JP6177424B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6177424B2
JP6177424B2 JP2016508339A JP2016508339A JP6177424B2 JP 6177424 B2 JP6177424 B2 JP 6177424B2 JP 2016508339 A JP2016508339 A JP 2016508339A JP 2016508339 A JP2016508339 A JP 2016508339A JP 6177424 B2 JP6177424 B2 JP 6177424B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
composition
compressor
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016508339A
Other languages
English (en)
Other versions
JPWO2015140879A1 (ja
Inventor
裕輔 島津
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsubishi Electric Corp filed Critical Asahi Glass Co Ltd
Publication of JPWO2015140879A1 publication Critical patent/JPWO2015140879A1/ja
Application granted granted Critical
Publication of JP6177424B2 publication Critical patent/JP6177424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、作動冷媒として非共沸混合冷媒を使用した冷凍サイクル装置に関するものである。
近年、地球温暖化の影響を抑えるため低GWP冷媒が開発されている。従来使用されてきたR410Aは性能がよい冷媒であるが、GWP(地球温暖化係数)が2000程度あるため、GWPがおよそ1/3であるR32が使われつつある。R32はR410Aと比較的物性が近く性能がよい冷媒であるが、GWPが600程度であり、さらなる低GWP化のため、HFO1234yfなどのフルオロプロペン系(HFO系)冷媒が開発されている。しかしながらこの冷媒は高沸点冷媒であり、性能が低い冷媒である。従来と同等の性能を維持しようとすれば、技術的課題が多く、コスト高となる可能性がある。
これに伴い、地球温暖化係数が小さく、沸点の低い冷媒(例えば、HFO1123)を採用した冷凍サイクル装置が提案されている(特許文献1を参照)。
HFO1123は、組成に塩素原子が入っていないためオゾン層への影響が少なく、かつ、二重結合を持ち大気寿命が短いため地球温暖化への影響が少なく、さらに、性能(能力)に優れる(低沸点冷媒)ことが知られている。また、ASHRAEによる燃焼区分はランク2L相当(低微燃性)の範疇であり、安全性を有する。
そして、HFO1123にHC、HFC、HCFO、CFO、HFO等の冷媒を混合しても混合冷媒として部分的にこのような長所を享受することができる。
国際公開第2012/157764号
このようにHFO1123(CF2=CHF)は、性能の優れた冷媒であるが、特定の条件下で不均化反応(自己分解反応)を起こすことが知られている。不均化反応とは、同一種類の分子が2個以上互いに反応して2種類以上の異なる種類の生成物を生じる化学反応のことである。
HFO1123の不均化反応は、以下のような化学反応である。
CF2=CHF→(1/2)CF+(3/2)C+HF+(反応熱)
このような反応は、局所的なエネルギーを冷媒に与えることにより発生する。また、高温、高圧の環境下であれば連鎖的に反応が発生する可能性があるという問題があった。
本発明は、上記のような課題を解決するためになされたもので、このような不均化反応が発生する冷媒を冷凍サイクル装置に使用しても、冷媒が連鎖的に反応を起こす条件下となることを回避し、安全で性能の高い冷凍サイクル装置を提供することを目的とする。
本発明に係る冷凍サイクル装置は、第1冷媒と、同一圧力下において前記第1冷媒よりも沸点の高い特性の第2冷媒と、を少なくとも含む非共沸混合冷媒を標準組成冷媒として作動し、圧縮機と、第1熱交換器と、膨張弁と、第2熱交換器と、を順次接続したメイン回路と、メイン回路に接続された組成分離回路と、を備えた冷凍サイクル装置であって、第1冷媒は、不均化反応が生じる特性を有し、組成分離回路は、標準組成冷媒の成分を分離する分離貯留モードで運転された時に、メイン回路から標準組成冷媒に比べて第1冷媒の組成比が高い混合冷媒を分離し貯留する構成を有し、分離貯留モードは、少なくとも圧縮機の吐出温度または吐出圧力が高い時に作動するものである。
本発明に係る冷凍サイクル装置によれば、単独冷媒とすると不均化反応が起こりやすい低沸点冷媒の第1冷媒を、高沸点冷媒である第2冷媒との非共沸混合冷媒とし、組成分離回路は、分離貯留モードにおいて、メイン回路から標準組成冷媒に比べて第1冷媒の組成比が高い混合冷媒を分離し貯留するため、冷凍サイクル装置内を循環する冷媒の組成比を高沸点成分(第2冷媒)に富んだものとし、不均化反応を抑制することができる。
実施の形態1に係る冷凍サイクル装置の概略構成図である。 実施の形態1に係る冷凍サイクル装置内の非共沸混合冷媒が高圧、中間圧、低圧の各圧力における温度対組成線図である。 実施の形態2に係る冷凍サイクル装置の概略構成図である。 実施の形態3に係る冷凍サイクル装置の概略構成図である。
以下、本発明の実施の形態を図面に基づいて説明する。
なお、以下で説明する構成等は、一例であり、本発明に係る冷凍サイクル装置は、そのような構成等に限定されない。
また、細かい構造については、適宜図示を簡略化又は省略している。
また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
はじめに、冷凍サイクル装置の構成について説明する。
図1は、実施の形態1に係る冷凍サイクル装置の概略構成図である。
実施の形態1係る冷凍サイクル装置は、図1に示すように、圧縮機1、第1凝縮器2、気液分離器3、第2凝縮器4、冷媒間熱交換器5、第1膨張弁6、蒸発器7、を順にメイン経路8である冷媒配管にて接続し、冷凍サイクルを形成している。気液分離器3の上部に設けられたガス側出口3aは、第2凝縮器4に接続されている。
気液分離器3の下部に設けられた液側出口3bは、バイパス経路9を介して圧縮機1に接続されている。バイパス経路9は、圧縮室内部の中間圧力部分(中間圧力=高圧と低圧の中間の圧力であり、以降中圧とする)に接続されている。また、バイパス経路9には、第2膨張弁10及び冷媒間熱交換器5が配置されている。冷媒間熱交換器5の高圧(高温)側は、メイン経路8の第2凝縮器4と第1膨張弁6との間に接続されており、冷媒間熱交換器5の中圧(中温)側は、バイパス経路9の第2膨張弁10と圧縮機1との間に接続されている。
実施の形態1に係る冷凍サイクル装置の動作冷媒は、非共沸混合冷媒であり、第1冷媒と第2冷媒から構成されている。第1冷媒は、高温、高圧の条件下になる程、一定のエネルギーを与えると不均化反応を起こしやすい特性を備えている。第2冷媒は、第1冷媒と同一条件下で第1冷媒よりも不均化反応を起こしにくい(または同一条件下で不均化反応を全く起こさない)特性を備えた冷媒である。すなわち、第1冷媒は、第2冷媒が不均化反応を起こさない圧力及び温度と同一の特定条件下(高温、高圧条件下)において不均化反応が起こる可能性が高い特性を備えた冷媒である。また、第2冷媒は、第1冷媒よりも同一圧力下において沸点が高い(蒸発しにくい)特性を有している。
なお、第1冷媒が一定のエネルギーを与えられる場所は、主に圧縮機内部である。モータに至る電気経路が冷媒雰囲気中にあり、短絡や漏洩によりその電気エネルギーが冷媒に与えられる。また、圧縮機内部では圧縮部や摺動部や軸受けなどから絶えず摩擦熱が発生しており、エネルギーとして冷媒に与えられる。通常の運転中であっても該当するが、特に何らかの要因で圧縮機が損傷するとエネルギー供給の可能性が増大する。
第1冷媒としては、例えばHFO1123が採用可能であり、不均化反応を想定する必要がある。第2冷媒としては、例えばR32、HFO1234yf、HFO1234zeなどを採用することができる。冷媒の冷凍機油の中には添加剤が一般的に含まれているが、第1冷媒の反応抑制剤として、単環式モノテルペノイドが含まれている。また、単環式モノテルペノイドには、例えばリモネンが含まれる。
なお、第1冷媒がモル比率で70%以下なら反応が抑制されやすいことが知られている。また、第2冷媒は1種に限らず、2種以上であってもよい。ただし、第2冷媒は第1冷媒よりも高沸点の冷媒である必要がある。
次に、冷媒の動作について説明する。圧縮機1から吐出された冷媒は、高温高圧のガス冷媒であり、第1凝縮器2で水や空気と熱交換して凝縮し、高圧の二相状態となる。気液分離器3に入り分離されたガス冷媒は、ガス側出口3aから排出されて第2凝縮器4に入り、再び水や空気と熱交換して凝縮し、高圧の液冷媒となる。第2凝縮器4から出た液冷媒は冷媒間熱交換器5に入り、バイパス経路9を流れる中圧の二相冷媒と熱交換して更に冷却され過冷却液状態となり、第1膨張弁6で減圧され低圧の二相状態となる。蒸発器7で空気や水と熱交換して蒸発した冷媒は低圧のガス冷媒となり、再び圧縮機1に吸引される。また、気液分離器3で分離された液冷媒は、液側出口3bから排出されて第2膨張弁10で減圧され、冷媒間熱交換器5で加熱されて蒸発し中圧のガス冷媒となって圧縮機1に吸引される。
なお、メイン経路8に流れる冷媒を、本発明に係るメイン冷媒、バイパス経路9に流れる冷媒をバイパス冷媒と称する。
次に、本実施の形態に係る冷凍サイクル装置の作用について説明する。
このような冷凍サイクル装置の構成により、気液分離器3内では、流入した二相冷媒が、気相と液相に分離される。すると、第1冷媒の方が第2冷媒よりも沸点が低い(蒸発しやすい)ため、気相中の第1冷媒の組成比は高く、液相中の第1冷媒の組成比は低くなる。このため、第2凝縮器4、第1膨張弁6、蒸発器7から圧縮機1へ至るメイン経路8は、低沸点成分である第1冷媒の組成比が高くなる。低沸点冷媒は一般的に性能がよいので、本実施の形態1の冷凍サイクル装置の性能は高くなる。
また、気液分離器3より排出された液冷媒は、第1冷媒の組成比が低い状態でバイパス経路9を通過して圧縮機1に吸引される。圧縮機1の内部では、メイン経路8とバイパス経路9とが合流し、バイパス経路9の第1冷媒の組成比が低い冷媒がメイン経路8の冷媒に混合するため、メイン経路8での第1冷媒の組成比よりも、合流部以降の第1冷媒の組成比は小さくなる。
この冷媒の冷凍サイクル装置内の各状態について図2を用いて説明する。
図2は、実施の形態1に係る冷凍サイクル装置内の非共沸混合冷媒が高圧、中間圧、低圧の各圧力における温度対組成線図である。
非共沸混合冷媒の場合、図2に示すように温度対組成線図はレンズ形となり、上側が飽和ガス線、下側が飽和液線である。線図上で冷凍サイクル装置の各部の圧力及び温度が示されている。
圧縮機1の出口の高圧状態のガス冷媒aは第1凝縮器2で部分的に凝縮された状態bとなり、気液分離器3でガス冷媒cと液冷媒dとに分離される。ガス冷媒cは第1冷媒(低沸点成分)に富み、第2凝縮器4により状態eまで凝縮液化され、さらに冷媒間熱交換器5により状態fまで過冷却される。そして、第1膨張弁6により低圧の二相状態gまで減圧される。
一方、気液分離器3で分離された第2冷媒(高沸点成分)に富む液冷媒dは、第2膨張弁10により中圧まで減圧された状態hとなる。中圧の冷媒hは、冷媒間熱交換器5において第1冷媒(低沸点成分)に富む冷媒eと熱交換し、蒸発して昇温された状態iとなった後、バイパス経路9を通り圧縮機11内にインジェクションされる。
他方、第1膨張弁6を出た二相状態gの冷媒は、蒸発器7で蒸発し、過熱ガス状態mとなるとともに、圧縮機1に吸入され中圧のガス状態jまで圧縮される。圧縮機1内部の状態は図示していないが、状態jのガス冷媒は、バイパス経路9から導かれる冷媒iと混合され、状態kのガス冷媒となり、さらに圧縮されて圧縮機1の出口冷媒aとなる。
図2が示すように、メイン経路8の冷媒の状態線(c→e→f→g→m→j)は、低沸点成分(第1冷媒)の組成比が高く、性能の高い冷凍サイクルを形成している。一方でバイパス経路9の冷媒の状態線(d→h→i)は、低沸点成分(第1冷媒)の組成比が低く、この冷媒を圧縮機1内でメイン経路8の冷媒に合流させることで圧縮機1内の第1冷媒の組成比を低下(j→k)させることが可能になる。
次に、本実施の形態に係る冷凍サイクル装置の効果について説明する。
第1冷媒は、高温、高圧環境下で一定のエネルギーが与えられると不均化反応を連続的に起こす可能性があるが、圧縮機1内は、冷媒が高温、高圧となり、摺動部、受電部、モータ等で局所的なエネルギーも発生しやすいため冷凍サイクル装置内で最も安全性が要求される。
実施の形態1に係る冷凍サイクル装置では、単独冷媒とすると不均化反応が起こりやすい低沸点冷媒の第1冷媒を、高沸点冷媒である第2冷媒との非共沸混合冷媒とすることで、特に冷媒の不均化反応が起こりやすい圧縮機内部で第1冷媒の組成比を低減することが可能となり、第1冷媒の分圧を低下させることで不均化反応を抑制するとともに、性能の高い冷凍サイクル装置を得ることができる。
また、バイパス経路9の冷媒は、圧縮機1内の中間圧力部分に戻されるので、圧縮機1の入力を低減することができる。
この効果は、単純に第1冷媒に他の冷媒を混合して第1冷媒の分圧を(充填組成比に応じて)低下させ、反応を抑制する効果よりも大きい。
そして、第1冷媒は、低沸点冷媒のため、物性上吐出ガス温度が高くなる可能性があるが、圧縮機1内での第1冷媒の組成比が低くなっているため、吐出ガス温度を抑えることができる。よって、圧縮機1の信頼性を向上させるとともに、反応を抑制することができる。
なお、バイパス経路9の接続部分は、圧縮機1の吸入配管であってもよい。この構成では、圧縮機1が低圧シェル、高圧シェルのいずれの場合も、ガラス端子やモータまわりを第1冷媒の組成比が低い環境下とすることが可能で、反応の防止に有効である。
また、圧縮機1の内部もしくは吐出冷媒が高温、高圧な程(反応が起こりやすい)第2膨張弁10の開度を増加させることで、圧縮機1内の第1冷媒の組成比を低くして不均化反応を抑制することも可能である。
さらに、第1凝縮器2及び第2凝縮器4において、冷媒と熱交換する水や空気の温度が高い場合、両凝縮器内の冷媒温度(凝縮圧力の飽和温度)が高くなる。このとき、第1冷媒(例えばHFO1123)の臨界温度は低いため、第2凝縮器4の出口でサブクールがつきにくいが、冷媒間熱交換器5でサブクールを付与することができるので、低臨界温度冷媒であるデメリットを改善することができる。
また、実施の形態1に係る冷凍サイクル装置の運転中は、第1凝縮器2と気液分離器3内に第1冷媒の組成比が低い液冷媒が存在する。この状態から冷凍サイクル装置が停止した後に再起動する際には、気液分離器3からバイパス経路9を通り、圧縮機1へ第1冷媒の組成比が低い冷媒が確実に供給される。起動時に損傷し、局所的なエネルギーが発生しやすい圧縮機1に第1冷媒の組成比が低い冷媒を供給することで不均化反応が起きることを抑制することができる。
同様に、圧縮機1の起動時の第2膨張弁10の開度を、通常運転時の開度に比べて大きく設定(例えば最大開度)することで、起動時の第1冷媒の不均化反応をさらに抑制することができる。
また、冷凍サイクル装置を停止する前に、第2膨張弁10の開度を、通常運転時の開度に比べて小さく設定することで、気液分離器3に第1冷媒の組成比が低い液冷媒を多く貯留することができる。よって、次の再起動時に第1冷媒の組成比が低い冷媒を確実に圧縮機1に供給することが可能になる。
なお、実施の形態1に係る第1冷媒のように反応が起こりやすい冷媒は、異物とも反応して反応生成物(スラッジ)を生じやすい。よって、本冷凍サイクル装置の各熱交換器で熱搬送媒体である水やブラインと熱交換し、搬送媒体を負荷側の熱交換器に搬送する空調システムとしてもよい(チラーや二次ループシステム)。このような空調システムでは、現地で冷凍サイクル装置自体の配管工事等を実施することがないので、冷媒に対する異物管理、水分管理、空気管理といった管理上の手間を大幅に抑止することができる。したがって、第1冷媒の反応を抑制することが可能になる。
また、実施の形態1に係る冷凍サイクル装置では、第1冷媒と第2冷媒の2種類を混合しているが、3種類以上を混合してもよい。その場合第1冷媒は、低沸点成分に属することが必要である。このような組成とすることで、メイン経路の冷媒は第1冷媒の組成比が高く、バイパス経路の冷媒は第1冷媒の組成比が低くなるため反応抑制の効果を同様に得ることができる。
実施の形態2.
はじめに、冷凍サイクル装置の構成について説明する。
実施の形態2に係る冷凍サイクル装置の作動冷媒は、実施の形態1と同一であるため構成上の相違点を説明する。
図3は、実施の形態2に係る冷凍サイクル装置の概略構成図である。
実施の形態2係る冷凍サイクル装置は、図3に示すように、圧縮機11、オイルセパレータ12、四方弁13、室外熱交換器14、室外膨張弁15、室内膨張弁16、室内熱交換器17、四方弁13、アキュームレータ18を順に接続して、冷凍サイクルを形成している。室内膨張弁16及び室内熱交換器17は複数が並列に接続され、オイルセパレータ12のガス側出口12aは、四方弁13に接続されている。また、オイルセパレータ12の油戻し口12bは、バイパス経路19を介して圧縮機1に接続されている。バイパス経路19には、絞り20が配置されている。
冷凍サイクル装置の動作冷媒は、実施の形態1と同様の第1冷媒と第2冷媒とからなる非共沸混合冷媒である。
次に、冷媒の動作について説明する。
はじめに、冷房運転時を説明する。図3に示す四方弁13が実線で接続された状態で運転され、圧縮機11から吐出する冷媒は、高温高圧のガス冷媒となって圧縮機11内部の冷凍機油の一部とともにオイルセパレータ12へ入る。オイルセパレータ12内に入った冷媒は、ガス冷媒と冷凍機油とに分離され、ガス冷媒は四方弁13を通り、室外熱交換器14(凝縮器)で水や空気と熱交換して凝縮し、高圧の液冷媒となる。液冷媒は、室外膨張弁15や室内膨張弁16の少なくとも一方で減圧され低圧の二相状態となる。そして、各室内熱交換器17(蒸発器)で空気や水と熱交換して蒸発し低圧のガス冷媒となり、四方弁13及びアキュームレータ18を通過して、再び圧縮機1に吸引される。オイルセパレータ12で分離された冷凍機油は、油戻し口12bからバイパス経路19、絞り20を通過し圧縮機11に吸入される。
次に、暖房運転時を説明する。図3に示す四方弁13が破線で接続された状態で運転され、圧縮機11から吐出する冷媒は、高温高圧のガス冷媒であり、圧縮機11の内部の冷凍機油の一部とともに、オイルセパレータ12へ入る。オイルセパレータ12内に入った冷媒は、ガス冷媒と冷凍機油とに分離され、ガス冷媒は四方弁13を通り、室内熱交換器17(凝縮器)で水や空気と熱交換して凝縮し、高圧の液冷媒となる。液冷媒は、室内膨張弁16や室外膨張弁15の少なくとも一方で減圧され低圧の二相状態となる。そして、室外熱交換器14(蒸発器)で空気や水と熱交換して蒸発し低圧のガス冷媒となり、四方弁13及びアキュームレータ18を通過して、再び圧縮機1に吸引される。オイルセパレータ12で分離された冷凍機油は、油戻し口12bからバイパス経路19、絞り20を通過し圧縮機11に吸入される。
次に、各膨張弁の動作について説明する。室内膨張弁16は各室内機に適切に(各室内機の負荷に見合った)冷媒流量を調整する。室内空気の吸込み温度と設定温度との差、あるいは、冷房運転時であれば蒸発器出口冷媒の過熱度(=蒸発器出口冷媒温度−蒸発温度)、暖房運転時であれば凝縮器出口冷媒の過冷却度(=凝縮温度−凝縮器出口冷媒温度)などの熱交換器性能を発揮する指標を元に、室内膨張弁16の開度を調整する。
室外膨張弁15は、運転条件ごとに予め定めた開度、あるいは室内膨張弁16と室外膨張弁15との間の中間圧力が所定の中圧(飽和温度)となるように開度を調整する(開度制御の詳細は後述する)。
次に、本実施の形態に係る冷凍サイクル装置の作用について説明する。
オイルセパレータ12では、流入したガス冷媒と冷凍機油が分離される。ここで、第1冷媒の方が第2冷媒よりも沸点が低い(蒸発しやすい)ため、冷凍機油中に溶解する冷媒の第1冷媒の組成比は低くなっている。このため、四方弁13、室外熱交換器14、室内熱交換器17を通過するメイン経路21では、低沸点成分である第1冷媒の組成比が高い状態となる。低沸点冷媒は一般的に性能がよいので、本実施の形態2に係る冷凍サイクル装置の性能は高くなる。
また、冷凍機油は、圧縮機11、オイルセパレータ12、バイパス経路19、圧縮機11の間を循環しており、圧縮機11内部に存在する割合が大きくなっている。
オイルセパレータ12の油戻し口12bより排出された冷凍機油と冷凍機油中に溶解した冷媒は、第1冷媒の組成比が低い状態でバイパス経路19を通過して圧縮機1へ吸入される。圧縮機11の吸入側配管では、メイン経路21とバイパス経路19とが合流し、バイパス経路19の第1冷媒の組成比が低い冷媒がメイン経路21の冷媒に合流するため、メイン経路21での第1冷媒の組成比よりも、合流部以降の第1冷媒の組成比は小さくなる。
次に、本実施の形態に係る冷凍サイクル装置の効果について説明する。
第1冷媒は、高温、高圧環境下で一定のエネルギーが与えられると不均化反応を連続的に起こする可能性があるが、圧縮機11内は、冷媒が高温、高圧となり、摺動部、受電部、モータ等で局所的なエネルギーも発生しやすいため冷凍サイクル装置内で最も安全性が要求される。
実施の形態2に係る冷凍サイクル装置では、上記の構成により圧縮機11の内部での第1冷媒の組成比を低減することが可能となり、第1冷媒の分圧が低下し、反応の連鎖を抑制することができる。また、バイパス経路19は圧縮機11の吸入配管に合流しているため、圧縮機11が低圧シェル、高圧シェルのいずれの場合も、ガラス端子やモータまわりを第1冷媒の組成比が低い環境下とすることが可能で、反応の防止に有効である。
さらに、絞り20が膨張弁のように開度が調整可能な場合には、圧縮機11内部、もしくは吐出冷媒温度が高温、高圧である(反応が起こりやすい)場合に絞り20の開度を増加させることで、圧縮機11内の第1冷媒の組成比を低くして不均化反応を抑制することができる。不均化反応の起こる可能性が高い条件の場合のみ圧縮機11内の第1冷媒の組成比を低減することで、オイルセパレータ12からの不要な冷凍機油のバイパスを低減し、冷凍サイクル装置の性能を改善することができる。
また、実施の形態2に係る冷凍サイクル装置の運転中は、オイルセパレータ12や圧縮機11内の冷凍機油内に第1冷媒の組成比が低い液冷媒が溶解して存在する。この状態から冷凍サイクル装置が停止した後に再起動する際には、オイルセパレータ12からバイパス経路19を通り、圧縮機11へ第1冷媒の組成比が低い冷媒が確実に供給される。起動時に損傷し、局所的なエネルギーが発生しやすい圧縮機11に第1冷媒の組成比が低い冷媒を供給することで反応が起きることを抑制することができる。
同様に、圧縮機11の起動時の絞り20の開度を、通常運転時の開度に比べて大きく設定(例えば最大開度)することで、起動時の第1冷媒の不均化反応をさらに抑制することができる。
次に、冷暖房運転時の各必要冷媒量を増加させるための室外膨張弁15の開度制御について説明する。
冷房運転時は、凝縮器である室外熱交換器14、及び、室外膨張弁15と室内膨張弁16との間の接続配管に液冷媒及び低乾き度の冷媒(高密度冷媒)が存在し、必要冷媒量がほぼ定まる。暖房運転時は、凝縮器である室内熱交換器17、及び、室外膨張弁15と室内膨張弁16との間の接続配管に液冷媒及び低乾き度の冷媒(高密度冷媒)が存在し、必要冷媒量がほぼ定まる。通常なら冷房運転時と暖房運転時とで必要冷媒量が異なり、その差分が余剰冷媒として、冷凍サイクル装置内に滞留する。
特に、蒸発器の出口から圧縮機11に至る経路(アキュームレータ内等)で余剰冷媒が滞留すると、液冷媒中には第1冷媒の組成比が低いので、循環する冷媒の第1冷媒の組成比が高くなる。よって、余剰冷媒が小さくなるように、室外膨張弁15の目標値を設定することで、余剰冷媒を低減し、メイン経路21に循環する第1冷媒の組成比を低くすることが可能となり、冷媒の反応を抑制することができる。
例えば、暖房運転時に室外膨張弁15の開度を小さくすると、室外膨張弁15と室内膨張弁16との間の配管内における中間圧力が増加し(密度増)、必要冷媒量を増加させることができる。逆に開度を大きくすると、室外膨張弁15と室内膨張弁16との間の配管内における中間圧力が低下し(密度減)、必要冷媒量が低下する。
冷房運転時に室外膨張弁15の開度を大きくすると、室外膨張弁15と室内膨張弁16との間の配管内における中間圧力が増加し(密度増)、必要冷媒量を増加させることができる。逆に開度を小さくすると、室外膨張弁15と室内膨張弁16との間の配管内における中間圧力が低下し(密度減)、必要冷媒量が低下する。
なお、室外膨張弁15の開度を変化させても、室内膨張弁16の開度は、前述したように独立して調整されるので、各室内機には負荷に見合った適切な冷媒流量が供給される。
よって、冷房運転時と暖房運転時の室外膨張弁15の制御目標値を適切に設定することで、冷凍サイクル装置内の中間圧力配管内の必要冷媒量が増加し余剰冷媒を低減することが可能となる。
ここで、室外熱交換器の全内容積が室内熱交換器の全内容積よりも大きい場合について説明する。この場合、冷房運転時の凝縮器である室外熱交換器での冷媒量は、暖房運転時の凝縮器である室内熱交換器の冷媒量より大きい。余剰冷媒を発生させない(=冷房と暖房での必要冷媒量を同程度とさせる)ためには、室外膨張弁と室内膨張弁との間の配管の密度(圧力)を、冷房運転時は小さく、暖房運転時は大きくする必要がある。つまり、室外膨張弁の開度を、冷房運転時は小さく、暖房運転時は大きくして、冷房と暖房での必要冷媒量を同程度とさせる。制御目標としては、室外膨張弁開度としてもよい。さらには、室外膨張弁と室内膨張弁の間の位置に圧力センサーを設けて圧力を検知させたり、温度センサーを設けその飽和圧力を図示していない制御装置で演算させ、冷房と暖房の必要冷媒量が同程度となるように、圧力目標値を定めて室外膨張弁開度を操作してもよい。
仮に室外膨張弁15だけで余剰冷媒量を調整できない場合は、凝縮器出口の過冷却度を増減させることで凝縮器内の冷媒量が調整できるため、調整代が拡大し、確実に余剰冷媒を低減することができる。
このように膨張弁を調整することで冷凍サイクル装置を循環する必要冷媒量を増加させ、蒸発器出口から圧縮機11(圧縮機内部を含む)の間で余剰冷媒を低減させることで、圧縮機11内での第1冷媒の組成比が増加することを抑えて反応を抑制する。
実施の形態3.
はじめに、冷凍サイクル装置の構成について説明する。
実施の形態3に係る冷凍サイクル装置の作動冷媒は、実施の形態1と同一であるため構成上の相違点を説明する。
図4は、実施の形態3に係る冷凍サイクル装置の概略構成図である。
実施の形態3係る冷凍サイクル装置は、図4に示すように、圧縮機30、四方弁31、利用側熱交換器32、過冷却器33、第1減圧装置である膨張弁34、熱源側熱交換器35、を順次冷媒配管で接続して構成され、冷凍サイクルユニット100内に収納されている。
また、組成分離回路は、組成分離手段である冷媒精留器40、冷媒を貯留するための冷媒貯留器41、第1冷却器42、第2冷却器43、第2減圧装置である毛細管44、第3減圧装置である毛細管45、開閉弁である第1電磁弁46、第2電磁弁47及び第3電磁弁48で構成され、第1冷却器42と冷媒貯留器41は冷媒精留器40の上部に環状に接続されている。なお、これらは組成分離ユニット200内に収納されている。
これら冷凍サイクルユニット100及び組成分離ユニット200は、第1配管50、第2配管51及び第3配管52の3本の配管で接続され、冷媒回路内を循環する冷媒の組成比を変更可能となるように構成されている。
冷凍サイクル装置内には、第1冷媒として低沸点成分(例えばHFO1123)と第2冷媒として高沸点成分(例えばHFO1234yf等)とからなる2成分で組成された非共沸混合冷媒が特定の組成比である標準組成で充填されている。
冷媒精留器40には、その内部に気液の接触面積を増大させるための充填材が封入されている。また、圧縮機30の吐出側の配管で、圧縮機30と四方弁31とを接続する配管と、冷媒精留器40の下部とは、第1電磁弁46と毛細管44とを介して第1配管50にて接続されている。
また、利用側熱交換器32の出口側と、第1冷却器42と冷媒貯留器41とを接続する配管とは、第2電磁弁47を介して第2配管51にて接続されている。
さらに、圧縮機30の吸入側の配管と、冷媒精留器40の下部とは、第3電磁弁48と毛細管45とを介して第3配管52により接続されている。
このような、冷凍サイクルユニット100と組成分離ユニット200は、それぞれに収容される冷凍サイクル装置と組成分離回路とを第1配管50、第2配管51及び第3配管52によって接続しているので、既存の冷凍サイクルユニット100へ組成分離ユニット200を接続する際、既存の冷凍サイクルユニット100を大幅に変更することなく、接続点数も少ないので、後付の接続が容易である。
また、組成分離回路において、冷媒精留器40は、第2減圧装置である毛細管44と第3減圧装置である毛細管45とを介して冷凍サイクル装置の高圧側と低圧側とに接続されているため、冷媒精留器40は中間圧力で動作する。このため、高圧で動作する場合に比べて、液組成とガス組成との差が大きくなり(非共沸性が大きくなり)、分離効率(液、ガスの濃度差に比例する)を高くすることができる。
次に、上述のように構成された本実施の形態3に係る冷凍サイクル装置の動作をヒートポンプ給湯機を例として説明する。
ヒートポンプ給湯機は、利用側熱交換器32を水熱交換器とし、熱源側熱交換器35を空気熱交換器として駆動される。この場合、熱源側熱交換器35は蒸発器として動作し、利用側熱交換器32は凝縮器として動作する。利用側熱交換器32に流入する被加熱媒体である冷水は冷媒の凝縮潜熱によって加熱されて温水となり、貯湯タンクなどに供給される。また、熱源側熱交換器35に流入する被冷却媒体である空気は冷媒の蒸発潜熱によって冷却された後、外気などへ放出される。
ヒートポンプ給湯機では、夜間に冷凍サイクル装置を稼動し、水道水を給水した貯湯タンク(図示省略)からポンプ(図示省略)により利用側熱交換器32の水熱交換器に水を流し加熱することで貯湯タンク内の水を沸き上げる。
利用者は、沸き上がった貯湯タンクからの温水と給水(水道水)とを混合し、適切温度で使用する。そして、利用量が増えるにつれ、貯湯タンクの湯量は減少するが、渇水状態にならない限り、昼間の補給(給水)は行わない。渇水状態になった場合には、循環冷媒を標準組成とし貯湯タンクに55℃程度の温水を貯めるか、もしくは第2冷媒(高沸点成分)を増加させた組成比として70℃の温水を少量貯湯する等を適宜選択して追い炊き運転をする。
次に、本実施の形態3の冷凍サイクル装置において、冷媒の組成比を変更(本発明の分離貯留モードに相当する)、もしくは、冷媒の組成比を標準組成に戻す(本発明の放流モードに相当する)動作について説明する。
本実施の形態に係る給湯機では、冷凍サイクル装置内を循環する冷媒組成を変更することが可能である。例えば、第2冷媒(高沸点成分)の組成比を増やして高圧圧力上昇を抑制し、高温給湯をすることが可能である。また、第1冷媒(低沸点成分)の組成比を冷凍サイクル装置に戻して標準組成とし、低温加熱能力を向上させることも可能である。
例えば、給湯運転の起動時は早く水温を上げるため、冷凍サイクル装置の循環冷媒を標準組成とし、低温加熱能力を向上させる。そして、ある程度貯湯タンク内の温度が上昇したら(例えば55℃)、循環冷媒の第2冷媒(高沸点成分)の組成比を増加させ、高温(例えば、70℃)となるまで加熱する。その後は、貯湯タンク内の給湯温度の維持を行うが、放熱ロスによる高温(例えば、70℃)からの温度低下分を補うため、第2冷媒(高沸点成分)を増加させた組成比で運転することができる。
はじめに、冷凍サイクル装置内を循環する冷媒の組成比を変更する場合(分離貯留モード)の動作について説明する。
分離貯留モードは、給湯運転時において、冷凍サイクル装置内を循環する冷媒組成の高沸点成分(第2冷媒)を増加させる動作を行う。
四方弁31を実線のように接続し、圧縮機30の吐出部と利用側熱交換器32の入口部が接続されるとともに、熱源側熱交換器35の出口部と圧縮機30の吸入部がそれぞれ接続される。第1配管50の第1電磁弁46と第3配管52の第3電磁弁48とを開とし、第2配管51の第2電磁弁47を閉とする。
この時、圧縮機30を出た高圧のガス冷媒の一部は、第1電磁弁46を通って、冷媒精留器40の下部の入口側に設けられた第2減圧装置である毛細管44で中間圧力まで減圧された後、冷媒精留器40の下部へ流入し、ガス冷媒の一部が冷媒精留器40内を上昇する。
また、冷媒精留器40の上部では、上昇した冷媒蒸気が第1冷却器42に流入し、冷媒精留器40の下部に接続された第3減圧装置である毛細管45を流出した低圧気液二相冷媒によって冷却され、凝縮液化する。凝縮液化した冷媒は冷媒貯留器41に流入し、貯留される。冷媒貯留器41内では流入した液冷媒が徐々に蓄積され、冷媒貯留器41が満液状態となると、オーバーフローした液冷媒が冷媒精留器40の還流液として冷媒精留器40の上部より流入する。
この状態において、冷媒精留器40内では、上昇する蒸気冷媒と、下降する液冷媒とが気液接触を行い、熱および物質の移動が行われ、いわゆる精留作用により、冷媒精留器40内を上昇する蒸気冷媒は徐々に低沸点成分(第1冷媒)が増加し、冷媒貯留器41内に貯留された液冷媒は徐々に低沸点成分(第1冷媒)に富んだ状態となる。
そして、精留の終わった高沸点成分(第2冷媒)に富んだ冷媒は、冷媒精留器40の下部から流出する。この中間圧力の気液二相冷媒は、第2冷却器43に入り液化され、第3減圧装置である毛細管45を経て減圧されたのち、低圧の気液二相冷媒となり、第2冷却器43に戻り、この第2冷却器43で冷媒精留器40の下部から流出した気液二相冷媒を完全に液化(過冷却状態)とさせるとともに、自身は低圧二相(または蒸気)冷媒となる。さらに、この低圧二相(または蒸気)冷媒は、第1冷却器42に入り、冷媒精留器40から出た第1冷媒(低沸点成分)の冷媒蒸気を冷却して液化させ、第3配管52を通って圧縮機30の入口部に流入する。これにより、冷凍サイクル装置内を循環する冷媒組成の低沸点成分(第1冷媒)が減少し、高沸点成分(第2冷媒)が増加する。
次に、冷凍サイクル装置内を循環する冷媒の組成比を標準組成に戻す場合(放流モード)の動作について説明する。
放流モードは、四方弁31を実線のように接続し、圧縮機30の吐出部と利用側熱交換器32の入口部が接続されるとともに、熱源側熱交換器35の出口部と圧縮機30の吸入部がそれぞれ接続される。第1配管50の第1電磁弁46を閉とし、第2配管51に設けた第2電磁弁47及び第3配管52に設けた第3電磁弁48を開とする。
圧縮機30から吐出された高圧のガス冷媒は、四方弁31を経て凝縮器として動作する利用側熱交換器32で凝縮して液化し高圧の液冷媒となり、一部は過冷却器33で過冷却された後、膨張弁34で減圧され、低圧の気液二相冷媒となって蒸発器として動作する熱源側熱交換器35に流入する。この冷媒は、熱源側熱交換器35で蒸発気化し、四方弁31を経て再び圧縮機30へ吸引される。
また、利用側熱交換器32で凝縮した高圧の液冷媒のうち、他の一部は、第2配管51の第2電磁弁47を通過後、冷媒貯留器41を通って冷媒精留器40及び第2冷却器43を通過し、第3減圧装置である毛細管45で低圧の気液二相冷媒となり、第3配管52を通って圧縮機30に吸引される。すなわち、第1電磁弁46を閉とし、第2電磁弁47及び第3電磁弁48を開とし、利用側熱交換器32を出た高圧液冷媒により、冷媒貯留器41の下部から冷媒貯留器41内の低沸点成分(第1冷媒)に富む液冷媒を冷凍サイクル装置内の高沸点成分(第2冷媒)に富む冷媒で押し出し、低沸点成分(第1冷媒)に富む冷媒を冷凍サイクル装置内へ戻すことで、冷媒の組成比を標準組成に戻すことができる
次に、本実施の形態に係る冷凍サイクル装置の効果について説明する。
以上の構成により、分離貯留モードにおいて、冷凍サイクル装置に充填した標準組成の冷媒より低沸点成分(第1冷媒)に富んだ液冷媒が冷媒貯留器41内に貯留され、冷凍サイクル装置内を循環する冷媒の組成比を高沸点成分(第2冷媒)に富んだものとすることができる。
冷媒組成を所定の高沸点成分(第2冷媒)が高い組成比とすることにより、高温給湯時の高圧側の圧力上昇を抑制でき、高温給湯が可能となる。また、高圧側の圧力上昇となれば非共沸混合冷媒が不均化反応を起こす可能性が高くなるが、低沸点冷媒(第1冷媒)の組成比が低下しているため、不均化反応の可能性が抑制される。
これに対して、組成分離ユニット200側の冷媒の組成比は、低沸点冷媒(第1冷媒)の組成が増加する。しかし、組成分離ユニット200には、圧縮機30のような、摺動部や受電部がないため、第1冷媒が不均化反応を起こしにくい条件下に置かれており、安全性が担保される。
そして、冷凍サイクル装置内の冷媒の組成比が所定の高沸点成分(第2冷媒)が高い状態となった後は、第1電磁弁46および第3電磁弁48を閉とし、冷媒の組成比を固定して運転を行う。
一方、給湯機の使用開始時等、低温の水を温める場合は、大きな加熱能力が要求される。この場合には、放流モードにより冷凍サイクル装置内の冷媒の組成比を高沸点成分(第2冷媒)に富む状態から標準組成(充填組成)に戻して運転を行う。
上記の給湯機では、給湯温度の変更に対応するために、冷媒の組成比を組成分離ユニット200により調整したが、実施の形態1と同様に、圧縮機30の内部もしくは吐出冷媒の圧力や温度を測定し、測定値が高温、高圧な場合(反応が起こりやすい)に組成分離ユニット200を分離貯留モードで作動させることができる。作動冷媒の不均化反応が起こりやすい条件のときに、第1冷媒を冷媒貯留器41内に貯留するとともに、圧縮機30の吸引側に第2冷媒の組成比が高い冷媒を供給することで圧縮機30内の第1冷媒の組成比を低く抑え、不均化反応を抑制することができる。
また、冷凍サイクル装置の圧縮機30を停止する前の所定時間、第1電磁弁46と第3電磁弁48とを開として組成分離ユニット200を分離貯留モードで運転することで、冷媒貯留器41に第1冷媒の組成比が高い液冷媒を貯留し、再起動時に損傷し、局所的なエネルギーが発生しやすい圧縮機30に第1冷媒の組成比が低い混合冷媒を供給して、不均化反応を確実に防止することができる。そして、起動から一定時間が経過して冷凍サイクル装置の運転が安定してから放流モードを実行し、冷凍サイクル装置の冷媒の組成比を標準組成に戻すことで加熱能力を確保することが可能になる。
第3配管52の接続部分は、圧縮機30の吸入配管としたため、圧縮機30が低圧シェル、高圧シェルのいずれの場合も、ガラス端子やモータまわりを第1冷媒の組成比が低い環境下とすることが可能で、反応の防止に有効である。一方で第3配管52の接続部分を圧縮機30の圧縮行程の途中にインジェクションすることで特に圧縮過程の高圧部分の第1冷媒の組成比を下げることも可能である。
実施の形態3に係る冷凍サイクル装置では、上記の構成により冷凍サイクルユニット100側の冷凍サイクル装置内で第1冷媒組成を低減することが可能となり、第1冷媒の分圧が低下し、第1冷媒の不均化反応の連鎖を抑制することができる。
なお、実施の形態3では給湯機を例にして説明をしたが、空調装置やチラーなどに当該冷凍サイクル装置を採用することができる。
また、実施の形態3に係る冷凍サイクル装置では、第1冷媒と第2冷媒の2種類を混合しているが、3種類以上を混合してもよい。その場合第1冷媒は、低沸点成分に属することが必要である。このような組成とすることで、メイン経路の冷媒は第1冷媒の組成比が高く、バイパス経路の冷媒は第1冷媒の組成比が低くなるため反応抑制の効果を同様に得ることができる。
以上、実施の形態1〜3について説明したが、本発明は各実施の形態の説明に限定されず、各実施の形態の全て又は一部を組み合わせることも可能である。
例えば、実施の形態1や2に係る冷凍サイクル装置に実施の形態3に係る組成分離ユニット200を採用し、冷凍サイクル装置内の第1冷媒の組成比を調整することが可能である。また。実施の形態3に係る冷凍サイクルユニット100の冷凍サイクル装置として実施の形態1や2に係る冷凍サイクル装置を採用し、空調システム等を構成してもよい。
1 圧縮機、2 第1凝縮器、3 気液分離器、3a ガス側出口、3b 液側出口、4 第2凝縮器(本発明の第3熱交換器に相当)、5 冷媒間熱交換器、6 第1膨張弁、7 蒸発器、8 メイン経路、9 バイパス経路、10 第2膨張弁、11 圧縮機、12 オイルセパレータ、12a ガス側出口、12b 油戻し口、13 四方弁、14 室外熱交換器、15 室外膨張弁(本発明の第3膨張弁に相当)、16 室内膨張弁、17 室内熱交換器、18 アキュームレータ、19 バイパス経路、20 絞り、21 メイン経路、30 圧縮機、31 四方弁、32 利用側熱交換器、33 過冷却器、34 膨張弁、35 熱源側熱交換器、40 冷媒精留器、41 冷媒貯留器、42 第1冷却器、43 第2冷却器、44 毛細管、45 毛細管、46 第1電磁弁、47 第2電磁弁、48 第3電磁弁、50 第1配管、51 第2配管、52 第3配管、100 冷凍サイクルユニット、200 組成分離ユニット。

Claims (7)

  1. 第1冷媒と、同一圧力下において前記第1冷媒よりも沸点の高い特性の第2冷媒と、を少なくとも含む非共沸混合冷媒を標準組成冷媒として作動し、
    圧縮機と、第1熱交換器と、膨張弁と、第2熱交換器と、を順次接続したメイン回路と、
    前記メイン回路に接続された組成分離回路と、を備えた冷凍サイクル装置であって、
    前記第1冷媒は、不均化反応が生じる特性を有し、
    前記組成分離回路は、前記標準組成冷媒の成分を分離する分離貯留モードで運転された時に、前記メイン回路から前記標準組成冷媒に比べて前記第1冷媒の組成比が高い混合冷媒を分離し貯留する構成を有し、
    前記分離貯留モードは、少なくとも前記圧縮機の吐出温度または吐出圧力が高い時に作動することを特徴とする冷凍サイクル装置。
  2. 第1冷媒と、同一圧力下において前記第1冷媒よりも沸点の高い特性の第2冷媒と、を少なくとも含む非共沸混合冷媒を標準組成冷媒として作動し、
    圧縮機と、第1熱交換器と、膨張弁と、第2熱交換器と、を順次接続したメイン回路と、
    前記メイン回路に接続された組成分離回路と、を備えた冷凍サイクル装置であって、
    前記第1冷媒は、不均化反応が生じる特性を有し、
    前記組成分離回路は、前記標準組成冷媒の成分を分離する分離貯留モードで運転された時に、前記メイン回路から前記標準組成冷媒に比べて前記第1冷媒の組成比が高い混合冷媒を分離し貯留する構成を有し、
    前記分離貯留モードは、少なくとも前記圧縮機が停止する前の所定時間作動することを特徴とする冷凍サイクル装置。
  3. 前記組成分離回路は、前記メイン回路の成分を前記標準組成冷媒に戻す放流モードで運転された時に、前記分離貯留モードで前記メイン回路から分離し貯留した前記第1冷媒の組成比が高い混合冷媒を前記メイン回路に流入させる構成を有する請求項1または2に記載の冷凍サイクル装置。
  4. 前記組成分離回路は、前記分離貯留モードで運転された時に前記標準組成冷媒に比べて前記第1冷媒の組成比が高い混合冷媒を分離する冷媒精留器と、前記冷媒精留器で分離した前記混合冷媒を貯留する冷媒貯留器と、を備えた請求項1〜3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記放流モードにおいて、前記冷媒貯留器内に貯留した前記第1冷媒の組成比が高い混合冷媒を前記メイン回路に流入させる接続位置を前記圧縮機の吸入配管とした請求項3または請求項に従属する請求項に記載の冷凍サイクル装置。
  6. 前記放流モードにおいて、前記冷媒貯留器内に貯留した前記第1冷媒の組成比が高い混合冷媒を前記メイン回路に流入させる接続位置を前記圧縮機の圧縮過程の途中とした請求項3または請求項に従属する請求項4または5に記載の冷凍サイクル装置。
  7. 前記第1冷媒は、HFO1123であり、前記第2冷媒は、少なくともR32、HFO1234yf、HFO1234zeのうちの1つ以上を含むことを特徴とする請求項1〜のいずれか1項に記載の冷凍サイクル装置。
JP2016508339A 2014-03-17 2014-03-17 冷凍サイクル装置 Active JP6177424B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057039 WO2015140879A1 (ja) 2014-03-17 2014-03-17 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2015140879A1 JPWO2015140879A1 (ja) 2017-04-06
JP6177424B2 true JP6177424B2 (ja) 2017-08-09

Family

ID=54143905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508339A Active JP6177424B2 (ja) 2014-03-17 2014-03-17 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US20170082333A1 (ja)
EP (1) EP3128257B1 (ja)
JP (1) JP6177424B2 (ja)
CN (1) CN106104172B (ja)
WO (1) WO2015140879A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164604B (zh) * 2014-03-17 2019-01-22 三菱电机株式会社 空气调节装置
EP3885670B1 (en) * 2014-06-27 2023-09-06 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR101839781B1 (ko) * 2015-06-18 2018-03-20 주식회사 엘지화학 열 회수 장치
WO2017145826A1 (ja) * 2016-02-24 2017-08-31 旭硝子株式会社 冷凍サイクル装置
JP6774769B2 (ja) * 2016-03-25 2020-10-28 三菱重工サーマルシステムズ株式会社 冷凍サイクル装置
JP7001346B2 (ja) * 2017-01-30 2022-01-19 ダイキン工業株式会社 冷凍装置
JP6790966B2 (ja) * 2017-03-31 2020-11-25 ダイキン工業株式会社 空気調和装置
CN110709648B (zh) * 2017-06-13 2021-06-22 三菱电机株式会社 空调装置
US11035595B2 (en) * 2017-08-18 2021-06-15 Rolls-Royce North American Technologies Inc. Recuperated superheat return trans-critical vapor compression system
DE102017216361A1 (de) * 2017-09-14 2019-03-14 Weiss Umwelttechnik Gmbh Verfahren zur Konditionierung von Luft
CN107664364A (zh) * 2017-09-25 2018-02-06 珠海格力电器股份有限公司 双温区冷藏车制冷系统
CN107763850B (zh) * 2017-11-07 2023-10-27 南京航空航天大学 制取不低于100℃沸水的方法
JP6994419B2 (ja) * 2018-03-29 2022-01-14 東京エレクトロン株式会社 冷却システム
CN109631433A (zh) * 2018-12-07 2019-04-16 珠海格力电器股份有限公司 一种分离装置
CN111076479A (zh) * 2019-12-05 2020-04-28 合肥晶弘电器有限公司 一种利用非共沸混合制冷剂实现超低温储藏的家用制冷设备
EP3865788A1 (de) * 2020-02-11 2021-08-18 WEISS UMWELTTECHNIK GmbH Kühleinrichtung, prüfkammer und verfahren
JP7216308B2 (ja) * 2021-03-31 2023-02-01 ダイキン工業株式会社 冷凍サイクル装置
CN115031422B (zh) * 2022-05-23 2023-02-07 西安交通大学 可调循环浓度及压力的混合工质节流制冷系统及控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004867B1 (ko) * 1985-03-25 1989-11-30 마쯔시다덴기산교 가부시기가이샤 열펌프장치
JPH07107468B2 (ja) * 1988-06-13 1995-11-15 松下電器産業株式会社 冷凍装置
JPH04113169A (ja) * 1990-09-01 1992-04-14 Nippondenso Co Ltd 冷凍サイクル装置
JPH10267436A (ja) * 1997-01-21 1998-10-09 Mitsubishi Electric Corp 冷凍空調装置
JP3804601B2 (ja) * 2002-11-01 2006-08-02 三菱電機株式会社 非共沸混合冷媒を用いる冷凍サイクル装置
JP4069733B2 (ja) * 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
KR100878819B1 (ko) * 2007-03-02 2009-01-14 엘지전자 주식회사 공기조화기 및 그 제어방법
JP2009300021A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP4569708B2 (ja) * 2008-12-05 2010-10-27 ダイキン工業株式会社 冷凍装置
US8889031B2 (en) * 2010-11-30 2014-11-18 Jx Nippon Oil & Energy Corporation Working fluid composition for refrigerator machine and refrigerating machine oil
BR112013029406B1 (pt) * 2011-05-19 2020-12-15 Agc Inc Meio de trabalho para o ciclo do calor e sistema de ciclo do calor
EP2711406B1 (en) * 2011-05-19 2017-07-19 Asahi Glass Company, Limited Working medium and heat-cycle system
US9751384B2 (en) * 2011-11-24 2017-09-05 Calsonic Kansei Corporation Gas compressor with discharge section and sub-discharge section
BR112015003481B1 (pt) * 2012-08-27 2021-08-24 Daikin Industries, Ltd Dispositivo de refrigeração
WO2015140887A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
US9915436B1 (en) * 2015-01-20 2018-03-13 Ralph Feria Heat source optimization system

Also Published As

Publication number Publication date
EP3128257A1 (en) 2017-02-08
EP3128257B1 (en) 2020-04-22
JPWO2015140879A1 (ja) 2017-04-06
CN106104172A (zh) 2016-11-09
EP3128257A4 (en) 2018-04-04
WO2015140879A1 (ja) 2015-09-24
CN106104172B (zh) 2019-05-28
US20170082333A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6177424B2 (ja) 冷凍サイクル装置
JP6279069B2 (ja) 冷凍サイクル装置
JP5627713B2 (ja) 空気調和装置
KR20150076775A (ko) 이원 냉동 시스템
CN214039017U (zh) 空调装置和室外机
JP5990973B2 (ja) 空気調和機
JP2009036508A (ja) 過冷却装置
JP3804601B2 (ja) 非共沸混合冷媒を用いる冷凍サイクル装置
JP4042064B2 (ja) 非共沸混合冷媒を用いる冷凍サイクル装置
JP4000509B2 (ja) 非共沸混合冷媒を用いる冷凍サイクル装置
JP2009024998A (ja) 過冷却装置
JP5193450B2 (ja) 過冷却装置
JP5253489B2 (ja) 非共沸混合冷媒を用いた冷凍サイクル装置
JP2008082676A (ja) 過冷却装置
JP3978660B2 (ja) 非共沸混合冷媒を用いる冷凍サイクル装置
JP2009024997A (ja) 過冷却装置
JP2008309486A (ja) 過冷却装置
JP2006177581A (ja) 非共沸混合冷媒を用いた冷凍サイクル装置
JP2009041904A (ja) 過冷却装置
JP2008309475A (ja) 過冷却装置
JP2008309473A (ja) 過冷却装置
JP2008309476A (ja) 過冷却装置
JP2008309470A (ja) 過冷却装置
JP2008309472A (ja) 過冷却装置
JP2008309471A (ja) 過冷却装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250