WO2021241108A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2021241108A1
WO2021241108A1 PCT/JP2021/016678 JP2021016678W WO2021241108A1 WO 2021241108 A1 WO2021241108 A1 WO 2021241108A1 JP 2021016678 W JP2021016678 W JP 2021016678W WO 2021241108 A1 WO2021241108 A1 WO 2021241108A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control
outdoor unit
outdoor
control device
Prior art date
Application number
PCT/JP2021/016678
Other languages
English (en)
French (fr)
Inventor
尚輝 前川
明広 重田
俊一 橋本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21814271.9A priority Critical patent/EP4160118A4/en
Publication of WO2021241108A1 publication Critical patent/WO2021241108A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Definitions

  • the present invention relates to an air conditioning system.
  • Patent Document 1 discloses a method in which a refrigerant is stored in an outdoor unit by a pump-down operation and the stored refrigerant is recovered by a refrigerant recovery machine.
  • Patent Document 1 when the air conditioner is filled with a refrigerant exceeding the amount that can be stored in the outdoor unit, the air conditioner is filled because the refrigerant is recovered from the refrigerant recovery machine without performing the pump down operation.
  • the purpose is to provide.
  • the present invention comprises an indoor unit, an air conditioner having a plurality of outdoor units connected to the indoor unit, and a control unit for controlling the air conditioner.
  • the control unit causes one of the outdoor units to perform a pump-down operation, and the other outdoor unit is brought into a state where the refrigerant is recovered by the refrigerant recovery machine, and the first control.
  • the outdoor unit that executes the pump-down operation in the first control is brought into a state where the refrigerant is recovered by the refrigerant recovery machine, and the outdoor unit that causes the refrigerant to be recovered in the first control is made to execute the pump-down operation. It is characterized in that control and execution are performed alternately.
  • this specification shall include all the contents of the Japanese patent application / Japanese Patent Application No. 2020-094409 filed on May 29, 2020.
  • the refrigerant can be quickly recovered by using the pump-down operation of the outdoor unit.
  • FIG. 1 is a diagram showing a configuration of an air conditioning system according to the first embodiment.
  • FIG. 2 is a block diagram showing a control device, an outdoor unit, and a control configuration of the indoor unit.
  • FIG. 3 is a flowchart showing the operation of the control device.
  • FIG. 4 is a flowchart showing the operation of the control device in the first process.
  • FIG. 5 is a flowchart showing the operation of the control device in the second process.
  • FIG. 6 is a flowchart showing the operation of the control device in the third process.
  • FIG. 7 is a diagram showing a configuration of an air conditioning system according to a second embodiment.
  • FIG. 8 is a flowchart showing the operation of the control device.
  • the first invention is an air conditioning system including an indoor unit, an air conditioning device having a plurality of outdoor units connected to the indoor unit, and a control unit for controlling the air conditioning device.
  • the unit has a first control in which one of the outdoor units is made to execute a pump-down operation and the other outdoor unit is brought into a state where the refrigerant is recovered by the refrigerant recovery machine, and a pump-down operation in the first control.
  • the outdoor unit is brought into a state where the refrigerant is recovered by the refrigerant recovery machine, and the second control for causing the outdoor unit to execute a pump-down operation in the first control is alternately performed. It is characterized by executing.
  • any of the other outdoor units is used as a refrigerant recovery machine. Allows the refrigerant to be recovered. Therefore, the air conditioning system can quickly recover the refrigerant by using the pump-down operation of the outdoor unit even when the air conditioning device is filled with the refrigerant exceeding the amount that can be stored in the outdoor unit.
  • the outdoor unit includes a compressor and a high pressure sensor that detects the pressure of the refrigerant discharged by the compressor, and the control unit has a detection value of the high pressure sensor exceeding a predetermined threshold value.
  • the execution of the first control and the execution of the second control are switched. According to this, it is possible to switch the outdoor unit that executes the pump-down operation before the influence of the refrigerant stored in the pump-down operation occurs on the discharge side of the compressor. Therefore, even if the air conditioner is filled with more refrigerant than the outdoor unit can store, the air conditioning system switches the control before the outdoor unit exceeds the pump-down capacity to pump the outdoor unit. Refrigerant recovery can be performed quickly by using the down operation.
  • the outdoor unit includes a compressor and a low pressure sensor that detects the pressure of the refrigerant flowing into the compressor, and the control unit has a control unit in which the detection value of the low pressure sensor is equal to or less than a predetermined threshold value.
  • the control unit when the number of the outdoor units included in the air conditioner is three or more, the control unit has two or more outdoor units in descending order of the capacity of the outdoor units, the first control and the second control. It is characterized in that the outdoor unit to execute the pump-down operation is selected by any one, and the first control and the second control are executed by two or more selected outdoor units. According to this, when the air conditioner includes three or more outdoor units, the outdoor unit capable of storing the refrigerant can be made to execute the pump-down operation more quickly. Therefore, when the air conditioner includes three or more outdoor units, the refrigerant can be recovered quickly and efficiently by using the pump-down operation of the outdoor units.
  • FIG. 1 is a diagram showing a configuration of an air conditioning system 1 according to the first embodiment.
  • Air conditioning system 1 is a system installed in facilities such as large buildings and schools. As shown in FIG. 1, the air conditioning system 1 includes an air conditioning device 2 and a control device 3.
  • the air conditioner 2 includes two outdoor units 4 of a first outdoor unit 4A and a second outdoor unit 4B, and two indoor units 5.
  • the first outdoor unit 4A and the second outdoor unit 4B are similarly configured including the control configuration. Therefore, in the following description, when the corresponding components in the first outdoor unit 4A and the second outdoor unit 4B are not distinguished, the first and second identifiers are omitted from the names of the components, and the components are described. As for the code, only numbers are used and the subscripts A and B are omitted. For example, when the first compressor 40A and the second compressor 40B are not distinguished, it is expressed as "compressor 40". Further, for example, when the first outdoor unit control unit 400A and the second outdoor unit control unit 400B are not distinguished, it is expressed as "outdoor unit control unit 400".
  • the first identifier is added to the name of the component of the first outdoor unit 4A, and the code is subscripted. A is added, the second identifier is added to the name of the component of the second outdoor unit 4B, and the subscript B is added to the code.
  • the components of the first outdoor unit 4A and the second outdoor unit 4B are designated with reference numerals so as to be distinguishable.
  • Each of the indoor units 5 is connected in parallel to the two outdoor units 4 by the refrigerant pipes 101 and 102.
  • the air conditioner 2 the refrigeration cycle is formed by the two outdoor units 4, the two indoor units 5, and the refrigerant pipes 101 and 102. Then, the air conditioner 2 circulates the refrigerant compressed by the outdoor unit 4 between the outdoor unit 4 and the indoor unit 5, and air-conditions the harmonious room in which the indoor unit 5 is installed by the indoor unit 5.
  • the outdoor unit 4 includes a compressor 40, a gas-liquid separator 41, a four-way valve 42, an outdoor heat exchanger 44 having an outdoor blower fan 43, and a solenoid valve 45.
  • a gas-liquid separator 41 that supplies gas refrigerant to the compressor 40 is connected to the suction side of the compressor 40, and a four-way valve 42 is connected to the discharge side of the compressor 40.
  • An outdoor heat exchanger 44 provided with an outdoor blower fan 43 is connected to the four-way valve 42.
  • the outdoor heat exchanger 44 is configured to exchange heat between the air sent by the outdoor blower fan 43 and the refrigerant.
  • a solenoid valve 45 is connected to the outdoor blower fan 43.
  • the solenoid valve 45 is arranged in the refrigerant pipe 101.
  • the outdoor unit 4 includes a high voltage sensor 46 and a low voltage sensor 47.
  • the high pressure sensor 46 is provided between the compressor 40 and the outdoor heat exchanger 44 on the discharge side of the compressor 40, and detects the pressure of the refrigerant discharged by the compressor 40.
  • the high voltage sensor 46 outputs the detected value to the outdoor unit control unit 400.
  • the low pressure sensor 47 is provided between the compressor 40 and the gas-liquid separator 41 on the suction side of the compressor 40, and detects the pressure of the refrigerant flowing into the compressor 40.
  • the low pressure sensor 47 outputs the detected value to the outdoor unit control unit 400.
  • the indoor unit 5 includes an indoor heat exchanger 51 equipped with an indoor blower fan 50 and an indoor expansion valve 52. One end of the indoor expansion valve 52 is connected to the indoor heat exchanger 51, and the other end is connected to the refrigerant pipe 101.
  • One refrigerant recovery machine 6 is connected to the refrigerant pipe 101.
  • the refrigerant recovery machine 6 recovers the refrigerant from the air conditioner 2 by recovering the refrigerant from the refrigerant pipe 101.
  • the control device 3 is a device that controls the air conditioner 2.
  • the control device 3 of the present embodiment controls the outdoor unit 4 included in the air conditioner 2.
  • FIG. 2 is a block diagram showing a control configuration of the control device 3, the outdoor unit 4, and the indoor unit 5.
  • the control device 3 includes a control device control unit 30, a control device communication unit 31, a control device input unit 32, and a control device display unit 33.
  • the control device control unit 30 includes a control device processor 310, which is a processor that executes programs such as a CPU and an MPU, and a control device storage unit 320, and controls each unit of the control device 3.
  • the control device control unit 30 executes various processes in cooperation with hardware and software so that the control device processor 310 reads out the control program 321 stored in the control device storage unit 320 and executes the processes.
  • the control device storage unit 320 has a storage area for storing a program executed by the control device processor 310 and data processed by the control device processor 310.
  • the control device storage unit 320 stores a control program executed by the control device processor 310, setting data related to various settings of the control device 3, and other various data.
  • the control device storage unit 320 has a non-volatile storage area for storing programs and data in a non-volatile manner. Further, the control device storage unit 320 may include a volatile storage area and may form a work area for temporarily storing a program executed by the control device processor 310 and data to be processed.
  • the control device communication unit 31 is configured by communication hardware according to a predetermined communication standard, and communicates with each of the first outdoor unit 4A and the second outdoor unit 4B under the control of the control device control unit 30.
  • the control device input unit 32 includes an operation switch provided in the control device 3 and input means such as a touch panel, a mouse, and a keyboard, detects an operation on the user's input means, and outputs the detection result to the control device control unit 30. do.
  • the control device control unit 30 executes a process corresponding to an operation on the input means based on the input from the control device input unit 32.
  • the control device display unit 33 includes an LED, a display panel, and the like, and, according to the control of the control device control unit 30, turns on / blinks / turns off the LED in a predetermined mode, displays information on the display panel, and the like.
  • the outdoor unit 4 includes an outdoor unit control unit 400.
  • the outdoor unit control unit 400 includes an outdoor unit processor 410, which is a processor that executes programs such as a CPU and an MPU, and an outdoor unit storage unit 420, and controls each unit of the outdoor unit 4.
  • the outdoor unit control unit 400 executes various processes in cooperation with hardware and software so that the outdoor unit processor 410 reads the control program stored in the outdoor unit storage unit 420 and executes the process.
  • the outdoor unit storage unit 420 has a storage area for storing a program executed by the outdoor unit processor 410 and data processed by the outdoor unit processor 410.
  • the outdoor unit storage unit 420 stores a control program executed by the outdoor unit processor 410, setting data for making various settings of the outdoor unit 4, and other various data.
  • the outdoor unit storage unit 420 has a non-volatile storage area for storing programs and data in a non-volatile manner. Further, the outdoor unit storage unit 420 may have a volatile storage area and may form a work area for temporarily storing the program executed by the outdoor unit processor 410 and the data to be processed.
  • a compressor 40, a four-way valve 42, an outdoor blower fan 43, a high pressure sensor 46, and a low pressure sensor 47 are connected to the outdoor unit control unit 400.
  • the outdoor unit control unit 400 drives and controls the compressor 40, the four-way valve 42, the outdoor blower fan 43, and the solenoid valve 45 based on the detection values of the high pressure sensor 46 and the low pressure sensor 47. Further, the outdoor unit control unit 400 drives and controls the compressor 40, the four-way valve 42, the outdoor blower fan 43, and the solenoid valve 45 based on the control signal received from the control device 3. Further, the outdoor unit control unit 400 transmits the detection values output by the high voltage sensor 46 and the low voltage sensor 47 to the control device 3 by the outdoor unit communication unit 401.
  • the outdoor unit 4 includes an outdoor unit communication unit 401.
  • the outdoor unit communication unit 401 is configured by communication hardware according to a predetermined communication standard, and communicates with the control device 3 and the indoor unit 5 under the control of the outdoor unit control unit 400.
  • the indoor unit 5 includes an indoor unit control unit 500.
  • the indoor unit control unit 500 includes an indoor unit processor 510, which is a processor that executes programs such as a CPU and an MPU, and an indoor unit storage unit 520, and controls each unit of the indoor unit 5.
  • the indoor unit control unit 500 executes various processes in cooperation with hardware and software so that the indoor unit processor 510 reads the control program stored in the indoor unit storage unit 520 and executes the processes.
  • the indoor unit storage unit 520 has a storage area for storing a program executed by the indoor unit processor 510 and data processed by the indoor unit processor 510.
  • the indoor unit storage unit 520 stores a control program executed by the indoor unit processor 510, setting data related to various settings of the indoor unit 5, and other various data.
  • the indoor unit storage unit 520 has a non-volatile storage area for storing programs and data in a non-volatile manner. Further, the indoor unit storage unit 520 may have a volatile storage area and may form a work area for temporarily storing the program executed by the indoor unit processor 510 and the data to be processed.
  • An indoor blower fan 50 and an indoor expansion valve 52 are connected to the indoor unit control unit 500.
  • the indoor unit control unit 500 executes drive control of the indoor blower fan 50 and the indoor expansion valve 52 based on the control signal received from the outdoor unit 4 and the control signal received from the remote controller (not shown).
  • the indoor unit communication unit 501 is configured by communication hardware according to a predetermined communication standard, and communicates with the outdoor unit 4 under the control of the indoor unit control unit 500. Further, the indoor unit communication unit 501 includes communication hardware having a communication standard for communicating with the remote controller (not shown) in addition to the communication hardware having a communication standard for communicating with the outdoor unit 4, and communicates with the remote controller.
  • FIG. 3 is a flowchart showing the operation of the control device 3.
  • the control device control unit 30 determines whether or not to shift the operation mode of the control device 3 to the refrigerant recovery mode (step SA1).
  • the refrigerant recovery mode is an operation mode related to recovery of the refrigerant filled in the air conditioner 2. For example, when the control device input unit 32 receives an operation instructing the start of the refrigerant recovery by the refrigerant recovery machine 6, the control device control unit 30 shifts the operation mode of the control device 3 to the refrigerant recovery mode in step SA1. It is determined to let it.
  • step SA2 When the control device control unit 30 determines that the operation mode of the control device 3 is to be shifted to the refrigerant recovery mode (step SA1: YES), the control device 3 is shifted from the mode other than the refrigerant recovery mode to the refrigerant recovery mode. (Step SA2).
  • control device control unit 30 executes the first process (step SA3).
  • FIG. 4 is a flowchart showing the operation of the control device 3 in the first process.
  • the control device control unit 30 shifts the first solenoid valve 45A to the closed state (step SB1).
  • step SB1 the control device control unit 30 transmits a control signal for shifting the first solenoid valve 45A to the closed state to the first outdoor unit 4A by the control device communication unit 31.
  • the first outdoor unit control unit 400A receives the control signal by the first outdoor unit communication unit 401A
  • the first solenoid valve 45A shifts the first solenoid valve 45A to the closed state.
  • the control device control unit 30 transmits the same control signal to the first outdoor unit 4A.
  • the control device control unit 30 shifts the first four-way valve 42A to the cooling cycle state (step SB2).
  • step SB2 the control device control unit 30 transmits a control signal for shifting the first four-way valve 42A to the cooling cycle state to the first outdoor unit 4A by the control device communication unit 31.
  • the first outdoor unit control unit 400A receives the control signal by the first outdoor unit communication unit 401A, the first four-way valve 42A shifts to the cooling cycle state.
  • the control device control unit 30 drives the first compressor 40A (step SB3).
  • step SB3 the control device control unit 30 transmits a control signal for driving the first compressor 40A to the first outdoor unit 4A by the control device communication unit 31.
  • the first outdoor unit control unit 400A receives the control signal by the first outdoor unit communication unit 401A
  • the first outdoor unit control unit 400A drives the first compressor 40A.
  • the control device control unit 30 drives the first compressor 40A by transmitting the same control signal to the first outdoor unit 4A.
  • the control device control unit 30 drives the first compressor 40A in step SB3 to cause the first outdoor unit 4A to perform a pump-down operation.
  • the first outdoor unit 4A stores the refrigerant filled in the air conditioner 2 in the section between the first compressor 40A and the first solenoid valve 45A in the refrigerant pipe 101. ..
  • the control device control unit 30 determines whether or not the detected value of the first high voltage sensor 46A exceeds a predetermined threshold value (step SB4).
  • This predetermined threshold value is appropriately set by a preliminary test, simulation, or the like from the viewpoint of preventing the discharge side of the first compressor 40A from being affected by the pump-down operation.
  • step SB4 determines that the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SB4: NO)
  • the control device control unit 30 executes the process of step SB4 again.
  • step SB4 determines that the detected value of the first high voltage sensor 46A exceeds a predetermined threshold value (step SB4: YES)
  • the control device control unit 30 stops the drive of the first compressor 40A (step SB5). That is, the control device control unit 30 causes the first outdoor unit 4A to stop the execution of the pump-down operation.
  • step SB5 the control device control unit 30 transmits a control signal for stopping the drive of the first compressor 40A to the first outdoor unit 4A by the control device communication unit 31.
  • the first outdoor unit control unit 400A receives the control signal by the first outdoor unit communication unit 401A
  • the first outdoor unit control unit 400A stops driving the first compressor 40A.
  • the control device control unit 30 stops the drive of the first compressor 40A by transmitting the same control signal to the first outdoor unit 4A.
  • control device control unit 30 shifts the second solenoid valve 45B to the closed state and shifts the indoor expansion valve 52 to the closed state (step SB6).
  • step SB6 the control device control unit 30 transmits a control signal for shifting the second solenoid valve 45B to the closed state by the control device communication unit 31 to the second outdoor unit 4B.
  • the second outdoor unit control unit 400B receives the control signal by the second outdoor unit communication unit 401B
  • the second solenoid valve 45B shifts the second solenoid valve 45B to the closed state.
  • the control device control unit 30 transmits the same control signal to the second outdoor unit 4B to shift the second solenoid valve 45B to the closed state.
  • step SB6 the control device control unit 30 transmits a control signal for shifting the indoor expansion valve 52 to the closed state by the control device communication unit 31 to the outdoor unit 4.
  • the outdoor unit control unit 400 receives the control signal by the outdoor unit communication unit 401
  • the outdoor unit control unit 400 transmits the control signal to all the indoor units 5.
  • the indoor unit control unit 500 receives the control signal from the indoor unit communication unit 501
  • the indoor unit control unit 500 shifts the indoor expansion valve 52 to the closed state.
  • control device control unit 30 opens the first solenoid valve 45A (step SB7).
  • step SB7 the control device control unit 30 transmits a control signal for shifting the first solenoid valve 45A to the open state to the first outdoor unit 4A by the control device communication unit 31.
  • the first outdoor unit control unit 400A receives the control signal by the first outdoor unit communication unit 401A
  • the first solenoid valve 45A shifts the first solenoid valve 45A to the open state.
  • the control device control unit 30 transmits the same control signal to the first outdoor unit 4A.
  • step SB7 When the first solenoid valve 45A is opened in step SB7, the first outdoor unit 4A is pumped down in the section from the first compressor 40A in the refrigerant pipe 101 to the indoor expansion valve 52 and the second solenoid valve 45B. The refrigerant stored during operation is released. The released refrigerant is recovered by the refrigerant recovery machine 6 connected to the refrigerant pipe 101.
  • the control device control unit 30 shifts the second four-way valve 42B to the cooling cycle state (step SB8).
  • step SB8 the control device control unit 30 transmits a control signal for shifting the second four-way valve 42B to the cooling cycle state by the control device communication unit 31 to the second outdoor unit 4B.
  • the second outdoor unit control unit 400B receives the control signal by the second outdoor unit communication unit 401B, the second four-way valve 42B shifts to the cooling cycle state.
  • control device control unit 30 drives the second compressor 40B (step SB9).
  • step SB9 the control device control unit 30 transmits a control signal for driving the second compressor 40B to the second outdoor unit 4B by the control device communication unit 31.
  • the second outdoor unit control unit 400B receives the control signal by the second outdoor unit communication unit 401B
  • the second outdoor unit control unit 400B drives the second compressor 40B.
  • the control device control unit 30 drives the second compressor 40B by transmitting the same control signal to the second outdoor unit 4B.
  • the control device control unit 30 drives the second compressor 40B in step SB9 to cause the second outdoor unit 4B to execute the pump-down operation.
  • the second outdoor unit 4B stores the refrigerant filled in the air conditioner 2 in the section between the second compressor 40B and the second solenoid valve 45B in the refrigerant pipe 101. ..
  • the control device control unit 30 determines whether or not the detected value of the second high voltage sensor 46B exceeds a predetermined threshold value (step SB10).
  • This predetermined threshold value is appropriately set by a preliminary test, simulation, or the like from the viewpoint of preventing the influence of the pump-down operation from occurring on the discharge side of the second compressor 40B.
  • step SB10 determines that the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SB10: NO)
  • the control device control unit 30 executes the process of step SB10 again.
  • step SB10 determines that the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SB10: YES)
  • the control device control unit 30 stops the second compressor 40B (step SB11). That is, the second outdoor unit 4B stops the execution of the pump down operation.
  • step SB11 the control device control unit 30 transmits a control signal for stopping the drive of the second compressor 40B to the second outdoor unit 4B by the control device communication unit 31.
  • the second outdoor unit control unit 400B receives the control signal from the second outdoor unit communication unit 401B
  • the second outdoor unit control unit 400B stops driving the second compressor 40B.
  • the control device control unit 30 stops the drive of the second compressor 40B by transmitting the same control signal to the second outdoor unit 4B.
  • the control device control unit 30 determines whether or not the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SB12).
  • This predetermined threshold value may be the same value as the predetermined threshold value to be compared with the detected value in step SB4, or may be a different value.
  • This predetermined threshold value is appropriately determined by a preliminary test, simulation, or the like based on the same viewpoint as the predetermined threshold value to be compared in step SB4.
  • step SB12 determines that the detected value of the first high voltage sensor 46A exceeds a predetermined threshold value (step SB12: NO)
  • the control device control unit 30 executes the process of step SB12 again.
  • control device control unit 30 determines that the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SB12: YES)
  • the control device control unit 30 shifts the first solenoid valve 45A to the closed state (step SB13). ..
  • control device control unit 30 shifts the second solenoid valve 45B to the open state (step SB14).
  • step SB14 the control device control unit 30 transmits a control signal for shifting the second solenoid valve 45B to the open state to the second outdoor unit 4B by the control device communication unit 31.
  • the second outdoor unit control unit 400B receives the control signal by the second outdoor unit communication unit 401B
  • the second solenoid valve 45B shifts the second solenoid valve 45B to the open state.
  • the control device control unit 30 transmits the same control signal to the second outdoor unit 4B.
  • step SB14 When the second solenoid valve 45B is opened in step SB14, the second outdoor unit 4B is pumped down in the section from the second compressor 40B in the refrigerant pipe 101 to the indoor expansion valve 52 and the first solenoid valve 45A. The refrigerant stored during operation is released. The released refrigerant is recovered by the refrigerant recovery machine 6.
  • control device control unit 30 executes the second process after the execution of the first process.
  • FIG. 5 is a flowchart showing the operation of the control device 3 in the second process.
  • the control device control unit 30 drives the first compressor 40A (step SC1). That is, the control device control unit 30 causes the first outdoor unit 4A to execute the pump-down operation.
  • step SC1 the second outdoor unit 4B is in a state where the second compressor 40B is stopped and the second solenoid valve 45B is in the open state. That is, in step SC2, the second outdoor unit 4B is in a state where the refrigerant stored by the pump down operation is recovered by the refrigerant recovery machine 6. Therefore, in step SC1, the control device control unit 30 causes the first outdoor unit 4A to execute the pump-down operation while the second outdoor unit 4B is in a state where the refrigerant is recovered.
  • the control of causing the first outdoor unit 4A to execute the pump-down operation and putting the second outdoor unit 4B in a state where the refrigerant is recovered by the refrigerant recovery machine 6 corresponds to an example of the first control.
  • the control device control unit 30 determines whether or not the detected value of the first high voltage sensor 46A exceeds a predetermined threshold value (step SC2).
  • This predetermined threshold value may be the same value as or different from the predetermined threshold value to be compared with the detected value in step SB4.
  • This predetermined threshold value is appropriately determined by a preliminary test, simulation, or the like based on the same viewpoint as the predetermined threshold value of the comparison target in step SB4.
  • step SC2 determines that the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SC2: NO), the process of step SC2 is executed again.
  • step SC2 determines that the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SC2: YES)
  • the control device control unit 30 stops the drive of the first compressor 40A (step SC3). That is, the control device control unit 30 also stops the execution of the pump-down operation of the first outdoor unit 4A.
  • control device control unit 30 determines whether or not the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SC4).
  • This predetermined threshold value may be the same value as or different from the predetermined threshold value to be compared with the detected value in step SB10.
  • This predetermined threshold value is appropriately determined by a preliminary test, simulation, or the like based on the same viewpoint as the predetermined threshold value of the comparison target in step SB10.
  • step SC4 determines that the detected value of the second high voltage sensor 46B exceeds a predetermined threshold value (step SC4: NO).
  • step SC4 determines that the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SC4: YES)
  • the control device control unit 30 shifts the second solenoid valve 45B to the closed state (step SC5). ..
  • control device control unit 30 shifts the first solenoid valve 45A to the open state (step SC6).
  • the refrigerant stored in the pump down operation of the first outdoor unit 4A is released in the section from the first compressor 40A to the indoor expansion valve 52 and the second solenoid valve 45B in the refrigerant pipe 101.
  • the released refrigerant is recovered by the refrigerant recovery machine 6.
  • the control device control unit 30 drives the second compressor 40B (step SC7). That is, the control device control unit 30 causes the second outdoor unit 4B to execute the pump-down operation.
  • step SC7 the first outdoor unit 4A is in a state where the first compressor 40A is stopped and the first solenoid valve 45A is in the open state. That is, in step SC7, the first outdoor unit 4A is in a state where the refrigerant stored by the pump down operation is recovered by the refrigerant recovery machine 6. Therefore, in step SC7, the control device control unit 30 causes the second outdoor unit 4B to execute the pump-down operation while the first outdoor unit 4A is in a state where the refrigerant is recovered.
  • the control of causing the second outdoor unit 4B to perform the pump-down operation and setting the first outdoor unit 4A in a state where the refrigerant is recovered by the refrigerant recovery machine 6 corresponds to an example of the second control.
  • the control device control unit 30 determines whether or not the detected value of the second high voltage sensor 46B exceeds a predetermined threshold value (step SC8).
  • This predetermined threshold value may be the same value as or different from the predetermined threshold value to be compared with the detected value in step SB10.
  • This predetermined threshold value is appropriately determined by a preliminary test, simulation, or the like based on the same viewpoint as the predetermined threshold value of the comparison target in step SB10.
  • step SC8 determines that the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SC8: NO)
  • the control device control unit 30 executes the process of step SC8 again.
  • step SC8 determines that the detected value of the second high voltage sensor 46B is equal to or less than a predetermined threshold value (step SC8: YES)
  • the control device control unit 30 stops the driving of the second compressor 40B (step SC9). That is, the second outdoor unit 4B stops the execution of the pump down operation.
  • the control device control unit 30 determines whether or not the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SC10).
  • This predetermined threshold value may be the same value as or different from the predetermined threshold value to be compared with the detected value in step SB4.
  • This predetermined threshold value is appropriately determined by a preliminary test, simulation, or the like based on the same viewpoint as the predetermined threshold value of the comparison target in step SB4.
  • step SC10 determines that the detected value of the first high voltage sensor 46A exceeds a predetermined threshold value (step SC10: NO).
  • step SC10 determines that the detected value of the first high voltage sensor 46A is equal to or less than a predetermined threshold value (step SC10: YES)
  • the control device control unit 30 shifts the first solenoid valve 45A to the closed state (step SC11). ..
  • control device control unit 30 shifts the second solenoid valve 45B to the open state (step SC12).
  • the control device control unit 30 determines whether or not the detected value of the first low voltage sensor 47A or the second low voltage sensor 47B is equal to or less than a predetermined threshold value. Discrimination (step SA5). This predetermined threshold value is appropriately set by a preliminary test, a simulation, or the like, based on the viewpoint of whether or not the refrigerant in the area on the side recovered by the outdoor unit 4 is exhausted by the pump down operation.
  • step SA5 NO
  • the control device control unit 30 executes the second process again (step SA4). .. That is, the control device control unit 30 repeats the execution of the second process until the refrigerant filled in the air conditioner 2 is recovered by the refrigerant recovery machine 6.
  • step SA6 when the control device control unit 30 determines that the detected value of the first low voltage sensor 47A or the second low voltage sensor 47B is equal to or less than a predetermined threshold value (step SA5: NO), the control device control unit 30 executes the third process (step SA6). ..
  • FIG. 6 is a flowchart showing the operation of the control device 3 in the third process.
  • the control device control unit 30 stops the drive of the first compressor 40A and stops the drive of the second compressor 40B (step SD1).
  • the control device control unit 30 shifts the first solenoid valve 45A to the open state and shifts the second solenoid valve 45B to the open state (step SD2).
  • the air conditioning system 1 includes an indoor unit 5, an air conditioning device 2 having a plurality of outdoor units 4 connected to the indoor unit 5, and a control device control unit 30 for controlling the air conditioning device 2. And.
  • the control device control unit 30 causes one of the outdoor units 4 to perform a pump-down operation, and causes the other outdoor unit 4 to be in a state where the refrigerant is recovered by the refrigerant recovery machine 6, and the first control.
  • the pump-down operation is executed in which the outdoor unit 4 for executing the pump-down operation is set to the state in which the refrigerant is recovered by the refrigerant recovery machine 6, and the outdoor unit 4 is set to the state in which the refrigerant is recovered in the first control.
  • the pump-down operation is executed. Are executed alternately.
  • the pump-down operation can be executed by the plurality of outdoor units 4, and when any of the outdoor units 4 is executing the pump-down operation, the other outdoor unit 4 is executed in parallel. Can be in a state where the refrigerant is recovered by the refrigerant recovery machine 6. Therefore, the air conditioning system 1 can quickly recover the refrigerant by using the pump-down operation of the outdoor unit 4 even when the air conditioning device 2 is filled with the refrigerant exceeding the amount that can be stored in the outdoor unit 4. can.
  • the outdoor unit 4 includes a compressor 40 and a high-pressure sensor 46 that detects the pressure of the refrigerant discharged by the compressor 40.
  • the control device control unit 30 switches between the execution of the first control and the execution of the second control when the detected value of the high voltage sensor 46 exceeds a predetermined threshold value.
  • the outdoor unit 4 that executes the pump-down operation can be switched before the influence of the refrigerant stored in the pump-down operation occurs on the discharge side of the compressor 40. Therefore, even if the air conditioning device 2 is filled with a refrigerant exceeding the amount that can be stored in the outdoor unit 4, the air conditioning system 1 switches the control before the outdoor unit 4 exceeds the capacity that can be pumped down. Refrigerant can be quickly recovered by using the pump-down operation of the outdoor unit 4.
  • the outdoor unit 4 includes a compressor 40 and a low pressure sensor 47 that detects the pressure of the refrigerant flowing into the compressor 40.
  • the control device control unit 30 ends the execution of the first control and the second control when the detected value of the low voltage sensor 47 is equal to or less than a predetermined threshold value.
  • the first control and the second control can be terminated at an appropriate timing when the refrigerant recovery by the pump down operation is completed, so that unnecessary pump down operation of the outdoor unit 4 can be prevented.
  • the number of outdoor units 4 included in the air conditioner 2 and the operation of the control device 3 are different from those in the first embodiment.
  • FIG. 7 is a diagram showing the configuration of the air conditioning system 1 of the second embodiment.
  • the air conditioner 2 includes four outdoor units 4, a first outdoor unit 4A, a second outdoor unit 4B, a third outdoor unit 4C, and a fourth outdoor unit 4D.
  • the configuration in which the air conditioner 2 includes four outdoor units 4 is illustrated, but the number of the outdoor units 4 included in the air conditioner 2 may be three or more.
  • the plurality of outdoor units 4 included in the air conditioner 2 are similarly configured including the control configuration. Therefore, in the following description, when the corresponding components in the first outdoor unit 4A, the second outdoor unit 4B, the third outdoor unit 4C, and the fourth outdoor unit 4D are not distinguished, the names of the components are the first. , The second, third, and fourth identifiers are omitted, and only numbers are used for the symbols of the components, and the subscripts A, B, C, and D are omitted. For example, when the first compressor 40A, the second compressor 40B, the third compressor 40C, and the fourth compressor 40D are not distinguished, it is expressed as "compressor 40".
  • the first outdoor unit control unit 400A, the second outdoor unit control unit 400B, the third outdoor unit control unit 400C, and the fourth outdoor unit control unit 400D are not distinguished, it is referred to as "outdoor unit control unit 400".
  • the components of the first outdoor unit 4A are named first.
  • the identifier of 1 is attached, and the subscript A is attached to the code.
  • a second identifier is added to the name, and a subscript B is added to the code.
  • a third identifier is added to the name, and a subscript C is added to the code.
  • a 4th identifier is added to the name, and a subscript D is added to the code.
  • the components of the first compressor 40A, the second compressor 40B, the third compressor 40C, and the fourth compressor 40D are designated with reference numerals so as to be distinguishable.
  • each of the indoor units 5 of the second embodiment is connected in parallel to the four outdoor units 4 by the refrigerant pipes 101 and 102.
  • the outdoor unit 4 of the second embodiment includes a compressor 40, a gas-liquid separator 41, a four-way valve 42, an outdoor heat exchanger 44 having an outdoor blower fan 43, an electromagnetic valve 45, and the like.
  • a high-pressure sensor 46 and a low-pressure sensor 47 are provided, and each part is connected as in the first embodiment.
  • FIG. 8 is a flowchart showing the operation of the control device 3.
  • the same steps as those in the flowchart shown in FIG. 3 are assigned the same step numbers, and detailed description thereof will be omitted.
  • the control device control unit 30 selects two outdoor units 4 to execute the pump-down operation from the first outdoor unit 4A to the fourth outdoor unit 4D in descending order of the capacity of the outdoor unit 4 (step SE1).
  • step SE1 the control device control unit 30 inquires about the capacity of its own outdoor unit 4 to all the outdoor units 4 included in the air conditioner 2.
  • the capacity of the outdoor unit 4 is, for example, the horsepower of the compressor 40.
  • the control device control unit 30 selects two units in descending order of the abilities of the outdoor units 4.
  • control device storage unit 320 stores information indicating the capabilities of all the outdoor units 4 included in the air conditioner 2.
  • control device control unit 30 refers to this information stored in the control device storage unit 320, and selects two units in descending order of the capacity of the outdoor unit 4.
  • the control device control unit 30 executes the processes after step SA3 by using the two selected outdoor units 4 as the outdoor units 4 for executing the pump-down operation.
  • the control device control unit 30 executes the same operation as in FIGS. 3 to 6. That is, the control device control unit 30 causes the first outdoor unit 4A to perform a pump-down operation, and causes the second outdoor unit 4B to be in a state where the refrigerant is recovered by the refrigerant recovery machine 6, and the second outdoor unit 4B. Is executed in a pump-down operation, and the second control in which the first outdoor unit 4A is brought into a state where the refrigerant is recovered by the refrigerant recovery machine 6 is alternately repeated.
  • the third outdoor unit 4C and the fourth outdoor unit 4D are not the outdoor units 4 that execute the pump-down operation, so that the refrigerant is recovered by the refrigerant recovery machine 6. It is in a state. That is, in the third outdoor unit 4C, the drive of the third compressor 40C is stopped, and the third solenoid valve 45C is in the open state. Further, in the fourth outdoor unit 4D, the driving of the fourth compressor 40D is stopped, and the fourth solenoid valve 45D is in the open state. The drive stop of the third compressor 40C and the fourth compressor 40D, and the transition to the open state of the third solenoid valve 45C and the fourth solenoid valve 45D are performed at appropriate timings.
  • one of the outdoor units 4 selected in place of the first outdoor unit 4A shown in FIGS. 3 to 6 is targeted for control, and the control device control unit 30 performs the operation shown in FIGS. 3 to 6. Run.
  • the control device control unit 30 controls FIG. 3-FIG.
  • the operation shown in 6 is executed.
  • the outdoor unit 4 not selected as the outdoor unit 4 for executing the pump-down operation is in a state where the refrigerant is recovered by the refrigerant recovery machine 6 during the execution of the first control and the second control.
  • the two outdoor units 4 are selected in descending order of the capacity of the outdoor unit 4, but the number of units selected by the control device control unit 30 may be two or more. ..
  • the control device control unit 30 divides the selected two or more outdoor units 4 into two groups. Then, instead of the first outdoor unit 4A shown in FIGS. 3-FIG. 6, the outdoor unit 4 of any group is targeted for control, and the control device control unit 30 executes the operation shown in FIGS. 3-FIG. 6. Further, in this case, instead of the second outdoor unit 4B shown in FIG. 3-FIG. 6, the outdoor unit 4 of any other group is targeted for control, and the control device control unit 30 operates as shown in FIG. 3-FIG. To execute.
  • the outdoor unit 4 not selected as the outdoor unit 4 for executing the pump-down operation is in a state where the refrigerant is recovered by the refrigerant recovery machine 6 during the execution of the first control and the second control.
  • the control device control unit 30 when the number of outdoor units 4 included in the air conditioner 2 is three or more, the control device control unit 30 has two or more outdoor units 4 in descending order of capacity.
  • the outdoor unit 4 to execute the pump down operation is selected by either the first control or the second control. Then, the control device control unit 30 executes the first control and the second control by the two or more selected outdoor units 4.
  • the outdoor unit capable of storing the refrigerant can be made to execute the pump-down operation more quickly. Therefore, when the air conditioner 2 includes three or more outdoor units 4, the refrigerant can be recovered quickly and efficiently by using the pump-down operation of the outdoor unit 4.
  • the number of the refrigerant recovery machines 6 connected to the refrigerant pipe 101 is one, but the number of the refrigerant recovery machines 6 is not limited to one and may be a plurality of units. Further, the refrigerant recovery machine 6 may be a device that can disconnect the connection with the refrigerant pipe 101, or may be a device that cannot disconnect the connection. Further, the connection destination of the refrigerant recovery machine 6 is not limited to the connection pipe between the outdoor units 4, and may be a service port in the outdoor unit 4, or is on the downstream side of the solenoid valve 45 in the direction in which the refrigerant flows during the cooling cycle. It should be.
  • the air conditioner 2 is configured to include two indoor units 5, but the number of indoor units 5 included in the air conditioner 2 is not limited to two, and even one. Well, maybe more.
  • control device control unit 30 controls the indoor unit 5 via the outdoor unit 4, but the control device control unit 30 controls the indoor unit 5 without going through the outdoor unit 4. May be controlled.
  • control device 3 and the indoor unit 5 are configured in the air conditioning system 1 so as to be able to directly communicate with each other.
  • control device control unit 30 controls the air conditioner 2, but one of the outdoor unit control units 400, the outdoor unit control unit 400, is the other outdoor unit 4.
  • the air conditioner 2 may be controlled by controlling the air conditioner 2 in an integrated manner.
  • the outdoor unit control unit 400 that controls the air conditioner 2 corresponds to the "control unit" of the present invention.
  • control device control unit 30, the outdoor unit control unit 400, and the indoor unit control unit 500 may be realized by a plurality of processors or semiconductor chips.
  • each part shown in FIGS. 1 and 2 is an example, and the specific mounting form is not particularly limited. That is, it is not always necessary to implement the hardware corresponding to each part individually, and it is of course possible to realize the function of each part by executing the program by one processor. Further, a part of the functions realized by the software in the above-described embodiment may be realized by the hardware, or a part of the functions realized by the hardware may be realized by the software. In addition, the specific detailed configurations of the control device 3, the outdoor unit 4, and the other parts of the indoor unit 5 can be arbitrarily changed without departing from the spirit of the present invention.
  • the operation step units shown in FIGS. 3-FIG. 6 and FIG. 8 are divided according to the main processing contents in order to facilitate understanding of the operation of each part of the control device 3.
  • the present invention is not limited by the method of dividing the processing unit and the name. It may be divided into more step units depending on the processing content. Further, one step unit may be divided so as to include more processes. Further, the order of the steps may be appropriately changed as long as it does not interfere with the gist of the present invention.
  • the air conditioning system according to the present invention can be used for the purpose of recovering the refrigerant by using the pump down operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室外機4が貯留可能な量を上回る冷媒が空気調和装置2に充填されている場合でも、室外機4のポンプダウン運転を用いて速やかに冷媒回収を行うことができるようにする。 室内機5、及び、室内機5に接続する複数の室外機4を有する空気調和装置2と、空気調和装置2を制御する制御装置制御部30と、を備える空気調和システム1であって、制御装置制御部30は、いずれかの室外機4にポンプダウン運転を実行させ、他のいずれかの室外機4を冷媒回収機6により冷媒回収される状態にする第1制御と、第1制御においてポンプダウン運転を実行させる室外機4を、冷媒回収機6により冷媒回収される状態にし、第1制御において冷媒回収される状態にする室外機4にポンプダウン運転を実行させる第2制御と、を交互に実行する。

Description

空気調和システム
 本発明は、空気調和システムに関する。
 従来、室内機及び室外機を有する空気調和装置に充填されている冷媒を回収する手法が知られている(例えば、特許文献1参照)。特許文献1は、ポンプダウン運転により室外機に冷媒を貯留し、貯留した冷媒を冷媒回収機により回収する手法を開示する。
特開2000-199660号公報
 しかしながら、特許文献1では、室外機が貯留可能な量を上回る冷媒が空気調和装置に充填されている場合、ポンプダウン運転を行わず、冷媒回収機から冷媒回収を行うため、空気調和装置に充填されている冷媒を速やかに回収できない。
 そこで、本発明は、室外機が貯留可能な量を上回る冷媒が空気調和装置に充填されている場合でも、室外機のポンプダウン運転を用いて速やかに冷媒回収を行うことができる空気調和システムを提供することを目的とする。
 上記目的を達成するために、本発明は、室内機、及び、前記室内機に接続する複数の室外機を有する空気調和装置と、前記空気調和装置を制御する制御部と、を備える空気調和システムであって、前記制御部は、いずれかの前記室外機にポンプダウン運転を実行させ、他のいずれかの前記室外機を冷媒回収機により冷媒回収される状態にする第1制御と、前記第1制御においてポンプダウン運転を実行させる前記室外機を、前記冷媒回収機により冷媒回収される状態にし、前記第1制御において冷媒回収される状態にする前記室外機にポンプダウン運転を実行させる第2制御と、を交互に実行する、ことを特徴とする。
 なお、この明細書には、2020年5月29日に出願された日本国特許出願・特願2020-094409号の全ての内容が含まれるものとする。
 本発明によれば、室外機が貯留可能な容量を上回る量の冷媒が空気調和装置に充填されている場合でも、室外機のポンプダウン運転を用いて速やかに冷媒回収を行うことができる。
図1は、第1実施形態に係る空気調和システムの構成を示す図 図2は、制御装置、室外機、及び、室内機の制御構成を示すブロック図 図3は、制御装置の動作を示すフローチャート 図4は、第1処理における制御装置の動作を示すフローチャート 図5は、第2処理における制御装置の動作を示すフローチャート 図6は、第3処理における制御装置の動作を示すフローチャート 図7は、第2実施形態に係る空気調和システムの構成を示す図 図8は、制御装置の動作を示すフローチャート
 第1の発明は、室内機、及び、前記室内機に接続する複数の室外機を有する空気調和装置と、前記空気調和装置を制御する制御部と、を備える空気調和システムであって、前記制御部は、いずれかの前記室外機にポンプダウン運転を実行させ、他のいずれかの前記室外機を冷媒回収機により冷媒回収される状態にする第1制御と、前記第1制御においてポンプダウン運転を実行させる前記室外機を、前記冷媒回収機により冷媒回収される状態にし、前記第1制御において冷媒回収される状態にする前記室外機にポンプダウン運転を実行させる第2制御と、を交互に実行する、ことを特徴とする。
 これによれば、複数の室外機によってポンプダウン運転を実行でき、且つ、いずれかの室外機がポンプダウン運転を実行している際、並行して、他のいずれかの室外機を冷媒回収機により冷媒回収される状態にできる。そのため、空気調和システムは、室外機が貯留可能な量を上回る冷媒が空気調和装置に充填されている場合でも、室外機のポンプダウン運転を用いて速やかに冷媒回収を行うことができる。
 第2の発明は、前記室外機は、圧縮機と、前記圧縮機が吐出する冷媒の圧力を検出する高圧センサーとを備え、前記制御部は、前記高圧センサーの検出値が所定の閾値を上回った場合に、前記第1制御の実行と前記第2制御の実行とを切り替える、ことを特徴とする。
 これによれば、ポンプダウン運転に貯留される冷媒による影響が圧縮機の吐出側に生じる前に、ポンプダウン運転を実行する室外機を切り替えることができる。よって、空気調和システムは、室外機が貯留可能な量を上回る冷媒が空気調和装置に充填されている場合でも、室外機がポンプダウン可能な容量を超える前に制御を切り替えて、室外機のポンプダウン運転を用いて速やかに冷媒回収を行うことができる。
 第3の発明は、前記室外機は、圧縮機と、前記圧縮機に流入する冷媒の圧力を検出する低圧センサーとを備え、前記制御部は、前記低圧センサーの検出値が所定の閾値を以下である場合に、前記第1制御及び前記第2制御の実行を終了する、ことを特徴とする。
 これによれば、ポンプダウン運転による冷媒回収を終えた適切なタイミングで、第1制御及び第2制御を終了できるため、不必要な室外機のポンプダウン運転を防止できる。
 第4の発明は、前記制御部は、前記空気調和装置が備える前記室外機が3台以上である場合、前記室外機の能力が大きい順に2台以上、前記第1制御及び前記第2制御のいずれかでポンプダウン運転を実行させる前記室外機を選択し、選択した2台以上の前記室外機によって前記第1制御及び前記第2制御を実行する、ことを特徴とする。
 これによれば、3台以上の室外機を空気調和装置が備える場合、より速やかに冷媒を貯留できる室外機にポンプダウン運転を実行させることができる。そのため、3台以上の室外機を空気調和装置が備える場合、室外機のポンプダウン運転を用いて、速やかに且つ効率良く冷媒回収を行うことができる。
 以下、本発明に係る空気調和システム1の実施形態について、図面を参照して説明する。
 [第1実施形態]
 まず、第1実施形態について説明する。
 図1は、第1実施形態に係る空気調和システム1の構成を示す図である。
 空気調和システム1は、大型のビルや学校等の施設に設けられるシステムである。図1に示すように、空気調和システム1は、空気調和装置2と、制御装置3とを備える。
 空気調和装置2は、第1室外機4Aと第2室外機4Bとの2台の室外機4、及び、2台の室内機5を備える。
 第1室外機4Aと第2室外機4Bとは制御構成も含めて同様に構成される。そのため、以下の説明では、第1室外機4A及び第2室外機4Bにおいて対応する構成要素について区別しない場合、構成要素の名称については第1、第2の識別子を省略し、且つ、構成要素の符号については数字のみ用いて添え字のA、Bを省略する。例えば、第1圧縮機40Aと第2圧縮機40Bとを区別しない場合、「圧縮機40」と表現する。また、例えば、第1室外機制御部400Aと第2室外機制御部400Bとを区別しない場合、「室外機制御部400」と表現する。一方、第1室外機4A及び第2室外機4Bにおいて対応する構成要素について区別する場合、第1室外機4Aの構成要素については名称に第1の識別子を付し、且つ、符号に添え字のAを付し、第2室外機4Bの構成要素については名称に第2の識別子を付し、且つ、符号に添え字のBを付す。なお、図面では、第1室外機4A及び第2室外機4Bの構成要素を区別可能に符号が付されている。
 室内機5の各々は、冷媒配管101、102によって、2台の室外機4に対して並列に接続される。空気調和装置2では、2台の室外機4と、2台の室内機5と、冷媒配管101、102と、によって冷凍サイクルが形成される。そして、空気調和装置2は、室外機4により圧縮された冷媒を、室外機4と室内機5との間で流通させ、室内機5が設置された被調和室を室内機5により空調する。
 室外機4は、圧縮機40、気液分離機41、四方弁42、室外送風ファン43を有する室外熱交換器44、及び、電磁弁45を備える。
 圧縮機40の吸引側には、圧縮機40にガス冷媒を供給する気液分離機41が接続されており、圧縮機40の吐出側には、四方弁42が接続されている。四方弁42には、室外送風ファン43を備えた室外熱交換器44が接続されている。室外熱交換器44は、室外送風ファン43により送られる空気と冷媒とが熱交換するように構成されている。室外送風ファン43には、電磁弁45が接続されている。電磁弁45は、冷媒配管101に配置される。
 また、室外機4は、高圧センサー46、及び、低圧センサー47を備える。高圧センサー46は、圧縮機40の吐出側において圧縮機40と室外熱交換器44との間に設けられ、圧縮機40が吐出する冷媒の圧力を検出する。高圧センサー46は、検出値を室外機制御部400に出力する。低圧センサー47は、圧縮機40の吸引側において圧縮機40と気液分離機41との間に設けられ、圧縮機40に流入する冷媒の圧力を検出する。低圧センサー47は、検出値を室外機制御部400に出力する。
 室内機5は、室内送風ファン50を備えた室内熱交換器51、及び、室内膨張弁52を備えている。室内膨張弁52は、一端が室内熱交換器51に接続し、他端が冷媒配管101に接続する。
 冷媒配管101には、1台の冷媒回収機6が接続する。冷媒回収機6は、冷媒配管101から冷媒を回収することで、空気調和装置2から冷媒を回収する。
 制御装置3は、空気調和装置2を制御する装置である。本実施形態の制御装置3は、空気調和装置2が備える室外機4を制御する。
 次に、制御装置3、室外機4、及び、室内機5の制御構成について説明する。
 図2は、制御装置3、室外機4、及び、室内機5の制御構成を示すブロック図である。
 まず、制御装置3の制御構成について説明する。
 制御装置3は、制御装置制御部30、制御装置通信部31、制御装置入力部32、及び、制御装置表示部33を備える。
 制御装置制御部30は、CPUやMPU等のプログラムを実行するプロセッサーである制御装置プロセッサー310、及び、制御装置記憶部320を備え、制御装置3の各部を制御する。制御装置制御部30は、制御装置プロセッサー310が、制御装置記憶部320に記憶された制御プログラム321を読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。
 制御装置記憶部320は、制御装置プロセッサー310が実行するプログラムや、制御装置プロセッサー310により処理されるデータを記憶する記憶領域を有する。制御装置記憶部320は、制御装置プロセッサー310が実行する制御プログラムや、制御装置3の各種設定に係る設定データ、その他の各種データを記憶する。制御装置記憶部320は、プログラムやデータを不揮発的に記憶する不揮発性記憶領域を有する。また、制御装置記憶部320は、揮発性記憶領域を備え、制御装置プロセッサー310が実行するプログラムや処理対象のデータを一時的に記憶するワークエリアを構成してもよい。
 制御装置通信部31は、所定の通信規格に従った通信ハードウェアにより構成され、制御装置制御部30の制御で、第1室外機4A及び第2室外機4Bのそれぞれと通信する。
 制御装置入力部32は、制御装置3に設けられた操作スイッチや、タッチパネル、マウス、キーボード等の入力手段を備え、ユーザーの入力手段に対する操作を検出し、検出結果を制御装置制御部30に出力する。制御装置制御部30は、制御装置入力部32からの入力に基づいて、入力手段に対する操作に対応する処理を実行する。
 制御装置表示部33は、LEDや表示パネル等を備え、制御装置制御部30の制御に従って、LEDの所定の態様での点灯/点滅/消灯や、表示パネルへの情報の表示等を実行する。
 続けて、室外機4の制御構成について説明する。
 室外機4は、室外機制御部400を備える。
 室外機制御部400は、CPUやMPU等のプログラムを実行するプロセッサーである室外機プロセッサー410、及び、室外機記憶部420を備え、室外機4の各部を制御する。室外機制御部400は、室外機プロセッサー410が、室外機記憶部420に記憶された制御プログラムを読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。
 室外機記憶部420は、室外機プロセッサー410が実行するプログラムや、室外機プロセッサー410により処理されるデータを記憶する記憶領域を有する。室外機記憶部420は、室外機プロセッサー410が実行する制御プログラムや、室外機4の各種設定を行うための設定データ、その他の各種データを記憶する。室外機記憶部420は、プログラムやデータを不揮発的に記憶する不揮発性記憶領域を有する。また、室外機記憶部420は、揮発性記憶領域を備え、室外機プロセッサー410が実行するプログラムや処理対象のデータを一時的に記憶するワークエリアを構成してもよい。
 室外機制御部400には、圧縮機40、四方弁42、室外送風ファン43、高圧センサー46、及び、低圧センサー47が接続する。室外機制御部400は、高圧センサー46、及び、低圧センサー47の検出値に基づいて、圧縮機40、四方弁42、室外送風ファン43、及び、電磁弁45を駆動制御する。また、室外機制御部400は、制御装置3から受信した制御信号に基づいて、圧縮機40、四方弁42、室外送風ファン43、及び、電磁弁45を駆動制御する。また、室外機制御部400は、高圧センサー46、及び、低圧センサー47が出力した検出値を、室外機通信部401によって制御装置3に送信する。
 室外機4は、室外機通信部401を備える。室外機通信部401は、所定の通信規格に従った通信ハードウェアにより構成され、室外機制御部400の制御で、制御装置3及び室内機5と通信する。
 続けて、室内機5の制御構成について説明する。
 室内機5は、室内機制御部500を備える。
 室内機制御部500は、CPUやMPU等のプログラムを実行するプロセッサーである室内機プロセッサー510、及び、室内機記憶部520を備え、室内機5の各部を制御する。室内機制御部500は、室内機プロセッサー510が、室内機記憶部520に記憶された制御プログラムを読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。
 室内機記憶部520は、室内機プロセッサー510が実行するプログラムや、室内機プロセッサー510により処理されるデータを記憶する記憶領域を有する。室内機記憶部520は、室内機プロセッサー510が実行する制御プログラムや、室内機5の各種設定に係る設定データ、その他の各種データを記憶する。室内機記憶部520は、プログラムやデータを不揮発的に記憶する不揮発性記憶領域を有する。また、室内機記憶部520は、揮発性記憶領域を備え、室内機プロセッサー510が実行するプログラムや処理対象のデータを一時的に記憶するワークエリアを構成してもよい。
 室内機制御部500には、室内送風ファン50、及び、室内膨張弁52が接続する。室内機制御部500は、室外機4から受信した制御信号、及び、図示せぬリモコンから受信した制御信号に基づいて、室内送風ファン50、及び、室内膨張弁52の駆動制御を実行する。
 室内機通信部501は、所定の通信規格に従った通信ハードウェアにより構成され、室内機制御部500の制御で、室外機4と通信する。また、室内機通信部501は、室外機4と通信する通信規格の通信ハードウェアに加えて、図示せぬリモコンと通信する通信規格の通信ハードウェアを備えリモコンと通信する。
 次に、空気調和装置2に充填された冷媒の回収に係る空気調和システム1の動作について説明する。特に、制御装置3の動作について説明する。
 図3は、制御装置3の動作を示すフローチャートである。
 制御装置制御部30は、制御装置3の動作モードを冷媒回収モードに移行させるか否かを判別する(ステップSA1)。
 冷媒回収モードは、空気調和装置2に充填された冷媒の回収に係る動作モードである。例えば、制御装置制御部30は、冷媒回収機6による冷媒回収の開始を指示する操作を、制御装置入力部32が受け付けた場合、ステップSA1において、制御装置3の動作モードを冷媒回収モードに移行させると判別する。
 制御装置制御部30は、制御装置3の動作モードを冷媒回収モードに移行させると判別した場合(ステップSA1:YES)、制御装置3の動作モードを冷媒回収モード以外のモードから冷媒回収モードに移行させる(ステップSA2)。
 次いで、制御装置制御部30は、第1処理を実行する(ステップSA3)。
 図4は、第1処理における制御装置3の動作を示すフローチャートである。
 制御装置制御部30は、第1電磁弁45Aを閉状態に移行させる(ステップSB1)。
 ステップSB1において、制御装置制御部30は、制御装置通信部31により、第1電磁弁45Aを閉状態へ移行させる制御信号を、第1室外機4Aに送信する。第1室外機制御部400Aは、第1室外機通信部401Aにより当該制御信号を受信すると、第1電磁弁45Aを閉状態に移行させる。以下のステップでも、第1電磁弁45Aを閉状態に移行させる際、制御装置制御部30は、同様の制御信号を第1室外機4Aに送信する。
 制御装置制御部30は、第1四方弁42Aを冷房サイクルの状態に移行させる(ステップSB2)。
 ステップSB2において、制御装置制御部30は、制御装置通信部31により、第1四方弁42Aを冷房サイクルの状態に移行させる制御信号を、第1室外機4Aに送信する。第1室外機制御部400Aは、第1室外機通信部401Aにより当該制御信号を受信すると、第1四方弁42Aを冷房サイクルの状態に移行させる。
 制御装置制御部30は、第1圧縮機40Aを駆動させる(ステップSB3)。
 ステップSB3において、制御装置制御部30は、制御装置通信部31により、第1圧縮機40Aを駆動させる制御信号を、第1室外機4Aに送信する。第1室外機制御部400Aは、第1室外機通信部401Aにより当該制御信号を受信すると、第1圧縮機40Aを駆動させる。以下のステップでも、制御装置制御部30は、同様の制御信号を第1室外機4Aに送信することで、第1圧縮機40Aを駆動させる。
 制御装置制御部30は、ステップSB3において第1圧縮機40Aを駆動させることで、第1室外機4Aにポンプダウン運転を実行させる。第1室外機4Aは、ポンプダウン運転を実行することで、冷媒配管101における第1圧縮機40Aと第1電磁弁45Aとの区間に、空気調和装置2に充填された冷媒を貯留していく。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値を上回ったか否かを判別する(ステップSB4)。この所定の閾値は、第1圧縮機40Aの吐出側にポンプダウン運転による影響が生じないようにする観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であると判別した場合(ステップSB4:NO)、再度、ステップSB4の処理を実行する。
 一方、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値を上回ったと判別した場合(ステップSB4:YES)、第1圧縮機40Aの駆動を停止させる(ステップSB5)。つまり、制御装置制御部30は、第1室外機4Aにポンプダウン運転の実行を停止させる。
 ステップSB5において、制御装置制御部30は、制御装置通信部31により、第1圧縮機40Aの駆動を停止させる制御信号を、第1室外機4Aに送信する。第1室外機制御部400Aは、第1室外機通信部401Aにより当該制御信号を受信すると、第1圧縮機40Aの駆動を停止させる。以下のステップでも、制御装置制御部30は、同様の制御信号を第1室外機4Aに送信することで第1圧縮機40Aの駆動を停止させる。
 次いで、制御装置制御部30は、第2電磁弁45Bを閉状態に移行させ、且つ、室内膨張弁52を閉状態に移行させる(ステップSB6)。
 ステップSB6において、制御装置制御部30は、制御装置通信部31により、第2電磁弁45Bを閉状態へ移行させる制御信号を、第2室外機4Bに送信する。第2室外機制御部400Bは、第2室外機通信部401Bにより当該制御信号を受信すると、第2電磁弁45Bを閉状態に移行させる。以下のステップでも、制御装置制御部30は、同様の制御信号を第2室外機4Bに送信することで、第2電磁弁45Bを閉状態に移行させる。
 また、ステップSB6において、制御装置制御部30は、制御装置通信部31により、室内膨張弁52を閉状態に移行させる制御信号を、室外機4に送信する。室外機制御部400は、室外機通信部401により当該制御信号を受信すると、当該制御信号を全ての室内機5に送信する。室内機制御部500は、室内機通信部501により当該制御信号を受信すると、室内膨張弁52を閉状態に移行させる。
 次いで、制御装置制御部30は、第1電磁弁45Aを開状態にさせる(ステップSB7)。
 ステップSB7において、制御装置制御部30は、制御装置通信部31により、第1電磁弁45Aを開状態へ移行させる制御信号を、第1室外機4Aに送信する。第1室外機制御部400Aは、第1室外機通信部401Aにより当該制御信号を受信すると、第1電磁弁45Aを開状態に移行させる。以下のステップでも、第1電磁弁45Aを開状態に移行させる際、制御装置制御部30は、同様の制御信号を第1室外機4Aに送信する。
 ステップSB7において第1電磁弁45Aが開状態になることで、冷媒配管101における第1圧縮機40Aから室内膨張弁52及び第2電磁弁45Bまでの区間には、第1室外機4Aがポンプダウン運転で貯留した冷媒が解放される。解放された冷媒は、冷媒配管101に接続する冷媒回収機6により回収される。
 制御装置制御部30は、第1電磁弁45Aを開状態に移行させると、第2四方弁42Bを冷房サイクルの状態に移行させる(ステップSB8)。
 ステップSB8において、制御装置制御部30は、制御装置通信部31により、第2四方弁42Bを冷房サイクルの状態へ移行させる制御信号を、第2室外機4Bに送信する。第2室外機制御部400Bは、第2室外機通信部401Bにより当該制御信号を受信すると、第2四方弁42Bを冷房サイクルの状態に移行させる。
 次いで、制御装置制御部30は、第2圧縮機40Bを駆動させる(ステップSB9)。
 ステップSB9において、制御装置制御部30は、制御装置通信部31により、第2圧縮機40Bを駆動させる制御信号を第2室外機4Bに送信する。第2室外機制御部400Bは、第2室外機通信部401Bにより当該制御信号を受信すると、第2圧縮機40Bを駆動する。以下のステップでも、制御装置制御部30は、同様の制御信号を第2室外機4Bに送信することで、第2圧縮機40Bを駆動させる。
 制御装置制御部30は、ステップSB9において第2圧縮機40Bを駆動させることで、第2室外機4Bにポンプダウン運転を実行させる。第2室外機4Bは、ポンプダウン運転を実行することで、冷媒配管101における第2圧縮機40Bと第2電磁弁45Bとの区間に、空気調和装置2に充填された冷媒を貯留していく。
 制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値を上回ったか否かを判別する(ステップSB10)。この所定の閾値は、第2圧縮機40Bの吐出側においてポンプダウン運転による影響が生じないようにする観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であると判別した場合(ステップSB10:NO)、再度、ステップSB10の処理を実行する。
 一方、制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であると判別した場合(ステップSB10:YES)、第2圧縮機40Bを停止させる(ステップSB11)。つまり、第2室外機4Bは、ポンプダウン運転の実行を停止する。
 ステップSB11において、制御装置制御部30は、制御装置通信部31により、第2圧縮機40Bの駆動を停止させる制御信号を、第2室外機4Bに送信する。第2室外機制御部400Bは、第2室外機通信部401Bにより当該制御信号を受信すると、第2圧縮機40Bの駆動を停止させる。以下のステップでも、制御装置制御部30は、同様の制御信号を第2室外機4Bに送信することで第2圧縮機40Bの駆動を停止させる。
 次いで、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であるか否かを判別する(ステップSB12)。この所定の閾値は、ステップSB4において検出値と比較する所定の閾値と同じ値でもよいし、異なる値でもよい。この所定の閾値は、ステップSB4で比較する所定の閾値と同じ観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値を上回ると判別した場合(ステップSB12:NO)、再度、ステップSB12の処理を実行する。
 一方、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であると判別した場合(ステップSB12:YES)、第1電磁弁45Aを閉状態に移行させる(ステップSB13)。
 次いで、制御装置制御部30は、第2電磁弁45Bを開状態に移行させる(ステップSB14)。
 ステップSB14において、制御装置制御部30は、制御装置通信部31により、第2電磁弁45Bを開状態へ移行させる制御信号を、第2室外機4Bに送信する。第2室外機制御部400Bは、第2室外機通信部401Bにより当該制御信号を受信すると、第2電磁弁45Bを開状態に移行させる。以下のステップでも、第2電磁弁45Bを開状態に移行させる際、制御装置制御部30は、同様の制御信号を第2室外機4Bに送信する。
 ステップSB14において第2電磁弁45Bが開状態になることで、冷媒配管101における第2圧縮機40Bから室内膨張弁52及び第1電磁弁45Aまでの区間には、第2室外機4Bがポンプダウン運転で貯留した冷媒が解放される。解放された冷媒は、冷媒回収機6により回収される。
 図3に示すフローチャートの説明に戻り、制御装置制御部30は、第1処理の実行後、続けて、第2処理を実行する。
 図5は、第2処理における制御装置3の動作を示すフローチャートである。
 制御装置制御部30は、第1圧縮機40Aを駆動させる(ステップSC1)。つまり、制御装置制御部30は、第1室外機4Aにポンプダウン運転を実行させる。
 ステップSC1においては、第2室外機4Bは、第2圧縮機40Bが停止し、第2電磁弁45Bが開状態に移行している状態である。つまり、ステップSC2においては、第2室外機4Bは、ポンプダウン運転により貯留した冷媒を冷媒回収機6により回収される状態である。したがって、ステップSC1において、制御装置制御部30は、第2室外機4Bが冷媒回収される状態において、第1室外機4Aにポンプダウン運転を実行させる。本実施形態では、第1室外機4Aにポンプダウン運転を実行させ、第2室外機4Bを冷媒回収機6により冷媒回収される状態にする制御は、第1制御の一例に対応する。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値を上回ったか否かを判別する(ステップSC2)。この所定の閾値は、ステップSB4において検出値と比較する所定の閾値と同じ値でもよいし異なる値でもよい。この所定の閾値は、ステップSB4における比較対象の所定の閾値と同じ観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であると判別した場合(ステップSC2:NO)、再度、ステップSC2の処理を実行する。
 一方、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であると判別した場合(ステップSC2:YES)、第1圧縮機40Aの駆動を停止させる(ステップSC3)。つまり、制御装置制御部30は、第1室外機4Aもポンプダウン運転の実行を停止させる。
 次いで、制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であるか否かを判別する(ステップSC4)。この所定の閾値は、ステップSB10において検出値と比較する所定の閾値と同じ値でもよいし異なる値でもよい。この所定の閾値は、ステップSB10における比較対象の所定の閾値と同じ観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値を上回ると判別した場合(ステップSC4:NO)、再度、ステップSC4の処理を実行する。
 一方、制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であると判別した場合(ステップSC4:YES)、第2電磁弁45Bを閉状態に移行させる(ステップSC5)。
 次いで、制御装置制御部30は、第1電磁弁45Aを開状態に移行させる(ステップSC6)。これにより、冷媒配管101における第1圧縮機40Aから室内膨張弁52及び第2電磁弁45Bまでの区間には、第1室外機4Aがポンプダウン運転で貯留した冷媒が解放される。解放された冷媒は、冷媒回収機6により回収される。
 制御装置制御部30は、第2圧縮機40Bを駆動させる(ステップSC7)。つまり、制御装置制御部30は、第2室外機4Bにポンプダウン運転を実行させる。
 ステップSC7においては、第1室外機4Aは、第1圧縮機40Aが停止し、第1電磁弁45Aが開状態に移行した状態である。つまり、ステップSC7においては、第1室外機4Aは、ポンプダウン運転により貯留した冷媒を冷媒回収機6により冷媒回収される状態である。したがって、ステップSC7において、制御装置制御部30は、第1室外機4Aが冷媒回収される状態において、第2室外機4Bにポンプダウン運転を実行させる。本実施形態では、第2室外機4Bにポンプダウン運転を実行させ、第1室外機4Aを冷媒回収機6により冷媒回収される状態にする制御は、第2制御の一例に対応する。
 制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値を上回ったか否かを判別する(ステップSC8)。この所定の閾値は、ステップSB10において検出値と比較する所定の閾値と同じ値でもよいし異なる値でもよい。この所定の閾値は、ステップSB10における比較対象の所定の閾値と同じ観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であると判別した場合(ステップSC8:NO)、再度、ステップSC8の処理を実行する。
 一方、制御装置制御部30は、第2高圧センサー46Bの検出値が所定の閾値以下であると判別した場合(ステップSC8:YES)、第2圧縮機40Bの駆動を停止させる(ステップSC9)。つまり、第2室外機4Bは、ポンプダウン運転の実行を停止する。
 次いで、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であるか否かを判別する(ステップSC10)。この所定の閾値は、ステップSB4において検出値と比較する所定の閾値と同じ値でもよいし異なる値でもよい。この所定の閾値は、ステップSB4における比較対象の所定の閾値と同じ観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値を上回ると判別した場合(ステップSC10:NO)、再度、ステップSC10の処理を実行する。
 一方、制御装置制御部30は、第1高圧センサー46Aの検出値が所定の閾値以下であると判別した場合(ステップSC10:YES)、第1電磁弁45Aを閉状態に移行させる(ステップSC11)。
 次いで、制御装置制御部30は、第2電磁弁45Bを開状態に移行させる(ステップSC12)。
 図3に示すフローチャートの説明に戻り、制御装置制御部30は、第2処理を実行すると、第1低圧センサー47A又は第2低圧センサー47Bの検出値が所定の閾値を以下であるか否かを判別する(ステップSA5)。この所定の閾値は、ポンプダウン運転により室外機4に回収される側の区域にある冷媒が無くなったか否かの観点に基づいて、事前のテストやシミュレーション等によって適切に定められている。
 制御装置制御部30は、第1低圧センサー47A又は第2低圧センサー47Bの検出値が所定の閾値を上回ると判別した場合(ステップSA5:NO)、再度、第2処理を実行する(ステップSA4)。すなわち、制御装置制御部30は、空気調和装置2に充填される冷媒が冷媒回収機6により回収されるまで、第2処理の実行を繰り替えす。
 次いで、制御装置制御部30は、第1低圧センサー47A又は第2低圧センサー47Bの検出値が所定の閾値以下であると判別した場合(ステップSA5:NO)第3処理を実行する(ステップSA6)。
 図6は、第3処理における制御装置3の動作を示すフローチャートである。
 制御装置制御部30は、第1圧縮機40Aの駆動を停止させ、第2圧縮機40Bの駆動を停止させる(ステップSD1)。
 制御装置制御部30は、第1電磁弁45Aを開状態に移行させ、及び、第2電磁弁45Bを開状態に移行させる(ステップSD2)。
 以上、説明したように、空気調和システム1は、室内機5、及び、室内機5に接続する複数の室外機4を有する空気調和装置2と、空気調和装置2を制御する制御装置制御部30と、を備える。制御装置制御部30は、いずれかの室外機4にポンプダウン運転を実行させ、他のいずれかの室外機4を冷媒回収機6により冷媒回収される状態にする第1制御と、第1制御においてポンプダウン運転を実行させる室外機4を、冷媒回収機6により冷媒回収される状態にし、第1制御において冷媒回収される状態にする室外機4にポンプダウン運転を実行させる第2制御と、を交互に実行する。
 この構成によれば、複数の室外機4によってポンプダウン運転を実行でき、且つ、いずれかの室外機4がポンプダウン運転を実行している際、並行して、他のいずれかの室外機4を冷媒回収機6により冷媒回収される状態にできる。そのため、空気調和システム1は、室外機4が貯留可能な量を上回る冷媒が空気調和装置2に充填されている場合でも、室外機4のポンプダウン運転を用いて速やかに冷媒回収を行うことができる。
 室外機4は、圧縮機40と、圧縮機40が吐出する冷媒の圧力を検出する高圧センサー46とを備える。制御装置制御部30は、高圧センサー46の検出値が所定の閾値を上回った場合に、第1制御の実行と第2制御の実行とを切り替える。
 この構成によれば、ポンプダウン運転に貯留される冷媒による影響が圧縮機40の吐出側に生じる前に、ポンプダウン運転を実行する室外機4を切り替えることができる。よって、空気調和システム1は、室外機4が貯留可能な量を上回る冷媒が空気調和装置2に充填されている場合でも、室外機4がポンプダウン可能な容量を超える前に制御を切り替えて、室外機4のポンプダウン運転を用いて速やかに冷媒回収を行うことができる。
 室外機4は、圧縮機40と、圧縮機40に流入する冷媒の圧力を検出する低圧センサー47とを備える。制御装置制御部30は、低圧センサー47の検出値が所定の閾値を以下である場合に、第1制御及び第2制御の実行を終了する。
 この構成によれば、ポンプダウン運転による冷媒回収を終えた適切なタイミングで、第1制御及び第2制御を終了できるため、不必要な室外機4のポンプダウン運転を防止できる。
 [第2実施形態]
 次に、第2実施形態について説明する。第2実施形態において、第1実施形態と同様の構成要素については同一の符号を付し、その詳細な説明を省略する。
 第2実施形態は、第1実施形態と比較して、空気調和装置2が備える室外機4の台数と、制御装置3の動作とが異なる。
 図7は、第2実施形態の空気調和システム1の構成を示す図である。
 空気調和装置2は、第1室外機4A、第2室外機4B、第3室外機4C、及び、第4室外機4Dの4台の室外機4を備える。なお、第2実施形態の説明では、空気調和装置2が4台の室外機4を備える構成を例示するが、空気調和装置2が備える室外機4の台数は、3台以上であればよい。
 第2実施形態において、空気調和装置2が備える複数の室外機4は、制御構成も含めて同様に構成される。そのため、以下の説明では、第1室外機4A、第2室外機4B、第3室外機4C、及び、第4室外機4Dにおいて対応する構成要素について区別しない場合、構成要素の名称については第1、第2、第3、第4の識別子を省略し、且つ、構成要素の符号については数字のみ用いて添え字のA、B、C、Dを省略する。例えば、第1圧縮機40A、第2圧縮機40B、第3圧縮機40C、及び、第4圧縮機40Dを区別しない場合、「圧縮機40」と表現する。また、例えば、第1室外機制御部400A、第2室外機制御部400B、第3室外機制御部400C、及び、第4室外機制御部400Dを区別しない場合、「室外機制御部400」と表現する。一方、第1室外機4A、第2室外機4B、第3室外機4C、及び、第4室外機4Dにおいて対応する構成要素について区別する場合、第1室外機4Aの構成要素については名称に第1の識別子を付し、且つ、符号に添え字のAを付す。また、第2室外機4Bの構成要素については名称に第2の識別子を付し、且つ、符号に添え字のBを付す。また、第3室外機4Cの構成要素については名称に第3の識別子を付し、且つ、符号に添え字のCを付す。また、第4室外機4Dの構成要素については名称に第4の識別子を付し、且つ、符号に添え字のDを付す。なお、図面では、第1圧縮機40A、第2圧縮機40B、第3圧縮機40C、及び、第4圧縮機40Dの構成要素を区別可能に符号が付されている。
 第1実施形態と同様に、第2実施形態の室内機5の各々は、冷媒配管101、102によって、4台の室外機4に対して並列に接続される。
 また、第1実施形態と同様に、第2実施形態の室外機4は、圧縮機40、気液分離機41、四方弁42、室外送風ファン43を有する室外熱交換器44、電磁弁45、高圧センサー46、及び、低圧センサー47を備え、第1実施形態と同様に各部が接続する。
 次に、第2実施形態に係る制御装置3の動作について説明する。
 図8は、制御装置3の動作を示すフローチャートである。図8において、図3に示すフローチャートと同じステップについては同一のステップ番号を付し、その詳細な説明を省略する。
 制御装置制御部30は、第1室外機4A~第4室外機4Dの中から、室外機4の能力が大きい順に2台、ポンプダウン運転を実行させる室外機4を選択する(ステップSE1)。
 例えば、ステップSE1において、制御装置制御部30は、空気調和装置2が備える全ての室外機4に対して、自身の室外機4の能力がどのくらいであるかを問い合わせる。なお、室外機4の能力とは、例えば圧縮機40の馬力である。制御装置制御部30は、全室外機4に自身の能力を問い合わせると、室外機4の能力が大きい順に2台、選択する。
 また、例えば、制御装置記憶部320が、空気調和装置2が備える全ての室外機4について、能力を示す情報を記憶しているとする。この場合、制御装置制御部30は、制御装置記憶部320が記憶するこの情報を参照し、室外機4の能力が大きい順に2台選択する。
 制御装置制御部30は、選択した2台の室外機4をポンプダウン運転を実行させる室外機4として、ステップSA3以降の処理を実行する。
 例えば、ステップSE1において、第1室外機4A、第2室外機4Bを選択した場合、制御装置制御部30は、図3-図6と同様の動作を実行する。すなわち、制御装置制御部30は、第1室外機4Aにポンプダウン運転を実行させ、第2室外機4Bを冷媒回収機6により冷媒回収される状態にする第1制御と、第2室外機4Bにポンプダウン運転を実行させ、第1室外機4Aを冷媒回収機6により冷媒回収される状態にする第2制御と、交互に繰り返す。なお、この第1制御及び第2制御の実行中、第3室外機4C、及び、第4室外機4Dは、ポンプダウン運転を実行する室外機4でないため、冷媒回収機6により冷媒回収される状態である。すなわち、第3室外機4Cは、第3圧縮機40Cの駆動が停止していて、第3電磁弁45Cが開状態である。また、第4室外機4Dでは、第4圧縮機40Dの駆動が停止していて、第4電磁弁45Dが開状態である。第3圧縮機40C及び第4圧縮機40Dの駆動停止、及び、第3電磁弁45C及び第4電磁弁45Dの開状態への移行は、適切なタイミングで行われる。
 上記の例は、制御装置制御部30が第1室外機4A及び第2室外機4Bを選択した場合であるが、他の室外機4の組み合わせを選択した場合も、制御装置制御部30は、図3-図6と同様の動作を実行する。この場合、図3-図6に示す第1室外機4Aに代わって選択した組み合わせのうちいずれかの室外機4を制御対象とし、制御装置制御部30は、図3-図6に示す動作を実行する。また、この場合、図3-図6に示す第2室外機4Bに代わって、選択した組み合わせのうち他のいずれかの室外機4を制御対象とし、制御装置制御部30は、図3-図6に示す動作を実行する。なお、ポンプダウン運転を実行する室外機4として選択されなかった室外機4は、第1制御及び第2制御の実行中、冷媒回収機6により冷媒回収される状態とされる。
 以上の第2実施形態の説明では、室外機4の能力が大きい順に2台の室外機4を選択する構成であるが、制御装置制御部30が選択する台数は、2台以上であればよい。2台以上である場合、制御装置制御部30は、選択した2台以上の室外機4を2つのグループに分ける。そして、図3-図6に示す第1室外機4Aに代わっていずれかのグループの室外機4を制御対象とし、制御装置制御部30は、図3-図6に示す動作を実行する。また、この場合、図3-図6に示す第2室外機4Bに代わって他のいずれかのグループの室外機4を制御対象とし、制御装置制御部30は、図3-図6に示す動作を実行する。なお、ポンプダウン運転を実行する室外機4として選択されなかった室外機4は、第1制御及び第2制御の実行中、冷媒回収機6により冷媒回収される状態とされる。
 以上説明したように、第2実施形態によれば、制御装置制御部30は、空気調和装置2が備える室外機4が3台以上である場合、室外機4の能力が大きい順に2台以上、第1制御及び第2制御のいずれかでポンプダウン運転を実行させる室外機4を選択する。そして、制御装置制御部30は、選択した2台以上の室外機4によって第1制御及び第2制御を実行する。
 この構成によれば、3台以上の室外機4を空気調和装置2が備える場合、より速やかに冷媒を貯留できる室外機にポンプダウン運転を実行させることができる。そのため、3台以上の室外機4を空気調和装置2が備える場合、室外機4のポンプダウン運転を用いて、速やかに且つ効率良く冷媒回収を行うことができる。
 上述した各実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
 上述した各実施形態では、冷媒配管101に接続する冷媒回収機6の台数は、1台であるが、冷媒回収機6の数は、1台に限定されず複数台としてもよい。また、冷媒回収機6は、冷媒配管101との接続が解消可能な機器でもよいし、接続が解消不可能な機器でもよい。また、冷媒回収機6の接続先は、室外機4同士の接続配管に限定されず、室外機4内のサービスポートでもよいし、冷房サイクル時の冷媒が流れる方向において電磁弁45よりも下流側であればよい。
 また、上述した各実施形態では、空気調和装置2が2台の室内機5を備える構成であるが、空気調和装置2が備える室内機5の台数は、2台に限定されず、1台でもよく、さらに多くてもよい。
 また、上述した各実施形態では、制御装置制御部30が、室外機4を介して室内機5を制御する構成であるが、制御装置制御部30は、室外機4を介さずに室内機5を制御してもよい。この場合、制御装置3と室内機5とは、直接通信可能に空気調和システム1において構成される。
 また、上述した各実施形態では、制御装置制御部30が、空気調和装置2を制御する構成であるが、室外機制御部400のうちいずれかの室外機制御部400が、他の室外機4を統括的に制御することで空気調和装置2を制御する構成としてもよい。この構成の場合、空気調和装置2を制御する室外機制御部400が、本発明の「制御部」に相当する。
 また、制御装置制御部30、室外機制御部400、及び、室内機制御部500の機能は、複数のプロセッサー、又は、半導体チップにより実現してもよい。
 また、図1及び図2に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサーがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他、制御装置3、室外機4、及び、室内機5の他の各部の具体的な細部構成についても、本発明の趣旨を逸脱しない範囲で任意に変更可能である。
 また、例えば、図3-図6、及び、図8に示す動作のステップ単位は、制御装置3の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本発明が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本発明の趣旨に支障のない範囲で適宜に入れ替えてもよい。
 以上のように、本発明に係る空気調和システムは、ポンプダウン運転を用いて冷媒回収を行う用途に利用可能である。
 1 空気調和システム
 2 空気調和装置
 3 制御装置
 4 室外機
 4A 第1室外機(室外機)
 4B 第2室外機(室外機)
 4C 第3室外機(室外機)
 4D 第4室外機(室外機)
 5 室内機
 6 冷媒回収機
 30 制御装置制御部(制御部)
 40 圧縮機
 40A 第1圧縮機(圧縮機)
 40B 第2圧縮機(圧縮機)
 40C 第3圧縮機(圧縮機)
 40D 第4圧縮機(圧縮機)
 46 高圧センサー
 46A 第1高圧センサー(高圧センサー)
 46B 第2高圧センサー(高圧センサー)
 46C 第3高圧センサー(高圧センサー)
 46D 第4高圧センサー(高圧センサー)
 47 低圧センサー
 47A 第1低圧センサー(低圧センサー)
 47B 第2低圧センサー(低圧センサー)
 47C 第3低圧センサー(低圧センサー)
 47D 第4低圧センサー(低圧センサー)
 400 室外機制御部(制御部)
 400A 第1室外機制御部(制御部)
 400B 第2室外機制御部(制御部)
 400C 第3室外機制御部(制御部)
 400D 第4室外機制御部(制御部)

Claims (4)

  1.  室内機、及び、前記室内機に接続する複数の室外機を有する空気調和装置と、前記空気調和装置を制御する制御部と、を備える空気調和システムであって、
     前記制御部は、
     いずれかの前記室外機にポンプダウン運転を実行させ、他のいずれかの前記室外機を冷媒回収機により冷媒回収される状態にする第1制御と、
     前記第1制御においてポンプダウン運転を実行させる前記室外機を、前記冷媒回収機により冷媒回収される状態にし、前記第1制御において冷媒回収される状態にする前記室外機にポンプダウン運転を実行させる第2制御と、を交互に実行する、
     ことを特徴とする空気調和システム。
  2.  前記室外機は、圧縮機と、前記圧縮機が吐出する冷媒の圧力を検出する高圧センサーとを備え、
     前記制御部は、
     前記高圧センサーの検出値が所定の閾値を上回った場合に、前記第1制御の実行と前記第2制御の実行とを切り替える、
     ことを特徴とする請求項1に記載の空気調和システム。
  3.  前記室外機は、圧縮機と、前記圧縮機に流入する冷媒の圧力を検出する低圧センサーとを備え、
     前記制御部は、
     前記低圧センサーの検出値が所定の閾値を以下である場合に、前記第1制御及び前記第2制御の実行を終了する、
     ことを特徴とする請求項1又は2に記載の空気調和システム。
  4.  前記制御部は、
     前記空気調和装置が備える前記室外機が3台以上である場合、前記室外機の能力が大きい順に2台以上、前記第1制御及び前記第2制御のいずれかでポンプダウン運転を実行させる前記室外機を選択し、
     選択した2台以上の前記室外機によって前記第1制御及び前記第2制御を実行する、
     ことを特徴とする請求項1から3のいずれか一項に記載の空気調和システム。
PCT/JP2021/016678 2020-05-29 2021-04-26 空気調和システム WO2021241108A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21814271.9A EP4160118A4 (en) 2020-05-29 2021-04-26 AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094409 2020-05-29
JP2020094409A JP7462186B2 (ja) 2020-05-29 2020-05-29 空気調和システム

Publications (1)

Publication Number Publication Date
WO2021241108A1 true WO2021241108A1 (ja) 2021-12-02

Family

ID=78744491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016678 WO2021241108A1 (ja) 2020-05-29 2021-04-26 空気調和システム

Country Status (3)

Country Link
EP (1) EP4160118A4 (ja)
JP (1) JP7462186B2 (ja)
WO (1) WO2021241108A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199660A (ja) 1998-12-28 2000-07-18 Daikin Ind Ltd 冷媒回収方法および冷媒回収装置
JP2004232934A (ja) * 2003-01-29 2004-08-19 Fujitsu General Ltd マルチ型空気調和機の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム
WO2016157519A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 空気調和装置
JP2019143877A (ja) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル 空気調和システム
JP2020094409A (ja) 2018-12-12 2020-06-18 三菱電機株式会社 遮光システム、遮光金具および遮光システムの施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735557B2 (ja) * 2007-02-02 2011-07-27 ダイキン工業株式会社 冷凍装置
JP5089759B2 (ja) * 2010-12-03 2012-12-05 三菱電機株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199660A (ja) 1998-12-28 2000-07-18 Daikin Ind Ltd 冷媒回収方法および冷媒回収装置
JP2004232934A (ja) * 2003-01-29 2004-08-19 Fujitsu General Ltd マルチ型空気調和機の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム
WO2016157519A1 (ja) * 2015-04-03 2016-10-06 三菱電機株式会社 空気調和装置
JP2019143877A (ja) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル 空気調和システム
JP2020094409A (ja) 2018-12-12 2020-06-18 三菱電機株式会社 遮光システム、遮光金具および遮光システムの施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160118A4

Also Published As

Publication number Publication date
EP4160118A1 (en) 2023-04-05
EP4160118A4 (en) 2023-11-15
JP2021188826A (ja) 2021-12-13
JP7462186B2 (ja) 2024-04-05

Similar Documents

Publication Publication Date Title
JP5996087B2 (ja) 空気調和装置
JP5558625B2 (ja) 冷凍空調装置
WO2021241108A1 (ja) 空気調和システム
KR20100002770A (ko) 멀티형 공기조화기 및 그 제어방법
EP1746364A3 (en) Air conditioner inspection method
JP4214198B2 (ja) 空気調和機
JP5910610B2 (ja) 空気調和システム
EP1972861A3 (en) Simultaneous Heating and Cooling Type Multi-Air Conditioner and Method for Controlling the Same
JP6391977B2 (ja) マルチ型空気調和装置の制御装置、それを備えたマルチ型空気調和システム及びマルチ型空気調和装置の制御方法並びに制御プログラム
JP2009041829A (ja) 空気調和装置
JPH0719579A (ja) 空気調和装置の運転制御装置
JPH08189690A (ja) 多室形空気調和システムの暖房除湿運転制御装置
JP7209186B2 (ja) 空気調和システム、及び、空気調和システムの制御方法
JP4270765B2 (ja) 空気調和装置
JP2006046782A (ja) 空気調和機及び空気調和機の運転方法
CN115349072A (zh) 空调装置
JP6540159B2 (ja) 空調システム
KR100664504B1 (ko) 멀티형 공기조화기의 운전제어방법
JP2009210140A (ja) マルチ型空気調和装置
JP4559378B2 (ja) 空気調和機
JP3998390B2 (ja) 制御システム及び空気調和装置
WO2022163058A1 (ja) 空気調和装置
JP5558890B2 (ja) 空気調和装置
JPH1123038A (ja) 空気調和機及びその制御装置
JP2017083061A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021814271

Country of ref document: EP

Effective date: 20230102