WO2022163058A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022163058A1
WO2022163058A1 PCT/JP2021/041026 JP2021041026W WO2022163058A1 WO 2022163058 A1 WO2022163058 A1 WO 2022163058A1 JP 2021041026 W JP2021041026 W JP 2021041026W WO 2022163058 A1 WO2022163058 A1 WO 2022163058A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
opening
air conditioner
indoor
indoor unit
Prior art date
Application number
PCT/JP2021/041026
Other languages
English (en)
French (fr)
Inventor
立慈 川端
良美 林
正宣 広田
大 松井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022163058A1 publication Critical patent/WO2022163058A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to an air conditioner.
  • Patent Literature 1 discloses an air conditioner that can reduce the amount of refrigerant leakage when refrigerant leakage occurs.
  • an outdoor unit having a compressor, a refrigerant flow switching device, a heat source side heat exchanger, and a first expansion device; an indoor unit having a user side heat exchanger and a second expansion device;
  • a refrigerant circuit is formed by a liquid-side pipe connecting a first expansion device and a second expansion device and a gas-side pipe connecting a refrigerant flow switching device and a user-side heat exchanger
  • a first switchgear is provided on the liquid side pipe and a second switchgear is provided on the gas side pipe, and when refrigerant leakage is detected, the first switchgear and the second switchgear are closed.
  • the present invention provides an air conditioner capable of suppressing the impact of the refrigerant transmitted to the switching device that opens and closes the refrigerant pipe.
  • the air conditioner according to the present disclosure includes an outdoor unit provided with a compressor, an indoor unit containing a user-side heat exchanger, the compressor and the user-side heat exchanger. is formed by being connected by a refrigerant pipe, a refrigeration circuit in which refrigerant circulates, a refrigerant sensor that detects refrigerant leaking from the refrigeration circuit, an opening and closing device that opens and closes the refrigerant pipe, and a branch from the refrigerant pipe a bypass pipe, a bypass pipe throttle device that adjusts the flow rate of refrigerant flowing through the bypass pipe, and a controller, wherein the controller controls the bypass pipe throttle device when the refrigerant sensor detects refrigerant.
  • the opening/closing device is caused to close the refrigerant pipe after the degree of opening is increased.
  • the present invention it is possible to suppress the impact of the refrigerant transmitted to the switching device that opens and closes the refrigerant pipe. Therefore, even after the opening/closing device performs the closing operation, the opening/closing device can always perform the opening/closing operation again.
  • FIG. 1 is a diagram showing a schematic configuration of a refrigeration circuit of an air conditioner according to Embodiment 1 of the present disclosure
  • Figure 2 is a block diagram of an air conditioner
  • FIG. 3 is a flowchart showing the operation of the air conditioner
  • FIG. 4 is a diagram showing a schematic configuration of a refrigeration circuit of an air conditioner according to Embodiment 2 of the present disclosure
  • FIG. 5 is a block diagram of an air conditioner
  • FIG. 6 is a flowchart showing the operation of the air conditioner
  • an outdoor unit having a compressor, a refrigerant flow switching device, a heat source side heat exchanger, and a first expansion device
  • an indoor unit having a user side heat exchanger and a second expansion device
  • a refrigerant circuit is formed by a liquid-side pipe that connects the first expansion device and the second expansion device, and a gas-side pipe that connects the refrigerant flow switching device and the user-side heat exchanger.
  • a first switchgear is provided on the liquid side pipe and a second switchgear is provided on the gas side pipe. becomes closed.
  • the present disclosure provides an air conditioner capable of suppressing the impact of the refrigerant transmitted to the switching device that opens and closes the refrigerant pipe.
  • FIG. 1 is a diagram showing a schematic configuration of a refrigerating circuit of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 includes an outdoor unit 20 and an indoor unit 30 .
  • the indoor unit 30 corresponds to an example of an indoor unit, and is connected to the outdoor unit 20 by a liquid side pipe 11 and a gas side pipe 12 .
  • the liquid-side pipe 11 and the gas-side pipe 12 correspond to examples of refrigerant pipes.
  • the outdoor unit 20, the indoor unit 30, the liquid-side pipe 11, and the gas-side pipe 12 form a refrigeration circuit (refrigerant circuit) in which the refrigerant circulates.
  • the air conditioner 1 circulates the refrigerant compressed by the outdoor unit 20 between the outdoor unit 20 and the indoor unit 30, and air-conditions the space to be conditioned in which the indoor unit 30 is installed.
  • the outdoor unit 20 includes a compressor 21 that compresses refrigerant, an outdoor heat exchanger 22 that exchanges heat with the refrigerant, an outdoor fan 23 , an outdoor expansion valve 24 , and a switching valve 25 .
  • the compressor 21 sucks the refrigerant from the suction pipe 28, compresses it, and discharges it.
  • the outdoor heat exchanger 22 exchanges heat between the refrigerant and the outdoor air in the outdoor unit 20 .
  • the outdoor heat exchanger 22 functions as a condenser when the air conditioner 1 performs cooling operation, and functions as an evaporator when the air conditioner 1 performs heating operation.
  • the outdoor fan 23 blows air to the outdoor heat exchanger 22 .
  • the outdoor expansion valve 24 decompresses and expands the high-pressure refrigerant.
  • the outdoor expansion valve 24 is configured so that the degree of opening can be adjusted.
  • the degree of opening of the outdoor expansion valve 24 is controlled by the controller 50 .
  • the outdoor expansion valve 24 can adjust the degree of opening, and the outdoor expansion valve 24 may be a valve capable of shutting off the refrigerant.
  • the switching valve 25 is composed of, for example, a four-way valve.
  • the switching valve 25 switches the flow of the refrigerant discharged from the compressor 21 and the refrigerant returning to the compressor 21 . By driving the switching valve 25, the cooling operation and the heating operation of the air conditioner 1 are switched.
  • the indoor unit 30 corresponds to an example of an indoor unit.
  • This indoor unit 30 includes a plurality of indoor heat exchangers 31 , a plurality of indoor fans 32 , a plurality of indoor expansion valves 34 and a refrigerant sensor 37 .
  • the indoor heat exchanger 31 exchanges heat between the refrigerant supplied from the outdoor unit 20 through the liquid side pipe 11 or the gas side pipe 12 and the indoor air.
  • the indoor heat exchanger 31 corresponds to an example of a utilization side heat exchanger.
  • Each indoor heat exchanger 31 is connected in parallel to the outdoor unit 20 by a liquid side pipe 11 and a gas side pipe 12 .
  • Each indoor heat exchanger 31 is connected to the liquid side pipe 11 by a liquid side pipe 13 branched from the liquid side pipe 11 .
  • each indoor heat exchanger 31 is connected to the gas side pipe 12 by a gas side pipe 14 branched from the gas side pipe 12 .
  • the number of indoor heat exchangers 31 provided in the indoor unit 30 is limited to two, for example, one, or three or more may be provided.
  • Each indoor fan 32 functions as a blower fan that blows air to each of the indoor heat exchangers 31 to send conditioned air to the space to be conditioned.
  • Each indoor expansion valve 34 is an expansion valve arranged in the liquid side pipe 11 between the outdoor expansion valve 24 and each indoor heat exchanger 31 . In this embodiment, each indoor expansion valve 34 is arranged in each liquid side pipe 13 connected to each indoor heat exchanger 31 . Each indoor expansion valve 34 is configured similarly to the outdoor expansion valve 24 . Each indoor expansion valve 34 corresponds to an example of an indoor unit throttle device.
  • refrigerants are used in the air conditioner 1.
  • refrigerants such as hydrocarbons, ammonia, and R32 have been used in air conditioners as so-called CFC substitutes.
  • CFC substitutes Some of these CFC alternatives are mildly combustible or combustible.
  • LFL Lower Flammability Limit
  • a refrigerant sensor 37 is arranged near each indoor heat exchanger 31 .
  • the refrigerant sensor 37 detects the concentration of the refrigerant and transmits it to the controller 50 as a detection signal.
  • the refrigerant sensor 37 may be provided integrally with the indoor unit 30 as described above.
  • the refrigerant sensor 37 is not limited to this, and the refrigerant sensor 37 may be provided anywhere in the space to be harmonized where the indoor unit 30 is arranged.
  • a first opening/closing device 15 and a second opening/closing device 16 for adjusting the flow rate of refrigerant flowing into the indoor unit 30 are provided.
  • the first opening/closing device 15 and the second opening/closing device 16 correspond to an example of the opening/closing device.
  • the first opening/closing device 15 is provided on the liquid side pipe 13 connected to the indoor heat exchanger 31 .
  • the first opening/closing device 15 of the present embodiment is composed of an opening/closing valve such as an electric valve or an electromagnetic valve.
  • the first opening/closing device 15 can switch between an open state in which the refrigerant flows and a closed state in which the flow of the refrigerant is interrupted.
  • the opening and closing of the first opening/closing device 15 can be controlled by the controller 50 .
  • the first opening/closing device 15 is configured to be automatically closed in the event of a power failure.
  • the first opening/closing device 15 may be a valve that can be set between an open state and a closed state.
  • the second opening/closing device 16 is provided on the gas side pipe 14 connected to the indoor heat exchanger 31 .
  • the second opening/closing device 16 is configured similarly to the first opening/closing device 15 .
  • the refrigerant flows in the flow direction F1, and the refrigerant flows through the compressor 21, the outdoor heat exchanger 22, the outdoor expansion valve 24, the indoor expansion valve 34, the indoor heat exchanger 31, and the switching valve 25 in this order.
  • the flow returns from the switching valve 25 to the suction pipe 28 .
  • the refrigerant flows in the flow direction F2, and the refrigerant flows through the compressor 21, the indoor heat exchanger 31, the indoor expansion valve 34, the outdoor expansion valve 24, the outdoor heat exchanger 22, and the switching valve 25. , and returns from the switching valve 25 to the suction pipe 28 .
  • the air conditioner 1 of this embodiment includes a subcooling heat exchanger 40 .
  • the supercooling heat exchanger 40 is provided between the outdoor heat exchanger 22 and the second opening/closing device 16 in the refrigeration circuit of the air conditioner 1 .
  • the supercooling heat exchanger 40 supercools the liquid refrigerant before the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 22 is decompressed by the indoor expansion valve 34 when the air conditioner 1 performs cooling operation.
  • the subcooling heat exchanger 40 is arranged between the outdoor expansion valve 24 and the second opening/closing device 16 in the liquid side pipe 11 .
  • the supercooling heat exchanger 40 is connected to a junction pipe 41 that branches the liquid side pipe 11 connected to the outdoor expansion valve 24 and joins the refrigerant from the outlet of the supercooling heat exchanger 40 to the suction pipe 28 .
  • a part of the refrigerant (high-pressure liquid refrigerant) condensed in the outdoor heat exchanger 22 is branched from the liquid side pipe 11, and the cooling source is supplied to the supercooling heat exchanger 40. It supplies the cooling refrigerant that becomes After that, the cooling refrigerant is returned to the suction side of the compressor 21 from the supercooling heat exchanger 40 via the junction pipe 41 .
  • the refrigerant is branched from the liquid side pipe 11 between the outdoor expansion valve 24 and the supercooling heat exchanger 40, and connected to the inlet of the cooling refrigerant in the supercooling heat exchanger 40.
  • a bypass pipe 42 is connected.
  • This bypass pipe 42 is provided with a supercooling expansion valve 43 .
  • the supercooling expansion valve 43 corresponds to an example of a bypass pipe throttle device that adjusts the flow rate of refrigerant flowing into the bypass pipe 42 .
  • the supercooling expansion valve 43 of this embodiment is composed of an on-off valve such as an electric valve or an electromagnetic valve.
  • the supercooling expansion valve 43 can switch between an open state in which the refrigerant flows and a closed state in which the refrigerant flow is cut off. Also, the supercooling expansion valve 43 can be set between an open state and a closed state.
  • the supercooling expansion valve 43 decompresses the high-pressure liquid refrigerant flowing through the bypass pipe 42 into a low-pressure gas-liquid two-phase refrigerant.
  • the high-pressure liquid refrigerant then flows from the outdoor heat exchanger 22 toward the indoor expansion valve 34 and is subcooled by the low-pressure gas-liquid two-phase refrigerant in the supercooling heat exchanger 40 .
  • the liquid refrigerant contained in the gas-liquid two-phase refrigerant evaporates through heat exchange with the high-pressure liquid refrigerant, becomes gas refrigerant, and is sucked into the compressor 21 .
  • FIG. 2 is a block diagram schematically showing each part of the air conditioner 1. As shown in FIG. In addition, in FIG. 2, for convenience of explanation, only one indoor fan 32 and one indoor expansion valve 34 are shown.
  • the air conditioner 1 includes a controller 50 .
  • the control unit 50 includes a computer having a processor such as a CPU and MPU and a memory device such as a ROM and a RAM, and controls each unit of the air conditioner 1 .
  • the controller 50 is connected to the outdoor unit 20, the indoor unit 30, the first opening/closing device 15, and the second opening/closing device 16 by wire or wirelessly.
  • the control unit 50 receives signals transmitted from each unit of the air conditioner 1 , such as detection signals transmitted from the refrigerant sensor 37 , and also transmits signals from the control unit 50 to each unit of the air conditioner 1 .
  • the control unit 50 controls the operation of each unit forming the refrigeration circuit of the air conditioner 1 .
  • control unit 50 controls the operation of the compressor 21, controls the degree of opening and opening/closing of the outdoor expansion valve 24 and the indoor expansion valve 34, controls switching of the flow path of the switching valve 25, controls the switching of the flow path of the switching valve 25, It controls the operation and stoppage of the fan 32 .
  • the controller 50 operates the outdoor expansion valve 24 , the indoor expansion valve 34 , the supercooling expansion valve 43 and the switching valve 25 . Specifically, the controller 50 controls the opening degrees of the outdoor expansion valve 24 and the indoor expansion valve 34 . Further, the control unit 50 drives the switching valve 25 to change the flow path of the refrigeration circuit. Thereby, the control unit 50 switches between the cooling operation and the heating operation of the air conditioner 1 .
  • the control unit 50 controls the operating frequency, operation, and stop of the compressor 21 and controls the outdoor fan 23 and the indoor fan 32 in accordance with the target temperature set by a predetermined operation. to air-condition the harmonized space.
  • the control unit 50 controls the degree of opening of the supercooling expansion valve 43 to supercool the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 22 in the supercooling heat exchanger 40 .
  • the control unit 50 controls opening and closing of the first opening/closing device 15 and the second opening/closing device 16 .
  • the control unit 50 receives the detection signal of the refrigerant sensor 37 and determines whether or not refrigerant leakage occurs in the indoor unit 30 .
  • the controller 50 of this embodiment acquires the refrigerant concentration in the indoor unit 30 by acquiring the detection signal from the refrigerant sensor 37 . Then, the control unit 50 determines whether or not the acquired refrigerant concentration is higher than a predetermined value.
  • the control unit 50 causes each unit of the air conditioner 1 to perform a leakage countermeasure operation. Specifically, the controller 50 reduces the operating frequency of the compressor 21 to a predetermined value. As a result, the air conditioner 1 can suppress refrigerant leakage.
  • the control unit 50 determines the operating status of the air conditioner 1 . Specifically, when the operating frequency of the compressor 21 is lowered to a predetermined value, the control unit 50 determines whether the air conditioner 1 is performing the cooling operation.
  • the control unit 50 increases the degree of opening of the supercooling expansion valve 43 when determining that the air conditioner 1 is performing the cooling operation. As a result, the liquid refrigerant flowing out of the outdoor heat exchanger 22 is introduced into the suction pipe 28 of the compressor 21 via the bypass pipe 42 branched from the liquid side pipe 11 . Therefore, in the liquid side pipe 11, the flow rate of the liquid refrigerant flowing from the outdoor heat exchanger 22 to the indoor unit 30 is reduced.
  • the control unit 50 closes the second opening/closing device 16 provided on the liquid side pipe 11 .
  • the controller 50 closes the first opening/closing device 15 .
  • the liquid refrigerant is introduced into the bypass pipe 42 in the liquid-side pipe 11 , thereby reducing the flow rate of the liquid refrigerant flowing from the outdoor heat exchanger 22 to the indoor unit 30 .
  • the second opening/closing device 16 provided in the liquid-side pipe 11 opens and closes, the impact received by the second opening/closing device 16 from the flow of the refrigerant is suppressed.
  • the flow rate of the gas refrigerant flowing through the gas-side pipe 12 also decreases.
  • the air conditioner 1 when the first opening/closing device 15 provided in the gas-side pipe 12 opens and closes, the impact received by the first opening/closing device 15 from the flow of the refrigerant is suppressed.
  • control unit 50 determines that the air conditioner 1 is not performing the cooling operation
  • the control unit 50 cuts off the gas-side pipe 12 through which the gas refrigerant flows, and then cuts off the liquid-side pipe through which the liquid refrigerant flows. Shut off the pipe 11 .
  • the control unit 50 closes the second opening/closing device 16 after closing the first opening/closing device 15 .
  • the second air conditioner provided in the gas side pipe 12 through which the gas refrigerant having a lower density and causing a lower impact flows flows.
  • the opening/closing device 15 is preferentially closed. As a result, the flow rate of the liquid refrigerant flowing through the liquid-side pipe 11 is reduced.
  • the second opening/closing device 16 provided in the liquid-side pipe 11 opens and closes, the impact received by the second opening/closing device 16 from the flow of the liquid refrigerant with a higher density is suppressed. be.
  • the first opening/closing device 15 and the second opening/closing device 16 can suppress the impact received from the flow of the refrigerant. .
  • the controller 50 controls each part of the air conditioner 1 to suppress refrigerant leakage in the indoor unit 30 .
  • control unit 50 can store various data related to the operation of the air conditioner 1 , such as various operations of the air conditioner 1 and the refrigerant concentration detected by the refrigerant sensor 37 .
  • FIG. 3 is a flowchart showing the operation of the air conditioner 1.
  • the control unit 50 acquires the refrigerant concentration detected by the refrigerant sensor 37 at a predetermined frequency, and determines whether or not the concentration is higher than a predetermined value (step SA1 ).
  • the control unit 50 determines that the refrigerant concentration detected by the refrigerant sensor 37 is higher than the predetermined value (step SA1: YES)
  • the control unit 50 causes the predetermined unit to perform the leakage countermeasure operation.
  • the controller 50 reduces the operating frequency of the compressor 21 to a predetermined value (step SA2). As a result, in the air conditioner 1, the speed of the refrigerant flowing through the refrigeration circuit is reduced. Therefore, the flow rate of refrigerant leaking from the indoor unit 30 can be reduced.
  • step SA3 determines whether or not the air conditioner 1 is performing cooling operation.
  • step SA4 increases the degree of opening of the supercooling expansion valve 43 (step SA4).
  • step SA4 increases the degree of opening of the supercooling expansion valve 43.
  • the liquid refrigerant flowing out of the outdoor heat exchanger 22 is introduced into the suction pipe 28 of the compressor 21 via the bypass pipe 42 branching from the liquid side pipe 11, and flows into the indoor unit 30 from the outdoor heat exchanger 22.
  • the flow rate of liquid refrigerant decreases.
  • the controller 50 closes the second opening/closing device 16 provided on the liquid side pipe 11 (step SA5).
  • the controller 50 closes the first opening/closing device 15 provided on the gas side pipe 12 (step SA6).
  • impacts received by the first opening/closing device 15 and the second opening/closing device 16 can be suppressed.
  • leakage of the refrigerant in the indoor unit 30 can be suppressed.
  • step SA3 NO
  • the control unit 50 controls the first opening/closing device 15 provided in the gas-side pipe 12. is closed (step SA7).
  • step SA8 the controller 50 closes the second opening/closing device 16 provided on the liquid side pipe 11 (step SA8).
  • the first opening/closing device 15 provided in the gas side pipe 12 through which the gas refrigerant with lower density and less impact flows is preferentially closed. Therefore, by preferentially blocking the first opening/closing device 15, which causes a lower impact, the first opening/closing device 15 and the second opening/closing device 16 can suppress the impact received from the flow of the refrigerant.
  • the controller 50 controls each part of the air conditioner 1 to suppress refrigerant leakage in the indoor unit 30 .
  • the outdoor unit 20 provided with the compressor 21, the indoor unit 30 containing the indoor heat exchanger 31, the compressor 21 and the indoor heat exchange
  • the refrigerating circuit is formed by connecting the vessel 31 with the gas side pipe 12 and the liquid side pipe 11, and includes a refrigeration circuit in which the refrigerant circulates.
  • the air conditioner 1 also includes a refrigerant sensor 37 that detects refrigerant leaking from the refrigeration circuit, a first opening and closing device 15 and a second opening and closing device 16 that open and close the gas side pipe 12 and the liquid side pipe 11, and the liquid A bypass pipe 42 branched from the side pipe 11 , a supercooling expansion valve 43 that adjusts the flow rate of the refrigerant flowing through the bypass pipe 42 , and a controller 50 . Then, when the refrigerant sensor 37 detects the refrigerant, the control unit 50 increases the degree of opening of the supercooling expansion valve 43, and then closes the first opening/closing device 15 and the second opening/closing device 16. The gas side pipe 12 and the liquid side pipe 11 are cut off.
  • the liquid refrigerant is introduced into the bypass pipe 42 in the liquid side pipe 11, thereby reducing the flow rate of the liquid refrigerant flowing from the outdoor heat exchanger 22 to the indoor unit 30. Therefore, in the air conditioner 1, when the second opening/closing device 16 provided in the liquid-side pipe 11 opens and closes, the impact received by the second opening/closing device 16 from the flow of the liquid refrigerant is suppressed.
  • the bypass pipe 42 branches from the liquid-side pipe 11 where the liquid refrigerant of the refrigerant pipe flows. They are provided respectively on the outlet side and the inlet side of the heat exchanger 31 . Then, when the refrigerant sensor 37 detects the refrigerant, the control unit 50 may close the first opening/closing device 15 through which the gas refrigerant flows after closing the second opening/closing device 16 through which the liquid refrigerant flows.
  • the first opening/closing device 15 and the second opening/closing device 16 are closed in the order of the refrigerant pipes in which the flow rate of the gas refrigerant flowing through the gas side pipe 12 has decreased. Therefore, in the air conditioner 1, the first opening/closing device 15 and the second opening/closing device 16 can be restrained from the impact caused by the flow of the refrigerant.
  • the control unit 50 controls the operating frequency of the compressor 21 to a predetermined value or less, and then controls the first opening/closing device 15 and the second opening/closing device. 16 may shut off the gas side pipe 12 and the liquid side pipe 11 .
  • the air conditioner 1 the flow velocity of the refrigerant flowing through the refrigeration circuit is reduced, and then the first opening/closing device 15 and the second opening/closing device 16 are closed. Therefore, in the air conditioner 1, the first opening/closing device 15 and the second opening/closing device 16 can be restrained from impact caused by the flow of the refrigerant.
  • the bypass pipe 42 may be provided with the supercooling heat exchanger 40 .
  • the subcooling heat exchanger 40 allows the liquid refrigerant to to supercool. Therefore, the air conditioner 1 can supercool the liquid refrigerant and adjust the flow rate of the refrigerant in the refrigeration circuit.
  • FIG. 4 is a diagram showing a schematic configuration of a refrigerating circuit of the air conditioner 100 according to Embodiment 2 of the present disclosure.
  • FIG. 5 is a block diagram showing the configuration of the air conditioner 100 according to Embodiment 2. As shown in FIG. In FIGS. 4 and 5, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the air conditioner 100 according to Embodiment 2 differs from the air conditioner 1 according to Embodiment 1 in that at least a plurality of indoor units 30 are provided.
  • Each indoor unit 30 is connected in parallel to the outdoor unit 20 by a liquid side pipe 11 and a gas side pipe 12 . Further, the liquid side pipes 11 to which the indoor units 30 are connected are all provided with the second opening/closing devices 16, and the gas side pipes 12 to which the indoor units 30 are connected are all provided with the first opening/closing devices 15. is provided.
  • the controller 50 controls the operation of each indoor unit 30 .
  • the control unit 50 controls the operating frequency of the compressor 21 downward.
  • the lowering control of the operating frequency of the outdoor unit 20 by the control unit 50 is performed, for example, as follows.
  • the control unit 50 multiplies the operating frequency of the compressor 21 before receiving the detection signal of the refrigerant sensor 37 by the ratio of the operating capability of the indoor unit 30 in which leakage is detected to the operating capability of all the indoor units 30.
  • the speed of the refrigerant flowing into the indoor unit 30 can be reduced, and the impact received from the flow of the refrigerant when the first opening/closing device 15 and the second opening/closing device 16 are closed can be suppressed.
  • the indoor units 30 in which refrigerant leakage has not been detected can be easily returned to normal operation after the leakage countermeasure operation is performed.
  • the controller 50 maintains the refrigerant concentration at a predetermined value or less.
  • the degree of opening of the indoor expansion valve 34 of the indoor unit 30 is increased. As a result, the refrigerant sent out from the outdoor unit 20 preferentially flows into the indoor unit 30 side where no refrigerant leakage occurs.
  • the amount of refrigerant in the indoor unit 30 in which refrigerant leakage occurs is reduced by increasing the amount of refrigerant circulating in the indoor unit 30 in which the refrigerant is not leaking.
  • the second opening/closing device 16 provided in the liquid-side pipe 11 connected to the indoor unit 30 in which the refrigerant leaked, and the gas-side pipe 12 connected to the indoor unit 30 in which the refrigerant leaked When the first opening/closing device 15 is closed, the impact that the first opening/closing device 15 and the second opening/closing device 16 receive from the flow of the liquid refrigerant is suppressed.
  • the control unit 50 controls the second opening/closing device 16 provided in the liquid-side pipe 11 connected to the indoor unit 30 in which the refrigerant has leaked, and the gas-side pipe 12 connected to the indoor unit 30 in which the refrigerant has leaked.
  • the closed first opening/closing device 15 is closed. That is, when the leakage countermeasure operation is completed, the control unit 50 controls the opening degree of the indoor expansion valve 34 of the indoor unit 30 in which no refrigerant leakage has occurred so as to be the opening degree during normal operation. As a result, the operation of the indoor unit 30 in which the refrigerant leakage has occurred is stopped, and the indoor unit 30 in which the refrigerant leakage has not occurred is returned to normal operation.
  • FIG. 6 is a flow chart showing the operation of the air conditioner 100. As shown in FIG.
  • the control unit 50 acquires the refrigerant concentration detected by each refrigerant sensor 37 at a predetermined frequency, and determines whether or not the concentration is higher than a predetermined value (step SB1).
  • the control unit 50 causes the predetermined unit to perform the leakage countermeasure operation.
  • the controller 50 reduces the operating frequency of the compressor 21 to a predetermined value (step SB2). As a result, in the air conditioner 100, the speed of the refrigerant flowing through the refrigeration circuit is reduced.
  • the controller 50 determines whether or not the air conditioner 100 is performing cooling operation (step SB3).
  • the control unit 50 increases the degree of opening of the supercooling expansion valve 43 (step SB4).
  • the liquid refrigerant flowing out of the outdoor heat exchanger 22 is introduced into the suction pipe 28 of the compressor 21 via the bypass pipe 42 branching from the liquid side pipe 11, and flows into the indoor unit 30 from the outdoor heat exchanger 22.
  • the flow rate of liquid refrigerant decreases.
  • the control unit 50 determines whether or not the refrigerant sensor 37 that has detected refrigerant with a concentration equal to or higher than a predetermined value is one of the plurality of indoor units 30 (step SB5).
  • the control unit 50 determines that the refrigerant sensor 37 that has detected the refrigerant is one of the plurality of indoor units 30 (step SB5: YES)
  • the control unit 50 controls the concentration below the predetermined value. is increased (step SB6).
  • the refrigerant sent out from the outdoor unit 20 preferentially flows into the indoor unit 30 side where no refrigerant leakage occurs.
  • the control unit 50 determines whether or not the air conditioner 100 is performing cooling operation (step SB7).
  • the control unit 50 determines that the air conditioner 100 is performing the cooling operation (step SB7: YES)
  • the control unit 50 opens the liquid side pipe on the side of the indoor unit 30 where the refrigerant leakage is occurring. 11 is closed (step SB8).
  • the control unit 50 closes the first opening/closing device 15 provided on the gas side pipe 12 on the side of the indoor unit 30 where the refrigerant leakage is occurring (step SB9).
  • impacts received by the first opening/closing device 15 and the second opening/closing device 16 can be suppressed.
  • refrigerant leakage in the indoor unit 30 can be suppressed.
  • the controller 50 controls the opening degree of the indoor expansion valve 34 of the indoor unit 30 in which no refrigerant leakage has occurred so as to be the opening degree during normal operation (step SB10). Then, the controller 50 restores the indoor units 30 in which no refrigerant leakage has occurred to normal operation (step SB11).
  • control unit 50 determines that the air conditioner 100 is not performing the cooling operation (step SB7: NO)
  • the control unit 50 controls the gas flow on the side of the indoor unit 30 where the refrigerant leakage is occurring.
  • the first opening/closing device 15 provided on the side pipe 12 is closed (step SB12).
  • the control unit 50 closes the second opening/closing device 16 provided in the liquid-side pipe 11 on the side of the indoor unit 30 where the refrigerant leakage is occurring (step SB13).
  • the first opening/closing device 15 provided in the gas side pipe 12 through which the gas refrigerant having a lower density and a lower impact flows is preferentially closed. Therefore, in the air conditioner 100, by preferentially shutting off the first opening/closing device 15, which causes a lower impact, the first opening/closing device 15 and the second opening/closing device 16 each receive an impact from the flow of the refrigerant. can be suppressed.
  • the controller 50 controls each part of the air conditioning apparatus 100, so that refrigerant leakage in the indoor unit 30 can be suppressed.
  • control unit 50 determines that the air conditioner 100 is not performing cooling (step SB3: NO), it sequentially performs each step after step SB5.
  • control unit 50 determines that all of the refrigerant sensors 37 included in each of the plurality of indoor units 30 have detected refrigerant having a predetermined concentration or higher (step SB5: NO)
  • each indoor unit 30, each step after step SB7 is performed in order.
  • the air conditioner 100 includes a plurality of indoor units 30.
  • Each of the indoor units 30 includes the refrigerant sensor 37 and the indoor heat exchanger 31 housed in the indoor unit 30. and an indoor expansion valve 34 for adjusting the flow rate of the refrigerant pipe connected to the .
  • the control unit 50 increases the degree of opening of the indoor expansion valve 34 provided in the other indoor unit 30, and then detects refrigerant leakage.
  • the refrigerant pipe is closed by the first opening/closing device 15 and the second opening/closing device 16 on the side of the indoor unit 30 where is generated.
  • the air conditioner 100 As a result, in the air conditioner 100, the amount of refrigerant circulating in the indoor unit 30 in which the refrigerant is not leaking is increased, thereby reducing the amount of refrigerant in the indoor unit 30 where the refrigerant is leaking. For this reason, the second opening/closing device 16 provided in the liquid side pipe 11 connected to the indoor unit 30 where the refrigerant leakage occurred, and the gas side pipe 12 provided in the gas side pipe 12 connected to the indoor unit 30 where the refrigerant leakage occurred When the first opening/closing device 15 is closed, the impact that the first opening/closing device 15 and the second opening/closing device 16 receive from the flow of liquid refrigerant is suppressed.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • the number of indoor units 30 and outdoor units 20 is not limited.
  • the air conditioners 1 and 100 may have a configuration in which a plurality of outdoor units 20 and a plurality of indoor units 30 are connected.
  • the bypass pipe 42 is provided in the liquid side pipe 11 .
  • the present invention is not limited to this, and in the air conditioners 1 and 100, the bypass pipe 42 may be provided between the compressor 21 and the first opening/closing device 15 or between the compressor 21 and the second opening/closing device 16.
  • a bypass pipe 42 may be provided in the gas side pipe 12.
  • the bypass pipe 42 in the liquid-side pipe 11, in the air conditioners 1 and 100, as described above, in addition to suppressing refrigerant leakage, the effect of supercooling the refrigerant during cooling operation is also exhibited.
  • the first switchgear 15 and the second switchgear 16 are closed. It is possible to suppress the impact received from the flow of the refrigerant.
  • the bypass pipe 42 is provided in the gas side pipe 12
  • the first opening and closing device 15 and the second opening and closing device 16 will each release the refrigerant. can suppress the impact received from the flow of
  • bypass pipe 42 may be provided in both the liquid-side pipe 11 and the gas-side pipe 12 .
  • the bypass pipe 42 may be provided in both the liquid-side pipe 11 and the gas-side pipe 12 .
  • the bypass pipe 42 is connected to the suction pipe 28 of the compressor 21 via the supercooling heat exchanger 40 and the confluence pipe 41 .
  • the bypass pipe 42 is not limited to this, and the bypass pipe 42 may be connected to various members such as piping for flowing refrigerant into the compressor 21 such as an injection hole of the compressor 21 and an injection pipe.
  • the bypass pipe 42 is connected to the suction pipe 28 of the compressor 21, the differential pressure between the suction pipe 28 and the bypass pipe 42 increases, so more refrigerant is introduced into the compressor 21. becomes.
  • the air conditioners 1 and 100 are provided with the subcooling heat exchanger 40, but the present invention is not limited to this and may be a receiver tank. Further, in the air conditioners 1 and 100, only the bypass pipe 42 may be provided and the supercooling heat exchanger 40 may be omitted.
  • the air conditioners 1 and 100 described above are provided with one or two indoor units 30 .
  • the present invention is not limited to this, and three or more indoor units 30 may be provided.
  • each indoor unit 30 may include a temperature sensor that detects the air conditioning temperature of the indoor unit 30 . Then, the controller 50 controls the degree of opening of the indoor expansion valve 34 of the indoor unit 30 having a smaller difference between the target temperature set for each indoor unit 30 and the current temperature of the space to be air-conditioned by the indoor unit 30. may be selectively increased. That is, for each of the plurality of indoor units 30, the control unit 50 controls the temperature of the room according to the difference between the target temperature set in the indoor unit 30 and the temperature detected by the temperature sensor provided in the indoor unit 30. The degree of opening of the indoor expansion valve 34 provided in the unit 30 may be controlled.
  • the air conditioners 1 and 100 it is possible to suppress an increase in the circulation amount of the refrigerant in the indoor unit 30 where the difference between the set target temperature and the temperature detected by the temperature sensor is greater. Therefore, in the air conditioners 1 and 100, the compressor 21 can be easily controlled, the load applied to the compressor 21 can be reduced, and the amount of refrigerant flowing through the refrigeration circuit can be adjusted more efficiently.
  • control unit 50 controls the operation of the indoor expansion valve 34 of the indoor unit 30 having a larger difference between the target temperature set for each indoor unit 30 and the current temperature of the space to be air-conditioned by the indoor unit 30. It is not necessary to change the opening at all.
  • the temperature sensor described above may be provided integrally with the indoor unit 30 .
  • the temperature sensor is not limited to this, and the temperature sensor may be provided anywhere in the space to be harmonized where the indoor unit 30 is arranged.
  • each unit shown in FIGS. 2 and 5 is an example, and the specific implementation is not particularly limited. In other words, it is not always necessary to mount hardware corresponding to each part individually, and it is of course possible to adopt a configuration in which one processor executes a program to realize the function of each part. Also, part of the functions implemented by software in the above-described embodiments may be implemented by hardware, or part of the functions implemented by hardware may be implemented by software. The specific detailed configuration of other parts can also be arbitrarily changed without departing from the scope of the present invention.
  • step units of each operation shown in FIG. 3 and FIG. The division method and name do not limit the present invention. It may be divided into more step units according to the processing contents. Also, one step unit may be divided to include more processes. Also, the order of the steps may be changed as appropriate within the scope of the present invention.
  • the present disclosure is applicable to an air conditioner having a switching device for countermeasures against refrigerant leakage. Specifically, the present disclosure is applicable to, for example, an air conditioner that closes a switchgear while refrigerant is flowing when refrigerant leakage is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒配管を開閉する開閉装置に伝わる冷媒の衝撃を抑制できる空気調和装置を提供する。 圧縮機21が設けられた室外機20と、利用側熱交換器が収められた室内機と、圧縮機21と利用側熱交換器とが冷媒配管によって連結されることで形成され、冷媒が循環する冷凍回路と、冷凍回路から漏洩した冷媒を検知する冷媒センサ37と、冷媒配管を開閉する開閉装置と、冷媒配管から分岐したバイパス管42と、バイパス管42に流れる冷媒の流量を調整するバイパス管絞り装置と、制御部50とを備え、制御部50は、冷媒センサ37が冷媒を検知した場合に、バイパス管絞り装置の開度を上昇させた後に、開閉装置に冷媒配管を閉止させる。

Description

空気調和装置
 本発明は、空気調和装置に関する。
 特許文献1では、冷媒漏れが発生した場合の冷媒の漏洩量をより少なくすることができる空気調和装置を開示する。
 この空気調和装置では、圧縮機、冷媒流路切替装置、熱源側熱交換器及び第1の絞り装置を有する室外機と、利用側熱交換器及び第2の絞り装置を有する室内機と、第1の絞り装置と第2の絞り装置とを接続する液側配管と、冷媒流路切替装置と利用側熱交換器とを接続するガス側配管と、で冷媒回路を形成する空気調和装置において、液側配管には第1の開閉装置と、ガス側配管には第2の開閉装置と、を設け、冷媒の漏洩を検知した際に、第1の開閉装置と第2の開閉装置が閉止状態になる。
WO2017/203606号公報
 本発明は、冷媒配管を開閉する開閉装置に伝わる冷媒の衝撃を抑制できる空気調和装置を提供する。
 上述した目的を達成するために、本開示における空気調和装置は、圧縮機が設けられた室外機と、利用側熱交換器が収められた室内機と、前記圧縮機と前記利用側熱交換器とが冷媒配管によって連結されることで形成され、冷媒が循環する冷凍回路と、前記冷凍回路から漏洩した冷媒を検知する冷媒センサと、前記冷媒配管を開閉する開閉装置と、前記冷媒配管から分岐したバイパス管と、前記バイパス管に流れる冷媒の流量を調整するバイパス管絞り装置と、制御部とを備え、前記制御部は、前記冷媒センサが冷媒を検知した場合に、前記バイパス管絞り装置の開度を上昇させた後に、前記開閉装置に前記冷媒配管を閉止させることを特徴とする。
 なお、この明細書には、2021年1月28日に出願された日本国特許出願・特願2021-012109号の全ての内容が含まれるものとする。
 本発明によれば、冷媒配管を開閉する開閉装置に伝わる冷媒の衝撃を抑制できる。そのため、開閉装置が閉動作を行った後であっても、当該開閉装置は、再度の開閉動作を常に行うことができる。
図1は、本開示の実施の形態1に係る空気調和装置の冷凍回路の概略構成を示す図 図2は、空気調和装置のブロック図 図3は、空気調和装置の動作を示すフローチャート 図4は、本開示の実施の形態2に係る空気調和装置の冷凍回路の概略構成を示す図 図5は、空気調和装置のブロック図 図6は、空気調和装置の動作を示すフローチャート
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、空気調和装置において、冷媒漏れが発生した場合の冷媒の漏洩量をより少なくする技術があった。
 この空気調和装置では、圧縮機、冷媒流路切替装置、熱源側熱交換器及び第1の絞り装置を有する室外機と、利用側熱交換器及び第2の絞り装置を有する室内機と、第1の絞り装置と第2の絞り装置とを接続する液側配管と、冷媒流路切替装置と利用側熱交換器とを接続するガス側配管と、で冷媒回路を形成する。そして、液側配管には第1の開閉装置と、ガス側配管には、第2の開閉装置とが設けられ、冷媒の漏洩を検知した際に、第1の開閉装置と第2の開閉装置が閉止状態になる。
 ところで、従来の構成では、冷媒漏洩が検知されたときに、冷媒が流れた状態で開閉装置の閉動作を行うため、特に密度が大きい液冷媒が流れている液側配管の第1の開閉装置に伝わる液圧衝撃が大きくなる。このため、漏洩箇所の特定や修理の後に、空気調和装置が通常の運転に復帰した場合に、開閉装置が開閉動作を正常に行えない虞があった。
 そこで本開示は、冷媒配管を開閉する開閉装置に伝わる冷媒の衝撃を抑制できる空気調和装置を提供する。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図1~図4を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.空気調和装置の冷凍回路の構成]
 以下、図面を参照して本開示の実施の形態について説明する。
 図1は、本発明の実施形態に係る空気調和装置1の冷凍回路の概略構成を示す図である。
 空気調和装置1は、室外機20と、室内ユニット30を備える。室内ユニット30は、室内機の一例に対応し、液側配管11、及びガス側配管12によって、室外機20に接続される。液側配管11、及びガス側配管12は、冷媒配管の一例に対応する。
 これらの室外機20と、室内ユニット30と、液側配管11と、ガス側配管12とによって、冷媒が循環する冷凍回路(冷媒回路)が形成される。
 空気調和装置1は、室外機20で圧縮した冷媒を室外機20と、室内ユニット30との間で流通させ、室内ユニット30が設置された被調和空間を空調する。
 室外機20は、冷媒を圧縮する圧縮機21、冷媒の熱交換を行う室外熱交換器22、室外ファン23、室外膨張弁24、及び切替弁25を備える。
 圧縮機21は、吸込管28から冷媒を吸引して圧縮し、吐出する。
 室外熱交換器22は、室外機20において冷媒と室外空気とを熱交換させる。室外熱交換器22は、空気調和装置1が冷房運転を行う場合に凝縮器として機能し、空気調和装置1が暖房運転を行う場合に蒸発器として機能する。
 以下、冷媒の流れや冷凍回路の各部を説明する場合には、特に説明を付す場合を除いて、空気調和装置1が冷房運転を行う場合を説明する。
 室外ファン23は、室外熱交換器22に送風する。
 室外膨張弁24は、高圧の冷媒を減圧して膨張させる。室外膨張弁24は、開度を調整可能に構成されている。室外膨張弁24の開度は、制御部50によって制御される。室外膨張弁24は、開度を調整可能であり、当該室外膨張弁24は、冷媒を遮断できる弁であってもよい。
 切替弁25は、例えば四方弁で構成される。切替弁25は、圧縮機21の吐出冷媒及び圧縮機21に戻る冷媒の流れを切り替える。切替弁25が駆動することで、空気調和装置1の冷房運転と暖房運転とが切り替えられる。
 室内ユニット30は、室内機の一例に対応する。この室内ユニット30は、複数の室内熱交換器31、複数の室内ファン32、複数の室内膨張弁34、及び冷媒センサ37を備える。
 室内熱交換器31は、室外機20から液側配管11またはガス側配管12を通じて供給される冷媒と室内空気との熱交換を行う。室内熱交換器31は、利用側熱交換器の一例に対応する。
 各室内熱交換器31は、液側配管11、及びガス側配管12によって、室外機20に並列に接続される。各室内熱交換器31は、液側配管11から分岐した液側配管13によって、当該液側配管11に接続される。同様に、各室内熱交換器31は、ガス側配管12から分岐したガス側配管14によって、当該ガス側配管12に接続される。
 なお、室内ユニット30が備える室内熱交換器31の数は、2つに限らす、例えば1つ、あるいは3つ以上備えていてもよい。
 各室内ファン32は、各室内熱交換器31のそれぞれに送風して被調和空間に空調空気を送り出す送風ファンとして機能する。
 各室内膨張弁34は、室外膨張弁24と各室内熱交換器31との間の液側配管11に配置される膨張弁である。本実施形態では、各室内膨張弁34は、各室内熱交換器31に接続された各液側配管13に配置される。各室内膨張弁34は、室外膨張弁24と同様に構成されている。各室内膨張弁34は、室内機絞り装置の一例に対応する。
 空気調和装置1で使用される冷媒には、種々のものが挙げられる。近年、いわゆる代替フロンとして、炭化水素、アンモニア、R32等の冷媒が空気調和装置に利用されている。これらの代替フロンには、微燃性あるいは可燃性のものがある。微燃性あるいは可燃性の冷媒が漏洩した場合には、室内ユニット30の被調和空間の冷媒濃度が燃焼下限界(LFL:Lower Flammability Limit)に達しないように、冷媒の漏洩量を抑制することが求められる。特に、被調和空間またはその近傍に設置される室内ユニット30からの冷媒の漏洩量を抑えることが望まれる。
 各室内熱交換器31の近傍には、冷媒センサ37が配置されている。冷媒センサ37は、冷媒の濃度を検知して検知信号として制御部50に送信する。
 なお、冷媒センサ37は、上述のように、室内ユニット30に一体に設けられていてもよい。またこれに限らず、冷媒センサ37は、室内ユニット30が配置された被調和空間内のいずれかの場所に設けられていてもよい。
 室内ユニット30の室内熱交換器31の両側には、室内ユニット30に流れ込む冷媒の流量を調整する第1開閉装置15と第2開閉装置16とが設けられる。これらの第1開閉装置15と第2開閉装置16とは、開閉装置の一例に対応する。
 第1開閉装置15は、室内熱交換器31に接続される液側配管13に設けられる。本実施形態の第1開閉装置15は、電動弁や電磁弁等の開閉弁で構成される。第1開閉装置15は、冷媒が流通する開状態と、冷媒の流れを遮断する閉状態とを切り替え可能である。第1開閉装置15は、制御部50により開閉が制御可能に構成されている。また、第1開閉装置15は、停電時には、自動で閉状態となるように構成されている。
 なお、第1開閉装置15は、開状態と閉状態の間の状態を設定可能な弁であってもよい。
 第2開閉装置16は、室内熱交換器31に接続されるガス側配管14に設けられる。第2開閉装置16は、第1開閉装置15と同様に構成される。
 空気調和装置1の冷房運転では、冷媒は流通方向F1に流れ、冷媒が圧縮機21、室外熱交換器22、室外膨張弁24、室内膨張弁34、室内熱交換器31、切替弁25の順に流れ、切替弁25から吸込管28に戻る。
 また、空気調和装置1の暖房運転では、冷媒は流通方向F2に流れ、冷媒は圧縮機21、室内熱交換器31、室内膨張弁34、室外膨張弁24、室外熱交換器22、切替弁25の順に流れ、切替弁25から吸込管28に戻る。
 本実施の形態の空気調和装置1は、過冷却熱交換器40を備えている。この過冷却熱交換器40は、空気調和装置1が有する冷凍回路において、室外熱交換器22と第2開閉装置16との間に設けられている。
 過冷却熱交換器40は、空気調和装置1が冷房運転を行う場合に、室外熱交換器22から流出した高圧の液冷媒が室内膨張弁34によって減圧される前に、当該液冷媒を過冷却するために用いられる。本実施の形態では、過冷却熱交換器40は、液側配管11において、室外膨張弁24と第2開閉装置16との間に配置されている。
 過冷却熱交換器40には、室外膨張弁24に接続された液側配管11を分岐させ、過冷却熱交換器40における冷媒の出口から吸込管28に合流させる合流配管41が接続される。
 これによって、過冷却熱交換器40では、室外熱交換器22において凝縮した冷媒(高圧液冷媒)の一部を液側配管11から分岐して、当該過冷却熱交換器40に対して冷却源となる冷却冷媒を供給する。この後、冷却冷媒は、過冷却熱交換器40から合流配管41を介して、圧縮機21の吸入側に戻される。
 過冷却熱交換器40には、室外膨張弁24と過冷却熱交換器40との間の液側配管11から冷媒を分岐させ、当該過冷却熱交換器40における冷却冷媒の入口に接続されるバイパス管42が接続される。
 このバイパス管42には、過冷却膨張弁43が設けられる。この過冷却膨張弁43は、バイパス管42に流れ込む冷媒の流量を調整するバイパス管絞り装置の一例に対応する。
 本実施の形態の過冷却膨張弁43は、電動弁や電磁弁等の開閉弁で構成される。この過冷却膨張弁43は、冷媒が流通する開状態と、冷媒の流れを遮断する閉状態とを切り替え可能である。また、過冷却膨張弁43は、開状態と閉状態の間の状態を設定可能である。
 過冷却膨張弁43は、バイパス管42を流れる高圧液冷媒を減圧して、低圧の気液二相冷媒にする。そして、高圧液冷媒は、室外熱交換器22から室内膨張弁34に向かって流動し、過冷却熱交換器40で低圧の気液二相冷媒によって過冷却される。気液二相冷媒に含まれる液冷媒は、高圧液冷媒との熱交換によって蒸発し、ガス冷媒となって圧縮機21に吸入される。
 [1-1-2.制御部の構成]
 図2は、空気調和装置1の各部を模式的に示すブロック図である。なお、図2において、説明の便宜上、室内ファン32と、室内膨張弁34とは、1つのみを示している。
 空気調和装置1は、制御部50を備える。制御部50は、CPUやMPUなどのプロセッサと、ROMやRAMなどのメモリデバイスとを有したコンピュータを備え、空気調和装置1の各部の制御を行うものである。
 図2に示すように、制御部50は、有線または無線で室外機20と、室内ユニット30と、第1開閉装置15と、第2開閉装置16とのそれぞれに接続されている。制御部50は、冷媒センサ37から送信された検知信号等、空気調和装置1の各部から送信された信号を受信し、また、制御部50から空気調和装置1の各部に信号を送信する。
 制御部50は、空気調和装置1の冷凍回路を形成する各部の運転を制御する。
 具体的には、制御部50は、圧縮機21の運転制御、室外膨張弁24及び室内膨張弁34の開度及び開閉の制御、切替弁25の流路の切り替えの制御、室外ファン23及び室内ファン32の運転及び停止の制御を実行する。
 制御部50は、室外膨張弁24、室内膨張弁34、過冷却膨張弁43、及び切替弁25を動作させる。具体的には、制御部50は、室外膨張弁24、室内膨張弁34の開度を制御する。また、制御部50は、切替弁25を駆動させて、冷凍回路の流路を変更させる。
 これによって、制御部50は、空気調和装置1の冷房運転と暖房運転とを切り替える。
 制御部50は、所定の操作によって設定された目標温度に合わせて、圧縮機21の運転周波数や運転、及び停止の制御、室外ファン23、及び室内ファン32の制御を実行し、目標温度に合わせて被調和空間を空調する。
 制御部50は、過冷却膨張弁43の開度を制御することで、室外熱交換器22から流れ出た高圧液冷媒を過冷却熱交換器40で過冷却させる。
 制御部50は、第1開閉装置15及び第2開閉装置16の開閉の制御を実行する。
 制御部50は、冷媒センサ37の検知信号を受信して、室内ユニット30において、冷媒漏洩が生じているか否かを判定する。
 本実施形態の制御部50は、冷媒センサ37からの検知信号を取得することで、室内ユニット30における冷媒濃度を取得する。そして、制御部50は、取得した冷媒濃度が所定値よりも高いか否かを判定する。制御部50は、取得した冷媒濃度が所定値よりも高いと判定すると、空気調和装置1の各部に漏洩対策動作を実行させる。
 具体的には、制御部50は、圧縮機21の運転周波数を所定値にまで低下させる。これによって、空気調和装置1は、冷媒漏洩の抑制を図ることが可能となる。
 制御部50は、圧縮機21の運転周波数を低下させた後に、空気調和装置1の運転状況を判定する。
 具体的には、制御部50は、圧縮機21の運転周波数を所定値にまで低下させた場合に、空気調和装置1が冷房運転を実施しているか否かを判定する。
 制御部50は、空気調和装置1が冷房運転を実施していると判定した場合には、過冷却膨張弁43の開度を上昇させる。
 これによって、室外熱交換器22から流出した液冷媒が液側配管11から分岐するバイパス管42を介して、圧縮機21の吸込管28に導入される。このため、液側配管11において、室外熱交換器22から室内ユニット30に流れ込む液冷媒の流量が減少する。
 この後、制御部50は、液側配管11に設けられた第2開閉装置16を閉止させる。次いで、制御部50は、第1開閉装置15を閉止させる。
 上述の通り、空気調和装置1では、液側配管11において、バイパス管42に液冷媒が導入されることで、室外熱交換器22から室内ユニット30に流れ込む液冷媒の流量が減少する。これによって、空気調和装置1では、液側配管11に設けられた第2開閉装置16が開閉する場合に、冷媒の流れから当該第2開閉装置16が受ける衝撃が抑制される。
 さらに、第2開閉装置16によって液側配管11で室内ユニット30に流入する冷媒が遮断されると、ガス側配管12に流れるガス冷媒の流量もまた減少する。この状態において、空気調和装置1では、ガス側配管12に設けられた第1開閉装置15が開閉する場合に、冷媒の流れから当該第1開閉装置15が受ける衝撃が抑制される。
 一方、制御部50は、空気調和装置1が冷房運転を実施していないと判定した場合には、制御部50は、ガス冷媒が流れるガス側配管12を遮断した後に、液冷媒が流れる液側配管11を遮断する。
 具体的には、制御部50は、第1開閉装置15を閉止させた後に、第2開閉装置16を閉止させる。
 換言すれば、空気調和装置1が冷房運転を実施していない、すなわち暖房運転をしている場合には、より密度が低く、低い衝撃となるガス冷媒が流れるガス側配管12に設けられた第1開閉装置15を優先的に閉止させる。これによって、液側配管11に流れる液冷媒の流量が減少する。この状態において、空気調和装置1では、液側配管11に設けられた第2開閉装置16が開閉する場合に、より密度が高い液冷媒の流れから当該第2開閉装置16が受ける衝撃が抑制される。
 このように、より低い衝撃となる第1開閉装置15から優先的に遮断させることで、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制することができる。
 以上のように、冷媒センサ37が冷媒を検知した場合には、空気調和装置1の各部を制御部50が制御することで、当該室内ユニット30における冷媒漏洩を抑制することが可能となる。
 また、制御部50は、空気調和装置1の各種の運転や、冷媒センサ37によって検知される冷媒濃度といった、空気調和装置1の運転に係る各種のデータを記憶可能である。
 [1-2.動作]
 以上のように構成された空気調和装置1について、その動作を以下に説明する。
 図3は、空気調和装置1の動作を示すフローチャートである。
 空気調和装置1が運転しているときにおいて、制御部50は、所定の頻度で冷媒センサ37が検知した冷媒濃度を取得し、所定値よりも高い濃度であるか否かを判定する(ステップSA1)。
 制御部50は、冷媒センサ37が検知した冷媒濃度が所定値よりも高い濃度であると判定した場合(ステップSA1:YES)、所定部に漏洩対策動作を実行させる。
 具体的には、制御部50が圧縮機21の運転周波数を所定値にまで低下させる(ステップSA2)。
 これによって、空気調和装置1では、冷凍回路を流れる冷媒の速度が低下される。このため、室内ユニット30から漏れ出る冷媒の流量を低下させることが可能となる。
 次いで、制御部50は、空気調和装置1が冷房運転を実施しているか否かを判定する(ステップSA3)。
 制御部50は、空気調和装置1が冷房運転を実施していると判定した場合には(ステップSA3:YES)、過冷却膨張弁43の開度を上昇させる(ステップSA4)。
 これによって、室外熱交換器22から流出した液冷媒が液側配管11から分岐するバイパス管42を介して、圧縮機21の吸込管28に導入され、室外熱交換器22から室内ユニット30に流れ込む液冷媒の流量が減少する。
 この後、制御部50は、液側配管11に設けられた第2開閉装置16を閉止させる(ステップSA5)。次いで、制御部50は、ガス側配管12に設けられた第1開閉装置15を閉止させる(ステップSA6)。
 これによって、空気調和装置1では、第1開閉装置15、及び第2開閉装置16のそれぞれが受ける衝撃を抑制することができる。
 そして、空気調和装置1では、室内ユニット30における冷媒漏洩を抑制することが可能となる。
 一方、制御部50は、空気調和装置1が冷房運転を実施していないと判定した場合には(ステップSA3:NO)、制御部50は、ガス側配管12に設けられた第1開閉装置15を閉止させる(ステップSA7)。
 次いで、制御部50は、液側配管11に設けられた第2開閉装置16を閉止させる(ステップSA8)。
 これによって、より密度が低く、低い衝撃となるガス冷媒が流れるガス側配管12に設けられた第1開閉装置15を優先的に閉止される。このため、より低い衝撃となる第1開閉装置15から優先的に遮断させることで、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制することができる。
 以上のように、冷媒センサ37が冷媒を検知した場合には、空気調和装置1の各部を制御部50が制御することで、当該室内ユニット30における冷媒漏洩を抑制することが可能となる。
 [1-3.効果等]
 以上のように、本実施の形態において、空気調和装置1では、圧縮機21が設けられた室外機20と、室内熱交換器31が収められた室内ユニット30と、圧縮機21と室内熱交換器31とがガス側配管12、及び液側配管11によって連結されることで形成され、冷媒が循環する冷凍回路を備える。また、空気調和装置1は、冷凍回路から漏洩した冷媒を検知する冷媒センサ37と、ガス側配管12、及び液側配管11を開閉する第1開閉装置15、及び第2開閉装置16と、液側配管11から分岐したバイパス管42と、バイパス管42に流れる冷媒の流量を調整する過冷却膨張弁43と、制御部50とを備える。そして、制御部50は、冷媒センサ37が冷媒を検知した場合に、過冷却膨張弁43の開度を上昇させた後に、第1開閉装置15、及び第2開閉装置16を閉止させることで、ガス側配管12、及び液側配管11を遮断させる。
 これにより、空気調和装置1では、液側配管11において、バイパス管42に液冷媒が導入されることで、室外熱交換器22から室内ユニット30に流れ込む液冷媒の流量が減少する。このため、空気調和装置1では、液側配管11に設けられた第2開閉装置16が開閉する場合に、液冷媒の流れから当該第2開閉装置16が受ける衝撃が抑制される。
 本実施の形態のように、バイパス管42は、冷媒配管の液冷媒が流れる箇所である液側配管11から分岐し、開閉装置である第1開閉装置15、及び第2開閉装置16は、室内熱交換器31の出口側と入口側とにそれぞれが設けられる。そして、制御部50は、冷媒センサ37が冷媒を検知した場合に、液冷媒が流れる第2開閉装置16を閉止させた後に、ガス冷媒が流れる第1開閉装置15を閉止させてもよい。
 これにより、ガス側配管12に流れるガス冷媒の流量が減少した冷媒配管の順に、第1開閉装置15、及び第2開閉装置16が閉止される。このため、空気調和装置1では、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制することができる。
 本実施の形態のように、制御部50は、冷媒センサ37が冷媒を検知した場合に、圧縮機21の運転周波数を所定値以下に制御した後に、第1開閉装置15、及び第2開閉装置16にガス側配管12、及び液側配管11を遮断させてもよい。
 これにより、空気調和装置1では、冷凍回路を流れる冷媒の流速を低下させたうえで、第1開閉装置15、及び第2開閉装置16を閉止させる。
 このため、空気調和装置1では、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制することができる。
 本実施の形態のように、バイパス管42には、過冷却熱交換器40が設けられてもよい。
 これにより、過冷却熱交換器40は、空気調和装置1が冷房運転を行う場合に、室外熱交換器22から流出した高圧の液冷媒が室内膨張弁34によって減圧される前に、当該液冷媒を過冷却する。
 そのため、空気調和装置1は、液冷媒の過冷却を行うと共に、冷凍回路の冷媒の流量を調整できる。
 (実施の形態2)
 以下、図4、図5を用いて、実施の形態2を説明する。
 図4は、本開示の実施の形態2に係る空気調和装置100の冷凍回路の概略構成を示す図である。図5は、本実施の形態2に係る空気調和装置100の構成を示すブロック図である。
 図4、図5において、図1、図2と同一部分には同一の符号を付して説明を省略する。
 [2-1.構成]
 実施の形態2に係る空気調和装置100は、少なくとも、複数の室内ユニット30が設けられている点で、実施の形態1に係る空気調和装置1と異なる。各室内ユニット30は、液側配管11、及びガス側配管12によって、いずれも室外機20に並列に接続される。
 さらに、各室内ユニット30が接続される液側配管11には、いずれも第2開閉装置16が設けられ、各室内ユニット30が接続されるガス側配管12には、いずれも第1開閉装置15が設けられる。
 本実施の形態において、制御部50は、各室内ユニット30の運転をそれぞれ制御する。
 例えば、各室内ユニット30の内、いずれか一方に設けられた冷媒センサ37が所定値以上の濃度の冷媒を検知した場合、すなわち空気調和装置100の各部漏洩対策動作を実行させる場合において、制御部50は、圧縮機21の運転周波数を下降制御する。
 制御部50による室外機20の運転周波数の下降制御は、例えば、次のように行われる。
 制御部50は、冷媒センサ37の検知信号を受信する前における圧縮機21の運転周波数に対して、全室内ユニット30の運転能力に対する、漏洩が検知された室内ユニット30の運転能力の割合を乗じた値になるように室外機20の運転周波数を制御する。
 例えば、検知前の運転周波数が60Hzであり、漏洩が検知された室内ユニット30の運転能力が5HP(馬力)であり、全室内ユニット30の運転能力が15HPである場合には、60Hz×((15HP-5HP)/15HP)=40Hzとなるように、圧縮機21の運転周波数の下降制御を制御部50が行う。
 これによって、空気調和装置100では、室内ユニット30に流れ込む冷媒の速度を低下させ、第1開閉装置15、及び第2開閉装置16が閉止する場合に当該冷媒の流れから受ける衝撃を抑制できる。加えて、空気調和装置100では、漏洩対策動作の実施後に、冷媒漏洩が検知されていない室内ユニット30を通常運転に容易に復帰させることができる。
 また、各室内ユニット30の内、いずれか一方に設けられた冷媒センサ37が所定値以上の濃度の冷媒を検知した場合には、制御部50は、冷媒濃度が所定値以下を維持している室内ユニット30の室内膨張弁34の開度を上昇させる。
 これによって、室外機20から送り出された冷媒は、冷媒漏洩が生じていない室内ユニット30側に優先的に流れ込む。
 すなわち、空気調和装置100では、冷媒が漏洩してない室内ユニット30における冷媒の循環量を上昇させることで、冷媒漏洩が生じた室内ユニット30における冷媒量が低減される。
 これによって、冷媒漏洩が生じた室内ユニット30に接続された液側配管11に設けられた第2開閉装置16、及び冷媒漏洩が生じた室内ユニット30に接続されたガス側配管12に設けられた第1開閉装置15が閉止した場合に、各第1開閉装置15、及び第2開閉装置16が液冷媒の流れから受ける衝撃が抑制される。
 制御部50は、冷媒漏洩が生じた室内ユニット30に接続された液側配管11に設けられた第2開閉装置16、及び冷媒漏洩が生じた室内ユニット30に接続されたガス側配管12に設けられた第1開閉装置15を閉止させる。すなわち、制御部50は、漏洩対策動作が完了すると、冷媒漏洩が生じていない室内ユニット30の室内膨張弁34の開度を通常運転時の開度となるように制御する。
 これによって、冷媒漏洩が生じた室内ユニット30の運転を停止させると共に、冷媒漏洩が生じていない室内ユニット30を通常運転に復帰させる。
 [2-2.動作]
 以上のように構成された空気調和装置100について、その動作を以下に説明する。
 図6は、空気調和装置100の動作を示すフローチャートである。
 空気調和装置100が運転しているときにおいて、制御部50は、所定の頻度で各冷媒センサ37が検知した冷媒濃度を取得し、所定値よりも高い濃度であるか否かを判定する(ステップSB1)。
 制御部50は、少なくともいずれか1つの冷媒センサ37が検知した冷媒濃度が所定値よりも高い濃度であると判定した場合(ステップSB1:YES)、所定部に漏洩対策動作を実行させる。
 具体的には、制御部50が圧縮機21の運転周波数を所定値にまで低下させる(ステップSB2)。
 これによって、空気調和装置100では、冷凍回路を流れる冷媒の速度が低下される。
 次いで、制御部50は、空気調和装置100が冷房運転を実施しているか否かを判定する(ステップSB3)。
 制御部50は、空気調和装置100が冷房転を実施していると判定した場合には(ステップSB3:YES)、過冷却膨張弁43の開度を上昇させる(ステップSB4)。
 これによって、室外熱交換器22から流出した液冷媒が液側配管11から分岐するバイパス管42を介して、圧縮機21の吸込管28に導入され、室外熱交換器22から室内ユニット30に流れ込む液冷媒の流量が減少する。
 この後、制御部50は、所定値以上の濃度の冷媒を検知した冷媒センサ37が複数の室内ユニット30の内のいずれか1つであるか否かを判定する(ステップSB5)。
 制御部50は、冷媒を検知した冷媒センサ37が複数の室内ユニット30の内のいずれか1つであると判定した場合には(ステップSB5:YES)、制御部50は、所定値以下の濃度の冷媒を維持している室内ユニット30の室内膨張弁34の開度を上昇させる(ステップSB6)。
 これによって、室外機20から送り出された冷媒は、冷媒漏洩が生じていない室内ユニット30側に優先的に流れ込む。
 次いで、制御部50は、空気調和装置100が冷房運転を実施しているか否かを判定する(ステップSB7)。
 制御部50は、空気調和装置100が冷房運転を実施していると判定した場合には(ステップSB7:YES)、制御部50は、冷媒漏洩が発生している室内ユニット30側の液側配管11に設けられた第2開閉装置16を閉止させる(ステップSB8)。次いで、制御部50は、冷媒漏洩が発生している室内ユニット30側のガス側配管12に設けられた第1開閉装置15を閉止させる(ステップSB9)。
 これによって、空気調和装置100では、第1開閉装置15、及び第2開閉装置16のそれぞれが受ける衝撃を抑制することができる。
 そして、空気調和装置100では、室内ユニット30における冷媒漏洩を抑制することが可能となる。
 この後、制御部50は、冷媒漏洩が生じていない室内ユニット30の室内膨張弁34の開度を通常運転時の開度となるように制御する(ステップSB10)。
 そして、制御部50は、冷媒漏洩が生じていない室内ユニット30を通常運転に復帰させる(ステップSB11)。
 一方、制御部50は、空気調和装置100が冷房運転を実施していないと判定した場合には(ステップSB7:NO)、制御部50は、冷媒漏洩が発生している室内ユニット30側のガス側配管12に設けられた第1開閉装置15を閉止させる(ステップSB12)。
 次いで、制御部50は、冷媒漏洩が発生している室内ユニット30側の液側配管11に設けられた第2開閉装置16を閉止させる(ステップSB13)。
 これによって、空気調和装置100では、より密度が低く、低い衝撃となるガス冷媒が流れるガス側配管12に設けられた第1開閉装置15を優先的に閉止される。このため、空気調和装置100では、より低い衝撃となる第1開閉装置15から優先的に遮断させることで、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制することができる。
 以上のように、冷媒センサ37が冷媒を検知した場合には、空気調和装置100の各部を制御部50が制御することで、当該室内ユニット30における冷媒漏洩を抑制することが可能となる。
 なお、制御部50は、空気調和装置100が冷房転を実施していないと判定した場合には(ステップSB3:NO)、ステップSB5以降の各ステップを順に実施する。
 また、制御部50は、冷媒センサ37が複数の室内ユニット30のそれぞれが備える冷媒センサ37の全てで所定濃度以上の冷媒を検知したと判定した場合には(ステップSB5:NO)、各室内ユニット30のそれぞれについて、ステップSB7以降の各ステップを順に実施する。
 [2-3.効果等]
 以上のように、本実施の形態において、空気調和装置100では、複数の室内ユニット30を備え、室内ユニット30のそれぞれには、冷媒センサ37と、室内ユニット30に収められた室内熱交換器31に連結された冷媒配管の流量を調節する室内膨張弁34とが設けられる。そして、制御部50は、いずれか一方の室内ユニット30で冷媒センサ37が冷媒を検知した場合に、他方の室内ユニット30に設けられた室内膨張弁34の開度を上昇させた後に、冷媒漏洩が発生している室内ユニット30側の第1開閉装置15、及び第2開閉装置16に冷媒配管を閉止させる。
 これにより、空気調和装置100では、冷媒が漏洩してない室内ユニット30における冷媒の循環量を上昇させることで、冷媒漏洩が生じた室内ユニット30の冷媒量を低減される。
 このため、冷媒漏洩が生じた室内ユニット30に接続された液側配管11に設けられた第2開閉装置16、及び冷媒漏洩が生じた室内ユニット30に接続されたガス側配管12に設けられた第1開閉装置15が閉止した場合に、これらの第1開閉装置15、及び第2開閉装置16が液冷媒の流れから受ける衝撃が抑制される。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1及び2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1及び2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 上述した実施の形態において、室内ユニット30と室外機20との数は制限されない。例えば、空気調和装置1、100は、複数の室外機20と複数の室内ユニット30とを接続した構成であってもよい。
 上述した実施の形態では、液側配管11にバイパス管42を設けるとした。しかしながらこれに限らず、空気調和装置1、100において、バイパス管42は、圧縮機21と第1開閉装置15との間、または圧縮機21と第2開閉装置16との間であれば、いずれに設けられていてもよい。
 例えば、空気調和装置1、100では、ガス側配管12にバイパス管42を設けてもよい。
 但し、液側配管11にバイパス管42を設けることによって、空気調和装置1、100では、上述の通り、冷媒漏洩の抑制に加えて、冷房運転時に冷媒を過冷却させる効果も奏する。
 上述の通り、空気調和装置1、100において、液側配管11にバイパス管42を設けると、冷房運転時に冷媒が漏洩した場合には、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制できる。
 同様に、空気調和装置1、100において、ガス側配管12にバイパス管42を設けると、暖房運転時に冷媒が漏洩した場合には、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制できる。
 また、液側配管11とガス側配管12とのいずれにもバイパス管42が設けられてもよい。これにより、空気調和装置1、100において、冷房運転時及び暖房運転時のいずれにおいても、冷媒が漏洩した場合には、第1開閉装置15、及び第2開閉装置16のそれぞれが冷媒の流れから受ける衝撃を抑制できる。
 上述した実施の形態では、過冷却熱交換器40及び合流配管41を介してバイパス管42を圧縮機21の吸込側配管である吸込管28に接続するとした。しかしながらこれに限らず、バイパス管42を圧縮機21のインジェクション孔や、インジェクション管等といった、圧縮機21に冷媒を流入させる配管等の各種の部材にバイパス管42が接続されていてもよい。
 但し、バイパス管42を圧縮機21の吸込管28に接続する場合には、吸込管28とバイパス管42との差圧がより大きくなるため、より多くの冷媒が圧縮機21に導入されることとなる。
 上述した実施の形態において、空気調和装置1、100には、過冷却熱交換器40が設けられるとしたが、これに限らず、レシーバタンクであってもよい。
 また、空気調和装置1、100では、バイパス管42のみが設けられ、過冷却熱交換器40が省略されていてもよい。
 また例えば、上述した空気調和装置1、100では、1つまたは2つの室内ユニット30が設けられているとした。しかしながらこれに限らず、3つ以上の室内ユニット30が設けられていてもよい。
 この場合、各室内ユニット30は、いずれも当該室内ユニット30の空調温度を検出する温度センサを備えてもよい。そして、制御部50は、各室内ユニット30に設定された目標温度と、当該室内ユニット30が空調する被調和空間の現在の温度との差がより小さい室内ユニット30の室内膨張弁34の開度を選択的に上昇させてもよい。
 すなわち、制御部50は、複数の室内ユニット30のそれぞれについて、当該室内ユニット30に設定された目標温度と、当該室内ユニット30に設けられた温度センサの検出温度との差分に応じて、当該室内ユニット30に設けられた室内膨張弁34の開度を制御してもよい。
 これにより、空気調和装置1、100では、設定された目標温度と、温度センサの検出温度との差分がより大きい室内ユニット30において、冷媒の循環量が上昇することを抑制できる。そのため、空気調和装置1、100では、圧縮機21の制御を容易にすると共に、当該圧縮機21にかかる負荷を低減し、より効率よく冷凍回路を流れる冷媒量を調整することができる。
 またこの場合、制御部50は、各室内ユニット30に設定された目標温度と、当該室内ユニット30が空調する被調和空間の現在の温度との差がより大きい室内ユニット30の室内膨張弁34の開度を一切変化させなくてもよい。
 なお、上述した温度センサは、室内ユニット30に一体に設けられていてもよい。またこれに限らず、温度センサは、室内ユニット30が配置された被調和空間内のいずれかの場所に設けられていてもよい。
 また、図2、図5に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他各部の具体的な細部構成についても、本発明の趣旨を逸脱しない範囲で任意に変更可能である。
 また、例えば、図3、図6に示す各動作のステップ単位は、制御部50の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本発明が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本発明の趣旨に支障のない範囲で適宜に入れ替えてもよい。
 本開示は、冷媒漏洩の対策のための開閉装置を有する空気調和装置に適用可能である。具体的には、冷媒漏洩が検知されたときに、冷媒が流れた状態で開閉装置の閉動作を行う空気調和装置などに、本開示は適用可能である。
 1、100 空気調和装置
 11 液側配管(冷媒配管)
 12 ガス側配管(冷媒配管)
 15 第1開閉装置(開閉装置)
 16 第2開閉装置(開閉装置)
 20 室外機
 21 圧縮機
 22 室外熱交換器
 24 室外膨張弁
 30 室内ユニット(室内機)
 31 室内熱交換器(利用側熱交換器)
 34 室内膨張弁(室内機絞り装置)
 37 冷媒センサ
 40 過冷却熱交換器
 42 バイパス管
 43 過冷却膨張弁(バイパス管絞り装置)
 50 制御部

Claims (6)

  1.  圧縮機が設けられた室外機と、
     利用側熱交換器が収められた室内機と、
     前記圧縮機と前記利用側熱交換器とが冷媒配管によって連結されることで形成され、冷媒が循環する冷凍回路と、
     前記冷凍回路から漏洩した冷媒を検知する冷媒センサと、
     前記冷媒配管を開閉する開閉装置と、
     前記冷媒配管から分岐したバイパス管と、
     前記バイパス管に流れる冷媒の流量を調整するバイパス管絞り装置と、
     制御部とを備え、
     前記制御部は、前記冷媒センサが冷媒を検知した場合に、前記バイパス管絞り装置の開度を上昇させた後に、前記開閉装置に前記冷媒配管を閉止させる
     ことを特徴とする空気調和装置。
  2.  前記バイパス管は、前記冷媒配管の液冷媒が流れる箇所から分岐し、
     前記開閉装置は、前記利用側熱交換器の出口側と入口側のそれぞれに設けられ、
     前記制御部は、前記冷媒センサが冷媒を検知した場合に、液冷媒が流れる側の前記開閉装置を閉止させた後に、ガス冷媒が流れる側の前記開閉装置を閉止させる
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  複数の前記室内機を備え、
     前記室内機のそれぞれには、前記冷媒センサと、前記室内機に収められた利用側熱交換器に連結された冷媒配管の流量を調節する室内機絞り装置とが設けられ、
     前記制御部は、いずれか一方の前記室内機で前記冷媒センサが冷媒を検知した場合に、他方の前記室内機に設けられた前記室内機絞り装置の開度を上昇させた後に、前記開閉装置に前記冷媒配管を閉止させる
     ことを特徴とする請求項1または請求項2に記載の空気調和装置。
  4.  複数の前記室内機のそれぞれには、前記室内機による空調温度を検出する温度センサが設けられ、
     前記制御部は、複数の前記室内機のそれぞれについて、前記室内機に設定された目標温度と、当該室内機に設けられた前記温度センサの検出温度との差分に応じて、当該室内機に設けられた前記室内機絞り装置の開度を制御する
     ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記制御部は、前記冷媒センサが冷媒を検知した場合に、前記圧縮機の運転周波数を所定値以下に制御した後に、前記開閉装置に前記冷媒配管を閉止させる
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の空気調和装置。
  6.  前記バイパス管には、過冷却熱交換器が設けられている
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の空気調和装置。
PCT/JP2021/041026 2021-01-28 2021-11-08 空気調和装置 WO2022163058A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012109A JP2022115492A (ja) 2021-01-28 2021-01-28 空気調和装置
JP2021-012109 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022163058A1 true WO2022163058A1 (ja) 2022-08-04

Family

ID=82653126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041026 WO2022163058A1 (ja) 2021-01-28 2021-11-08 空気調和装置

Country Status (2)

Country Link
JP (1) JP2022115492A (ja)
WO (1) WO2022163058A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (ja) * 1991-10-30 1993-05-14 Hitachi Ltd 冷凍装置の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム
WO2015132959A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 空気調和装置
JP2017145998A (ja) * 2016-02-16 2017-08-24 ダイキン工業株式会社 冷凍装置
JP2018036030A (ja) * 2016-09-02 2018-03-08 ダイキン工業株式会社 冷凍装置
JP2019074222A (ja) * 2017-10-12 2019-05-16 ダイキン工業株式会社 冷凍装置
JP2021131194A (ja) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (ja) * 1991-10-30 1993-05-14 Hitachi Ltd 冷凍装置の制御方法
JP2013122364A (ja) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調システム
WO2015132959A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 空気調和装置
JP2017145998A (ja) * 2016-02-16 2017-08-24 ダイキン工業株式会社 冷凍装置
JP2018036030A (ja) * 2016-09-02 2018-03-08 ダイキン工業株式会社 冷凍装置
JP2019074222A (ja) * 2017-10-12 2019-05-16 ダイキン工業株式会社 冷凍装置
JP2021131194A (ja) * 2020-02-20 2021-09-09 パナソニックIpマネジメント株式会社 空気調和装置

Also Published As

Publication number Publication date
JP2022115492A (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
EP3683524B1 (en) Refrigeration apparatus
JP6081033B1 (ja) 空気調和装置
JP6636173B2 (ja) 空気調和装置及び空気調和システム
JP5992089B2 (ja) 空気調和装置
WO2013099047A1 (ja) 空気調和装置
JP6685415B2 (ja) 空調システム、空調方法、及び制御装置
US20140360218A1 (en) Air-conditioning apparatus
JP6300954B2 (ja) 空気調和装置
EP3279580A1 (en) Air-conditioning device
US11536502B2 (en) Refrigerant cycle apparatus
JP5908183B1 (ja) 空気調和装置
EP2963359A1 (en) Air conditioning device
WO2015083529A1 (ja) 空気調和機
JPWO2019038797A1 (ja) 空気調和装置および膨張弁ユニット
JPWO2017002214A1 (ja) 冷凍サイクルシステム
JP2021131182A (ja) 空気調和装置
WO2019053771A1 (ja) 空気調和装置
WO2022163058A1 (ja) 空気調和装置
JP2011202913A (ja) マルチ形空気調和装置
JP7415017B2 (ja) 空気調和装置
KR20080084482A (ko) 공기 조화기의 제어방법
JPWO2016203507A1 (ja) 冷凍サイクル装置
WO2023135630A1 (ja) 空気調和装置
JP6257812B2 (ja) 空気調和装置
JP7442741B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923063

Country of ref document: EP

Kind code of ref document: A1