WO2016152485A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2016152485A1
WO2016152485A1 PCT/JP2016/057024 JP2016057024W WO2016152485A1 WO 2016152485 A1 WO2016152485 A1 WO 2016152485A1 JP 2016057024 W JP2016057024 W JP 2016057024W WO 2016152485 A1 WO2016152485 A1 WO 2016152485A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
area
unit
region
inspection
Prior art date
Application number
PCT/JP2016/057024
Other languages
English (en)
French (fr)
Inventor
一幸 杉本
ひろみ 槇
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Priority to KR1020177030008A priority Critical patent/KR20170127565A/ko
Priority to CN201680016310.XA priority patent/CN107407647A/zh
Priority to JP2017508172A priority patent/JP6920988B2/ja
Publication of WO2016152485A1 publication Critical patent/WO2016152485A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Definitions

  • One aspect of the present invention relates to an inspection apparatus, and more particularly, to an inspection apparatus that inspects a defect in the contents of a product.
  • an inspection apparatus described in Patent Document 1 includes an X-ray source that emits X-rays, an X-ray light receiving unit that receives the irradiated X-rays, and an inspection unit that inspects an article based on the received X-rays.
  • the inspection unit performs image processing on the image based on the received X-rays to inspect the article.
  • the transmittance of light (X-rays) in a plurality of articles is substantially the same. Therefore, in a conventional inspection apparatus, a threshold value used for image processing (used for binarization of an image) is set to be constant.
  • the inspection target may be a product including a plurality of types of articles. In such a product, the light transmittance of each product may differ from product to product. In this case, in an inspection using a fixed threshold value, appropriate image processing is not performed on each article. For this reason, there is a possibility that a defect inspection of a product including a plurality of types of articles cannot be properly performed by the same method as the conventional one.
  • an object of one aspect of the present invention is to provide an inspection apparatus capable of performing a defect inspection of a product including a plurality of types of articles.
  • An inspection apparatus detects a light irradiation unit that irradiates a product including a plurality of types of articles and the articles are arranged at different positions, and transmitted light of the light irradiated to the product.
  • An inspection apparatus comprising: a detection unit; an image generation unit that generates an image based on transmitted light; and an inspection unit that inspects a defect in the product based on the image; and a position in the product for each of a plurality of types of articles.
  • a plurality of article areas set in association with each other and a storage unit that stores a threshold value set for each article area, and the inspection unit identifies the article area based on the image, and Each of the article regions is inspected based on the threshold value set to, and the presence / absence of a defect in the product is determined based on the inspection result.
  • the storage unit stores a plurality of article areas set in association with positions in a product and a threshold value set for each article area.
  • the inspection unit identifies the article region from the image and inspects each of the article regions based on a threshold set for each article region.
  • the inspection apparatus can be inspected. Therefore, for example, the inspection device can inspect the presence or absence of a missing item in the product, or the abnormality of the shape (breaking crack).
  • the inspection apparatus can perform a defect inspection of a product including a plurality of types of articles.
  • the apparatus includes a threshold setting unit that sets a threshold for each article region, the threshold setting unit sets a binarization threshold for binarizing the article region for each article region, and the inspection unit includes: Each article region may be binarized based on the binarization threshold, and the article may be inspected based on the binarized binarized article region. By binarizing the article region, the inspection apparatus can clarify the article region. Therefore, the inspection apparatus can more appropriately inspect the article.
  • the threshold setting unit sets a determination threshold for determining the presence / absence of an article for each article region, and the inspection unit determines at least one of the shape, area, or perimeter of the binarized article region.
  • the presence / absence of the article may be determined based on the threshold value.
  • the inspection apparatus can accurately determine the presence or absence of an article.
  • the inspection device can inspect a missing item in the product.
  • the image processing apparatus includes a region setting unit that sets a reference position in an image and sets an article region including each article according to a positional relationship with the reference position, and the inspection unit acquires the reference position from the image,
  • the article region may be specified based on the position.
  • the product may include a container that stores a plurality of types of articles, and the region setting unit may set each article region by setting a reference position in the container. Since the shape of the container is less likely to change compared to the shape of the article, it is easily acquired from the image. Therefore, by setting the reference position in the container, the inspection unit can acquire the reference position quickly and reliably. Thereby, the inspection unit can acquire the article region more quickly and reliably. As a result, the inspection performance can be improved.
  • the area setting unit may set each article area by setting a reference position for an article having the largest area among a plurality of types of articles.
  • the reference position can be set for a portion that can be reliably acquired from an image.
  • the region setting unit extracts a region estimated to include an article from an image, and when there is a portion where a difference in values based on the transmittance of transmitted light is a predetermined value or more in one region, It may be determined that there are a plurality of different types of articles in the area, and each of the plurality of portions may be set as an article area. When some of the plurality of articles are arranged in contact (overlapping) with each other, the plurality of articles in contact appear as one region in the image. In this case, there is a possibility that one article region is set even though there are a plurality of articles.
  • the region setting unit detects a portion in which a difference in values based on the transmittance of transmitted light is greater than or equal to a predetermined value in one region estimated to include an article. Thereby, even if one area appears in the image, the area setting unit can recognize it as a plurality of articles. Therefore, the area setting unit can appropriately set the article area.
  • FIG. 1 is a perspective view of an X-ray inspection apparatus according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating an internal configuration of the X-ray inspection apparatus.
  • FIG. 2B is a diagram showing a profile of the transmitted X-ray in FIG.
  • FIG. 3 is a block diagram of the X-ray inspection apparatus of FIG.
  • FIG. 4A shows an X-ray transmission image.
  • FIG. 4B is a diagram showing a binarized image obtained by binarizing an X-ray transmission image.
  • FIG. 5 is a flowchart illustrating processing for presetting defect inspection by the control unit.
  • (A) of FIG. 6 is a figure which shows an example of a container.
  • FIG. 6B is a diagram schematically showing the article.
  • FIG. 7 is a diagram illustrating a reference position, an article area, and a binarized article area.
  • FIG. 8 is a flowchart showing a defect inspection process by the control unit.
  • FIG. 9A shows an X-ray transmission image.
  • FIG. 9B is a diagram showing a binarized image obtained by binarizing an X-ray transmission image.
  • FIG. 10 is a diagram illustrating a reference position, an article area, and a binarized article area.
  • FIG. 11 is a flowchart illustrating processing for presetting defect inspection by the control unit.
  • (A) of FIG. 12 is a figure for demonstrating an estimation area
  • (B) of FIG. 12 is a figure which shows an example of the brightness
  • FIG. 13 is a figure which shows an example of the number of pixels with respect to the brightness
  • FIG. 13B is a diagram illustrating an example of the cumulative number of pixels with respect to the luminance of transmitted X-rays of the article.
  • the X-ray inspection apparatus (inspection apparatus) 10 is an apparatus that performs a defect inspection of an article C in a product G in a production line of the product G, for example.
  • the product G to be inspected includes a plurality of types of articles C and a container B (container) that stores the plurality of types of articles C.
  • the articles C are arranged at different positions. Examples of the product G include lunch boxes, continuously packaged foods (for example, different materials or different tastes), confectionary assortment, assortment of parts such as screws, assemblies (tools, tableware), and the like.
  • the defect in the product G includes the presence / absence of a shortage of the product C, an abnormal shape (cracked chip), or the like.
  • the container is not limited to the box-shaped container B.
  • the container may be variously shaped containers, bags, packaging boxes, or the like. In the present embodiment, as an example, a case will be described in which the product G is a lunch box containing food as a plurality of types of articles C.
  • the X-ray inspection apparatus 10 emits X-rays (light) to the product G that is continuously transported along the transport direction a.
  • the X-ray inspection apparatus 10 generates an image of the product G based on the transmittance of X-ray transmitted light (hereinafter referred to as transmitted X-ray) that has passed through the product G.
  • transmitted X-ray X-ray transmitted light
  • the X-ray inspection apparatus 10 includes an apparatus main body 11, a conveyor 12, an X-ray source (light irradiation unit) 13, an X-ray detection unit (detection unit) 14, a monitor 20, and a control unit 30 (see FIG. 3). And including.
  • the conveyor 12, the X-ray source 13, the X-ray detection unit 14, and the control unit 30 are accommodated in the apparatus main body 11.
  • the apparatus main body 11 includes an inspection room 11a formed in a box shape.
  • a carry-in port 11c through which the product G passes is provided on the upstream side wall 11b in the carrying direction a.
  • a carry-out port 11e through which the product G passes is provided on the downstream side wall 11d in the conveyance direction a.
  • Each of the carry-in entrance 11c and the carry-out exit 11e is provided with an X-ray shielding curtain (not shown).
  • the X-ray shielding screen prevents scattered X-rays from leaking out of the examination room 11a.
  • a general flat belt conveyor is used as the conveyor 12. Both ends of the conveyor 12 protrude from the carry-in port 11c and the carry-out port 11e of the inspection room 11a.
  • the conveyor 12 receives the product G before inspection from a carry-in conveyor (not shown) on the upstream side in the transport direction a.
  • the conveyor 12 carries the commodity G into the inspection room 11a from the carry-in entrance 11c.
  • the conveyor 12 carries the product G out of the inspection room 11a from the carry-out port 11e.
  • the conveyor 12 delivers the inspected product G to a carry-out conveyor (not shown) on the downstream side in the transport direction a.
  • the delivery conveyor may be provided with a function for distributing the products G.
  • the X-ray source 13 is disposed above the examination room 11 a in the apparatus main body 11.
  • the X-ray source 13 forms an X-ray irradiation region X via a slit mechanism (not shown) or the like.
  • the X-ray source 13 irradiates the product G carried into the examination room 11a with X-rays.
  • the X-ray source 13 is electrically connected to the control unit 30.
  • the X-ray detection unit 14 is disposed below the examination room 11 a in the apparatus main body 11 so as to face the X-ray source 13.
  • the X-ray detection unit 14 has a line sensor composed of a plurality of pixels arranged in a line in the width direction of the transport direction a (the direction perpendicular to the transport direction a and the vertical direction).
  • the X-ray detection unit 14 detects transmitted X-rays transmitted through the product G and ambient X-rays irradiated around the product G.
  • the transmitted X-rays and the surrounding X-rays detected by the X-ray detection unit 14 are simply referred to as detected X-rays.
  • the X-ray detection unit 14 is electrically connected to the control unit 30.
  • the X-ray detection unit 14 acquires a detection signal at a predetermined timing when the product G passes through the X-ray irradiation region X.
  • the X-ray detection unit 14 outputs an electrical signal related to the detection signal to the control unit 30.
  • the monitor 20 is provided above the front surface of the apparatus body 11 (see FIG. 1).
  • the monitor 20 is a display unit on which, for example, the operation status of the X-ray inspection apparatus 10, an X-ray transmission image of the product G, an inspection result, and the like are displayed.
  • the monitor 20 has a touch panel function.
  • the monitor 20 performs display for input operation.
  • the input operation includes various setting operations.
  • the monitor 20 is electrically connected to the control unit 30.
  • the monitor 20 transmits operation information related to the input operation to the control unit 30.
  • the control unit 30 includes a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], and the like.
  • the control unit 30 controls the processing related to the defect inspection in the product G in an integrated manner.
  • the control unit 30 includes an image generation unit 31, an area setting unit 32, a threshold setting unit 33, a storage unit 34, and an inspection unit 35.
  • the image generation unit 31, the region setting unit 32, the threshold setting unit 33, and the inspection unit 35 are executed as programs in the CPU (processor) of the control unit 30.
  • the storage unit 34 is, for example, an HDD [Hard Disk Disk Drive].
  • the image generation unit 31 generates an X-ray transmission image of the product G based on the detected X-rays including the transmission X-rays irradiated on the product G.
  • the X-ray transmission image is a two-dimensional image in which the brightness (brightness) of detected X-rays corresponding to the X-ray transmittance in the product G is expressed by color shading (for example, gray scale).
  • the image generation unit 31 generates an X-ray transmission image based on a detected X-ray luminance profile PR1 as shown in FIG.
  • FIG. 2B as an example, a profile PR1 of a commodity GX in which a single article C is accommodated in a container B is shown.
  • the profile PR1 is a graph showing the luminance of the detected X-ray at each point in the detection range where the X-ray detection unit 14 detects X-rays.
  • the profile PR1 here is a two-dimensional graph.
  • the horizontal axis indicates the position of each detection point (for example, each pixel of the line sensor) arranged along the direction intersecting the conveyor 12 in the detection range of the X-ray detection unit 14.
  • the vertical axis indicates the luminance of the detected X-ray according to the transmittance at each detection point.
  • the portion where only the container B exists (the X-ray is the container) than the transmittance of the portion where the product GX does not exist (the portion where the X-ray does not pass the product GX)
  • the transmittance of the portion that transmits only B is smaller.
  • the transmittance of the portion where the container B and the article C exist (the portion where X-rays pass through the container B and the article C) is smaller than the transmittance of the portion where only the container B exists. Therefore, the brightness of the detected X-rays decreases in the order of the part where the product GX is not present, the part where only the container B is present, the part where the container B and the article C are present.
  • the image generation unit 31 is arranged in the order of the part where the product GX does not exist, the part where only the container B exists, the part where the container B and the article C exist, according to the luminance of the detected X-rays.
  • An X-ray transmission image in which the darkness of the color is expressed (darkness is dark) is generated.
  • the region setting unit 32 sets the reference position P 0 in the X-ray transmission image J 1 (see (a) and (b) of FIG. 4) generated by the image generation unit 31.
  • Region setting unit 32 sets the article area A k by the positional relationship between the reference position P 0.
  • the article area A k is an area set to include each article C k .
  • the position in the product G is associated with the article region A k for each of a plurality of types of articles C k .
  • Position in commodity G are relative position, for example with respect to the reference position P 0.
  • “k” in the article C k and the article area A k is a natural number. In the article C k and the article area A k , when “k” is the same, it indicates that the article C k and the article area A k correspond to each other. The same applies to the following description.
  • the region setting unit 32 binarizes the X-ray transmission image J 1 (see FIG. 4A) generated by the image generation unit 31 with a threshold L 0 .
  • the area setting unit 32 generates a binarized image JB 1 as shown in FIG.
  • the threshold value L 0 is set so that, for example, the outer shape of the container B and all of the plurality of types of articles C k are extracted.
  • the area setting unit 32 receives an input operation to the monitor 20 by the operator of the X-ray inspection apparatus 10.
  • the area setting unit 32 sets the reference position P 0 according to the input operation. Reference position P 0 is set as the coordinate information (0,0).
  • the area setting unit 32 sets a rectangle including the article C k according to the input operation, and sets the rectangle as the article area A k (see FIG. 7).
  • Region setting unit 32 for all of the articles C k, sets the article area A k.
  • the article region A k is set as coordinate information of two points located on the diagonal of the rectangle with the reference position P 0 as a reference.
  • the area setting unit 32 stores the set reference position P 0 and each article area Ak in the storage unit 34.
  • the threshold setting unit 33 sets a threshold for each article region Ak .
  • Threshold setting unit 33 sets a binarization threshold value L k for binarizing the article area A k for each article area A k.
  • the binarization threshold L k is, for example, a luminance threshold for performing an appropriate binarization process on each article C k .
  • the binarization threshold L k is set according to the X-ray transmittance of each article C k .
  • the threshold setting unit 33 accepts an input operation on the monitor 20 by the operator, and sets a binarization threshold L k according to the input operation.
  • the threshold setting unit 33 stores the set binarization threshold L k in the storage unit 34.
  • the threshold value setting unit 33 sets a determination threshold value S k for determining the presence or absence of the item C k for each item region A k .
  • the determination threshold value S k includes at least one of the shape, the area U k, or the perimeter of the binarized article region T k (see FIG. 7).
  • the binarized article area T k is an area surrounded by the outer edge of the article C k when each article area A k is binarized with the binarization threshold L k .
  • the determination threshold S k is set to the area U k of the binarized article region T k
  • the determination threshold S k is set to a value in which a certain allowable error is added to the area U k .
  • Threshold setting unit 33 accepts an input operation to the operator of the monitor 20, in response to an input operation to set the determination threshold S k.
  • the threshold setting unit 33 stores the set determination threshold Sk in the storage unit 34.
  • Storage unit 34 for each of a plurality kinds of articles C k, a plurality of articles regions located in the product G is set in association with A k and, the article area A binarization threshold is set for each k L k And the determination threshold value S k are stored.
  • the binarization threshold L k and the determination threshold S k are stored in association with each article region A k .
  • the inspection unit 35 inspects the product G for defects based on the X-ray transmission image J 2 generated by the image generation unit 31 (see FIG. 9A). Specifically, the inspection unit 35 identifies the article area A k based on the X-ray transmission image J 2. The inspection unit 35 inspects each of the article regions A k based on the binarization threshold L k and the determination threshold S k set for each article region A k . The inspection unit 35 determines the presence / absence of a defect in the product G based on the inspection result.
  • the inspection unit 35 acquires the reference position P 0 from the X-ray transmission image J 2 .
  • Checking unit 35 identifies each item area A k based on the reference position P 0.
  • the inspection unit 35 performs binarization processing using the binarization threshold L k set for each article region A k for each identified article region A k .
  • the inspection unit 35 inspects the presence / absence of the article C k in each binarized binarized article region T k using each determination threshold value S k .
  • Checking unit 35 based on the inspection result of the presence or absence of the article C k, it determines the presence or absence of defects of the product G.
  • the inspection unit 35 determines that the product G has a defect
  • the inspection unit 35 outputs an operation signal to a sorting device (not shown).
  • the defect inspection of the product G is an inspection for detecting a shortage or a position shift (a position shift that does not exist at the position where the product C k should be) in the product G, and the like. It is different from inspection.
  • the preset for performing the defect inspection of the goods G is demonstrated with reference to FIG.
  • the presetting is performed based on an input to the monitor 20 by the operator.
  • the control unit 30 displays a setting button for starting pre-setting on the menu screen of the monitor 20.
  • the control unit 30 causes the monitor 20 to display text for instructing to place the product GS on the conveyor 12 (for example, “Please place the product on the conveyor”).
  • the product GS is a sample product that serves as a basis for defect inspection used for presetting.
  • the product GS has the same content as the product G that is the subject of the defect inspection, and has no defect.
  • the product GS includes a container B similar to the product G (see FIG. 9A). As shown in FIG. 6A, the container B has a substantially rectangular outer shape in plan view.
  • the image generation unit 31 performs an X-ray transmission image J of the product GS based on the detected X-rays including the transmitted X-rays transmitted through the product GS. 1 (see FIG. 4A) is generated (step S10). Then, the area setting unit 32 binarizes the X-ray transmission image J 1 generated by the image generating unit 31 at threshold L 0 (step S11), and as shown in FIG. 4 (b), the binary generating a reduction image JB 1.
  • the area setting unit 32 sets the reference position P 0 (step S12). Specifically, the area setting unit 32 displays the binarized image JB 1 on the monitor 20. The area setting unit 32 causes the monitor 20 to display text that prompts the operator to specify the reference position P 0 (for example, “Please specify the reference position”). The operator, in the monitor 20, touch an arbitrary position, specifying the reference position P 0. Here, it is assumed that the operator specifies the reference position P 0 by touching the corner of the container B of the product GS. The area setting unit 32 sets the reference position P 0 when receiving an input operation to the monitor 20 by the operator. The region setting unit 32 stores the set reference position P 0 in the storage unit 34 as coordinate information.
  • the area setting unit 32 sets the article area A k (step S13). Specifically, the area setting unit 32, the text to prompt the designation of the article area A k to the operator (e.g., "Please specify the goods area", etc.) is displayed on the monitor 20. The operator, in the monitor 20, touch two points position where the diagonal with including articles C k for any article C k. The area setting unit 32 creates a rectangle having two touched points as diagonal lines. The area setting unit 32 sets the rectangle as the article area Ak . The area setting unit 32 displays the created rectangle on the monitor 20. The area setting unit 32 displays a setting confirmation pop-up (for example, “Do you want to set an article area?”) On the monitor 20. Region setting unit 32, when the "OK" button displayed in the pop-up is pressed by the operator, the coordinates of the two points relative to the reference position P 0, stored as information indicating the article area A k Stored in the unit 34.
  • the text to prompt the designation of the article area A k to the operator e.g., "Please
  • the region setting unit 32 displays a rectangle having the two points as diagonal lines. create.
  • Region setting unit 32 sets the rectangular as an article area A 1.
  • the region setting unit 32 creates a rectangle having the two points as diagonal lines.
  • Region setting unit 32 sets the rectangular as an article region A 2.
  • the article regions A 1 and article regions A 2 regardless the housing portion B 1, is set according to the position of the article C 1 and article C 2.
  • the region setting unit 32 receives an operator input for all articles C k .
  • the area setting unit 32 sets an article area A k for each article C k .
  • the threshold setting unit 33 sets a binarization threshold value L k (step S14). Specifically, the threshold setting unit 33 causes the monitor 20 to display text that prompts the operator to specify the binarization threshold L k (for example, “Please specify the binarization threshold”). The operator touches an arbitrary article C k (article area A k ) on the monitor 20 to select an article C k (article area A k ) for which the binarization threshold L k is designated. When an arbitrary article C k is designated, the threshold setting unit 33 causes the monitor 20 to display an input screen for the binarization threshold L k of the article C k .
  • the input screen may have a form in which the operator directly inputs a numerical value, or a form in which a numerical value is input by pressing a ⁇ button.
  • an appropriate value (predicted value) of the binarization threshold L k of the article C k acquired based on the X-ray transmission image J 1 may be displayed.
  • Threshold setting unit 33 receives the operator input for all of the articles area A k.
  • the threshold setting unit 33 sets a binarization threshold L k for each article region A k .
  • the threshold setting unit 33 stores the binarization threshold L k in the storage unit 34.
  • the threshold setting unit 33 sets the determination threshold S k (step S15).
  • the determination threshold S k of the area U k binarization article region T k.
  • Threshold setting unit 33 text to encourage the designation of the determination threshold S k to the operator (for example, "Please specify the determination threshold", etc.) is displayed on the monitor 20.
  • the operator selects an article C k (article area A k ) for which the determination threshold value S k is designated by touching an arbitrary article C k (article area A k ) on the monitor 20.
  • Threshold setting unit 33 when any article C k is designated to display an input screen for determining the threshold S k of the article C k in the monitor 20.
  • the input screen may have a form in which the operator directly inputs a numerical value, or a form in which a numerical value is input by pressing a ⁇ button.
  • an appropriate value (predicted value) of the determination threshold value S k based on the area U k of the binarized article region T k acquired based on the binarized image JB 1 may be displayed.
  • Threshold setting unit 33 receives the operator input for all of the articles area A k.
  • the threshold setting unit 33 sets a determination threshold S k for each article region A k .
  • Threshold setting unit 33 stores the determined threshold value S k in the storage unit 34.
  • control unit 30 in the defect inspection of the product G will be described with reference to FIGS.
  • the image generation unit 31 generates an X-ray transmission image J 2 (see FIG. 9A) of the product G based on the detected X-rays including the transmitted X-rays transmitted through the product G. Generate (step S20). Then, the area setting unit 32 binarizes the X-ray image J 2 generated by the image generating unit 31 at threshold L 0 (step S21), and as shown in FIG. 9 (b), the binary Generated image JB 2 is generated.
  • the checking unit 35 identifies the article area A k (step S22). Specifically, the inspection unit 35 specifies the corner of the container B in the binarized image JB 2 and sets the corner to the reference position P 0 . Inspecting unit 35, by setting the reference position P 0, it reads the coordinate information of the article area A k in the storage unit 34 are stored. Checking unit 35, based on the reference position P 0 and the coordinate information, as shown in FIG. 10, it identifies all of the articles area A k.
  • the inspection unit 35 binarizes the article area A k (step S23). Specifically, the inspection unit 35 reads the binarization threshold value L k stored in the storage unit 34 in association with the article region A k . The inspection unit 35 binarizes the article region A k based on the binarization threshold L k . Thereby, as shown in FIG. 10, a binarized article region T k is created. Then, the inspection unit 35 calculates an area U k of the binarized article region T k (Step S24).
  • the inspection unit 35 determines whether or not the area U k is greater than or equal to the determination threshold value S k (step S25). If the inspection unit 35 determines that the area U k is equal to or greater than the determination threshold value S k , the inspection unit 35 determines that the item region A k includes the item C k (step S26). On the other hand, when the inspection unit 35 does not determine that the area U k is greater than or equal to the determination threshold value S k , the inspection unit 35 determines that the article region A k does not include the article C k (step S29).
  • the inspection unit 35 does not determine that the area U k is greater than or equal to the determination threshold value S k when the inspection is performed on the article region A 6 .
  • Checking unit 35 determines that if it is determined that there is no article C k to the article area A k, there is a defect in the product G (step S30).
  • step S ⁇ b> 27 the inspection unit 35 determines whether or not determination has been performed for all article regions Ak. If the inspection unit 35 determines that all the article regions Ak have been determined, the inspection unit 35 determines that there is no defect in the product G (step S28). On the other hand, when the inspection unit 35 does not determine that all the article regions Ak are determined, the process returns to the process of step S22.
  • the storage unit 34 has a plurality of article regions A k set in association with positions in the product G, and each of the article regions A k. Is stored as a binarization threshold L k .
  • Checking unit 35 identifies the article area A k from X-ray transmission image J 1. Inspection unit 35 inspects each article area A k based on the binarization threshold L k which is set for each the article area A k.
  • the article region A k can be inspected based on the binarization threshold L k set for each article region A k
  • the article C k includes a plurality of types of articles C k and the articles C k are arranged at different positions. and even product G, can be examined for each article C k. Therefore, the X-ray inspection apparatus 10 can inspect for the presence or absence of a missing item C k in the product G or an abnormality in shape (cracked chip), for example.
  • the X-ray inspection apparatus 10 it is possible to perform defect inspection of products G, including a plurality of types of articles C k.
  • the X-ray inspection apparatus 10 includes a threshold setting unit 33 that sets a binarization threshold L k for each article region A k .
  • Threshold setting unit 33 sets a binarization threshold value L k for binarizing the article area A k for each article area A k.
  • the inspection unit 35 binarizes each article region A k based on the binarization threshold L k .
  • the inspection unit 35 inspects the article C k based on the binarized binarized article region T k . By binarizing the article region A k , the article region A k can be clarified. Therefore, the inspection of the article C k can be performed more appropriately.
  • the threshold setting unit 33 sets a determination threshold S k for determining the presence / absence of the article C k for each article region A k .
  • the inspection unit 35 determines the presence / absence of the article C k based on at least one of the shape, the area U k or the peripheral length of the binarized article region T k and the determination threshold value S k . Thereby, the presence or absence of the article C k can be accurately determined, and a lack of the article C k in the product G can be inspected.
  • X-ray inspection apparatus 10 includes an area setting unit 32 for setting the article area A k.
  • the area setting unit 32 sets the reference position P 0 in the X-ray transmission image.
  • the area setting unit 32 includes an area setting unit 32 that sets an article area A k including each article C k according to the positional relationship with the reference position P 0 .
  • the inspection unit 35 acquires the reference position P 0 from the X-ray transmission image.
  • Checking unit 35 identifies the article area A k based on the reference position P 0. By acquiring the reference position P 0 , the inspection unit 35 can accurately acquire each article region Ak . As a result, the inspection accuracy can be improved.
  • the product G comprises a container B for containing a plurality of types of articles C k.
  • the area setting unit 32 sets a reference position P 0 for the container B and sets each article area Ak .
  • Container B because the change in shape is smaller than that of the article C k, obtained from the X-ray transmission image tends. Therefore, by setting the reference position P 0 in the container B, the inspection unit 35 can acquire the reference position P 0 quickly and reliably. Thereby, the test
  • the region setting unit 32 sets the reference position P 0 in the X-ray transmission image J 1 (see FIG. 4A) generated by the image generation unit 31, and each article C according to the positional relationship with the reference position P 0.
  • the article region A k including k is automatically set.
  • the area setting unit 32 extracts the estimated area Z k suspected of containing an article C k from X-ray transmission image J 1.
  • Region setting unit 32 sets automatically the articles area A k based on the estimated area Z k.
  • the area setting unit 32 stores the set article area Ak in the storage unit 34.
  • the threshold setting unit 33 automatically sets a threshold for each article region Ak . Threshold setting unit 33, a binarization threshold L k for binarizing the article area A k, and the determination threshold S k for determining the presence or absence of the article C k, automatically every article area A k Set.
  • the threshold setting unit 33 causes the storage unit 34 to store the set binarization threshold L k and determination threshold S k .
  • presetting in the control unit 30 will be described with reference to FIG.
  • the presetting is automatically performed by the control unit 30.
  • the control unit 30 displays a setting button for starting pre-setting on the menu screen of the monitor 20.
  • the control unit 30 causes the monitor 20 to display text for instructing to place the product GS on the conveyor 12 (for example, “Please place the product on the conveyor”).
  • the image generation unit 31 performs an X-ray transmission image J of the product GS based on the detected X-rays including the transmitted X-rays transmitted through the product GS. 1 (see FIG. 4A) is generated (step S40). Then, the area setting unit 32 binarizes the X-ray transmission image J 1 generated by the image generating unit 31 at threshold L 0 (step S41), as shown in FIG. 4 (b), the binary generating a reduction image JB 1.
  • the area setting unit 32 sets the reference position P 0 (step S42). Specifically, the region setting unit 32 extracts the container B from the binarized image JB 1 . The region setting unit 32 sets a reference position P 0 at one corner of the container B. The region setting unit 32 stores the set reference position P 0 in the storage unit 34 as coordinate information.
  • the area setting unit 32 sets an article area Ak .
  • the area setting unit 32 sets the estimated area Z k (step S43).
  • the estimated area Z k is an area estimated to include the article C k .
  • the estimated area Z k is set based on the binarized image JB 1 .
  • the region setting unit 32 estimates a portion where regions (black portions in the drawing) are continuous as one article C k .
  • Region setting unit 32 sets the region to the estimated area Z k.
  • Region setting unit 32 may set the portion surrounded by the region in the envelope L Z1 as the estimated area Z k, it may be set a rectangle containing the region as the estimated area Z k.
  • the region setting unit 32 stores the set estimated region Z k in the storage unit 34.
  • the area setting unit 32 generates a profile of luminance (gray) in the estimation region Z k (step S44).
  • Region setting unit 32, the X-ray transmission image J 1, extracts a portion corresponding to the estimated area Z k.
  • the area setting unit 32 generates a luminance profile of the part.
  • a profile PR2 is generated. Is done.
  • the horizontal axis indicates the position of each detection point in the horizontal direction in the estimation region Z k as shown.
  • the vertical axis indicates the average luminance at each detection point.
  • the average luminance is a luminance obtained by averaging the luminance at each detection point in the vertical direction in the figure at a certain position in the horizontal direction in the figure.
  • the transmittance of the article C 1 is lower than the transmittance of the article C 2
  • the luminance of the transmitted X-rays of the article C 1 luminance of the transmitted X-rays of the article C 2 Smaller than. Therefore, the profile PR2, difference in brightness occurs in the article C 1 and the article C 2.
  • Region setting unit 32 determines the estimated area Z k, whether or not the difference in brightness exists a predetermined value or more parts (step S45). For example, as illustrated in FIG. 12B, the region setting unit 32 determines whether or not the difference ⁇ X m between the minimum luminance X m1 and the minimum luminance X m2 is equal to or greater than a predetermined value.
  • the predetermined value may be, for example, a fixed value set in advance or a value that changes.
  • the minimum luminance X m2 is a value that doubles the minimum luminance X m1 .
  • Region setting unit 32 when the difference [Delta] X m is equal to or more than the predetermined value, it is determined that a plurality of parts present in the estimation region Z k. Region setting unit 32 sets each of the plurality of partial as an article area A k (step S36). Specifically, the area setting unit 32, for example, as shown in FIG. 12 (b), as the boundary a peak value X T, setting the article area A k. Peak value X T emerges in the case of using the average luminance for each detection point the longitudinal axis of the profile PR2. The area setting unit 32 stores the set article area Ak in the storage unit 34.
  • the area setting unit 32 in the estimation region Z k, when the difference in luminance is not determined that there is a predetermined value or more portions sets the estimated area Z k as an article area A k (step S47) .
  • the area setting unit 32 stores the set article area Ak in the storage unit 34.
  • the threshold setting unit 33 sets a binarization threshold value L k (step S48).
  • the threshold setting unit 33 sets the binarization threshold L k based on the relationship between the brightness of the article C k and the number of pixels. Specifically, the histogram threshold setting unit 33, as shown in (a) of FIG. 13, showing the article area A k, the horizontal axis of the transmission X-ray of the article C k luminance, and the vertical axis the number of pixels To get. Based on the histogram, the threshold setting unit 33 sets, as the binarization threshold L k , the luminance L 90 at which the cumulative number (%) of the number of pixels is 90%, for example, as illustrated in FIG. . The threshold value setting unit 33 sets a binarization threshold value L k for each of the article regions A k . The threshold setting unit 33 stores the set binarization threshold L k in the storage unit 34.
  • the threshold setting unit 33 sets the determination threshold S k (step S49).
  • the threshold value setting unit 33 acquires the area U k of the binarized article region T k from the binarized image JB 1 .
  • the threshold setting unit 33 sets a determination threshold S k by adding a certain allowable error or the like to the area U k .
  • the threshold setting unit 33 stores the set determination threshold Sk in the storage unit 34.
  • the region setting unit 32 extracts the estimated region Z k that is estimated to include the article C k from the binarized image JB 1 .
  • the region setting unit 32 has a plurality of different articles C in the estimated region Z k. It is determined that k exists.
  • the area setting unit 32 sets each of the plurality of parts as the article area Ak .
  • the articles C k in contact with each other are one in the binarized image JB 1 based on the X-ray transmission image J 1 . Appears as an area.
  • the article C k which are in contact with each other could be set as one of the articles area A k. Therefore, in one estimated region Z k that is estimated to include the article C k , the articles that are in contact with each other by detecting portions where the luminance difference ⁇ X m based on the transmittance of transmitted X-rays is equal to or greater than a predetermined value.
  • the articles C k that are in contact with each other can be regarded as a plurality of articles C k . Therefore, the article region Ak can be set appropriately.
  • the inspection apparatus may be another inspection apparatus such as a near infrared inspection apparatus.
  • the inspection unit 35 identifies the article area A k from the image, it is possible to examine each item area A k based on a threshold L k which is set for each the article area A k.
  • the X-ray inspection apparatus 10 is an apparatus that performs a defect inspection of the article C in the product G (inspection of the presence or absence of the article C or an abnormality in the shape (cracked chipping), etc.). In addition to the defect inspection, the foreign matter inspection on the product G may be performed. In this case, the binarization of the X-ray transmission image can be uniformly performed with a single binarization threshold.
  • the reference position P 0 is not limited to the corner of the container B.
  • the region setting unit 32 may set the reference position P 0 at the center point or the center of gravity of the specific article C k extracted by binarization.
  • the region setting unit 32 may set the reference position P 0 at a point having the highest density (a point having the lowest luminance) in the X-ray transmission image J 1 of the product G.
  • the region setting unit 32 may set the reference position P 0 at an arbitrary point outside the container B in the X-ray transmission image J 1 .
  • the area setting unit 32 sets the reference position P 0 to the article C k having the largest area among the plurality of types of articles C k, may be set each article regions A k.
  • the region setting unit 32 can set the reference position P 0 to the center of gravity of the article C k having the largest area, and set a certain region around the center of gravity as the article region A k .
  • Checking unit 35 in each of the article area A k, by comparing the estimated mass of the articles C k, and a determination threshold S k, may be inspected for articles C k.
  • the X-ray inspection apparatus 10 can inspect the presence / absence of the article C k based on the estimated mass of the article C k calculated as follows.
  • the threshold setting unit 33 sets the reference estimated mass of the article C k included in the article area A k as the determination threshold S k for each article area A k .
  • the reference estimated mass is the mass of the article C k in the product GS which is a sample product that is a standard for defect inspection.
  • the mass of the article C k in the product GS is a mass in a state where there is no defect.
  • the determination threshold value S k may be set to a value in which a certain allowable error is added to the estimated mass of the article C k .
  • Threshold setting unit 33 accepts an input operation to the operator of the monitor 20, in response to an input operation to set the determination threshold S k.
  • the threshold setting unit 33 stores the set determination threshold Sk in the storage unit 34.
  • the inspection unit 35 has functions of a mass estimation curve setting unit and a mass estimation unit.
  • the inspection unit 35 is based on the X-ray transmission image J 1 (see FIG. 4A) of the product GS generated by the image generation unit 31 (for example, the X-ray detection unit 14).
  • a mass estimation curve for luminance (shading) for each pixel is set based on the following equation (1).
  • the inspection unit 35 sets a mass estimation curve for each article region Ak .
  • the inspection unit 35 may adjust the mass estimation curve so that the actual total mass of the article C k in the product GS is close to the total estimated mass of the article C k .
  • m is the estimated mass of the article
  • c coefficient for converting the thickness of the article into mass
  • t thickness of the article
  • I X-ray brightness when there is no article
  • I 0 Brightness of transmitted X-rays of the article
  • Linear absorption coefficient
  • the inspection unit 35 calculates the estimated mass of the article C k using the mass estimation curve set as described above. For example, the inspection unit 35 acquires the reference position P 0 from the X-ray transmission image J 2 Product G, for specifying each item area A k based on the reference position P 0. Checking unit 35, to each of the identified goods area A k, in accordance with the luminance of each unit area (e.g. 1 pixel), and calculates the estimated mass of the articles C k using mass estimated curve for each unit area . The inspection unit 35 calculates the estimated mass of the article C k for all article areas A k .
  • Checking unit 35 to each of the identified goods area A k, by using the respective determination thresholds S k, estimated mass of the estimated article C k to determine whether the determination threshold S k or more, the article C k Check for the presence or absence of.
  • Checking unit 35 based on the inspection result of the presence or absence of the article C k, it determines the presence or absence of defects of the product G.
  • the inspection unit 35 calculates the estimated mass of the article C k using the mass estimation curve set for each article area A k . Therefore, even for products G comprising a plurality of articles C k, it can perform accurate mass estimate.
  • the inspection unit 35 determines the presence / absence of the article C k based on the estimated mass of the article C k and the determination threshold value S k . Thereby, the presence or absence of the article C k can be accurately determined, and a lack of the article C k in the product G can be inspected.
  • SYMBOLS 10 ... X-ray inspection apparatus (inspection apparatus), 13 ... X-ray source (light irradiation part), 14 ... X-ray detection part (detection part), 31 ... Image generation part, 32 ... Area setting part, 33 ... Threshold setting part , 34 ... storage unit, 35 ... inspection unit, B ... container (container), C k ... article, G ... products, J 1, J 2 ... X-ray transmission image, JB 1, JB 2 ... binarized image, L k ... binarization threshold, P 0 ... reference position, S k ... determination threshold, T k ... binarized article area, U k ... area, Z k ... estimation area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)

Abstract

 X線検査装置(10)は、複数種類の物品を含み且つ当該物品が異なる位置に配置された商品にX線を照射するX線源(13)と、商品に照射された透過X線を検出するX線検出部(14)と、透過X線に基づいてX線透過画像を生成する画像生成部(31)と、X線透過画像に基づいて商品における不良を検査する検査部(35)と、複数種類の物品毎に、商品における位置が対応付けられて設定された複数の物品領域、及び、当該物品領域毎に設定された二値化閾値を記憶する記憶部(34)と、を備える。検査部(35)は、X線透過画像に基づいて物品領域を特定し、当該物品領域毎に設定された二値化閾値に基づいて物品領域のそれぞれを検査して、当該検査結果に基づいて商品における不良の有無を判定する。

Description

検査装置
 本発明の一側面は、検査装置に関し、特に商品の内容物の不良を検査する検査装置に関する。
 従来、例えば特許文献1に記載された検査装置が知られている。この検査装置は、X線を照射するX線源と、照射されたX線を受光するX線受光部と、受光したX線に基づいて物品の検査を行う検査部とを備えている。検査部は、受光したX線に基づく画像に対して画像処理を実施し、物品の検査を行う。
特開2005-31069号公報
 上述した検査装置では、検査対象の物品が一種類であるため、複数の物品における光(X線)の透過率がほぼ同等となる。そのため、従来の検査装置では、画像処理に用いる(画像の二値化に用いる)閾値は一定に設定されている。検査対象が、複数種類の物品を含む商品である場合がある。このような商品では、各物品における光の透過率が物品毎に異なることがある。この場合、一定に設定された閾値を用いた検査では、各物品に対して適切な画像処理が実施されない。そのため、従来と同様の方法では、複数種類の物品を含む商品の不良検査を適切に行うことができないおそれがある。
 そこで、本発明の一側面は、複数種類の物品を含む商品の不良検査を行うことができる検査装置を提供することを目的とする。
 本発明の一側面に係る検査装置は、複数種類の物品を含み且つ当該物品が異なる位置に配置された商品に光を照射する光照射部と、商品に照射された光の透過光を検出する検出部と、透過光に基づいて画像を生成する画像生成部と、画像に基づいて商品における不良を検査する検査部と、を備える検査装置であって、複数種類の物品毎に、商品における位置が対応付けられて設定された複数の物品領域、及び、当該物品領域毎に設定された閾値を記憶する記憶部を備え、検査部は、画像に基づいて物品領域を特定し、当該物品領域毎に設定された閾値に基づいて物品領域のそれぞれを検査して、当該検査結果に基づいて商品における不良の有無を判定する。
 この検査装置では、商品における位置が対応付けられて設定された複数の物品領域、及び、当該物品領域毎に設定された閾値を、記憶部が記憶している。検査部は、画像から上記物品領域を特定し、当該物品領域毎に設定された閾値に基づいて物品領域のそれぞれを検査する。このように、物品領域毎に設定された閾値に基づいて物品領域を検査できるため、複数種類の物品を含み且つ当該物品が異なる位置に配置された商品であっても、検査装置は、物品毎に検査を行うことができる。したがって、検査装置は、例えば、商品における物品の欠品の有無、又は形状の異常(割れ欠け)等を検査できる。このように、検査装置は、複数種類の物品を含む商品の不良検査を行うことができる。
 一実施形態においては、閾値を物品領域毎に設定する閾値設定部を備え、閾値設定部は、物品領域を二値化するための二値化閾値を物品領域毎に設定し、検査部は、二値化閾値に基づいて各物品領域を二値化し、二値化した二値化物品領域に基づいて物品を検査してもよい。物品領域を二値化することにより、検査装置は、物品領域を明確にできる。そのため、検査装置は、物品の検査をより適切に行うことができる。
 一実施形態においては、閾値設定部は、物品の有無を判定するための判定閾値を物品領域毎に設定し、検査部は、二値化物品領域の形状、面積又は周囲長の少なくとも一つと判定閾値とに基づいて、物品の有無を判定してもよい。これにより、検査装置は、物品の有無を正確に判定できる。検査装置は、商品における物品の欠品を検査できる。
 一実施形態においては、画像に基準位置を設定し、当該基準位置との位置関係によって各物品を含む物品領域を設定する領域設定部を備え、検査部は、画像から基準位置を取得し、基準位置に基づいて物品領域を特定してもよい。このように、基準位置を取得することにより、検査部は、各物品領域を精度よく取得できる。その結果、検査精度の向上を図ることができる。
 一実施形態においては、商品は、複数種類の物品を収容する収容体を含み、領域設定部は、収容体に基準位置を設定して各物品領域を設定してもよい。収容体の形状は、物品の形状に比べて変化しにくいため、画像から取得され易い。そのため、収容体に基準位置を設定することで、検査部が基準位置を迅速且つ確実に取得できる。これにより、検査部は、物品領域をより迅速且つ確実に取得することができる。その結果、検査性能の向上を図ることができる。
 一実施形態においては、領域設定部は、複数種類の物品のうち最も大きい面積を有する物品に基準位置を設定して、各物品領域を設定してもよい。透明な収容体等に物品が収容されている場合、画像から収容体の形状を取得することが困難な場合がある。そこで、複数種類の物品のうち最も大きい面積を有する物品に基準位置を設定することにより、画像から確実に取得できる部分に基準位置を設定できる。これにより、検査部が基準位置を迅速且つ確実に取得できるため、物品領域をより迅速且つ確実に取得することができる。その結果、検査性能の向上を図ることができる。
 一実施形態においては、領域設定部は、物品を含むと推定される領域を画像から抽出し、一つの領域において透過光の透過率に基づく値の差が所定値以上の部分が存在する場合、当該領域に種類の異なる複数の物品が存在していると判定し、複数の部分のそれぞれを物品領域として設定してもよい。複数の物品の一部が互いに接触して(重なって)配置されている場合、当該接触している複数の物品は、画像において一つの領域として現れる。この場合、複数の物品が存在しているにも関わらず、一つの物品領域が設定される可能性がある。そこで、領域設定部は、物品を含むと推定される一つの領域において、透過光の透過率に基づく値の差が所定値以上の部分を検出する。これにより、一つの領域が画像に現れている場合であっても、領域設定部は、それを複数の物品として捉えることができる。したがって、領域設定部は、物品領域を適切に設定できる。
 本発明の一側面によれば、複数種類の物品を含む商品の不良検査を行うことができる。
図1は、本発明の一実施形態のX線検査装置の斜視図である。 図2の(a)は、X線検査装置の内部構成を示す図である。図2の(b)は、図2の(a)における透過X線のプロファイルを示す図である。 図3は、図1のX線検査装置のブロック図である。 図4の(a)は、X線透過画像を示す図である。図4の(b)は、X線透過画像を二値化した二値化画像を示す図である。 図5は、制御部による不良検査の事前設定の処理を示すフローチャートである。 図6の(a)は、容器の一例を示す図である。図6の(b)は、物品を模式的に示す図である。 図7は、基準位置、物品領域及び二値化物品領域を示す図である。 図8は、制御部による不良検査の処理を示すフローチャートである。 図9の(a)は、X線透過画像を示す図である。図9の(b)は、X線透過画像を二値化した二値化画像を示す図である。 図10は、基準位置、物品領域及び二値化物品領域を示す図である。 図11は、制御部による不良検査の事前設定の処理を示すフローチャートである。 図12の(a)は、推定領域を説明するための図である。図12の(b)は、推定領域における物品の輝度のプロファイルの一例を示す図である。 図13の(a)は、物品の透過X線の輝度に対する画素数の一例を示す図である。図13の(b)は、物品の透過X線の輝度に対する累積画素数の一例を示す図である。
[第1実施形態]
 以下、添付図面を参照して、本発明の一側面の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
[検査装置の構成]
 図1~図3に示されるように、X線検査装置(検査装置)10は、例えば商品Gの生産ラインにおいて、商品Gにおける物品Cの不良検査を行う装置である。検査対象となる商品Gは、複数種類の物品Cと、複数種類の物品Cを収容する容器B(収容体)と、を含む。この商品Gにおいては、各物品Cが異なる位置に配置されている。商品Gとしては、例えば、弁当、連続包装の食品(例えば材料又は味違い)、菓子折り詰め合わせ、ネジ等の部品の詰め合わせ、又は組物(工具、食器)等が挙げられる。商品Gにおける不良としては、物品Cの欠品の有無、又は形状の異常(割れ欠け)等が含まれる。収容体は、箱型の容器Bに限られない。収容体は、種々の形状の容器、袋体、又は包装箱等であってもよい。本実施形態では、一例として、商品Gが、複数種類の物品Cとして食品が収容された弁当である場合について説明する。
 X線検査装置10は、搬送方向aに沿って連続的に搬送される商品Gに対してX線(光)を照射する。X線検査装置10は、商品Gを透過したX線の透過光(以下、透過X線と称する)の透過率に基づいて商品Gの画像を生成する。X線検査装置10は、当該画像に基づいて商品Gにおける不良を検査する。
 X線検査装置10は、装置本体11と、コンベア12と、X線源(光照射部)13と、X線検出部(検出部)14と、モニタ20と、制御部30(図3参照)と、を含む。コンベア12、X線源13、X線検出部14及び制御部30は、装置本体11に収容されている。
 装置本体11は、箱状に形成された検査室11aを備えている。搬送方向aにおける上流側の側壁11bには、商品Gが通過する搬入口11cが設けられている。搬送方向aにおける下流側の側壁11dに、商品Gが通過する搬出口11eが設けられている。搬入口11c及び搬出口11eのそれぞれには、X線遮蔽幕(図示せず)が設けられている。X線遮蔽幕は、検査室11a外への散乱X線の漏洩を防止する。
 コンベア12には、一般的な平ベルトコンベアが使用されている。コンベア12の両端部は、検査室11aの搬入口11c及び搬出口11eのそれぞれから突出している。コンベア12は、搬送方向aの上流側の搬入コンベア(不図示)から検査前の商品Gを受け取る。コンベア12は、搬入口11cから検査室11a内に商品Gを搬入する。コンベア12は、搬出口11eから検査室11a外に商品Gを搬出する。コンベア12は、搬送方向aの下流側の搬出コンベア(不図示)に検査後の商品Gを受け渡す。なお、搬出コンベアにおいて商品Gの振分機能が備えられていてもよい。
 X線源13は、装置本体11内における検査室11aの上方に配置されている。X線源13は、スリット機構(図示せず)等を介してX線照射領域Xを形成する。X線源13は、検査室11a内に搬入された商品GにX線を照射する。X線源13は、制御部30に電気的に接続されている。
 X線検出部14は、X線源13と対向するように、装置本体11内における検査室11aの下方に配置されている。X線検出部14は、搬送方向aの幅方向(搬送方向a及び鉛直方向に垂直な方向)に一列に配列された複数の画素からなるラインセンサを有している。X線検出部14は、商品Gを透過した透過X線と、商品Gの周囲に照射された周囲X線とを検出する。以下、X線検出部14が検出した透過X線及び周囲X線を、単に検出X線と称する。X線検出部14は、制御部30に電気的に接続されている。X線検出部14は、商品GがX線照射領域Xを通過するときに、所定のタイミングで検出信号を取得する。X線検出部14は、当該検出信号に係る電気信号を制御部30に出力する。
 モニタ20は、装置本体11の前面部上方に設けられている(図1参照)。モニタ20は、例えばX線検査装置10の動作状況、商品GのX線透過画像、及び検査結果等が示される表示部である。モニタ20は、タッチパネル機能を有している。モニタ20は、入力操作のための表示を行う。入力操作は、各種の設定操作等を含む。モニタ20は、制御部30に電気的に接続されている。モニタ20は、上記入力操作に係る操作情報を制御部30に送信する。
 図3に示されるように、制御部30は、CPU[Central Processing Unit]、ROM[Read Only Memory]、及びRAM[Random Access Memory]等を含む。制御部30は、商品Gにおける不良検査に係る処理を統合的に制御する。制御部30は、画像生成部31と、領域設定部32と、閾値設定部33と、記憶部34と、検査部35と、を備えている。画像生成部31、領域設定部32、閾値設定部33、及び、検査部35は、制御部30のCPU(プロセッサ)においてプログラムとして実行される。記憶部34は、例えば、HDD[Hard Disk Drive]である。
 画像生成部31は、商品Gに照射された透過X線を含む検出X線に基づいて、商品GのX線透過画像を生成する。X線透過画像は、商品GにおけるX線の透過率に応じた検出X線の輝度(明るさ)が、色の濃淡(例えばグレースケール)により表現された二次元画像である。画像生成部31は、例えば、図2の(b)に示されるような検出X線の輝度のプロファイルPR1に基づいてX線透過画像を生成する。図2の(b)では、一例として、単一の物品Cが容器Bに収容された商品GXのプロファイルPR1が示されている。プロファイルPR1は、X線検出部14がX線を検出する検出範囲の各点における検出X線の輝度を示すグラフである。ここでのプロファイルPR1は、2次元グラフである。プロファイルPR1において、横軸は、X線検出部14の検出範囲においてコンベア12に交差する方向に沿って並ぶ各検出点(例えばラインセンサの各画素)の位置を示す。プロファイルPR1において、縦軸は、各検出点における透過率に応じた検出X線の輝度を示す。
 図2に示す例では、X線の透過率については、商品GXが存在しない部分(X線が商品GXを透過しない部分)の透過率よりも、容器Bのみが存在する部分(X線が容器Bのみを透過する部分)の透過率の方が小さい。また、容器Bのみが存在する部分の透過率よりも、容器B及び物品Cが存在する部分(X線が容器B及び物品Cを透過する部分)の透過率の方が小さい。そのため、検出X線の輝度は、商品GXが存在しない部分、容器Bのみが存在する部分、容器B及び物品Cが存在する部分の順で、小さくなる。この関係を利用して、画像生成部31は、検出X線の輝度に応じて、商品GXが存在しない部分、容器Bのみが存在する部分、容器B及び物品Cが存在する部分の順で、色の濃さが濃く(濃淡が濃く)表現されたX線透過画像を生成する。
 領域設定部32は、画像生成部31が生成したX線透過画像J(図4の(a)及び(b)参照)に基準位置Pを設定する。領域設定部32は、当該基準位置Pとの位置関係によって物品領域Aを設定する。物品領域Aは、各物品Cを含むように設定された領域である。物品領域Aには、複数種類の物品C毎に、商品Gにおける位置が対応付けられている。商品Gにおける位置は、例えば基準位置Pに対する相対位置である。なお、物品C及び物品領域Aにおける「k」は、自然数である。物品Cと物品領域Aとにおいて、「k」が同じ場合には、物品Cと物品領域Aとが対応していることを示す。以下の説明においても同様である。
 領域設定部32は、画像生成部31が生成したX線透過画像J(図4の(a)参照)を閾値Lで二値化する。領域設定部32は、図4の(b)に示されるように、二値化画像JBを生成する。閾値Lは、例えば、容器Bの外形及び複数種類の物品Cの全てが抽出されるように設定されている。領域設定部32は、X線検査装置10の操作者のモニタ20への入力操作を受け付ける。領域設定部32は、入力操作に応じて、基準位置Pを設定する。基準位置Pは、座標情報(0,0)として設定される。領域設定部32は、基準位置Pを設定すると、入力操作に応じて、物品Cを含む矩形を設定し、当該矩形を物品領域A(図7参照)として設定する。領域設定部32は、全ての物品Cについて、物品領域Aを設定する。物品領域Aは、基準位置Pを基準とした矩形の対角に位置する2点の座標情報として設定される。領域設定部32は、設定した基準位置P及び各物品領域Aを記憶部34に記憶させる。
 閾値設定部33は、閾値を物品領域A毎に設定する。閾値設定部33は、物品領域Aを二値化するための二値化閾値Lを物品領域A毎に設定する。二値化閾値Lは、例えば、各物品Cに対して適切な二値化処理を実施するための輝度の閾値である。二値化閾値Lは、各物品CのX線の透過率に応じて設定される。閾値設定部33は、操作者のモニタ20への入力操作を受け付け、入力操作に応じて、二値化閾値Lを設定する。閾値設定部33は、設定した二値化閾値Lを記憶部34に記憶させる。
 閾値設定部33は、物品Cの有無を判定するための判定閾値Sを物品領域A毎に設定する。判定閾値Sは、二値化物品領域T(図7参照)の形状、面積U又は周囲長の少なくとも一つを含む。二値化物品領域Tは、二値化閾値Lで各物品領域Aを二値化したときの物品Cの外縁で囲まれる領域である。例えば、判定閾値Sが二値化物品領域Tの面積Uに設定される場合、判定閾値Sは、面積Uに対し一定の許容誤差等を加味した値に設定される。閾値設定部33は、操作者のモニタ20への入力操作を受け付け、入力操作に応じて、判定閾値Sを設定する。閾値設定部33は、設定した判定閾値Sを記憶部34に記憶させる。
 記憶部34は、複数種類の物品C毎に、商品Gにおける位置が対応付けられて設定された複数の物品領域Aと、当該物品領域A毎に設定された二値化閾値L及び判定閾値Sと、を記憶する。二値化閾値L及び判定閾値Sは、各物品領域Aのそれぞれに対応付けられて記憶されている。
 検査部35は、画像生成部31が生成したX線透過画像J(図9の(a)参照)に基づいて商品Gにおける不良を検査する。具体的には、検査部35は、X線透過画像Jに基づいて物品領域Aを特定する。検査部35は、物品領域A毎に設定された二値化閾値L及び判定閾値Sに基づいて、物品領域Aのそれぞれを検査する。検査部35は、その検査結果に基づいて商品Gにおける不良の有無を判定する。
 具体的には、検査部35は、X線透過画像Jから基準位置Pを取得する。検査部35は、基準位置Pに基づいて各物品領域Aを特定する。検査部35は、特定した物品領域Aのそれぞれに、当該物品領域A毎に設定された二値化閾値Lを用いて、二値化処理を行う。検査部35は、二値化した二値化物品領域Tのそれぞれに、各判定閾値Sを用いて、物品Cの有無を検査する。検査部35は、物品Cの有無の検査結果に基づいて、商品Gの不良の有無を判定する。検査部35は、例えば、商品Gに不良が有ると判定した場合には、振分け装置(図示しない)に動作信号を出力する。商品Gの不良検査は、商品Gにおける欠品・位置ずれ(物品Cがあるべき位置に存在しない程度の位置のずれ)等を検出する検査であり、商品Gへの異物混入を検査する異物検査とは異なる。
 次に、制御部30における具体的な処理について説明する。最初に、商品Gの不良検査に行うための事前設定について、図5を参照して説明する。本実施形態では、事前設定は、操作者のモニタ20への入力に基づいて行われる。
[不良検査の事前設定]
 制御部30は、例えば電源が投入されると、モニタ20のメニュー画面に、事前設定を開始させる設定ボタンを表示させる。制御部30は、設定ボタンが操作者により押下されると、商品GSをコンベア12に置くように指示するテキスト(例えば、「商品をコンベアに置いてください」等)をモニタ20に表示させる。商品GSは、事前設定のために用いられる不良検査の基準となるサンプル商品である。具体的には、商品GSは、不良検査の対象である商品Gと同様の内容とされており、不良が無い状態とされている。商品GSは、商品G(図9の(a)参照)と同様の容器Bを含む。容器Bは、図6の(a)に示されるように、平面視で略矩形形状の外形を呈している。容器Bは、複数(ここでは8個)の収容部B(n=1~8)を有する。図6の(b)に示されるように、収容部Bには、物品Cが収容される。本実施形態では、物品Cの数が10個である。10個の物品C~C10は、8個の収容部B~Bに収容されている。具体的には、収容部Bに、物品C及び物品Cが収容され、収容部Bに、物品C及び物品Cが収容されている。
 コンベア12により商品GSが搬送されると、図5に示されるように、画像生成部31は、商品GSを透過した透過X線を含む検出X線に基づいて、商品GSのX線透過画像J(図4の(a)参照)を生成する(ステップS10)。次に、領域設定部32は、画像生成部31によって生成されたX線透過画像Jを閾値Lで二値化し(ステップS11)、図4の(b)に示されるように、二値化画像JBを生成する。
 次に、領域設定部32は、基準位置Pを設定する(ステップS12)。具体的には、領域設定部32は、二値化画像JBをモニタ20に表示させる。領域設定部32は、操作者に基準位置Pの指定を促すテキスト(例えば、「基準位置を指定してください」等)をモニタ20に表示させる。操作者は、モニタ20において、任意の位置をタッチし、基準位置Pを指定する。ここでは、操作者が、商品GSの容器Bの角部をタッチして基準位置Pを指定したこととする。領域設定部32は、操作者のモニタ20への入力操作を受け付けると、基準位置P設定する。領域設定部32は、設定した基準位置Pを、座標情報として記憶部34に記憶させる。
 続いて、領域設定部32は、物品領域Aを設定する(ステップS13)。具体的には、領域設定部32は、操作者に物品領域Aの指定を促すテキスト(例えば、「物品領域を指定してください」等)をモニタ20に表示させる。操作者は、モニタ20において、任意の物品Cについて物品Cを含むと共に対角となる位置の2点をタッチする。領域設定部32は、タッチされた2点を対角線とする矩形を作成する。領域設定部32は、当該矩形を物品領域Aとして設定する。領域設定部32は、作成した矩形をモニタ20に表示させる。領域設定部32は、設定確認のポップアップ(例えば、「物品領域を設定しますか?」)をモニタ20に表示させる。領域設定部32は、操作者によりポップアップに表示された「OK」ボタンが押下された場合には、基準位置Pを基準とする上記2点の座標を、物品領域Aを示す情報として記憶部34に記憶させる。
 具体的には、図7に示されるように、領域設定部32は、例えば、2点(P11,P12)が操作者によってタッチされた場合には、当該2点を対角線とする矩形を作成する。領域設定部32は、当該矩形を物品領域Aとして設定する。同様に、領域設定部32は、例えば、2点(P21,P22)が操作者によってタッチされた場合には、当該2点を対角線とする矩形を作成する。領域設定部32は、当該矩形を物品領域Aとして設定する。このように、物品領域A及び物品領域Aは、収容部Bによらず、物品C及び物品Cの位置に応じて設定される。領域設定部32は、全ての物品Cについて操作者の入力を受け付ける。領域設定部32は、各物品Cについて物品領域Aを設定する。
 図5に戻って、閾値設定部33は、二値化閾値Lを設定する(ステップS14)。具体的には、閾値設定部33は、操作者に二値化閾値Lの指定を促すテキスト(例えば、「二値化閾値を指定してください」等)をモニタ20に表示させる。操作者は、モニタ20において、任意の物品C(物品領域A)をタッチすることで、二値化閾値Lの指定を行う物品C(物品領域A)を選択する。閾値設定部33は、任意の物品Cが指定されると、当該物品Cの二値化閾値Lの入力画面をモニタ20に表示させる。詳細には、入力画面は、操作者が数値を直接入力する形態であってもよいし、±ボタンの押下により数値を入力する形態であってもよい。入力画面には、X線透過画像Jに基づいて取得された物品Cの二値化閾値Lの適正値(予測値)が表示されてもよい。閾値設定部33は、全ての物品領域Aについて操作者の入力を受け付ける。閾値設定部33は、各物品領域Aについて二値化閾値Lを設定する。閾値設定部33は、記憶部34に二値化閾値Lを記憶させる。
 続いて、閾値設定部33は、判定閾値Sを設定する(ステップS15)。ここでは、二値化物品領域Tの面積Uの判定閾値Sを設定する形態について説明する。閾値設定部33は、操作者に判定閾値Sの指定を促すテキスト(例えば、「判定閾値を指定してください」等)をモニタ20に表示させる。操作者は、モニタ20において、任意の物品C(物品領域A)をタッチすることで、判定閾値Sの指定を行う物品C(物品領域A)を選択する。閾値設定部33は、任意の物品Cが指定されると、当該物品Cの判定閾値Sの入力画面をモニタ20に表示させる。詳細には、入力画面は、操作者が数値を直接入力する形態であってもよいし、±ボタンの押下により数値を入力する形態であってもよい。入力画面には、二値化画像JBに基づいて取得された二値化物品領域Tの面積Uに基づく判定閾値Sの適正値(予測値)が表示されてもよい。閾値設定部33は、全ての物品領域Aについて操作者の入力を受け付ける。閾値設定部33は、各物品領域Aについて判定閾値Sを設定する。閾値設定部33は、記憶部34に判定閾値Sを記憶させる。制御部30は、以上の全ての設定が完了すると、検査の事前設定の処理を終了させる。
 続いて、商品Gの不良検査における制御部30の動作について、図8~図10を参照して説明する。
[不良検査]
 図8に示されるように、画像生成部31は、商品Gを透過した透過X線を含む検出X線に基づいて、商品GのX線透過画像J(図9の(a)参照)を生成する(ステップS20)。次に、領域設定部32は、画像生成部31によって生成されたX線透過画像Jを閾値Lで二値化し(ステップS21)、図9の(b)に示されるように、二値化画像JBを生成する。
 続いて、検査部35は、物品領域Aを特定する(ステップS22)。具体的には、検査部35は、二値化画像JBにおいて、容器Bの角部を特定し、当該角部を基準位置Pに設定する。検査部35は、基準位置Pを設定すると、記憶部34に記憶されている物品領域Aの座標情報を読み出す。検査部35は、基準位置Pと座標情報とに基づいて、図10に示されるように、全ての物品領域Aを特定する。
 続いて、検査部35は、物品領域Aを二値化する(ステップS23)。具体的には、検査部35は、物品領域Aに対応させて記憶部34に記憶された二値化閾値Lを読み出す。検査部35は、当該二値化閾値Lに基づいて物品領域Aを二値化する。これにより、図10に示されるように、二値化物品領域Tが作成される。そして、検査部35は、二値化物品領域Tの面積Uを算出する(ステップS24)。
 続いて、検査部35は、面積Uが判定閾値S以上であるか否かを判定する(ステップS25)。検査部35は、面積Uが判定閾値S以上であると判定した場合、物品領域Aに物品Cがあると判定する(ステップS26)。一方、検査部35は、面積Uが判定閾値S以上であると判定しなかった場合、物品領域Aに物品Cがないと判定する(ステップS29)。例えば、物品領域Aにおいては、物品Cが存在していないため、二値化閾値Lによって二値化処理を行った結果、二値化物品領域Tが存在していない。そのため、検査部35は、物品領域Aについて検査を行った場合、面積Uが判定閾値S以上であると判定しない。検査部35は、物品領域Aに物品Cがないと判定した場合には、商品Gに不良があると判定する(ステップS30)。
 ステップS27では、検査部35は、全ての物品領域Aについて判定を行ったか否かを判定する。検査部35は、全ての物品領域Aについて判定を行ったと判定した場合、商品Gに不良がないと判定する(ステップS28)。一方、検査部35は、全ての物品領域Aについて判定を行ったと判定しなかった場合、ステップS22の処理に戻る。
[作用効果]
 以上説明したように、本実施形態に係るX線検査装置10では、記憶部34は、商品Gにおける位置が対応付けられて設定された複数の物品領域A、及び、当該物品領域A毎に設定された二値化閾値Lを記憶している。検査部35は、X線透過画像Jから上記物品領域Aを特定する。検査部35は、当該物品領域A毎に設定された二値化閾値Lに基づいて物品領域Aのそれぞれを検査する。このように、物品領域A毎に設定された二値化閾値Lに基づいて物品領域Aを検査できるため、複数種類の物品Cを含み且つ当該物品Cが異なる位置に配置された商品Gであっても、物品C毎に検査を行うことができる。したがって、X線検査装置10では、例えば、商品Gにおける物品Cの欠品の有無、又は形状の異常(割れ欠け)等を検査できる。このように、X線検査装置10では、複数種類の物品Cを含む商品Gの不良検査を行うことができる。特に、X線検査装置10では、例えば、容器Bにおける同一の収容部Bに異種の物品Cが存在したり、容器Bにおける隣接する収容部Bに跨るように物品Cが存在したりしたとしても、収容部Bの領域毎に二値化閾値を設定していないため、商品Gの不良検査を行うことができる。
 X線検査装置10は、二値化閾値Lを物品領域A毎に設定する閾値設定部33を備える。閾値設定部33は、物品領域Aを二値化するための二値化閾値Lを物品領域A毎に設定する。検査部35は、二値化閾値Lに基づいて各物品領域Aを二値化する。検査部35は、二値化した二値化物品領域Tに基づいて物品Cを検査する。物品領域Aを二値化することにより、物品領域Aを明確にできる。そのため、物品Cの検査をより適切に行うことができる。
 X線検査装置10では、閾値設定部33は、物品Cの有無を判定するための判定閾値Sを物品領域A毎に設定する。検査部35は、二値化物品領域Tの形状、面積U又は周囲長の少なくとも一つと判定閾値Sとに基づいて、物品Cの有無を判定する。これにより、物品Cの有無を正確に判定でき、商品Gにおける物品Cの欠品を検査できる。
 X線検査装置10は、物品領域Aを設定する領域設定部32を備える。領域設定部32は、X線透過画像に基準位置Pを設定する。領域設定部32は、当該基準位置Pとの位置関係によって各物品Cを含む物品領域Aを設定する領域設定部32を備える。検査部35は、X線透過画像から基準位置Pを取得する。検査部35は、基準位置Pに基づいて物品領域Aを特定する。基準位置Pを取得することにより、検査部35は、各物品領域Aを精度よく取得できる。その結果、検査精度の向上を図ることができる。
 X線検査装置10では、商品Gは、複数種類の物品Cを収容する容器Bを含む。領域設定部32は、容器Bに基準位置Pを設定して各物品領域Aを設定する。容器Bは、形状の変化が物品Cに比べて小さいため、X線透過画像から取得し易い。そのため、容器Bに基準位置Pを設定することで、検査部35が基準位置Pを迅速且つ確実に取得できる。これにより、検査部35は、物品領域Aをより迅速且つ確実に取得することができる。その結果、検査性能の向上を図ることができる。
[第2実施形態]
 続いて、X線検査装置10の第2実施形態について説明する。第2実施形態に係るX線検査装置10は、領域設定部32において物品領域A、及び、閾値設定部33において二値化閾値L及び判定閾値Sを自動で設定する点で第1実施形態と異なる。
 領域設定部32は、画像生成部31が生成したX線透過画像J(図4の(a)参照)に基準位置Pを設定し、当該基準位置Pとの位置関係によって各物品Cを含む物品領域Aを自動で設定する。具体的には、領域設定部32は、物品Cを含むと推定される推定領域ZをX線透過画像Jから抽出する。領域設定部32は、推定領域Zに基づいて物品領域Aを自動で設定する。領域設定部32は、設定した物品領域Aを記憶部34に記憶させる。
 閾値設定部33は、閾値を物品領域A毎に自動で設定する。閾値設定部33は、物品領域Aを二値化するための二値化閾値L、及び、物品Cの有無を判定するための判定閾値Sを、物品領域A毎に自動で設定する。閾値設定部33は、設定した二値化閾値L及び判定閾値Sを記憶部34に記憶させる。
 次に、制御部30における事前設定について、図11を参照して説明する。本実施形態では、事前設定は、制御部30により自動で行われる。
[不良検査の事前設定]
 制御部30は、例えば電源が投入されると、モニタ20のメニュー画面に、事前設定を開始させる設定ボタンを表示させる。制御部30は、設定ボタンが操作者により押下されると、商品GSをコンベア12に置くように指示するテキスト(例えば、「商品をコンベアに置いてください」等)をモニタ20に表示させる。
 コンベア12により商品GSが搬送されると、図11に示されるように、画像生成部31は、商品GSを透過した透過X線を含む検出X線に基づいて、商品GSのX線透過画像J(図4の(a)参照)を生成する(ステップS40)。次に、領域設定部32は、画像生成部31によって生成されたX線透過画像Jを閾値Lで二値化し(ステップS41)、図4の(b)に示されるように、二値化画像JBを生成する。
 次に、領域設定部32は、基準位置Pを設定する(ステップS42)。具体的には、領域設定部32は、二値化画像JBから容器Bを抽出する。領域設定部32は、容器Bの一つの角部に基準位置Pを設定する。領域設定部32は、設定した基準位置Pを、座標情報として記憶部34に記憶させる。
 続いて、領域設定部32は、物品領域Aを設定する。物品領域Aを設定するにあたり、領域設定部32は、推定領域Zを設定する(ステップS43)。推定領域Zは、物品Cを含むと推定される領域である。推定領域Zは、二値化画像JBに基づいて設定される。具体的には、領域設定部32は、図12の(a)に示されるように、領域(図中黒色の部分)が連続する部分を一つの物品Cと推定する。領域設定部32は、当該領域を推定領域Zに設定する。領域設定部32は、上記領域を包絡線LZ1で囲った部分を推定領域Zとして設定してもよいし、上記領域を含む矩形を推定領域Zとして設定してもよい。領域設定部32は、設定した推定領域Zを記憶部34に記憶させる。
 続いて、領域設定部32は、推定領域Zにおける輝度(濃淡)のプロファイルを生成する(ステップS44)。領域設定部32は、X線透過画像Jにおいて、推定領域Zに該当する部分を抽出する。領域設定部32は、当該部分の輝度のプロファイルを生成する。図12の(b)に示されるように、例えば、推定領域Zに透過率が異なる二種類の物品C,C(例えばトンカツ及びキャベツ等)が存在する場合には、プロファイルPR2が生成される。プロファイルPR2において、横軸は、図示する推定領域Zにおける図中左右方向の各検出点の位置を示す。プロファイルPR2において、縦軸は、各検出点における平均輝度を示す。平均輝度は、図中左右方向のある位置において、図中上下方向の各検出点での輝度を平均化して得られた輝度である。図12の(b)に示す例では、物品Cの透過率は、物品Cの透過率よりも低いため、物品Cの透過X線の輝度は、物品Cの透過X線の輝度よりも小さくなる。よって、プロファイルPR2において、物品Cと物品Cとに輝度の差が生じる。
 領域設定部32は、推定領域Zにおいて、輝度の差が所定値以上の部分が存在するか否かを判定する(ステップS45)。領域設定部32は、例えば、図12の(b)に示されるように、最低輝度Xm1と、最低輝度Xm2との差ΔXが所定値以上であるか否かを判定する。所定値は、例えば予め設定された固定値でもよいし、変化する値であってもよい。所定値の一例としては、例えば、最低輝度Xm1に対して最低輝度Xm2が2倍となる値である。領域設定部32は、差ΔXが所定値以上であると判定した場合、推定領域Zに複数の部分が存在すると判断する。領域設定部32は、複数の部分のそれぞれを物品領域Aとして設定する(ステップS36)。具体的には、領域設定部32は、例えば、図12の(b)に示されるように、ピーク値Xを境界として、物品領域Aを設定する。ピーク値Xは、プロファイルPR2の縦軸において各検出点における平均輝度を用いる場合に出現する。領域設定部32は、設定した物品領域Aを記憶部34に記憶させる。
 一方、領域設定部32は、推定領域Zにおいて、輝度の差が所定値以上の部分が存在すると判定しなかった場合には、推定領域Zを物品領域Aとして設定する(ステップS47)。領域設定部32は、設定した物品領域Aを記憶部34に記憶させる。
 続いて、閾値設定部33は、二値化閾値Lを設定する(ステップS48)。閾値設定部33は、物品Cの輝度と画素数との関係に基づいて、二値化閾値Lを設定する。具体的には、閾値設定部33は、図13の(a)に示されるように、物品領域Aにおいて、横軸が物品Cの透過X線の輝度、縦軸が画素数を示すヒストグラムを取得する。閾値設定部33は、そのヒストグラムに基づいて、図13の(b)に示されるように、画素数の累積(%)が例えば90%となる輝度L90を二値化閾値Lとして設定する。閾値設定部33は、全ての物品領域Aについて、二値化閾値Lをそれぞれ設定する。閾値設定部33は、設定した二値化閾値Lを記憶部34に記憶させる。
 続いて、閾値設定部33は、判定閾値Sを設定する(ステップS49)。ここでは、二値化物品領域Tの面積Uの判定閾値Sを設定する形態について説明する。閾値設定部33は、二値化画像JBから、二値化物品領域Tの面積Uを取得する。閾値設定部33は、面積Uに対して一定の許容誤差等を加味し、判定閾値Sを設定する。閾値設定部33は、設定した判定閾値Sを記憶部34に記憶させる。制御部30は、以上の全ての設定が完了すると、検査の事前設定の処理を終了させる。
[作用及び効果]
 以上説明したように、本実施形態に係るX線検査装置10では、領域設定部32は、物品Cを含むと推定される推定領域Zを二値化画像JBから抽出する。領域設定部32は、一つの推定領域Zにおいて透過X線の透過率に基づく輝度の差ΔXが所定値以上の部分が存在する場合、当該推定領域Zに種類の異なる複数の物品Cが存在していると判定する。領域設定部32は、複数の部分のそれぞれを物品領域Aとして設定する。複数の物品Cの一部が互いに接触して(重なって)配置されている場合、互いに接触している物品Cは、X線透過画像Jに基づく二値化画像JBにおいて一つの領域として現れる。この場合、複数の物品Cが存在しているにも関わらず、互いに接触している物品Cが一つの物品領域Aとして設定される可能性がある。そこで、物品Cを含むと推定される一つの推定領域Zにおいて、透過X線の透過率に基づく輝度の差ΔXが所定値以上の部分を検出することにより、互いに接触している物品Cが一つの領域として二値化画像JBに現れている場合であっても、互いに接触している物品Cを複数の物品Cとして捉えることができる。したがって、物品領域Aを適切に設定できる。
[変形例]
 上記実施形態では、検査装置がX線検査装置10である場合を例に説明したが、検査装置は、例えば、近赤外線検査装置等の他の検査装置であってもよい。この場合においても、検査部35は、画像から上記物品領域Aを特定し、当該物品領域A毎に設定された閾値Lに基づいて物品領域Aのそれぞれを検査することができる。
 X線検査装置10は、商品Gにおける物品Cの不良検査(物品Cの欠品の有無、又は形状の異常(割れ欠け)等の検査)を行う装置であったが、X線検査装置10は、不良検査に加えて、商品Gにおける異物検査を行ってもよい。この場合、単一の二値化閾値により、X線透過画像の二値化を一律に行うことができる。
 基準位置Pは、容器Bの角部に限定されない。領域設定部32は、例えば、二値化により抽出された特定の物品Cの中心点又は重心に基準位置Pを設定してもよい。領域設定部32は、商品GのX線透過画像Jにおいて濃淡が最も濃い点(輝度が最も低い点)に基準位置Pを設定してもよい。領域設定部32は、X線透過画像Jにおける容器Bの外側の任意の点に基準位置Pを設定してもよい。また、領域設定部32は、複数種類の物品Cのうち最も大きい面積を有する物品Cに基準位置Pを設定して、各物品領域Aを設定してもよい。領域設定部32は、例えば、最も大きい面積を有する物品Cの重心に基準位置Pを設定して、この重心の周囲の一定の領域を物品領域Aとして設定することができる。
 検査部35は、物品領域Aのそれぞれにおいて、物品Cの推定質量と、判定閾値Sとを比較することにより、物品Cの有無を検査してもよい。この場合、X線検査装置10は、以下のようにして算出した物品Cの推定質量に基づいて、物品Cの有無を検査することができる。
 不良検査の事前設定において、閾値設定部33は、各物品領域A毎に、当該物品領域Aに含まれる物品Cの基準推定質量を判定閾値Sとして設定する。基準推定質量は、不良検査の基準となるサンプル商品である商品GSにおける物品Cの質量である。商品GSにおける物品Cの質量は、不良が無い状態での質量である。判定閾値Sは、物品Cの推定質量に対し一定の許容誤差等を加味した値に設定されてもよい。閾値設定部33は、操作者のモニタ20への入力操作を受け付け、入力操作に応じて、判定閾値Sを設定する。閾値設定部33は、設定した判定閾値Sを記憶部34に記憶させる。
 検査部35は、質量推定カーブ設定部、及び質量推定部の機能を有する。
 不良検査の事前設定において、検査部35は、画像生成部31が生成した商品GSのX線透過画像J(図4の(a)参照)に基づいて、単位領域(例えばX線検出部14の1画素)毎の輝度(濃淡)に関する質量推定カーブを、以下の式(1)に基づいて設定する。検査部35は、各物品領域Aのそれぞれについて質量推定カーブを設定する。検査部35は、各物品領域Aのそれぞれについて設定した質量推定カーブを、各物品領域Aのそれぞれに対応付けて記憶部34に記憶させる。検査部35は、商品GSにおける物品Cの実際の合計質量と、物品Cの合計推定質量と、が近くなるように、質量推定カーブを調整してもよい。
   m=ct
    =-c/μ×In(I/I)=-αIn(I/I) ・・・(1)
  ただし、m :物品の推定質量、
      c :物品の厚さから質量に変換するための係数、
      t :物品の厚さ、
      I :物品がないときのX線の輝度、
      I:物品の透過X線の輝度、
      μ :線吸収係数
 不良検査において、検査部35は、上述のようにして設定した質量推定カーブを用いて、物品Cの推定質量を算出する。例えば、検査部35は、商品GのX線透過画像Jから基準位置Pを取得し、基準位置Pに基づいて各物品領域Aを特定する。検査部35は、特定した物品領域Aのそれぞれに、各単位領域(例えば1画素)毎の輝度に応じて、各単位領域毎に質量推定カーブを用いて物品Cの推定質量を算出する。検査部35は、全ての物品領域Aについて、物品Cの推定質量を算出する。
 検査部35は、特定した物品領域Aのそれぞれに、各判定閾値Sを用いて、推定した物品Cの推定質量が判定閾値S以上か否かを判定することで、物品Cの有無を検査する。検査部35は、物品Cの有無の検査結果に基づいて、商品Gの不良の有無を判定する。
 このX線検査装置10では、検査部35は、物品領域A毎に設定した質量推定カーブを用いて、物品Cの推定質量を算出する。よって、複数の物品Cからなる商品Gに対しても、正確な質量推定を行える。検査部35は、このような物品Cの推定質量と判定閾値Sとに基づいて、物品Cの有無を判定する。これにより、物品Cの有無を正確に判定でき、商品Gにおける物品Cの欠品を検査できる。
 10…X線検査装置(検査装置)、13…X線源(光照射部)、14…X線検出部(検出部)、31…画像生成部、32…領域設定部、33…閾値設定部、34…記憶部、35…検査部、B…容器(収容体)、C…物品、G…商品、J,J…X線透過画像、JB,JB…二値化画像、L…二値化閾値、P…基準位置、S…判定閾値、T…二値化物品領域、U…面積、Z…推定領域。

Claims (7)

  1.  複数種類の物品を含み且つ当該物品が異なる位置に配置された商品に光を照射する光照射部と、前記商品に照射された前記光の透過光を検出する検出部と、前記透過光に基づいて画像を生成する画像生成部と、前記画像に基づいて前記商品における不良を検査する検査部と、を備える検査装置であって、
     複数種類の前記物品毎に、前記商品における位置が対応付けられて設定された複数の物品領域、及び、当該物品領域毎に設定された閾値を記憶する記憶部を備え、
     前記検査部は、前記画像に基づいて前記物品領域を特定し、当該物品領域毎に設定された前記閾値に基づいて前記物品領域のそれぞれを検査して、当該検査結果に基づいて前記商品における不良の有無を判定する、検査装置。
  2.  前記閾値を前記物品領域毎に設定する閾値設定部を備え、
     前記閾値設定部は、前記物品領域を二値化するための二値化閾値を前記物品領域毎に設定し、
     前記検査部は、前記二値化閾値に基づいて各前記物品領域を二値化し、二値化した二値化物品領域に基づいて前記物品を検査する、請求項1に記載の検査装置。
  3.  前記閾値設定部は、前記物品の有無を判定するための判定閾値を前記物品領域毎に設定し、
     前記検査部は、前記二値化物品領域の形状、面積又は周囲長の少なくとも一つと前記判定閾値とに基づいて、前記物品の有無を判定する、請求項2に記載の検査装置。
  4.  前記画像に基準位置を設定し、当該基準位置との位置関係によって各前記物品を含む前記物品領域を設定する領域設定部を備え、
     前記検査部は、前記画像から前記基準位置を取得し、前記基準位置に基づいて前記物品領域を特定する、請求項1~3のいずれか一項に記載の検査装置。
  5.  前記商品は、複数種類の前記物品を収容する収容体を含み、
     前記領域設定部は、前記収容体に前記基準位置を設定して各前記物品領域を設定する、請求項4に記載の検査装置。
  6.  前記領域設定部は、複数種類の前記物品のうち最も大きい面積を有する前記物品に前記基準位置を設定して、各前記物品領域を設定する、請求項4に記載の検査装置。
  7.  前記領域設定部は、前記物品を含むと推定される領域を前記画像から抽出し、一つの前記領域において前記透過光の透過率に基づく値の差が所定値以上の部分が存在する場合、当該領域に種類の異なる複数の前記物品が存在していると判定し、複数の前記部分のそれぞれを前記物品領域として設定する、請求項4~6のいずれか一項に記載の検査装置。
PCT/JP2016/057024 2015-03-20 2016-03-07 検査装置 WO2016152485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177030008A KR20170127565A (ko) 2015-03-20 2016-03-07 검사 장치
CN201680016310.XA CN107407647A (zh) 2015-03-20 2016-03-07 检查装置
JP2017508172A JP6920988B2 (ja) 2015-03-20 2016-03-07 検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057342 2015-03-20
JP2015057342 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152485A1 true WO2016152485A1 (ja) 2016-09-29

Family

ID=56979265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057024 WO2016152485A1 (ja) 2015-03-20 2016-03-07 検査装置

Country Status (4)

Country Link
JP (1) JP6920988B2 (ja)
KR (1) KR20170127565A (ja)
CN (1) CN107407647A (ja)
WO (1) WO2016152485A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105697A (ja) * 2016-12-26 2018-07-05 株式会社イシダ 質量推定装置
JP2018146555A (ja) * 2017-03-09 2018-09-20 アンリツインフィビス株式会社 X線検査装置
JP2020153765A (ja) * 2019-03-19 2020-09-24 株式会社 システムスクエア 検査装置、異常検出方法、コンピュータプログラム、学習モデルの生成方法、及び学習モデル
JP2020153764A (ja) * 2019-03-19 2020-09-24 株式会社 システムスクエア 学習モデルの生成方法、学習モデル、検査装置、異常検出方法、及びコンピュータプログラム
JP2021152489A (ja) * 2020-03-24 2021-09-30 株式会社 システムスクエア 教師データ生成装置、検査装置及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752941B1 (ja) * 2019-06-17 2020-09-09 Ckd株式会社 検査装置、包装体製造装置及び包装体製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257748A (ja) * 2001-02-27 2002-09-11 Matsushita Electric Ind Co Ltd 検査領域設定方法、検査方法及び装置
JP2003065976A (ja) * 2001-08-29 2003-03-05 Anritsu Corp X線異物検出装置
JP2004028768A (ja) * 2002-06-25 2004-01-29 Anritsu Sanki System Co Ltd X線異物検出方法及びx線異物検出装置
JP2005127962A (ja) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X線検査装置
JP2006078258A (ja) * 2004-09-08 2006-03-23 Ishida Co Ltd X線検査システム
JP2006329906A (ja) * 2005-05-30 2006-12-07 Ishida Co Ltd X線検査装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875842B2 (ja) * 2001-02-02 2007-01-31 アンリツ産機システム株式会社 X線異物検出装置及び該装置における不良品検出方法
JP4230473B2 (ja) * 2005-04-26 2009-02-25 アンリツ産機システム株式会社 X線異物検出装置
JP4585907B2 (ja) * 2005-04-28 2010-11-24 株式会社イシダ X線検査装置
JP2007322344A (ja) * 2006-06-05 2007-12-13 Ishida Co Ltd X線検査装置
US8369481B2 (en) * 2009-06-08 2013-02-05 Ishida Co., Ltd. X-ray inspection device
JP5336973B2 (ja) * 2009-08-03 2013-11-06 株式会社イシダ X線検査装置
CN102937599B (zh) * 2012-10-25 2015-01-07 中国科学院自动化研究所 一种通过x射线检测含金属被测物的无损检测系统和方法
JP6270319B2 (ja) * 2013-02-18 2018-01-31 株式会社イシダ X線検査装置
JP6225003B2 (ja) * 2013-11-27 2017-11-01 株式会社イシダ X線検査装置
JP6355232B2 (ja) * 2014-02-26 2018-07-11 株式会社イシダ X線検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257748A (ja) * 2001-02-27 2002-09-11 Matsushita Electric Ind Co Ltd 検査領域設定方法、検査方法及び装置
JP2003065976A (ja) * 2001-08-29 2003-03-05 Anritsu Corp X線異物検出装置
JP2004028768A (ja) * 2002-06-25 2004-01-29 Anritsu Sanki System Co Ltd X線異物検出方法及びx線異物検出装置
JP2005127962A (ja) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X線検査装置
JP2006078258A (ja) * 2004-09-08 2006-03-23 Ishida Co Ltd X線検査システム
JP2006329906A (ja) * 2005-05-30 2006-12-07 Ishida Co Ltd X線検査装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105697A (ja) * 2016-12-26 2018-07-05 株式会社イシダ 質量推定装置
JP2018146555A (ja) * 2017-03-09 2018-09-20 アンリツインフィビス株式会社 X線検査装置
JP2020153765A (ja) * 2019-03-19 2020-09-24 株式会社 システムスクエア 検査装置、異常検出方法、コンピュータプログラム、学習モデルの生成方法、及び学習モデル
JP2020153764A (ja) * 2019-03-19 2020-09-24 株式会社 システムスクエア 学習モデルの生成方法、学習モデル、検査装置、異常検出方法、及びコンピュータプログラム
WO2020189043A1 (ja) * 2019-03-19 2020-09-24 株式会社システムスクエア 学習モデルの生成方法、学習モデル、検査装置、異常検出方法、及びコンピュータプログラム
WO2020189044A1 (ja) * 2019-03-19 2020-09-24 株式会社システムスクエア 検査装置、異常検出方法、コンピュータプログラム、学習モデルの生成方法、及び学習モデル
JP2021152489A (ja) * 2020-03-24 2021-09-30 株式会社 システムスクエア 教師データ生成装置、検査装置及びプログラム

Also Published As

Publication number Publication date
JP6920988B2 (ja) 2021-08-18
JPWO2016152485A1 (ja) 2017-12-28
CN107407647A (zh) 2017-11-28
KR20170127565A (ko) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2016152485A1 (ja) 検査装置
KR20210126163A (ko) 검사 장치
JP6537008B1 (ja) 検査装置
JP5156546B2 (ja) X線検査装置
JP5324328B2 (ja) 物品検査装置
JP2010107456A (ja) X線検査装置
JP5860347B2 (ja) X線検査装置
JPWO2017014194A1 (ja) 光検査システム及び画像処理アルゴリズム設定方法
JP2007322344A (ja) X線検査装置
JP2005127962A (ja) X線検査装置
JP2015137858A (ja) 検査装置
JP2005031069A (ja) X線検査装置
JP2010112850A (ja) X線検査装置
JP3860144B2 (ja) X線検査装置
JP5875878B2 (ja) 密度算出装置
JP2016024096A (ja) 検査装置
EP4224154A1 (en) X-ray inspection device
JP6144584B2 (ja) 破損検査装置
JP6941077B2 (ja) 物品検査システム及びそのプログラム
EP4224153A1 (en) X-ray inspection apparatus
JP2018048845A (ja) 光検査装置
JP7042166B2 (ja) 物品検査装置、物品検査システム及びプログラム
JP2018151279A (ja) X線検査装置
WO2020004068A1 (ja) 検査装置、検査システム、検査方法、検査プログラム及び記録媒体
JP6678612B2 (ja) X線検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030008

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16768388

Country of ref document: EP

Kind code of ref document: A1