WO2016148121A1 - フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物 - Google Patents
フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物 Download PDFInfo
- Publication number
- WO2016148121A1 WO2016148121A1 PCT/JP2016/058064 JP2016058064W WO2016148121A1 WO 2016148121 A1 WO2016148121 A1 WO 2016148121A1 JP 2016058064 W JP2016058064 W JP 2016058064W WO 2016148121 A1 WO2016148121 A1 WO 2016148121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- flip chip
- underfill
- circuit board
- semiconductor element
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229910000679 solder Inorganic materials 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims abstract description 48
- 239000003822 epoxy resin Substances 0.000 claims abstract description 37
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 35
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052802 copper Inorganic materials 0.000 claims abstract description 32
- 238000002844 melting Methods 0.000 claims abstract description 22
- 230000008018 melting Effects 0.000 claims abstract description 22
- 150000004982 aromatic amines Chemical class 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 8
- 239000011256 inorganic filler Substances 0.000 claims abstract description 8
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 13
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 8
- 238000005476 soldering Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 claims description 4
- 229960003540 oxyquinoline Drugs 0.000 claims description 4
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 27
- 230000008569 process Effects 0.000 abstract description 15
- 239000011800 void material Substances 0.000 abstract description 13
- 230000004907 flux Effects 0.000 abstract description 2
- 238000001723 curing Methods 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- -1 imidazole compound Chemical class 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002950 deficient Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- CBEVWPCAHIAUOD-UHFFFAOYSA-N 4-[(4-amino-3-ethylphenyl)methyl]-2-ethylaniline Chemical compound C1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=CC=2)=C1 CBEVWPCAHIAUOD-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910020836 Sn-Ag Inorganic materials 0.000 description 2
- 229910020988 Sn—Ag Inorganic materials 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- HGXVKAPCSIXGAK-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine;4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N.CCC1=CC(C)=C(N)C(CC)=C1N HGXVKAPCSIXGAK-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- DRPJWBIHQOHLND-UHFFFAOYSA-N 4-[dimethoxy(methyl)silyl]oxybutyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)OCCCCOC(=O)C(C)=C DRPJWBIHQOHLND-UHFFFAOYSA-N 0.000 description 1
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- PMZDQRJGMBOQBF-UHFFFAOYSA-N quinolin-4-ol Chemical compound C1=CC=C2C(O)=CC=NC2=C1 PMZDQRJGMBOQBF-UHFFFAOYSA-N 0.000 description 1
- OVYWMEWYEJLIER-UHFFFAOYSA-N quinolin-6-ol Chemical compound N1=CC=CC2=CC(O)=CC=C21 OVYWMEWYEJLIER-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000000646 scanning calorimetry Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
Definitions
- the present invention relates to a method of manufacturing a flip chip mounting body, a flip chip mounting body manufactured by this manufacturing method, and a resin composition for pre-feed type underfill used in this manufacturing method.
- flip-chip bonding has been used as a semiconductor chip mounting method that can cope with higher wiring density and higher frequency of electronic devices.
- a gap between a semiconductor chip and a substrate is sealed with a material called underfill.
- an underfill agent which is a thermosetting semiconductor resin sealing composition (hereinafter, “ Called post-feed type).
- Called post-feed type a thermosetting semiconductor resin sealing composition
- the pre-supplied flip chip bonding process which can be shortened and, as a result, can be manufactured at low cost and low energy, has attracted attention.
- the encapsulant resin composition for this process hereinafter referred to as “pre-supplied underfill resin composition”).
- pre-supplied underfill resin composition The demand for “things” is growing.
- a semiconductor chip on which a protruding electrode having a tip made of solder is formed is aligned on a substrate through a bonding material, and heated to a temperature equal to or higher than the solder melting point. And pressurizing the bonding material having a curing rate of 40% or less, melt bonding the protruding electrode of the semiconductor chip and the electrode portion of the substrate, and the bonding material having a curing rate of 40% or less.
- Patent Document 1 having a void removing step of removing voids by heating in an atmosphere is disclosed.
- the bonding agent used in the above-described method for manufacturing a semiconductor device substantially uses an acid anhydride as a curing agent and an imidazole compound as a curing accelerator (No. 0052, 0055, 0060 of Patent Document 1). Therefore, there is a problem that the bonding material is easily gelled and the generation of voids cannot be sufficiently suppressed. Further, since the bonding material is not stable, there is a problem that the pressure curing oven must be operated in a complicated step in the void removing process (paragraph 0054 of Patent Document 1). Here, the bonding material can achieve a desired viscosity behavior by containing a thixotropy imparting agent (paragraph 0026 of Patent Document 1).
- the joining material is excluded. While it is described that the properties may decrease (paragraph 0028 of Patent Document 1), Example 1 and Example 2 contain 40.6% thixotropic agent (Patent Document 1). , Paragraphs 0052, 0055, and 0060). In this way, it is presumed that the bonding material of the prior art cannot pass the curing rate and reliability test after electrode bonding unless the composition has a very unstable exclusion property. Along with this, there is a problem that the pressure curing oven must be operated in complicated steps.
- An object of the present invention is to provide a method for manufacturing a flip chip mounting body capable of suppressing the occurrence of voids in the resin composition for first supplying type underfill in the first supplying type flip chip bonding process, and the flip chip mounting body. It is providing the resin composition for pre-feed type underfills used for the manufacturing method of this.
- the present invention relates to a method of manufacturing a flip chip mounting body, a flip chip mounting body, and a resin composition for pre-feed type underfill, which have solved the above problems by having the following configuration.
- the connection copper bump electrode provided on the semiconductor element and the connection electrode provided on the circuit board face each other, and the connection copper bump electrode provided on the semiconductor element and the connection provided on the circuit board
- a semiconductor chip is mounted on a circuit board by solder connection with an electrode for use, and a method of manufacturing a flip chip mounting body in which a gap between the circuit board and the semiconductor element is resin-sealed, (1)
- connection copper bump electrode for the semiconductor element and the connection electrode for the circuit board (2) A resin composition for pre-feed type underfill containing (A) an epoxy resin, (B) an aromatic amine curing agent, (C) an inorganic filler, (D) a silane coupling agent, and (E) a fluxing agent Supplying the circuit board onto the circuit board, (3) The semiconductor element and the circuit board are thermocompression-bonded, and the semiconductor element connection copper bump electrode and the circuit board connection electrode are heated for 1 second or more at a temperature equal to or higher than the solder melting point temperature, and then the pre-feed type under The step of soldering when the reaction rate of the resin composition for fill is 0.1 to 25%, and (4) Pressure: Resin composition for pre-feed type underfill supplied under a pressure of 0.6 MPa or more A method of manufacturing a flip chip mounting body, comprising: a step of curing an object in this order. [2] The component (B) has the chemical formula (7):
- the component (A) is at least one selected from the group consisting of a bisphenol F type epoxy resin, a bisphenol A type epoxy resin, an aminophenol type epoxy resin, and a naphthalene type epoxy resin.
- FIG. 6 is a diagram showing a temperature profile of a TCB (Thermal-Compression-Bonding) profile A.
- FIG. It is a figure which shows the temperature profile of TCB profile B. It is a figure which shows the temperature profile of TCB profile C. It is a figure which shows the temperature profile of TCB profile D. It is a figure which shows the temperature profile of TCB profile E. It is a figure which shows the temperature profile of TCB profile F. It is a photograph of the sample in which the alloy layer was formed in the cross section.
- FIG. 3 is an example of a schematic diagram for explaining steps (1) to (4).
- FIG. 3 is an example of a schematic diagram for explaining steps (1) to (4).
- FIG. 3 is an example of a schematic diagram for explaining steps (1) to (4).
- FIG. 3 is an example of a schematic diagram for explaining steps (1) to (4).
- the manufacturing method of the flip chip mounting body of the present invention is such that the connection copper bump electrode provided on the semiconductor element and the connection electrode provided on the circuit board face each other, and the connection copper bump electrode provided on the semiconductor element. And a manufacturing method of a flip chip mounting body in which a semiconductor element is mounted on a circuit board by solder connection with a connection electrode provided on the circuit board, and a gap between the circuit board and the semiconductor element is resin-sealed. And (1) a step of providing a solder layer having a melting point of 210 to 250 ° C.
- a resin composition for pre-feed type underfill containing (A) an epoxy resin, (B) an aromatic amine curing agent, (C) an inorganic filler, (D) a silane coupling agent, and (E) a fluxing agent Supplying the circuit board onto the circuit board, (3)
- the semiconductor element and the circuit board are thermocompression-bonded, and the semiconductor element connection copper bump electrode and the circuit board connection electrode are heated for 1 second or more at a temperature equal to or higher than the solder melting point temperature, and then the pre-feed type under The step of soldering when the reaction rate of the resin composition for fill is 0.1 to 25%, and (4) Pressure: Resin composition for pre-feed type underfill supplied under a pressure of 0.6 MPa or more It includes a step of curing the product in this order.
- connection copper bump electrode provided on the semiconductor element and the connection electrode provided on the circuit board face each other, and the connection copper bump electrode provided on the semiconductor element and the circuit board are provided.
- a method of manufacturing a flip chip mounting body in which a semiconductor element is mounted on a circuit board by solder connection with a connection electrode, and a gap between the circuit board and the semiconductor element is resin-sealed. It is a manufacturing method used for a pre-supplied flip chip bonding process using a copper bump electrode.
- solder layer having a melting point of 210 to 250 ° C. on at least one of the copper bump electrode for connection of a semiconductor element and the connection electrode for a circuit board, if the melting point of the solder is too low during component operation Solder melts due to heat generation and malfunction may occur, so the usage environment is likely to be limited. If the temperature is too high, the thermal load on the components during mounting becomes high, and the members that can be used are limited. Therefore, the melting point may be 210 to 250 ° C., and is not particularly limited. However, Sn—Ag, Sn—Cu, or Sn—Ag—Cu is preferable from the viewpoint of being Pb-free.
- the substrate include, but are not limited to, an epoxy resin, a glass-epoxy resin, and a polyimide resin.
- a resin composition for pre-feed type underfill containing (A) an epoxy resin, (B) an aromatic amine curing agent, (C) an inorganic filler, (D) a silane coupling agent, and (E) a fluxing agent
- the pre-supplied underfill resin composition used in the step of supplying (hereinafter referred to as the underfill resin composition) onto the circuit board will be described later.
- Examples of the method for supplying the pre-supplied underfill resin composition onto the circuit board include a dispenser and screen printing.
- the semiconductor element and the circuit board are thermocompression-bonded, and the semiconductor element connection copper bump electrode and the circuit board connection electrode are heated for 1 second or more at a temperature equal to or higher than the solder melting point temperature, and then the pre-feed type under
- the reaction rate of the resin composition for fill is 0.1 or more and 25% or less, it is preferable from the viewpoint of temperature and pressure controllability and mass productivity when using a flip chip bonder in the step of solder connection.
- the temperature higher than the melting point of the solder is preferably 20 to 50 ° C. higher than the melting point from the viewpoint of good solderability.
- the calorific value can be easily displayed with analysis software (for example, software name: Proteus series attached to DSC manufactured by NETZSCH).
- the pressure in the step of curing the supplied underfill resin composition under a pressure of 0.6 MPa or more is 0.6 MPa or more from the viewpoint of reducing voids in the underfill resin composition. From the viewpoint of structural safety, 1.0 MPa or less is preferable.
- FIG. 8 to 11 are schematic views for explaining an example of the method for manufacturing the flip chip mounting body of the present invention.
- FIG. 8 shows an example of a schematic diagram for explaining the step (1).
- the upper diagram of FIG. 8 shows a process of providing a solder layer (Solder) on a copper bump electrode (Copper bump) for connection of a semiconductor element (Die), and the lower diagram of FIG. 8 shows a connection electrode (Electrodede) of a circuit board (Substrate). ) Is provided with a solder layer.
- FIG. 9 shows an example of a schematic diagram for explaining steps (1) to (4).
- FIG. 9 shows an example in which a solder layer (Solder) is provided on a copper bump electrode (Copper bump) for connection of a semiconductor element (Die).
- a solder layer (Solder) is provided on a copper bump electrode (Copper bump) for connection of a semiconductor element (Die).
- a pre-applied underfill resin composition (Pre-applied underfill) is supplied onto the circuit board (Substrate). After that, as shown in 3 in FIG.
- FIG. 10 shows an example of a schematic diagram for explaining the steps (1) to (4).
- FIG. 9 is an example in which a solder layer (Solder) is provided on a connection electrode (Electrode) of a circuit board (Substrate). Except this, it is the same as FIG.
- FIG. 11 shows an example of a schematic diagram for explaining steps (1) to (4).
- FIG. 9 shows that a solder layer (Solder) is provided on a copper bump electrode (Copper bump) for connecting a semiconductor element (Die), and a solder layer (Solder) is also provided on a connecting electrode (Electrode) for a circuit board (Substrate). It is an example of providing. Except this, it is the same as FIG.
- the underfill resin composition of the present invention includes (A) an epoxy resin, (B) an aromatic amine curing agent, (C) an inorganic filler, (D) a silane coupling agent, and (E) a flux agent, Temperature: The viscosity at 25 ° C. is 10 to 100 Pa ⁇ s, and it is used in the above-described method for manufacturing a flip chip mounting body.
- the component (A) imparts adhesiveness and durability after curing to the resin composition for underfill.
- component (A) bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, ether type Or a polyether-based epoxy resin, an oxirane ring-containing compound, etc., and at least one selected from the group consisting of a bisphenol F-type epoxy resin, a bisphenol A-type epoxy resin, an aminophenol-type epoxy resin, and a naphthalene-type epoxy resin. If it exists, it is preferable from a viewpoint of the viscosity of the resin composition for underfills.
- the bisphenol F type epoxy resin preferably the formula (1):
- n represents an average value, preferably 0 to 10, particularly preferably 0 to 4.
- the epoxy equivalent is preferably 160 to 900 g / eq.
- m represents an average value, preferably 0 to 10, particularly preferably 0 to 4.
- the epoxy equivalent is preferably 165 to 900 g / eq.
- the aminophenol type epoxy resin is preferably the formula (3):
- Component commercial products include DIC bisphenol F type epoxy resin (product name: EXA-830CRP), DIC bisphenol A type epoxy resin (product name: EXA-850CRP), DIC naphthalene type epoxy resin (product name: HP). -4032D), aminophenol type epoxy resin (product name: JER630) manufactured by Mitsubishi Chemical Corporation, and the like.
- a component may be individual or may use 2 or more types together.
- (B) component imparts curability to the resin composition for underfill.
- an aromatic amine-based curing agent is preferable, and it is excellent in solder connectivity and void suppression at the time of thermocompression bonding in the step of soldering connection and at the subsequent thermocompression bonding.
- the aromatic amine compound preferably includes an aromatic amine compound having one aromatic ring and / or an aromatic amine compound having a plurality of aromatic rings.
- aromatic amine compound having one aromatic ring examples include metaphenylenediamine.
- aromatic amine compound having a plurality of aromatic rings examples include diaminodiphenylmethane, diaminodiphenylsulfone, etc., and the formula (4) or formula (5):
- R represents hydrogen or an alkyl group having 1 to 5 carbon atoms
- R is an alkyl group having 2 carbon atoms. Those are more preferred.
- the component (B) includes an aromatic amine compound having one aromatic ring and / or an aromatic amine compound having a plurality of aromatic rings, and a total of 100 parts by mass of the aromatic amine compound, It is more preferable that the aromatic amine compound having a plurality of benzene rings is 20 to 100 parts by mass from the viewpoint of high reaction rate controllability during TCB and high void suppression effect during heating and pressurization.
- the component (B) has the chemical formula (7):
- diethyltoluenediamine represented by Commercially available products of component (B) include Nippon Kayaku aromatic amine curing agent (4,4′-methylenebis (2-ethylaniline), product name: KAYAHARD AA), Albemarle diethyltoluenediamine curing agent (product name) : ETHACURE100) and the like.
- component (B) A component may be individual or may use 2 or more types together.
- a component reduces the thermal expansion coefficient of the resin composition for underfills.
- the component (C) include silica, alumina, silicon nitride, aluminum nitride, mica, white carbon, and the like, from the viewpoint of lowering the thermal expansion coefficient of the resin composition for underfill after curing, and cost. preferable.
- silica various silicas used in the art such as amorphous silica, crystalline silica, fused silica, pulverized silica and the like can be used, and the thermal expansion coefficient of the resin composition for underfill after curing is reduced. From this point, amorphous silica is preferable.
- the particle size of the component (C) is preferably an average particle size of 0.1 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m, from the viewpoint of filling in the gap between the semiconductor chip and the substrate.
- the shape of (C) component is not specifically limited, A spherical shape, flake shape, an indeterminate form, etc. are mentioned, From the viewpoint of the fluidity
- the silica particle product name: SOE2 made from Admatex etc. are mentioned.
- a component may be individual or may use 2 or more types together.
- component (D) component improves the adhesiveness of the resin composition for underfills.
- component (D) 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyltrimethoxysilane, 3-acrylic Examples include loxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and 3-isocyanatopropyltriethoxysilane.
- Propyltrimethoxysilane and 3-aminopropyltrimethoxysilane are preferred from the viewpoint of adhesion.
- Examples of commercially available components include Shin-Etsu Chemical KBM403, KBE903, KBE9103, and the like.
- a component may be individual or may use 2 or more types together.
- the component improves the solder wettability of the resin composition for underfill.
- the formula (6) As the component (E), the formula (6):
- a component may be individual or may use 2 or more types together.
- the resin composition for underfill of the present invention contains 0.5 to 35 parts by mass of component (A) with respect to 100 parts by mass of the resin composition for underfill, the adhesion of the resin composition for underfill, From the viewpoint of durability after curing, it is preferable.
- the reaction rate controllability at the time of TCB and the void suppression effect at the time of heating and pressurization are obtained. From a high viewpoint, it is preferable.
- the resin composition for underfill contains 160 to 400 parts by mass of component (C) with respect to 100 parts by mass of component (A), the fluidity of the resin composition for underfill and for underfill after curing From the viewpoint of lowering the thermal expansion coefficient of the resin composition, it is preferable.
- the resin composition for underfill preferably contains 0.05 to 2 parts by mass of component (D) with respect to 100 parts by mass of component (A) from the viewpoint of adhesion of the resin composition for underfill.
- the resin composition for underfill contains 0.5 to 3 parts by mass of component (E) with respect to 100 parts by mass of the resin composition for underfill, solder wettability and void suppression of the resin composition for underfill From the viewpoint of
- a pigment such as carbon black, a dye, an antifoaming agent, an antioxidant, other additives, etc. if necessary, as long as the object of the present invention is not impaired.
- An organic solvent etc. can be mix
- the resin composition for underfill of the present invention for example, stirs, melts, mixes, and disperses components (A) to (E) and other additives at the same time or separately, with heat treatment as necessary. Can be obtained.
- the component (B) is a solid, the resin viscosity increases and the workability is remarkably deteriorated if it is blended as it is. Therefore, it is preferable to liquefy by heating in advance and mix with the component (A).
- the mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.
- the underfill resin composition of the present invention has a viscosity of 10 to 100 Pa ⁇ s at a temperature of 25 ° C.
- the viscosity is measured with a viscometer manufactured by Toki Sangyo (model number: TV-20 type).
- the pressure heat curing of the resin composition for underfill of the present invention is preferably performed at 0.6 MPa or more and 150 to 200 ° C. for 30 to 240 minutes.
- the flip chip mounting body of the present invention is manufactured by the above-described flip chip mounting body manufacturing method. Moreover, the flip chip mounting body of this invention has the hardened
- Test chips for evaluating the prepared resin composition for underfill were prepared. First, a test chip (Si size: 7.3 mm (width) ⁇ 7.3 mm (length) ⁇ 0.125 mm (thickness)) and a copper bump electrode for connection (bump: 30 ⁇ m (width) ⁇ 30 ⁇ m (length)) ) ⁇ 30 ⁇ m (height) Cu layer formed on a solder pillar, number of bumps: 1048, area array arrangement) and organic resin substrate for mounting test chip (substrate size: 187.5 mm (width) ⁇ 64) 0.0 mm (length) ⁇ 0.36 mm (thickness), electrode for connection: Cu / OSP (Organic Solderability Preservatives)) was prepared, and the solder formed on the Cu pillar was Sn—Ag solder (melting point: About 223 ° C.).
- the prepared underfill resin composition was applied onto an organic resin substrate in an X pattern with a 23G size needle using a dispenser (model number: Super ⁇ CM II V5) manufactured by Musashi Engineering.
- the test chip and the organic resin substrate are heated and pressure-bonded (TCB: Thermal-Compression-Bonding), and the test chip connection copper bump electrode and Then, the connection with the connection electrode of the organic resin substrate was performed.
- the stage temperature of the flip chip bonder was set to 60 ° C.
- the TCB profile was set under six conditions of A, B, C, D, E, and F. 1 to 6 show the TCB temperature profiles of these six conditions.
- the TCB profile was measured by inserting a thermocouple (50 ⁇ m ⁇ ) between the test chip and the organic resin substrate.
- the maximum temperature of profiles A to E was 262 ° C., and the maximum temperature of profile F was 155 ° C.
- profile A heating is performed for 1.2 seconds at a temperature higher than the solder melting point
- profile B heating is performed for 3.8 seconds at a temperature higher than the solder melting point
- profile C 6.9 seconds is heated at a temperature higher than the solder melting point.
- profile D heating is performed for 10.9 seconds at a temperature equal to or higher than the solder melting point.
- profile E heating is performed for 15.8 seconds at a temperature equal to or higher than the solder melting point. It was not reached.
- the pressure of the TCB profile profile under these six conditions was 40N.
- the TCB test piece was put into a pressure oven (heating and pressing oven) in which the following temperature profiles A to C and temperature profiles A to D were assembled, and the resin composition for underfill was cured.
- Temperature profile A The temperature was raised from room temperature to 165 ° C. over 30 minutes, held at 165 ° C. for 90 minutes, and then lowered to room temperature.
- Temperature profile B The temperature was raised from room temperature to 165 ° C. over 30 minutes, held at 165 ° C. for 60 minutes, and then lowered to room temperature.
- Temperature profile C The temperature was raised from room temperature to 165 ° C. over 30 minutes, held at 165 ° C. for 30 minutes, and then lowered to room temperature.
- Pressure profile A Start increasing the pressure from normal pressure at the start of temperature rise, increase the pressure in the oven to 0.7 MPa within 5 minutes, start decreasing the pressure at the end of the heating time, and decrease the pressure to normal pressure It was.
- Pressure profile B Starts increasing pressure from normal pressure at the start of temperature rise, raises the pressure in the oven to 0.6 MPa within 5 minutes, starts pressure reduction at the end of the heating time, and decreases pressure to normal pressure It was.
- Pressure profile C Start increasing the pressure from normal pressure at the start of temperature rise, increase the pressure in the oven to 0.5 MPa within 5 minutes, start decreasing the pressure at the end of the heating time, and decrease the pressure to normal pressure It was.
- Pressure profile D Starts increasing pressure from normal pressure at the start of temperature rise, raises the pressure in the oven to 0.3 MPa within 5 minutes, starts decreasing pressure at the end of the heating time, and decreases pressure to normal pressure It was.
- reaction rate (unit:%) of the resin composition for underfill was measured.
- DSC scanning calorimetry
- the test piece produced 7 pieces about each Example and the comparative example.
- ⁇ Surface polishing test> Of the prepared 7 test pieces, 2 test pieces were taken out and only the chip portion was polished and removed. Next, the portion of the organic resin substrate from which the chips were removed was observed with an optical microscope ( ⁇ 100, ⁇ 200), and the presence of voids was confirmed. A case where one or more voids were observed was regarded as defective. When both good and defective modes were confirmed in the C-SAM test, the good and defective products were observed one by one.
- FIG. 7 shows a photograph of a piece having an alloy layer formed on the cross section. As can be seen from FIG. 7, the alloy layer is formed in the solder, particularly in the vicinity of the interface between the copper bump electrode (lower part of FIG. 7) and the solder and in the vicinity of the interface between the connecting electrode (upper part of FIG. 7) and the solder. Was formed.
- ⁇ Resistance test> The resistance values between the resistance value measurement pads of the prepared 7 test pieces were measured.
- the test piece had a daisy chain structure and exhibited a resistance value of 28 to 32 ⁇ as a pass.
- the present invention provides a method for manufacturing a flip chip mounting body and a method for manufacturing the flip chip mounting body, which can suppress the generation of voids in the resin composition for the first supply type underfill in the first supply type flip chip bonding process.
- the resin composition for pre-feed type underfill used for the method can be provided and is very useful.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Wire Bonding (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
〔1〕半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とが対向し、半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とのはんだ接続により回路基板の上に半導体素子が搭載され、回路基板と半導体素子との空隙が樹脂封止されるフリップチップ実装体の製造方法であって、
(1)半導体素子の接続用銅バンプ電極と、回路基板の接続用電極との少なくとも一方に融点が210~250℃の高融点はんだ層を設ける工程、
(2)(A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含む先供給型アンダーフィル用樹脂組成物を回路基板上へ供給する工程、
(3)半導体素子と回路基板を熱圧着し、半導体素子の接続用銅バンプ電極と回路基板の接続用電極とを、はんだ融点温度以上の温度で1秒以上加熱された後で先供給型アンダーフィル用樹脂組成物の反応率が0.1以上25%以下のときに、はんだ接続する工程、および
(4)圧力:0.6MPa以上の加圧下で、供給した先供給型アンダーフィル用樹脂組成物を硬化させる工程
をこの順に含むことを特徴とする、フリップチップ実装体の製造方法。
〔2〕(B)成分が、化学式(7):
〔3〕(A)成分が、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、アミノフェノール型エポキシ樹脂、およびナフタレン型エポキシ樹脂からなる群より選択される少なくとも1種である、上記〔1〕または〔2〕記載のフリップチップ実装体の製造方法。
〔4〕上記〔1〕~〔3〕のいずれか記載のフリップチップ実装体の製造方法で製造される、フリップチップ実装体。
〔5〕(A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含み、
温度:25℃での粘度が10~100Pa・sである、上記〔1〕~〔3〕のいずれか記載のフリップチップ実装体の製造方法に使用される先供給型アンダーフィル用樹脂組成物。
〔6〕(E)成分が、8-キノリノールであり、かつ(E)成分が、先供給型アンダーフィル用樹脂組成物100質量部に対して、0.5~3質量部である、上記〔5〕記載の先供給型アンダーフィル用樹脂組成物。
〔7〕上記〔5〕または〔6〕記載の先供給型アンダーフィル用樹脂組成物の硬化物を有する、先供給型フリップチップ実装体。
本発明のフリップチップ実装体の製造方法は、半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とが対向し、半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とのはんだ接続により回路基板の上に半導体素子が搭載され、回路基板と半導体素子との空隙が樹脂封止されるフリップチップ実装体の製造方法であって、
(1)半導体素子の接続用銅バンプ電極と、回路基板の接続用電極との少なくとも一方に融点が210~250℃のはんだ層を設ける工程、
(2)(A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含む先供給型アンダーフィル用樹脂組成物を回路基板上へ供給する工程、
(3)半導体素子と回路基板を熱圧着し、半導体素子の接続用銅バンプ電極と回路基板の接続用電極とを、はんだ融点温度以上の温度で1秒以上加熱された後で先供給型アンダーフィル用樹脂組成物の反応率が0.1以上25%以下のときに、はんだ接続する工程、および
(4)圧力:0.6MPa以上の加圧下で、供給した先供給型アンダーフィル用樹脂組成物を硬化させる工程
をこの順に含むことを特徴とする。
式:{1-(TCB後の発熱量)/(TCB前の発熱量)}×100(%)により、求める。例えば、TCB前のアンダーフィル用樹脂組成物の発熱量が100J/g、TCB後の発熱量が80J/gである場合には、
(1-80/100)×100=20%の反応率になる。解析ソフト(例えば、NETZSCH社製DSCに付属のソフト名:Proteusシリーズ)で発熱量を簡便に表示させることができる。
本発明のアンダーフィル用樹脂組成物は、(A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含み、
温度:25℃での粘度が10~100Pa・sであり、上述のフリップチップ実装体の製造方法に使用される。
本発明のフリップチップ実装体は、上述のフリップチップ実装体の製造方法で製造される。また、本発明のフリップチップ実装体は、上述の先供給型アンダーフィル用樹脂組成物の硬化物を有する。
表1~4に示す配合で、3本ロールミルを用いて、アンダーフィル用樹脂組成物を調製した。
調製したアンダーフィル用樹脂組成物の粘度を、東機産業製粘度計(型番:TV-20形)を用い、25℃で測定した。表1~4に、結果を示す。
調製したアンダーフィル用樹脂組成物の評価をするためのテスト用チップを作製した。まず、テスト用チップ(Siサイズ:7.3mm(幅)×7.3mm(長さ)×0.125mm(厚さ)に、接続用銅バンプ電極(バンプ:30μm(幅)×30μm(長さ)×30μm(高さ)のCuピラー上へはんだ層を形成、バンプ数:1048、エリアアレイ配置)と、テストチップを搭載するための有機樹脂基板(基板サイズ:187.5mm(幅)×64.0mm(長さ)×0.36mm(厚さ)、接続用電極:Cu/OSP(Organic Solderbility Preservatives)処理)を準備した。Cuピラー上へ形成したはんだは、Sn-Ag系はんだ(融点:約223℃)であった。
温度プロファイルA:室温から165℃まで30分間で昇温させ、165℃で90分間保持させた後、室温まで降温させた。
温度プロファイルB:室温から165℃まで30分間で昇温させ、165℃で60分間保持させた後、室温まで降温させた。
温度プロファイルC:室温から165℃まで30分間で昇温させ、165℃で30分間保持させた後、室温まで降温させた。
圧力プロファイルA:昇温開始と同時に常圧から圧力を上げ始め、5分以内にオーブン内の圧力を0.7MPaまで上昇させ、加熱時間終了と同時に降圧を開始し、常圧まで圧力を降下させた。
圧力プロファイルB:昇温開始と同時に常圧から圧力を上げ始め、5分以内にオーブン内の圧力を0.6MPaまで上昇させ、加熱時間終了と同時に降圧を開始し、常圧まで圧力を降下させた。
圧力プロファイルC:昇温開始と同時に常圧から圧力を上げ始め、5分以内にオーブン内の圧力を0.5MPaまで上昇させ、加熱時間終了と同時に降圧を開始し、常圧まで圧力を降下させた。
圧力プロファイルD:昇温開始と同時に常圧から圧力を上げ始め、5分以内にオーブン内の圧力を0.3MPaまで上昇させ、加熱時間終了と同時に降圧を開始し、常圧まで圧力を降下させた。
アンダーフィル用樹脂組成物の反応率(単位:%)を測定した。TCBの前後のアンダーフィル用樹脂組成物の示唆走査熱分析(DSC)測定(昇温速度、:10℃/min)を用い、加熱前後の発熱ピーク面積により、式:{1-(TCB後の発熱量)/(TCB前の発熱量)}×100(%)により、求めた。
テストピースは、各実施例、比較例について、7ピースを作製した。
各実施例、比較例で作製したテストピースを、超音波探傷装置を用い、反射法で、ボイド、デラミネーションの発生状態を確認した。この測定は作製したテストピースすべてについて、実施した。C-SAM画像上で、白い影が見えたものを、不良品とした。
作製した7テストピースの内、2テストピースを取り出し、チップ部分のみを研磨して除去した。次に、チップを除去した有機樹脂基板のチップを取り除いた部分を、光学顕微鏡(×100、×200)で観察し、ボイドの存在状態を確認した。ボイドが1箇所以上観察されたものを不良とした。なお、C-SAM試験で、良品、不良品の両モードが確認された場合には、良品、不良品を1テストピースずつ観察した。
作製した7テストピースの内、2テストピースを取り出し、チップと基板の接合部が観察できるように切断した後、研磨して、チップと基板の接合部を露出させた。次に、走査型電子顕微鏡(SEM)を用いて1000倍で、露出した接合部を観察した。このとき、接合部に合金層が形成されていないものを不良とした。なお、C-SAM試験で、良品、不良品の両モードが確認された場合には、良品、不良品を1テストピースずつ観察した。図7に、断面に合金層が形成されたピースの写真を示す。図7からわかるように、合金層は、はんだ中に形成され、特に、銅バンプ電極(図7の下部)とはんだの界面近傍と、接続用電極(図7の上部)とはんだの界面近傍に、形成されていた。
作製した7テストピースを、抵抗値測定パッド間の抵抗値を測定した。テストピースは、デイジーチェーン構造であり、28~32Ωの抵抗値を示したものを合格とした。
各実施例、比較例で作製したテストピースを、X線検査装置を用いて端子間のはんだブリッジの有無を確認した。この測定は、作製したテストピースすべてで、実施した。X線画像上、はんだが端子間でつながっているものを不良品とした。
初期評価として作製したテストピース(n=3)を、恒温恒湿槽(30℃/60%RH)中、192時間放置した後、260℃のリフロー炉へ、3回繰返し通した。
Claims (7)
- 半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とが対向し、半導体素子に設けられた接続用銅バンプ電極と、回路基板に設けられた接続用電極とのはんだ接続により回路基板の上に半導体素子が搭載され、回路基板と半導体素子との空隙が樹脂封止されるフリップチップ実装体の製造方法であって、
(1)半導体素子の接続用銅バンプ電極と、回路基板の接続用電極との少なくとも一方に融点が210~250℃のはんだ層を設ける工程、
(2)(A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含む先供給型アンダーフィル用樹脂組成物を回路基板上へ供給する工程、
(3)半導体素子と回路基板を熱圧着し、半導体素子の接続用銅バンプ電極と回路基板の接続用電極とを、はんだ融点温度以上の温度で1秒以上加熱された後で先供給型アンダーフィル用樹脂組成物の反応率が0.1以上25%以下のときに、はんだ接続する工程、および
(4)圧力:0.6MPa以上の加圧下で、供給した先供給型アンダーフィル用樹脂組成物を硬化させる工程
をこの順に含むことを特徴とする、フリップチップ実装体の製造方法。 - (A)成分が、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、アミノフェノール型エポキシ樹脂、およびナフタレン型エポキシ樹脂からなる群より選択される少なくとも1種である、請求項1または2記載のフリップチップ実装体の製造方法。
- 請求項1~3のいずれか1項記載のフリップチップ実装体の製造方法で製造される、フリップチップ実装体。
- (A)エポキシ樹脂、(B)芳香族アミン硬化剤、(C)無機充填剤、(D)シランカップリング剤、および(E)フラックス剤を含み、
温度:25℃での粘度が10~100Pa・sである、請求項1~3のいずれか1項記載のフリップチップ実装体の製造方法に使用される先供給型アンダーフィル用樹脂組成物。 - (E)成分が、8-キノリノールであり、かつ(E)成分が、先供給型アンダーフィル用樹脂組成物100質量部に対して、0.5~3質量部である、請求項5記載の先供給型アンダーフィル用樹脂組成物。
- 請求項5または6記載の先供給型アンダーフィル用樹脂組成物の硬化物を有する、先供給型フリップチップ実装体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680011258.9A CN107251209B (zh) | 2015-03-19 | 2016-03-15 | 倒装芯片安装体的制造方法、倒装芯片安装体及先供给型底部填充用树脂组合物 |
JP2017506554A JP6800140B2 (ja) | 2015-03-19 | 2016-03-15 | フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物 |
KR1020177021758A KR102455429B1 (ko) | 2015-03-19 | 2016-03-15 | 플립칩 실장체의 제조 방법, 플립칩 실장체, 및 선공급형 언더필용 수지 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-056935 | 2015-03-19 | ||
JP2015056935 | 2015-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016148121A1 true WO2016148121A1 (ja) | 2016-09-22 |
Family
ID=56919708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058064 WO2016148121A1 (ja) | 2015-03-19 | 2016-03-15 | フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6800140B2 (ja) |
KR (1) | KR102455429B1 (ja) |
CN (1) | CN107251209B (ja) |
TW (1) | TWI674633B (ja) |
WO (1) | WO2016148121A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107293498A (zh) * | 2017-07-03 | 2017-10-24 | 华进半导体封装先导技术研发中心有限公司 | 一种倒装芯片制备方法 |
WO2018181603A1 (ja) * | 2017-03-31 | 2018-10-04 | 日立化成株式会社 | 液状エポキシ樹脂組成物、半導体装置及び半導体装置の製造方法 |
WO2019012892A1 (ja) * | 2017-07-14 | 2019-01-17 | ナミックス株式会社 | 加圧実装用ncf、その硬化物およびこれを用いた半導体装置 |
WO2019123518A1 (ja) * | 2017-12-18 | 2019-06-27 | 日立化成株式会社 | 半導体装置、半導体装置の製造方法及び接着剤 |
US11171018B2 (en) | 2019-10-11 | 2021-11-09 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor device and encapsulant |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018070237A1 (ja) | 2016-10-14 | 2018-04-19 | 日立化成株式会社 | 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 |
TWI811215B (zh) * | 2018-04-13 | 2023-08-11 | 日商力森諾科股份有限公司 | 密封用樹脂組成物、電子零件裝置及電子零件裝置的製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056266A (ja) * | 2005-08-25 | 2007-03-08 | Natl Starch & Chem Investment Holding Corp | アンダーフィル組成物用のフラクシング及び促進剤としてのキノリノール類 |
JP2012057052A (ja) * | 2010-09-09 | 2012-03-22 | Namics Corp | エポキシ樹脂組成物 |
JP2012089750A (ja) * | 2010-10-21 | 2012-05-10 | Hitachi Chem Co Ltd | 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置 |
WO2014024849A1 (ja) * | 2012-08-06 | 2014-02-13 | 積水化学工業株式会社 | 半導体装置の製造方法及びフリップチップ実装用接着剤 |
WO2015025867A1 (ja) * | 2013-08-22 | 2015-02-26 | 積水化学工業株式会社 | 半導体用接着剤 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274083A (ja) | 2007-04-27 | 2008-11-13 | Shin Etsu Chem Co Ltd | 液状エポキシ樹脂組成物及び半導体装置 |
JP5557158B2 (ja) | 2010-09-30 | 2014-07-23 | 信越化学工業株式会社 | フリップチップ接続用アンダーフィル剤、及びそれを用いる半導体装置の製造方法 |
JP2013073955A (ja) | 2011-09-26 | 2013-04-22 | Hitachi Chemical Co Ltd | 回路接続構造体の製造方法 |
JP6009860B2 (ja) | 2011-11-09 | 2016-10-19 | 積水化学工業株式会社 | 半導体装置の製造方法 |
-
2016
- 2016-03-15 WO PCT/JP2016/058064 patent/WO2016148121A1/ja active Application Filing
- 2016-03-15 KR KR1020177021758A patent/KR102455429B1/ko active IP Right Grant
- 2016-03-15 JP JP2017506554A patent/JP6800140B2/ja active Active
- 2016-03-15 CN CN201680011258.9A patent/CN107251209B/zh active Active
- 2016-03-18 TW TW105108436A patent/TWI674633B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056266A (ja) * | 2005-08-25 | 2007-03-08 | Natl Starch & Chem Investment Holding Corp | アンダーフィル組成物用のフラクシング及び促進剤としてのキノリノール類 |
JP2012057052A (ja) * | 2010-09-09 | 2012-03-22 | Namics Corp | エポキシ樹脂組成物 |
JP2012089750A (ja) * | 2010-10-21 | 2012-05-10 | Hitachi Chem Co Ltd | 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置 |
WO2014024849A1 (ja) * | 2012-08-06 | 2014-02-13 | 積水化学工業株式会社 | 半導体装置の製造方法及びフリップチップ実装用接着剤 |
WO2015025867A1 (ja) * | 2013-08-22 | 2015-02-26 | 積水化学工業株式会社 | 半導体用接着剤 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181603A1 (ja) * | 2017-03-31 | 2018-10-04 | 日立化成株式会社 | 液状エポキシ樹脂組成物、半導体装置及び半導体装置の製造方法 |
CN107293498A (zh) * | 2017-07-03 | 2017-10-24 | 华进半导体封装先导技术研发中心有限公司 | 一种倒装芯片制备方法 |
KR20200030501A (ko) | 2017-07-14 | 2020-03-20 | 나믹스 가부시끼가이샤 | 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치 |
JP2019019194A (ja) * | 2017-07-14 | 2019-02-07 | ナミックス株式会社 | 加圧実装用ncf |
CN110741027A (zh) * | 2017-07-14 | 2020-01-31 | 纳美仕有限公司 | 加压安装用ncf、其固化物以及使用其的半导体装置 |
WO2019012892A1 (ja) * | 2017-07-14 | 2019-01-17 | ナミックス株式会社 | 加圧実装用ncf、その硬化物およびこれを用いた半導体装置 |
CN110741027B (zh) * | 2017-07-14 | 2022-05-31 | 纳美仕有限公司 | 加压安装用ncf、其固化物以及使用其的半导体装置 |
US11485848B2 (en) | 2017-07-14 | 2022-11-01 | Namics Corporation | NCF for pressure mounting, cured product thereof, and semiconductor device including same |
KR102545377B1 (ko) | 2017-07-14 | 2023-06-19 | 나믹스 가부시끼가이샤 | 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치 |
WO2019123518A1 (ja) * | 2017-12-18 | 2019-06-27 | 日立化成株式会社 | 半導体装置、半導体装置の製造方法及び接着剤 |
CN111480218A (zh) * | 2017-12-18 | 2020-07-31 | 日立化成株式会社 | 半导体装置、半导体装置的制造方法和粘接剂 |
JPWO2019123518A1 (ja) * | 2017-12-18 | 2020-12-17 | 昭和電工マテリアルズ株式会社 | 半導体装置、半導体装置の製造方法及び接着剤 |
JP7176532B2 (ja) | 2017-12-18 | 2022-11-22 | 昭和電工マテリアルズ株式会社 | 半導体装置、半導体装置の製造方法及び接着剤 |
CN111480218B (zh) * | 2017-12-18 | 2023-07-21 | 株式会社力森诺科 | 半导体装置、半导体装置的制造方法和粘接剂 |
US11171018B2 (en) | 2019-10-11 | 2021-11-09 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor device and encapsulant |
Also Published As
Publication number | Publication date |
---|---|
TW201707096A (zh) | 2017-02-16 |
TWI674633B (zh) | 2019-10-11 |
CN107251209A (zh) | 2017-10-13 |
JPWO2016148121A1 (ja) | 2017-12-28 |
KR102455429B1 (ko) | 2022-10-14 |
KR20170128224A (ko) | 2017-11-22 |
CN107251209B (zh) | 2019-12-27 |
JP6800140B2 (ja) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016148121A1 (ja) | フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物 | |
WO2010084858A1 (ja) | 実装部品の表面実装方法、その方法を用いて得られる実装部品構造体、及びその方法に用いられるアンダーフィル用液状エポキシ樹脂組成物 | |
JP3971995B2 (ja) | 電子部品装置 | |
JP6888749B1 (ja) | 電子部品装置を製造する方法 | |
JP5771084B2 (ja) | 半導体チップ実装体の製造方法及び封止樹脂 | |
JP2020163404A (ja) | はんだペーストおよび実装構造体 | |
JP6885527B1 (ja) | 電子部品装置を製造する方法、及び電子部品装置 | |
JP3644340B2 (ja) | エポキシ樹脂組成物 | |
JP6179247B2 (ja) | 電子部品装置の製造方法及び電子部品装置 | |
JP5070789B2 (ja) | アンダーフィル用液状樹脂組成物および半導体装置 | |
JP6187894B2 (ja) | 回路装置の製造方法、半導体部品の実装構造および回路装置 | |
JP2010095702A (ja) | 樹脂組成物、半導体封止用液状樹脂組成物、アンダーフィル用液状樹脂組成物および半導体装置 | |
JP2004204047A (ja) | 液状エポキシ樹脂組成物 | |
WO2014046128A1 (ja) | 電子部品用接着剤及び半導体チップ実装体の製造方法 | |
JP2006143795A (ja) | 液状樹脂組成物、それを用いた半導体装置の製造方法及び半導体装置 | |
JP2004090021A (ja) | 硬化性フラックス | |
JP2013253183A (ja) | 先供給型液状半導体封止樹脂組成物 | |
JP7434758B2 (ja) | 電子部品装置を製造する方法、及び電子部品装置 | |
JP2013107993A (ja) | 半導体封止用液状樹脂組成物とそれを用いた半導体装置 | |
JP2009046606A (ja) | 熱硬化性液状封止樹脂組成物及び半導体装置 | |
JP2015108155A (ja) | アンダーフィル用液状エポキシ樹脂組成物、並びにそれを用いた実装部品構造体及び実装部品の表面実装方法 | |
JP6925021B2 (ja) | フリップチップ実装方法 | |
JP2006328246A (ja) | エポキシ樹脂組成物、半導体装置及びその製造方法 | |
JP2005298677A (ja) | 液状封止樹脂組成物ならびに電子部品装置およびその製造方法 | |
JP2006028265A (ja) | 液状封止樹脂組成物、電子部品装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017506554 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177021758 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764951 Country of ref document: EP Kind code of ref document: A1 |