JP7213280B2 - 能動騒音制御装置 - Google Patents

能動騒音制御装置 Download PDF

Info

Publication number
JP7213280B2
JP7213280B2 JP2021018455A JP2021018455A JP7213280B2 JP 7213280 B2 JP7213280 B2 JP 7213280B2 JP 2021018455 A JP2021018455 A JP 2021018455A JP 2021018455 A JP2021018455 A JP 2021018455A JP 7213280 B2 JP7213280 B2 JP 7213280B2
Authority
JP
Japan
Prior art keywords
signal
active noise
filter
secondary path
update
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021018455A
Other languages
English (en)
Other versions
JP2021162849A (ja
Inventor
循 王
敏郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US17/215,471 priority Critical patent/US11238841B2/en
Priority to CN202110353374.1A priority patent/CN113470609B/zh
Publication of JP2021162849A publication Critical patent/JP2021162849A/ja
Application granted granted Critical
Publication of JP7213280B2 publication Critical patent/JP7213280B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動源から伝達される騒音と、騒音を打ち消すためにスピーカから出力される相殺音との合成音に応じて変化する誤差信号に基づいて、スピーカを制御する能動騒音制御を行う能動騒音制御装置に関する。
下記特許文献1では、プロペラシャフトの回転周波数に基づく基準信号を生成し、基準信号を適応フィルタによる信号処理を行って、プロペラシャフトから車内に伝達される騒音を打ち消すための相殺音を、スピーカから出力させる制御信号を生成するものが開示されている。車内に設けられたマイクロフォンにより出力される誤差信号と、基準信号を補正値により補正して生成される参照信号とに基づいて、適応フィルタが更新される。
特開2008-239098号公報
上記特許文献1では、スピーカとマイクロフォンとの間の相殺音の伝達特性をあらかじめ測定し、測定された伝達特性を補正値として用いているため、伝達特性が変化すると騒音を低減できないおそれがある。
本発明は、上記の問題を解決するためになされたものであり、伝達特性が変化しても騒音を低減できる能動騒音制御装置を提供することを目的とする。
本発明の態様は、振動源から伝達される騒音と、前記騒音を打ち消すためにスピーカから出力される相殺音との合成音に応じて変化する誤差信号に基づいて、前記スピーカを制御する能動騒音制御を行う能動騒音制御装置であって、制御対象周波数に応じた基準信号を生成する基準信号生成部と、前記基準信号を適応ノッチフィルタである制御フィルタにより信号処理して、前記スピーカを制御する制御信号を生成する制御信号生成部と、前記基準信号を適応ノッチフィルタである一次経路フィルタにより信号処理して、推定騒音信号を生成する推定騒音信号生成部と、前記制御信号を適応ノッチフィルタである二次経路フィルタにより信号処理して、第1推定相殺信号を生成する第1推定相殺信号生成部と、前記基準信号を前記二次経路フィルタにより信号処理して、参照信号を生成する参照信号生成部と、前記参照信号を前記制御フィルタにより信号処理して、第2推定相殺信号を生成する第2推定相殺信号生成部と、前記誤差信号、前記第1推定相殺信号及び前記推定騒音信号から第1仮想誤差信号を生成する第1仮想誤差信号生成部と、前記第2推定相殺信号及び前記推定騒音信号から第2仮想誤差信号を生成する第2仮想誤差信号生成部と、前記制御信号及び前記第1仮想誤差信号に基づいて、前記第1仮想誤差信号の大きさが最小となるように前記二次経路フィルタの係数を遂次適応更新する二次経路フィルタ係数更新部と、前記参照信号及び前記第2仮想誤差信号に基づいて、前記第2仮想誤差信号の大きさが最小となるように前記制御フィルタの係数を遂次適応更新する制御フィルタ係数更新部と、前記二次経路フィルタの係数の初期値を、周波数に対応付けてテーブル形式で記憶する初期値テーブルと、前記二次経路フィルタの係数の更新値を、前記周波数に対応付けてテーブル形式で記憶する更新値テーブルと、前記能動騒音制御開始時に、前記初期値テーブルの前記初期値を前記更新値として前記更新値テーブルに書き込むとともに、前記能動騒音制御中に前記二次経路フィルタ係数更新部において更新後の前記二次経路フィルタの係数を前記更新値として前記更新値テーブルに書き込む更新値テーブル操作部と、を有し、前記二次経路フィルタ係数更新部は、前記二次経路フィルタの係数の更新の前に、前記更新値テーブルの前記周波数に対応する前記更新値を読み込み、読み込んだ前記更新値を前回値として用いて前記二次経路フィルタの係数の更新を行う。
本発明の能動騒音制御装置は、伝達特性が変化しても騒音を低減できる。
能動騒音制御の概要を説明する図である。 能動騒音制御装置のブロック図である。 能動騒音制御装置のブロック図である。 フィルタ係数の更新について説明する図である。 フィルタ係数の更新処理の流れを示すフローチャートである。 図6Aは二次経路伝達特性のゲイン特性を示す図である。図6Bは二次経路伝達特性の位相特性を示す図である。 車室内の騒音の音圧レベルを示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。 更新値の位相特性を示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。 更新値の位相特性を示すグラフである。 更新値の位相特性を示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。 信号処理部のブロック図である。 信号処理部のブロック図である。 信号処理部のブロック図である。 信号処理部のブロック図である。 信号処理部のブロック図である。 制御フィルタの振幅を示すグラフである。 車室内の騒音の音圧レベルを示すグラフである。
〔第1実施形態〕
図1は、能動騒音制御装置10において実行される能動騒音制御の概要を説明する図である。
能動騒音制御装置10は、車両12の車室14内に設けられたスピーカ16から相殺音を出力させて、エンジン18の振動に起因して車室14内の乗員に伝わるエンジン篭り音(以下、騒音と記載する)を低減する。能動騒音制御装置10は、車室14内のシート20のヘッドレスト20aに設けられたマイクロフォン22から出力される誤差信号eと、エンジン回転数センサ24が検出したエンジン回転数Neとに基づいて、スピーカ16に相殺音を出力させるための制御信号u0を生成する。誤差信号eは、相殺音と騒音とが合成された相殺誤差騒音を検出したマイクロフォン22から相殺誤差騒音に応じて出力される信号である。
[従来の能動騒音制御装置について]
従来から演算処理量の少ない適応ノッチフィルタ(例えば、SAN(Single-frequency Adaptive Notch)フィルタ)を利用した能動騒音制御装置が提案されている。
従来の能動騒音制御装置では、まず、消音しようとする騒音の周波数(制御対象周波数)を有する基準信号xを生成する。生成された基準信号xを適応ノッチフィルタである制御フィルタWで信号処理することにより制御信号u0を生成して、この制御信号u0によりスピーカ16を制御して、スピーカ16から騒音を打ち消すための相殺音を出力させる。
制御フィルタWは、マイクロフォン22から出力される誤差信号eが最小となるように適応アルゴリズム(例えば、LMS(Least Mean Square)アルゴリズム)により更新される。
しかし、スピーカ16とマイクロフォン22との間の伝達経路には、伝達特性Cが存在するため、制御フィルタWの更新にはこの伝達特性Cを考慮する必要がある。なお、伝達特性Cには、電子回路特性等も含まれる。そこで、事前に伝達特性CをフィルタC^として同定し、フィルタC^で補正された基準信号xが、制御フィルタWの更新に用いられる。このような制御系は、Filtered-X型と呼ばれている。
フィルタC^は、事前に同定された固定フィルタであるため、伝達特性Cに変化が生じた場合、フィルタC^と伝達特性Cとの間に差分が生じることがある。その場合、更新により制御フィルタWが発散し、騒音増幅や異常音の発生のおそれがある。
そこで、本発明者等は、事前に伝達特性Cの同定を必要せず、能動騒音制御中に伝達特性Cの変化にフィルタC^が追従できる手法を提案した。本発明は、本発明者等が提案済みの手法を、更に改良したものである。以下に本発明者等が提案済みの手法を用いた能動騒音制御装置100について概略を説明する。
図2は、本発明者等が提案済みの手法が用いられた能動騒音制御装置100のブロック図である。エンジン18からマイクロフォン22までの伝達経路を以下では一次経路と称することがある。また、スピーカ16からマイクロフォン22までの伝達経路を以下では二次経路と称することがある。
能動騒音制御装置100は、基準信号生成部26、制御信号生成部28、第1推定相殺信号生成部30、推定騒音信号生成部32、参照信号生成部34、第2推定相殺信号生成部36、一次経路フィルタ係数更新部38、二次経路フィルタ係数更新部40及び制御フィルタ係数更新部42を有している。
基準信号生成部26は、エンジン回転数Neに基づいて基準信号xc、xsを生成する。基準信号生成部26は、周波数検出回路26a、余弦信号発生器26b及び正弦信号発生器26cを有している。
周波数検出回路26aは、制御対象周波数fを検出する。制御対象周波数fは、エンジン回転数Neに基づいて検出されるエンジン18の振動周波数である。余弦信号発生器26bは、制御対象周波数fの余弦信号である基準信号xc(=cos(2πft))を生成する。正弦信号発生器26cは、制御対象周波数fの正弦信号である基準信号xs(=sin(2πft))を生成する。ここで、tは時刻を示す。
制御信号生成部28は、基準信号xc、xsに基づいて制御信号u0、u1を生成する。制御信号生成部28は、第1制御フィルタ28a、第2制御フィルタ28b、第3制御フィルタ28c、第4制御フィルタ28d、加算器28e及び加算器28fを有している。
制御信号生成部28では、制御フィルタWとしてSANフィルタが用いられている。制御フィルタWは、基準信号xcに対するフィルタW0、基準信号xsに対するフィルタW1を有している。後述する制御フィルタ係数更新部42において、フィルタW0の係数W0、及び、フィルタW1の係数W1とが更新されることにより、制御フィルタWが最適化される。
第1制御フィルタ28aは、フィルタ係数W0を有している。第2制御フィルタ28bは、フィルタ係数W1を有している。第3制御フィルタ28cは、フィルタ係数-W0を有している。第4制御フィルタ28dは、フィルタ係数W1を有している。
第1制御フィルタ28aにおいて補正された基準信号xcと、第2制御フィルタ28bにおいて補正された基準信号xsとが、加算器28eにおいて加算されて制御信号u0が生成される。第3制御フィルタ28cにおいて補正された基準信号xsと、第4制御フィルタ28dにおいて補正された基準信号xcとが、加算器28fにおいて加算されて制御信号u1が生成される。
制御信号u0は、デジタル-アナログ変換器17によりアナログ信号に変換されてスピーカ16に出力される。スピーカ16は制御信号u0に基づいて制御され、スピーカ16から相殺音が出力される。
第1推定相殺信号生成部30は、制御信号u0、u1に基づいて第1推定相殺信号y1^を生成する。第1推定相殺信号生成部30は、第1二次経路フィルタ30a、第2二次経路フィルタ30b及び加算器30cを有している。
第1推定相殺信号生成部30では、二次経路フィルタC^としてSANフィルタが用いられている。後述する二次経路フィルタ係数更新部40において、二次経路フィルタC^の係数(C0^+iC1^)が更新されることにより二次経路伝達特性Cが二次経路フィルタC^として同定される。
第1二次経路フィルタ30aは、二次経路フィルタC^の係数の実部であるフィルタ係数C0^を有している。第2二次経路フィルタ30bは、二次経路フィルタC^の係数の虚部であるフィルタ係数C1^を有している。第1二次経路フィルタ30aにおいて補正された制御信号u0と、第2二次経路フィルタ30bにおいて補正された制御信号u1とが、加算器30cにおいて加算されて第1推定相殺信号y1^が生成される。第1推定相殺信号y1^は、マイクロフォン22に入力される相殺音yに相当する信号の推定信号である。
推定騒音信号生成部32は、基準信号xc、xsに基づいて推定騒音信号d^を生成する。推定騒音信号生成部32は、第1一次経路フィルタ32a、第2一次経路フィルタ32b及び加算器32cを有している。
推定騒音信号生成部32では、一次経路フィルタH^としてSANフィルタが用いられている。後述する一次経路フィルタ係数更新部38において、一次経路フィルタH^の係数(H0^+iH1^)が更新されることにより一次経路の伝達特性H(以下、一次経路伝達特性Hと称す)が一次経路フィルタH^として同定される。
第1一次経路フィルタ32aは、一次経路フィルタH^の係数の実部であるフィルタ係数H0^を有している。第2一次経路フィルタ32bは、一次経路フィルタH^の係数の虚部の極性を反転させたフィルタ係数-H1^を有している。第1一次経路フィルタ32aにおいて補正された基準信号xcと、第2一次経路フィルタ32bにおいて補正された基準信号xsとが、加算器32cにおいて加算されて推定騒音信号d^が生成される。推定騒音信号d^は、マイクロフォン22に入力される騒音dに相当する信号の推定信号である。
参照信号生成部34は、基準信号xc、xsに基づいて参照信号r0、r1を生成する。参照信号生成部34は、第3二次経路フィルタ34a、第4二次経路フィルタ34b、第5二次経路フィルタ34c、第6二次経路フィルタ34d、加算器34e及び加算器34fを有している。
参照信号生成部34では、二次経路フィルタC^としてSANフィルタが用いられている。後述する二次経路フィルタ係数更新部40において、二次経路フィルタC^の係数(C0^+iC1^)が更新されることにより二次経路の伝達特性C(以下、二次経路伝達特性Cと称す)が二次経路フィルタC^として同定される。
第3二次経路フィルタ34aは、二次経路フィルタC^の係数の実部であるフィルタ係数C0^を有している。第4二次経路フィルタ34bは、二次経路フィルタC^の係数の虚部の極性を反転させたフィルタ係数-C1^を有している。第5二次経路フィルタ34cは、二次経路フィルタC^の係数の実部であるフィルタ係数C0^を有している。第6二次経路フィルタ34dは、二次経路フィルタC^の係数の虚部であるフィルタ係数C1^を有している。
第3二次経路フィルタ34aにおいて補正された基準信号xcと、第4二次経路フィルタ34bにおいて補正された基準信号xsとが、加算器34eにおいて加算されて参照信号r0が生成される。第5二次経路フィルタ34cにおいて補正された基準信号xsと、第6二次経路フィルタ34dにおいて補正された基準信号xcとが、加算器34fにおいて加算されて参照信号r1が生成される。
第2推定相殺信号生成部36は、参照信号r0、r1に基づいて第2推定相殺信号y2^を生成する。第2推定相殺信号生成部36は、第5制御フィルタ36a、第6制御フィルタ36b及び加算器36cを有している。
第2推定相殺信号生成部36では、制御フィルタWとしてSANフィルタが用いられている。第5制御フィルタ36aは、フィルタ係数W0を有している。第6制御フィルタ36bは、フィルタ係数W1を有している。
第5制御フィルタ36aにおいて補正された参照信号r0と、第6制御フィルタ36bにおいて補正された参照信号r1とが、加算器36cにおいて加算されて第2推定相殺信号y2^が生成される。第2推定相殺信号y2^は、マイクロフォン22に入力される相殺音yに相当する信号の推定信号である。
アナログ-デジタル変換器44は、マイクロフォン22から出力された誤差信号eをアナログ信号からデジタル信号に変換する。
誤差信号eは、加算器46に入力される。推定騒音信号生成部32で生成された推定騒音信号d^は、反転器48により極性が反転されて、加算器46に入力される。第1推定相殺信号生成部30で生成された第1推定相殺信号y1^は、反転器50により極性が反転されて、加算器46に入力される。加算器46において、第1仮想誤差信号e1が生成される。加算器46は、本発明の第1仮想誤差信号生成部に相当する。
推定騒音信号生成部32で生成された推定騒音信号d^は、加算器52に入力される。第2推定相殺信号生成部36で生成された第2推定相殺信号y2^は、加算器52に入力される。加算器52において、第2仮想誤差信号e2が生成される。加算器52は、本発明の第2仮想誤差信号生成部に相当する。
一次経路フィルタ係数更新部38は、基準信号xc、xs及び第1仮想誤差信号e1に基づいてフィルタ係数H0^、H1^を更新する。一次経路フィルタ係数更新部38は、LMSアルゴリズムに基づいて、フィルタ係数H0^、H1^の係数の更新を行う。一次経路フィルタ係数更新部38は、第1一次経路フィルタ係数更新部38a及び第2一次経路フィルタ係数更新部38bを有している。
第1一次経路フィルタ係数更新部38a及び第2一次経路フィルタ係数更新部38bは、次の式に基づいてフィルタ係数H0^、H1^を更新する。式中のnは時間ステップ(n=0、1、2、…)を示し、μ0及びμ1はステップサイズパラメータを示す。
Figure 0007213280000001
一次経路フィルタ係数更新部38において、フィルタ係数H0^、H1^の更新が繰り返されることによって、一次経路伝達特性Hが一次経路フィルタH^として同定される。SANフィルタを用いた能動騒音制御装置100では、一次経路フィルタH^の係数の更新式は四則演算で構成されており、畳み込み演算が含まれないため、フィルタ係数H0^、H1^の更新処理による演算負荷を抑制できる。
二次経路フィルタ係数更新部40は、制御信号u0、u1及び第1仮想誤差信号e1に基づいてフィルタ係数C0^、C1^を更新する。二次経路フィルタ係数更新部40は、LMSアルゴリズムに基づいて、フィルタ係数C0^、C1^の更新を行う。二次経路フィルタ係数更新部40は、第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bを有している。
第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bは、次の式に基づいてフィルタ係数C0^、C1^を更新する。式中のμ2及びμ3はステップサイズパラメータを示す。
Figure 0007213280000002
二次経路フィルタ係数更新部40において、フィルタ係数C0^、C1^の更新が繰り返されることによって、二次経路伝達特性Cが二次経路フィルタC^として同定される。SANフィルタを用いた能動騒音制御装置100では、フィルタ係数C0^、C1^の更新式は四則演算で構成されており、畳み込み演算が含まれないため、フィルタ係数C0^、C1^の更新処理による演算負荷を抑制できる。
制御フィルタ係数更新部42は、参照信号r0、r1及び第2仮想誤差信号e2に基づいてフィルタ係数W0、W1を更新する。制御フィルタ係数更新部42は、LMSアルゴリズムに基づいて、フィルタ係数W0、W1の更新を行う。制御フィルタ係数更新部42は、第1制御フィルタ係数更新部42a及び第2制御フィルタ係数更新部42bを有している。
第1制御フィルタ係数更新部42a及び第2制御フィルタ係数更新部42bは、次の式に基づいてフィルタ係数W0、W1を更新する。式中のμ4及びμ5はステップサイズパラメータを示す。
Figure 0007213280000003
制御フィルタ係数更新部42において、フィルタ係数W0、W1の更新が繰り返されることによって、制御フィルタWが最適化される。SANフィルタを用いた能動騒音制御装置100では、フィルタ係数W0、W1の更新式は四則演算で構成されており、畳み込み演算が含まれないため、フィルタ係数W0、W1の更新処理による演算負荷を抑制できる。
[改良点について]
上記の本発明者等が提案済みの手法が用いられた能動騒音制御装置100に対する本発明の改良点について説明する。
図3は、本実施形態の能動騒音制御装置10のブロック図である。本実施形態の能動騒音制御装置10では、本発明者等が提案済みの手法が用いられた能動騒音制御装置100を信号処理部54として有している。能動騒音制御装置10は、更に、初期値テーブル56、更新値テーブル58、結果値テーブル60、初期値テーブル操作部62、更新値テーブル操作部64、結果値テーブル操作部66及び異常判定部68を有している。
能動騒音制御装置10は、図示しない演算処理装置及びストレージを有している。演算処理装置は、例えば、中央処理装置(CPU)、マイクロプロセッシングユニット(MPU)等のプロセッサ、及び、ROMやRAM等の非一時的又は一時的な有形のコンピュータ可読記録媒体からなるメモリを有している。ストレージは、例えば、ハードディスク、フラッシュメモリ等の非一時的な有形のコンピュータ可読記録媒体である。
初期値テーブル56は、ROMに設けられたテーブル形式のメモリ領域であって、後述する二次経路フィルタC^のフィルタ係数C0^、C1^の初期値が保存される。更新値テーブル58は、RAMに設けられたテーブル形式のメモリ領域であって、フィルタ係数C0^、C1^の更新値が保存される。結果値テーブル60は、ROMに設けられたテーブル形式のメモリ領域であって、フィルタ係数C0^、C1^の結果値が保存される。
初期値テーブル操作部62は、初期値テーブル56に初期値の書き込み等を行う。更新値テーブル操作部64は、更新値テーブル58に更新値の書き込み等を行う。結果値テーブル操作部66は、結果値テーブル60に結果値の書き込み等を行う。異常判定部68は、能動騒音制御が終了したときに、能動騒音制御の異常、又は、発散を判定する。異常判定部68は、本発明の判定部に相当する。
信号処理部54、初期値テーブル操作部62、更新値テーブル操作部64、結果値テーブル操作部66及び異常判定部68は、ストレージに記憶されているプログラムにしたがって、演算処理装置で演算処理が行われることにより実現される。
本実施形態の二次経路フィルタ係数更新部40におけるフィルタ係数C0^、C1^の更新処理は、前述の能動騒音制御装置100の二次経路フィルタ係数更新部40におけるフィルタ係数C0^、C1^の更新処理と一部相違する。
提案済みの手法が用いられた能動騒音制御装置100の二次経路フィルタ係数更新部40では、第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bにおいて、次の式に基づいてフィルタ係数C0^、C1^を更新する。
Figure 0007213280000004
一方、本実施形態の能動騒音制御装置10(信号処理部54)の二次経路フィルタ係数更新部40では、第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bにおいて、次の式に基づいてフィルタ係数C0^、C1^を更新する。
Figure 0007213280000005
上記の式における係数C0^(f)_u、C1^(f)_uには、更新値テーブル58に記憶されている制御対象周波数fに対応する更新値が入力される。以下、フィルタ係数C0^、C1^の更新式の右辺の第1項を前回値と称することがある。
提案済みの手法では、更新式の前回値として、前回(時間ステップn)において更新後のフィルタ係数C0^、C1^が用いられている。つまり、前回(時間ステップn)の更新から今回(時間ステップn+1)の更新までの間に、制御対象周波数fが変化しても、前回の更新後のフィルタ係数C0^、C1^が更新式の前回値として用いられる。
一方、本実施形態では、更新式の前回値として、今回(時間ステップn+1)の更新時の制御対象周波数fに対応する更新値が用いられる。つまり、制御対象周波数fにおいて更新された直近の更新後のフィルタ係数C0^(f)_u、C1^(f)_uが更新式の前回値として用いられる。すなわち、前回値は、前回(時間ステップn)で更新された値とは限らない。
また、二次経路フィルタ係数更新部40は、更新されたフィルタ係数C0^、C1^を、参照信号生成部34の第3二次経路フィルタ34a、第4二次経路フィルタ34b、第5二次経路フィルタ34c及び第6二次経路フィルタ34dにコピーする。
[二次経路フィルタの係数の更新]
図4は、フィルタ係数C0^、C1^の更新について説明する図である。図4に示すように、初期値テーブル56は、周波数に対応付けて初期値C0^(f)_i、C1^(f)_iをテーブル形式で記憶している。更新値テーブル58は、周波数に対応付けて更新値C0^(f)_u、C1^(f)_uをテーブル形式で記憶している。また、結果値テーブル60は、周波数に対応付けて結果値C0^(f)_r、C1^(f)_rをテーブル形式で記憶している。
初期値テーブル56に記憶されている各周波数に対応する初期値は、以下の(i)~(v)のいずれかに設定される。
(i)周波数毎の二次経路伝達特性Cの測定値
(ii)周波数毎の二次経路伝達特性Cの測定値の位相情報
(iii)代表的な周波数の二次経路伝達特性Cを測定し、測定値から補完された二次経路伝達特性Cの推定値、又は、二次経路伝達特性Cの推定値の位相情報
(iv)次の式で推定された二次経路伝達特性Cの推定値
Figure 0007213280000006
ここで、Tは音がスピーカ16からマイクロフォン22に届くまでの時間、aは振幅定数である。
(v)都合のよい小さな値(システム設定の効率等の便宜上、初期値を特に設定しない場合)
図5は、フィルタ係数C0^、C1^の更新処理の流れを示すフローチャートである。フィルタ係数C0^、C1^の更新処理は、能動騒音制御が実施される度に実行される。
ステップS1において、更新値テーブル操作部64は、初期値テーブル56の各周波数に対応する初期値を、更新値テーブル58の各周波数に対応する更新値に書き込んで(図4の(A))、ステップS2へ移行する。
ステップS2において、信号処理部54の周波数検出回路26aは制御対象周波数fを検出して、ステップS3へ移行する。
ステップS3において、二次経路フィルタ係数更新部40は、制御対象周波数fに対応する更新値を前回値として読み込んで(図4の(B))、ステップS4へ移行する。
ステップS4において、二次経路フィルタ係数更新部40はフィルタ係数C0^、C1^を更新して、ステップS5へ移行する。
ステップS5において、更新値テーブル操作部64は、制御対象周波数fに対応する更新値に、更新後のフィルタ係数C0^、C1^を書き込んで(図4の(C))、ステップS6へ移行する。
ステップS6において、異常判定部68は能動騒音制御が終了したか否かを判定する。エンジン18が停止したとき、能動騒音制御に異常が発生したとき、又は、能動騒音制御が発散したときに、能動騒音制御は終了する。能動騒音制御が終了していない場合にはステップS2に戻り、能動騒音制御が終了した場合にはステップS7へ移行する。
ステップS7において、異常判定部68は、能動騒音制御が正常終了したか否かを判定する。能動騒音制御が正常終了したと判定された場合にはステップS8へ移行し、能動騒音制御の異常又は発散により能動騒音制御が終了していないと判定された場合にはステップS10へ移行する。
ステップS8において、初期値テーブル操作部62は初期値テーブル56の初期値の書き換えが許可されているか否かを判定する。初期値テーブル56の書き換えが許可されている場合にはステップS9へ移行し、初期値テーブル56の書き換えが許可されていない場合にはフィルタ係数C0^、C1^の更新処理を終了する。
ステップS9において、初期値テーブル操作部62は、初期値テーブル56の各周波数に対応する初期値を、更新値テーブル58の各周波数に対応する更新値に書き換えて(図4の(D))、フィルタ係数C0^、C1^の更新処理を終了する。
ステップS10において、結果値テーブル操作部66は、更新値テーブル58の各周波数に対応する更新値を、結果値テーブル60の各周波数に対応する結果値に書き込んで(図4の(E))、フィルタ係数C0^、C1^の更新処理を終了する。
初期値テーブル56及び結果値テーブル60は、車両12に接続されたパソコン等にコピーすることができる。そのため、能動騒音制御に異常又は発散が発生した場合には、初期値テーブル56に記憶されている更新値と、結果値テーブル60に記憶されている結果値とを比較することで、能動騒音制御の異常又は発散の発生の原因を検証することができる。
[実験結果]
本発明者等は、能動騒音制御による消音性能に関する実験を行った。以下にその実験結果を示す。以下の各実験では、図6Aに細線で示すゲイン特性及び図6Bに細線で示す位相特性を有する二次経路伝達特性Cの下で行われた。
〈実験(1)〉
実験(1)では、能動騒音制御がオフの状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。
〈実験(2)〉
実験(2)では、本発明者等が提案済みの手法が用いられた能動騒音制御装置100により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。
〈実験(3)〉
実験(3)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。実験(3)では、初期値テーブル56の各周波数の初期値は、各周波数の二次経路伝達特性Cの測定値に設定される。
〈実験(4)〉
実験(4)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。実験(4)では、初期値テーブル56の各周波数の初期値は、次の式で推定された二次経路伝達特性Cの推定値に設定される。
Figure 0007213280000007
ここで、Tは0.01sに設定されている。二次経路伝達特性Cの推定値のゲイン特性及び位相特性は、図6A及び図6Bに太線で示される。
≪実験(1)~(3)の結果の対比≫
図7は、実験(1)~(3)で測定された車室14内の騒音の音圧レベルを示すグラフである。
図7に示されるように、車両12の走行開始時(エンジン回転数が1600RPM~2000RPM)において、実験(2)に比べて実験(3)での消音性能は10dB以上高い。特に、車両12の走行開始直後(エンジン回転数が1600RPM付近)においては、実験(2)では消音できていないのに対し、実験(3)では10dB程度の消音が行われている。
≪実験(1)、(2)、(4)の結果の対比≫
図8は、実験(1)、(2)、(4)で測定された車室14内の騒音の音圧レベルを示すグラフである。
図8に示されるように、実験(4)のように正確な二次経路伝達特性Cの推定値が得られない場合であっても、エンジン回転数が4500RPM以下の範囲では、実験(2)に比べて実験(4)での消音性能は同程度、又は、高くなっている。エンジン回転数が4500RPMを超える範囲では、実験(2)に比べて実験(4)での消音性能が低くなっている。これは、図6A及び図6Bに示されるように、エンジン回転数が4500RPMに相当する周波数150Hzを超える範囲では、二次経路伝達特性Cの推定値が、実際の二次経路伝達特性Cと乖離しているためである。しかし、フィルタ係数C0^、C1^の更新回数を重ねることで、二次経路フィルタC^は二次経路伝達特性Cに近づくため、消音性能は向上していく。
〈実験(5)〉
実験(5)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの1回目の走行時の車室14内の騒音の音圧レベルの測定が行われる。実験(5)では、初期値テーブル56の各周波数の初期値は、都合のよい小さな値に設定される。
〈実験(6)〉
実験(6)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの3回目の走行時の車室14内の騒音の音圧レベルの測定が行われる。実験(6)では、初期値テーブル56の各周波数の初期値は、都合のよい小さな値に設定される。
≪実験(1)、(5)、(6)の結果の対比≫
図9は、実験(1)、(5)、(6)で測定された車室14内の騒音の音圧レベルを示すグラフである。
図9に示されるように、実験(5)の1回目の走行時の音圧レベルは、実験(1)の能動騒音制御をオフにしたときの音圧レベルよりも大きい箇所がある。しかし、実験(6)のように、フィルタ係数C0^、C1^の更新回数が比較的少ない3回目の走行時であっても消音性能が向上される。
図10は、二次経路伝達特性Cの位相特性、実験(5)における1回目の走行終了後の更新値の位相特性、及び、実験(6)における3回目の走行終了後の更新値の位相特性を示すグラフである。
図10に示されるように、1回目の走行終了後の更新値では大きかったランダム誤差が、3回目の走行終了後の更新値では、二次経路伝達特性Cに向かって収束してく傾向が見られる。二次経路フィルタ係数更新部40において、初期値テーブル56の初期値を、更新後のフィルタ係数C0^、C1^で書き換えることにより、次回の能動騒音制御開始時には、精度の高い初期値を用いて、フィルタ係数C0^、C1^の更新を行うことができる。そのため、能動騒音制御による消音性能を向上させることができる。
[作用効果]
本実施形態の能動騒音制御装置10では、初期値テーブル56は、周波数に対応付けて初期値C0^(f)_i、C1^(f)_iをテーブル形式で記憶している。初期値テーブル56に記憶されている各周波数に対応する初期値は、以下の(i)~(v)のいずれかに設定される。
(i)周波数毎の二次経路伝達特性Cの測定値
(ii)周波数毎の二次経路伝達特性Cの測定値の位相情報
(iii)代表的な周波数の二次経路伝達特性Cを測定し、測定値から補完された二次経路伝達特性Cの推定値、又は、二次経路伝達特性Cの推定値の位相情報
(iv)次の式で推定された二次経路伝達特性Cの推定値
Figure 0007213280000008
ここで、Tは音がスピーカ16からマイクロフォン22に届くまでの時間、aは振幅定数である。
(v)都合のよい小さな値(システム設定の効率等の便宜上、初期値を特に設定しない場合)
また、更新値テーブル操作部64は、能動騒音制御開始時に、更新値テーブル58の制御対象周波数fに対応する更新値に、初期値テーブル56の制御対象周波数fに対応する初期値を書き込む。二次経路フィルタ係数更新部40は、フィルタ係数C0^、C1^の更新前に、制御対象周波数fに対応する更新値を更新値テーブル58から読み込む。そして、二次経路フィルタ係数更新部40は、読み込んだ更新値を前回値として、フィルタ係数C0^、C1^の更新を行う。更新値テーブル操作部64は、更新後のフィルタ係数C0^、C1^を、更新値テーブル58の制御対象周波数fに対応する更新値に書き込む。初期値テーブル56及び更新値テーブル58が設けられることにより、能動騒音制御装置10は、周波数毎にフィルタ係数C0^、C1^の初期値を設定し、また、周波数毎にフィルタ係数C0^、C1^の更新を行うことが可能となる。これにより、能動騒音制御装置10は、特に能動騒音制御開始後、初期の消音性能を大幅に向上させることができる。
また、本実施形態の能動騒音制御装置10は、能動騒音制御終了時に、異常判定部68が能動騒音制御の異常又は発散と判定しなかった場合には、初期値テーブル操作部62は、初期値テーブル56の初期値を更新値テーブル58の更新値に書き換える。これにより、次回の能動騒音制御開始時には、精度の高い初期値を用いて、フィルタ係数C0^、C1^の更新を行うことが可能となる。そのため、能動騒音制御による消音性能を向上させることができる。
また、本実施形態の能動騒音制御装置10は、能動騒音制御終了時に、異常判定部68が能動騒音制御の異常又は発散と判定した場合には、初期値テーブル操作部62は、初期値テーブル56の初期値を更新値テーブル58の更新値に書き換えない。これにより、次回の能動騒音制御において、能動騒音制御の異常又は発散したときのフィルタ係数C0^、C1^が更新値テーブル58に更新値として書き込まれることがないため、能動騒音制御を正常に戻すことができる。
また、本実施形態の能動騒音制御装置10は、能動騒音制御終了時に、異常判定部68が能動騒音制御の異常又は発散と判定した場合には、結果値テーブル操作部66は、結果値テーブル60の結果値を更新値テーブル58の更新値に書き換える。これにより、能動騒音制御に異常又は発散が発生した場合には、初期値テーブル56に記憶されている更新値と、結果値テーブル60に記憶されている結果値とを比較することで、能動騒音制御の異常又は発散の発生の原因を検証することができる。
〔第2実施形態〕
本実施形態の能動騒音制御装置10では、二次経路フィルタ係数更新部40において更新式に基づいて更新されたフィルタ係数C0^、C1^と、更新値テーブル58に保存されている更新値との重み付き平均化処理を行う。
第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bは、次の式に基づきフィルタ係数C0^、C1^の重み付き平均化処理を行う。式中のLは重み平均化を行う周波数範囲、θは重み係数である。
Figure 0007213280000009
重み係数θは、次の式に基づき設定される。
Figure 0007213280000010
[ランダム誤差の低減原理]
フィルタ係数C0^、C1^の更新を繰り返すことにより、二次経路フィルタC^のランダム誤差が小さくなり、能動騒音制御による消音性能が向上する。本実施形態では、更新式に基づいて更新されたフィルタ係数C0^、C1^と、更新値テーブル58に保存されている更新値との重み付き平均化処理を行うことにより、少ない更新回数で二次経路フィルタC^のランダム誤差を小さくすることができる。
フィルタ係数C0^、C1^は以下の式により、真値に誤差を含む形式で示される。
Figure 0007213280000011
ここで、E[C0^(f)]はC0^の期待値、E[C1^(f)]はC1^の期待値、σはシステム誤差、δはランダム誤差を示す。期待値E[C0^(f)]及び期待値E[C1^(f)]は、時間によって変化しない値である。
ここで、システム誤差σを省略すると、フィルタ係数C0^は次の式に書き換えられる。
Figure 0007213280000012
重み平均化を行う周波数範囲Lが十分に大きい場合には、ランダム誤差δは次の式を満たす。
Figure 0007213280000013
そのため、フィルタ係数C0^は更に次の式に書き換えられる。
Figure 0007213280000014
ここで、σM0は平均化処理によって発生するシステム誤差であり、βの値が1に近いほど、σM0の大きさは小さくなる。ランダム誤差δは時間ステップn=1のときのランダム誤差δを用いて次の式により表される。
Figure 0007213280000015
この式より、βを1/(2L)<β<1となるように設定することにより、更新回数(時間ステップn)が増えるほど、ランダム誤差δが小さくなっていくことが分かる。更新回数(時間ステップn)が増えるほど、ランダム誤差δは0に収束する。この結果、フィルタ係数C0^は次の式に示されるように、ランダム誤差δを含まない形で表すことができる。
Figure 0007213280000016
フィルタ係数C1^についても同様に、ランダム誤差δを含まない次の式に示されるように、ランダム誤差δを含まない形で表すことができる。
Figure 0007213280000017
[実験結果]
本発明者等は、能動騒音制御による消音性能に関する実験を行った。以下にその実験結果を示す。以下の各実験では、図6Aに細線で示すゲイン特性及び図6Bに細線で示す位相特性を有する二次経路伝達特性Cの下で行われた。
〈実験(7)〉
実験(7)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの3回目の走行時の車室14内の騒音の音圧レベルの測定が行われる。実験(7)では、初期値テーブル56の各周波数の初期値は、都合のよい小さな値に設定される。
≪実験(1)、(6)、(7)の対比≫
図11は、実験(1)、(6)、(7)で測定された車室14内の騒音の音圧レベルを示すグラフである。
図11に示されるように、エンジン回転数1800~2400RPMにおいて、実験(7)では、実験(6)に対して消音性能が10dB以上向上される。
図12は、二次経路伝達特性Cの位相特性、実験(6)における3回目の走行終了後の更新値の位相特性、及び、実験(7)における3回目の走行終了後の更新値の位相特性を示すグラフである。エンジン回転数1800~2400RPMに対応する周波数60~80Hzにおいて、実験(7)では実験(6)に対してランダム誤差が大きく低減されている。
実験(6)及び実験(7)では、いずれも走行回数は3回であり、図11及び図12より、実験(7)では実験(6)に比べて更新値が二次経路伝達特性Cに早期に収束していっていることが読み取れる。
[作用効果]
本実施形態の能動騒音制御装置10では、二次経路フィルタ係数更新部40は、更新式に基づく更新後のフィルタ係数C0^、C1^と、更新値テーブル58の更新値との重み付き平均化処理を行う。これにより、二次経路フィルタC^のランダム誤差を早期に収束させることが可能となり、能動騒音制御の消音性能を向上させることができる。
〔第3実施形態〕
本実施形態の能動騒音制御装置10では、二次経路フィルタ係数更新部40の第1二次経路フィルタ係数更新部40a及び第2二次経路フィルタ係数更新部40bにおいて、それぞれ次の式に基づいてフィルタ係数C0^、C1^を更新する。
Figure 0007213280000018
ここで、Ct0^、Ct1^は、前回(時間ステップn)のフィルタ係数C0^、C1^の更新結果を保持させるための変数である。変数Ct0^、Ct1^の初期値であるCt0^1、Ct1^1は、0等小さい値が設定される。γは0≦γ≦1を満たす係数である。
図13は、更新値テーブル58に記憶されている更新値の位相特性と、二次経路伝達特性Cの位相特性を示す図である。通常走行でよく使われるエンジン回転数領域は、エンジン回転数3600RPM以下であり、その際に発生する篭り音の周波数は120Hz以下である。そのため、周波数が120Hz以下の範囲では、フィルタ係数C0^、C1^の更新が重ねられ、更新値の位相特性は二次経路伝達特性Cに略収束している。
一方、エンジン回転数3600RPMより大きい範囲は、例えば、高速道路の側道から本線に合流するときの加速時、急な上り坂を登る場合等、限定される場面の走行で使われる。そのため、能動騒音制御がある程度の時間継続した場合であっても、周波数が120Hzより大きい範囲では、フィルタ係数C0^、C1^の更新が行われず、更新値は初期値と等しい。又は、フィルタ係数C0^、C1^の更新が十分に行われず、二次経路フィルタC^が二次経路伝達特性Cと乖離した状態となっている。そのため、エンジン回転数が3600RPMより大きい範囲に入ると、能動騒音制御による消音性能が低下し、急にエンジン音が大きくなることがある。
制御対象周波数fは時間経過に応じて連続的に変化するため、前回(時間ステップn)の制御対象周波数fは、今回(時間ステップn+1)の制御対象周波数fの近傍の周波数であることが多い。また、二次経路伝達特性Cは制御対象周波数fに応じて連続的に変化するため、前回(時間ステップn)における二次経路伝達特性Cと、今回(時間ステップn+1)における二次経路伝達特性Cとは、近い特性を有する。
そのため、前回(時間ステップn)において更新後のフィルタ係数C0^、C1^と、更新値テーブル58の今回(時間ステップn+1)の制御対象周波数fに対応する更新値とを所定比率で足し合わせた値を、更新式の前回値として用いてフィルタ係数C0^、C1^の更新が行われる。
なお、係数γが周波数毎に設けられるようにし、下記の式にしたがってフィルタ係数C0^、C1^の更新回数が増えるとともに、係数γは減衰してもよい。
Figure 0007213280000019
ここで、Coefは1より小さい正数とする減衰係数である。この場合γの初期値を1又は1に近い値に設定してもよい。
今回の更新時の制御対象周波数fにおけるフィルタ係数C0^、C1^の更新回数が1回目のときには、γは1に近い値となる。そのため、主に、前回の更新後のフィルタ係数C0^、C1^に基づいて、今回のフィルタ係数C0^、C1^の更新が行われるため、能動騒音制御による消音性能の低下を抑制できる。
今回の更新時の制御対象周波数fにおけるフィルタ係数C0^、C1^の更新回数が多いときには、γが0に減衰していく。そのため、主に、更新値テーブル58の更新値に基づいて、今回のフィルタ係数C0^、C1^の更新が行われるため、能動騒音制御による消音性能を向上させることができる。
さらに、係数γに最小値を設定してもよい。
Figure 0007213280000020
係数γに最低値を設けることで、フィルタ係数C0^、C1^の更新に、常に前回の更新後のフィルタ係数C0^、C1^の成分が含まれることになる。そのため、能動騒音制御中に二次経路伝達特性Cが急変する場合であっても、早期に能動騒音制御により消音性能を回復させることができる。
[実験結果]
本発明者等は、能動騒音制御による消音性能に関する実験を行った。以下にその実験結果を示す。以下の各実験では、図6Aに細線で示すゲイン特性及び図6Bに細線で示す位相特性を有する二次経路伝達特性Cの下で行われた。
〈実験(8)〉
実験(8)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの1回目の走行時の車室14内の騒音の音圧レベルの測定が行われる。実験(8)では、初期値テーブル56の各周波数の初期値は、都合のよい小さな値に設定される。実験(8)では、γ=0.5に設定されている。
〈実験(9)〉
実験(9)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの3回目の走行時の車室14内の騒音の音圧レベルの測定が行われる。実験(9)では、初期値テーブル56の各周波数の初期値は、都合のよい小さな値に設定される。実験(9)では、γ=0.5に設定されている。
≪実験(1)、(5)、(8)の対比≫
図14は、実験(1)、(5)、(8)で測定された車室14内の騒音の音圧レベルを示すグラフである。
図14に示されるように、エンジン回転数1600RPM付近の車両12の走行開始直後において、実験(8)ではほとんど騒音の消音できていないものの、その後は、実験(8)では実験(5)に対して消音性能が向上される。
≪実験(1)、(6)、(9)の対比≫
図15は、実験(1)、(6)、(9)で測定された車室14内の騒音の音圧レベルを示すグラフである。走行回数が3回目になると、実験(9)では、エンジン回転数1600RPM付近の車両12の走行開始直後の騒音の消音も改善されている。
[作用効果]
本実施形態の能動騒音制御装置10では、二次経路フィルタ係数更新部40は、二次経路フィルタ係数更新部40において前回の更新された二次経路フィルタC^の係数と、更新値テーブル58から読み込んだ更新値とを所定比率で足し合わせた値を前回値として用いて今回の二次経路フィルタC^の係数の更新を行う。これにより、更新値テーブル58の更新値の精度が高くない場合であっても、能動騒音制御による消音性能を向上させることができる。
〔第4実施形態〕
本実施形態では、スピーカ16から出力される相殺音の大きさが過大になることを抑制する。スピーカ16から出力される相殺音の大きさが過大になることを抑制する信号処理の方法として、以下に方法1~5の5つを示す。
[方法1]
図16は、信号処理部54のブロック図である。図16に示されるように、図2のブロック図に対して、加算器52に入力される見かけ上の第2推定相殺信号y2^の大きさを(1+α)倍にするための倍率器70が追加されている。これにより、見かけ上の第2推定相殺信号y2^が(1+α)倍に増大するため、制御フィルタWの大きさを抑制することができる。
[方法2]
図17は、信号処理部54のブロック図である。図17に示されるように、図2のブロック図に対して、加算器52に入力される見かけ上の推定騒音信号d^の大きさを(1-α)倍にするための倍率器72が追加されている。これにより、見かけ上の推定騒音信号d^が(1-α)倍に減少するため、制御フィルタWの大きさを抑制することができる。
[方法3]
図18は、信号処理部54のブロック図である。図18に示されるように、図2のブロック図に対して、加算器46に入力される見かけ上の第1推定相殺信号y1^の大きさを(1-α)倍にするための倍率器74が追加されている。
[方法4]
図19は、手法4を適用した信号処理部54のブロック図である。図19に示されるように、図2のブロック図に対して、加算器46に入力される見かけ上の推定騒音信号d^の大きさを(1+α)倍にするための倍率器76が追加されている。
[方法5]
図20は、信号処理部54のブロック図である。図20に示されるように、図2のブロック図に対して加算器52に入力される見かけ上の第2推定相殺信号y2^の大きさを(1+α)倍にするためのフィルタ78が追加されている。フィルタ78のフィルタ係数αは、フィルタ係数更新部80によって更新される。
方法5では、フィルタ係数αに最小値αminを設定する。フィルタ係数αは次の式を満たす。
Figure 0007213280000021
これにより、シート20の背もたれを倒した場合等、二次経路伝達特性Cが大きく変化するときには、更新値テーブル58の更新値と二次経路伝達特性Cとの差が大きくなる。本実施形態の能動騒音制御では、二次経路伝達特性Cの変化に追従して、二次経路フィルタC^の係数C0^、C1^が変化する。そのため、スピーカ16から出力される相殺音の音圧レベルが急変し、乗員に違和感を与える可能性がある。フィルタ係数αが最小値αminよりも大きな範囲においてフィルタ係数更新部80で更新されることにより、二次経路伝達特性Cの変化に追従しようとする過渡期に、スピーカ16から出力される相殺音の大きさが過大になることを抑制することが可能となる。これにより、乗員に与える違和感を低減できる。
[実験結果]
本発明者等は、能動騒音制御による消音性能に関する実験を行った。以下にその実験結果を示す。以下の各実験では、図6Aに細線で示すゲイン特性及び図6Bに細線で示す位相特性を有する二次経路伝達特性Cの下で行われた。
〈実験(10)〉
実験(10)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの制御フィルタWの振幅の測定が行われる。さらに、実験(10)では、能動騒音制御がオンの状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。実験(10)では、上記の方法1においてα=0とした。実験(10)では、初期値テーブル56の各周波数の初期値は、図6A及び図6Bに細線で示される各周波数の二次経路伝達特性Cの測定値に設定される。
〈実験(11)〉
実験(11)では、本実施形態の能動騒音制御装置10により能動騒音制御が行われている状態で、車両12を停止状態から加速させたときの制御フィルタWの振幅の測定が行われる。さらに、実験(11)では、能動騒音制御がオンの状態で、車両12を停止状態から加速させたときの車室14内の騒音の音圧レベルの測定が行われる。実験(11)では、上記の方法1においてα=0.25とした。実験(11)では、初期値テーブル56の各周波数の初期値は、図6A及び図6Bに細線で示される各周波数の二次経路伝達特性Cの測定値に設定される。
≪実験(10)、(11)の結果の対比≫
図21は、実験(10)、(11)で測定された制御フィルタWの振幅を示すグラフである。図21に示すように、α=0とした実験(10)に対して、α=0.25とした実験(11)では、制御フィルタWの振幅の大きさが低減されている。
≪実験(1)、(10)、(11)の対比≫
図22は、実験(1)、(10)、(11)で測定された車室14内の騒音の音圧レベルを示すグラフである。図22に示されるように、α=0とした実験(10)に対して、α=0.25とした実験(11)では、消音性能が向上していることが分かる。
[作用効果]
本実施形態の能動騒音制御装置10では、信号処理部54において、第2仮想誤差信号e2の生成に用いられる第2推定相殺信号y2^の大きさを大きく補正する倍率器70、第2仮想誤差信号e2の生成に用いられる推定騒音信号d^の大きさを小さく補正する倍率器72、第1仮想誤差信号e1の生成に用いられる第1推定相殺信号y1^の大きさを小さく補正する倍率器74、又は、第1仮想誤差信号e1の生成に用いられる推定騒音信号d^の大きさを大きく補正する倍率器76を有する。これにより、スピーカ16から出力される相殺音の大きさが過大になることを抑制することができる。
〔実施形態から得られる技術的思想〕
上記実施形態から把握しうる技術的思想について、以下に記載する。
振動源から伝達される騒音と、前記騒音を打ち消すためにスピーカ(16)から出力される相殺音との合成音に応じて変化する誤差信号に基づいて、前記スピーカを制御する能動騒音制御を行う能動騒音制御装置(10)であって、制御対象周波数に応じた基準信号を生成する基準信号生成部(26)と、前記基準信号を適応ノッチフィルタである制御フィルタにより信号処理して、前記スピーカを制御する制御信号を生成する制御信号生成部(28)と、前記基準信号を適応ノッチフィルタである一次経路フィルタにより信号処理して、推定騒音信号を生成する推定騒音信号生成部(32)と、前記制御信号を適応ノッチフィルタである二次経路フィルタにより信号処理して、第1推定相殺信号を生成する第1推定相殺信号生成部(30)と、前記基準信号を前記二次経路フィルタにより信号処理して、参照信号を生成する参照信号生成部(34)と、前記参照信号を前記制御フィルタにより信号処理して、第2推定相殺信号を生成する第2推定相殺信号生成部(36)と、前記誤差信号、前記第1推定相殺信号及び前記推定騒音信号から第1仮想誤差信号を生成する第1仮想誤差信号生成部(46)と、前記第2推定相殺信号及び前記推定騒音信号から第2仮想誤差信号を生成する第2仮想誤差信号生成部(52)と、前記制御信号及び前記第1仮想誤差信号に基づいて、前記第1仮想誤差信号の大きさが最小となるように前記二次経路フィルタの係数を遂次適応更新する二次経路フィルタ係数更新部(40)と、前記参照信号及び前記第2仮想誤差信号に基づいて、前記第2仮想誤差信号の大きさが最小となるように前記制御フィルタの係数を遂次適応更新する制御フィルタ係数更新部(42)と、前記二次経路フィルタの係数の初期値を、周波数に対応付けてテーブル形式で記憶する初期値テーブル(56)と、前記二次経路フィルタの係数の更新値を、前記周波数に対応付けてテーブル形式で記憶する更新値テーブル(58)と、前記能動騒音制御開始時に、前記初期値テーブルの前記初期値を前記更新値として前記更新値テーブルに書き込むとともに、前記能動騒音制御中に前記二次経路フィルタ係数更新部において更新後の前記二次経路フィルタの係数を前記更新値として前記更新値テーブルに書き込む更新値テーブル操作部(64)と、を有し、前記二次経路フィルタ係数更新部は、前記二次経路フィルタの係数の更新の前に、前記更新値テーブルの前記周波数に対応する前記更新値を読み込み、読み込んだ前記更新値を前回値として用いて前記二次経路フィルタの係数の更新を行う。
上記の能動騒音制御装置であって、前記基準信号及び前記第1仮想誤差信号に基づいて、前記第1仮想誤差信号の大きさが最小となるように前記一次経路フィルタの係数を遂次適応更新する一次経路フィルタ係数更新部(38)を有してもよい。
上記の能動騒音制御装置であって、前記能動騒音制御の終了時に、前記初期値テーブルの前記初期値を、前記更新値テーブルの前記更新値に書き換える初期値テーブル操作部(62)を有してもよい。
上記の能動騒音制御装置であって、前記能動騒音制御の終了時に、前記能動騒音制御の異常又は発散を判定する判定部(68)を有し、前記判定部により前記能動騒音制御の異常又は発散と判定された場合には、前記初期値テーブル操作部は、前記初期値テーブルの前記初期値を、前記更新値テーブルの前記更新値に書き換えないようにしてもよい。
上記の能動騒音制御装置であって、前記二次経路フィルタ係数更新部は、更新式による更新後の前記二次経路フィルタの係数と、前記更新値テーブルの前記更新値との重み付き平均化処理を行ってもよい。
上記の能動騒音制御装置であって、前記二次経路フィルタ係数更新部は、前記二次経路フィルタ係数更新部における前回の更新後の前記二次経路フィルタの係数と、読み込んだ前記更新値とを所定比率で足し合わせた値を前回値として用いて前記二次経路フィルタの係数の更新を行ってもよい。
上記の能動騒音制御装置であって、前記能動騒音制御の終了時に、前記能動騒音制御の異常又は発散を判定する判定部と、前記二次経路フィルタの係数の結果値を、前記周波数に対応付けてテーブル形式で記憶する結果値テーブル(60)と、前記判定部により前記能動騒音制御の異常又は発散と判定された場合には、前記結果値テーブルの前記結果値を、前記更新値テーブルの前記更新値に書き換える結果値テーブル操作部(66)と、を有してもよい。
上記の能動騒音制御装置であって、前記第2仮想誤差信号の生成に用いられる前記第2推定相殺信号の大きさを大きく補正する、前記第2仮想誤差信号の生成に用いられる前記推定騒音信号の大きさを小さく補正する、前記第1仮想誤差信号の生成に用いられる前記第1推定相殺信号の大きさを小さく補正する、又は、前記第1仮想誤差信号の生成に用いられる前記推定騒音信号の大きさを大きく補正する、倍率器(70、72、74、76)を有してもよい。
10…能動騒音制御装置 16…スピーカ
26…基準信号生成部 28…制御信号生成部
30…第1推定相殺信号生成部 32…推定騒音信号生成部
34…参照信号生成部 36…第2推定相殺信号生成部
38…一次経路フィルタ係数更新部 40…二次経路フィルタ係数更新部
46…加算器(第1仮想誤差信号生成部) 52…加算器(第2仮想誤差信号生成部)
56…初期値テーブル 58…更新値テーブル
60…結果値テーブル 64…更新値テーブル操作部
66…結果値テーブル操作部 70、72、74、76…倍率器

Claims (7)

  1. 振動源から伝達される騒音と、前記騒音を打ち消すためにスピーカから出力される相殺音との合成音に応じて変化する誤差信号に基づいて、前記スピーカを制御する能動騒音制御を行う能動騒音制御装置であって、
    制御対象周波数に応じた基準信号を生成する基準信号生成部と、
    前記基準信号を適応ノッチフィルタである制御フィルタにより信号処理して、前記スピーカを制御する制御信号を生成する制御信号生成部と、
    前記基準信号を適応ノッチフィルタである一次経路フィルタにより信号処理して、推定騒音信号を生成する推定騒音信号生成部と、
    前記制御信号を適応ノッチフィルタである二次経路フィルタにより信号処理して、第1推定相殺信号を生成する第1推定相殺信号生成部と、
    前記基準信号を前記二次経路フィルタにより信号処理して、参照信号を生成する参照信号生成部と、
    前記参照信号を前記制御フィルタにより信号処理して、第2推定相殺信号を生成する第2推定相殺信号生成部と、
    前記誤差信号、前記第1推定相殺信号及び前記推定騒音信号から第1仮想誤差信号を生成する第1仮想誤差信号生成部と、
    前記第2推定相殺信号及び前記推定騒音信号から第2仮想誤差信号を生成する第2仮想誤差信号生成部と、
    前記制御信号及び前記第1仮想誤差信号に基づいて、前記第1仮想誤差信号の大きさが最小となるように前記二次経路フィルタの係数を遂次適応更新する二次経路フィルタ係数更新部と、
    前記参照信号及び前記第2仮想誤差信号に基づいて、前記第2仮想誤差信号の大きさが最小となるように前記制御フィルタの係数を遂次適応更新する制御フィルタ係数更新部と、
    前記二次経路フィルタの係数の初期値を、周波数に対応付けてテーブル形式で記憶する初期値テーブルと、
    前記二次経路フィルタの係数の更新値を、前記周波数に対応付けてテーブル形式で記憶する更新値テーブルと、
    前記能動騒音制御開始時に、前記初期値テーブルの前記初期値を前記更新値として前記更新値テーブルに書き込むとともに、前記能動騒音制御中に前記二次経路フィルタ係数更新部において更新後の前記二次経路フィルタの係数を前記更新値として前記更新値テーブルに書き込む更新値テーブル操作部と、
    前記第2仮想誤差信号の生成に用いられる前記第2推定相殺信号の大きさを大きく補正する、前記第2仮想誤差信号の生成に用いられる前記推定騒音信号の大きさを小さく補正する、前記第1仮想誤差信号の生成に用いられる前記第1推定相殺信号の大きさを小さく補正する、又は、前記第1仮想誤差信号の生成に用いられる前記推定騒音信号の大きさを大きく補正する、倍率器と
    を有し、
    前記二次経路フィルタ係数更新部は、前記二次経路フィルタの係数の更新の前に、前記更新値テーブルの前記周波数に対応する前記更新値を読み込み、読み込んだ前記更新値を前回値として用いて前記二次経路フィルタの係数の更新を行う、能動騒音制御装置。
  2. 請求項1に記載の能動騒音制御装置であって、
    前記基準信号及び前記第1仮想誤差信号に基づいて、前記第1仮想誤差信号の大きさが最小となるように前記一次経路フィルタの係数を遂次適応更新する一次経路フィルタ係数更新部を有する、能動騒音制御装置。
  3. 請求項1又は2に記載の能動騒音制御装置であって、
    前記能動騒音制御の終了時に、前記初期値テーブルの前記初期値を、前記更新値テーブルの前記更新値に書き換える初期値テーブル操作部を有する、能動騒音制御装置。
  4. 請求項3に記載の能動騒音制御装置であって、
    前記能動騒音制御の終了時に、前記能動騒音制御の異常又は発散を判定する判定部を有
    し、
    前記判定部により前記能動騒音制御の異常又は発散と判定された場合には、前記初期値テーブル操作部は、前記初期値テーブルの前記初期値を、前記更新値テーブルの前記更新値に書き換えない、能動騒音制御装置。
  5. 請求項1~4のいずれか1項に記載の能動騒音制御装置であって、
    前記二次経路フィルタ係数更新部は、更新式による更新後の前記二次経路フィルタの係数と、前記更新値テーブルの前記更新値との重み付き平均化処理を行う、能動騒音制御装置。
  6. 請求項1~5のいずれか1項に記載の能動騒音制御装置であって、
    前記二次経路フィルタ係数更新部は、前記二次経路フィルタ係数更新部における前回の更新後の前記二次経路フィルタの係数と、読み込んだ前記更新値とを所定比率で足し合わせた値を前回値として用いて前記二次経路フィルタの係数の更新を行う、能動騒音制御装置。
  7. 請求項1~6のいずれか1項に記載の能動騒音制御装置であって、
    前記能動騒音制御の終了時に、前記能動騒音制御の異常又は発散を判定する判定部と、
    前記二次経路フィルタの係数の結果値を、前記周波数に対応付けてテーブル形式で記憶する結果値テーブルと、
    前記判定部により前記能動騒音制御の異常又は発散と判定された場合には、前記結果値テーブルの前記結果値を、前記更新値テーブルの前記更新値に書き換える結果値テーブル操作部と、
    を有する、能動騒音制御装置。
JP2021018455A 2020-03-31 2021-02-08 能動騒音制御装置 Active JP7213280B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/215,471 US11238841B2 (en) 2020-03-31 2021-03-29 Active noise control device
CN202110353374.1A CN113470609B (zh) 2020-03-31 2021-03-31 主动式噪音控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062570 2020-03-31
JP2020062570 2020-03-31

Publications (2)

Publication Number Publication Date
JP2021162849A JP2021162849A (ja) 2021-10-11
JP7213280B2 true JP7213280B2 (ja) 2023-01-26

Family

ID=78003352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018455A Active JP7213280B2 (ja) 2020-03-31 2021-02-08 能動騒音制御装置

Country Status (1)

Country Link
JP (1) JP7213280B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361721A (ja) 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置
JP2007093962A (ja) 2005-09-28 2007-04-12 Toshiba Corp 能動消音制御装置及び方法
JP2012247738A (ja) 2011-05-31 2012-12-13 Tokai Rubber Ind Ltd 能動型消音装置
JP2014006709A (ja) 2012-06-25 2014-01-16 Tokai Rubber Ind Ltd 能動型振動騒音抑制装置
WO2016151624A1 (ja) 2015-03-24 2016-09-29 三菱電機株式会社 能動振動騒音制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411611B2 (ja) * 1993-03-17 2003-06-03 アルパイン株式会社 騒音キャンセル方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361721A (ja) 2003-06-05 2004-12-24 Honda Motor Co Ltd 能動型振動騒音制御装置
JP2007093962A (ja) 2005-09-28 2007-04-12 Toshiba Corp 能動消音制御装置及び方法
JP2012247738A (ja) 2011-05-31 2012-12-13 Tokai Rubber Ind Ltd 能動型消音装置
JP2014006709A (ja) 2012-06-25 2014-01-16 Tokai Rubber Ind Ltd 能動型振動騒音抑制装置
WO2016151624A1 (ja) 2015-03-24 2016-09-29 三菱電機株式会社 能動振動騒音制御装置

Also Published As

Publication number Publication date
JP2021162849A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP4079831B2 (ja) 能動型騒音低減装置
JPH05265468A (ja) 能動型騒音制御装置
JP5757346B2 (ja) 能動振動騒音制御装置
CN113470609B (zh) 主动式噪音控制装置
JP7213280B2 (ja) 能動騒音制御装置
JP7157831B2 (ja) 能動騒音制御装置
JP7262499B2 (ja) 能動型振動騒音低減装置
JP7157833B2 (ja) 能動騒音制御装置
CN113470607B (zh) 有源振动噪音降低系统
US11127391B2 (en) Active vibratory noise reduction system
JP7194204B2 (ja) 能動騒音制御装置
JPH07210175A (ja) 能動型騒音制御装置
WO2022201520A1 (ja) 能動型騒音制御装置、能動型騒音制御方法、プログラム及び非一時的な有形のコンピュータ可読記憶媒体
US11594209B2 (en) Active noise control device
JPH06130970A (ja) 能動型騒音制御装置
US20220223134A1 (en) Noise reduction device, vehicle, and noise reduction method
JP7346121B2 (ja) 騒音制御装置、騒音制御方法及びプログラム
CN113470608A (zh) 主动式噪音控制装置
JPH08221079A (ja) 騒音制御装置
JPH0934470A (ja) 適応フィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150