WO2016151624A1 - 能動振動騒音制御装置 - Google Patents

能動振動騒音制御装置 Download PDF

Info

Publication number
WO2016151624A1
WO2016151624A1 PCT/JP2015/001646 JP2015001646W WO2016151624A1 WO 2016151624 A1 WO2016151624 A1 WO 2016151624A1 JP 2015001646 W JP2015001646 W JP 2015001646W WO 2016151624 A1 WO2016151624 A1 WO 2016151624A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration noise
signal
correction value
control
frequency
Prior art date
Application number
PCT/JP2015/001646
Other languages
English (en)
French (fr)
Inventor
敦仁 矢野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017507105A priority Critical patent/JP6180680B2/ja
Priority to DE112015006367.6T priority patent/DE112015006367B4/de
Priority to CN201580078079.2A priority patent/CN107430847B/zh
Priority to US15/544,485 priority patent/US10482867B2/en
Priority to PCT/JP2015/001646 priority patent/WO2016151624A1/ja
Publication of WO2016151624A1 publication Critical patent/WO2016151624A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17883General system configurations using both a reference signal and an error signal the reference signal being derived from a machine operating condition, e.g. engine RPM or vehicle speed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/121Rotating machines, e.g. engines, turbines, motors; Periodic or quasi-periodic signals in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1282Automobiles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3044Phase shift, e.g. complex envelope processing

Definitions

  • the present invention relates to an active vibration noise control technique for reducing vibration noise by secondary vibration noise generated according to the vibration noise.
  • an active vibration noise control apparatus (Active Noise Control Apparatus) using an adaptive notch filter.
  • vibration noise refers to vibration or noise generated by the operation of a machine or the like.
  • the frequency of vibration noise specified from the rotation cycle of the rotating device is used as a control frequency, and a control signal having a phase opposite to that of the vibration noise of the control frequency is generated and is generated as a secondary vibration noise.
  • the vibration noise is reduced by the interference between the vibration noise and the secondary vibration noise.
  • Patent Document 1 a method of correcting the control frequency according to a change in declination when the filter coefficients of the adaptive notch filter are expressed on the complex plane as real and imaginary parts of complex numbers (Patent Document 1), or A method of correcting the control frequency based on the control signal based on the difference between the control signal frequency and the control frequency after updating the filter coefficient obtained by the adaptive notch filter has been proposed (Patent Document 2).
  • the filter coefficient of the adaptive notch filter may not be updated properly due to the influence of the disturbance.
  • the conventional active vibration noise control device that determines the correction value of the control frequency based on the control signal generated according to the change of the filter coefficient of the adaptive notch filter or the updated filter coefficient, the control frequency There was a problem that it was impossible to correct correctly.
  • the present invention has been made in order to solve the above-described problems, and performs control to specify the frequency of vibration noise to be controlled even when other vibration noise exists as disturbance in addition to the vibration noise to be controlled. It is an object of the present invention to obtain an active vibration noise control device that can appropriately perform frequency correction and improve the vibration noise reduction effect.
  • An active noise control device includes a control signal generation unit that generates a control signal based on a cosine wave signal and a sine wave signal having a control frequency specified according to a vibration noise source, and a control signal based on the control signal. Increase and decrease of the signal power of the error signal obtained from the residual vibration noise remaining after interference noise generated and propagated through the secondary path interferes with the vibration noise emitted from the vibration noise source, and increase and decrease of the correction value used to correct the control frequency And a correction value updating unit that updates the correction value to a value that decreases the signal power of the error signal.
  • the frequency information of the vibration noise is information for specifying the frequency of the vibration noise, for example, if the vibration noise source 400 is an automobile engine, the rotation frequency of the engine.
  • Such frequency information can be acquired by using a rotation sensor, for example, by measuring the rotation frequency of the engine from the ignition pulse cycle if it is the rotation frequency of the engine.
  • the frequency of vibration noise based on the frequency information can be obtained by a method of multiplying the rotation frequency by a constant according to the rotation order of the engine, for example, in the case of vibration noise of the engine.
  • the frequency of the target vibration noise can be obtained by using the number of poles of the motor, the power supply frequency, the number of blades of the fan, and the like as frequency information.
  • the acquisition of the frequency information of the vibration noise and the specification of the frequency of the vibration noise based on the frequency information may appropriately use means suitable for the generation source of the vibration noise that is the target of the vibration noise control.
  • the frequency of the vibration noise specified based on the frequency information corresponding to the vibration noise source 400 is referred to as a control frequency.
  • the secondary vibration noise output device 200 connected to the active vibration noise control device 100 in FIG. 1 uses the control signal d (n) output from the active vibration noise control device 100 to generate vibration noise y generated from the vibration noise source 400.
  • the secondary vibration noise for canceling (n) is generated and output, and can be realized by, for example, a speaker, an actuator, or the like.
  • the secondary vibration noise output from the secondary vibration noise output device 200 propagates through the secondary path 500 and interferes with the vibration noise generated from the vibration noise source 400 to reduce the vibration noise.
  • the secondary path 500 is defined as a path through which the secondary vibration noise output from the secondary vibration noise output device 200 passes while propagating to the vibration noise sensor 300.
  • s (n) indicates secondary vibration noise that has propagated through the secondary path 500.
  • the vibration noise sensor 300 detects residual vibration noise as a result of interference between the vibration noise y (n) and the secondary vibration noise s (n), and activates the detected residual vibration noise as an error signal e (n).
  • This is output to the vibration noise control apparatus 100 and can be realized by, for example, a microphone, a vibration sensor, an acceleration sensor, or the like.
  • the input of the error signal e (n) to the active vibration noise control device 100 may be performed by an electric signal, an optical signal, or the like.
  • the disturbance source 600 is a generation source of vibration noise other than the vibration noise source 400, and is not limited to a specific generation source of vibration noise.
  • the active vibration noise control apparatus 100 includes a setting unit 110, a control signal generation unit 120, a coefficient update unit 160, and a correction value determination unit 190.
  • FIG. 1 shows an example of detailed functional configurations of the control signal generation unit 120, the coefficient update unit 160, and the correction value determination unit 190.
  • the control signal generation unit 120 includes an oscillator 130, a control signal filter 140, and an adder 150. Further, the oscillator 130 includes a cosine wave generator 131 and a sine wave generator 132.
  • the control signal filter 140 includes a filter 141 and a filter 142. Note that w0 (n) and w1 (n) indicate filter coefficients of the filter 141 and the filter 142, respectively.
  • the coefficient updating unit 160 includes a coefficient calculation unit 170 and a reference signal filter 180.
  • the coefficient calculation unit 170 includes a calculation unit 171 and a calculation unit 172
  • the reference signal filter 180 includes a filter 181 and a filter 182.
  • LMS indicates that the calculation unit 171 and the calculation unit 172 use an LMS (Least-Mean-Square) algorithm as an adaptive algorithm.
  • LMS algorithm is an example of an adaptive algorithm, and the present invention does not limit the adaptive algorithm to the LMS algorithm.
  • the correction value determination unit 190 includes a correction value update unit 191 and a characteristic determination unit 192.
  • the setting unit 110 controls the control frequency f (n) based on the frequency information input from the outside and the control frequency correction value f ⁇ (n) input from the correction value update unit 191 of the correction value determination unit 190. Set to the oscillator 130 of the generation unit 120. The setting unit 110 also sets the control frequency f (n) in the characteristic determination unit 192 of the correction value determination unit 190.
  • the cosine wave generator 131 and the sine wave generator 132 of the oscillator 130 generate a cosine wave signal x0 (n) and a sine wave signal x1 (n) corresponding to the control frequency f (n) set by the setting unit 110, respectively. .
  • the oscillator 130 inputs the generated cosine wave signal x0 (n) and sine wave signal x1 (n) to the control signal filter 140.
  • the cosine wave signal x0 (n) and the sine wave signal x1 (n) are also input to the reference signal filter 160 of the coefficient updating unit 160 and the correction value updating unit 191 of the correction value determining unit 190.
  • the filter 141 included in the control signal filter 140 performs a filtering process on the cosine wave signal x0 (n). At this time, the filter coefficient (first filter coefficient) used for the filter processing is w0 (n). Similarly, the filter 142 performs filter processing on the sine wave signal x1 (n). At this time, the filter coefficient (second filter coefficient) used for the filter processing is w1 (n).
  • the adder 150 adds the two signals (x0 (n) ⁇ w0 (n) and x1 (n) ⁇ w1 (n), where “ ⁇ ” represents a product) filtered by the control signal filter 140.
  • the control signal d (n) is generated.
  • the characteristic determination unit 192 stores the transfer characteristic of the secondary path 500 determined for each frequency, determines the transfer characteristic corresponding to the input control frequency f (n) from the stored transfer characteristic, Output as secondary path characteristic parameter.
  • the transfer characteristic of the secondary path 500 stored by the characteristic determination unit 192 may be acquired by measuring the characteristic for each frequency in advance and stored by the characteristic determination unit 192.
  • the transfer characteristic may be stored in a non-volatile memory or stored in a circuit.
  • the secondary path characteristic parameter output from the characteristic determination unit 192 is input to the reference signal filter 180 and the correction value update unit 191 of the coefficient update unit 160.
  • the reference signal filter 180 uses the first reference signal r0 (n) and the second reference signal r0 (n) based on the cosine wave signal x0 (n), the sine wave signal x1 (n), and the secondary path characteristic parameter output from the characteristic determination unit 192.
  • a reference signal r1 (n) is generated. Specifically, the filter 181 generates the first reference signal r0 (n), and the filter 182 generates the second reference signal r1 (n).
  • the coefficient calculation unit 170 controls the control signal generation unit 120 based on the LMS algorithm based on the first reference signal r0 (n), the second reference signal r1 (n), and the error signal e (n) from the vibration noise sensor 300.
  • the filter coefficient of the control signal filter 140 is updated.
  • the calculation unit 171 included in the coefficient calculation unit 170 calculates and updates the first filter coefficient w0 (n) based on the first reference signal r0 (n) and the error signal e (n).
  • the calculation unit 172 calculates and updates the second filter coefficient w1 (n) based on the second reference signal r1 (n) and the error signal e (n).
  • the correction value updating unit 191 uses the error signal e (n) from the vibration noise sensor 300, the cosine wave signal x0 (n) and the sine wave signal x1 (n) input from the oscillator 130, and the control signal filter 140. Based on the filter coefficient w0 (n) of 1 and the second filter coefficient w1 (n) and the secondary path characteristic parameter input from the characteristic determination unit 192, the frequency difference between the control frequency f (n) and the vibration noise A correction value f ⁇ (n) for correcting is determined.
  • the first filter coefficient w0 (n) and the second filter coefficient w1 (n) may be output from the control signal filter 140 to the correction value update unit 191 or may be output from the coefficient update unit 160. .
  • the control signal filter 140 outputs.
  • the coefficient calculation unit 170 included in the update unit 160, the reference signal filter 180, the correction value determination unit 190, the correction value update unit 191 included in the correction value determination unit 190, and the characteristic determination unit 192 use an ASIC (Application Specific Integrated ⁇ Circuit) or the like. It is also possible to realize with a hardware that has been used, or with a program that runs on the processor and the processor. Alternatively, it can be realized by combining hardware such as LSI, a processor, and a program operating on the processor.
  • FIG. 2 is a block diagram showing an example of a hardware configuration when the active vibration and noise control apparatus 100 of this embodiment is realized by a processor and a program executed by the processor.
  • a program for realizing the function of each block constituting the active vibration noise control device 100 shown in FIG. 1 is stored in the memory 2, and each stored program is executed by the processor 1 using the memory 2.
  • the bus 4 connects the processor 1, the memory 2, and the input / output interface 3.
  • the bus 4 may be configured using a bus bridge or the like as appropriate.
  • FIG. 3 is a flowchart showing an example of a processing flow of the active vibration noise control apparatus 100. Note that the present invention is not limited to the flowchart of FIG. 3. As long as equivalent results can be obtained, the respective processes may be performed in different orders, and some processes may be parallelized. Good.
  • the setting unit 110 of the active vibration noise control apparatus 100 acquires frequency information of vibration noise input from the outside (ST10). Then, setting unit 110 obtains control frequency f (n) from the acquired frequency information and correction value f ⁇ (n), and sets control frequency f (n) in oscillator 130 and characteristic determining unit 192 (ST20). Details of the correction value f ⁇ (n) will be described later.
  • the control frequency f (n) can be determined based on the frequency F (n) obtained from the vibration noise frequency information and the correction value f ⁇ (n), for example, as shown in the following equation 1.
  • the frequency F (n) may be determined as appropriate by a method according to the vibration noise source 400 and the obtained frequency information, such as multiplying the engine speed, which is the frequency information, by a constant as described above.
  • the cosine wave generator 131 and the sine wave generator 132 of the oscillator 130 generate a cosine wave signal x0 (n) and a sine wave signal x1 (n), respectively, whose frequency is the control frequency f (n) (ST30).
  • a signal having a cosine wave (or sine wave) waveform can be generated using, for example, an oscillation element, or can be generated by calculating a signal value at each discrete time using, for example, a processor. Is possible.
  • control signal filter 140 performs control signal filtering on the cosine wave signal x0 (n) and the sine wave signal x1 (n) (ST40). Specifically, the filter 141 multiplies the cosine wave signal x0 (n) by the first filter coefficient w0 (n), and the filter 142 applies the second filter coefficient w1 (n) to the sine wave signal x1 (n ) Is multiplied. The adder 150 adds the filtered cosine wave signal w0 (n) ⁇ x0 (n) and the filtered sine wave signal w1 (n) ⁇ x1 (n) to obtain the control signal d (n). Generate (ST50).
  • the control signal d (n) can be expressed by the following equation 2.
  • the control signal d (n) generated by the active vibration control device 100 is converted into secondary vibration noise by the secondary vibration noise output device 200.
  • the secondary vibration noise output from the secondary vibration noise output device 200 propagates through the secondary path 500 and interferes with the vibration noise y (n) generated from the vibration noise source 400.
  • the secondary vibration noise affected by the transfer characteristic of the secondary path 500 is referred to as interference sound.
  • the interference sound is represented by s (n).
  • the characteristic determining unit 192 stores the transfer characteristic of the secondary path 500 according to the frequency as a secondary path characteristic parameter, and corresponds to the control frequency f (n) when the control frequency f (n) is set.
  • the secondary path characteristic parameter to be determined is determined (ST60).
  • the secondary path characteristic parameters include a first parameter C0 (f (n)) and a second parameter C1 (f (n)).
  • the amplitude response (gain) ⁇ (f) and the phase response ⁇ (f) of the secondary path 500 are the first parameter C0 (f) and the second parameter C1 (f).
  • atan represents an arc tangent.
  • the characteristic determining unit 192 may store the transfer characteristic of the secondary path 500 at each frequency in a table structure as shown in FIG.
  • FIG. 4 shows an example of storing transfer characteristics of m frequency bands (m is an integer of 2 or more).
  • the reference signal filter 180 of the coefficient updating unit 160 generates a reference signal based on the cosine wave signal x0 (n) and the sine wave signal x1 (n) (ST70). Specifically, the filter 181 decreases from the cosine wave signal x0 (n), the sine wave signal x1 (n), the first parameter C0 (f (n)), and the second parameter C1 (f (n)). A first reference signal r0 (n) expressed by Equation 5 is generated. Similarly, the filter 182 generates the second reference signal r1 (n) expressed by the following expression 6. In the following, the description of the first parameter C0 (f (n)) and the second parameter C1 (f (n)) is simplified and expressed as C0 (n) and C1 (n), respectively.
  • the coefficient calculation unit 170 calculates the filter coefficient of the control signal filter 140. Specifically, the calculation unit 171 calculates the error signal e (n) from the first reference signal r0 (n) and the error signal e (n) from the vibration noise sensor 300 according to the MSE (mean square error) standard by the LMS algorithm. ) Is updated so as to minimize the first filter coefficient w0 (n) (ST80). Similarly, a value by which the calculation unit 172 updates the second filter coefficient w1 (n) so as to minimize the error signal e (n) from the second reference signal r1 (n) and the error signal e (n). calculate.
  • the update of the filter coefficient can be expressed by the following equations 7 and 8.
  • is an update step size for adjusting the adaptive capability of the adaptive filter, and is a value determined in advance based on, for example, experiments.
  • the correction value updating unit 191 controls the cosine wave signal x0 (n) and sine wave signal x1 (n) input from the oscillator 130, the error signal e (n) input from the vibration noise sensor 300, and the control.
  • the first filter coefficient w0 (n) and the second filter coefficient w1 (n) input from the signal filter 140, the first parameter C0 (n) and the second parameter C1 input from the characteristic determination unit 192 Based on (n), the control frequency correction value f ⁇ (n) is updated so that the signal power e 2 (n) of the error signal decreases (ST90).
  • the update of the correction value f ⁇ (n) is expressed by, for example, the following formula 9.
  • D0 (n) and D1 (n) are components (cosine wave) of the cosine wave signal x0 (n) of the interference sound s (n) calculated based on the secondary path characteristic parameter and the filter coefficient of the control signal filter 140. Amplitude) and components of the sine wave signal x1 (n) (sine wave amplitude) are shown.
  • the cosine wave amplitude D0 (n) and the sine wave amplitude D1 (n) are expressed by the following expressions 10 and 11.
  • the interference sound s (n) can be calculated by the following equation 12.
  • Equation 9 the reason why the signal power e 2 (n) of the error signal is reduced by updating the control frequency correction value f ⁇ (n) based on Equation 9 will be described. Since the error signal e (n) is a combination of the vibration noise y (n), the interference sound s (n), and the disturbance v (n), it is expressed by the following equation (13).
  • the cosine wave signal x0 (n) and the sine wave signal x1 (n) are expressed by the following equations 15 and 16 using the frequency F (n) indicated by the frequency information and the correction value f ⁇ (n).
  • Fs indicates the sampling frequency of the cosine wave signal x0 (n) and the sine wave signal x1 (n)
  • ⁇ (n ⁇ 1) indicates the cosine wave signal x0 (n) and the sine wave signal x1 at time n ⁇ 1. It is the phase of (n).
  • ⁇ (n) is expressed by the recurrence formula of the following formula 17.
  • Equation 14 can be further transformed as shown in Equation 18 below.
  • Equation 18 shows a change in the signal power e 2 (n) of the error signal with respect to a minute change in the correction value f ⁇ , and f ⁇ (n) is minute in either positive or negative direction with respect to f ⁇ (n ⁇ 1). If e 2 (n) is changed in the decreasing direction, the sign on the right side of Equation 18 is determined. Equation 18 can be said to be an equation representing the relationship between the increase / decrease in the correction value f ⁇ and the increase / decrease in the signal power e 2 (n) of the error signal. According to Equation 18, when the right side of Equation 18 is positive, f ⁇ (n) is decreased from f ⁇ (n ⁇ 1) (negative direction), and when the right side is negative, it is increased (positive).
  • E 2 (n) will decrease if each is changed to (direction).
  • a value obtained by removing 4 ⁇ / Fs which is a positive constant and does not affect positive / negative in the right side of Expression 18 and inverts the positive / negative of the remaining elements (Expression 19) will be referred to as an updated basic quantity U (n). .
  • the active noise control apparatus 100 of this embodiment determines a control frequency correction value f ⁇ (n) based on the updated basic quantity U (n) expressed by Equation 19.
  • the update method shown by the above-mentioned formula 9 is an example.
  • a value obtained by multiplying U (n) by an arbitrary constant ⁇ is used as a change amount of the correction value f ⁇ (n).
  • U (n) is positive
  • the right side of Expression 18 is negative.
  • f ⁇ (n + 1) ⁇ f ⁇ (n) is positive, the signal power e 2 (n) of the error signal is reduced.
  • the error signal e (n) detected by the vibration noise sensor 300 becomes minimum when the control frequency f (n) matches the frequency of the vibration noise y (n) from the vibration noise source 400. Accordingly, by updating the control frequency correction value f ⁇ (n) so that the signal power e 2 (n) of the error signal decreases as described above, the control frequency f (n) becomes the actual vibration noise frequency. Corrected to match.
  • the active vibration noise control apparatus 100 corrects the control frequency correction value f ⁇ (n) so that the error signal e (n) becomes small. Even if (n) is included, the correction value f ⁇ (n) can be appropriately updated.
  • the correction value f ⁇ (n) is determined based on Equation 9, but the present invention is not limited to this method.
  • the correction value f ⁇ (n) may be updated with a predetermined update width ⁇ ( ⁇ > 0) according to the sign of the update basic amount U (n). That is, a method of updating as shown in the following equation 16 is also conceivable.
  • the correction value f ⁇ (n) is updated according to the external condition by changing ⁇ or ⁇ according to the external condition (for example, when the vehicle is running, stopped, etc.). Is possible.
  • control frequency correction value f ⁇ (n) By making the correction value f ⁇ (n) change only within a predetermined range, extreme correction may not be performed.
  • a limit By making the correction value f ⁇ (n) change only within a predetermined range, extreme correction may not be performed.
  • the active vibration noise device corrects the control target vibration noise shown in Expression 18 when the control frequency specified as the control target vibration noise frequency is corrected with the correction value.
  • the correction value is updated so as to reduce the signal power of the error signal to correct the control frequency.
  • reducing the signal power of the error signal reduces the difference between the control frequency and the frequency of the vibration noise. Therefore, according to the active vibration noise device of the first embodiment, the residual vibration noise is detected. Even when the error signal includes disturbances other than the vibration noise to be controlled, the difference between the frequency of the vibration noise to be controlled and the control frequency can be reduced.
  • the relationship between the increase / decrease in the correction value of the control frequency and the increase / decrease in the signal power of the error signal is represented by the cosine wave signal, the sine wave signal, the filter coefficient of the control signal filter, and the transfer characteristic of the secondary path stored in the characteristic determination unit. Therefore, the relationship between the increase / decrease in the correction value of the control frequency and the increase / decrease in the signal power of the error signal can be obtained without being influenced by external factors such as disturbance. In addition, it is possible to more accurately calculate the ratio of the change in the signal power of the error signal to the change in the correction value of the control frequency, so that the deviation between the vibration noise frequency and the control frequency can be accurately eliminated. Become.
  • the vibration noise frequency and the control frequency of the control target are determined.
  • the amount of change in the correction value is increased to quickly eliminate the frequency deviation, and when the deviation is small and the residual vibration noise is small, the amount of change is reduced to stabilize the control frequency. become able to.
  • the active vibration noise device of the present invention can control the vibration noise of the control target even when there is a disturbance source that generates a disturbance that is other vibration noise that is not the control target, in addition to the vibration noise source that generates the control target vibration noise. Since the control frequency specified as the frequency can be corrected appropriately, it is useful for an active vibration noise device used in an environment with a disturbance, such as an active vibration noise control device for reducing vibration noise of an automobile engine.
  • 100 active vibration noise control device 110 setting unit, 120 control signal generation unit, 130 oscillator, 131 cosine wave generator, 132 sine wave generator, 140 control signal filter, 141 filter, 142 filter, 150 adder, 160 coefficient update Unit, 170 coefficient calculation unit, 171 calculation unit, 172 calculation unit, 180 reference signal filter, 181 filter, 182 filter, 190 correction value determination unit, 191 correction value update unit, 192 characteristic determination unit, 200 secondary vibration noise output device , 300 vibration noise sensor, 400 vibration noise source, 500 secondary path, 600 disturbance source.

Abstract

 振動騒音源に応じて特定される制御周波数を周波数とする余弦波信号および正弦波信号に基づいて制御信号を生成する制御信号生成部120と、制御信号に基づいて生成され二次経路を伝播した干渉音が振動騒音源から発する振動騒音に干渉して残る残存振動騒音から得られる誤差信号の信号パワーの増減と、制御周波数の補正に用いられる補正値の増減との関係に基づいて、誤差信号の信号パワーを減少する値に前記補正値を更新する補正値更新部と、を備えた。

Description

能動振動騒音制御装置
 本発明は、振動騒音を当該振動騒音に応じて生成される二次振動騒音によって低減する能動振動騒音制御技術に関する。
 エンジン等の回転機器が発する振動騒音を低減する装置として、適応ノッチフィルタ(Adaptive Notch Filter)を用いた能動振動騒音制御装置(Active Noise Control Apparatus)が知られる。ここで、振動騒音とは機械の動作などによって発生する振動または騒音を指すものとする。このような能動振動騒音制御装置では、回転機器の回転周期から特定される振動騒音の周波数を制御周波数とし、当該制御周波数の振動騒音と逆位相の制御信号を生成してこれを二次振動騒音として出力することで、振動騒音と二次振動騒音の干渉により振動騒音を低減する。
 このとき、回転機器の回転周期を検知する周期センサの計測誤差や、周期センサから計測値を伝える信号の遅延などの影響で実際の振動騒音の周波数と制御周波数との間にずれが生じた場合、振動騒音の低減効果が低くなるという問題を生じる。この問題に対して、適応ノッチフィルタのフィルタ係数を複素数の実部と虚部として複素平面上に表したときの偏角の変化に応じて制御周波数を補正する方法(特許文献1)、あるいは、適応ノッチフィルタによって得られるフィルタ係数を更新後の制御信号の周波数と制御周波数とのずれに基づいて制御信号に基づいて制御周波数を補正する方法(特許文献2)が提案されている。
特開2010-167844号公報(図1)
国際公開第2014/068624号(図1)
しかしながら、振動騒音制御の対象である回転機器以外の振動騒音源(外乱源)からの他の振動騒音(外乱)がある場合に、例えば振動騒音と二次振動騒音との干渉の後に残存する打消し誤差と外乱の振幅レベルが接近すると、外乱の影響によって適応ノッチフィルタのフィルタ係数が適切に更新されないことがある。このような場合、適応ノッチフィルタのフィルタ係数の変化、あるいは更新後のフィルタ係数に応じて生成された制御信号に基づいて制御周波数の補正値を決定する従来の能動振動騒音制御装置では、制御周波数の補正を正しく行うことができなくなるという問題があった。
 本発明は、上述した課題を解決するためになされたものであり、制御対象の振動騒音に加えて他の振動騒音が外乱として存在する場合にも、制御対象の振動騒音の周波数として特定する制御周波数の補正を適切に行うことができ、振動騒音の低減効果を向上した能動振動騒音制御装置を得ることを目的とする。
 この発明の能動騒音制御装置は、振動騒音源に応じて特定される制御周波数を周波数とする余弦波信号および正弦波信号に基づいて制御信号を生成する制御信号生成部と、制御信号に基づいて生成され二次経路を伝播した干渉音が振動騒音源から発する振動騒音に干渉して残る残存振動騒音から得られる誤差信号の信号パワーの増減と、制御周波数の補正に用いられる補正値の増減との関係に基づいて、誤差信号の信号パワーを減少する値に補正値を更新する補正値更新部と、を備えるようにしたものである。
 この発明の能動振動騒音制御装置によれば、振動騒音源から発する振動騒音の周波数として特定される制御周波数を補正値で補正する際に、振動騒音と二次振動騒音との干渉によって残った残存振動騒音を検出した誤差信号の信号パワーの増減と制御周波数の補正値の増減との関係に基づいて、誤差信号の信号パワーを減少する値に更新した補正値を用いて制御周波数を補正するようにしたので、残存振動騒音に制御対象の振動騒音以外の外乱が含まれる場合にも、残存振動騒音を検出した誤差信号の信号パワーを減じる補正値で制御周波数を補正することで、振動騒音の周波数と制御周波数の差分を減じることができるようになる。
この発明の実施の形態1に係る能動振動騒音制御装置の機能構成の一例を示すブロック図である。 この発明の実施の形態1の能動振動騒音制御装置のハードウェア構成の一例を示すブロック図である。 この発明の実施の形態1の能動振動騒音制御装置の処理フローの一例を示すフロー図である。 この発明の実施の形態1の能動振動騒音制御装置において記憶される二次経路の伝達特性の記憶形態の一例を示すテーブルである。
 以下、図を参照してこの発明の実施の形態を説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る能動振動騒音装置の機能構成の一例を示すブロック図である。この実施の形態の能動振動騒音制御装置100は、外部に設けられた二次振動騒音出力器200及び振動騒音センサ300が接続されている。能動振動騒音制御装置100は、制御対象である振動騒音源400から発生する振動騒音の周波数情報を外部から入力され、入力された周波数情報に基づいて生成した制御信号d(n)を出力する。nはデジタル信号処理における離散時間を表す変数である。なお、能動振動騒音制御措置100から出力される制御信号d(n)は、電気信号や光信号など実際の実現形態に応じて適した信号で行えばよい。
 上記において振動騒音の周波数情報とは、例えば振動騒音源400が自動車のエンジンであればエンジンの回転周波数であるなど、振動騒音の周波数を特定するための情報である。このような周波数情報は、例えばエンジンの回転周波数であればイグニッションパルス周期からエンジンの回転周波数を計測するなど、回転センサを用いることで取得可能である。また、周波数情報に基づく振動騒音の周波数の特定は、例えばエンジンの振動騒音である場合には、当該エンジンの回転次数に合わせて回転周波数を定数倍するなどの方法で得る事が可能である。あるいは振動騒音源400が電動モーターで駆動するファンであれば、モーターの極数や電源周波数、ファンのブレード枚数などを周波数情報として、対象となる振動騒音(NZ音)の周波数を求める事ができる。このように振動騒音の周波数情報の取得と、周波数情報に基づく振動騒音の周波数の特定は、振動騒音制御の対象である振動騒音の発生源に応じて適した手段を適宜用いてよい。なお、以降では振動騒音源400に応じた周波数情報に基づいて特定される振動騒音の周波数を制御周波数と称する。
 図1において能動振動騒音制御装置100に接続された二次振動騒音出力器200は、能動振動騒音制御装置100が出力する制御信号d(n)を用いて振動騒音源400から発生する振動騒音y(n)を打ち消すための二次振動騒音を生成して出力するものであり、例えばスピーカ、アクチュエータ等により実現することができる。
 二次振動騒音出力器200が出力する二次振動騒音は二次経路500を伝播し、振動騒音源400から発生する振動騒音と干渉して当該振動騒音を低減する。ここで二次経路500は、二次振動騒音出力器200が出力した二次振動騒音が振動騒音センサ300まで伝播する間に通過する経路と定義づけられる。図1においてs(n)は二次経路500を伝播した二次振動騒音を示している。
 また、振動騒音センサ300は、振動騒音y(n)と二次振動騒音s(n)との干渉の結果の残存振動騒音を検出し、検出した残存振動騒音を誤差信号e(n)として能動振動騒音制御装置100に出力するものであり、例えばマイク、振動センサ、加速度センサなどにより実現できる。なお、能動振動騒音制御装置100への誤差信号e(n)の入力は、電気信号や光信号などで行えばよい。
 ここで振動騒音センサ300が検知する誤差には、制御対象である振動騒音y(n)のほかに、外乱源600から発生する振動騒音である外乱が重畳される。なお、外乱源600は振動騒音源400以外の振動騒音の発生源であり、特定の振動騒音の発生源に限定されるものではない。
 次に、この実施の形態の能動振動騒音制御装置100の構成の詳細について説明する。能動振動騒音制御装置100は、設定部110、制御信号生成部120、係数更新部160、補正値決定部190を備える。
 また、図1は制御信号生成部120、係数更新部160、補正値決定部190の詳細な機能構成の一例を示している。図1において制御信号生成部120は、発振器130と制御信号フィルタ140と加算器150を備えている。さらに発振器130は余弦波生成器131と正弦波生成器132を備えている。また、制御信号フィルタ140はフィルタ141とフィルタ142を備えている。なお、w0(n)、w1(n)はそれぞれフィルタ141とフィルタ142のフィルタ係数を示す。
 また、係数更新部160は係数算出部170と参照信号フィルタ180を備えている。そして、係数算出部170は算出部171と算出部172を、参照信号フィルタ180はフィルタ181とフィルタ182を備えている。ここで、LMSは算出部171と算出部172が適応アルゴリズムとしてLMS(Least-Mean-Square)アルゴリズムを用いることを示している。ただし、LMSアルゴリズムは適応アルゴリズムの一例であり、この発明は適応アルゴリズムをLMSアルゴリズムに限定するものではない。
 また、補正値決定部190は補正値更新部191と特性決定部192を備えている。
 設定部110は外部から入力される周波数情報と、補正値決定部190の補正値更新部191から入力される制御周波数の補正値fΔ(n)に基づいて制御周波数f(n)を制御信号生成部120の発振器130に設定する。また、設定部110は制御周波数f(n)を補正値決定部190の特性決定部192にも設定する。
 発振器130の余弦波生成器131と正弦波生成器132は設定部110から設定された制御周波数f(n)に応じた余弦波信号x0(n)と正弦波信号x1(n)をそれぞれ生成する。発振器130は生成した余弦波信号x0(n)と正弦波信号x1(n)を制御信号フィルタ140に入力する。また、余弦波信号x0(n)と正弦波信号x1(n)は係数更新部160の参照信号フィルタ160と補正値決定部190の補正値更新部191にも入力される。
 制御信号フィルタ140が備えるフィルタ141は余弦波信号x0(n)に対してフィルタ処理を行う。このときフィルタ処理に用いられるフィルタ係数(第1のフィルタ係数)はw0(n)である。同様にフィルタ142は正弦波信号x1(n)に対してフィルタ処理を行う。このときフィルタ処理に用いられるフィルタ係数(第2のフィルタ係数)はw1(n)である。加算器150は制御信号フィルタ140でフィルタ処理された2つの信号(x0(n)・w0(n)とx1(n)・w1(n)、なお”・”は積を表す)を加算して、制御信号d(n)を生成する。
 特性決定部192は、周波数別に定められた二次経路500の伝達特性を記憶しており、記憶する伝達特性の中から入力された制御周波数f(n)に対応する伝達特性を決定して、二次経路特性パラメータとして出力する。特性決定部192が記憶する二次経路500の伝達特性は、あらかじめ周波数毎の特性を測定するなどして取得し、特性決定部192が記憶するようにしておけばよい。また、伝達特性の記憶は、不揮発性のメモリに記憶したり、回路に組み込むことによって記憶したりするなどして行えばよい。特性決定部192が出力する二次経路特性パラメータは係数更新部160の参照信号フィルタ180と補正値更新部191に入力される。
 参照信号フィルタ180は、余弦波信号x0(n)と正弦波信号x1(n)と特性決定部192が出力する二次経路特性パラメータに基づいて第1の参照信号r0(n)と第2の参照信号r1(n)を生成する。具体的には、フィルタ181が第1の参照信号r0(n)を生成し、フィルタ182が第2の参照信号r1(n)を生成する。
 係数算出部170は、第1の参照信号r0(n)と第2の参照信号r1(n)と振動騒音センサ300からの誤差信号e(n)に基づいて、LMSアルゴリズムによる制御信号生成部120の制御信号フィルタ140のフィルタ係数の更新を行う。具体的には、係数算出部170が備える算出部171が第1の参照信号r0(n)と誤差信号e(n)に基づいて第1のフィルタ係数w0(n)を算出して更新する。また、算出部172が第2の参照信号r1(n)と誤差信号e(n)に基づいて第2のフィルタ係数w1(n)を算出して更新する。
 補正値更新部191は振動騒音センサ300からの誤差信号e(n)と、発振器130から入力される余弦波信号x0(n)および正弦波信号x1(n)と、制御信号フィルタ140が用いる第1のフィルタ係数w0(n)および第2のフィルタ係数w1(n)と、特性決定部192から入力される二次経路特性パラメータに基づいて、制御周波数f(n)と振動騒音の周波数のずれを補正するための補正値fΔ(n)を決定する。なお、第1のフィルタ係数w0(n)および第2のフィルタ係数w1(n)は制御信号フィルタ140が補正値更新部191に出力してもよいし、係数更新部160が出力してもよい。ここでは、制御信号フィルタ140が出力することとする。
 上述の能動振動騒音制御装置100が備える各ブロックである、設定部110、制御信号生成部120および制御信号生成部120が備える発振器130、制御信号フィルタ140、加算器150、係数更新部160および係数更新部160が備える係数算出部170、参照信号フィルタ180、補正値決定部190および補正値決定部190が備える補正値更新部191、特性決定部192は、ASIC(Application Specific Integrated Circuit)等を用いたハードウェアで実現することも可能であるし、プロセッサとプロセッサ上で動作するプログラムで実現することも可能である。あるいは、LSI等のハードウェアとプロセッサおよびプロセッサ上で動作するプログラムを組み合わせて実現することも可能である。
 図2はこの実施の形態の能動振動騒音制御装置100をプロセッサとプロセッサで実行されるプログラムで実現する場合のハードウェア構成の一例を示すブロック図である。図1に示した能動振動騒音制御装置100を構成する各ブロックの機能を実現するプログラムはメモリ2に記憶され、記憶された各プログラムはプロセッサ1においてメモリ2を用いて実行される。図1に示す周波数情報の入力、二次振動騒音出力器200への制御信号d(n)の出力、振動騒音センサ300が出力する誤差信号e(n)の入力などは、入出力インタフェース3を介して行われる。なお、入出力インタフェース3は接続する機器に応じて複数であってもよい。バス4はプロセッサ1、メモリ2、入出力インタフェース3を接続する。なお、バス4は適宜バスブリッジ等を用いて構成されてもよい。
 次に、実施の形態1の能動振動騒音制御装置100の動作を説明する。図3は能動振動騒音制御装置100の処理フローの一例を示すフロー図である。なおこの発明は図3のフロー図に限定されるものではなく、同等の結果を得られる限りにおいて、異なる順序でそれぞれの処理を実施してもよく、また、一部の処理を並列化してもよい。
 はじめに、能動振動騒音制御装置100の設定部110が外部より入力された振動騒音の周波数情報を取得する(ST10)。そして、設定部110は取得した周波数情報と補正値fΔ(n)とから制御周波数f(n)を求め、発振器130および特性決定部192に制御周波数f(n)を設定する(ST20)。補正値fΔ(n)の詳細については後述する。制御周波数f(n)の求め方は、振動騒音の周波数情報から求められる周波数F(n)と補正値fΔ(n)とに基づいて、例えば下式1のように定めることができる。なお、周波数F(n)は、上述のように周波数情報であるエンジンの回転数を定数倍するなど、振動騒音源400と得られる周波数情報に応じた方法で適宜求めればよい。
Figure JPOXMLDOC01-appb-M000001
 なお、周波数情報から求められる周波数F(n)と制御周波数f(n)にずれがない場合、あるいは装置が動作を開始した直後の場合などでは、補正値がfΔ(n)=0となり、f(n)=F(n)となることも起こりうる。
 次に、発振器130の余弦波生成器131と正弦波発生器132がそれぞれ、周波数が制御周波数f(n)である余弦波信号x0(n)と正弦波信号x1(n)を生成する(ST30)。余弦波(あるいは正弦波)の波形を持つ信号の生成は、例えば発振素子を用いて生成することも可能であるし、例えばプロセッサなどにより各離散時間における信号値を算出することで生成することも可能である。
 次に、制御信号フィルタ140は、余弦波信号x0(n)と正弦波信号x1(n)に対して制御信号のフィルタ処理を行う(ST40)。具体的には、フィルタ141が第1のフィルタ係数w0(n)を余弦波信号x0(n)に乗じる処理を行い、フィルタ142が第2のフィルタ係数w1(n)を正弦波信号x1(n)に乗じる処理を行う。そして、加算器150がフィルタ処理された余弦波信号w0(n)・x0(n)とフィルタ処理された正弦波信号w1(n)・x1(n)を加算して制御信号d(n)を生成する(ST50)。制御信号d(n)は下式2により表すことができる。
Figure JPOXMLDOC01-appb-M000002
 なお、能動振動制御装置100が生成した制御信号d(n)は二次振動騒音出力器200によって、二次振動騒音に変換される。そして、二次振動騒音出力器200が出力した二次振動騒音は、二次経路500を伝播して振動騒音源400から発生する振動騒音y(n)と干渉する。以降、二次経路500の伝達特性の影響を受けた二次振動騒音を干渉音と称す。図1において干渉音はs(n)で表される。振動騒音源400から発生する振動騒音y(n)に干渉音s(n)が干渉することで振動騒音y(n)は低減される。
 特性決定部192は、周波数に応じた二次経路500の伝達特性を二次経路特性パラメータとして記憶しており、制御周波数f(n)が設定されると、当該制御周波数f(n)に対応する二次経路特性パラメータを決定する(ST60)。なお、二次経路特性パラメータは第1のパラメータC0(f(n))と第2のパラメータC1(f(n))とを含む。そして、ある時刻nの周波数fにおいて、二次経路500の振幅応答(利得)γ(f)と位相応答ρ(f)は、第1のパラメータC0(f)と第2のパラメータC1(f)により、それぞれ以下の式3、式4で表されるものとする。ここで、atanは逆正接を表す。特性決定部192は例えば図4に示すようなテーブル構造でそれぞれの周波数における二次経路500の伝達特性を記憶することが考えられる。図4はm個(mは2以上の整数)の周波数帯の伝達特性を記憶する例である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 次に、係数更新部160の参照信号フィルタ180は、余弦波信号x0(n)と正弦波信号x1(n)に基づいて、参照信号を生成する(ST70)。具体的には、フィルタ181が余弦波信号x0(n)、正弦波信号x1(n)、第1のパラメータC0(f(n))、第2のパラメータC1(f(n))とから下式5で表される第1の参照信号r0(n)を生成する。また、フィルタ182が同様に下式6で表される第2の参照信号r1(n)を生成する。なお、以下では第1のパラメータC0(f(n))と第2のパラメータC1(f(n))の記載を簡略化し、それぞれC0(n)、C1(n)と表している。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 次に、係数算出部170が制御信号フィルタ140のフィルタ係数を算出する。具体的には、算出部171が第1の参照信号r0(n)と振動騒音センサ300からの誤差信号e(n)とから、LMSアルゴリズムによりMSE(平均二乗誤差)規範で誤差信号e(n)を最小化するよう第1のフィルタ係数w0(n)を更新する値を算出する(ST80)。同様に、算出部172が第2の参照信号r1(n)と誤差信号e(n)とから誤差信号e(n)を最小化するよう第2のフィルタ係数w1(n)を更新する値を算出する。フィルタ係数の更新は以下の式7、式8で表すことができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、μは適応フィルタの適応能力を調整するための更新ステップサイズであり、例えば実験等に基づいてあらかじめ定められる値である。
 次に、補正値更新部191が、発振器130から入力される余弦波信号x0(n)および正弦波信号x1(n)と、振動騒音センサ300から入力される誤差信号e(n)と、制御信号フィルタ140から入力される第1のフィルタ係数w0(n)および第2のフィルタ係数w1(n)と、特性決定部192から入力される第1のパラメータC0(n)および第2のパラメータC1(n)とに基づいて、誤差信号の信号パワーe(n)が減少するように制御周波数の補正値fΔ(n)を更新する(ST90)。補正値fΔ(n)の更新は例えば下式9で表される。
Figure JPOXMLDOC01-appb-M000009
 ここでαは更新の早さを定める定数であり、α>0を満たす。また、D0(n)およびD1(n)は、二次経路特性パラメータと制御信号フィルタ140のフィルタ係数に基づいて算出した干渉音s(n)の余弦波信号x0(n)の成分(余弦波振幅)と正弦波信号x1(n)の成分(正弦波振幅)をそれぞれ示している。余弦波振幅D0(n)および正弦波振幅D1(n)は下式10、11で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 余弦波振幅D0(n)および正弦波振幅D1(n)を用いると干渉音s(n)は下式12で算出することができる。
Figure JPOXMLDOC01-appb-M000012
 ここで、式9に基づいた制御周波数の補正値fΔ(n)の更新により誤差信号の信号パワーe(n)が減少する理由について説明する。誤差信号e(n)は、振動騒音y(n)と干渉音s(n)と外乱v(n)の合成であるので、下式13で表される。
Figure JPOXMLDOC01-appb-M000013
 誤差信号の信号パワーe(n)を補正値fΔ(n)で偏微分すると、補正値fΔ(n)に対する誤差信号の信号パワーe(n)の勾配を求めることができる。誤差信号e(n)が式13で表され、また干渉音s(n)は上述の式12で表すことができるので、誤差信号の信号パワーe(n)を補正値fΔ(n)で偏微分すると下式14となる。
Figure JPOXMLDOC01-appb-M000014
 余弦波信号x0(n)および正弦波信号x1(n)は、周波数情報が指示する周波数F(n)と補正値fΔ(n)とを用いて、下式15、16で表される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、Fsは余弦波信号x0(n)および正弦波信号x1(n)のサンプリング周波数を示し、θ(n-1)は時刻n-1における余弦波信号x0(n)および正弦波信号x1(n)の位相である。なお、θ(n)は下式17の漸化式で表される。
Figure JPOXMLDOC01-appb-M000017
 式15、16を考慮すると式14はさらに下式18に示すように変形できる。
Figure JPOXMLDOC01-appb-M000018
 式18は補正値fΔの微小変化に対する誤差信号の信号パワーe(n)の変化を示しており、fΔ(n)をfΔ(n-1)に対して正負いずれの方向に微小に変更するとe(n)が減少方向に変化するかが式18の右辺の符号によって定まる。式18は補正値fΔの増減と誤差信号の信号パワーe(n)の増減との関係を表す式と言える。式18によれば、式18の右辺が正であるときはfΔ(n)をfΔ(n-1)より減ずる方向(負の方向)、右辺が負であるときは増す方向(正の方向)にそれぞれ変更すれば、e(n)は減少することになる。ここで、式18の右辺のうち正の定数であり正負に影響しない4π/Fsを取り除き、残りの要素の正負を反転した値(式19)を更新基本量U(n)と称することにする。
Figure JPOXMLDOC01-appb-M000019
 この実施の形態の能動騒音制御装置100は、式19で示される更新基本量U(n)に基づいて制御周波数の補正値fΔ(n)を定める。前述の式9で示した更新方法はその一例である。式9ではU(n)に任意の定数αを乗じた値を補正値fΔ(n)の変化量としており、U(n)が正である場合には式18の右辺は負であり、式9においてfΔ(n+1)-fΔ(n)が正であるので誤差信号の信号パワーe(n)が減じることになる。また、U(n)が負である場合には、式18の右辺は正であり、式9においてfΔ(n+1)-fΔ(n)は負であるので、この場合も、誤差信号の信号パワーe(n)が減じることになる。従って、式9に従って補正値fΔ(n)を更新すれば誤差信号の信号パワーe(n)は減少することになる。
 振動騒音センサ300によって検出される誤差信号e(n)は、制御周波数f(n)が振動騒音源400からの振動騒音y(n)の周波数に一致したときに最小となる。従って、上述のように誤差信号の信号パワーe(n)が減少するように制御周波数の補正値fΔ(n)を更新することで制御周波数f(n)は実際の振動騒音の周波数と一致するように補正される。
 なお、この実施の形態の能動振動騒音制御装置100は、制御周波数の補正値fΔ(n)を誤差信号e(n)が小さくなるように補正するので、誤差信号e(n)に外乱v(n)が含まれていても補正値fΔ(n)を適切に更新することができる。
 また式9に示されるように、補正値fΔ(n)の変化に対する誤差信号の信号パワーe(n)の変化の割合が大きい場合には、補正値fΔ(n)の変化量を大きくして周波数のずれが速やかに解消されるようにし、補正値fΔ(n)の変化に対する誤差信号の信号パワーe(n)の変化の割合が小さい場合には、補正値fΔ(n)の変化量を小さくして制御周波数を安定させることができる。
 なお、この実施の形態の能動騒音制御装置100では補正値fΔ(n)を式9に基づいて定めるようにしたが、この発明はこの方法に限定されるものではない。例えば更新基本量U(n)の符号にしたがい、あらかじめ定めた更新幅β(β>0)で補正値fΔ(n)を更新するようにしてもよい。すなわち、下式16のように更新する方法も考えられる。
Figure JPOXMLDOC01-appb-M000020
 また式9や式20において、定数αまたはβを変数にすることも考えられる。このとき、例えば外的条件(自動車であれば例えば走行中、停車中など)に応じてαまたはβを変化させることで、外的条件に応じた補正値fΔ(n)の更新をすることが可能になる。
 さらに、制御周波数の補正値fΔ(n)に制限を設けることも考えられる。補正値fΔ(n)が所定の範囲内でのみ変化するようにすることで、極端な補正が行われないようにしてもよい。例えば、補正範囲値εを設け、式21に示すように制限を設けることが考えられる。また、補正値の変化量に制限を設けるようにしてもよい。
Figure JPOXMLDOC01-appb-M000021
 以上のように、この発明の実施の形態1の能動振動騒音装置は、制御対象の振動騒音の周波数として特定した制御周波数を補正値で補正する際に、式18に示した制御対象の振動騒音と二次振動騒音とが干渉した後の残存振動騒音を検出した誤差信号の信号パワーの増減と制御周波数の補正値の増減との関係から得られる式19に示した更新基本量に基づいて、誤差信号の信号パワーを減少するように補正値を更新して制御周波数を補正するようにした。上述のように誤差信号の信号パワーを減少することは制御周波数と振動騒音の周波数の差分を減少することになるので、実施の形態1の能動振動騒音装置によれば、残存振動騒音を検出した誤差信号に制御対象の振動騒音以外の外乱が含まれる場合にも、制御対象の振動騒音の周波数と制御周波数の差分を減少できるようになる。
 また、制御周波数の補正値の増減と誤差信号の信号パワーの増減との関係を余弦波信号、正弦波信号、制御信号フィルタのフィルタ係数および特性決定部に記憶された二次経路の伝達特性に基づいて定めるようにしたので、制御周波数の補正値の増減と誤差信号の信号パワーの増減との関係を外乱等の外的要因の影響を受けることなく求めることが可能になる。また、制御周波数の補正値の変化に対する誤差信号の信号パワーの変化の割合をより正しく算出することが可能であり、精度良く制御対象の振動騒音の周波数と制制御周波数のずれを解消できるようになる。
 また、制御周波数の補正値の変化に対する誤差信号の信号パワーの変化の大きさに応じて補正値の変化量の大きさを定めるようにすることで、制御対象の振動騒音の周波数と制御周波数のずれが大きく残存振動騒音が大きい時には補正値の変化量を大きくして周波数のずれを速やかに解消させ、またずれが小さく残存振動騒音が小さい時には変化量を小さくして制御周波数を安定させることができるようになる。
 また、制御周波数の補正範囲を定めておき、補正範囲の範囲内で補正値を定めるようにすることで、極端な補正が行われ振動騒音の低減効果が不安定となることを回避できるようになる。
 以上のようにこの発明の能動振動騒音装置は制御対象の振動騒音を発する振動騒音源以外に制御対象でない他の振動騒音である外乱を発する外乱源がある場合にも、制御対象の振動騒音の周波数として特定する制御周波数の補正を適切に行うことができるので、自動車のエンジンの振動騒音を低減する能動振動騒音制御装置など、外乱がある環境で用いられる能動振動騒音装置に有用である。
 100 能動振動騒音制御装置、110 設定部、120 制御信号生成部、130 発振器、131 余弦波生成器、132 正弦波生成器、140 制御信号フィルタ、141 フィルタ、142 フィルタ、150 加算器、160 係数更新部、170 係数算出部、171 算出部、172 算出部、180 参照信号フィルタ、181 フィルタ、182 フィルタ、190 補正値決定部、191 補正値更新部、192 特性決定部、200 二次振動騒音出力器、300振動騒音センサ、400 振動騒音源、500 二次経路、600 外乱源。

Claims (4)

  1.  振動騒音源に応じて特定される制御周波数を周波数とする余弦波信号および正弦波信号に基づいて制御信号を生成する制御信号生成部と、
     前記制御信号に基づいて生成され二次経路を伝播した干渉音が前記振動騒音源から発する振動騒音に干渉して残る残存振動騒音から得られる誤差信号の信号パワーの増減と、前記制御周波数の補正に用いられる補正値の増減との関係に基づいて、前記誤差信号の信号パワーを減少する値に前記補正値を更新する補正値更新部と、
     を備えたことを特徴とする能動振動騒音制御装置。
  2.  前記補正値更新部は、前記誤差信号の信号パワーの増減と前記補正値の増減との関係を、あらかじめ定めた前記二次経路の伝達特性を用いて算出される前記干渉音の前記余弦波信号の成分である余弦波振幅と、前記二次経路の伝達特性を用いて算出される前記干渉音の前記正弦波信号の成分である正弦波振幅と、前記余弦波信号と、前記正弦波信号とに基づいて定める
     ことを特徴とする請求項1に記載の能動振動騒音制御装置。
  3.  前記補正値更新部は、前記補正値の変化に対する前記誤差信号の信号パワーの変化の割合の大きさに応じて、前記補正値の変化に対する前記誤差信号の信号パワーの変化の割合が大きい場合には前記補正値の変化量を大きくし、前記補正値の変化に対する前記誤差信号の信号パワーの変化の割合が小さい場合には前記補正値の変化量を小さくして、前記補正値を更新する
     ことを特徴とする請求項1に記載の能動振動騒音制御装置。
  4.  前記補正値更新部は、定められた前記制御周波数の補正範囲内で前記補正値を更新する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の能動振動騒音制御装置。
PCT/JP2015/001646 2015-03-24 2015-03-24 能動振動騒音制御装置 WO2016151624A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017507105A JP6180680B2 (ja) 2015-03-24 2015-03-24 能動振動騒音制御装置
DE112015006367.6T DE112015006367B4 (de) 2015-03-24 2015-03-24 Aktive vibrationsgeräusch-steuervorrichtung
CN201580078079.2A CN107430847B (zh) 2015-03-24 2015-03-24 有源振动噪声控制装置
US15/544,485 US10482867B2 (en) 2015-03-24 2015-03-24 Active vibration noise control apparatus
PCT/JP2015/001646 WO2016151624A1 (ja) 2015-03-24 2015-03-24 能動振動騒音制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001646 WO2016151624A1 (ja) 2015-03-24 2015-03-24 能動振動騒音制御装置

Publications (1)

Publication Number Publication Date
WO2016151624A1 true WO2016151624A1 (ja) 2016-09-29

Family

ID=56977048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001646 WO2016151624A1 (ja) 2015-03-24 2015-03-24 能動振動騒音制御装置

Country Status (5)

Country Link
US (1) US10482867B2 (ja)
JP (1) JP6180680B2 (ja)
CN (1) CN107430847B (ja)
DE (1) DE112015006367B4 (ja)
WO (1) WO2016151624A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045778A (zh) * 2017-04-26 2017-08-15 兰州交通大学 一种多功能噪音抵消系统
JP2021162849A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 能動騒音制御装置
JP2021162848A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 能動騒音制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010031B2 (ja) * 2018-02-01 2022-01-26 株式会社島津製作所 振幅検出方法および材料試験機
CN111711887B (zh) * 2020-06-23 2021-03-23 上海驻净电子科技有限公司 一种多点降噪系统及方法
CN115370503B (zh) * 2022-08-30 2024-01-23 株洲时代新材料科技股份有限公司 一种基于转速预测的发动机主动悬置的控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361721A (ja) * 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置
WO2014068624A1 (ja) * 2012-11-05 2014-05-08 三菱電機株式会社 能動振動騒音制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170433A (en) * 1986-10-07 1992-12-08 Adaptive Control Limited Active vibration control
JP4664116B2 (ja) 2005-04-27 2011-04-06 アサヒビール株式会社 能動騒音抑制装置
CN100543842C (zh) * 2006-05-23 2009-09-23 中兴通讯股份有限公司 基于多统计模型和最小均方误差实现背景噪声抑制的方法
ATE518381T1 (de) 2007-09-27 2011-08-15 Harman Becker Automotive Sys Automatische bassregelung
EP2133866B1 (en) * 2008-06-13 2016-02-17 Harman Becker Automotive Systems GmbH Adaptive noise control system
JP5359305B2 (ja) 2009-01-21 2013-12-04 パナソニック株式会社 能動型騒音制御装置
JP2011010253A (ja) * 2009-05-25 2011-01-13 Isuzu Motors Ltd 制御ロジック及びフィードバック制御方式
JP5528538B2 (ja) * 2010-03-09 2014-06-25 三菱電機株式会社 雑音抑圧装置
EP2395501B1 (en) * 2010-06-14 2015-08-12 Harman Becker Automotive Systems GmbH Adaptive noise control
CN101976560B (zh) * 2010-09-29 2012-09-05 哈尔滨工业大学 前馈型窄带主动噪声控制系统性能提高的方法
JP2013114009A (ja) * 2011-11-29 2013-06-10 Honda Motor Co Ltd 能動型振動騒音制御装置
CN103650030B (zh) * 2012-01-20 2016-05-11 三菱电机株式会社 有源振动噪音控制装置
US9515629B2 (en) * 2013-05-16 2016-12-06 Apple Inc. Adaptive audio equalization for personal listening devices
JP6125389B2 (ja) * 2013-09-24 2017-05-10 株式会社東芝 能動消音装置及び方法
CN103984866A (zh) * 2014-05-20 2014-08-13 浙江师范大学 一种基于局域均值分解的信号去噪方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361721A (ja) * 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置
WO2014068624A1 (ja) * 2012-11-05 2014-05-08 三菱電機株式会社 能動振動騒音制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045778A (zh) * 2017-04-26 2017-08-15 兰州交通大学 一种多功能噪音抵消系统
JP2021162849A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 能動騒音制御装置
JP2021162848A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 能動騒音制御装置
JP7194204B2 (ja) 2020-03-31 2022-12-21 本田技研工業株式会社 能動騒音制御装置
JP7213280B2 (ja) 2020-03-31 2023-01-26 本田技研工業株式会社 能動騒音制御装置

Also Published As

Publication number Publication date
CN107430847A (zh) 2017-12-01
DE112015006367T5 (de) 2017-12-14
CN107430847B (zh) 2021-01-29
US20170365246A1 (en) 2017-12-21
JP6180680B2 (ja) 2017-08-16
JPWO2016151624A1 (ja) 2017-07-06
US10482867B2 (en) 2019-11-19
DE112015006367B4 (de) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6180680B2 (ja) 能動振動騒音制御装置
JP5967213B2 (ja) 能動振動騒音制御装置
JP5757346B2 (ja) 能動振動騒音制御装置
JP6650570B2 (ja) 能動型騒音低減装置
US20090175461A1 (en) Active noise controller
JPH07269646A (ja) 構造物に加える対抗振動の制御法
WO2017188133A1 (ja) 能動型騒音低減装置及び能動型騒音低減方法
KR101784716B1 (ko) 다이나모미터 시스템의 제어 장치
WO2015125275A1 (ja) 加速度検出器および能動騒音制御装置
JP2009151570A (ja) 能動型防振適応制御装置
JP5832839B2 (ja) 能動型騒音制御装置及び能動型騒音制御方法
US10355670B1 (en) Active suppression controller with tracking and correction for multiple time-varying fundamental frequencies
JP5141351B2 (ja) 能動型騒音制御装置
JP2007293571A (ja) 適応ノッチフィルタとそれを用いた制御装置
JP2008247279A (ja) 能動型車室内騒音制御装置
JP5846776B2 (ja) 能動型振動騒音抑制装置
JP5752928B2 (ja) 能動型振動騒音抑制装置
JPH0784585A (ja) 能動型騒音制御装置
JP5982728B2 (ja) 能動型騒音制御装置及び能動型騒音制御方法
JP2012168282A (ja) 能動型振動騒音抑制装置
JP2002318603A (ja) 制御系の限界ゲインの同定方法およびその装置
JP2005245088A (ja) モータ制御装置
JPH0997101A (ja) 周期性信号の適応制御方法
JPH10222208A (ja) 周期性信号の適応制御方法および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507105

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544485

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006367

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886181

Country of ref document: EP

Kind code of ref document: A1