WO2014034099A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2014034099A1
WO2014034099A1 PCT/JP2013/005056 JP2013005056W WO2014034099A1 WO 2014034099 A1 WO2014034099 A1 WO 2014034099A1 JP 2013005056 W JP2013005056 W JP 2013005056W WO 2014034099 A1 WO2014034099 A1 WO 2014034099A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circuit
indoor
leakage
heat exchanger
Prior art date
Application number
PCT/JP2013/005056
Other languages
English (en)
French (fr)
Inventor
龍三郎 矢嶋
利行 栗原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012186620A external-priority patent/JP6079055B2/ja
Priority claimed from JP2012189053A external-priority patent/JP6079061B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES13834154T priority Critical patent/ES2894700T3/es
Priority to EP13834154.0A priority patent/EP2905563B1/en
Priority to AU2013310668A priority patent/AU2013310668B8/en
Priority to US14/421,296 priority patent/US10508847B2/en
Priority to CN201380044730.5A priority patent/CN104603557B/zh
Priority to BR112015003481-0A priority patent/BR112015003481B1/pt
Priority to KR1020157007551A priority patent/KR101678324B1/ko
Publication of WO2014034099A1 publication Critical patent/WO2014034099A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0291Control issues related to the pressure of the indoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • the present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle, and particularly relates to measures against refrigerant leakage in the refrigerant circuit.
  • the allowable value of the refrigerant charging amount in the refrigerant circuit is determined. This allowable value is set to a value in which the refrigerant concentration in the room does not exceed the limit value even when the entire amount of the refrigerant charged in the refrigerant circuit leaks.
  • refrigerant concentration in the room exceeds the limit value when the total amount of refrigerant filled in the refrigerant circuit leaks, a refrigerant leak detector is installed in the room and an alarm is issued at the time of detection, or the room is mechanically ventilated. It is required to take safety measures such as installing equipment.
  • Patent Document 1 discloses a type of air conditioner in Patent Document 1, for example.
  • the air conditioner disclosed in Patent Document 1 includes an outdoor unit and an indoor unit. In the outdoor unit, control valves are provided in both the gas pipe and the liquid pipe connected to the indoor unit. In this air conditioner, when it is detected that the refrigerant has leaked into the room from the indoor unit, the control valve provided in the liquid pipe is closed, and the cooling operation (refrigerant recovery operation) is performed.
  • the refrigerant flow from the outdoor unit to the indoor unit is stopped by the control valve of the liquid pipe, while the refrigerant of the indoor unit flows to the outdoor unit and is stored in the outdoor heat exchanger and the refrigerant amount adjuster. Then, when the refrigerant recovery operation is performed for a predetermined time, the control valve provided in the gas pipe is closed and the operation ends. Thereby, the refrigerant
  • a so-called cooling / heating-free air conditioning apparatus that satisfies both a room cooling request and a heating request at the same time is known.
  • the air conditioner is configured such that a plurality of usage-side units are arranged in different rooms, and cooling is performed by some usage-side units while heating is performed by the remaining other usage-side units. .
  • the refrigerant leakage suppression means disclosed in Patent Document 1 described above has a problem that the control valve (shutoff valve) provided in the gas pipe and the liquid pipe is expensive, resulting in an increase in cost. . Further, the frequency of occurrence of refrigerant leakage is extremely low, and it is not economical to provide an expensive control valve only to suppress the refrigerant leakage.
  • the present invention has been made in view of such a point, and an object thereof is to suppress the leakage of the refrigerant in the use side circuit at a low cost.
  • the pressure (refrigerant pressure) of the use side circuit (3a to 5a, 112a) and the pressure of the use space The pressure difference between and was reduced as much as possible to reduce the leakage rate of the refrigerant.
  • the first invention includes a heat source side circuit (111a) having a compressor (121), a heat source side heat exchanger (123) and an expansion valve (124), and a use side heat exchanger (125).
  • this invention is provided with the leak detection part (141) which detects that the refrigerant
  • the refrigerant in the use side circuit (112a) has a high pressure (the use side heat exchanger (125) functions as a radiator).
  • the leakage detector (141) detects the leakage of the refrigerant. Then, in the refrigerant circuit (120), the refrigerant is circulated so as to perform a refrigeration cycle in which the refrigerant in the use side circuit (112a) has a low pressure.
  • the pressure difference between the refrigerant in the usage side circuit (112a) and the usage space is reduced, and the leakage rate of the refrigerant from the usage side circuit (112a) is reduced.
  • the amount of leakage of the refrigerant becomes an amount that can be sufficiently discharged out of the usage space by natural ventilation in the usage space, and an increase in the refrigerant concentration in the usage space is suppressed.
  • control unit (142) is configured such that when the leakage detection unit (141) detects refrigerant leakage, the refrigerant circuit (120) includes the use side circuit (112a).
  • the refrigerant is circulated so as to perform a refrigeration cycle in which the refrigerant has a low pressure equal to or higher than atmospheric pressure.
  • the refrigerant pressure in the use side circuit (112a) is controlled to be equal to or higher than the atmospheric pressure, so that the refrigerant pressure in the use side circuit (112a) is higher than the pressure in the use space. For this reason, in the usage side circuit (112a), air in the usage space does not enter the usage side circuit (112a) from the leakage point of the refrigerant (for example, a hole caused by corrosion of the piping).
  • the plurality of use side circuits (112a) are connected in parallel to each other.
  • the heat source side circuit (111a) has one expansion valve (124) and is connected to the liquid side end of each use side circuit (112a).
  • the control unit (142) reduces the refrigerant in each use side circuit (112a) to a low pressure by restricting the expansion valve (124) of the heat source side circuit (111a).
  • the refrigerant circuit (120) has a low pressure from the expansion valve (124) of the heat source side circuit (111a) to the suction side of the compressor (121). Therefore, the entire use side circuit (112a) including the connecting pipe connecting the heat source side circuit (111a) and the use side circuit (112a) has a low pressure.
  • the refrigerant circuit (120) includes a plurality of the use side circuits (112a).
  • the heat source side circuit (111a) has its liquid side end branched and connected to the liquid side end of each usage side circuit (112a), and its gas side end branched to each of the usage side circuits (112a).
  • the expansion valve (124) is provided in each of a plurality of pipes (1f) connected to the gas side end of the heat source side circuit (111a) and constituting the liquid side end of the heat source side circuit (111a).
  • the control unit (142) causes the leak detection unit (141) to detect the refrigerant leak, thereby restricting the expansion valve (124) corresponding to the use side circuit (112a).
  • the refrigerant in the use side circuit (112a) that has detected the refrigerant leakage is set to a low pressure.
  • the refrigerant in the usage side circuit (112a) in which the refrigerant leakage occurs among the plurality of usage side circuits (112a) has a low pressure.
  • the refrigerant circuit (120) has a refrigerant pressure reducing mechanism (132), and a part of the circulating refrigerant is sucked into the compressor (121).
  • the injection pipe (131) which leads to the intermediate pressure chamber on the side or the compressor (121) is provided.
  • the control unit (142) increases the refrigerant flow rate of the injection pipe (131) when the leakage detection unit (141) detects refrigerant leakage.
  • the refrigerant flow rate of the injection pipe (131) increases, so the temperature of the refrigerant discharged from the compressor (121) decreases.
  • the sixth aspect of the invention includes the use fan (116) for supplying air to the use-side heat exchanger (125) with heat exchanged with the refrigerant in the third or fourth aspect of the invention.
  • the control unit (142) reduces the air volume of the use fan (116) when the leakage detection unit (141) detects refrigerant leakage.
  • the seventh invention includes a heat source side circuit (2a) having a compressor (21) and a heat source side heat exchanger (22), and a use side heat exchanger (31, 41, 51) for air conditioning the use side space.
  • a plurality of usage-side circuits (3a, 4a, 5a), and each usage-side heat exchanger (31, 41, 51) is configured to individually perform a cooling operation and a heating operation, and When all the use side heat exchangers (31, 41, 51) perform the cooling operation, all the high-pressure gas refrigerant discharged from the compressor (21) flows to the heat source side heat exchanger (22).
  • the refrigeration apparatus includes a refrigerant circuit (10).
  • the refrigerant circuit (10) includes a control unit (18) that circulates the refrigerant so as to perform a refrigeration cycle in which the refrigerant of the use side circuit (3a, 4a, 5a) has a low pressure.
  • the refrigerant in the usage side circuit (3a, 4a, 5a) has a high pressure (the usage side heat exchanger (31, 41, 51) functions as a radiator. )
  • the leak detector (17) detects the refrigerant leak.
  • the refrigerant is circulated so as to perform a refrigeration cycle in which the refrigerant in the use side circuit (3a, 4a, 5a) has a low pressure.
  • the pressure difference between the refrigerant of the usage side circuit (3a, 4a, 5a) and the usage space is reduced, and the leakage rate of the refrigerant from the usage side circuit (3a, 4a, 5a) is reduced.
  • the amount of leakage of the refrigerant becomes an amount that can be sufficiently discharged out of the usage space by natural ventilation in the usage space, and an increase in the refrigerant concentration in the usage space is suppressed.
  • control unit (18) is configured such that when the leakage detection unit (17) detects refrigerant leakage, the refrigerant circuit (10) includes the use side circuit (3a, 4a). , 5a), the refrigerant is circulated so as to perform a refrigeration cycle in which the refrigerant has a low pressure equal to or higher than atmospheric pressure.
  • the refrigerant pressure in the use side circuit (3a, 4a, 5a) is controlled to be equal to or higher than the atmospheric pressure, the refrigerant pressure in the use side circuit (3a, 4a, 5a) is higher than the pressure in the use space. Get higher. For this reason, in the use side circuit (3a, 4a, 5a), the air in the use space does not enter from the leakage point of the refrigerant (for example, a hole caused by corrosion of the pipe).
  • the control unit (18) throttles the expansion valve (23) for evaporating the refrigerant in the heat source side heat exchanger (22),
  • the use side circuits (3a, 4a, 5a) are characterized in that the refrigerant is set to a low pressure.
  • the refrigerant circuit (10) has a low pressure from the expansion valve (23) of the heat source side circuit (2a) to the suction side of the compressor (21). Therefore, the entire use side circuit (3a, 4a, 5a) including the liquid pipe and the gas pipe connecting the heat source side circuit (2a) and each use side circuit (3a, 4a, 5a) has a low pressure.
  • a tenth aspect of the invention includes the use fan (3F, 4F, 5F) in the ninth aspect of the invention, which includes a use fan (3F, 4F, 5F) for supplying the heat to be exchanged with the refrigerant to the use side heat exchanger (31, 41, 51).
  • the section (18) is characterized in that when the leakage detection section (17) detects refrigerant leakage, the air volume of the use fans (3F, 4F, 5F) is reduced.
  • the air volume of the use fan (3F, 4F, 5F) is reduced, the superheat degree of the refrigerant sucked in the compressor (21) is reduced. Thereby, the temperature of the refrigerant discharged from the compressor (63) decreases.
  • the refrigerant circuit (120) includes, as a refrigerant, a single refrigerant of R32, R1234yf, R1234ze, or R744 or a mixed refrigerant containing the refrigerant. It is used.
  • a single refrigerant of R32, R1234yf, R1234ze, or R744 or a mixed refrigerant containing the refrigerant is used as the refrigerant.
  • the refrigerant in the use side circuit (112a) when refrigerant leakage to the use side space occurs, the refrigerant in the use side circuit (112a) becomes low in pressure, so the difference between the refrigerant pressure in the use side circuit (112a) and the pressure in the use space. Can be made as small as possible.
  • the refrigerant in the use side circuit (3a, 4a, 5a) when refrigerant leakage to the use side space occurs, the refrigerant in the use side circuit (3a, 4a, 5a) becomes low pressure, so that the use side circuit (3a, 4a, 5a) The difference between the refrigerant pressure and the pressure in the use space can be made as small as possible.
  • the difference between the refrigerant pressure in the usage side circuit (3a to 5a, 112a) and the pressure in the usage space can be reduced.
  • Leakage rate can be reduced.
  • the refrigerant can be sufficiently discharged by natural ventilation in the usage space, and as a result, an increase in the refrigerant concentration in the usage space can be suppressed. Therefore, the specified limit value of the refrigerant concentration is not exceeded.
  • refrigerant leakage can be suppressed at a low cost.
  • the utilization side circuit ( Since the refrigerants 3a, 4a, and 5a) are set to low pressure, the cooling operation is continued as it is in the use side circuit (5a) of the cooling operation.
  • refrigerant leakage can be suppressed while ensuring the comfort of the use side circuit (5a) of the cooling operation.
  • the refrigerant pressure in the use side circuit (112a) since the refrigerant pressure in the use side circuit (112a) becomes a low pressure equal to or higher than the atmospheric pressure, the refrigerant pressure in the use side circuit (112a) does not become lower than the pressure in the use space.
  • the refrigerant pressure in the use side circuit (3a, 4a, 5a) is a low pressure equal to or higher than the atmospheric pressure, so the refrigerant pressure in the use side circuit (3a, 4a, 5a) Not lower than pressure. Therefore, according to the second and eighth inventions, it is possible to reliably prevent the air in the use space from entering the use side circuit (3a to 5a, 112a) from the leakage point of the refrigerant.
  • the refrigerant of the usage side circuit (112a) is reduced to a low pressure by restricting the expansion valve (124) of the heat source side circuit (111a).
  • the whole can be at a low pressure.
  • coolant leakage of a utilization side circuit (112a) can be suppressed reliably.
  • the temperature of the refrigerant discharged from the compressor (121) can be lowered.
  • the difference between the refrigerant pressure of the usage side circuit (112a) and the pressure of the usage space is made as small as possible to reduce the leakage rate of the refrigerant. Therefore, the expansion valve (124) of the heat source side circuit (111a) The opening tends to be smaller than during normal operation. Then, the high pressure of the refrigeration cycle may increase and the temperature of the refrigerant discharged from the compressor (121) may become abnormally high. However, according to the present invention, this can be prevented.
  • the air volume of the utilization fan (116) since the air volume of the utilization fan (116) is reduced, the degree of superheat of the refrigerant sucked in the compressor (121) can be lowered, and as a result, the temperature of the discharged refrigerant can be lowered.
  • the air volume of the utilization fan (3F, 4F, 5F) since the air volume of the utilization fan (3F, 4F, 5F) is reduced, the degree of superheat of the refrigerant sucked in the compressor (21) can be reduced, and as a result, the temperature of the discharged refrigerant Can be reduced.
  • the difference between the refrigerant pressure in the usage side circuit (112a) and the pressure in the usage space is desired to be as small as possible to reduce the leakage rate of the refrigerant. , 112a) tends to be lower than in normal operation. Then, although the degree of superheat of the refrigerant sucked by the compressor (21, 121) and the temperature of the discharged refrigerant may become abnormally high, according to the sixth and tenth inventions, this can be prevented.
  • the refrigerant in the utilization side circuit (3a, 4a, 5a) is reduced to a low pressure by restricting the expansion valve (23) of the heat source side circuit (2a), so that the utilization side circuit (3a, The whole of 4a and 5a) can be made low pressure.
  • coolant leakage of a utilization side circuit (3a, 4a, 5a) can be suppressed reliably.
  • R32, R1234yf, R1234ze, and R744 are refrigerants that are friendly to the global environment because of their relatively low global warming potential (GWP). Moreover, since R32, R1234yf, and R1234ze are flammable refrigerants (slightly flammable refrigerants), the risk of combustion accidents due to refrigerant leakage increases. R744. Although it is not flammable (it is a nonflammable refrigerant), there is a risk of suffocation accident due to refrigerant leakage.
  • R32 is difluoromethane (HFC-32)
  • R1234yf is 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
  • R1234ze is 1,3,3,3-tetrafluoro.
  • -1-propene (HFO-1234ze) and R744 is carbon dioxide.
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a table showing the characteristics of the refrigerant.
  • FIG. 3 is a graph showing the leakage rate of the liquid refrigerant R32.
  • FIG. 4 is a graph showing the leak rate of the R32 gas refrigerant.
  • FIG. 5 is a refrigerant circuit diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 3. It is a refrigerant circuit figure which shows the flow of the refrigerant
  • FIG. 6 is a refrigerant circuit diagram of an air conditioner according to Embodiment 4.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the air conditioner (110) of the present embodiment constitutes a refrigeration apparatus according to the present invention.
  • the air conditioner (110) includes an outdoor unit (111) and a plurality (two in this embodiment) of indoor units (112).
  • the outdoor unit (111) and the indoor unit (112) are connected to each other via a liquid side connecting pipe (113) and a gas side connecting pipe (114).
  • a refrigerant circuit (120) is formed by the communication pipe (114).
  • the outdoor unit (111) constitutes a heat source unit
  • the indoor unit (112) constitutes a utilization unit.
  • the outdoor circuit (111a) constitutes a heat source side circuit
  • the indoor circuit (112a) constitutes a utilization side circuit.
  • the outdoor circuit (111a) includes a compressor (121), a four-way switching valve (122), an outdoor heat exchanger (123), an outdoor expansion valve (124), and a supercooling heat exchanger (127). Is provided.
  • the outdoor unit (111) is provided with an outdoor fan (115) for supplying outdoor air to the outdoor heat exchanger (123).
  • the indoor circuit (112a) is provided with an indoor heat exchanger (125) and an indoor expansion valve (126).
  • the indoor unit (112) is provided with an indoor fan (116) for supplying room air to the indoor heat exchanger (125).
  • the outdoor heat exchanger (123) constitutes a heat source side heat exchanger, and the indoor heat exchanger (125) constitutes a use side heat exchanger.
  • the outdoor fan (115) constitutes a heat source fan, and the indoor fan (116) constitutes a utilization fan.
  • the refrigerant circuit (120) is a closed circuit, and a single refrigerant of R32, R1234yf, R1234ze, or R744 or a mixed refrigerant containing the refrigerant is used as the refrigerant.
  • R32 is difluoromethane (HFC-32)
  • R1234yf is 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
  • R1234ze is 1,3,3,3-tetrafluoro-1 -Propene (HFO-1234ze)
  • R744 is carbon dioxide.
  • the refrigerant circuit (120) is configured to perform a refrigeration cycle by reversibly circulating the refrigerant.
  • the compressor (121) has a discharge side connected to the first port of the four-way switching valve (122) via the discharge pipe (101a) and a suction side connected to the first port of the four-way switching valve (122) via the suction pipe (101b). 2 ports are connected to each other.
  • the third port of the four-way switching valve (122) is connected to one end of the outdoor heat exchanger (123) via the outdoor gas pipe (101c), and the fourth port of the four-way switching valve (122) is the outdoor gas. It is connected to the gas side shut-off valve (118) via a pipe (101d).
  • the other end of the outdoor heat exchanger (123) is connected to the liquid side shut-off valve (117) via the outdoor liquid pipe (101e).
  • the outdoor liquid pipe (101e) is provided with an outdoor expansion valve (124) and a supercooling heat exchanger (127) in order from the outdoor heat exchanger (123) side. Further, an injection pipe (131) having an injection valve (132) as a pressure reducing mechanism is connected between the outdoor liquid pipe (101e) and the suction pipe (101b).
  • the supercooling heat exchanger (127) includes a high-temperature channel (127a) connected to the outdoor liquid pipe (101e) and a low-temperature channel (127b) connected to the injection pipe (131).
  • the liquid refrigerant decompressed by the injection valve (132) flows into the low-temperature channel (127b), and heat-exchanges with the liquid refrigerant in the high-temperature channel (127a) to evaporate.
  • the liquid refrigerant in the high-temperature channel (127a) is supercooled.
  • the indoor circuit (112a) has an indoor pipe (102a) with one end (liquid side end) connected to the liquid side shut-off valve (117) and the other end (gas side end) connected to the gas-side shut-off valve (118). Have.
  • the indoor pipe (102a) is provided with an indoor expansion valve (126) and an indoor heat exchanger (125) in this order from the liquid side closing valve (117) side.
  • One end of the liquid side communication pipe (113) is connected to the liquid side shutoff valve (117) of the outdoor circuit (111a), and the other end branches into two to separate the liquid side shutoff valve (117 of each indoor circuit (112a). )It is connected to the.
  • One end of the gas side connection pipe (114) is connected to the gas side shut-off valve (118) of the outdoor circuit (111a), and the other end branches into two, and the gas side shut-off valve (118) of each indoor circuit (112a). )It is connected to the. That is, the two indoor circuits (112a) are connected in parallel to each other.
  • the gas side shut-off valve (118) (gas side end) of each indoor circuit (112a) and the compressor (121) are always in communication.
  • Compressor (121) is a scroll type or rotary type hermetic compressor.
  • the four-way switching valve (122) has a first state (state indicated by a broken line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port, The port is switched to a second state (state indicated by a solid line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the outdoor expansion valve (124) and the indoor expansion valve (126) are so-called electronic expansion valves.
  • the outdoor heat exchanger (123) exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger (123) will be described later.
  • the indoor heat exchanger (125) causes the indoor air to exchange heat with the refrigerant.
  • the indoor heat exchanger (125) is configured by a so-called cross fin type fin-and-tube heat exchanger including a heat transfer tube which is a circular tube.
  • the air conditioner (110) includes a controller (140) that controls operation.
  • the controller (140) is provided with a leak detection unit (141) and a control unit (142).
  • Each indoor circuit (112a) is provided with a pressure sensor (135) for detecting the pressure of the refrigerant.
  • the pressure sensor (135) is provided between the indoor heat exchanger (125) and the gas side shut-off valve (118) in the indoor pipe (102a).
  • the leak detection unit (141) determines that the refrigerant has leaked from the indoor circuit (112a) when the amount of decrease per unit time of the detected value of the pressure sensor (135) is equal to or greater than a predetermined value, and detects the refrigerant leak To do.
  • the control unit (142) circulates the refrigerant in the refrigerant circuit (120) so that the refrigerant in the indoor circuit (112a) has a low pressure.
  • control unit (142) circulates the refrigerant so as to perform a refrigeration cycle in which the outdoor heat exchanger (123) serves as a condenser (heat radiator) and the indoor heat exchanger (125) serves as an evaporator (operation in an emergency). .
  • the control unit (142) circulates the refrigerant so as to perform a refrigeration cycle in which the outdoor heat exchanger (123) serves as a condenser (heat radiator) and the indoor heat exchanger (125) serves as an evaporator (operation in an emergency).
  • the air conditioner (110) performs switching between a cooling operation and a heating operation, which are normal operations, and an emergency operation.
  • the refrigeration cycle is performed with the four-way switching valve (122) set to the first state.
  • the compressor (121) the outdoor heat exchanger (123), the outdoor expansion valve (124), the supercooling heat exchanger (127), each indoor expansion valve (126), each indoor heat exchanger (125
  • the refrigerant circulates in the order of), the outdoor heat exchanger (123) functions as a condenser (heat radiator), and the indoor heat exchanger (125) functions as an evaporator.
  • the outdoor expansion valve (124) is set to a fully open state.
  • each indoor expansion valve (126) is controlled so that the degree of superheat of the refrigerant flowing out from the indoor heat exchanger (125) (the degree of suction superheat of the compressor (121)) becomes a predetermined value. That is, in normal cooling operation, the refrigerant is decompressed by the indoor expansion valve (126), and the pressure from the indoor expansion valve (126) to the suction side of the compressor (121) is reduced. In the outdoor heat exchanger (123), the gas refrigerant dissipates heat to the outdoor air and condenses. In each indoor heat exchanger (125), the liquid refrigerant absorbs heat from the room air and evaporates to cool the room air.
  • a part of the liquid refrigerant condensed in the outdoor heat exchanger (123) is diverted to the injection pipe (131).
  • the liquid refrigerant branched to the injection pipe (131) is depressurized by the injection valve (132) and then flows into the low-temperature flow path (127b) of the supercooling heat exchanger (127).
  • the liquid refrigerant in the high temperature channel (127a) exchanges heat with the refrigerant in the low temperature channel (127b) and is supercooled, and the refrigerant in the low temperature channel (127b) evaporates.
  • the evaporated refrigerant is injected into the suction pipe (101b).
  • the refrigerant circulates in the order of)
  • the indoor heat exchanger (125) functions as a condenser (heat radiator)
  • the outdoor heat exchanger (123) functions as an evaporator.
  • the opening degree of each indoor expansion valve (126) is controlled according to the fully opened state or the heating capacity.
  • the opening degree of the outdoor expansion valve (124) is controlled so that the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger (123) (the degree of suction superheat of the compressor (121)) becomes a predetermined value. That is, in the heating operation, the refrigerant is depressurized by the outdoor expansion valve (124), so that the entire indoor circuit (112a) is at a high pressure. In the outdoor heat exchanger (123), the liquid refrigerant absorbs heat from the outdoor air and evaporates. In each indoor heat exchanger (125), the gas refrigerant dissipates heat to the indoor air and condenses, and the indoor air is heated.
  • the injection valve (132) is set to a fully closed state.
  • the emergency operation is performed when the leakage detection unit (141) detects refrigerant leakage during the normal operation described above.
  • the leakage detection unit (141) detects refrigerant leakage during heating operation.
  • the leakage detection unit (141) detects refrigerant leakage.
  • the indoor circuit (112a) is at a high pressure, the pressure difference between the indoor circuit (112a) and the room is large. Therefore, the refrigerant leak rate increases, and the natural ventilation in the room does not sufficiently discharge the refrigerant outside the room, so that the refrigerant concentration in the room exceeds the limit value.
  • an emergency operation is performed when the leakage detection unit (141) detects refrigerant leakage.
  • the refrigerant circulation direction in the refrigerant circuit (120) is the same as in the cooling operation. That is, the four-way selector valve (122) is set to the first state. And each indoor expansion valve (126) is set to a fully open state, and the opening degree of the outdoor expansion valve (124) is throttled. That is, in an emergency operation, the refrigerant is decompressed by the outdoor expansion valve (124), and the entire indoor circuit (112a) is at a low pressure. Thereby, the pressure difference between the refrigerant in the indoor circuit (112a) and the room is reduced, and the leakage rate of the refrigerant from the indoor circuit (112a) is reduced.
  • the opening of the outdoor expansion valve (124) is controlled so as to reduce the pressure of the indoor circuit (112a) as much as possible within a range not lower than the atmospheric pressure. Further, in the emergency operation, the air volume of the indoor fan (116) is lowered by the control unit (142). Furthermore, in an emergency operation, the injection valve (132) is set to a fully open state by the control unit (142).
  • the refrigerant leakage rate (kg / h) will be described. As shown in FIGS. 3 and 4, when the size of the hole through which the refrigerant leaks increases, the refrigerant leakage rate (kg / h) also increases. Further, when the saturation temperature of the refrigerant is lowered, that is, when the refrigerant pressure is lowered, the refrigerant leakage rate (kg / h) is also reduced. In the indoor circuit (112a), there are cases where the liquid refrigerant leaks and the gas refrigerant leaks depending on the leak location.
  • the hole diameter is set to 0.2 mm.
  • the leak rate is 2.00 (kg / h) at the saturation temperature of 63 ° C., the highest pressure in the range shown in FIG.
  • the saturation temperature is -50 ° C
  • the leakage rate is 0.026 (kg / h).
  • the leak rate (kg / h) is larger than when the leaking refrigerant is a gas refrigerant.
  • the leak rate is 5.3 (kg / h) when the saturation temperature is 63 ° C, and the leak rate when the saturation temperature is -50 ° C. Is 0.32 (kg / h).
  • the pressure in the indoor circuit (112a) can be reduced and the refrigerant leakage rate (kg / h) can be reduced.
  • the indoor refrigerant concentration reaches the limit value. The exceeding state can be avoided.
  • the control unit (142) When the leakage detection unit (141) detects refrigerant leakage during the cooling operation, the control unit (142) fully opens each indoor expansion valve (126) while maintaining the four-way switching valve (122) in the first state. Set to the state, and reduce the opening of the outdoor expansion valve (124) to switch to emergency operation.
  • Embodiment 1- when refrigerant leakage occurs in the indoor circuit (112a), the refrigerant in the indoor circuit (112a) is subjected to a refrigeration cycle in which the refrigerant becomes low pressure, so that the indoor circuit (112a) The difference between the refrigerant pressure and the indoor pressure can be made as small as possible. Therefore, the leakage rate of the refrigerant can be reduced. Thereby, the refrigerant can be sufficiently discharged by natural ventilation in the room, and as a result, an increase in the refrigerant concentration in the room can be suppressed. Therefore, the indoor refrigerant concentration does not exceed a specified limit value. Moreover, since it is not necessary to provide a separate valve for shutting off the refrigerant flow, refrigerant leakage can be suppressed at a low cost.
  • the refrigerant pressure in the indoor circuit (112a) is set to a low pressure equal to or higher than the atmospheric pressure, so the refrigerant pressure in the indoor circuit (112a) does not become lower than the indoor pressure. As a result, it is possible to reliably prevent the indoor air from entering the indoor circuit (112a) from the leakage point of the refrigerant.
  • the refrigerant in the indoor circuit (112a) is reduced to a low pressure by restricting the outdoor expansion valve (124) instead of the indoor expansion valve (126).
  • the entire pressure of 112a) can be reduced, so that the refrigerant leakage can be reliably suppressed regardless of where the refrigerant leaks from the indoor circuit (112a).
  • the degree of superheat of the refrigerant sucked in the compressor (121) can be reduced, and as a result, the compressor (121) The temperature of the discharged refrigerant can be reduced.
  • the refrigerant pressure in the indoor circuit (112a) is reduced during normal cooling operation because the difference between the refrigerant pressure in the indoor circuit (112a) and the indoor pressure is reduced as much as possible to reduce the leakage rate of the refrigerant. Tend to be lower. If so, the degree of superheat of the refrigerant sucked by the compressor (121) and the temperature of the discharged refrigerant may become abnormally high, but according to the present embodiment, this can be prevented.
  • the injection valve (132) is fully opened during emergency operation. Therefore, a part of the refrigerant that has passed through the outdoor expansion valve (124) is injected into the suction pipe (101b), and the amount of injection becomes larger than that during normal cooling operation. Thereby, the temperature of the refrigerant discharged from the compressor (121) can be reliably reduced.
  • the opening of the outdoor expansion valve (124) is larger than that during normal operation. Tend to be smaller. Then, the high pressure of the refrigeration cycle may increase and the temperature of the refrigerant discharged from the compressor (121) may become abnormally high. However, according to this embodiment, this can be prevented.
  • R32, R1234yf, R1234ze and R744 are refrigerants that are friendly to the global environment because of their relatively low global warming potential (GWP). Moreover, since R32, R1234yf, and R1234ze are flammable refrigerants (slightly flammable refrigerants), the risk of combustion accidents due to refrigerant leakage increases. R744 is not flammable (it is a nonflammable refrigerant), but there is a risk of a suffocation accident due to refrigerant leakage. However, according to the present embodiment, it is possible to reliably prevent combustion accidents and suffocation accidents due to refrigerant leakage even if a refrigerant that is friendly to the global environment is used.
  • the leakage detection unit (141) of the present embodiment is configured to detect refrigerant leakage in the indoor circuit (112a).
  • the leak detector (141) is configured to detect not only the indoor circuit (112a) but also the refrigerant leak in the communication pipe (13, 14), the refrigerant leak in the communication pipe (13, 14) is also suppressed. Can do.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the air conditioner (110) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (120) in the first embodiment.
  • differences from the first embodiment will be described.
  • the end portion of the outdoor gas pipe (101d) connected to the fourth port of the four-way switching valve (122) branches into two, each of which is a gas side closing valve ( 118).
  • the end of the outdoor liquid pipe (101e) (that is, the liquid side end of the outdoor circuit (11a)) is constituted by two branch pipes (101f).
  • Each branch pipe (101f) is connected to the liquid side shut-off valve (117).
  • Each branch pipe (101f) is provided with one outdoor expansion valve (124).
  • each liquid side connecting pipe (113) is connected to the liquid side closing valve (117) of the outdoor circuit (111a) and the liquid side closing valve (117) of the indoor circuit (112a).
  • Each gas side communication pipe (114) is connected to the gas side closing valve (118) of the outdoor circuit (111a) and the gas side closing valve (118) of the indoor circuit (112a). That is, in the refrigerant circuit (120) of the present embodiment, the liquid side end of the outdoor circuit (111a) branches into two (the same number as the indoor circuit (112a)) and is connected to each indoor circuit (112a). The gas side end of the outdoor circuit (111a) branches into two (the same number as the indoor circuit (112a)) and is connected to each indoor circuit (112a).
  • One outdoor expansion valve (124) is provided for each indoor circuit (112a).
  • each indoor circuit (112a) is not provided with an indoor expansion valve (126).
  • the air conditioner (110) of the present embodiment performs switching between the cooling operation and the heating operation, which are normal operations, and the emergency operation.
  • the refrigeration cycle is performed with the four-way switching valve (122) set to the first state.
  • the refrigerant circulates in order from the compressor (121) to the outdoor heat exchanger (123), each outdoor expansion valve (124), and each indoor heat exchanger (125), and the outdoor heat exchanger (123) It functions as a condenser (heat radiator), and the indoor heat exchanger (125) functions as an evaporator.
  • the opening degree of each outdoor expansion valve (124) is controlled so that the degree of superheat of the refrigerant flowing out from the indoor heat exchanger (125) (the degree of suction superheat of the compressor (121)) becomes a predetermined value.
  • the gas refrigerant dissipates heat to the outdoor air and condenses.
  • the liquid refrigerant absorbs heat from the room air and evaporates to cool the room air.
  • the refrigeration cycle is performed with the four-way switching valve (122) set to the second state.
  • the refrigerant circulates in order from the compressor (121) to each indoor heat exchanger (125), each outdoor expansion valve (124), and outdoor heat exchanger (123), and the indoor heat exchanger (125) It functions as a condenser (heat radiator), and the outdoor heat exchanger (123) functions as an evaporator.
  • the opening degree of each outdoor expansion valve (124) is controlled so that the degree of superheat of the refrigerant flowing out of the outdoor heat exchanger (123) (the degree of suction superheat of the compressor (121)) becomes a predetermined value.
  • the liquid refrigerant absorbs heat from the outdoor air and evaporates.
  • the gas and soot refrigerant radiates heat to the indoor air and condenses, and the indoor air is heated.
  • the detection value of the pressure sensor (135) decreases rapidly. Then, the leakage detection unit (141) detects refrigerant leakage.
  • the pressure in the indoor circuit (112a) and the room is large because the indoor circuit (112a) is at a high pressure. Therefore, the refrigerant leak rate increases, and the natural ventilation in the room does not sufficiently discharge the refrigerant outside the room, so that the refrigerant concentration in the room exceeds the limit value.
  • an emergency operation is performed when the leakage detection unit (141) detects refrigerant leakage.
  • the refrigerant circulation direction in the refrigerant circuit (120) is the same as in the cooling operation. That is, the four-way selector valve (122) is set to the first state.
  • the opening degree of the outdoor expansion valve (124) corresponding to the indoor circuit (112a) where the refrigerant has leaked is reduced. Further, the outdoor expansion valve (124) corresponding to the indoor circuit (112a) where the refrigerant does not leak is set to a fully open state.
  • the outdoor expansion valve (124) corresponding to the indoor circuit (112a) where the refrigerant has leaked reduces the pressure of the indoor circuit (112a) as much as possible within a range not lower than the atmospheric pressure.
  • the opening degree is controlled.
  • the air volume of the indoor fan (116) corresponding to the indoor circuit (112a) where the refrigerant has leaked is reduced.
  • the refrigerant concentration in the room exceeds the limit value by reducing the pressure of the indoor circuit (112a) and reducing the refrigerant leakage rate (kg / h) by the emergency operation. A state can be avoided.
  • a control part (142) will switch to emergency operation, maintaining the four-way selector valve (122) in a 1st state.
  • the opening of the outdoor expansion valve (124) corresponding to the indoor circuit (112a) in which the refrigerant has leaked is further reduced to further reduce the pressure in the indoor circuit (112a), and the refrigerant has not leaked.
  • the opening degree of the outdoor expansion valve (124) corresponding to the indoor circuit (112a) is maintained.
  • the refrigeration apparatus of the present embodiment is an air conditioner (1) that individually heats or cools a room that is a plurality of usage-side spaces. That is, the air conditioner (1) is a so-called cooling / heating-free air conditioner capable of performing a cooling operation that is a cooling operation in another room while performing a heating operation that is a heating operation in one room. .
  • the air conditioner (1) includes one outdoor unit (20), first to third indoor units (30, 40, 50), and first to third BS units (60, 60). 70, 80) and a refrigerant circuit (10) connected by piping.
  • the BS units (60, 70, 80) are switching units.
  • the refrigerant circuit (10) includes a liquid pipe (11), a high pressure gas pipe (12), and a low pressure gas pipe (13). In the refrigerant circuit (10), the refrigerant circulates to perform a vapor compression refrigeration cycle.
  • a single refrigerant of R32, R1234yf, R1234ze, or R744 or a mixed refrigerant containing the refrigerant is used as the refrigerant.
  • R32 is difluoromethane (HFC-32)
  • R1234yf is 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
  • R1234ze is 1,3,3,3-tetrafluoro- 1-propene (HFO-1234ze)
  • R744 is carbon dioxide.
  • the outdoor unit (20) constitutes a heat source side unit, and includes a compressor (21), an outdoor heat exchanger (22) that is a heat source side heat exchanger, an outdoor expansion valve (23), and a first three-way valve (24). And an outdoor circuit (2a) which is a heat source side circuit having the second three-way valve (25).
  • the first three-way valve (24) and the second three-way valve (25) have first to third ports.
  • the first three-way valve (24) has a first port connected to the discharge side of the compressor (21), a second port connected to the gas side of the outdoor heat exchanger (22), and a third port connected to the compressor (21 ) Is connected to the inhalation side.
  • the first port is connected to the discharge side of the compressor (21), and the second port is connected to each BS unit (60, 70, 80) side via the high-pressure gas pipe (12).
  • the third port is connected to the low pressure gas pipe (13) and the suction side of the compressor (21).
  • Each of the three-way valves (24, 25) includes a state in which the first port and the second port communicate with each other and the third port is closed (indicated by a solid line in FIG. 6), a second port, a third port, Are configured to be switchable to a state in which the first port is closed at the same time as is communicated (a state indicated by a broken line in FIG. 6).
  • Each of the above three-way valves (24, 25) constitutes a switching mechanism.
  • the outdoor heat exchanger (22) includes an outdoor fan (2F) that is a heat source side fan, and a liquid pipe (11) is connected to the liquid side.
  • Each of the first to third indoor units (30, 40, 50) includes a first to third indoor heat exchanger (31, 41, 51) and a first to third indoor expansion valve (32, 42, 52) and first to third indoor circuits (3a, 4a, 5a).
  • the indoor circuits (3a, 4a, 5a) are utilization side circuits.
  • Each indoor heat exchanger (31, 41, 51) includes an indoor fan (3F, 4F, 5F) which is a use side fan, and the liquid side is connected to the liquid pipe (11).
  • Each indoor expansion valve (32, 42, 52) is provided on the liquid side of the corresponding indoor heat exchanger (31, 41, 51).
  • Each of the indoor units (30, 40, 50) has pressure sensors (P1, P2, P3) for detecting refrigerant pressure on the gas side of the first to third indoor heat exchangers (31, 41, 51). Is provided.
  • Each BS unit (60, 70, 80) includes a first branch pipe (61, 71, 81) and a second branch pipe (62, 72, 82) branched from each indoor unit (30, 40, 50). Are connected to the gas side of the indoor heat exchanger (31, 41, 51).
  • Each of the first branch pipes (61, 71, 81) and each of the second branch pipes (62, 72, 82) includes solenoid valves (SV-1, SV-2, SV-3,. ) Are provided one by one.
  • the first branch pipe (61, 71, 81) is connected to the high-pressure gas pipe (12), and the second branch pipe (62, 72, 82) is connected to the low-pressure gas pipe (13).
  • Each BS unit (60, 70, 80) opens and closes the solenoid valve (SV1, SV-2, SV-3, ...) to open each solenoid valve (SV1, SV-2, SV-3, ).
  • the refrigerant flow path is switched so that the gas side of the indoor heat exchanger (31, 41, 51) corresponding to) is connected to either the suction side or the discharge side of the compressor (21).
  • the air conditioner (1) includes a controller for controlling the above-described three-way valves (24, 25), solenoid valves (SV-1, SV-2, SV-3,...), A compressor (21), etc. 16).
  • the controller (16) is provided with a leak detection unit (17) and a control unit (18) while receiving detection signals of the pressure sensors (P1, P2, P3).
  • the leakage detector (17) determines that the refrigerant has leaked into the room and detects refrigerant leakage if the amount of decrease per unit time of the detected value of the pressure sensor (P1, P2, P3) is greater than or equal to a predetermined value. To do.
  • the control unit (18) supplies the refrigerant to the refrigerant circuit (10) so that the refrigerant in the indoor circuit (3a, 4a, 5a) has a low pressure. Circulate.
  • control unit (18) circulates the refrigerant so as to perform a refrigeration cycle in which the outdoor heat exchanger (22) serves as a condenser (radiator) and all the indoor heat exchangers (31, 41, 51) serve as an evaporator. (Emergency operation).
  • This air conditioner (1) sets each three-way valve (24,25) and opens / closes the solenoid valve (SV-1, SV-2, SV-3, ...) of each BS unit (60,70,80) Depending on the state, multiple types of operation are possible. Below, typical operation is illustrated and demonstrated among these driving
  • the all heating operation is for heating each room by all the indoor units (30, 40, 50). As shown in FIG. 7, in this all heating operation, each three-way valve (24, 25) is set in a state in which the first port and the second port are communicated with each other.
  • Each BS unit (60, 70, 80) has the first solenoid valve (SV-1), the third solenoid valve (SV-3), and the fifth solenoid valve (SV-5) open, 2 solenoid valve (SV-2), 4th solenoid valve (SV-4), and 6th solenoid valve (SV-6) are closed.
  • the electromagnetic valve in the closed state is painted in black
  • the electromagnetic valve in the opened state is painted in white.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (22) is an evaporator and each indoor heat exchanger (31, 41, 51) is a condenser.
  • dots are attached to the heat exchanger that is a condenser, and the heat exchanger that is an evaporator is illustrated in white.
  • the refrigerant discharged from the compressor (21) passes through the second three-way valve (25), then flows through the high-pressure gas pipe (12), and passes through the first BS unit (60, 70, 80). Divide into branch pipes (61, 71, 81).
  • the refrigerant that has passed through each BS unit (60, 70, 80) flows to the corresponding indoor unit (30, 40, 50).
  • the refrigerant flows through the first indoor heat exchanger (31), the refrigerant radiates heat to the indoor air and condenses in the first indoor heat exchanger (31). .
  • the room corresponding to the first indoor unit (30) is heated.
  • the refrigerant condensed in the first indoor heat exchanger (31) passes through the first indoor expansion valve (32).
  • the opening degree of the first indoor expansion valve (32) is adjusted according to the degree of supercooling of the refrigerant flowing out from the first indoor heat exchanger (31).
  • the refrigerant flows similarly to the first indoor unit (30), and the corresponding indoor heating is performed.
  • each indoor unit (30, 40, 50) joins in the liquid pipe (11).
  • the refrigerant passes through the outdoor expansion valve (23)
  • the refrigerant is depressurized to a low pressure and flows through the outdoor heat exchanger (22).
  • the outdoor heat exchanger (22) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (22) passes through the first three-way valve (24), and then is sucked into the compressor (21) and compressed again.
  • the all-cooling operation is to cool each room by all the indoor units (30, 40, 50). As shown in FIG. 8, in this all cooling operation, each three-way valve (24, 25) is set in a state in which the first port and the second port are communicated with each other. In each BS unit (60, 70, 80), the second solenoid valve (SV-2), the fourth solenoid valve (SV-4), and the sixth solenoid valve (SV-6) are opened, 1 solenoid valve (SV-1), 3rd solenoid valve (SV-3), and 5th solenoid valve (SV-5) will be in a closed state.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (22) is a condenser and each indoor heat exchanger (31, 41, 51) is an evaporator.
  • the refrigerant discharged from the compressor (21) flows through the outdoor heat exchanger (22) after passing through the first three-way valve (24). That is, all the high-pressure gas refrigerant discharged from the compressor (21) does not flow to the high-pressure gas pipe (12) but flows only to the outdoor heat exchanger (22).
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (22) passes through the outdoor expansion valve (23) set to the fully open state, flows through the liquid pipe (11), and is divided into each indoor unit (30, 40, 50). To do.
  • the refrigerant passes through the first indoor expansion valve (32), the refrigerant is decompressed to a low pressure and flows through the first indoor heat exchanger (31).
  • the refrigerant absorbs heat from the room air and evaporates.
  • the indoor cooling corresponding to the first indoor unit (30) is performed.
  • the opening degree of the first indoor expansion valve (32) is adjusted according to the degree of superheat of the refrigerant flowing out from the first indoor heat exchanger (31).
  • the refrigerant flows similarly to the first indoor unit (30), and the corresponding indoor cooling is performed.
  • each indoor unit (30, 40, 50) flows through the second branch pipe (62, 72, 82) of each BS unit (60, 70, 80) and passes through the low pressure gas pipe (13). After joining, it is sucked into the compressor (21) and compressed again.
  • the simultaneous heating / cooling operation is a coexistence operation in which indoor heating is performed in some indoor units while indoor cooling is performed in other indoor units.
  • the outdoor heat exchanger (22) serves as an evaporator or a condenser according to the operation conditions.
  • the indoor heat exchanger in the room that requires heating is a condenser
  • the indoor heat exchanger in the room that is in cooling is an evaporator.
  • the outdoor heat exchanger (22) is a condenser
  • at least one of the indoor heat exchangers (31, 41, 51) is a condenser
  • the rest is an evaporator.
  • the first indoor unit (30) and the second indoor unit (40) heat the room, while the third indoor unit (50) cools the room.
  • the three-way valves (24, 25) are set to communicate with the first port and the second port, respectively.
  • the first solenoid valve (SV-1), the third solenoid valve (SV-3), and the sixth solenoid valve (SV-6) are opened, 2 solenoid valve (SV-2), 4th solenoid valve (SV-4), and 5th solenoid valve (SV-5) will be in a closed state.
  • the outdoor heat exchanger (22), the first indoor heat exchanger (31), and the second indoor heat exchanger (41) are used as condensers, while the third indoor heat exchange is performed.
  • a refrigeration cycle is performed using the vessel (51) as an evaporator. Specifically, the refrigerant discharged from the compressor (21) is divided into the first three-way valve (24) side and the second three-way valve (25) side. The refrigerant that has passed through the first three-way valve (24) is condensed in the outdoor heat exchanger (22), then passes through the outdoor expansion valve (23) adjusted to a predetermined opening degree, and flows through the liquid pipe (11).
  • the refrigerant that has passed through the second three-way valve (25) flows through the high-pressure gas pipe (12) and is divided into the first BS unit (60) side and the second BS unit (70) side.
  • the refrigerant that has flowed out of the first BS unit (60) flows through the first indoor heat exchanger (31).
  • the refrigerant dissipates heat to the indoor air and condenses.
  • the room corresponding to the first indoor unit (30) is heated.
  • the refrigerant used for indoor heating in the first indoor unit (30) flows out into the liquid pipe (11).
  • the refrigerant that has flowed out of the second BS unit (70) is used for room heating in the second indoor unit (40), and then flows out into the liquid pipe (11).
  • the refrigerant merged in the liquid pipe (11) flows into the third indoor unit (50).
  • the refrigerant is decompressed to a low pressure when passing through the third indoor expansion valve (52), and then flows through the third indoor heat exchanger (51).
  • the third indoor heat exchanger (51) the refrigerant absorbs heat from the room air and evaporates.
  • room cooling corresponding to the third indoor unit (50) is performed.
  • the refrigerant used for cooling the room in the third indoor unit (50) passes through the third BS unit (80), then flows through the low-pressure gas pipe (13), and is sucked into the compressor (21). It is compressed again.
  • the first indoor unit (30) heats the room while the second indoor unit (40) and the third indoor unit (50) cool the room.
  • the three-way valves (24, 25) are set to communicate with the first port and the second port, respectively.
  • the first solenoid valve (SV-1), the fourth solenoid valve (SV-4), and the sixth solenoid valve (SV-6) are opened, 2 solenoid valve (SV-2), 3rd solenoid valve (SV-3), and 5th solenoid valve (SV-5) will be in a closed state.
  • the outdoor heat exchanger (22) and the first indoor heat exchanger (31) serve as a condenser, while the second indoor heat exchanger (41) and the third indoor heat exchange.
  • a refrigeration cycle is performed using the evaporator (51) as an evaporator.
  • the refrigerant discharged from the compressor (21) is divided into the first three-way valve (24) side and the second three-way valve (25) side.
  • the refrigerant that has passed through the first three-way valve (24) condenses in the outdoor heat exchanger (22), then passes through the outdoor expansion valve (23) controlled to a predetermined opening and flows into the liquid pipe (11). .
  • the refrigerant that has passed through the second three-way valve (25) flows to the first indoor unit (30) via the high-pressure gas pipe (12) and the first BS unit (60).
  • the refrigerant is condensed in the first indoor heat exchanger (31), and the room is heated.
  • the refrigerant used for indoor heating in the first indoor unit (30) flows out into the liquid pipe (11).
  • the refrigerant merged in the liquid pipe (11) is divided into the second indoor unit (40) and the third indoor unit (50).
  • the refrigerant decompressed by the second indoor expansion valve (42) evaporates in the second indoor heat exchanger (41), and the room is cooled.
  • the refrigerant decompressed by the third indoor expansion valve (52) evaporates in the third indoor heat exchanger (51), and the room is cooled.
  • the refrigerant used for indoor cooling in each indoor unit (40, 50) passes through the second BS unit (70) and the third BS unit (80), respectively, and merges through the low-pressure gas pipe (13). Later, it is sucked into the compressor (21) and compressed again. 7 to 10, the outdoor fan (2F) and the indoor fans (3F, 4F, 5F) are not shown.
  • the detection value of the pressure sensor (P1, P2, P3) rapidly decreases. Then, the leakage detection unit (17) detects refrigerant leakage.
  • the indoor circuit (3a, 4a, 5a) is at a high pressure, so that, for example, the pressure difference between the first indoor circuit (3a) and the room is large. Therefore, the refrigerant leak rate increases, and the natural ventilation in the room does not sufficiently discharge the refrigerant outside the room, so that the refrigerant concentration in the room exceeds the limit value.
  • an emergency operation is performed when the leak detection unit (17) detects.
  • the refrigerant circulation direction in the refrigerant circuit (10) is all the same as in the cooling operation.
  • each indoor expansion valve (32, 42, 52) is set to a fully opened state, and the opening degree of the outdoor expansion valve (23) is reduced. That is, in an emergency operation, the refrigerant is decompressed by the outdoor expansion valve (23), and the entire indoor circuit (3a, 4a, 5a) is at a low pressure. Thereby, the pressure difference between the refrigerant in the indoor circuit (3a, 4a, 5a) and the room is reduced, and the leakage rate of the refrigerant from the indoor circuit (3a, 4a, 5a) is reduced.
  • the opening of the outdoor expansion valve (23) is controlled so that the pressure in the indoor circuit (3a, 4a, 5a) is as low as possible within a range not lower than the atmospheric pressure. Further, in the emergency operation, the air volume of the indoor fans (3F, 4F, 5F) is lowered by the control unit (18).
  • the refrigerant leakage speed (kg / h) also increases. Further, when the saturation temperature of the refrigerant is lowered, that is, when the refrigerant pressure is lowered, the refrigerant leakage rate (kg / h) is also reduced.
  • the pressure in the indoor circuit (3a, 4a, 5a) can be reduced to reduce the refrigerant leakage rate (kg / h). It is possible to avoid a state exceeding.
  • the refrigerant in the indoor circuit (3a, 4a, 5a) is subjected to a refrigeration cycle in which the refrigerant in the indoor circuit (3a, 4a, 5a) is low when the refrigerant leaks in the room.
  • the difference between the refrigerant pressures 4a and 5a) and the indoor pressure can be made as small as possible. Therefore, the leakage rate of the refrigerant can be reduced.
  • the refrigerant can be sufficiently discharged by natural ventilation in the room, and as a result, an increase in the refrigerant concentration in the room can be suppressed. Therefore, the indoor refrigerant concentration does not exceed a specified limit value.
  • refrigerant leakage can be suppressed at a low cost.
  • the refrigerant pressure in the indoor circuit (3a, 4a, 5a) is set to a low pressure equal to or higher than the atmospheric pressure, so the refrigerant pressure in the indoor circuit (3a, 4a, 5a) is greater than the indoor pressure. It will not be lowered. As a result, it is possible to reliably prevent the indoor air from entering the indoor circuit (3a, 4a, 5a) from the leakage point of the refrigerant.
  • the refrigerant in the indoor circuit (3a, 4a, 5a) is reduced to a low pressure by restricting the outdoor expansion valve (23) instead of the indoor expansion valve (32, 42, 52). Therefore, the entire indoor circuit (3a, 4a, 5a) can be surely at a low pressure, so that no matter where the refrigerant leaks from the indoor circuit (3a, 4a, 5a), the refrigerant leaks. Can be reliably suppressed.
  • the air volume of the indoor fans (3F, 4F, 5F) is reduced during emergency operation, so that the degree of superheat of the refrigerant sucked in the compressor (21) can be reduced, and as a result, compression The temperature of the refrigerant discharged from the machine (21) can be lowered.
  • the difference between the refrigerant pressure in the indoor circuit (3a, 4a, 5a) and the indoor pressure is desired to be as small as possible to reduce the refrigerant leakage rate, so the indoor circuit (3a, 4a, 5a) The refrigerant pressure tends to be lower than that during normal cooling operation. If so, the degree of superheat of the refrigerant sucked by the compressor (21) and the temperature of the discharged refrigerant may become abnormally high, but according to this embodiment, this can be prevented.
  • R32, R1234yf, R1234ze and R744 are refrigerants that are friendly to the global environment because of their relatively low global warming potential (GWP). Moreover, since R32, R1234yf, and R1234ze are flammable refrigerants (slightly flammable refrigerants), the risk of combustion accidents due to refrigerant leakage increases. R744 is not flammable (it is a nonflammable refrigerant), but there is a risk of a suffocation accident due to refrigerant leakage. However, according to the present embodiment, it is possible to reliably prevent combustion accidents and suffocation accidents due to refrigerant leakage even if a refrigerant that is friendly to the global environment is used.
  • the leakage detection unit (17) of the present embodiment is configured to detect refrigerant leakage in the indoor circuit (3a, 4a, 5a).
  • the outdoor expansion valve (23) is throttled, so that not only the indoor circuits (3a, 4a, 5a) but also the connecting pipes such as the liquid pipe (11) have a low pressure. .
  • the leak detector (17) is configured to detect not only the indoor circuit (3a, 4a, 5a) but also the refrigerant leak in the liquid pipe (11), the refrigerant in the connecting pipe such as the liquid pipe (11) Leakage can also be suppressed.
  • the air conditioner (1) of the present embodiment is replaced with the liquid crystal (11), the high pressure gas pipe (12), and the low pressure gas pipe (13) in the third embodiment. It consists of two connecting pipes (90,91).
  • the outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (22), and a four-way switching valve (92).
  • the four-way switching valve (92) is connected to the discharge side and the suction side of the compressor (21), and to one end of the outdoor heat exchanger (22) and the first main pipe (93).
  • a second main pipe (94) is connected to the other end of the outdoor heat exchanger (22).
  • the first main pipe (93) is connected to the first communication pipe (90) and also has a check valve (CV) that allows refrigerant flow from the first connection pipe (90) to the first main pipe (93). ) Is provided.
  • the second main pipe (94) is connected to the second communication pipe (91) and also has a check valve (CV) that allows the refrigerant flow from the second main pipe (94) to the second connection pipe (91). ) Is provided.
  • the first connection pipe (90) is connected to the second main pipe (94) via a first branch pipe (95), and the first branch pipe (95) is connected to the first connection pipe (90).
  • the second communication pipe (91) is connected to the first main pipe (93) via the second branch pipe (96), and the second branch pipe (96) is connected to the first main pipe (93).
  • Is provided with a check valve (CV) that allows the refrigerant to flow to the second connecting pipe (91).
  • the switching unit (97) is connected to the first connecting pipe (90) and the second connecting pipe (91), and three indoor units (30, 40, 50) are connected to the switching unit (97). ing.
  • the switching unit (97) includes an expansion valve and the like, and switches the refrigerant flow so that the three indoor units (30, 40, 50) can perform a cooling operation and a heating operation, respectively.
  • the air conditioner (1) includes a controller (16) as in the third embodiment.
  • all the refrigerant discharged from the compressor (21) passes through the first main pipe (93), the second branch pipe (96), the second connection pipe (91), and the switching unit (97) to form the indoor unit. Flows and condenses. Thereafter, the refrigerant flows through the switching unit (97), the first connection pipe (90), the first branch pipe (95), and the second main pipe (94), evaporates in the outdoor heat exchanger (22), and is compressed. Return to (21). The refrigerant repeats this circulation.
  • the first indoor unit (30) and the second indoor unit (40) heat the room, while the third indoor unit (50) cools the room.
  • all the refrigerant discharged from the compressor (21) flows from the first main pipe (93) through the second branch pipe (96) and the second connection pipe (91), and the switching unit (97). And flow through the first indoor heat exchanger (31) and the second indoor heat exchanger (41) for condensation. Thereafter, part of the condensed liquid refrigerant evaporates in the third indoor heat exchanger (51) through the switching unit (97), while the remaining liquid refrigerant is decompressed by the expansion valve in the switching unit (97).
  • the refrigerant becomes a two-phase refrigerant and merges with the refrigerant evaporated in the third indoor heat exchanger (51). Thereafter, the merged low-pressure refrigerant flows from the switching unit (97) through the first connection pipe (90), the first branch pipe (95), and the second main pipe (94), and is evaporated in the outdoor heat exchanger (22). Return to the compressor (21). The refrigerant repeats this circulation.
  • the first indoor unit (30) heats the room while the second indoor unit (40) and the third indoor unit (50) cool the room.
  • all the refrigerant discharged from the compressor (21) flows to the outdoor heat exchanger (22), and a part of it is condensed to become a high-pressure two-phase refrigerant.
  • the high-pressure two-phase refrigerant flows through the second main pipe (94) and the second connection pipe (91), and is divided into a high-pressure gas refrigerant and a high-pressure liquid refrigerant in the switching unit (97) through the switching unit (97).
  • the high-pressure gas refrigerant flows into the first indoor heat exchanger (31) and condenses.
  • the divided high-pressure liquid refrigerant merges with the liquid refrigerant condensed in the first indoor heat exchanger (31), and then enters the second indoor heat exchanger (41) and the third indoor heat exchanger (51). It flows and evaporates.
  • the evaporated low-pressure refrigerant returns to the compressor (21) through the switching unit (97), the first communication pipe (90), and the first main pipe (93). The refrigerant repeats this circulation.
  • an emergency operation is performed when the leakage detector (17) detects refrigerant leakage as in the third embodiment.
  • This emergency operation is all cooling operation, and although not shown, the expansion valve provided in the switching unit (97) is throttled to make the entire indoor circuit (3a, 4a, 5a) low. Although not shown, the air volume of the indoor fan is reduced. Other operations are the same as those of the third embodiment.
  • the refrigerant in the indoor circuit (3a, 4a, 5a) is subjected to a refrigeration cycle in which the refrigerant in the indoor circuit (3a, 4a, 5a) is low when the refrigerant leaks in the room.
  • the difference between the refrigerant pressures 4a and 5a) and the indoor pressure can be made as small as possible. Therefore, the leakage rate of the refrigerant can be reduced.
  • the refrigerant can be sufficiently discharged by natural ventilation in the room, and as a result, an increase in the refrigerant concentration in the room can be suppressed. Therefore, the indoor refrigerant concentration does not exceed a specified limit value.
  • refrigerant leakage can be suppressed at a low cost.
  • Other effects are the same as those of the third embodiment.
  • the operation of injecting refrigerant into the suction pipe (101b) during emergency handling is performed. It does not have to be done.
  • the outdoor expansion valve (124) is throttled so that the entire indoor circuit (112a) is at a low pressure.
  • the indoor expansion valve (126) of (112a) may be set to a fully open state, and only the indoor expansion valve (126) of the indoor circuit (112a) where the refrigerant has leaked may be throttled.
  • the portion from the indoor expansion valve (126) to the gas side shut-off valve (118) has a low pressure, so that the refrigerant leakage rate can be reliably reduced.
  • the injection pipe (131) is connected to the suction pipe (101b).
  • the injection pipe (131) may be connected to the intermediate pressure chamber of the compressor (121). Even in this case, the temperature of the refrigerant discharged from the compressor (121) can be lowered.
  • Embodiments 3 and 4 are three, this is not a limitation.
  • the present invention is useful for a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle by circulating refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和装置(110)は、室外回路(111a)と、互いに並列に接続された複数の室内回路(112a)とが接続された冷媒回路(120)を有する。空気調和装置(110)は、室内回路(112a)から冷媒が漏洩したことを検知する漏洩検知部(141)と、漏洩検知部(141)が冷媒漏洩を検知すると、冷媒回路(120)において室内回路(112a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる制御部(142)とを有する。この制御部(142)を空気調和装置(110)に設けると、低コストで室内回路の冷媒漏洩を抑制できる。

Description

冷凍装置
  本発明は、冷凍サイクルを行う冷媒回路を備えた冷凍装置に関し、特に冷媒回路における冷媒の漏れ対策に係るものである。
  空調機等において、冷媒回路から室内に冷媒が漏洩して室内の冷媒濃度が高くなると、冷媒の有する急性毒性や可燃性から、中毒事故、燃焼事故、窒息事故などが発生するおそれがある。特に、最近注目されている地球温暖化係数(GWP)の低い冷媒の場合、地球温暖化係数の高い冷媒に比べて可燃性が高いため、上述した事故発生のおそれが高くなる。こうした事故を防止するために、IEC60335-2-40(家庭用電気式のヒートポンプ、空調機、除湿器の安全規格)やISO5149改定案(冷凍システムおよびヒートポンプに対する環境および安全の要求規格)の規格では、冷媒回路における冷媒充填量の許容値が定められている。この許容値は、冷媒回路に充填された冷媒の全量が漏洩した場合でも、室内の冷媒濃度が限界値を超えない値に定められている。そして、冷媒回路に充填された冷媒の全量が漏洩した際に室内の冷媒濃度が限界値を超える場合には、室内に冷媒漏洩検知器を設置して検知時に警報を発したり、室内に機械換気装置を設置するなどの安全対策を講じることが要求されている。
  ところが、上述した安全対策を適切に選択し且つ講じるには、設計者や作業者に高い技術が必要とされる。また、上述した安全対策を講じようとすれば、現地工事の工数やコストがかかってしまう。こういったことから、上述した安全対策が必ずしも講じられるとは限らない。
  そこで、空調機自体に冷媒漏洩の抑制手段を設けることが考えられ、この種の空調機が例えば特許文献1に開示されている。この特許文献1の空調機は、室外機および室内機を備えている。室外機において、室内機と接続するガス管と液管の両方に制御弁が設けられている。この空調機では、室内機から室内に冷媒が漏洩したことが検知されると、液管に設けた制御弁が閉じられて、冷房運転(冷媒回収運転)が行われる。そうすると、室外機から室内機へ向かう冷媒流れが液管の制御弁によって止められる一方、室内機の冷媒は室外機へ流れて室外熱交換器や冷媒量調整器に貯留される。そして、冷媒回収運転が所定時間行われると、ガス管に設けた制御弁が閉じられて運転が終了する。これにより、室内機の冷媒が室外機に回収されて、室内機から室内への冷媒の漏洩が抑制される。
  また、冷凍装置には、特許文献2に示すように、室内の冷房要求と暖房要求とを同時に満たす、いわゆる冷暖フリーの空気調和装置が知られている。この空気調和装置は、複数の利用側ユニットがそれぞれ異なる室内に配置され、一部の利用側ユニットで冷房を行う一方、残りの他の利用側ユニットで暖房を行う運転が可能に構成されている。
特開平10-9692号公報 特開2008-138954号公報
  ところが、上述した特許文献1に開示されている冷媒漏洩の抑制手段では、ガス管および液管に設けた制御弁(遮断弁)が高価であるため、コスト高になってしまうという問題があった。また、冷媒漏洩が発生する頻度は極めて少なく、その冷媒漏洩を抑制するためだけに高価な制御弁を設けることは経済的ではない。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、低コストで利用側回路の冷媒漏洩を抑制することにある。
  本発明は、上述した目的を達成するために、利用側回路(3a~5a, 112a)から冷媒が漏洩すると、利用側回路(3a~5a,112a)の圧力(冷媒圧力)と利用空間の圧力との圧力差をできるだけ小さくして冷媒の漏洩速度を低下させるようにした。
  具体的に、第1の発明は、圧縮機(121)、熱源側熱交換器(123)および膨張弁(124)を有する熱源側回路(111a)と、利用側熱交換器(125)を有する利用側回路(112a)とが接続され、冷媒が可逆に循環して冷凍サイクルを行う一方、常に上記利用側回路(112a)のガス側端と上記圧縮機(121)とが連通している冷媒回路(120)を備えた冷凍装置を対象としている。そして、本発明は、上記利用側回路(112a)から冷媒が漏洩したことを検知する漏洩検知部(141)を備えると共に、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記冷媒回路(120)において上記利用側回路(112a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる制御部(142)を備えているものである。
  上記第1の発明では、例えば、冷媒回路(120)において利用側回路(112a)の冷媒が高圧となる(利用側熱交換器(125)が放熱器として機能する)冷凍サイクルが行われているときに、利用側回路(112a)の配管から利用空間へ冷媒が漏洩すると、漏洩検知部(141)が冷媒漏洩を検知する。そうすると、冷媒回路(120)において、利用側回路(112a)の冷媒が低圧となる冷凍サイクルを行うように冷媒が循環される。これにより、利用側回路(112a)の冷媒と利用空間との圧力差が小さくなり、利用側回路(112a)からの冷媒の漏洩速度が低下する。これによって、冷媒の漏洩量は利用空間における自然換気によって利用空間外へ充分に排出し得る量となり、利用空間における冷媒濃度の上昇が抑えられる。
  第2の発明は、上記第1の発明において、上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記冷媒回路(120)において上記利用側回路(112a)の冷媒が大気圧以上の低圧となる冷凍サイクルを行うように冷媒を循環させるものである。
  上記第2の発明では、利用側回路(112a)の冷媒圧力が大気圧以上に制御されるため、利用側回路(112a)の冷媒圧力が利用空間の圧力よりも高くなる。そのため、利用側回路(112a)において、冷媒の漏洩箇所(例えば、配管の腐食によって生じた穴)から利用側回路(112a)へ利用空間の空気が侵入することはない。
  第3の発明は、上記第1または第2の発明において、上記冷媒回路(120)では、複数の上記利用側回路(112a)が互いに並列に接続されている。上記熱源側回路(111a)の上記膨張弁(124)は、1つであり、上記各利用側回路(112a)の液側端と繋がっている。上記制御部(142)は、上記熱源側回路(111a)の上記膨張弁(124)を絞ることによって、上記各利用側回路(112a)の冷媒を低圧にする。
  上記第3の発明では、冷媒回路(120)において熱源側回路(111a)の膨張弁(124)から圧縮機(121)の吸入側までが低圧となる。そのため、熱源側回路(111a)と利用側回路(112a)とを繋ぐ連絡配管を含めた利用側回路(112a)の全体が低圧となる。
  第4の発明は、上記第1または第2の発明において、上記冷媒回路(120)では、上記利用側回路(112a)が複数設けられている。上記熱源側回路(111a)は、その液側端部が分岐して上記各利用側回路(112a)の液側端と接続され、そのガス側端部が分岐して上記各利用側回路(112a)のガス側端と接続され、上記熱源側回路(111a)の液側端部を構成する複数の配管(1f)に、上記膨張弁(124)が1つずつ設けられている。上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知した上記利用側回路(112a)に対応する上記膨張弁(124)を絞ることによって、上記漏洩検知部(141)が冷媒漏洩を検知した上記利用側回路(112a)の冷媒を低圧にする。
  上記第4の発明では、複数の利用側回路(112a)のうち冷媒漏洩が発生した利用側回路(112a)の冷媒が低圧となる。
  第5の発明は、上記第3または第4の発明において、上記冷媒回路(120)は、冷媒の減圧機構(132)を有し、循環する冷媒の一部を上記圧縮機(121)の吸入側または上記圧縮機(121)の中間圧室へ導くインジェクション管(131)を備えている。上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記インジェクション管(131)の冷媒流量を増加させる。
  上記第5の発明では、インジェクション管(131)の冷媒流量が増加するため、圧縮機(121)の吐出冷媒の温度が低下する。
  第6の発明は、上記第3または第4の発明において、冷媒と熱交換する空気を上記利用側熱交換器(125)に供給する利用ファン(116)を備えている。上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記利用ファン(116)の風量を下げる。
  上記第6の発明では、利用ファン(116)の風量が下がるため、圧縮機(121)の吸入冷媒の過熱度が低下する。これにより、圧縮機(121)の吐出冷媒の温度が低下する。
  第7の発明は、圧縮機(21)および熱源側熱交換器(22)を有する熱源側回路(2a)と、利用側空間を空気調和する利用側熱交換器(31,41,51)を有する複数の利用側回路(3a,4a,5a)とを備え、上記各利用側熱交換器(31,41,51)が個別に冷却運転と加熱運転とを行うように構成されると共に、上記全利用側熱交換器(31,41,51)が冷却運転を行う際、上記圧縮機(21)の吐出された高圧ガス冷媒が全て熱源側熱交換器(22)に流れるように構成された冷媒回路(10)を備えた冷凍装置である。そして、第7の発明は、上記冷媒回路(10)から利用側空間に冷媒が漏洩したことを検知する漏洩検知部(17)と、該漏洩検知部(17)が冷媒漏洩を検知すると、上記冷媒回路(10)において、上記利用側回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる制御部(18)とを備えていることを特徴としている。
  上記第7の発明では、例えば、冷媒回路(10)において利用側回路(3a,4a,5a)の冷媒が高圧となる(利用側熱交換器(31,41,51)が放熱器として機能する)冷凍サイクルが行われているときに、配管から利用空間へ冷媒が漏洩すると、漏洩検知部(17)が冷媒漏洩を検知する。そうすると、冷媒回路(10)において、利用側回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うように冷媒が循環される。これにより、利用側回路(3a,4a,5a)の冷媒と利用空間との圧力差が小さくなり、利用側回路(3a,4a,5a)からの冷媒の漏洩速度が低下する。これによって、冷媒の漏洩量は利用空間における自然換気によって利用空間外へ充分に排出し得る量となり、利用空間における冷媒濃度の上昇が抑えられる。
  第8の発明は、上記第7の発明において、上記制御部(18)は、上記漏洩検知部(17)が冷媒漏洩を検知すると、上記冷媒回路(10)において上記利用側回路(3a,4a,5a)の冷媒が大気圧以上の低圧となる冷凍サイクルを行うように冷媒を循環させることを特徴としている。
  上記第8の発明では、利用側回路(3a,4a,5a)の冷媒圧力が大気圧以上に制御されるため、利用側回路(3a,4a,5a)の冷媒圧力が利用空間の圧力よりも高くなる。そのため、利用側回路(3a,4a,5a)において、冷媒の漏洩箇所(例えば、配管の腐食によって生じた穴)から利用空間の空気が侵入することはない。
  第9の発明は、上記第7または第8の発明において、上記制御部(18)は、上記熱源側熱交換器(22)で冷媒を蒸発させるための膨張弁(23)を絞ることによって、上記各利用側回路(3a,4a,5a)の冷媒を低圧にすることを特徴としている。
  上記第9の発明では、冷媒回路(10)において熱源側回路(2a)の膨張弁(23)から圧縮機(21)の吸入側までが低圧となる。そのため、熱源側回路(2a)と各利用側回路(3a,4a,5a)とを繋ぐ液管やガス管を含めた利用側回路(3a,4a,5a)の全体が低圧となる。
  第10の発明は、上記第9の発明において、冷媒と熱交換する空気を上記利用側熱交換器(31,41,51)に供給する利用ファン(3F,4F,5F)を備え、上記制御部(18)は、上記漏洩検知部(17)が冷媒漏洩を検知すると、上記利用ファン(3F,4F,5F)の風量を下げることを特徴としている。
  上記第10の発明では、利用ファン(3F,4F,5F)の風量が下がるため、圧縮機(21)の吸入冷媒の過熱度が低下する。これにより、圧縮機(63)の吐出冷媒の温度が低下する。
  第11の発明は、上記第1乃至第10の何れか1の発明において、上記冷媒回路(120)は、冷媒として、R32、R1234yf、R1234ze若しくはR744の単一冷媒または該冷媒を含む混合冷媒が用いられている。
  上記第11の発明では、冷媒として、R32、R1234yf、R1234ze若しくはR744の単一冷媒または該冷媒を含む混合冷媒が用いられる。
  第1の発明によれば、利用側空間への冷媒漏洩が発生すると、利用側回路(112a)の冷媒が低圧となるため、利用側回路(112a)の冷媒圧力と利用空間の圧力との差をできるだけ小さくすることができる。また、第7の発明によれば、利用側空間への冷媒漏洩が発生すると、利用側回路(3a,4a,5a)の冷媒が低圧となるため、利用側回路(3a,4a,5a)の冷媒圧力と利用空間の圧力との差をできるだけ小さくすることができる。
 このように、第1及び第7の各発明によれば、冷媒漏洩が発生した際に利用側回路(3a~5a,112a)の冷媒圧力と利用空間の圧力との差を小さくできるため、冷媒の漏洩速度を低下させることができる。これによって、利用空間における自然換気によって充分に冷媒を排出することができ、その結果、利用空間における冷媒濃度の上昇を抑えることができる。よって、規定された冷媒濃度の限界値を超えることはない。また、冷媒流れを遮断するための弁を別途設けなくてもよいため、安価に冷媒漏洩を抑制することができる。
  また、第7発明によれば、加熱運転の利用側回路(3a,4a)と冷却運転の利用側回路(5a)とが共存している場合に冷媒漏洩が検知されると、利用側回路(3a,4a,5a)の冷媒を低圧とするので、冷却運転の利用側回路(5a)では冷却運転がそのまま継続される。この結果、冷却運転の利用側回路(5a)の快適性を確保しつつ冷媒漏洩を抑制することができる。
  第2の発明によれば、利用側回路(112a)の冷媒圧力が大気圧以上の低圧となるため、利用側回路(112a)の冷媒圧力が利用空間の圧力よりも低くならない。また、第8の発明によれば、利用側回路(3a,4a,5a)の冷媒圧力が大気圧以上の低圧となるため、利用側回路(3a,4a,5a)の冷媒圧力が利用空間の圧力よりも低くならない。従って、第2及び第8の各発明によれば、利用空間の空気が冷媒の漏洩箇所から利用側回路(3a~5a,112a)へ侵入するのを確実に防止することができる。
  第3および第4の発明によれば、熱源側回路(111a)の膨張弁(124)を絞ることによって利用側回路(112a)の冷媒を低圧にするため、確実に利用側回路(112a)の全体を低圧にすることができる。これにより、利用側回路(112a)の冷媒漏洩を確実に抑制することができる。
  第5の発明によれば、インジェクション管(131)の冷媒流量を増加させるため、圧縮機(121)の吐出冷媒の温度を低下させることができる。本発明では、利用側回路(112a)の冷媒圧力と利用空間の圧力との差をできるだけ小さくして冷媒の漏洩速度を低下させたいことから、熱源側回路(111a)の膨張弁(124)の開度は通常運転時よりも小さくなる傾向にある。そうすると、冷凍サイクルの高圧が上昇して圧縮機(121)の吐出冷媒の温度が異常に高くなるおそれがあるが、本発明によれば、それを防止することができる。
  第6の発明によれば、利用ファン(116)の風量を下げるため、圧縮機(121)の吸入冷媒の過熱度を低下させることができ、その結果、吐出冷媒の温度を低下させることができる。また、第10の発明によれば、利用ファン(3F,4F,5F)の風量を下げるため、圧縮機(21)の吸入冷媒の過熱度を低下させることができ、その結果、吐出冷媒の温度を低下させることができる。
  第6及び第10の各発明では、利用側回路(112a)の冷媒圧力と利用空間の圧力との差をできるだけ小さくして冷媒の漏洩速度を低下させたいことから、利用側回路(3a~5a,112a)の冷媒圧力は通常運転時よりも低くなる傾向にある。そうすると、圧縮機(21,121)の吸入冷媒の過熱度および吐出冷媒の温度が異常に高くなるおそれがあるが、第6及び第10の各発明によれば、それを防止することができる。
  第9の発明によれば、熱源側回路(2a)の膨張弁(23)を絞ることによって利用側回路(3a,4a,5a)の冷媒を低圧にするため、確実に利用側回路(3a,4a,5a)の全体を低圧にすることができる。これにより、利用側回路(3a,4a,5a)の冷媒漏洩を確実に抑制することができる。
  R32、R1234yf、R1234zeおよびR744は、地球温暖化係数(GWP)が比較的低いため、地球環境に優しい冷媒である。また、R32、R1234yfおよびR1234zeは、燃焼性を有する冷媒(微燃性冷媒)であるため、冷媒漏洩による燃焼事故のおそれが高くなる。また、R744は。燃焼性はない(不燃性冷媒である)が、冷媒漏洩による窒息事故のおそれがある。ところが、第11の発明によれば、地球環境に優しい冷媒を用いても、確実に冷媒漏洩による燃焼事故や窒息事故を防止することができる。なお、R32はジフルオロメタン(HFC-32)であり、R1234yfは2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)であり、R1234zeは1,3,3,3-テトラフルオロ-1-プロペン(HFO-1234ze)であり、R744は二酸化炭素である。
図1は、実施形態1に係る空気調和装置の概略構成を示す冷媒回路図である。 図2は、冷媒の特性を示す表である。 図3は、R32の液冷媒の漏洩速度を示すグラフである。 図4は、R32のガス冷媒の漏洩速度を示すグラフである。 図5は、実施形態2に係る空気調和装置の概略構成を示す冷媒回路図である。 実施形態3に係る空気調和装置の冷媒回路図である。 実施形態3の空気調和装置の全部暖房運転における冷媒の流れを示す冷媒回路図である。 実施形態3の空気調和装置の全部冷房運転における冷媒の流れを示す冷媒回路図である。 実施形態3の空気調和装置の第1共存運転における冷媒の流れを示す冷媒回路図である。 実施形態3の空気調和装置の第2共存運転における冷媒の流れを示す冷媒回路図である。 実施形態4に係る空気調和装置の冷媒回路図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
  本発明の実施形態1について説明する。本実施形態の空気調和装置(110)は、本発明に係る冷凍装置を構成している。
  図1に示すように、空気調和装置(110)は、室外ユニット(111)および複数(本実施形態では、2つ)の室内ユニット(112)を備えている。室外ユニット(111)と室内ユニット(112)は、液側連絡配管(113)およびガス側連絡配管(114)を介して互いに接続されている。空気調和装置(110)では、室外ユニット(111)に収容される室外回路(111a)と、室内ユニット(112)に収容される室内回路(112a)と、液側連絡配管(113)およびガス側連絡配管(114)とによって、冷媒回路(120)が形成されている。室外ユニット(111)は熱源ユニットを構成し、室内ユニット(112)は利用ユニットを構成する。また、室外回路(111a)は熱源側回路を構成し、室内回路(112a)は利用側回路を構成する。
  室外回路(111a)には、圧縮機(121)と、四方切換弁(122)と、室外熱交換器(123)と、室外膨張弁(124)と、過冷却熱交換器(127)とが設けられている。室外ユニット(111)には、室外熱交換器(123)へ室外空気を供給するための室外ファン(115)が設けられている。一方、室内回路(112a)には、室内熱交換器(125)と室内膨張弁(126)が設けられている。室内ユニット(112)には、室内熱交換器(125)へ室内空気を供給するための室内ファン(116)が設けられている。室外熱交換器(123)は熱源側熱交換器を構成し、室内熱交換器(125)は利用側熱交換器を構成する。また、室外ファン(115)は熱源ファンを構成し、室内ファン(116)は利用ファンを構成する。
  冷媒回路(120)は、閉回路であり、冷媒として、R32、R1234yf、R1234ze若しくはR744の単一冷媒または該冷媒を含む混合冷媒が用いられる。R32はジフルオロメタン(HFC-32)であり、R1234yfは2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)であり、R1234zeは1,3,3,3-テトラフルオロ-1-プロペン(HFO-1234ze)であり、R744は二酸化炭素である。冷媒回路(120)は、冷媒が可逆に循環して冷凍サイクルを行うように構成されている。
  圧縮機(121)は、その吐出側が吐出配管(101a)を介して四方切換弁(122)の第1のポートに、その吸入側が吸入配管(101b)を介して四方切換弁(122)の第2のポートに、それぞれ接続されている。四方切換弁(122)の第3のポートは、室外ガス配管(101c)を介して室外熱交換器(123)の一端に接続され、四方切換弁(122)の第4のポートは、室外ガス配管(101d)を介してガス側閉鎖弁(118)に接続されている。室外熱交換器(123)の他端は、室外液配管(101e)を介して液側閉鎖弁(117)に接続されている。室外液配管(101e)には、室外熱交換器(123)側から順に、室外膨張弁(124)および過冷却熱交換器(127)が設けられている。また、室外液配管(101e)と吸入配管(101b)の間には、減圧機構であるインジェクション弁(132)を有するインジェクション管(131)が接続されている。過冷却熱交換器(127)は、室外液配管(101e)に接続される高温流路(127a)と、インジェクション管(131)に接続される低温流路(127b)とを有する。過冷却熱交換器(127)では、インジェクション弁(132)で減圧された液冷媒が低温流路(127b)に流入し、高温流路(127a)の液冷媒と熱交換器して、蒸発する。一方、高温流路(127a)の液冷媒は過冷却される。
  室内回路(112a)は、一端(液側端)が液側閉鎖弁(117)に接続されて他端(ガス側端)がガス側閉鎖弁(118)に接続される室内配管(102a)を有する。室内配管(102a)には、液側閉鎖弁(117)側から順に、室内膨張弁(126)および室内熱交換器(125)が設けられている。
  液側連絡配管(113)は、一端が室外回路(111a)の液側閉鎖弁(117)に接続され、他端が2つに分岐して各室内回路(112a)の液側閉鎖弁(117)に接続されている。ガス側連絡配管(114)は、一端が室外回路(111a)のガス側閉鎖弁(118)に接続され、他端が2つに分岐して各室内回路(112a)のガス側閉鎖弁(118)に接続されている。つまり、2つの室内回路(112a)は互いに並列に接続されている。また、本実施形態の冷媒回路(120)は、常に各室内回路(112a)のガス側閉鎖弁(118)(ガス側端)と圧縮機(121)とが連通している。
  圧縮機(121)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(122)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に破線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に実線で示す状態)とに切り換わる。室外膨張弁(124)および室内膨張弁(126)は、いわゆる電子膨張弁である。
  室外熱交換器(123)は、室外空気を冷媒と熱交換させる。室外熱交換器(123)については後述する。一方、室内熱交換器(125)は、室内空気を冷媒と熱交換させる。室内熱交換器(125)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。
  空気調和装置(110)は、運転制御を行うコントローラ(140)を備えている。コントローラ(140)には、漏洩検知部(141)と制御部(142)が設けられている。また、各室内回路(112a)には、冷媒の圧力を検出する圧力センサ(135)が設けられている。本実施形態において、圧力センサ(135)は、室内配管(102a)における室内熱交換器(125)とガス側閉鎖弁(118)との間に設けられている。
  漏洩検知部(141)は、圧力センサ(135)の検出値について単位時間当たりの低下量が所定値以上であると、室内回路(112a)から冷媒が漏洩したと判定して、冷媒漏洩を検知する。制御部(142)は、漏洩検知部(141)が冷媒漏洩を検知すると、冷媒回路(120)において室内回路(112a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる。つまり、制御部(142)は室外熱交換器(123)が凝縮器(放熱器)となり室内熱交換器(125)が蒸発器となる冷凍サイクルを行うように冷媒を循環させる(非常時運転)。制御部(142)の詳細動作については後述する。
    -空気調和装置の運転動作-
  空気調和装置(110)は、通常運転である冷房運転および暖房運転と、非常時運転を切り換えて行う。
  冷房運転中の冷媒回路(120)では、四方切換弁(122)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、圧縮機(121)から、室外熱交換器(123)、室外膨張弁(124)、過冷却熱交換器(127)、各室内膨張弁(126)、各室内熱交換器(125)の順に冷媒が循環し、室外熱交換器(123)が凝縮器(放熱器)として機能し、室内熱交換器(125)が蒸発器として機能する。室外膨張弁(124)は、全開状態に設定される。各室内膨張弁(126)は、室内熱交換器(125)から流出した冷媒の過熱度(圧縮機(121)の吸入過熱度)が所定値となるように開度制御される。つまり、通常の冷房運転では、室内膨張弁(126)で冷媒が減圧されて、室内膨張弁(126)から圧縮機(121)の吸入側までが低圧となる。室外熱交換器(123)では、ガス冷媒が室外空気へ放熱して凝縮する。各室内熱交換器(125)では、液冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。また、室外熱交換器(123)で凝縮した液冷媒の一部は、インジェクション管(131)へ分流する。インジェクション管(131)へ分流した液冷媒は、インジェクション弁(132)で減圧された後、過冷却熱交換器(127)の低温流路(127b)に流入する。過冷却熱交換器(127)では、高温流路(127a)の液冷媒が低温流路(127b)の冷媒と熱交換して過冷却され、低温流路(127b)の冷媒が蒸発する。蒸発した冷媒は、吸入配管(101b)にインジェクションされる。
  暖房運転中の冷媒回路(120)では、四方切換弁(122)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、圧縮機(121)から、各室内熱交換器(125)、各室内膨張弁(126)、過冷却熱交換器(127)、室外膨張弁(124)、室外熱交換器(123)の順に冷媒が循環し、室内熱交換器(125)が凝縮器(放熱器)として機能し、室外熱交換器(123)が蒸発器として機能する。各室内膨張弁(126)は、全開状態または暖房能力に応じて開度制御される。室外膨張弁(124)は、室外熱交換器(123)から流出した冷媒の過熱度(圧縮機(121)の吸入過熱度)が所定値となるように開度制御される。つまり、暖房運転では、室外膨張弁(124)で冷媒が減圧されるため、室内回路(112a)の全体が高圧となる。室外熱交換器(123)では、液冷媒が室外空気から吸熱して蒸発する。各室内熱交換器(125)では、ガス冷媒が室内空気へ放熱して凝縮し、室内空気が加熱される。なお、インジェクション弁(132)は全閉状態に設定される。
    -非常時運転-
  非常時運転は、上述した通常運転時に漏洩検知部(141)が冷媒漏洩を検知すると、行われる。ここでは、暖房運転時に漏洩検知部(141)が冷媒漏洩を検知した場合について説明する。
  暖房運転時に、室内回路(112a)の配管に腐食によって穴が開き、冷媒が漏洩すると、圧力センサ(135)の検出値が急激に低下する。そうすると、漏洩検知部(141)が冷媒漏洩を検知する。暖房運転時は、室内回路(112a)が高圧となっているため、室内回路(112a)と室内との圧力差が大きい。そのため、冷媒の漏洩速度が大きくなり、室内における自然換気では冷媒が室外へ充分に排出されず、室内の冷媒濃度が限界値を超えてしまう。
  そこで、本実施形態では、漏洩検知部(141)が冷媒漏洩を検知すると非常時運転が行われる。非常時運転では、冷媒回路(120)における冷媒循環方向は冷房運転と同様である。つまり、四方切換弁(122)が第1状態に設定される。そして、各室内膨張弁(126)は全開状態に設定され、室外膨張弁(124)の開度が絞られる。つまり、非常時運転では、室外膨張弁(124)で冷媒が減圧されて、室内回路(112a)の全体が低圧となる。これにより、室内回路(112a)の冷媒と室内との圧力差が小さくなり、室内回路(112a)からの冷媒の漏洩速度が低下する。
  室外膨張弁(124)は、室内回路(112a)の圧力を大気圧よりも低くならない範囲でできるだけ低下させるように開度が制御される。さらに、非常時運転では、制御部(142)によって室内ファン(116)の風量が下げられる。さらに、非常時運転では、制御部(142)によってインジェクション弁(132)が全開状態に設定される。
  ここで、冷媒の漏洩速度(kg/h)について説明する。図3および図4が示すように、冷媒が漏洩する穴のサイズが大きくなれば、冷媒の漏洩速度(kg/h)も大きくなる。また、冷媒の飽和温度が低くなれば、即ち冷媒の圧力が低くなれば、冷媒の漏洩速度(kg/h)も小さくなる。また、室内回路(112a)では漏洩箇所によって液冷媒が漏洩する場合とガス冷媒が漏洩する場合がある。
  最も多い冷媒漏洩原因である腐食の場合には、穴径は大きくて0.2mmとされている。図4に示すように、穴径が0.2mmの穴からガス冷媒が漏洩する場合、図4に示す範囲で圧力が最も高い飽和温度63℃のときに漏洩速度は2.00(kg/h)となり、飽和温度-50℃のときに漏洩速度は0.026(kg/h)となる。
  一方、漏洩する冷媒が液冷媒の場合は、漏洩する冷媒がガス冷媒の場合に比べて、漏洩速度(kg/h)が大きくなる。図3に示すように、穴径が0.2mmの穴から液冷媒が漏洩する場合、飽和温度63℃のときに漏洩速度は5.3(kg/h)となり、飽和温度-50℃のときに漏洩速度は0.32(kg/h)となる。このように、圧力を低下させて飽和温度を下げれば、漏洩速度(kg/h)は大幅に低下する。
  ここで、ISO5149改定案で規定される室内の冷媒濃度の限界値RCL=0.061(kg/m3)を超えない必要換気量は、必要換気量>0.32(kg/h)/0.061(kg/m3)=5.2(m3/h)となる。1馬力程度の室内ユニットが設置される部屋の容積を2.7m×2.7m×2.3m=16.7m3とすると、必要換気回数は、5.2(m3/h)/16.7m3=0.32回/hに相当し、国内の住宅に義務付けられている最低換気数0.5回/h以下となる。この0.32回/h程度の換気は、自然換気でも充分になされるものと考えられる。また、冷媒は圧力が下がれば通常はガス状態となるので、漏洩速度(kg/h)はより低下することになる。
  以上のように、非常時運転を行えば、室内回路(112a)の圧力を低下させて冷媒の漏洩速度(kg/h)を低下させることができ、その結果、室内の冷媒濃度が限界値を超える状態を回避することができる。
  なお、冷房運転中に漏洩検知部(141)が冷媒漏洩を検知すると、制御部(142)は、四方切換弁(122)を第1状態に維持したまま、各室内膨張弁(126)を全開状態に設定し、室外膨張弁(124)の開度を絞って非常時運転に切り換える。
    -実施形態1の効果-
  本実施形態の空気調和装置(110)によれば、室内回路(112a)の冷媒漏洩が発生すると、室内回路(112a)の冷媒が低圧となる冷凍サイクルを行うようにしたため、室内回路(112a)の冷媒圧力と室内の圧力との差をできるだけ小さくすることができる。そのため、冷媒の漏洩速度を低下させることができる。これによって、室内における自然換気によって充分に冷媒を排出することができ、その結果、室内における冷媒濃度の上昇を抑えることができる。よって、室内の冷媒濃度が、規定の限界値を超えることはない。また、冷媒流れを遮断するための弁を別途設けなくてもよいため、安価に冷媒漏洩を抑制することができる。
  また、本実施形態によれば、室内回路(112a)の冷媒圧力が大気圧以上の低圧となるようにしたため、室内回路(112a)の冷媒圧力が室内の圧力よりも低くならない。これにより、室内の空気が冷媒の漏洩箇所から室内回路(112a)に侵入するのを確実に防止することができる。
  また、本実施形態によれば、非常時運転において、室内膨張弁(126)ではなく室外膨張弁(124)を絞ることによって室内回路(112a)の冷媒を低圧にするため、確実に室内回路(112a)の全体を低圧にすることができる、これにより、室内回路(112a)のどの箇所から冷媒が漏洩しても、その冷媒漏洩を確実に抑制することができる。
  また、本実施形態によれば、非常時運転において室内ファン(116)の風量を下げるため、圧縮機(121)の吸入冷媒の過熱度を低下させることができ、その結果、圧縮機(121)の吐出冷媒の温度を低下させることができる。本実施形態では、室内回路(112a)の冷媒圧力と室内の圧力との差をできるだけ小さくして冷媒の漏洩速度を低下させたいことから、室内回路(112a)の冷媒圧力は通常の冷房運転時よりも低くなる傾向にある。そうすると、圧縮機(121)の吸入冷媒の過熱度および吐出冷媒の温度が異常に高くなるおそれがあるが、本実施形態によれば、それを防止することができる。
  また、本実施形態によれば、非常時運転において、インジェクション弁(132)が全開状態になる。そのため、室外膨張弁(124)を通過した冷媒の一部が吸入配管(101b)にインジェクションされ、そのインジェクション量は通常の冷房運転時よりも多くなる。これにより、圧縮機(121)の吐出冷媒の温度を確実に低下させることができる。本実施形態では、室内回路(112a)の冷媒圧力と室内の圧力との差をできるだけ小さくして冷媒の漏洩速度を低下させたいことから、室外膨張弁(124)の開度は通常運転時よりも小さくなる傾向にある。そうすると、冷凍サイクルの高圧が上昇して圧縮機(121)の吐出冷媒の温度が異常に高くなるおそれがあるが、本実施形態によれば、それを防止することができる。
  また、図2に示すように、R32、R1234yf、R1234zeおよびR744(図示省略)は、地球温暖化係数(GWP)が比較的低いため、地球環境に優しい冷媒である。また、R32、R1234yfおよびR1234zeは、燃焼性を有する冷媒(微燃性冷媒)であるため、冷媒漏洩による燃焼事故のおそれが高くなる。また、R744は、燃焼性はない(不燃性冷媒である)が、冷媒漏洩による窒息事故のおそれがある。ところが、本実施形態によれば、地球環境に優しい冷媒を用いても、確実に冷媒漏洩による燃焼事故や窒息事故を防止することができる。
  また、本実施形態では、室内回路(112a)以外の部分から冷媒漏洩が発生しても、室内には冷媒が漏洩しないと仮定している。したがって、本実施形態の漏洩検知部(141)は室内回路(112a)の冷媒漏洩について検知するように構成されている。ところで、本実施形態の非常時運転では、室外膨張弁(124)を絞るため、各室内回路(112a)だけでなく、液側連絡配管(113)やガス側連絡配管(114)も同様に低圧となる。したがって、漏洩検知部(141)について室内回路(112a)だけでなく連絡配管(13,14)における冷媒漏洩も検知するように構成すれば、連絡配管(13,14)の冷媒漏洩も抑制することができる。
 《発明の実施形態2》
  本発明の実施形態2について説明する。本実施形態の空気調和装置(110)は、上記実施形態1において冷媒回路(120)の構成を変更したものである。ここでは、上記実施形態1と異なる点について説明する。
  本実施形態の室外回路(111a)では、四方切換弁(122)の第4のポートに接続される室外ガス配管(101d)の端部が2つに分岐して、それぞれがガス側閉鎖弁(118)に接続されている。また、室外回路(111a)では、室外液配管(101e)の端部(即ち、室外回路(11a)の液側端部)が2つの分岐配管(101f)によって構成される。各分岐配管(101f)は、液側閉鎖弁(117)に接続されている。また、各分岐配管(101f)には、室外膨張弁(124)が1つずつ設けられている。
  本実施形態では、液側連絡配管(113)およびガス側連絡配管(114)が2つずつ設けられている。各液側連絡配管(113)は、室外回路(111a)の液側閉鎖弁(117)と室内回路(112a)の液側閉鎖弁(117)とに接続されている。各ガス側連絡配管(114)は、室外回路(111a)のガス側閉鎖弁(118)と室内回路(112a)のガス側閉鎖弁(118)とに接続されている。つまり、本実施形態の冷媒回路(120)では、室外回路(111a)の液側端部が2つ(室内回路(112a)と同数)に分岐して各室内回路(112a)に接続されると共に、室外回路(111a)のガス側端部が2つ(室内回路(112a)と同数)に分岐して各室内回路(112a)に接続されている。そして、各室内回路(112a)に対応して室外膨張弁(124)が1つずつ設けられている。
  なお、本実施形態の室外回路(111a)には、過冷却熱交換器(127)およびインジェクション管(131)は設けられていない。また、各室内回路(112a)には、室内膨張弁(126)は設けられていない。
  本実施形態の空気調和装置(110)は、通常運転である冷房運転および暖房運転と、非常時運転を切り換えて行う。
  冷房運転中の冷媒回路(120)では、四方切換弁(122)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、圧縮機(121)から、室外熱交換器(123)、各室外膨張弁(124)、各室内熱交換器(125)の順に冷媒が循環し、室外熱交換器(123)が凝縮器(放熱器)として機能し、室内熱交換器(125)が蒸発器として機能する。各室外膨張弁(124)は、室内熱交換器(125)から流出した冷媒の過熱度(圧縮機(121)の吸入過熱度)が所定値となるように開度制御される。室外熱交換器(123)では、ガス冷媒が室外空気へ放熱して凝縮する。各室内熱交換器(125)では、液冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。
  暖房運転中の冷媒回路(120)では、四方切換弁(122)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、圧縮機(121)から、各室内熱交換器(125)、各室外膨張弁(124)、室外熱交換器(123)の順に冷媒が循環し、室内熱交換器(125)が凝縮器(放熱器)として機能し、室外熱交換器(123)が蒸発器として機能する。各室外膨張弁(124)は、室外熱交換器(123)から流出した冷媒の過熱度(圧縮機(121)の吸入過熱度)が所定値となるように開度制御される。室外熱交換器(123)では、液冷媒が室外空気から吸熱して蒸発する。各室内熱交換器(125)ではガ、ス冷媒が室内空気へ放熱して凝縮し、室内空気が加熱される。
  非常時運転は、上述した通常運転時に漏洩検知部(141)が冷媒漏洩を検知すると、行われる。ここでは、暖房運転時に漏洩検知部(141)が冷媒漏洩を検知した場合について説明する。
  暖房運転時に、室内回路(112a)から冷媒が漏洩すると、圧力センサ(135)の検出値が急激に低下する。そうすると、漏洩検知部(141)が冷媒漏洩を検知する。暖房運転時は、上記実施形態1と同様、室内回路(112a)が高圧となっているため、室内回路(112a)と室内との圧力差が大きい。そのため、冷媒の漏洩速度が大きくなり、室内における自然換気では冷媒が室外へ充分に排出されず、室内の冷媒濃度が限界値を超えてしまう。
  そこで、本実施形態では、漏洩検知部(141)が冷媒漏洩を検知すると非常時運転が行われる。非常時運転では、冷媒回路(120)における冷媒循環方向は冷房運転と同様である。つまり、四方切換弁(122)が第1状態に設定される。そして、冷媒が漏洩した室内回路(112a)に対応する室外膨張弁(124)は、開度が絞られる。また、冷媒が漏洩していない室内回路(112a)に対応する室外膨張弁(124)は、全開状態に設定される。つまり、本実施形態の非常時運転では、冷媒漏洩が発生した室内回路(112a)に対応する室外膨張弁(124)のみを絞って冷媒を減圧する。これにより、冷媒が漏洩した室内回路(112a)の全体が低圧となる。その結果、室内回路(112a)からの冷媒の漏洩速度が低下する。
  本実施形態の非常時運転においても、冷媒が漏洩した室内回路(112a)に対応する室外膨張弁(124)は、該室内回路(112a)の圧力を大気圧よりも低くならない範囲でできるだけ低下させるように開度が制御される。さらに、冷媒が漏洩した室内回路(112a)に対応する室内ファン(116)の風量が下げられる。
  以上のように、本実施形態においても、非常時運転によって室内回路(112a)の圧力を低下させて冷媒の漏洩速度(kg/h)を低下させることで、室内の冷媒濃度が限界値を超える状態を回避することができる。
  なお、冷房運転中に漏洩検知部(141)が冷媒漏洩を検知すると、制御部(142)は、四方切換弁(122)を第1状態に維持したまま非常時運転に切り換える。この非常時運転では、冷媒が漏洩した室内回路(112a)に対応する室外膨張弁(124)の開度は更に絞って該室内回路(112a)の圧力をより低下させ、冷媒が漏洩していない室内回路(112a)に対応する室外膨張弁(124)の開度は維持する。
  本実施形態の非常時運転では、冷媒が漏洩した室内回路(112a)に対応する室外膨張弁(124)のみを絞るので、全ての室外膨張弁(124)を絞る場合と比べて、冷凍サイクルの高圧が異常上昇するのを抑制することができる。その他の作用、効果については上記実施形態1と同様である。
 《発明の実施形態3》
  本実施形態の冷凍装置は、図6に示すように、複数の利用側空間である室内を個別に暖房または冷房の空気調和を行う空気調和装置(1)である。つまり、上記空気調和装置(1)は、一つの室内を加熱運転である暖房運転を行いながら他の室内を冷却運転である冷房運転を行うことが可能な、いわゆる冷暖フリーの空気調和装置である。
  上記空気調和装置(1)は、1台の室外ユニット(20)と、第1~第3の3台の室内ユニット(30,40,50)と、第1~第3のBSユニット(60,70,80)とが配管によって接続された冷媒回路(10)を備えている。BSユニット(60,70,80)は、切換ユニットである。また、冷媒回路(10)は、液管(11)と高圧ガス管(12)と低圧ガス管(13)とを備えている。この冷媒回路(10)では、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる。
  上記冷媒回路(10)は、冷媒として、R32、R1234yf、R1234ze若しくはR744の単一冷媒または該冷媒を含む混合冷媒が用いられる。上記R32はジフルオロメタン(HFC-32)であり、R1234yfは2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)であり、R1234zeは1,3,3,3-テトラフルオロ-1-プロペン(HFO-1234ze)であり、R744は二酸化炭素である。
    -室外ユニットの構成-
  上記室外ユニット(20)は、熱源側ユニットを構成し、圧縮機(21)と熱源側熱交換器である室外熱交換器(22)と室外膨張弁(23)と第1三方弁(24)と第2三方弁(25)を有する熱源側回路である室外回路(2a)を備えている。
  上記第1三方弁(24)および第2三方弁(25)は、第1から第3までのポートを有している。上記第1三方弁(24)は、第1ポートが圧縮機(21)の吐出側に繋がり、第2ポートが室外熱交換器(22)のガス側に繋がり、第3ポートが圧縮機(21)の吸入側に繋がっている。上記第2三方弁(25)は、第1ポートが圧縮機(21)の吐出側に繋がり、第2ポートが高圧ガス管(12)を介して各BSユニット(60,70,80)側に繋がり、第3ポートが低圧ガス管(13)と圧縮機(21)の吸入側とに繋がっている。
  上記各三方弁(24,25)は、第1ポートと第2ポートとが連通すると同時に第3ポートが閉鎖される状態(図6の実線で示す状態)と、第2ポートと第3ポートとが連通すると同時に第1ポートが閉鎖される状態(図6の破線で示す状態)とに設定が切換可能に構成されている。上記各三方弁(24,25)は切換機構を構成している。
  また、上記室外熱交換器(22)は、熱源側ファンである室外ファン(2F)を備え、液側が液管(11)が接続されている。
    -室内ユニットの構成-
  上記第1~第3の室内ユニット(30,40,50)は、それぞれが第1~第3の室内熱交換器(31,41,51)と第1~第3の室内膨張弁(32,42,52)とを有する第1~第3の室内回路(3a,4a,5a)を備えている。室内回路(3a,4a,5a)は、利用側回路である。上記各室内熱交換器(31,41,51)は、利用側ファンである室内ファン(3F,4F,5F)を備え、液側が液管(11)に接続されている。上記各室内膨張弁(32,42,52)は、対応する室内熱交換器(31,41,51)の液側に設けられている。
  上記各室内ユニット(30,40,50)は、第1~第3の室内熱交換器(31,41,51)のガス側に、冷媒圧力を検出する圧力センサ(P1,P2,P3)が設けられている。
    -BSユニットの構成-
  上記各BSユニット(60,70,80)は、各室内ユニット(30,40,50)から分岐する第1分岐管(61,71,81)と第2分岐管(62,72,82)とをそれぞれ有し、室内熱交換器(31,41,51)のガス側に接続されている。また、上記各第1分岐管(61,71,81)および各第2分岐管(62,72,82)には、開閉自在な電磁弁(SV-1,SV-2,SV-3,…)が1つずつ設けられている。上記第1分岐管(61,71,81)は、高圧ガス管(12)に接続され、上記第2分岐管(62,72,82)は、低圧ガス管(13)に接続されている。
  上記各BSユニット(60,70,80)は、上記電磁弁(SV1,SV-2,SV-3,…)を開閉することによって、各電磁弁(SV1,SV-2,SV-3,…)に対応する室内熱交換器(31,41,51)のガス側が圧縮機(21)の吸入側または吐出側の一方と繋がるように、冷媒の流路を切り換える。
    -コントローラの構成-
  上記空気調和装置(1)は、上述した各三方弁(24,25)や各電磁弁(SV-1,SV-2,SV-3,…)や圧縮機(21)等を制御するコントローラ(16)を備えている。このコントローラ(16)には、圧力センサ(P1,P2,P3)の検出信号が入力される一方、漏洩検知部(17)と制御部(18)が設けられている。
  上記漏洩検知部(17)は、圧力センサ(P1,P2,P3)の検出値について単位時間当たりの低下量が所定値以上であると、冷媒が室内に漏洩したと判定し、冷媒漏洩を検知する。上記制御部(18)は、漏洩検知部(17)が冷媒漏洩を検知すると、冷媒回路(10)において室内回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる。つまり、制御部(18)は室外熱交換器(22)が凝縮器(放熱器)となり全室内熱交換器(31,41,51)が蒸発器となる冷凍サイクルを行うように冷媒を循環させる(非常時運転)。
    -運転動作-
  次に、上記空気調和装置(1)の運転動作について説明する。この空気調和装置(1)は、各三方弁(24,25)の設定や各BSユニット(60,70,80)の電磁弁(SV-1,SV-2,SV-3,…)の開閉状態に応じて、複数種の運転が可能となっている。以下には、これらの運転のうち、代表的な運転を例示して説明する。
    -全部暖房運転-
  全部暖房運転は、全ての室内ユニット(30,40,50)で各室内の暖房を行うものである。図7に示すように、この全部暖房運転では、各三方弁(24,25)がそれぞれ第1ポートと第2ポートとを連通させる状態に設定される。また、各BSユニット(60,70,80)は、第1電磁弁(SV-1)と第3電磁弁(SV-3)と第5電磁弁(SV-5)とが開放状態となり、第2電磁弁(SV-2)と第4電磁弁(SV-4)と第6電磁弁(SV-6)とが閉鎖状態となる。なお、同図、および他の運転動作を説明するための他の図においては、閉鎖状態の電磁弁を黒塗りとし、開放状態の電磁弁を白塗りで図示している。
  この全部暖房運転では、室外熱交換器(22)を蒸発器とし、各室内熱交換器(31,41,51)を凝縮器とする冷凍サイクルが行われる。なお、同図、および他の運転動作を説明するための他の図においては、凝縮器となる熱交換器にドットを付し、蒸発器となる熱交換器は白塗りで図示している。この冷凍サイクルでは、圧縮機(21)から吐出した冷媒が、第2三方弁(25)を通過した後、高圧ガス管(12)を流れ、各BSユニット(60,70,80)の第1分岐管(61,71,81)にそれぞれ分流する。各BSユニット(60,70,80)を通過した冷媒は、対応する各室内ユニット(30,40,50)に流れる。
  例えば、第1の室内ユニット(30)において、第1の室内熱交換器(31)に冷媒が流れると、第1の室内熱交換器(31)では、冷媒が室内空気へ放熱して凝縮する。その結果、第1の室内ユニット(30)に対応する室内の暖房が行われる。第1の室内熱交換器(31)で凝縮した冷媒は、第1の室内膨張弁(32)を通過する。ここで、第1の室内膨張弁(32)は、第1の室内熱交換器(31)から流出した冷媒の過冷却度に応じて開度が調節される。第2の室内ユニット(40)および第3の室内ユニット(50)では、第1の室内ユニット(30)と同様に冷媒が流れ、対応する室内の暖房がそれぞれ行われる。
  各室内ユニット(30,40,50)を流出した冷媒は、液管(11)で合流する。この冷媒は、室外膨張弁(23)を通過する際に、低圧まで減圧されて、室外熱交換器(22)を流れる。室外熱交換器(22)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(22)で蒸発した冷媒は、第1三方弁(24)を通過した後、圧縮機(21)に吸入されて再び圧縮される。
    -全部冷房運転-
  全部冷房運転は、全ての室内ユニット(30,40,50)で各室内の冷房を行うものである。図8に示すように、この全部冷房運転では、各三方弁(24,25)がそれぞれ第1ポートと第2ポートとを連通させる状態に設定される。また、各BSユニット(60,70,80)では、第2電磁弁(SV-2)、第4電磁弁(SV-4)、および第6電磁弁(SV-6)が開放状態となり、第1電磁弁(SV-1)、第3電磁弁(SV-3)、および第5電磁弁(SV-5)が閉鎖状態となる。
  この全部冷房運転では、室外熱交換器(22)を凝縮器とし、各室内熱交換器(31,41,51)を蒸発器とする冷凍サイクルが行われる。具体的には、圧縮機(21)から吐出した冷媒は、第1三方弁(24)を通過した後、室外熱交換器(22)を流れる。つまり、上記圧縮機(21)から吐出した全ての高圧ガス冷媒は、高圧ガス管(12)には流れず、室外熱交換器(22)のみに流れる。そして、室外熱交換器(22)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(22)で凝縮した冷媒は、全開状態に設定された室外膨張弁(23)を通過し、液管(11)を流れて、各室内ユニット(30,40,50)へ分流する。
  例えば、第1の室内ユニット(30)においては、冷媒が第1の室内膨張弁(32)を通過する際に、低圧まで減圧されて、第1の室内熱交換器(31)を流れる。第1の室内熱交換器(31)では、冷媒が室内空気から吸熱して蒸発する。その結果、第1の室内ユニット(30)に対応する室内の冷房が行われる。ここで、上記第1の室内膨張弁(32)は、第1の室内熱交換器(31)から流出した冷媒の過熱度に応じて開度が調節される。第2の室内ユニット(40)および第3の室内ユニット(50)では、第1の室内ユニット(30)と同様に冷媒が流れ、対応する室内の冷房がそれぞれ行われる。各室内ユニット(30,40,50)を流出した冷媒は、各BSユニット(60,70,80)の第2分岐管(62,72,82)をそれぞれ流れ、低圧ガス管(13)を経て合流後に圧縮機(21)に吸入されて再び圧縮される。
    -暖房/冷房同時運転-
  暖房/冷房同時運転は、一部の室内ユニットで室内の暖房を行う一方、他の室内ユニットで室内の冷房を行う共存運転である。暖房/冷房同時運転では、運転条件に応じて室外熱交換器(22)が蒸発器又は凝縮器となる。また、各室内ユニット(30,40,50)では、暖房要求のある室内の室内熱交換器が凝縮器となる一方、冷房要求のある室内の室内熱交換器が蒸発器となる。以下には、室外熱交換器(22)を凝縮器とし、室内熱交換器(31,41,51)の少なくとも1つを凝縮器として残りを蒸発器とする。
    -第1共存運転-
  第1共存運転は、第1の室内ユニット(30)および第2の室内ユニット(40)で室内の暖房を行う一方、第3の室内ユニット(50)で室内の冷房を行うものである。図9に示すように、この運転では、各三方弁(24,25)がそれぞれ第1ポートと第2ポートとを連通させる状態に設定される。また、各BSユニット(60,70,80)では、第1電磁弁(SV-1)、第3電磁弁(SV-3)、および第6電磁弁(SV-6)が開放状態となり、第2電磁弁(SV-2)、第4電磁弁(SV-4)、および第5電磁弁(SV-5)が閉鎖状態となる。
  この第1共存運転では、室外熱交換器(22)と第1の室内熱交換器(31)と第2の室内熱交換器(41)とを凝縮器とする一方、第3の室内熱交換器(51)を蒸発器とする冷凍サイクルが行われる。具体的には、圧縮機(21)から吐出した冷媒は、第1三方弁(24)側と第2三方弁(25)側とに分流する。第1三方弁(24)を通過した冷媒は、室外熱交換器(22)で凝縮した後、所定開度に調節された室外膨張弁(23)を通過して液管(11)を流れる。
  一方、第2三方弁(25)を通過した冷媒は、高圧ガス管(12)を流れ、第1のBSユニット(60)側と第2のBSユニット(70)側とに分流する。第1のBSユニット(60)を流出した冷媒は、第1の室内熱交換器(31)を流れる。第1の室内熱交換器(31)では、冷媒が室内空気へ放熱して凝縮する。その結果、第1の室内ユニット(30)に対応する室内の暖房が行われる。第1の室内ユニット(30)で室内の暖房に利用された冷媒は、液管(11)に流出する。同様に、第2のBSユニット(70)を流出した冷媒は、第2の室内ユニット(40)で室内の暖房に利用された後、液管(11)に流出する。
  液管(11)で合流した冷媒は、第3の室内ユニット(50)に流入する。この冷媒は、第3の室内膨張弁(52)を通過する際に低圧まで減圧された後、第3の室内熱交換器(51)を流れる。第3の室内熱交換器(51)では、冷媒が室内空気から吸熱して蒸発する。その結果、第3の室内ユニット(50)に対応する室内の冷房が行われる。第3の室内ユニット(50)で室内の冷房に利用された冷媒は、第3のBSユニット(80)を通過した後、低圧ガス管(13)を流れ、圧縮機(21)に吸入されて再び圧縮される。
    -第2共存運転-
  第2共存運転は、第1の室内ユニット(30)で室内の暖房を行う一方、第2の室内ユニット(40)および第3の室内ユニット(50)で室内の冷房を行うものである。図10に示すように、この運転では、各三方弁(24,25)がそれぞれ第1ポートと第2ポートとを連通させる状態に設定される。また、各BSユニット(60,70,80)では、第1電磁弁(SV-1)、第4電磁弁(SV-4)、および第6電磁弁(SV-6)が開放状態となり、第2電磁弁(SV-2)、第3電磁弁(SV-3)、および第5電磁弁(SV-5)が閉鎖状態となる。
  この第2共存運転では、室外熱交換器(22)と第1の室内熱交換器(31)とを凝縮器とする一方、第2の室内熱交換器(41)と第3の室内熱交換器(51)とを蒸発器とする冷凍サイクルが行われる。具体的には、圧縮機(21)から吐出した冷媒は、第1三方弁(24)側と第2三方弁(25)側とに分流する。第1三方弁(24)を通過した冷媒は、室外熱交換器(22)で凝縮した後、所定開度に制御された室外膨張弁(23)を通過して液管(11)に流入する。
  一方、第2三方弁(25)を通過した冷媒は、高圧ガス管(12)を経て第1のBSユニット(60)を経由して第1の室内ユニット(30)に流れる。第1の室内ユニット(30)では、第1の室内熱交換器(31)で冷媒が凝縮し、室内の暖房が行われる。第1の室内ユニット(30)で室内の暖房に利用された冷媒は、液管(11)に流出する。
  液管(11)で合流した冷媒は、第2の室内ユニット(40)と第3の室内ユニット(50)とに分流する。第2の室内ユニット(40)では、第2の室内膨張弁(42)で減圧された冷媒が、第2の室内熱交換器(41)で蒸発し、室内の冷房が行われる。同様に、第3の室内ユニット(50)では、第3の室内膨張弁(52)で減圧された冷媒が、第3の室内熱交換器(51)で蒸発し、室内の冷房が行われる。各室内ユニット(40,50)で室内の冷房に利用された冷媒は、第2のBSユニット(70)および第3のBSユニット(80)をそれぞれ通過し、低圧ガス管(13)を経て合流後に圧縮機(21)に吸入されて再び圧縮される。なお、図7~図10では、室外ファン(2F)および室内ファン(3F,4F,5F)の図示を省略している。
    -非常時運転-
  非常時運転は、上述した通常運転時に漏洩検知部(17)が検知すると、行われる。ここでは、全部暖房運転時に漏洩検知部(17)が検知した場合について説明する。
  例えば、全部暖房運転時に、室内回路(3a,4a,5a)の配管に腐食によって穴が開き、冷媒が漏洩すると、圧力センサ(P1,P2,P3)の検出値が急激に低下する。そうすると、漏洩検知部(17)が冷媒漏洩を検知する。全部暖房運転時は、室内回路(3a,4a,5a)が高圧となっているため、例えば、第1の室内回路(3a)と室内との圧力差が大きい。そのため、冷媒の漏洩速度が大きくなり、室内における自然換気では冷媒が室外へ充分に排出されず、室内の冷媒濃度が限界値を超えてしまう。
  そこで、本実施形態では、漏洩検知部(17)が検知すると非常時運転が行われる。非常時運転では、冷媒回路(10)における冷媒循環方向は全部冷房運転と同様である。ただし、各室内膨張弁(32,42,52)は全開状態に設定され、室外膨張弁(23)の開度が絞られる。つまり、非常時運転では、室外膨張弁(23)で冷媒が減圧されて、全室内回路(3a,4a,5a)の全体が低圧となる。これにより、室内回路(3a,4a,5a)の冷媒と室内との圧力差が小さくなり、室内回路(3a,4a,5a)からの冷媒の漏洩速度が低下する。
  上記室外膨張弁(23)は、室内回路(3a,4a,5a)の圧力が大気圧よりも低くならない範囲でできるだけ低下させるように開度が制御される。さらに、非常時運転では、制御部(18)によって室内ファン(3F,4F,5F)の風量が下げられる。
  実施形態1について述べたように、冷媒が漏洩する穴のサイズが大きくなれば、冷媒の漏洩速度(kg/h)も大きくなる。また、冷媒の飽和温度が低くなれば、即ち冷媒の圧力が低くなれば、冷媒の漏洩速度(kg/h)も小さくなる。
  従って、非常時運転を行えば、室内回路(3a,4a,5a)の圧力を低下させて冷媒の漏洩速度(kg/h)を低下させることができ、その結果、室内の冷媒濃度が限界値を超える状態を回避することができる。
    -実施形態3の効果-
  本実施形態の空気調和装置(1)によれば、室内の冷媒漏洩が発生すると、室内回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うようにしたため、室内回路(3a,4a,5a)の冷媒圧力と室内の圧力との差をできるだけ小さくすることができる。そのため、冷媒の漏洩速度を低下させることができる。これによって、室内における自然換気によって充分に冷媒を排出することができ、その結果、室内における冷媒濃度の上昇を抑えることができる。よって、室内の冷媒濃度が、規定の限界値を超えることはない。また、冷媒流れを遮断するための弁を別途設けなくてもよいため、安価に冷媒漏洩を抑制することができる。
  また、本実施形態によれば、暖房運転の室内ユニット(30,40)と冷房運転の室内ユニット(50)とが共存している場合に冷媒漏洩が検知されると、全室内回路(3a,4a,5a)の冷媒を低圧とする冷房運転状態にするので、冷房運転の室内ユニット(50)では冷房運転がそのまま継続される。この結果、冷房運転の室内ユニット(50)の快適性を確保しつつ冷媒漏洩を抑制することができる。
  また、本実施形態によれば、室内回路(3a,4a,5a)の冷媒圧力が大気圧以上の低圧となるようにしたため、室内回路(3a,4a,5a)の冷媒圧力が室内の圧力よりも低くならない。これにより、室内の空気が冷媒の漏洩箇所から室内回路(3a,4a,5a)に侵入するのを確実に防止することができる。
  また、本実施形態によれば、非常時運転において、室内膨張弁(32,42,52)ではなく室外膨張弁(23)を絞ることによって室内回路(3a,4a,5a)の冷媒を低圧にするため、確実に室内回路(3a,4a,5a)の全体を低圧にすることができる、これにより、室内回路(3a,4a,5a)のどの箇所から冷媒が漏洩しても、その冷媒漏洩を確実に抑制することができる。
  また、本実施形態によれば、非常時運転において室内ファン(3F,4F,5F)の風量を下げるため、圧縮機(21)の吸入冷媒の過熱度を低下させることができ、その結果、圧縮機(21)の吐出冷媒の温度を低下させることができる。本実施形態では、室内回路(3a,4a,5a)の冷媒圧力と室内の圧力との差をできるだけ小さくして冷媒の漏洩速度を低下させたいことから、室内回路(3a,4a,5a)の冷媒圧力は通常の冷房運転時よりも低くなる傾向にある。そうすると、圧縮機(21)の吸入冷媒の過熱度および吐出冷媒の温度が異常に高くなるおそれがあるが、本実施形態によれば、それを防止することができる。
  また、図2に示すように、R32、R1234yf、R1234zeおよびR744(図示省略)は、地球温暖化係数(GWP)が比較的低いため、地球環境に優しい冷媒である。また、R32、R1234yfおよびR1234zeは、燃焼性を有する冷媒(微燃性冷媒)であるため、冷媒漏洩による燃焼事故のおそれが高くなる。また、R744は、燃焼性はない(不燃性冷媒である)が、冷媒漏洩による窒息事故のおそれがある。ところが、本実施形態によれば、地球環境に優しい冷媒を用いても、確実に冷媒漏洩による燃焼事故や窒息事故を防止することができる。
  また、本実施形態では、室内回路(3a,4a,5a)以外の部分から冷媒漏洩が発生しても、室内には冷媒が漏洩しないと仮定している。したがって、本実施形態の漏洩検知部(17)は室内回路(3a,4a,5a)の冷媒漏洩について検知するように構成されている。ところで、本実施形態の非常時運転では、室外膨張弁(23)を絞るため、各室内回路(3a,4a,5a)だけでなく、液管(11)などの連絡配管も同様に低圧となる。したがって、漏洩検知部(17)について室内回路(3a,4a,5a)だけでなく液管(11)などにおける冷媒漏洩も検知するように構成すれば、液管(11)などの連絡配管の冷媒漏洩も抑制することができる。
 《発明の実施形態4》
  次に、本発明の実施形態4を図面に基づいて詳細に説明する。
  本実施形態の空気調和装置(1)は、図11に示すように、実施形態3が液管(11)と高圧ガス管(12)と低圧ガス管(13)とを構成したのに代えて2つの連絡配管(90,91)で構成したものである。
  具体的に、室外ユニット(20)は、圧縮機(21)と室外熱交換器(22)を備えると共に、四路切換弁(92)を備えている。そして、上記四路切換弁(92)は、圧縮機(21)の吐出側と吸入側とが接続されると共に、室外熱交換器(22)の一端と第1主配管(93)とが接続され、上記室外熱交換器(22)の他端は第2主配管(94)が接続されている。
  上記第1主配管(93)は、第1連絡配管(90)が接続されると共に、第1連絡配管(90)から第1主配管(93)への冷媒流れを許容する逆止弁(CV)が設けられている。上記第2主配管(94)は、第2連絡配管(91)が接続されると共に、第2主配管(94)から第2連絡配管(91)への冷媒流れを許容する逆止弁(CV)が設けられている。
  上記第1連絡配管(90)は、第2主配管(94)に第1分岐管(95)を介して接続され、該第1分岐管(95)には、上記第1連絡配管(90)から第2主配管(94)への冷媒流れを許容する逆止弁(CV)が設けられている。上記第2連絡配管(91)は、第1主配管(93)に第2分岐管(96)を介して接続され、該第2分岐管(96)には、上記第1主配管(93)から第2連絡配管(91)への冷媒流れを許容する逆止弁(CV)が設けられている。
  さらに、上記第1連絡配管(90)と第2連絡配管(91)は、切換ユニット(97)が接続され、該切換ユニット(97)に3つの室内ユニット(30,40,50)が接続されている。上記切換ユニット(97)は、図示しないが、膨張弁等を備え、3つの室内ユニット(30,40,50)がそれぞれ冷房運転と暖房運転とを行えるように冷媒流れを切り換えている。
  また、上記空気調和装置(1)は、実施形態3と同様にコントローラ(16)を備えている。
    -運転動作-
  次に、上記空気調和装置(1)の全部暖房運転と全部冷房運転と第1共存運転と第2共存運転とを説明する。
  全部暖房運転において、圧縮機(21)を吐出した冷媒は、全て第1主配管(93)、第2分岐管(96)、第2連絡配管(91)および切換ユニット(97)を経て室内ユニットに流れて凝縮する。その後、冷媒は、切換ユニット(97)、第1連絡配管(90)、第1分岐管(95)および第2主配管(94)を流れ、室外熱交換器(22)で蒸発して圧縮機(21)に戻る。冷媒は、この循環を繰り返す。
  全部冷房運転において、圧縮機(21)を吐出した冷媒は、全て室外熱交換器(22)にのみ流れて凝縮する。その後、冷媒は、第2主配管(94)、第2連絡配管(91)および切換ユニット(97)を経て室内ユニットに流れ、室内熱交換器で蒸発器し、切換ユニット(97)、第1連絡配管(90)および第1主配管(93)を経て圧縮機(21)に戻る。冷媒は、この循環を繰り返す。
  第1共存運転においては、例えば、第1の室内ユニット(30)および第2の室内ユニット(40)で室内の暖房を行う一方、第3の室内ユニット(50)で室内の冷房を行う。この第1共存運転において、圧縮機(21)を吐出した冷媒は、全て第1主配管(93)から第2分岐管(96)および第2連絡配管(91)を流れ、切換ユニット(97)で分流されて第1の室内熱交換器(31)および第2の室内熱交換器(41)に流れて凝縮する。その後、凝縮した液冷媒の一部は、切換ユニット(97)を経て第3の室内熱交換器(51)で蒸発する一方、液冷媒の残部は、切換ユニット(97)において、膨張弁で減圧されて二相冷媒となり、第3の室内熱交換器(51)で蒸発した冷媒と合流する。その後、合流した低圧冷媒は、切換ユニット(97)から第1連絡配管(90)、第1分岐管(95)および第2主配管(94)を流れ、室外熱交換器(22)で蒸発して圧縮機(21)に戻る。冷媒は、この循環を繰り返す。
  第2共存運転においては、例えば、第1の室内ユニット(30)で室内の暖房を行う一方、第2の室内ユニット(40)および第3の室内ユニット(50)で室内の冷房を行う。この第2共存運転において、圧縮機(21)を吐出した冷媒は、全て室外熱交換器(22)に流れ、一部が凝縮して高圧二相冷媒になる。この高圧二相冷媒は、第2主配管(94)および第2連絡配管(91)を流れ、切換ユニット(97)を経て切換ユニット(97)で高圧ガス冷媒と高圧液冷媒とに分流され、高圧ガス冷媒は、第1の室内熱交換器(31)に流れて凝縮する。分流された高圧液冷媒は、第1の室内熱交換器(31)で凝縮した液冷媒と合流した後、第2の室内熱交換器(41)および第3の室内熱交換器(51)に流れて蒸発する。蒸発した低圧冷媒は、切換ユニット(97)、第1連絡配管(90)および第1主配管(93)を経て圧縮機(21)に戻る。冷媒は、この循環を繰り返す。
  特に、本実施形態においても、実施形態3と同様に漏洩検知部(17)が冷媒漏洩を検出すると、非常時運転が行われる。そして、この非常時運転は、全部冷房運転となり、図示しないが、切換ユニット(97)に設けられた膨張弁を絞り、全室内回路(3a,4a,5a)の全体を低圧とする。また、図示しないが、室内ファンの風量が下げられる。その他の作用は、実施形態3と同様である。
    -実施形態4の効果-
  本実施形態の空気調和装置(1)によれば、室内の冷媒漏洩が発生すると、室内回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うようにしたため、室内回路(3a,4a,5a)の冷媒圧力と室内の圧力との差をできるだけ小さくすることができる。そのため、冷媒の漏洩速度を低下させることができる。これによって、室内における自然換気によって充分に冷媒を排出することができ、その結果、室内における冷媒濃度の上昇を抑えることができる。よって、室内の冷媒濃度が、規定の限界値を超えることはない。また、冷媒流れを遮断するための弁を別途設けなくてもよいため、安価に冷媒漏洩を抑制することができる。その他の効果は、実施形態3と同様である。
 《その他の実施形態》
  上記実施形態は、以下のように変更してもよい。
  例えば、上記各実施形態において、非常時運転時に室内ファン(116)の風量を下げなくてもよいし、上記実施形態1において、非常時運手時に吸入配管(101b)に冷媒をインジェクションする動作を行わなくてもよい。
  また、上記各実施形態で用いる冷媒は、上述した種類に限られないのは勿論である。
  また、上記実施形態1の非常時運転では、室外膨張弁(124)を絞って室内回路(112a)の全体を低圧にするようにしたが、次のようにしてもよい。例えば、室内回路(112a)において冷媒の漏洩箇所が室内膨張弁(126)よりもガス側閉鎖弁(118)側である場合には、室外膨張弁(124)および冷媒が漏洩していない室内回路(112a)の室内膨張弁(126)は全開状態に設定し、冷媒が漏洩した室内回路(112a)の室内膨張弁(126)のみを絞るようにしてもよい。この場合、冷媒が漏洩した室内回路(112a)において、室内膨張弁(126)からガス側閉鎖弁(118)までの部分は低圧になるので、冷媒の漏洩速度を確実に低下させることができる。
  また、上記実施形態1では、インジェクション管(131)が吸入配管(101b)に接続されているが、圧縮機(121)の中間圧室に連通するように接続してもよい。この場合でも、圧縮機(121)の吐出冷媒の温度を低下させることができる。
  また、上記実施形態3及び4の室内ユニット(30,40,50)は、3台としたが、これらに限られるものではない。
  以上説明したように、本発明は、冷媒が循環して冷凍サイクルを行う冷媒回路を備えた冷凍装置について有用である。
   1  空気調和装置(冷凍装置)
   2a  室外回路(熱源側回路)
  10  冷媒回路
  17  漏洩検知部
  18  制御部
  20  室外ユニット(熱源側ユニット)
  21  圧縮機
  22  室外熱交換器(熱源側熱交換器)
  23  室外膨張弁
  30,40,50  室内ユニット(利用側ユニット)
  31,41,51  室内熱交換器(利用側熱交換器)
  3a,4a,5a  室内回路(利用側回路)
  3F,4F,5F  室内ファン(利用側ファン)
  110  空気調和装置(冷凍装置)
  111a  室外回路(熱源側回路)
  112a  室内回路(利用側回路)
  116  室内ファン(利用ファン)
  120  冷媒回路
  121  圧縮機
  123  室外熱交換器(熱源側熱交換器)
  124  室外膨張弁(膨張弁)
  125  室内熱交換器(利用側熱交換器)
  131  インジェクション管
  132  インジェクション弁(減圧機構)
  141  漏洩検知部
  142  制御部

Claims (11)

  1.   圧縮機(121)、熱源側熱交換器(123)および膨張弁(124)を有する熱源側回路(111a)と、利用側熱交換器(125)を有する利用側回路(112a)とが接続され、冷媒が可逆に循環して冷凍サイクルを行う一方、常に上記利用側回路(112a)のガス側端と上記圧縮機(121)とが連通している冷媒回路(120)を備えた冷凍装置であって、
      上記利用側回路(112a)から冷媒が漏洩したことを検知する漏洩検知部(141)と、
      上記漏洩検知部(141)が冷媒漏洩を検知すると、上記冷媒回路(120)において上記利用側回路(112a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる制御部(142)とを備えている
    ことを特徴とする冷凍装置。
  2.   請求項1において、
      上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記冷媒回路(120)において上記利用側回路(112a)の冷媒が大気圧以上の低圧となる冷凍サイクルを行うように冷媒を循環させる
    ことを特徴とする冷凍装置。
  3.   請求項1または2において、
      上記冷媒回路(120)では、複数の上記利用側回路(112a)が互いに並列に接続され、
      上記熱源側回路(111a)の上記膨張弁(124)は、1つであり、上記各利用側回路(112a)の液側端と接続され、
      上記制御部(142)は、上記熱源側回路(111a)の上記膨張弁(124)を絞ることによって、上記各利用側回路(112a)の冷媒を低圧にする
    ことを特徴とする冷凍装置。
  4.   請求項1または2において、
      上記冷媒回路(120)では、上記利用側回路(112a)が複数設けられ、
      上記熱源側回路(111a)は、その液側端部が分岐して上記各利用側回路(112a)の液側端と接続され、そのガス側端部が分岐して上記各利用側回路(112a)のガス側端と接続され、
      上記熱源側回路(111a)の液側端部を構成する複数の配管(1f)に、上記膨張弁(124)が1つずつ設けられ、
      上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知した上記利用側回路(112a)に対応する上記膨張弁(124)を絞ることによって、上記漏洩検知部(141)が冷媒漏洩を検知した上記利用側回路(112a)の冷媒を低圧にする
    ことを特徴とする冷凍装置。
  5.   請求項3または4において、
      上記冷媒回路(120)は、冷媒の減圧機構(132)を有し、循環する冷媒の一部を上記圧縮機(121)の吸入側または上記圧縮機(121)の中間圧室へ導くインジェクション管(131)を備え、
      上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記インジェクション管(131)の冷媒流量を増加させる
    ことを特徴とする冷凍装置。
  6.   請求項3または4において、
      冷媒と熱交換する空気を上記利用側熱交換器(125)に供給する利用ファン(116)を備え、
      上記制御部(142)は、上記漏洩検知部(141)が冷媒漏洩を検知すると、上記利用ファン(116)の風量を下げる
    ことを特徴とする冷凍装置。
  7.   圧縮機(21)および熱源側熱交換器(22)を有する熱源側回路(2a)と、利用側空間を空気調和する利用側熱交換器(31,41,51)を有する複数の利用側回路(3a,4a,5a)とを備え、上記各利用側熱交換器(31,41,51)が個別に冷却運転と加熱運転とを行うように構成されると共に、上記全利用側熱交換器(31,41,51)が冷却運転を行う際、上記圧縮機(21)の吐出された高圧ガス冷媒が全て熱源側熱交換器(22)に流れるように構成された冷媒回路(10)を備えた冷凍装置であって、
      上記冷媒回路(10)から利用側空間に冷媒が漏洩したことを検知する漏洩検知部(17)と、
      該漏洩検知部(17)が冷媒漏洩を検知すると、上記冷媒回路(10)において、上記利用側回路(3a,4a,5a)の冷媒が低圧となる冷凍サイクルを行うように冷媒を循環させる制御部(18)とを備えている
    ことを特徴とする冷凍装置。
  8.   請求項7において、
      上記制御部(18)は、上記漏洩検知部(17)が冷媒漏洩を検知すると、上記冷媒回路(10)において上記利用側回路(3a,4a,5a)の冷媒が大気圧以上の低圧となる冷凍サイクルを行うように冷媒を循環させる
    ことを特徴とする冷凍装置。
  9.   請求項7または8において、
      上記制御部(18)は、上記熱源側熱交換器(22)で冷媒を蒸発させるための膨張弁(23)を絞ることによって、上記各利用側回路(3a,4a,5a)の冷媒を低圧にする
    ことを特徴とする冷凍装置。
  10.   請求項9において、
      冷媒と熱交換する空気を上記利用側熱交換器(31,41,51)に供給する利用ファン(3F,4F,5F)を備え、
      上記制御部(18)は、上記漏洩検知部(17)が冷媒漏洩を検知すると、上記利用ファン(3F,4F,5F)の風量を下げる
    ことを特徴とする冷凍装置。
  11.   請求項1乃至10の何れか1項において、
      上記冷媒回路(10,120)は、冷媒として、R32、R1234yf、R1234ze若しくはR744の単一冷媒または該冷媒を含む混合冷媒が用いられている
    ことを特徴とする冷凍装置。
PCT/JP2013/005056 2012-02-06 2013-08-27 冷凍装置 WO2014034099A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES13834154T ES2894700T3 (es) 2012-02-06 2013-08-27 Sistema de refrigeración
EP13834154.0A EP2905563B1 (en) 2012-08-27 2013-08-27 Refrigeration system
AU2013310668A AU2013310668B8 (en) 2012-08-27 2013-08-27 Refrigeration apparatus
US14/421,296 US10508847B2 (en) 2012-08-27 2013-08-27 Refrigeration apparatus
CN201380044730.5A CN104603557B (zh) 2012-08-27 2013-08-27 制冷装置
BR112015003481-0A BR112015003481B1 (pt) 2012-08-27 2013-08-27 Dispositivo de refrigeração
KR1020157007551A KR101678324B1 (ko) 2012-08-27 2013-08-27 냉동장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012186620A JP6079055B2 (ja) 2012-02-06 2012-08-27 冷凍装置
JP2012-186620 2012-08-27
JP2012-189053 2012-08-29
JP2012189053A JP6079061B2 (ja) 2012-02-06 2012-08-29 冷凍装置

Publications (1)

Publication Number Publication Date
WO2014034099A1 true WO2014034099A1 (ja) 2014-03-06

Family

ID=50185094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005056 WO2014034099A1 (ja) 2012-02-06 2013-08-27 冷凍装置

Country Status (6)

Country Link
US (1) US10508847B2 (ja)
EP (1) EP2905563B1 (ja)
KR (1) KR101678324B1 (ja)
CN (1) CN104603557B (ja)
BR (1) BR112015003481B1 (ja)
WO (1) WO2014034099A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642761A (zh) * 2016-09-02 2019-04-16 大金工业株式会社 制冷装置
EP3279580A4 (en) * 2015-04-03 2019-05-15 Mitsubishi Electric Corporation CLIMATE CONTROL DEVICE
WO2020158652A1 (ja) * 2019-01-31 2020-08-06 ダイキン工業株式会社 冷媒サイクル装置
AU2020215007B2 (en) * 2019-01-31 2022-02-24 Daikin Industries, Ltd. Refrigerant cycle apparatus
EP3643988B1 (en) * 2017-06-23 2022-03-30 Daikin Industries, Ltd. Heat transfer system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058145B2 (ja) * 2013-08-28 2017-01-11 三菱電機株式会社 空気調和装置
JP6055754B2 (ja) 2013-12-11 2016-12-27 ダイキン工業株式会社 冷媒流路切換ユニット及び冷媒流路切換ユニットを備える冷凍装置
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
JP6177158B2 (ja) * 2014-02-25 2017-08-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN106104172B (zh) * 2014-03-17 2019-05-28 三菱电机株式会社 制冷循环装置
KR102240070B1 (ko) * 2014-03-20 2021-04-13 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2016024576A1 (ja) 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
CN104807251B (zh) * 2015-05-20 2017-03-22 广东志高暖通设备股份有限公司 一种风冷热泵模块水机
CN108351138B (zh) 2015-11-12 2020-07-07 三菱电机株式会社 空调
JP6590706B2 (ja) * 2016-01-14 2019-10-16 三菱重工サーマルシステムズ株式会社 冷凍サイクル装置、及び、冷凍サイクル装置のバイパス弁漏れ判定制御方法
EP3450866A4 (en) * 2016-04-28 2019-05-08 Mitsubishi Electric Corporation REFRIGERATING CYCLE APPARATUS
JP6269756B1 (ja) * 2016-09-02 2018-01-31 ダイキン工業株式会社 冷凍装置
CN110050160B (zh) * 2016-12-09 2021-08-24 三菱电机株式会社 热泵装置
CN106839276A (zh) * 2017-01-03 2017-06-13 青岛海尔空调器有限总公司 一种空调缺氟检测的控制方法及空调
JP6798322B2 (ja) * 2017-01-16 2020-12-09 ダイキン工業株式会社 遮断弁を有する冷凍装置
CN110291349B (zh) * 2017-02-14 2021-05-18 大金工业株式会社 冷冻装置
WO2018182037A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 冷媒漏洩箇所の探知方法
JP6899896B2 (ja) * 2017-05-24 2021-07-07 三菱電機株式会社 空調システム
CN107477795A (zh) * 2017-08-28 2017-12-15 广东美的制冷设备有限公司 可燃冷媒空调及其控制方法
CN111033151A (zh) * 2017-09-05 2020-04-17 大金工业株式会社 空调系统或制冷剂分支单元
EP3690352A4 (en) * 2017-09-29 2020-09-09 Daikin Industries, Ltd. REFRIGERATION DEVICE
WO2019068322A1 (de) * 2017-10-04 2019-04-11 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichteranlage
US11435124B2 (en) 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
JP7412887B2 (ja) * 2019-01-02 2024-01-15 ダイキン工業株式会社 空気調和機及び流路切換弁
JP7057510B2 (ja) * 2019-06-14 2022-04-20 ダイキン工業株式会社 冷媒サイクル装置
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US11435101B2 (en) 2019-09-26 2022-09-06 Rheem Manufacturing Company Air mover refrigerant leak detection and risk mitigation
EP4040085B1 (en) * 2019-09-30 2024-06-05 Daikin Industries, Ltd. Refrigeration cycle device
EP3816542A1 (en) * 2019-10-29 2021-05-05 Daikin Industries, Ltd. Refrigerant system
KR102422010B1 (ko) 2020-09-23 2022-07-18 엘지전자 주식회사 냉난방 멀티 공기조화기
JP6927397B1 (ja) * 2020-09-24 2021-08-25 ダイキン工業株式会社 空気調和システムおよびその室内機
KR102438931B1 (ko) * 2020-12-11 2022-08-31 엘지전자 주식회사 공기조화기 및 그 제어방법
CN116592677B (zh) * 2023-07-18 2023-09-19 普兰特换热设备(溧阳)有限公司 智能型气体板式换热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109692A (ja) 1996-06-25 1998-01-16 Hitachi Ltd 空調機
JP2003178361A (ja) * 2001-12-07 2003-06-27 Sanden Corp 自動販売機
JP2005140409A (ja) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008138954A (ja) 2006-12-04 2008-06-19 Daikin Ind Ltd 冷凍装置
JP2009299910A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
JP2011256361A (ja) * 2010-05-20 2011-12-22 Mexichem Amanco Holding Sa De Cv 熱伝達組成物
JP2012137281A (ja) * 2012-02-20 2012-07-19 Daikin Industries Ltd 冷凍装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914782A (ja) * 1995-06-29 1997-01-17 Daikin Ind Ltd 空気調和装置
JP5125124B2 (ja) 2007-01-31 2013-01-23 ダイキン工業株式会社 冷凍装置
US8628681B2 (en) * 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
JP5326488B2 (ja) * 2008-02-29 2013-10-30 ダイキン工業株式会社 空気調和装置
US8820106B2 (en) * 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
JP5517789B2 (ja) * 2010-07-02 2014-06-11 日立アプライアンス株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109692A (ja) 1996-06-25 1998-01-16 Hitachi Ltd 空調機
JP2003178361A (ja) * 2001-12-07 2003-06-27 Sanden Corp 自動販売機
JP2005140409A (ja) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008138954A (ja) 2006-12-04 2008-06-19 Daikin Ind Ltd 冷凍装置
JP2009299910A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
JP2011256361A (ja) * 2010-05-20 2011-12-22 Mexichem Amanco Holding Sa De Cv 熱伝達組成物
JP2012137281A (ja) * 2012-02-20 2012-07-19 Daikin Industries Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905563A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279580A4 (en) * 2015-04-03 2019-05-15 Mitsubishi Electric Corporation CLIMATE CONTROL DEVICE
CN109642761A (zh) * 2016-09-02 2019-04-16 大金工业株式会社 制冷装置
CN109642761B (zh) * 2016-09-02 2021-04-13 大金工业株式会社 制冷装置
US11274871B2 (en) 2016-09-02 2022-03-15 Daikin Industries, Ltd. Refrigeration apparatus
EP3643988B1 (en) * 2017-06-23 2022-03-30 Daikin Industries, Ltd. Heat transfer system
WO2020158652A1 (ja) * 2019-01-31 2020-08-06 ダイキン工業株式会社 冷媒サイクル装置
JP2020122645A (ja) * 2019-01-31 2020-08-13 ダイキン工業株式会社 冷媒サイクル装置
AU2020215007B2 (en) * 2019-01-31 2022-02-24 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11448440B2 (en) 2019-01-31 2022-09-20 Daikin Industries, Ltd. Refrigerant cycle apparatus having refrigerant leak detector used to control first and second shutoff valves

Also Published As

Publication number Publication date
US20150233622A1 (en) 2015-08-20
CN104603557A (zh) 2015-05-06
AU2013310668A1 (en) 2015-03-26
AU2013310668B2 (en) 2016-04-14
CN104603557B (zh) 2016-10-12
KR20150048193A (ko) 2015-05-06
EP2905563A4 (en) 2016-10-05
EP2905563A1 (en) 2015-08-12
KR101678324B1 (ko) 2016-11-21
EP2905563B1 (en) 2021-09-15
US10508847B2 (en) 2019-12-17
BR112015003481B1 (pt) 2021-08-24
BR112015003481A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2014034099A1 (ja) 冷凍装置
JP6079055B2 (ja) 冷凍装置
JP6079061B2 (ja) 冷凍装置
JP6328245B2 (ja) 空気調和装置
JP6072077B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
WO2018012489A1 (ja) 冷凍システム
JP5921719B2 (ja) 空気調和装置
WO2018011994A1 (ja) 空気調和装置
US9494361B2 (en) Air-conditioning apparatus with improved defrost operation mode
EP2629028A1 (en) Air conditioner
CN113366270B (zh) 制冷剂循环装置
WO2014129472A1 (ja) 空気調和装置
WO2017119137A1 (ja) 空気調和装置
JP6238202B2 (ja) 空気調和機
KR102250983B1 (ko) 멀티형 공기조화기
JP6257812B2 (ja) 空気調和装置
AU2013310668B8 (en) Refrigeration apparatus
US20230065072A1 (en) Refrigeration cycle system, heat source unit, and refrigeration cycle apparatus
US20230056663A1 (en) Refrigeration cycle system
JP2018054214A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14421296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013834154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157007551

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013310668

Country of ref document: AU

Date of ref document: 20130827

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015003481

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015003481

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150218