WO2016157519A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2016157519A1
WO2016157519A1 PCT/JP2015/060601 JP2015060601W WO2016157519A1 WO 2016157519 A1 WO2016157519 A1 WO 2016157519A1 JP 2015060601 W JP2015060601 W JP 2015060601W WO 2016157519 A1 WO2016157519 A1 WO 2016157519A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
air conditioner
opening
Prior art date
Application number
PCT/JP2015/060601
Other languages
English (en)
French (fr)
Inventor
亮宗 石村
森本 修
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017509120A priority Critical patent/JP6479162B2/ja
Priority to EP15887665.6A priority patent/EP3279580B1/en
Priority to PCT/JP2015/060601 priority patent/WO2016157519A1/ja
Publication of WO2016157519A1 publication Critical patent/WO2016157519A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner that minimizes the amount of refrigerant leakage.
  • the total length of refrigerant piping connecting an outdoor unit and multiple indoor units may be several hundred meters, and the amount of refrigerant used is very large. Become. In such an air conditioner, a large amount of refrigerant may leak into one room when refrigerant leakage occurs.
  • Patent Document 1 can reduce the amount of refrigerant leakage when the refrigerant leaks, but the position of a shut-off valve for closing the refrigerant flow and refrigerant leakage occur. Depending on the location, there is a problem that many refrigerants leak.
  • the present invention has been made to solve the above-described problems, and is an air conditioner that reduces the amount of refrigerant leakage when refrigerant leakage occurs regardless of the operation mode such as cooling operation or heating operation.
  • the purpose is to obtain.
  • An air conditioner includes a compressor, a flow path switching device, a first heat exchanger, a first expansion device, a second heat exchanger, and an accumulator connected by piping.
  • a cooling circuit comprising a cooling circuit to be formed, and a cooling operation in which the first heat exchanger acts as a condenser and the second heat exchanger acts as an evaporator by switching the flow path switching device, and a second heat exchanger
  • the condenser is provided in a refrigerant pipe between the first heat exchanger and the expansion device.
  • the second switchgear and when a refrigerant leak is detected The flow path switching device is oriented in the cooling operation so that the refrigerant in the pipe is collected by the first heat exchanger and the accumulator, and the first and second switching devices and the operation of the compressor are controlled. After the pump-down operation is performed, the flow path switching device is oriented in the heating operation so that the recovered refrigerant is contained in the first heat exchanger and the accumulator, and the first and second switching devices are compressed. And a control device for performing a refrigerant leakage amount reducing operation for controlling the operation of the machine.
  • the refrigerant in the refrigerant circuit is collected in the first heat exchanger and the accumulator, and then the collected refrigerant is enclosed in the first heat exchanger and the accumulator. As a result, the amount of refrigerant leaked into the indoor space can be reduced.
  • the refrigerant circuit figure which shows an example of schematic structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention.
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • the refrigerant circuit figure which shows the flow of the refrigerant
  • the flowchart which shows the operation
  • cooling operation mode of the air conditioning apparatus of FIG. The flowchart which shows the pump down operation in the heating operation mode of the air conditioning apparatus of FIG. 3, and the pump down operation in the stop mode.
  • the refrigerant circuit figure which shows an example of schematic structure of the air conditioning apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a schematic configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an air conditioner 100 includes, for example, a building including a refrigerant circuit including an outdoor unit 1 and two indoor units 2 a and 2 b connected to the outdoor unit 1 via a refrigerant main pipe 3.
  • the air conditioner 100 circulates refrigerant in a refrigerant circuit and performs air conditioning using a refrigeration cycle.
  • the air conditioner 100 is a cooling only operation mode in which all indoor units 2a and 2b perform cooling, and all indoor units 2a and 2b. It is the structure which can select arbitrarily the all-heating operation mode which heats.
  • the outdoor unit 1 includes a compressor 10, a flow path switching device 11 including a four-way valve, a heat source side heat exchanger 12, a refrigerant shut-off device 13, and an accumulator 14, each of which is a refrigerant pipe. 4 are connected.
  • an outdoor blower 16 that blows air to the heat source side heat exchanger 12 is provided in the vicinity of the heat source side heat exchanger 12.
  • the heat source side heat exchanger 12 corresponds to the “first heat exchanger” in the present invention
  • the outdoor blower 16 corresponds to the “blower” in the present invention
  • the refrigerant shut-off device 13 in the present invention “ It corresponds to a “first opening / closing device”.
  • the compressor 10 sucks low-temperature and low-pressure gas refrigerant and compresses the gas refrigerant to bring it into a high-temperature and high-pressure state.
  • the compressor 10 includes an inverter compressor that can control the capacity.
  • the flow path switching device 11 switches the refrigerant flow in the cooling operation mode and the refrigerant flow in the heating operation mode.
  • the heat source side heat exchanger 12 acts as a condenser during the cooling operation, acts as an evaporator during the heating operation, and performs heat exchange between the air supplied from the outdoor blower 16 and the refrigerant.
  • the refrigerant shut-off device 13 is configured by, for example, an electromagnetic valve that blocks the flow of the refrigerant circulating in the refrigerant pipe 4.
  • the solenoid valve is used for the refrigerant
  • the outdoor unit 1 branches from the refrigerant pipe 4 on the refrigerant shut-off device 13 side connected to one refrigerant main pipe 3 and is connected to the refrigerant pipe 4 connecting the flow path switching device 11 and the suction side of the compressor 10.
  • the bypass pipe 5 and a bypass switch 15 installed in the middle of the bypass pipe 5 are provided.
  • the bypass opening / closing device 15 corresponds to the “second opening / closing device” in the present invention, and is configured by, for example, an electromagnetic valve that blocks the flow of the refrigerant in the bypass pipe 5.
  • the connection location of the bypass piping 5 has shown the example which exists in the inside of the outdoor unit 1, it is not restricted to this.
  • the electromagnetic valve is used for the bypass opening / closing device 15, anything may be used as long as it can block the flow of the refrigerant.
  • the outdoor unit 1 is provided with a first pressure detection device 20 and a second pressure detection device 21.
  • the first pressure detection device 20 is installed in the refrigerant pipe 4 connecting the discharge side of the compressor 10 and the flow path switching device 11, and detects the pressure P1 of the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10. To do.
  • the second pressure detection device 21 is installed in the refrigerant pipe 4 connecting the flow path switching device 11 and the suction side of the compressor 10 and detects the pressure P2 of the low-temperature and low-pressure gas refrigerant sucked into the compressor 10. To do.
  • the outdoor unit 1 is provided with a first temperature detection device 22 composed of, for example, a thermistor.
  • the first temperature detection device 22 is installed in the refrigerant pipe 4 that connects the discharge side of the compressor 10 and the flow path switching device 11, and detects the temperature of the high-temperature and high-pressure gas refrigerant that is compressed and discharged by the compressor 10. .
  • the indoor units 2a and 2b include load-side heat exchangers 40a and 40b, expansion devices 41a and 41b, and indoor blowers 42a and 42b, respectively. These indoor units 2a and 2b are connected to the outdoor unit 1 via the refrigerant main pipe 3, so that the refrigerant flows in and out.
  • the load-side heat exchangers 40a and 40b exchange heat between the air supplied from the indoor fans 42a and 42b and the refrigerant, and generate heating air or cooling air supplied to the indoor space.
  • the expansion devices 41a and 41b are configured by electronic expansion valves having functions as pressure reducing valves and expansion valves, for example.
  • the load-side heat exchangers 40a and 40b correspond to the “second heat exchanger” in the present invention.
  • second temperature detection devices 50a and 50b are installed in refrigerant pipes connecting the load-side heat exchangers 40a and 40b and the expansion devices 41a and 41b.
  • third temperature detection devices 51a and 51b are installed in the refrigerant pipes of the load side heat exchangers 40a and 40b opposite to the expansion devices 41a and 41b.
  • fourth temperature detection devices 52a and 52b are arranged on the air suction side of the load side heat exchangers 40a and 40b.
  • the second temperature detection devices 50a and 50b detect the temperature of the refrigerant flowing into the load side heat exchangers 40a and 40b during the cooling operation.
  • the 3rd temperature detection apparatuses 51a and 51b detect the temperature of the refrigerant
  • the fourth temperature detection devices 52a and 52b detect the indoor air temperature.
  • a thermistor is used in each of the temperature detection devices described above.
  • the air conditioner 100 has a control device 30 composed of a microcomputer or the like.
  • the control device 30 detects a refrigerant leak from detection values of gas sensors installed in the room or various measurement sensors installed in the indoor units 2a and 2b, the refrigerant in the refrigerant circuit and the heat source side heat exchanger 12 are exchanged.
  • the flow path switching device is set in the direction during the cooling operation, and the pump-down operation for controlling the refrigerant shut-off device 13, the bypass opening / closing device 15, and the compressor 10 is performed.
  • control device 30 sets the flow path switching device 11 in the heating operation direction so that the recovered refrigerant is contained in the heat source side heat exchanger 12 and the accumulator 14, and the refrigerant shut-off device 13 and the bypass switch 15
  • the refrigerant leakage amount reducing operation for controlling the compressor 10 and the compressor 10 is performed.
  • control device 30 switches the operation frequency of the compressor 10, the rotational speed of the outdoor fan 16 (including ON / OFF), and the flow path switching device 11 based on the detection values from various detection devices and instructions from the remote controller. Then, the opening degree of the expansion devices 41a and 41b is controlled, and each operation mode described later is executed.
  • FIG. 1 shows an example in which the control device 30 is provided in the outdoor unit 1, it may be provided separately for each unit of the outdoor unit 1 or the indoor units 2a and 2b. You may provide in either 2a, 2b.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus of FIG. 1 is in the cooling operation mode.
  • the solid line arrow shown in the figure has shown the flow direction of the refrigerant
  • the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the flow path switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while dissipating heat to the outdoor air, and becomes high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the open refrigerant blocking device 13 and flows out of the outdoor unit 1, passes through the refrigerant main pipe 3, and enters the indoor units 2 a and 2 b. Inflow.
  • the bypass opening / closing device 15 is closed to prevent the refrigerant from bypassing in the outdoor unit 1.
  • the refrigerant shut-off device 13 in the cooling operation mode is opened when the device cannot adjust the opening, such as a solenoid valve, and when the device can adjust the opening (opening area), such as an electronic expansion valve.
  • the opening (for example, fully open) is set such that the operating state (for example, cooling capacity) of the refrigeration cycle is not adversely affected.
  • bypass opening / closing device 15 in the cooling operation mode is opened when the opening degree cannot be adjusted, such as a solenoid valve, and when the opening degree is adjustable, such as an electronic expansion valve,
  • the opening (for example, fully open) is set such that the operation state (for example, cooling capacity) of the cycle is not adversely affected.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 2 is decompressed to a low-temperature and low-pressure gas-liquid two-phase refrigerant by the expansion device 41, and then flows into the load-side heat exchanger 40 that functions as an evaporator, and absorbs heat from the indoor air. As a result, the indoor air is cooled to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the load-side heat exchanger 40 flows into the outdoor unit 1 through the refrigerant main pipe 3.
  • the low-temperature and low-pressure gas refrigerant flowing into the outdoor unit 1 passes through the flow path switching device 11 and the accumulator 14 and is sucked into the compressor 10.
  • the expansion devices 41a and 41b have a constant superheat (degree of superheat) obtained as a difference between the temperature detected by the second temperature detection devices 50a and 50b and the temperature detected by the third temperature detection device 51.
  • the opening degree is controlled by the control device 30.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus of FIG. 1 is in the heating operation mode.
  • the solid line arrow shown in the figure has shown the flow direction of the refrigerant
  • the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the indoor unit 2 through the refrigerant main pipe 3 via the flow path switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 radiates heat to the indoor air in the load-side heat exchanger 40 and flows into the expansion device 41 as high-pressure liquid refrigerant.
  • the refrigerant flows out of the indoor unit 2 and flows into the outdoor unit 1 through the refrigerant main pipe 3.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 passes through the open refrigerant blocking device 13 and absorbs heat from the outdoor air in the heat source side heat exchanger 12 to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out of the heat source side heat exchanger 12 passes through the flow path switching device 11 and the accumulator 14 and is sucked into the compressor 10.
  • the refrigerant shut-off device 13 in the heating operation mode is opened when the device cannot adjust the opening, such as an electromagnetic valve, and operates in the refrigeration cycle when the device can adjust the opening, such as an electronic expansion valve.
  • the opening (for example, fully open) is set such that the state (for example, heating capacity) is not adversely affected.
  • bypass opening / closing device 15 in the heating operation mode is opened when the opening degree of the device such as a solenoid valve cannot be adjusted, and is refrigeration cycle when the opening degree can be adjusted such as an electronic expansion valve.
  • the opening degree (for example, fully open) is set such that the operation state (for example, heating capacity) is not adversely affected.
  • the expansion devices 41a and 41b are obtained as a difference between the refrigerant saturated liquid temperature calculated from the pressure detected by the first pressure detection device 20 and the temperature detected by the second temperature detection devices 50a and 50b.
  • the opening degree is controlled by the control device 30 so that the subcool (degree of supercooling) is constant.
  • the refrigerant leakage prevention control is one of the functions of the control device 30, and the refrigerant leakage is detected from the detection values of the gas sensors installed in the room or the various measurement sensors installed in the indoor units 2a and 2b. This is a control function that is started upon detection.
  • coolant leakage was described, it is not restricted to this, What kind of method may be used if the generation
  • FIG. 4 is a flowchart showing the operation of refrigerant leakage prevention control in the air conditioning apparatus of FIG.
  • control device 30 When detecting the occurrence of refrigerant leakage (S1), control device 30 starts refrigerant leakage prevention control. That is, the control device 30 performs a pump-down operation that causes the outdoor unit 1 to recover the liquid refrigerant on the indoor unit 2 side (S2). Thereafter, the control device 30 performs a refrigerant leakage amount reducing operation for preventing the liquid refrigerant collected in the outdoor unit 1 from returning to the indoor unit 2 (S3).
  • FIG. 5 is a flowchart showing a pump-down operation in the cooling operation mode of the air-conditioning apparatus of FIG.
  • the control device 30 maintains the flow channel in the cooling operation mode in the flow channel switching device 11 (S11), and then sets the operating frequency of the compressor 10 to a predetermined value (S12). Then, the control device 30 closes the refrigerant shut-off device 13 and opens the bypass opening / closing device 15 (S13, S14).
  • control device 30 sets the rotational speed of the outdoor blower 16 to a predetermined value (S15), and finally the pressure P1 detected by either the first pressure detection device 20 or the second pressure detection device 21.
  • P1 detected by either the first pressure detection device 20 or the second pressure detection device 21.
  • the predetermined value of the operating frequency of the compressor 10 set in S12 is set to a high frequency, the pressure of the refrigeration cycle changes abruptly and there is a risk of an abnormal stop or the like.
  • the frequency is low, the pump-down effect is reduced. Therefore, it is not preferable to rotate at the lowest operating frequency allowed by the compressor 10. For this reason, it is preferable to perform the pump-down operation at an operating frequency that is half the lowest frequency and the highest frequency.
  • the predetermined value of the rotational speed of the outdoor blower 16 set in S15 may be set to the maximum rotational speed.
  • the threshold value for ending the pump-down operation set in S16 is set as high as possible on the high-pressure side and as low as possible on the low-pressure side, a large amount of refrigerant is discharged from the indoor unit 2 to the outdoor. It can be moved to the machine 1 and safer. For this reason, in the case of the 1st pressure detection apparatus 20, it is good to set it as the value (1st threshold value) close
  • the pump-down operation is terminated when either one of the first pressure detection device 20 or the second pressure detection device 21 reaches the threshold value.
  • the detected pressure (P1) of the first pressure detection device 20 is equal to or higher than the first threshold value and the detected pressure (P2) of the second pressure detection device 21 is equal to or lower than the second threshold value, the pump down operation is performed. You may make it complete
  • the refrigerant in the refrigerant pipe 4 that connects the expansion device 41 to the heat source side heat exchanger 12 in which a large amount of liquid refrigerant exists in the cooling operation mode is bypassed 5
  • the heat source side heat exchanger 12 and the accumulator 14 can be recovered via the. For this reason, the quantity of the liquid refrigerant of the refrigerant
  • FIG. 5 shows a specific operation sequence of the pump-down operation
  • the present invention is not limited to this, and S11 to S15 can obtain the same effect even if the operation sequence is reversed. it can.
  • FIG. 6 is a flowchart showing the refrigerant leakage amount reducing operation in the cooling operation mode of the air conditioner of FIG.
  • the control device 30 first switches the flow path switching device 11 to the flow path in the heating operation mode (S21), and then keeps the refrigerant shut-off device 13 closed (S22). Then, the control device 30 closes the bypass opening / closing device 15 (S23) and stops the operation of the compressor 10 (S24). Further, the control device 30 stops the outdoor blower 16 (S25), and finally closes the expansion device 41 (S26).
  • the refrigerant recovered by the heat source side heat exchanger 12 and the accumulator 14 can be contained in the outdoor unit 1 and can be prevented from moving to the indoor unit 2. For this reason, the amount of refrigerant leaking into the indoor space can be reduced, and safety is improved.
  • the upstream side and the downstream side of the expansion device 41 are divided, so that the amount of refrigerant that leaks can be further reduced, and safety is improved.
  • FIG. 6 shows a specific operation sequence of the refrigerant leakage amount reducing operation, but the operation sequence is not limited to this, and the same effect can be obtained even if the operation sequence is reversed.
  • FIG. 7 is a flowchart showing a pump-down operation in the heating operation mode and a pump-down operation in the stop mode of the air-conditioning apparatus of FIG.
  • the control device 30 first switches the flow channel switching device 11 to the flow channel in the cooling operation mode (S31), and then sets the operating frequency of the compressor 10 to a predetermined value (S32). Then, the control device 30 closes the refrigerant shut-off device 13 (S33) and opens the bypass opening / closing device 15 (S34).
  • control device 30 sets the rotational speed of the outdoor blower 16 to a predetermined value (S35), and finally the pressure P1 detected by either the first pressure detection device 20 or the second pressure detection device 21.
  • P1 detected by either the first pressure detection device 20 or the second pressure detection device 21.
  • the pump down operation of the refrigerant leakage prevention control in the heating operation mode is the same operation except that the switching operation of the flow path switching device 11 shown in the first S11 of the pump down operation in the cooling operation mode is different. is there.
  • the refrigerant main pipe that connects the load-side heat exchanger 40 in which a large amount of liquid refrigerant exists in the heating operation mode and the refrigerant shut-off device 13 from the load-side heat exchanger 40 3 can be recovered by the heat source side heat exchanger 12 and the accumulator 14. For this reason, the quantity of the liquid refrigerant
  • FIG. 7 shows a specific operation sequence of the pump-down operation.
  • the operation sequence is not limited to this, and the same effect can be obtained with respect to S31 to S35 even if the operation sequence is reversed. it can.
  • the refrigerant leakage amount reducing operation in the heating operation mode is the same as the refrigerant leakage amount reducing operation in the cooling operation mode shown in FIG. For this reason, the refrigerant
  • the upstream side and the downstream side of the expansion device 41 are divided, so that the amount of refrigerant that leaks can be further reduced, and safety is improved.
  • the refrigerant leakage prevention control when the refrigerant leaks when the air conditioner 100 is stopped (hereinafter referred to as the stop mode) will be described.
  • the pump-down operation of the refrigerant leakage prevention control performed when refrigerant leakage occurs in the stop mode is the same as the pump-down operation in the heating operation mode shown in FIG. 7, and the same effect can be obtained.
  • the compressor 10 since the compressor 10 is not moving in the stop mode and the pressure in the refrigerant circuit is constant, the operation of the device driven using the differential pressure is performed by setting the operating frequency of the compressor 10 to a predetermined value. It is necessary to carry out after generating a pressure difference inside.
  • the stop mode where the liquid refrigerant is present in the air-conditioning apparatus 100 is affected by the indoor and outdoor temperature conditions, the elapsed time since the stop, and the like, the location where the liquid refrigerant is present changes from time to time. .
  • the ratio of the liquid refrigerant contained in the indoor unit 2 and the refrigerant main pipe 3 can be reduced, and the amount of refrigerant leaking into the indoor space can be reduced.
  • the refrigerant leakage amount reduction operation of the refrigerant leakage prevention control in the stop mode is the same as the refrigerant leakage amount reduction operation in the cooling operation mode shown in FIG. 6, and the same effect can be obtained.
  • thermo-off mode The refrigerant leakage prevention control when refrigerant leakage occurs when the air conditioner 100 is thermo-off (hereinafter referred to as the thermo-off mode) will be described.
  • the pump-down operation of the refrigerant leak prevention control performed when the refrigerant leak occurs in the thermo-off mode is the same as the pump-down operation in the heating operation mode shown in FIG. 7, and the same effect can be obtained.
  • the compressor 10 since the compressor 10 is not moving in the thermo-off mode and the pressure in the refrigerant circuit is constant, the operation of the device driven using the differential pressure is performed by setting the operating frequency of the compressor 10 to a predetermined value. This must be done after creating a pressure differential in the circuit.
  • the refrigerant leakage reduction operation of the refrigerant leakage prevention control in the thermo-off mode is the same as the refrigerant leakage reduction operation in the cooling operation mode shown in FIG. 6, and the same effect can be obtained.
  • the number of indoor units 2 connected is limited to two. However, one or three or more indoor units 2 may be connected to the outdoor unit 1.
  • FIG. 8 is a refrigerant circuit diagram illustrating an example of a schematic configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the difference between the second embodiment and the first embodiment is that an internal heat exchanger 17 is provided on the refrigerant pipe 4 on which the refrigerant shut-off device 13 is installed, and the flow dividing portion of the bypass pipe 5 is connected to the internal heat exchanger 17.
  • the refrigerant branch 4 is branched from the refrigerant pipe 4 between the first and second expansion devices 41, and the bypass switch 15 is installed in the bypass pipe 5 between the branch point and the internal heat exchanger 17.
  • the internal heat exchanger 17 since the internal heat exchanger 17 is used, a part of the high-pressure liquid refrigerant generated by the heat source side heat exchanger 12 mainly in the cooling operation mode is bypassed by the bypass pipe 5 to bypass By depressurizing the generated refrigerant, a low-pressure and low-temperature gas-liquid two-phase refrigerant is produced, and heat exchange is performed inside the internal heat exchanger 17, whereby the degree of supercooling of the refrigerant flowing through the refrigerant main pipe 3 can be increased.
  • the bypass opening / closing device 15 a variable opening degree, for example, an electronic expansion valve is used. Thereby, the exit supercooling degree of the internal heat exchanger 17 can be controlled.
  • FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus of FIG. 8 is in the cooling operation mode.
  • the solid line arrow shown in the figure has shown the flow direction of the refrigerant
  • the bypass opening / closing device 15 is in an open state, so that in the cooling operation mode, the refrigerant is bypassed from the upstream side of the expansion device 41, and the bypass opening / closing device 15 and the internal heat exchanger are bypassed. This is the point that a flow that passes through 17 is added.
  • the refrigerant leakage prevention control according to the second embodiment can obtain the same effect by making the operation in each operation mode described in the first embodiment the same. Therefore, the description is omitted.
  • the bypass pipe 5 and the bypass switch 15 are not used in the normal cooling operation mode and heating operation mode.
  • the bypass pipe 5 and the bypass opening / closing device 15 are required to make the internal heat exchanger 17 that increases the degree of supercooling of the refrigerant flowing into the indoor unit 2 function in the cooling operation mode. . For this reason, it is not necessary to increase a component only for the pump down operation
  • Embodiment 3 For the third embodiment of the present invention, only the parts different from the first embodiment will be described.
  • the air-conditioning apparatus 100 according to Embodiment 3 has a configuration in which the outdoor unit 1 and the heat medium conversion device 60 are connected by the refrigerant main pipe 3, and the heat medium conversion device 60 and the indoor unit 2 are connected by the heat medium pipe 64. It has become.
  • the indoor unit 2 according to the third embodiment has the same configuration as that of the first embodiment except that the pipe connecting each component is changed from the refrigerant pipe 4 to the heat medium pipe 64, and thus the description thereof is omitted.
  • the heat medium conversion device 60 includes a heat medium heat exchanger 61, a pump 62 that conveys a heat medium such as water or brine, and a flow rate adjustment device 63 that adjusts the flow rate of the heat medium flowing in the heat medium pipe 64. It is configured to be connected to the heat medium pipe 64 and is installed in a space such as a machine room or a ceiling.
  • the heat medium heat exchanger 61 exchanges heat between the refrigerant supplied from the outdoor unit 1 and the heat medium, and is configured by, for example, a plate heat exchanger. Using the heat exchanged from the refrigerant to the heat medium by the heat medium heat exchanger 61, the indoor unit 2 can perform a cooling operation or a heating operation.
  • the flow rate adjusting device 63 is for adjusting the flow rate of the heat medium supplied to the indoor unit 2, and has a mechanism that can arbitrarily adjust the opening degree. Further, when the flow rate adjustment device 63 is controlled so that the temperature difference between the third temperature detection device 51 and the fourth temperature detection device 52 installed in the indoor unit 2 is constant, the capacity is increased according to the indoor load. It is convenient because it is adjusted.
  • the present invention is not limited to this, and there are a plurality of heat medium conversion devices 60 and a plurality of indoor units 2.
  • a stand may be connected.
  • the refrigerant leakage prevention control according to the third embodiment can obtain the same effect by making the operation in each operation mode described in the first embodiment the same. Therefore, the description is omitted.
  • the air conditioner 100 can be made.
  • bypass pipe 5 and the bypass opening / closing device 15 are provided in the outdoor unit 1 .
  • the present invention is not limited to this and may be provided outside the outdoor unit 1. good. In this case, the same effect can be obtained.
  • the case where there is one outdoor unit 1 has been described as an example.
  • the number of the outdoor units 1 is not limited to one, and a plurality of refrigerant leaks occur when a refrigerant leak occurs.
  • Each of the outdoor units 1 may perform the refrigerant leakage prevention control defined in each embodiment, and the same effect can be obtained.
  • the heat source side heat exchanger 12 of the outdoor unit 1 acts as a condenser
  • the refrigerant leakage prevention control in the cooling operation mode is performed, and the heat source side heat exchanger 12 of the outdoor unit 1 evaporates.
  • the same effect can be obtained by performing refrigerant leakage prevention control in the heating operation mode.
  • the refrigerant shut-off device 13 is provided in the outdoor unit 1 .
  • the present invention is not limited to this, and it may be between the heat source side heat exchanger 12 and the expansion device 41. Good anywhere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷媒の漏洩が検出された際に、冷媒主管3内の冷媒が熱源側熱交換器12とアキュムレータ14に回収されるように、流路切替装置11を冷房運転時の向きとし、かつ冷媒遮断装置13及びバイパス開閉装置15と圧縮機10の運転とを制御するポンプダウン動作を行い、その後、回収された冷媒が熱源側熱交換器12とアキュムレータ14に封じ込められるように、流路切替装置11を暖房運転時の向きとし、かつ冷媒遮断装置13及びバイパス開閉装置15と圧縮機10の運転とを制御する冷媒漏洩量低減動作を行う制御装置30とを備えている。

Description

空気調和装置
 本発明は、冷媒の漏洩量を最少限に抑える空気調和装置に関するものである。
 現在のビル用マルチエアコン等の空気調和装置では、室外機と複数台の室内機とを接続する冷媒配管の総延長が数百mになることがあり、それに伴い使用する冷媒量が非常に多くなる。このような空気調和装置では、冷媒漏れが発生した場合に一つの部屋に大量の冷媒が漏れてしまう可能性がある。
 また、近年では、地球温暖化の観点から地球温暖化係数が低い冷媒への転換が求められているが、地球温暖化係数が低い冷媒は可燃性を有しているものが多い。今後、地球温暖化係数が低い冷媒に転換が進んだ場合、安全性への配慮が更に必要になる。そのような課題を解決するために、冷媒回路中に冷媒の流れを閉止させるための遮断弁を設け、冷媒が漏れた際の冷媒の漏洩量を少なくする技術が提案されている(例えば、特許文献1参照)。
特開2000-97527号公報(図1等)
 しかし、特許文献1に記載された技術では、冷媒が漏れた際の冷媒の漏洩量を低減させることはできるが、冷媒の流れを閉止させるための遮断弁の位置や、冷媒の漏洩が発生する場所によっては、多くの冷媒が漏洩する課題がある。
 本発明は、上記のような課題を解決するためになされたもので、冷房運転もしくは暖房運転などの運転モードによらず、冷媒漏れが発生した場合の冷媒の漏洩量をより少なくする空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、圧縮機と、流路切替装置と、第1の熱交換器と、第1の絞り装置と、第2の熱交換器と、アキュムレータとを配管により接続して形成される冷媒回路を備え、流路切替装置の切り替えにより、第1の熱交換器を凝縮器として、第2の熱交換器を蒸発器として作用させる冷房運転と、第2の熱交換器を凝縮器として、第1の熱交換器を蒸発器として作用させる暖房運転との何れかに切り替え自在な空気調和装置において、第1の熱交換器と前記絞り装置との間の冷媒配管に設けられた第1の開閉装置と、第1の開閉装置と絞り装置との間の配管から分岐し、流路切替装置とアキュムレータとの間の配管に接続されたバイパス配管と、バイパス配管上に設置された第2の開閉装置と、冷媒の漏洩が検出された際に、配管内の冷媒が第1の熱交換器とアキュムレータに回収されるように、流路切替装置を冷房運転時の向きとし、かつ第1及び第2の開閉装置と圧縮機の運転とを制御するポンプダウン動作を行い、その後、回収された冷媒が第1の熱交換器とアキュムレータに封じ込められるように、流路切替装置を暖房運転時の向きとし、かつ第1及び第2の開閉装置と圧縮機の運転とを制御する冷媒漏洩量低減動作を行う制御装置とを備えたものである。
 本発明によれば、冷媒の漏洩が検出された際に、冷媒回路内の冷媒を第1の熱交換器とアキュムレータに回収し、その後、回収した冷媒を第1の熱交換器とアキュムレータに封じ込めるようにしているので、室内空間への冷媒の漏洩量をより少なく抑えることができる。
本発明の実施の形態1に係る空気調和装置の概略構成の一例を示す冷媒回路図。 図1の空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図。 図1の空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図。 図1の空気調和装置における冷媒漏洩防止制御の動作を示すフローチャート。 図2の空気調和装置の冷房運転モード時におけるポンプダウン動作を示すフローチャート。 図5の空気調和装置の冷房運転モード時における冷媒漏洩量低減動作を示すフローチャート。 図3の空気調和装置の暖房運転モード時におけるポンプダウン動作、及び停止モード時におけるポンプダウン動作を示すフローチャート。 本発明の実施の形態2に係る空気調和装置の概略構成の一例を示す冷媒回路図。 図8の空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図。 本発明の実施の形態3に係る空気調和装置の概略構成の一例を示す冷媒回路図。
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は本発明の実施の形態1に係る空気調和装置の概略構成の一例を示す冷媒回路図である。
 図1において、空気調和装置100は、例えば、室外機1と、この室外機1に冷媒主管3を介して接続された2台の室内機2a、2bとで構成される冷媒回路を備えたビル用マルチエアコンである。この空気調和装置100は、冷媒回路に冷媒を循環させ、冷凍サイクルを利用して空気調和を行うもので、全室内機2a、2bが冷房を行う全冷房運転モード、及び全室内機2a、2bが暖房を行う全暖房運転モードを任意に選択できる構成となっている。
[室外機1]
 室外機1は、圧縮機10と、四方弁等で構成される流路切替装置11と、熱源側熱交換器12と、冷媒遮断装置13と、アキュムレータ14とを備え、これら各部品が冷媒配管4によって接続されている。また、熱源側熱交換器12の付近には、熱源側熱交換器12に空気を送風する室外送風機16が設けられている。なお、熱源側熱交換器12は、本発明における「第1の熱交換器」に相当し、室外送風機16は、本発明における「送風機」に相当し、冷媒遮断装置13は、本発明における「第1の開閉装置」に相当する。
 圧縮機10は、低温低圧のガス冷媒を吸入し、そのガス冷媒を圧縮して高温高圧の状態にするものであり、例えば容量の制御が可能なインバータ圧縮機等で構成されている。流路切替装置11は、冷房運転モード時における冷媒の流れと暖房運転モード時における冷媒の流れを切り替えるものである。
 熱源側熱交換器12は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用し、室外送風機16から供給される空気と冷媒との間で熱交換を行なう。冷媒遮断装置13は、冷媒配管4内を循環する冷媒の流れを遮断する例えば電磁弁で構成されている。なお、冷媒遮断装置13に電磁弁を用いているが、冷媒の流れを遮断できるものであれば何でも良い。
 また、室外機1は、一方の冷媒主管3に接続される冷媒遮断装置13側の冷媒配管4から分岐し、流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管4に接続されたバイパス配管5と、このバイパス配管5の途中に設置されたバイパス開閉装置15とを備えている。バイパス開閉装置15は、本発明における「第2の開閉装置」に相当し、バイパス配管5内の冷媒の流れを遮断する例えば電磁弁で構成されている。なお、図1では、バイパス配管5の接続箇所が室外機1の内部にある例を示しているが、これに限ったものではない。また、バイパス開閉装置15に電磁弁を用いているが、冷媒の流れを遮断できるものであれば何でも良い。
 また、室外機1には、第1の圧力検出装置20と、第2の圧力検出装置21とが設けられている。第1の圧力検出装置20は、圧縮機10の吐出側と流路切替装置11とを繋ぐ冷媒配管4に設置され、圧縮機10により圧縮されて吐出する高温高圧のガス冷媒の圧力P1を検出する。また、第2の圧力検出装置21は、流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管4に設置され、圧縮機10に吸入される低温低圧のガス冷媒の圧力P2を検出する。
 更に、室外機1には、例えば、サーミスタ等で構成される第1の温度検出装置22が設けられている。この第1の温度検出装置22は、圧縮機10の吐出側と流路切替装置11を繋ぐ冷媒配管4に設置され、圧縮機10により圧縮されて吐出する高温高圧のガス冷媒の温度を検出する。
[室内機2a、2b]
 室内機2a、2bは、それぞれ負荷側熱交換器40a、40bと、絞り装置41a、41bと、室内送風機42a、42bとを備えている。これら室内機2a、2bは、冷媒主管3を介して室外機1と接続され、冷媒が流出入するようになっている。負荷側熱交換器40a、40bは、室内送風機42a、42bから供給される空気と冷媒との間で熱交換を行い、室内空間に供給する暖房用空気又は冷房用空気を生成する。また、絞り装置41a、41bは、例えば、減圧弁や膨張弁としての機能を有する電子式膨張弁で構成されている。なお、負荷側熱交換器40a、40bは、本発明における「第2の熱交換器」に相当する。
 室内機2a、2bには、負荷側熱交換器40a、40bと絞り装置41a、41bとを繋ぐ冷媒配管に第2の温度検出装置50a、50bが設置されている。また、絞り装置41a、41bとは反対側の負荷側熱交換器40a、40bの冷媒配管に第3の温度検出装置51a、51bが設置されている。更に、負荷側熱交換器40a、40bの空気吸込み側に第4の温度検出装置52a、52bが配置されている。
 第2の温度検出装置50a、50bは、冷房運転時に負荷側熱交換器40a、40bに流入する冷媒の温度を検出する。また、第3の温度検出装置51a、51bは、負荷側熱交換器40a、40bから流出する冷媒の温度を検出する。さらに、第4の温度検出装置52a、52bは、室内の空気温度を検出する。前述した各温度検出装置には、例えばサーミスタが使用されている。
 空気調和装置100は、マイコン等で構成される制御装置30を有している。この制御装置30は、室内に設置されたガスセンサーあるいは室内機2a、2b内に設置された各種計測センサーの検出値から冷媒漏れを検出すると、冷媒回路内の冷媒が熱源側熱交換器12とアキュムレータ14に回収されるように、流路切替装置を冷房運転時の向きとし、かつ冷媒遮断装置13及びバイパス開閉装置15と圧縮機10とを制御するポンプダウン動作を行う。その後、制御装置30は、回収された冷媒が熱源側熱交換器12とアキュムレータ14に封じ込められるように、流路切替装置11を暖房運転時の向きとし、かつ冷媒遮断装置13及びバイパス開閉装置15と圧縮機10とを制御する冷媒漏洩量低減動作を行う。
 さらに、制御装置30は、各種検出装置での検出値及びリモコンからの指示に基づいて、圧縮機10の運転周波数、室外送風機16の回転数(ON/OFF含む)、流路切替装置11の切り替え、絞り装置41a、41bの開度等を制御し、後述する各運転モードを実行する。なお、図1では制御装置30が室外機1に設けられている例を示しているが、室外機1又は室内機2a、2bのユニット毎に別々に設けても良く、室外機1又は室内機2a、2bの何れかに設けても良い。
[冷房運転モード]
 前記のように構成された空気調和装置100において、負荷側熱交換器40a、40bで冷熱負荷が発生している場合の冷房運転モードについて図2を用いて説明する。
 図2は図1の空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図中に示す実線矢印は、冷媒の流れ方向を示している。
 冷房運転モードの場合、圧縮機10に吸引される低温低圧のガス冷媒は、圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した高温高圧のガス冷媒は、室外空気に放熱しながら凝縮し高圧の液冷媒となる。そして、熱源側熱交換器12から流出した高圧の液冷媒は、開状態となっている冷媒遮断装置13を通過して室外機1から流出し、冷媒主管3を通って室内機2a、2bに流入する。この時、バイパス開閉装置15は閉状態にして、室外機1内で冷媒がバイパスしないようにしている。
 冷房運転モード中の冷媒遮断装置13は、電磁弁等の開度の調整ができない装置の場合は開とし、電子式膨張弁のように開度(開口面積)の調整が可能な装置の場合は冷凍サイクルの運転状態(例えば、冷房能力など)が悪影響を受けないような開度(例えば、全開)に設定される。
 また、冷房運転モード中のバイパス開閉装置15は、電磁弁等の開度の調整ができない装置の場合は開とし、電子式膨張弁のように開度の調整が可能な装置の場合は、冷凍サイクルの運転状態(例えば、冷房能力など)が悪影響を受けないような開度(例えば、全開)に設定される。
 室内機2に流入した高圧の液冷媒は、絞り装置41によって低温低圧の気液二相冷媒に減圧された後、蒸発器として作用する負荷側熱交換器40に流入し、室内空気から吸熱することで室内空気を冷却し、低温低圧のガス冷媒となる。負荷側熱交換器40から流出した低温低圧のガス冷媒は、冷媒主管3を通って室外機1へ流入する。室外機1に流入した低温低圧のガス冷媒は、流路切替装置11とアキュムレータ14を通り、圧縮機10へ吸入される。
 絞り装置41a、41bは、第2の温度検出装置50a、50bで検出された温度と、第3の温度検出装置51で検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御装置30によって制御される。
[暖房運転モード]
 次に、負荷側熱交換器40で温熱負荷が発生している場合の暖房運転モードについて、図3を用いて説明する。
 図3は図1の空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図中に示す実線矢印は、冷媒の流れ方向を示している。
 図3に示す暖房運転モードの場合、圧縮機10に吸引される低温低圧のガス冷媒は、圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替装置11を介して冷媒主管3を通り室内機2に流入する。室内機2に流入した高温高圧のガス冷媒は、負荷側熱交換器40で室内空気に放熱し、高圧の液冷媒となって絞り装置41へ流入する。そして、絞り装置41によって低温低圧の気液二相冷媒に減圧された後、室内機2を流出し、冷媒主管3を通って室外機1へ流入する。
 室外機1へ流入した低温低圧の二相冷媒は、開状態となっている冷媒遮断装置13を通過し、熱源側熱交換器12で室外空気から吸熱することで低温低圧のガス冷媒となる。熱源側熱交換器12を流出した低温低圧のガス冷媒は、流路切替装置11とアキュムレータ14を通り、圧縮機10へ吸入される。
 暖房運転モード中の冷媒遮断装置13は、電磁弁等の開度の調整ができない装置の場合は開とし、電子式膨張弁のように開度の調整が可能な装置の場合は冷凍サイクルの運転状態(例えば、暖房能力など)が悪影響を受けないような開度(例えば、全開)に設定される。
 また、暖房運転モード中のバイパス開閉装置15は、電磁弁等の開度の調整ができない装置の場合は開とし、電子式膨張弁のように開度の調整が可能な装置の場合は冷凍サイクルの運転状態(例えば、暖房能力など)が悪影響を受けないような開度(例えば、全開)に設定される。
 絞り装置41a、41bは、第1の圧力検出装置20で検出された圧力から算出された冷媒の飽和液温度と、第2の温度検出装置50a、50bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御装置30によって制御される。
 次に、冷媒漏洩防止制御について説明する。
 冷媒漏洩防止制御は、前述したように、制御装置30の機能の一つであり、室内に設置されたガスセンサーあるいは室内機2a、2b内に設置された各種計測センサーの検出値から冷媒漏れを検出した際に開始される制御機能である。また、冷媒漏洩の発生を検出する具体例を記載したが、これに限ったものではなく、冷媒漏洩の発生を検出でき制御動作開始の起点となれば、どのような方法を用いても構わない。
 図4は図1の空気調和装置における冷媒漏洩防止制御の動作を示すフローチャートである。
 制御装置30は、冷媒漏洩の発生を検知すると(S1)、冷媒漏洩防止制御を開始する。つまり、制御装置30は、室内機2側にある液冷媒を室外機1に回収させるポンプダウン動作を実施する(S2)。その後、制御装置30は、室外機1に回収された液冷媒が室内機2に戻らないようにする冷媒漏洩量低減動作を実施する(S3)。
[冷房運転モード時の冷媒漏洩防止制御]
 冷房運転モード時における冷媒漏洩防止制御のポンプダウン動作について図5を用いて詳しく説明する。
 図5は図2の空気調和装置の冷房運転モード時におけるポンプダウン動作を示すフローチャートである。
 制御装置30は、先ず、流路切替装置11を冷房運転モード時の流路を維持させ(S11)、次いで、圧縮機10の運転周波数を所定値に設定する(S12)。そして、制御装置30は、冷媒遮断装置13を閉にすると共に、バイパス開閉装置15を開にする(S13、S14)。更に、制御装置30は、室外送風機16の回転数を所定値に設定し(S15)、最後に、第1の圧力検出装置20もしくは第2の圧力検出装置21の何れかで検出された圧力P1(又はP2)が閾値に達したときにポンプダウン動作を終了させる(S16)。
 S12で設定する圧縮機10の運転周波数の所定値は、高い周波数に設定すると冷凍サイクルの圧力が急激に変化してしまい異常停止等の恐れがある。一方、低い周波数にするとポンプダウン効果が小さくなってしまうため、圧縮機10が許容する最低の運転周波数で回転させるのもあまり好ましくない。このため、運転周波数を最低周波数と最高周波数の半分の周波数でポンプダウン動作を行うことが好ましい。
 S15で設定する室外送風機16の回転数の所定値は、最大回転数に設定すると良い。室外送風機16の回転数を最大回転数とすることで、熱源側熱交換器12で冷媒が凝縮しやすくなり、圧縮機10の吐出圧力が上昇するのを抑制することができる。
 S16で設定するポンプダウン動作を終了させるための閾値は、高圧側の閾値は可能な限り高い値とし、低圧側の閾値は可能な限り低い値に設定すると、多くの冷媒を室内機2から室外機1に移動させることができ、より安全にできる。このため、第1の圧力検出装置20の場合、圧縮機10が運転時に許容する最大圧力もしくは最大圧力に近い値(第1の閾値)とすると良い。また、第2の圧力検出装置21の場合は、圧縮機10が運転時に許容する最小圧力もしくは最小圧力に近い値(第2の閾値)とすると良い。なお、図5のS16では、第1の圧力検出装置20もしくは第2の圧力検出装置21の何れか一方が閾値に達したときにポンプダウン動作を終了させるようにしているが、これに代えて、第1の圧力検出装置20の検出圧力(P1)が第1の閾値以上及び第2の圧力検出装置21の検出圧力(P2)が第2の閾値以下になったときに、ポンプダウン動作を終了させるようにしても良い。
 冷房運転モード時に図5に示すポンプダウン動作を実施することによって、冷房運転モード時に液冷媒が多く存在する熱源側熱交換器12から絞り装置41を繋ぐ冷媒配管4内にある冷媒をバイパス配管5を介して熱源側熱交換器12とアキュムレータ14へ回収させることができる。このため、室内機2および接続する冷媒主管3内に存在する冷媒の液冷媒の量が少なくなり、室内空間へ漏洩する冷媒量を減らすことができる。
 なお、図5にポンプダウン動作の具体的な動作順序を記載しているが、これに限定されるものではなく、S11~S15に関しては、動作順序を逆にしても同様の効果を得ることができる。
 図6は図5の空気調和装置の冷房運転モード時における冷媒漏洩量低減動作を示すフローチャートである。
 制御装置30は、まず、流路切替装置11を暖房運転モード時の流路に切り替え(S21)、次いで、冷媒遮断装置13を閉のまま維持させる(S22)。そして、制御装置30は、バイパス開閉装置15を閉にし(S23)、圧縮機10の運転を停止する(S24)。更に、制御装置30は、室外送風機16を停止し(S25)、最後に、絞り装置41を全閉にする(S26)。
 図6に示す冷媒漏洩量低減動作を実施することによって、熱源側熱交換器12とアキュムレータ14に回収させた冷媒を室外機1内に封じ込めることができ、室内機2への移動を防止できる。このため、室内空間へ漏洩する冷媒量を少なく抑えることができ、安全性が向上する。
 また、絞り装置41を全閉にすることで、絞り装置41の上流側と下流側とが分断されるため、漏洩する冷媒量を更に減らすことができ、安全性が向上する。
 図6に冷媒漏洩量低減動作の具体的な動作順序を記載しているが、これに限定されるものではなく、その動作順序を逆にしても同様の効果を得ることができる。
[暖房運転モード時の冷媒漏洩防止制御]
 暖房運転モード時の冷媒漏洩防止制御について詳しく説明する。
 図7は図3の空気調和装置の暖房運転モード時におけるポンプダウン動作、及び停止モード時におけるポンプダウン動作を示すフローチャートである。
 制御装置30は、まず、流路切替装置11を冷房運転モード時の流路に切り替え(S31)、次いで、圧縮機10の運転周波数を所定値に設定する(S32)。そして、制御装置30は、冷媒遮断装置13を閉にし(S33)、バイパス開閉装置15を開にする(S34)。更に、制御装置30は、室外送風機16の回転数を所定値に設定し(S35)、最後に、第1の圧力検出装置20もしくは第2の圧力検出装置21の何れかで検出された圧力P1(又はP2)が閾値に達したときに、ポンプダウン動作を終了する(S36)。
 暖房運転モード時における冷媒漏洩防止制御のポンプダウン動作は、冷房運転モード時におけるポンプダウン動作の最初のS11に示す流路切替装置11の切替動作が異なる点を除けば、それ以外は同じ動作である。
 暖房運転モード時に図7に示すポンプダウン動作を実施することによって、暖房運転モード時に液冷媒が多く存在する負荷側熱交換器40と負荷側熱交換器40から冷媒遮断装置13とを繋ぐ冷媒主管3内にある冷媒を熱源側熱交換器12とアキュムレータ14へ回収させることができる。このため、室内機2および冷媒主管3内に存在する冷媒の液冷媒の量が少なくなり、室内空間へ漏洩する冷媒量を減らすことができる。
 また、図7にポンプダウン動作の具体的な動作順序を記載しているが、これに限定されるものではなく、S31~S35に関しては、動作順序を逆にしても同様の効果を得ることができる。
 なお、暖房運転モード時における冷媒漏洩量低減動作は、図6に示す冷房運転モード時の冷媒漏洩量低減動作と同一である。このため、熱源側熱交換器12とアキュムレータ14に回収させた冷媒を室外機1内に封じ込めることができ、室内機2への移動を防止できる。これにより、室内空間へ漏洩する冷媒量を少なく抑えることができ、安全性が向上する。
 また、絞り装置41を全閉にすることで、絞り装置41の上流側と下流側とが分断されるため、漏洩する冷媒量を更に減らすことができ、安全性が向上する。
[停止モード時の冷媒漏洩防止制御]
 空気調和装置100が停止(以下、停止モードと称する)しているときに、冷媒の漏れが発生した場合の冷媒漏洩防止制御について説明する。
 停止モード時に冷媒漏れが発生した際に実施する冷媒漏洩防止制御のポンプダウン動作は、図7に示す暖房運転モード時のポンプダウン動作と同じであり、同様の効果を得ることができる。ただし、停止モード時には圧縮機10が動いておらず冷媒回路内の圧力が一定のため、差圧を利用して駆動する機器の動作は、圧縮機10の運転周波数を所定値に設定し冷媒回路内に圧力差を発生させた後に行う必要がある。
 停止モード時には、空気調和装置100のどこに液冷媒が存在しているかは、室内外の温度条件や停止してからの経過時間などの影響を受けるため、その時々で液冷媒の存在箇所は変化する。図7に示すポンプダウン動作を行うことによって、室内機2や冷媒主管3に含まれる液冷媒の割合を低下させ、室内空間に漏洩する冷媒量を低減させることができる。
 停止モード時における冷媒漏洩防止制御の冷媒漏洩量低減動作は、図6に示す冷房運転モード時の冷媒漏洩量低減動作と同一であり、同様の効果を得ることができる。
[サーモオフモード時の冷媒漏洩防止制御]
 空気調和装置100がサーモオフ(以下、サーモオフモードと称する)しているときに、冷媒の漏れが発生した場合の冷媒漏洩防止制御について説明する。
 サーモオフモード時に冷媒漏れが発生した際に実施する冷媒漏洩防止制御のポンプダウン動作は、図7に示す暖房運転モード時のポンプダウン動作と同じであり、同様の効果を得ることができる。ただし、サーモオフモード時には圧縮機10が動いておらず冷媒回路内の圧力が一定のため、差圧を利用して駆動する機器の動作は、圧縮機10の運転周波数を所定値に設定し冷媒回路内に圧力差を発生させた後に行う必要がある。
 サーモオフモード時における冷媒漏洩防止制御の冷媒漏洩量低減動作は、図6に示す冷房運転モード時の冷媒漏洩量低減動作と同一であり、同様の効果を得ることができる。
 なお、本実施の形態1では、2台の室内機2が冷媒主管3を介して室外機1に接続されている場合を例に示しているが、室内機2の接続台数を2台に限定するものではなく、1台あるいは3台以上の室内機2を室外機1に接続しても良い。
実施の形態2.
 本発明の実施の形態2については、実施の形態1と異なる部分のみを説明する。
 図8は本発明の実施の形態2に係る空気調和装置の概略構成の一例を示す冷媒回路図である。
 本実施の形態2と実施の形態1とで異なる点は、冷媒遮断装置13が設置されている冷媒配管4上に内部熱交換器17を設け、バイパス配管5の分流部を内部熱交換器17と絞り装置41との間の冷媒配管4から分岐する構成とし、その分岐点と内部熱交換器17の間のバイパス配管5にバイパス開閉装置15を設置した点である。
 実施の形態2においては、内部熱交換器17を用いているので、主に冷房運転モード時に熱源側熱交換器12で生成された高圧の液冷媒の一部をバイパス配管5によりバイパスさせ、バイパスさせた冷媒を減圧することで低圧低温の気液二相冷媒を作り、内部熱交換器17の内部で熱交換させることで冷媒主管3を流れる冷媒の過冷却度を大きくすることができる。バイパス開閉装置15には、開度が可変自在なもの、例えば電子式膨張弁が用いられている。これにより、内部熱交換器17の出口過冷却度を制御できる。
 図9は図8の空気調和装置の冷房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図中に示す実線矢印は、冷媒の流れ方向を示している。
 実施の形態1との違いは、バイパス開閉装置15が開いた状態になっているため、冷房運転モード時においては、冷媒が絞り装置41の上流からバイパスされ、バイパス開閉装置15と内部熱交換器17を順に通るような流れが追加されている点である。
 暖房運転モード時における冷媒の流れは、実施の形態1と同じため説明を省略する。
[実施の形態2の冷媒漏洩防止制御]
 実施の形態2に係る冷媒漏洩防止制御は、実施の形態1で説明した各運転モードにおける動作を同一とすることで、同様の効果を得ることができる。従って、説明は省略する。
 実施の形態1では、冷媒漏洩防止制御のポンプダウン動作を行うために、通常の冷房運転モードおよび暖房運転モードでは使用しないバイパス配管5とバイパス開閉装置15を設ける必要があった。しかし、本実施の形態2においては、冷房運転モード時に室内機2へ流入する冷媒の過冷却度を大きくする内部熱交換器17を機能させるためにバイパス配管5とバイパス開閉装置15が必要となる。このため、冷媒漏洩防止制御のポンプダウン動作のためだけに構成部品を増やさなくて良い。
実施の形態3.
 本発明の実施の形態3については、実施の形態1と異なる部分のみを説明する。実施の形態3に係る空気調和装置100は、室外機1と熱媒体変換装置60とを冷媒主管3で接続し、熱媒体変換装置60と室内機2とを熱媒体配管64で接続した構成となっている。
[室外機1]
 本実施の形態3に係る室外機1は、実施の形態1と同じ構成であるため、説明を省略する。
[室内機2]
 本実施の形態3における室内機2は、各構成部品を接続する配管が冷媒配管4から熱媒体配管64に変わった以外は実施の形態1と同じ構成であるため、説明を省略する。
[熱媒体変換装置60]
 熱媒体変換装置60は、熱媒体熱交換器61と、水またはブライン等の熱媒体を搬送するポンプ62と、熱媒体配管64の内部を流れる熱媒体の流量調整する流量調整装置63とを、熱媒体配管64とで接続した構成となっており、機械室や天井裏などの空間に設置される。
 熱媒体熱交換器61は、室外機1から供給される冷媒と熱媒体とを熱交換されるものであり、例えばプレート式熱交換器等で構成されている。熱媒体熱交換器61で冷媒から熱媒体へ熱交換させた熱を利用して、室内機2で冷房運転もしくは暖房運転をすることが可能となっている。
 流量調整装置63は、室内機2に供給する熱媒体の流量を調整するものであり、開度が任意に調整できる機構のものが使用されている。また、室内機2に設置されている第3の温度検出装置51と第4の温度検出装置52との温度差が一定となるように流量調整装置63を制御すると、室内負荷に応じて能力が調整されるため都合が良い。
 また、実施の形態3においては、熱媒体変換装置60と室内機2とが1台ずつの例を示しているが、これに限定するものではなく、熱媒体変換装置60および室内機2が複数台接続されていても良い。
[実施の形態3の冷媒漏洩防止制御]
 実施の形態3に係る冷媒漏洩防止制御は、実施の形態1で説明した各運転モードにおける動作を同一とすることで、同様の効果を得ることができる。従って、説明は省略する。
 実施の形態3のように冷媒を室内機2に流さないような間接式空調システムにおいても、冷媒漏洩防止制御を行うことによって、機械室や天井裏等への冷媒漏洩量を少なくでき、より安全な空気調和装置100とすることができる。
 なお、実施の形態1~3では、バイパス配管5やバイパス開閉装置15が室外機1内に設けた例を示しているが、これに限るものではなく、室外機1の外に設けていても良い。この場合も、同様の効果を得ることができる。
 また、実施の形態1~3では、室外機1が1台の場合を例に説明を行ったが、室外機1の台数を一台に限定するものではなく、冷媒漏れが発生した場合に複数の室外機1それぞれで各実施の形態で規定する冷媒漏洩防止制御を実施すれば良く、同様の効果を得ることができる。
 複数の室内機2を接続したシステムにおいて、接続されている全ての室内機2が冷房または暖房運転を行うシステムだけでなく、室内機2に応じて冷房運転と暖房運転を同時に行うシステムでも良い。
 この場合は、室外機1の熱源側熱交換器12が凝縮器として作用している場合は、冷房運転モード時の冷媒漏洩防止制御を実施し、室外機1の熱源側熱交換器12が蒸発器として作用している場合は、暖房運転モード時の冷媒漏洩防止制御を実施すれば、同様の効果を得ることができる。
 また、実施の形態1~3では、室外機1に1台の圧縮機10が接続されている場合を例に説明を行ったが、圧縮機10が2台又は2台以上接続された室外機1であっても良い。
 実施の形態1~3では、室外機1の中に冷媒遮断装置13を設けた例を示したが、それに限定するものではなく、熱源側熱交換器12と絞り装置41との間であればどこでも良い。
 1 室外機、2(2a、2b) 室内機、3 冷媒主管、4 冷媒配管、5 バイパス配管、10 圧縮機、11 流路切替装置、12 熱源側熱交換器、13 冷媒遮断装置、14 アキュムレータ、15 バイパス開閉装置、16 室外送風機、17 内部熱交換器、20 第1の圧力検出装置、21 第2の圧力検出装置、22 第1の温度検出装置、30 制御装置、40(40a、40b) 負荷側熱交換器、41(41a、41b) 絞り装置、42(42a、42b) 室内送風機、50(50a、50b) 第2の温度検出装置、51(51a、51b) 第3の温度検出装置、52(52a、52b) 第4の温度検出装置、60 熱媒体変換装置、61 熱媒体熱交換器、62 ポンプ、63 流量調整装置、64 熱媒体配管、100 空気調和装置。

Claims (12)

  1.  圧縮機と、流路切替装置と、第1の熱交換器と、第1の絞り装置と、第2の熱交換器と、アキュムレータとを配管により接続して形成される冷媒回路を備え、前記流路切替装置の切り替えにより、前記第1の熱交換器を凝縮器として、前記第2の熱交換器を蒸発器として作用させる冷房運転と、前記第2の熱交換器を凝縮器として、前記第1の熱交換器を蒸発器として作用させる暖房運転との何れかに切り替え自在な空気調和装置において、
     前記第1の熱交換器と前記絞り装置との間の配管に設けられた第1の開閉装置と、
     前記第1の開閉装置と前記絞り装置との間の配管から分岐し、前記流路切替装置と前記アキュムレータとの間の配管に接続されたバイパス配管と、
     前記バイパス配管上に設置された第2の開閉装置と、
     冷媒の漏洩が検出された際に、前記配管内の冷媒が前記第1の熱交換器と前記アキュムレータに回収されるように、前記流路切替装置を冷房運転時の向きとし、かつ前記第1及び第2の開閉装置と前記圧縮機とを制御するポンプダウン動作を行い、その後、回収された冷媒が前記第1の熱交換器と前記アキュムレータに封じ込められるように、前記流路切替装置を暖房運転時の向きとし、かつ前記第1及び第2の開閉装置と前記圧縮機とを制御する冷媒漏洩量低減動作を行う制御装置と
    を備えた空気調和装置。
  2.  前記制御装置は、ポンプダウン動作を行う際、前記第1の開閉装置を閉とし、前記第2の開閉装置を開とし、前記圧縮機の運転周波数を制御する請求項1記載の空気調和装置。
  3.  前記制御装置は、冷媒漏洩量低減動作を行う際、前記第1の開閉装置を閉とし、前記第2の開閉装置を閉とし、前記圧縮機の運転を停止する請求項1又は2記載の空気調和装置。
  4.  前記第1の熱交換器に外気を送風する送風機が設けられ、
     前記制御装置は、ポンプダウン動作を行っている間、前記送風機の回転数を最大とする請求項1~3の何れか1項に記載の空気調和装置。
  5.  前記圧縮機の吐出側の圧力を検出する第1の圧力検出装置と、
     前記圧縮機の吸入側の圧力を検出する第2の圧力検出装置と
    を備え、
     前記制御装置は、前記ポンプダウン動作の終了条件を、前記第1の圧力検出装置の検出値が第1の閾値以上及び前記第2の圧力検出装置の検出値が第2の閾値以下になったとき、あるいは前記第1の圧力検出装置の検出値が第1の閾値以上又は前記第2の圧力検出装置の検出値が第2の閾値以下になったときとする請求項1~4の何れか1項に記載の空気調和装置。
  6.  前記制御装置は、冷媒漏洩量低減動作を行う際、前記絞り装置を全閉にする請求項1~5の何れか1項に記載の空気調和装置。
  7.  前記圧縮機、前記流路切替装置、前記第1の熱交換器、前記アキュムレータ及び前記第1の開閉装置を少なくとも有する室外機を備えている請求項1~6の何れか1項に記載の空気調和装置。
  8.  前記第1の開閉装置は、弁の開度が可変自在な絞り装置である請求項1~7の何れか1項に記載の空気調和装置。
  9.  冷房運転時に前記第1の熱交換器で凝縮した冷媒の過冷却度を大きくするための内部熱交換器を前記第1の開閉装置と前記絞り装置との間に備え、
     前記内部熱交換器の低圧側の流路を前記バイパス配管で構成し、
     前記第2の開閉装置は、弁の開度が可変自在な絞り装置である請求項1~8の何れか1項に記載の空気調和装置。
  10.  冷媒と熱媒体とを熱交換させる熱媒体熱交換器を備え、
     前記第2の熱交換器は、前記熱媒体熱交換により熱交換された熱媒体によって室内の空調を行う請求項1~9の何れか1項に記載の空気調和装置。
  11.  前記室外機は、複数台設置され、各室外機ごとにポンプダウン動作及び冷媒漏洩防止動作を行う請求項7~10の何れか1項に記載の空気調和装置。
  12.  前記第1の絞り装置及び前記第2の熱交換器を少なくとも有する複数の室内機を備え、前記複数の室内機は、冷房運転と暖房運転を同時に行う運転モードを備えている請求項1~11の何れか1項に記載の空気調和装置。
PCT/JP2015/060601 2015-04-03 2015-04-03 空気調和装置 WO2016157519A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017509120A JP6479162B2 (ja) 2015-04-03 2015-04-03 空気調和装置
EP15887665.6A EP3279580B1 (en) 2015-04-03 2015-04-03 Air-conditioning device
PCT/JP2015/060601 WO2016157519A1 (ja) 2015-04-03 2015-04-03 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060601 WO2016157519A1 (ja) 2015-04-03 2015-04-03 空気調和装置

Publications (1)

Publication Number Publication Date
WO2016157519A1 true WO2016157519A1 (ja) 2016-10-06

Family

ID=57005831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060601 WO2016157519A1 (ja) 2015-04-03 2015-04-03 空気調和装置

Country Status (3)

Country Link
EP (1) EP3279580B1 (ja)
JP (1) JP6479162B2 (ja)
WO (1) WO2016157519A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092299A1 (ja) * 2016-11-21 2018-05-24 三菱電機株式会社 空気調和装置
JP6377299B1 (ja) * 2017-10-05 2018-08-22 三菱電機株式会社 空気調和装置
WO2018167811A1 (ja) * 2017-03-13 2018-09-20 三菱電機株式会社 冷凍サイクル装置
WO2019030885A1 (ja) * 2017-08-10 2019-02-14 三菱電機株式会社 冷凍サイクル装置
WO2019058748A1 (ja) * 2017-09-19 2019-03-28 ダイキン工業株式会社 ガス漏れ量検知方法及び冷凍装置の運転方法
WO2019069423A1 (ja) * 2017-10-05 2019-04-11 三菱電機株式会社 空気調和装置
CN110199162A (zh) * 2017-01-19 2019-09-03 三菱电机株式会社 冷冻循环装置
CN110671768A (zh) * 2019-10-23 2020-01-10 深圳市俊安环境科技有限公司 蓄冷中央空调的控制系统
EP3569956A4 (en) * 2017-01-16 2020-03-04 Daikin Industries, Ltd. REFRIGERATION DEVICE WITH SHUT-OFF VALVE
JPWO2019038797A1 (ja) * 2017-08-21 2020-03-26 三菱電機株式会社 空気調和装置および膨張弁ユニット
WO2021241108A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 空気調和システム
CN114264036A (zh) * 2021-12-07 2022-04-01 珠海格力电器股份有限公司 冷媒泄漏控制方法、装置、设备、冷热联供系统和空调
WO2022202571A1 (ja) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル 空気調和機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020051314A1 (en) 2018-09-06 2020-03-12 Carrier Corporation Refrigerant leak detection system
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
JP7478967B2 (ja) * 2020-02-25 2024-05-08 パナソニックIpマネジメント株式会社 空気調和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120063U (ja) * 1987-01-30 1988-08-03
JP2000249385A (ja) * 1999-02-26 2000-09-12 Daikin Ind Ltd 冷凍装置
JP2011021837A (ja) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル装置の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369370A (ja) * 1991-06-14 1992-12-22 Hitachi Ltd 冷凍装置
JP2003106689A (ja) * 2001-09-28 2003-04-09 Sharp Corp 空気調和機
JP4865326B2 (ja) * 2005-12-27 2012-02-01 東芝キヤリア株式会社 空気調和装置およびその制御方法
JP5186951B2 (ja) * 2008-02-29 2013-04-24 ダイキン工業株式会社 空気調和装置
JP5035022B2 (ja) * 2008-02-29 2012-09-26 ダイキン工業株式会社 空気調和装置および冷媒量判定方法
JP5610674B2 (ja) * 2008-06-13 2014-10-22 三菱重工業株式会社 冷凍装置
JP5274572B2 (ja) * 2008-10-29 2013-08-28 三菱電機株式会社 空気調和装置
JP5558555B2 (ja) * 2010-03-12 2014-07-23 三菱電機株式会社 冷凍空調装置
WO2014034099A1 (ja) * 2012-08-27 2014-03-06 ダイキン工業株式会社 冷凍装置
EP3029397B1 (en) * 2013-08-01 2020-09-23 Mitsubishi Electric Corporation Heat source unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120063U (ja) * 1987-01-30 1988-08-03
JP2000249385A (ja) * 1999-02-26 2000-09-12 Daikin Ind Ltd 冷凍装置
JP2011021837A (ja) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル装置の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279580A4 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018092299A1 (ja) * 2016-11-21 2019-06-24 三菱電機株式会社 空気調和装置
WO2018092299A1 (ja) * 2016-11-21 2018-05-24 三菱電機株式会社 空気調和装置
EP3543624A4 (en) * 2016-11-21 2019-12-04 Mitsubishi Electric Corporation AIR CONDITIONER
EP3569956A4 (en) * 2017-01-16 2020-03-04 Daikin Industries, Ltd. REFRIGERATION DEVICE WITH SHUT-OFF VALVE
CN110199162A (zh) * 2017-01-19 2019-09-03 三菱电机株式会社 冷冻循环装置
JPWO2018167811A1 (ja) * 2017-03-13 2020-01-16 三菱電機株式会社 冷凍サイクル装置
US11143439B2 (en) 2017-03-13 2021-10-12 Mitsubishi Electric Corporation Heat pump with refrigerant leak detection and pump-down method
WO2018167811A1 (ja) * 2017-03-13 2018-09-20 三菱電機株式会社 冷凍サイクル装置
EP3598023A4 (en) * 2017-03-13 2020-03-11 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT
WO2019030885A1 (ja) * 2017-08-10 2019-02-14 三菱電機株式会社 冷凍サイクル装置
US11473821B2 (en) 2017-08-10 2022-10-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2019038797A1 (ja) * 2017-08-21 2020-03-26 三菱電機株式会社 空気調和装置および膨張弁ユニット
CN111065869B (zh) * 2017-09-19 2021-03-16 大金工业株式会社 气体泄漏量检测方法以及冷冻装置的运转方法
JP2019052819A (ja) * 2017-09-19 2019-04-04 ダイキン工業株式会社 ガス漏れ量検知方法及び冷凍装置の運転方法
WO2019058748A1 (ja) * 2017-09-19 2019-03-28 ダイキン工業株式会社 ガス漏れ量検知方法及び冷凍装置の運転方法
EP3686520A4 (en) * 2017-09-19 2020-11-11 Daikin Industries, Ltd. METHOD OF DETERMINING GAS LEAKAGE AND OPERATING METHOD OF A COOLING DEVICE
CN111065869A (zh) * 2017-09-19 2020-04-24 大金工业株式会社 气体泄漏量检测方法以及冷冻装置的运转方法
JPWO2019069423A1 (ja) * 2017-10-05 2020-04-02 三菱電機株式会社 空気調和装置
US11231199B2 (en) 2017-10-05 2022-01-25 Mitsubishi Electric Corporation Air-conditioning apparatus with leak detection control
EP3680585A4 (en) * 2017-10-05 2020-09-23 Mitsubishi Electric Corporation AIR CONDITIONING DEVICE
EP3693679A4 (en) * 2017-10-05 2020-10-14 Mitsubishi Electric Corporation AIR CONDITIONER
JP6377299B1 (ja) * 2017-10-05 2018-08-22 三菱電機株式会社 空気調和装置
WO2019069423A1 (ja) * 2017-10-05 2019-04-11 三菱電機株式会社 空気調和装置
WO2019069422A1 (ja) * 2017-10-05 2019-04-11 三菱電機株式会社 空気調和装置
CN111164360A (zh) * 2017-10-05 2020-05-15 三菱电机株式会社 空气调节装置
CN111164360B (zh) * 2017-10-05 2021-12-14 三菱电机株式会社 空气调节装置
CN110671768A (zh) * 2019-10-23 2020-01-10 深圳市俊安环境科技有限公司 蓄冷中央空调的控制系统
WO2021241108A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 空気調和システム
JP7462186B2 (ja) 2020-05-29 2024-04-05 パナソニックIpマネジメント株式会社 空気調和システム
WO2022202571A1 (ja) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル 空気調和機
JP2022150997A (ja) * 2021-03-26 2022-10-07 株式会社富士通ゼネラル 空気調和機
JP7168022B2 (ja) 2021-03-26 2022-11-09 株式会社富士通ゼネラル 空気調和機
CN114264036A (zh) * 2021-12-07 2022-04-01 珠海格力电器股份有限公司 冷媒泄漏控制方法、装置、设备、冷热联供系统和空调
CN114264036B (zh) * 2021-12-07 2022-12-02 珠海格力电器股份有限公司 冷媒泄漏控制方法、装置、设备、冷热联供系统和空调

Also Published As

Publication number Publication date
EP3279580B1 (en) 2022-09-07
EP3279580A4 (en) 2019-05-15
JPWO2016157519A1 (ja) 2017-11-02
JP6479162B2 (ja) 2019-03-06
EP3279580A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6479162B2 (ja) 空気調和装置
JP6081033B1 (ja) 空気調和装置
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
KR101479458B1 (ko) 냉동 장치
WO2019073870A1 (ja) 冷凍装置
JP6300954B2 (ja) 空気調和装置
US9857088B2 (en) Air-conditioning apparatus
WO2005019742A1 (ja) 冷凍装置
JP6223469B2 (ja) 空気調和装置
JP2017142038A (ja) 冷凍サイクル装置
WO2018003096A1 (ja) 空気調和装置
JPWO2015140994A1 (ja) 熱源側ユニット及び空気調和装置
JPWO2018092299A1 (ja) 空気調和装置
WO2019053771A1 (ja) 空気調和装置
JP5872052B2 (ja) 空気調和装置
WO2008069265A1 (ja) 空気調和装置
JP2010261623A (ja) 空気調和装置
GB2533041A (en) Air conditioner
KR20080084482A (ko) 공기 조화기의 제어방법
JP7496938B2 (ja) 空気調和装置
JP6257812B2 (ja) 空気調和装置
WO2023135630A1 (ja) 空気調和装置
JP7233568B2 (ja) 空気調和システムおよびその制御方法
WO2024134852A1 (ja) 空気調和装置
WO2017179117A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015887665

Country of ref document: EP