は、画面に表示される試料の倍率に反比例した速度に設定されることになる。したがって、モニタ105が表示する試料の倍率に拘わらず、モニタ105に表示された試料を、モニタ105の画面上における指先等でのドラッグ操作に常に追従させながら移動させることができる。
このように、モニタ105の画面をドラッグ操作してステージ112の移動速度および移動方向を指示する構成とした場合には、モニタ105に表示された試料の画像を見ながら、視覚的に画面内における試料の位置を移動させることができるので、倍率の大小に拘わらず、その移動操作をさらに容易に行うことができる。
タッチパネルを備えたモニタ105を用いた場合には、画面を指先等でピンチアウト操作することにより、モニタ105の画面に表示される試料の画像の倍率を高めるとともに、画面を指先等でピンチイン操作することにより当該倍率を低減させる構成とすることもできる。このような構成とすることにより、モニタ105に表示された試料の倍率の変更操作を、モニタ105に表示された試料の画像を確認しながら容易に行うことができる。
また、タッチパネルを備えたモニタ105を用いた場合には、モニタ105に表示された試料の拡大画像の所望の位置を指先等で指示することにより、当該指示された部分を画面の中心に移動させるとともに自動的に所定の倍率にまで拡大して表示させることもできる。これにより、試料の解析等に必要な画像を容易に得ることができるので、その作業が容易となる。
入力手段としては、タッチパネルに構成されたモニタ105の画面を用いた構成に限らず、モニタ105の画面とは別に設けた機械的に動作する十字キー等の操作キーを用いることもできる。このような操作キーは、モニタ105の画面以外の部分に設けられていてもよく、モニタ105とは別体に設けられてモニタ105ないし顕微鏡101の制御基板110に接続される構成とすることもできる。このような操作キーを用いることにより、タッチパネルではない安価なモニタを用いて、この顕微鏡101のコストを低減することができる。
本発明は、上記実施の形態に限定されることなく、種々の変形または変更が可能である。
例えば、上記実施の形態においては、モニタ105としてタブレット端末を用いるようにしているが、これに限らず、デスクトップ型のコンピュータに接続されたモニタやノート型コンピュータのモニタを用いることもできる。
次に、上記<12>~<15>に記載の本発明に対応する、本発明のさらに他の実施形態に係る顕微鏡である位相差顕微鏡210について説明する。なお、本実施の形態における位相差顕微鏡210には、これを構成する各部の構成に代えて、上記した実施の形態の顕微鏡1および顕微鏡101の各部の構成を適用することもできる。
図8は、本実施形態に係る撮像装置の外観図である。位相差顕微鏡210は、例えば皮膚から採取した角質等の細胞を試料とし、それを視覚的に拡大して観察する際に用いられる。位相差顕微鏡210は、プラスチック等の樹脂材料や金属板等により形成される筐体211に収容されて1つのユニットとして構成され、筐体211ごと持ち運び可能である。
筐体211の側面212には試料差込口213が設けられる。試料差込口213にはプレパラート214に構成された試料、すなわち照明光の照射面および透過面をともに平面状に形成した試料を差込み可能である。プレパラート214が差込まれているとき、位相差顕微鏡210は試料の像を拡大し、試料の拡大画像を表示装置215に表示させる。
位相差顕微鏡210は、図8に示すように、側面212が鉛直方向に平行となり、試料差込口213に差込まれたプレパラート214が水平となる正規姿勢で用いられる。以下の説明においては、位相差顕微鏡210が正規姿勢に維持されているものとする。
図9に示すように、位相差顕微鏡210は、光源ユニット216、第1のミラー217、開口絞り218、コンデンサレンズ219、明視野用透過光源220、暗視野用透過光源221、ステージユニット222、対物レンズ223、暗視野用反射光源224、位相板225、第2のミラー226、変倍機能を有する結像光学系227、撮像素子228、画像処理部229、および制御部230を含んで構成される。
光源ユニット216は、光源231および照明光学系232を有する。光源ユニット216は、位相差顕微鏡210の上方において、照明光学系232の光軸が水平になるように配置される。照明光学系232は光源231から出射される照明光を、プレパラート214を均一に照明する光として出射する。すなわち、光源ユニット216はケーラ照明として機能する。
第1のミラー217は、平面ミラーであって、光源ユニット216から出射する照明光の出射方向において、水平面に対して45°傾斜する姿勢で固定される。第1のミラー217は、光源ユニット216から出射する照明光を鉛直下方に屈折させる。
開口絞り218は、コンデンサレンズ219の前側焦点位置に配置される。開口絞り218は、例えばリング状の開口を有する。開口絞り218は、照明光を絞り、鉛直下方に出射する。
コンデンサレンズ219は、開口絞り218の鉛直下方に配置される。コンデンサレンズ219は、開口絞り218を通過した照明光をプレパラート214に集光するように出射する。
明視野用透過光源220は、開口絞り218およびコンデンサレンズ219の間に設けられる。明視野用透過光源220は、コンデンサレンズ219を介してプレパラート214に照射する照明光を出射する。
暗視野用透過光源221は、コンデンサレンズ219およびステージユニット222の間に設けられる。暗視野用透過光源221は、プレパラート214に直接照射する照明光を出射する。
ステージユニット222は、コンデンサレンズ219から出射する照明光の光路状に設けられる。ステージユニット222は、支持枠体233、ステージ234、およびステージ駆動機構235を有する。
支持枠体233は、筐体211に固定される。支持枠体233の側面には筐体211の試料差込口213に連なる開口236が形成される。試料差込口213から差込まれたプレパラート214は、開口236を通過してステージ234上に載置される。
ステージ234は、載置面がコンデンサレンズ219の光軸と直交するように、支持枠体233内で収容される。ステージ234は、コンデンサレンズ219の光軸に垂直な2方向(以下、X方向およびY方向と呼ぶ。)および光軸に沿った方向(以下、Z方向と呼ぶ。)の3方向に変位可能に支持される。したがって、ステージ234は、照明光の光路に沿った方向(Z方向)に沿って変位可能である。
ステージ駆動機構235は、制御部230の指示に基づいて、ステージ234をX方向、Y方向、およびZ方向に変位させる。ステージ駆動機構235がステージ234を変位させることにより、ステージ234に載置したプレパラート214もステージ234とともに変位する。
対物レンズ223は、コンデンサレンズ219と同軸であって、コンデンサレンズ219との間にステージユニット222を挟む位置に配置される。
暗視野用反射光源224は、ステージユニット222および対物レンズ223の間に設けられる。暗視野用反射光源224は、プレパラート214に直接照射する照明光を出射する。
位相板225は、対物レンズ223の射出瞳位置に配置される。位相板225は、開口絞り218の開口と整合する形状の位相板であって、入射する光の位相を1/4波長ずらす。したがって、光源ユニット216から照明光を発光させた場合に、試料を透過する直線光が位相板225に集光するため直線光の位相が1/4波長ずらされ、試料を回折する回折光の殆どが位相板225以外の領域を通過する。
第2のミラー226は、対物レンズ223の光軸上に配置される平面ミラーであって、第1のミラー217に対して90°傾斜する姿勢で固定される。第2のミラー226は、試料の光学像を水平方向に屈折させる。
変倍機能を有する結像光学系227は、第2のミラー226による光学像の屈折方向に配置される。したがって、結像光学系227の光軸は、照明光学系232の光軸と平行である。結像光学系227はチューブレンズを含む複数のレンズ237を有し、各レンズ237を連動させて光軸に沿って変位させることにより焦点距離を変化させる。結像光学系227は対物レンズ223と協働して、試料の光学像を所定の位置の像面に結像させる。また、結像光学系227は対物レンズ223と協働して、位相差顕微鏡210の倍率を120倍から700倍の範囲で変更することが可能である。
撮像素子228は、所定の位置である像面と重なるように配置される。したがって、撮像素子228は受光面が鉛直方向に平行となるように配置される。撮像素子228は、例えばCCD撮像素子およびCMOS撮像素子であり、受光面上に結像する光学像を撮像する。撮像素子228は、光学像の撮像により画像信号として撮像画像を生成する。
通常、位相差顕微鏡に使用する対物レンズ223は出射光が平衡となるアフォーカル光学系を採用し、出射側には位相板225と位相差リング245を備えている。そして結像光学系227には、この位相差リング245の存在が撮像素子228の撮像面に結像される像に影響を与えないような設計を行っている。
一方、本発明の位相差顕微鏡210における変倍機能を有する結像光学系227は、対物レンズ223との間に光軸を90度曲げるためのミラー226を配するために、この配置空間を確保しつつ、上述した位相差リング245の影響を防止することが必要となるため、結像光学系227の入射瞳位置246を、反射ミラー226に対して対物レンズ223側に位置づけると共に、位相板225の共役点247を撮像素子228よりも図中右側、つまり結像光学系227の反対側に位置づけるように設計することが望ましい。
また、位相差顕微鏡210の倍率は、対物レンズ223の光学倍率と結像光学系227の光学倍率との積で決まるが、本発明のように、撮像面に結像させ、それを表示装置215に表示させる場合には、観察者が視認する倍率は、撮像素子228の大きさや使用する表示装置215の大きさとの総合的な関係で決まる。
それゆえ、本発明では例えば20倍の対物レンズ223を使用し、結像光学系227の変倍率(ズーム比)を7倍程度とし光学倍率を3から20倍に設計し、撮像素子228として1/4インチのCCDもしくはCMOSに取込んで14インチのモニタに表示する場合には、200倍から1400倍程度の拡大率を確保することが可能となる。
画像処理部229は、撮像素子228から撮像画像を取得して、所定の画像処理を施す。画像処理部229は、画像処理を施した撮像画像を表示装置215に送信する。また、画像処理部229は、取得した撮像画像から多様な情報を取得し、必要に応じて制御部230に送信する。
制御部230は、位相差顕微鏡210を構成する各部位を制御する。例えば、制御部230は、光源ユニット216、明視野用透過光源220、暗視野用透過光源221、および暗視野用反射光源224の発光および消灯の切替を制御する。また、制御部230は、ステージ234のX方向およびY方向への変位を制御する。さらに、制御部230は、後述するように、試料の光学像を像面上に合焦させるように、ステージ234のZ方向への変位を制御する。
表示装置215は、例えばディスプレイを有するタブレット端末であって、有線または無線で位相差顕微鏡210と通信する。前述のように、表示装置215は、画像処理部229から送信される撮像画像をディスプレイに表示する。表示装置215は、タッチパネルを有しており、位相差顕微鏡210を制御するための多様な入力を検出する入力部として機能し得る。ただし、表示装置215は、デスクトップ型およびノート型のコンピュータならびにキーボードなどの入力部の組合せによって構成されていてもよい。
表示装置215は、図10に示すように、位相差顕微鏡210から取得する撮像画像238に加えて、位相差顕微鏡210を操作する複数の操作キーを表示する。表示装置215は、ユーザが操作キーに触れると、当該操作キーに応じた入力を検出し、制御部230に送信する。操作キーは、例えばX方向位置調整キー239、Y方向位置調整キー240、倍率選択キー241、観察モード選択キー242、オートフォーカスキー243、および手動フォーカスキー244を含む。
X方向位置調整キー239は、当該キーへの入力を検出すると、ステージ234をX方向に沿って変位させる。Y方向位置調整キー240は、当該キーへの入力を検出すると、ステージ234をY方向に沿って変位させる。倍率選択キー241では複数の倍率のいずれかを選択可能であり、いずれかのキーへの入力を検出すると、当該キーに対応する倍率となるように結像光学系227を構成するレンズが変位される。観察モード選択キー242では、位相差観察、明視野観察、および暗視野観察のいずれかを選択可能であり、選択した観察モードに応じて、用いる照明光が選択される。ユーザが位相差観察モードを選択したときには、光源ユニット216のみが発光する。ユーザが明視野観察モードを選択したときには、明視野用透過光源220のみが発光する。ユーザが暗視野観察モードを選択したときには、暗視野用透過光源221および暗視野用反射光源224のみが発光する。オートフォーカスキー243は、当該キーへの入力を検出すると、後述するように、ステージ234をZ方向に沿って変位させ、試料の光学像の合焦調整が行われる。手動フォーカスキー244は、当該キーへの入力を検出すると、ステージ234をZ方向に沿って単位変化量ずつ変位させ、手動による合焦調整を可能にする。
次に、位相差顕微鏡210におけるオートフォーカス機能について説明する。前述のように、オートフォーカスキー243への入力を検出すると、制御部230はコントラスト検出方式によりオートフォーカス機能を実行する。まず、制御部230は、撮像した画像のコントラスト値を画像処理部229に算出させる。次に、制御部230は、ステージ234をZ方向に沿って単位変位量だけ変位させるように、ステージ駆動機構235を制御する。制御部230は、ステージ234の変位後に撮像した画像のコントラスト値を画像処理部229に算出させる。制御部230は、コントラスト値が最大となるまで、ステージ234の変位およびコントラスト値の比較を繰返す。制御部230は、コントラスト値が最大となる位置に、ステージ234を配置させオートフォーカス機能を完了する。
以上のような構成の本実施形態の位相差顕微鏡によれば、プレパラート214を載置するステージ234を光軸に沿って変位させることによるオートフォーカス機能を実行可能である。なお、従来の位相差顕微鏡では、多様な試料の観察を目的として試料の大きさおよび形状が多様であるため、ステージの変位によりオートフォーカスを実行することは困難であった。一方、本実施形態では、観察する試料が照明光の照射面および透過面ともに平面状に形成した試料に限定されるので、ステージ234の変位によるオートフォーカスが可能である。
また、本実施形態の位相差顕微鏡によれば、手動フォーカスキー244への入力により、合焦調整が可能なので、オートフォーカス機能の実行後、ユーザが微調整を行うことも可能である。このような微調整により、画像全体的にボケが発生しても、被写体にとって所望の部位に対して光学像を合焦させることが可能である。
本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
例えば、本実施形態において、オートフォーカスは、コントラスト検出方式に基づいて実行される構成であるが、例えば位相差検出方式のように他の方式に基づいてオートフォーカスを実行する構成であってもよい。
1 顕微鏡
2 ケース(筐体)
2a 側面カバー
3 試料差込口
4 プレパラート
5 モニタ(表示装置)
6 ステージ装置
7 照明装置
8 観察光学装置
9 撮像素子
10 制御基板
11 支持枠体
11a 開口
12 ステージ
13 駆動ユニット(駆動手段)
14 光源
15 照明光学系
16 照明ケース
17 接続アダプタ
18 上側ミラーユニット
19 光源レンズ
20 フィールドレンズ
21 視野絞り
22 コンデンサレンズ
23 上側ミラー
24 対物レンズ
25 結像レンズ
25a 鏡枠
25b 可動鏡枠
25c 固定鏡枠
26 下側ミラーユニット
27 下側ミラー
28 固定レンズ系
29 可動レンズ系
30 基板
31 リング絞り
32 位相板
33 位相差リング
34 明視野用透過光源
35a 暗視野用透過光源
35b 暗視野用反射光源
36 ケーブル
37 コネクタユニット
38 画像表示領域
41a,41b X方向位置調整キー
42a,42b Y方向位置調整キー
43a,43b フォーカス調整キー
44a~44d 倍率変更キー
45 撮影キー
46 オートフォーカスユニット
P1 入射瞳位置
P2 共役点
101 顕微鏡
102 ケース
102a 側面カバー
103 試料差込口
104 プレパラート
105 モニタ(表示装置)
106 ステージ装置
107 照明装置
108 観察光学装置(観察光学系)
109 撮像素子
110 制御基板
111 支持枠体
111a 開口
112 ステージ
113 駆動ユニット(駆動手段)
114 光源
115 照明光学系
116 上側ミラー
117 対物レンズ
118 ズームチューブレンズ
118a 固定チューブ
118b 可動チューブ
119 下側ミラー
120 基板
121 ケーブル
122 画像表示領域
123a,23b X方向位置調整キー
124a,24b Y方向位置調整キー
125a,25b フォーカス調整キー
126a~26d 倍率変更キー
127 撮影キー
210 位相差顕微鏡
211 筐体
212 側面
213 試料差込口
214 プレパラート
215 表示装置
216 光源ユニット
217 第1のミラー
218 開口絞り
219 コンデンサレンズ
220 明視野用透過光源
221 暗視野用透過光源
222 ステージユニット
223 対物レンズ
224 暗視野用反射光源
225 位相板
226 第2のミラー
227 結像光学系
228 撮像素子
229 画像処理部
230 制御部
231 光源
232 照明光学系
233 支持枠体
234 ステージ
235 ステージ駆動機構
236 開口
237 レンズ
238 撮像画像
239 X方向位置調整キー
240 Y方向位置調整キー
241 倍率選択キー
242 観察モード選択キー
243 オートフォーカスキー
244 手動フォーカスキー
245 位相差リング
246 入射瞳位置
247 共役点
2 ケース(筐体)
2a 側面カバー
3 試料差込口
4 プレパラート
5 モニタ(表示装置)
6 ステージ装置
7 照明装置
8 観察光学装置
9 撮像素子
10 制御基板
11 支持枠体
11a 開口
12 ステージ
13 駆動ユニット(駆動手段)
14 光源
15 照明光学系
16 照明ケース
17 接続アダプタ
18 上側ミラーユニット
19 光源レンズ
20 フィールドレンズ
21 視野絞り
22 コンデンサレンズ
23 上側ミラー
24 対物レンズ
25 結像レンズ
25a 鏡枠
25b 可動鏡枠
25c 固定鏡枠
26 下側ミラーユニット
27 下側ミラー
28 固定レンズ系
29 可動レンズ系
30 基板
31 リング絞り
32 位相板
33 位相差リング
34 明視野用透過光源
35a 暗視野用透過光源
35b 暗視野用反射光源
36 ケーブル
37 コネクタユニット
38 画像表示領域
41a,41b X方向位置調整キー
42a,42b Y方向位置調整キー
43a,43b フォーカス調整キー
44a~44d 倍率変更キー
45 撮影キー
46 オートフォーカスユニット
P1 入射瞳位置
P2 共役点
101 顕微鏡
102 ケース
102a 側面カバー
103 試料差込口
104 プレパラート
105 モニタ(表示装置)
106 ステージ装置
107 照明装置
108 観察光学装置(観察光学系)
109 撮像素子
110 制御基板
111 支持枠体
111a 開口
112 ステージ
113 駆動ユニット(駆動手段)
114 光源
115 照明光学系
116 上側ミラー
117 対物レンズ
118 ズームチューブレンズ
118a 固定チューブ
118b 可動チューブ
119 下側ミラー
120 基板
121 ケーブル
122 画像表示領域
123a,23b X方向位置調整キー
124a,24b Y方向位置調整キー
125a,25b フォーカス調整キー
126a~26d 倍率変更キー
127 撮影キー
210 位相差顕微鏡
211 筐体
212 側面
213 試料差込口
214 プレパラート
215 表示装置
216 光源ユニット
217 第1のミラー
218 開口絞り
219 コンデンサレンズ
220 明視野用透過光源
221 暗視野用透過光源
222 ステージユニット
223 対物レンズ
224 暗視野用反射光源
225 位相板
226 第2のミラー
227 結像光学系
228 撮像素子
229 画像処理部
230 制御部
231 光源
232 照明光学系
233 支持枠体
234 ステージ
235 ステージ駆動機構
236 開口
237 レンズ
238 撮像画像
239 X方向位置調整キー
240 Y方向位置調整キー
241 倍率選択キー
242 観察モード選択キー
243 オートフォーカスキー
244 手動フォーカスキー
245 位相差リング
246 入射瞳位置
247 共役点
Claims (16)
- 試料の像を撮像素子により撮像して表示装置に出力する顕微鏡であって、
前記試料が配置される水平なステージと、
前記ステージの上方に設けられ、前記ステージに配置された前記試料に光を照射する光源と、
前記光源と前記ステージとの間に設けられる照明光学系と、
前記ステージの上方に該ステージに垂直な方向に対して45度傾けて配置され、前記光源と前記ステージとの間で光軸を90度曲げる上側ミラーと、
対物レンズと結像レンズとを備えて前記ステージの下方に配置され、前記試料の像を前記撮像素子に結像させる観察光学系と、
前記ステージの下方に該ステージに垂直な方向に対して45度傾けて配置され、前記ステージと前記撮像素子との間で光軸を90度曲げる下側ミラーとを備え、
前記結像レンズが倍率変更機能を有し、該結像レンズが前記下側ミラーと前記撮像素子との間に軸方向を水平にして配置され、
前記照明光学系、前記ステージ及び前記観察光学系がコの字状に配置されていることを特徴とする顕微鏡。 - 前記照明光学系に配置されたリング絞りと、前記観察光学系の前記リング絞りと光学的に共役な位置に配置される位相板とを備えていることを特徴とする請求項1記載の顕微鏡。
- 前記結像レンズの入射瞳位置が、前記対物レンズの射出瞳位置と一致もしくは略一致していることを特徴とする請求項2記載の顕微鏡。
- 前記結像レンズは、前記下側ミラーに隣接する第1群レンズ、前記第1群レンズよりも前記撮像素子側に配置されて該第1群レンズに対して軸方向に相対移動可能な第2群レンズおよび前記第2群レンズよりも前記撮像素子側に配置されて前記第1群レンズと前記第2群レンズとに対して軸方向に相対移動可能な第3群レンズとを有するリレーレンズであることを特徴とする請求項3記載の顕微鏡。
- 前記撮像素子が1/4インチサイズであることを特徴とする請求項1記載の顕微鏡。
- 前記光源と前記照明光学系とがケーラー照明を構成することを特徴とする請求項2記載の顕微鏡。
- 前記ステージを光軸方向に沿って移動させる駆動手段を備えていることを特徴とする請求項1記載の顕微鏡。
- 前記ステージの移動方向を指示する指示情報が入力される入力手段と、
前記入力手段に入力された指示情報に基づいて前記駆動手段の作動を制御するとともに、前記表示装置に表示される画像の倍率が変更されたときには前記駆動手段に駆動される前記ステージの移動速度を前記倍率に反比例した移動速度に設定する制御手段と、を有することを特徴とする請求項7に記載の顕微鏡。 - 前記入力手段が、前記ステージの移動方向を入力可能な操作キーを有することを特徴とする請求項8記載の顕微鏡。
- 前記表示装置が、前記試料の拡大画像を表示するとともに、前記ステージの移動方向を指示可能な操作キーを表示するタッチパネルを有することを特徴とする請求項9記載の顕微鏡。
- 前記表示装置が、前記試料の拡大画像を表示するとともに、ドラッグ操作によって前記ステージの移動方向を指示可能なタッチパネルを有することを特徴とする請求項8記載の顕微鏡。
- 前記タッチパネルが、ピンチアウト操作によって前記観察光学系の倍率を高めるとともにピンチイン操作によって前記観察光学系の倍率を低下させる倍率変更手段として機能することを特徴とする請求項10記載の顕微鏡。
- 前記ステージがコンデンサレンズおよび前記対物レンズの間において前記光源の光路に沿って変位可能であり、
前記試料の光学像を像面において合焦させるように、前記ステージを前記光路に沿って変位させる制御部を備えることを特徴とする請求項2に記載の顕微鏡。 - 前記ステージを変位させる入力を検出する入力部を更に備え、前記制御部は前記入力部の検出に基づいて前記ステージを前記光路に沿って変位させることも可能であることを特徴とする請求項13記載の顕微鏡。
- コントラスト検出方式によって前記光学像を合焦させることを特徴とする請求項13記載の顕微鏡。
- 位相差検出方式によって前記光学像を合焦させることを特徴とする請求項13記載の顕微鏡。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012202121A JP6029396B2 (ja) | 2012-09-13 | 2012-09-13 | 位相差顕微鏡 |
JP2012-202107 | 2012-09-13 | ||
JP2012202120A JP2014056192A (ja) | 2012-09-13 | 2012-09-13 | 顕微鏡 |
JP2012202107A JP6029395B2 (ja) | 2012-09-13 | 2012-09-13 | 顕微鏡 |
JP2012-202120 | 2012-09-13 | ||
JP2012-202121 | 2012-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014041820A1 true WO2014041820A1 (ja) | 2014-03-20 |
Family
ID=50277960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005454 WO2014041820A1 (ja) | 2012-09-13 | 2013-09-13 | 顕微鏡 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014041820A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158782A1 (ja) * | 2015-03-31 | 2016-10-06 | オリンパス株式会社 | 観察装置 |
WO2016201177A1 (en) * | 2015-06-12 | 2016-12-15 | Techshot, Inc. | Integrated illuminator and condenser for microscopes |
US10281704B2 (en) | 2015-03-31 | 2019-05-07 | Olympus Corporation | Observation apparatus and observation method to observe a sample with reflected light transmitted through the sample |
US10877256B2 (en) | 2015-12-18 | 2020-12-29 | Olympus Corporation | Observation device |
US10914931B2 (en) | 2015-12-11 | 2021-02-09 | Olympus Corporation | Observation device |
US11137588B2 (en) | 2016-09-30 | 2021-10-05 | Olympus Corporation | Observation apparatus which illuminates and observes a specimen from below |
US11226476B2 (en) | 2016-09-30 | 2022-01-18 | Olympus Corporation | Specimen observation apparatus |
US11460682B2 (en) | 2017-05-29 | 2022-10-04 | Evident Corporation | Observation device |
WO2023186558A1 (de) | 2022-03-31 | 2023-10-05 | Jenoptik Optical Systems Gmbh | Beleuchtung für ein mikroskop, mikroskop mit dunkelfeldbeleuchtung, verwendung zur blutuntersuchung und verfahren zum beleuchten einer probe |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886965A (ja) * | 1995-10-06 | 1996-04-02 | Nikon Corp | 顕微鏡用電動ステージ制御装置 |
JP2000193888A (ja) * | 1998-12-25 | 2000-07-14 | Sony Corp | 顕微鏡装置 |
JP2003005079A (ja) * | 2001-06-21 | 2003-01-08 | Nikon Corp | 顕微鏡装置 |
JP2006162771A (ja) * | 2004-12-03 | 2006-06-22 | Keyence Corp | 蛍光顕微鏡 |
JP2008216991A (ja) * | 2008-01-29 | 2008-09-18 | Fujitsu Ten Ltd | 表示装置 |
JP2009003094A (ja) * | 2007-06-20 | 2009-01-08 | Olympus Corp | 箱型顕微鏡装置 |
JP2009211010A (ja) * | 2008-03-06 | 2009-09-17 | Yutaka Suenaga | 光学部品及び光学部品を用いた位相差顕微鏡 |
JP2011039191A (ja) * | 2009-08-07 | 2011-02-24 | Sanyo Electric Co Ltd | 観察システム及び設置不備検出プログラム |
JP2011242702A (ja) * | 2010-05-21 | 2011-12-01 | Nikon Corp | 結像光学系及び形状測定装置 |
JP2012013996A (ja) * | 2010-07-01 | 2012-01-19 | Sony Corp | 情報処理装置、ステージうねり補正方法、プログラム |
JP2012118139A (ja) * | 2010-11-29 | 2012-06-21 | Olympus Corp | 蛍光顕微鏡用照明光学系 |
JP2012150142A (ja) * | 2011-01-17 | 2012-08-09 | Olympus Corp | 顕微鏡制御装置、顕微鏡システム及び該制御方法 |
-
2013
- 2013-09-13 WO PCT/JP2013/005454 patent/WO2014041820A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0886965A (ja) * | 1995-10-06 | 1996-04-02 | Nikon Corp | 顕微鏡用電動ステージ制御装置 |
JP2000193888A (ja) * | 1998-12-25 | 2000-07-14 | Sony Corp | 顕微鏡装置 |
JP2003005079A (ja) * | 2001-06-21 | 2003-01-08 | Nikon Corp | 顕微鏡装置 |
JP2006162771A (ja) * | 2004-12-03 | 2006-06-22 | Keyence Corp | 蛍光顕微鏡 |
JP2009003094A (ja) * | 2007-06-20 | 2009-01-08 | Olympus Corp | 箱型顕微鏡装置 |
JP2008216991A (ja) * | 2008-01-29 | 2008-09-18 | Fujitsu Ten Ltd | 表示装置 |
JP2009211010A (ja) * | 2008-03-06 | 2009-09-17 | Yutaka Suenaga | 光学部品及び光学部品を用いた位相差顕微鏡 |
JP2011039191A (ja) * | 2009-08-07 | 2011-02-24 | Sanyo Electric Co Ltd | 観察システム及び設置不備検出プログラム |
JP2011242702A (ja) * | 2010-05-21 | 2011-12-01 | Nikon Corp | 結像光学系及び形状測定装置 |
JP2012013996A (ja) * | 2010-07-01 | 2012-01-19 | Sony Corp | 情報処理装置、ステージうねり補正方法、プログラム |
JP2012118139A (ja) * | 2010-11-29 | 2012-06-21 | Olympus Corp | 蛍光顕微鏡用照明光学系 |
JP2012150142A (ja) * | 2011-01-17 | 2012-08-09 | Olympus Corp | 顕微鏡制御装置、顕微鏡システム及び該制御方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107209361A (zh) * | 2015-03-31 | 2017-09-26 | 奥林巴斯株式会社 | 观察装置 |
JPWO2016158782A1 (ja) * | 2015-03-31 | 2017-10-05 | オリンパス株式会社 | 観察装置 |
US10281704B2 (en) | 2015-03-31 | 2019-05-07 | Olympus Corporation | Observation apparatus and observation method to observe a sample with reflected light transmitted through the sample |
WO2016158782A1 (ja) * | 2015-03-31 | 2016-10-06 | オリンパス株式会社 | 観察装置 |
WO2016201177A1 (en) * | 2015-06-12 | 2016-12-15 | Techshot, Inc. | Integrated illuminator and condenser for microscopes |
US10502942B2 (en) | 2015-06-12 | 2019-12-10 | Techshot, Inc. | Integrated illuminator and condenser for microscopes |
US10914931B2 (en) | 2015-12-11 | 2021-02-09 | Olympus Corporation | Observation device |
US10877256B2 (en) | 2015-12-18 | 2020-12-29 | Olympus Corporation | Observation device |
US11137588B2 (en) | 2016-09-30 | 2021-10-05 | Olympus Corporation | Observation apparatus which illuminates and observes a specimen from below |
US11226476B2 (en) | 2016-09-30 | 2022-01-18 | Olympus Corporation | Specimen observation apparatus |
US11460682B2 (en) | 2017-05-29 | 2022-10-04 | Evident Corporation | Observation device |
WO2023186558A1 (de) | 2022-03-31 | 2023-10-05 | Jenoptik Optical Systems Gmbh | Beleuchtung für ein mikroskop, mikroskop mit dunkelfeldbeleuchtung, verwendung zur blutuntersuchung und verfahren zum beleuchten einer probe |
DE102022107721A1 (de) | 2022-03-31 | 2023-10-05 | Jenoptik Optical Systems Gmbh | Beleuchtung für ein Mikroskop, Mikroskop mit Dunkelfeldbeleuchtung, Verwendung zur Blutuntersuchung und Verfahren zum Beleuchten einer Probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014041820A1 (ja) | 顕微鏡 | |
US10578851B2 (en) | Automated hardware and software for mobile microscopy | |
JP5497386B2 (ja) | 画像取得装置 | |
CN102662229B (zh) | 具有触摸屏的显微镜 | |
US20180348500A1 (en) | Scanning microscope with real time response | |
US8466958B2 (en) | Microscope system that is capable of electrically changing an observation state of a sample | |
JP5863357B2 (ja) | 拡大観察装置、並びに、拡大観察装置の画像表示方法及び検鏡法切換方法 | |
JP4915071B2 (ja) | 顕微鏡、およびバーチャルスライド作成システム | |
JP2002148526A (ja) | 顕微鏡装置 | |
JP2013088490A (ja) | 顕微鏡、画像取得方法、プログラム、及び記録媒体 | |
JP6680653B2 (ja) | 顕微鏡装置、顕微鏡システムおよび撮像方法 | |
JP6685148B2 (ja) | 撮像装置および撮像方法 | |
JP2010169968A (ja) | 顕微鏡システム及び該制御方法 | |
JP6027875B2 (ja) | 撮像装置及び顕微鏡システム | |
JP5893314B2 (ja) | 表示装置および顕微鏡システム | |
JP2015072303A (ja) | 顕微鏡 | |
JP2008281771A (ja) | 顕微測定装置 | |
CN110967821B (zh) | 显微镜装置 | |
JP5649851B2 (ja) | 顕微鏡コントローラを有する顕微鏡システム | |
JP2018066908A (ja) | 拡大観察装置 | |
JP6029395B2 (ja) | 顕微鏡 | |
US20180180867A1 (en) | Microscope and setting support method | |
JP2024512993A (ja) | デジタル顕微鏡を用いて合成画像を提供する方法、デジタル顕微鏡システム、およびデジタル顕微鏡を用いて合成画像を提供するプログラム | |
JP6971770B2 (ja) | 拡大観察装置 | |
JP6029396B2 (ja) | 位相差顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13836506 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13836506 Country of ref document: EP Kind code of ref document: A1 |