WO2016143647A1 - ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル - Google Patents

ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル Download PDF

Info

Publication number
WO2016143647A1
WO2016143647A1 PCT/JP2016/056522 JP2016056522W WO2016143647A1 WO 2016143647 A1 WO2016143647 A1 WO 2016143647A1 JP 2016056522 W JP2016056522 W JP 2016056522W WO 2016143647 A1 WO2016143647 A1 WO 2016143647A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
group
polymer
gel precursor
precursor cluster
Prior art date
Application number
PCT/JP2016/056522
Other languages
English (en)
French (fr)
Inventor
祟匡 酒井
雄一 鄭
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US15/551,442 priority Critical patent/US10550225B2/en
Priority to CN201680014534.7A priority patent/CN107428930B/zh
Priority to JP2017505016A priority patent/JP6712081B2/ja
Priority to EP16761617.6A priority patent/EP3269755A4/en
Publication of WO2016143647A1 publication Critical patent/WO2016143647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33306Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2210/00Compositions for preparing hydrogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08J2300/105Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/106Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08J2400/105Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/106Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Definitions

  • the present invention relates to a novel polymer hydrogel.
  • a polymer gel having a network structure has characteristics such as excellent water retention ability and biocompatibility, and therefore, research for embedding it in a living body as an artificial tissue, a material for a regenerative scaffold, etc. has attracted attention (non- Patent Document 1).
  • polymer gels swell due to degradation due to osmotic pressure and changes over time resulting from a difference in concentration between the gel and the external environment in water, which causes a problem of causing compression problems in the surrounding tissues. .
  • the expansion pressure is proportional to the square of the concentration of the polymer constituting the gel
  • the effect of swelling is particularly noticeable when the concentration of the polymer is high.
  • the degree of cross-linking is increased in order to reduce the swelling rate, the cross-linking is broken by a change with time, so that the lowering of the polymer concentration is an essential solution.
  • the polymer concentration is reduced to a level at which tissue damage due to swelling does not occur, it is difficult to prepare a gel in a short time by the conventional polymer gel production method.
  • the gel is formed in a region near the gel point with a low polymer concentration, it is difficult to control the physical properties because the physical properties such as the elastic modulus change dramatically.
  • the present invention aims to develop a gel capable of avoiding the problem of tissue damage due to swelling when embedded in a living body and a method for producing the gel, and can be prepared in a short time and controlled in terms of elastic modulus and expansion pressure.
  • Another object of the present invention is to provide a low-concentration polymer content gel having excellent physical properties.
  • the present inventors have made a gel precursor cluster that has a state of being about to be gelled, more specifically, a state in which the storage elastic modulus G ′ is smaller than the loss elastic modulus G ′′. Is used as a seed in the subsequent gelation reaction, the gel precursor cluster functions as a polymer unit that is very easy to gel, and has a low molecular concentration gel with controlled physical properties in a short time.
  • the present invention has been found, and the present invention has been completed.
  • the present invention in one aspect, (1) A method for producing a polymer gel in which gel precursor clusters are cross-linked with each other to form a three-dimensional network structure, wherein a) a monomer unit or a polymer unit having a critical gelation concentration is cross-linked to form the gel Forming a precursor cluster, wherein the gel precursor cluster has a relationship of G ′ ⁇ G ′′ in storage modulus G ′ and loss modulus G ′′; and b) The method includes the step of obtaining a gel having a three-dimensional network structure by crosslinking each other with a crosslinking agent.
  • the preferable aspect regarding the manufacturing method of this invention is as follows.
  • the nucleophilic functional group is selected from the group consisting of an amino group, —SH, and —CO 2 PhNO 2
  • the electrophilic functional group is an N-hydroxy-succinimidyl (NHS) group, a sulfosk
  • the production method according to (7) selected from the group consisting of a cinimidyl group, a maleimidyl group, a phthalimidyl group, an imidazolyl group, an acryloyl group, and a nitrophenyl group;
  • the gel precursor cluster is composed of a first gel precursor cluster and a second gel precursor cluster, and the first gel precursor cluster has a second polymer unit content of the second.
  • the present invention relates to a gel precursor cluster, (12) A gel precursor cluster obtained by cross-linking monomer units or polymer units having a critical gelation concentration less than the critical gel concentration, including a solvent, wherein G ′ ⁇ G ′′ in storage elastic modulus G ′ and loss elastic modulus G ′′ The gel precursor clusters having a relationship; (13) The gel precursor cluster according to (12), wherein the loss elastic modulus G ′′ is in the range of 0.005 to 5 Pa at a frequency of 1 Hz; (14) The gel precursor cluster according to (12) or (13), wherein the gel precursor cluster has a fractal dimension of 1.5 to 2.5; (15) The gel precursor cluster according to any one of (12) to (14), wherein the gel precursor cluster has a diameter in the range of 10 to 1000 nm; (16) The gel precursor cluster according to any one of the above (12) to (15), wherein the monomer unit has a vinyl skeleton, or the polymer unit has a polyethylene glycol skeleton or a polyvinyl
  • the electrophilic functional group is selected from the group consisting of N-hydroxy-succinimidyl (NHS) group, sulfosuccinimidyl group, maleimidyl group, phthalimidyl group, imidazolyl group, acryloyl group, and nitrophenyl group,
  • NHS N-hydroxy-succinimidyl
  • the present invention relates to a polymeric gel, (19) A polymer gel obtained by the production method according to any one of (1) to (11) above; (20) A polymer gel in which a polymer unit forms a three-dimensional network structure by cross-linking each other, and includes a solvent, a polymer content of 50 g / L or less, and a storage elastic modulus of 1 to 10,000 Pa at a frequency of 1 Hz.
  • the nucleophilic functional group is selected from the group consisting of an amino group, —SH, and —CO 2 PhNO 2
  • the electrophilic functional group is an N-hydroxy-succinimidyl (NHS) group, a sulfosk
  • the volume of the polymer gel in the range of 30 to 40 ° C.
  • the degree of swelling in the range of volume change of 90 to 500% with respect to the volume at the time of gel preparation is the degree of swelling in the range of volume change of 90 to 500% with respect to the volume at the time of gel preparation, and 0.001 to 5 kPa
  • the polymer gel according to any one of the above (20) to (24) having a swelling pressure; and (26) the swelling degree is in the range of 100 to 200%, and the swelling pressure is 0.1 to 2 kPa.
  • the polymer gel described in (25) above is provided.
  • a gel having a low concentration of polymer content such as an elastic modulus and a swelling degree is obtained by gelling using a gel precursor cluster that is artificially formed in a state immediately before gelation as a seed. It is possible to manufacture in a short time while controlling the physical properties. Thereby, the gel which can avoid the problem of the tissue disorder
  • FIG. 1 is a schematic diagram showing an outline of the production method of the present invention.
  • FIG. 2 is a graph showing the change in elastic modulus with time in a general gelation process.
  • FIG. 3 is a graph showing the change in elastic modulus with time in step a) of the production method of the present invention.
  • FIG. 4 is a graph showing the change in elastic modulus with time in step b) of the production method of the present invention.
  • FIG. 5 is a graph showing gelation time for the case of the present invention ( ⁇ ) using the gel precursor cluster 1 [TAPEG + TNPEG] and the comparative example ( ⁇ ).
  • FIG. 1 is a schematic diagram showing an outline of the production method of the present invention.
  • FIG. 2 is a graph showing the change in elastic modulus with time in a general gelation process.
  • FIG. 3 is a graph showing the change in elastic modulus with time in step a) of the production method of the present invention.
  • FIG. 4 is a graph showing the change in elastic modulus with time
  • FIG. 4 is a graph showing the gelation time for the case of the present invention ( ⁇ ) using the gel precursor cluster 2 [SHPEG + MAPEG] and the comparative example ( ⁇ ).
  • FIG. 7 is a graph showing the size distribution of gel precursor cluster 1 [TAPEG + TNPEG].
  • FIG. 8 is a graph showing the results of measuring the dynamic viscosity characteristics at the gelation critical point of gel precursor cluster 1 [TAPEG + TNPEG].
  • FIG. 9 is a graph showing the fractal dimension of gel precursor cluster 1 [TAPEG + TNPEG].
  • FIG. 10 is a graph showing the polymer concentration dependence of the elastic modulus in polymer gel 1 [TAPEG + TNPEG].
  • FIG. 11 is a graph showing the polymer concentration dependence of the elastic modulus in polymer gel 2 [SHPEG + MAPEG].
  • FIG. 12 is an image showing the time change of swelling of the polymer gel 1 [TAPEG + TNPEG] in the semi-enclosed space.
  • FIG. 13 is a graph showing the results of measuring the change in swelling pressure over time for hydrogel 2 [SHPEG + MAPEG].
  • FIG. 1 is a schematic diagram showing an outline of the production method of the present invention.
  • a monomer unit or a polymer unit (hereinafter referred to as “precursor unit”) that will eventually form a polymer gel is once gelated.
  • the reaction is performed in the immediate state to form a polymer cluster having a structure that does not yet lead to gel formation, that is, a sol state.
  • an appropriate crosslinking agent is added as the second step, and these clusters (gel precursor clusters) are further reacted with each other to crosslink three-dimensionally.
  • the gel precursor cluster is not necessarily a single species having the same composition as described later, and a plurality of gel precursor clusters having different compositions can also be used.
  • the present invention is based on a novel concept of using the gel precursor cluster as a final gel precursor or intermediate. As a result, it was possible to form a gel in a short time even in the case of a low concentration of polymer content, and to find a technique that was difficult in the prior art that the elastic modulus of the gel could be controlled even in a low elastic region. It is a thing.
  • gel generally refers to a dispersion having high viscosity and loss of fluidity.
  • the gel precursor cluster used in the present invention is a sol obtained by reacting a precursor unit in a state immediately before gelation, that is, under a condition of less than the critical gelation concentration.
  • Polymer cluster a sol obtained by reacting a precursor unit in a state immediately before gelation, that is, under a condition of less than the critical gelation concentration.
  • critical gelation concentration means the minimum concentration of precursor units necessary to achieve the gelation in a system in which a gel having a three-dimensional structure is constructed by crosslinking of specific precursor units. Also called the lowest gelling concentration.
  • critical gelation concentration means that, for example, in a system in which two or more precursor units are used, in addition to the case where the total concentration does not reach the concentration that leads to gelation,
  • the case where only the concentration of the body unit is low, that is, the case where the ratio of each precursor unit is not equivalent does not cause gelation is also included.
  • the gel precursor cluster has a structure in which the precursor units are bonded or cross-linked to each other, it is formed under conditions that do not lead to gelation yet. Exists. Such a substituent forms a further cross-link with each other in the reaction between the gel precursor clusters, whereby a final polymer gel having a three-dimensional network structure is obtained.
  • the gel precursor cluster has a relationship of G ′ ⁇ G ”in the storage elastic modulus G ′ and the loss elastic modulus G ′′.
  • the value of the loss elastic modulus G ′′ is larger than the storage elastic modulus G ′ in the polymer before gelation, and thereafter, with gelation, the magnitudes of these physical property values are reversed and G ′
  • G ′ G ′′
  • G ′ G ′′
  • G ′ G ⁇ G
  • G ⁇ G at a frequency of 1 Hz. " ⁇ 100G '.
  • G ′′ of the gel precursor cluster is in the range of 0.005 to 5 Pa at a frequency of 1 Hz, more preferably in the range of 0.01 to 1 Pa, and still more preferably in the range of 0.01 to 0.5 Pa.
  • These elastic moduli can be calculated by a known method such as dynamic viscoelasticity measurement using a known measuring instrument such as a rheometer.
  • the gel precursor cluster in the present invention preferably has a fractal dimension of 1.5 to 2.5. More preferably, it has a fractal dimension of 1.5 to 2.0.
  • the fractal dimension is an index representing how close the three-dimensional structure of the crosslinked structure by the polymer unit is, and the calculation method is, for example, (W. Hess, T. A. Vilgis, and H. H. Winter, Macromolecules 21, 2536 (1988)). Specifically, for example, it can be calculated from dynamic viscoelastic property change at the gel point using dynamic scaling theory.
  • the gel precursor cluster in the present invention preferably has a diameter of 10 to 1000 nm, more preferably 50 to 200 nm.
  • the distribution ratio of the gel precursor cluster having a diameter of about 100 nm is the largest in the distribution.
  • the precursor unit used to form the gel precursor cluster is a monomer or polymer that can form a gel by a gelation reaction (crosslinking reaction, etc.) in a solution. It can be used according to the intended use and shape of the gel. More specifically, in the final gel obtained from the gel precursor cluster, a polymer unit that can form a network structure, particularly a three-dimensional network structure, by cross-linking the polymers to each other is preferable.
  • Examples of the monomer unit used for forming the gel precursor cluster include those having a vinyl skeleton.
  • the polymer unit used to form the gel precursor cluster typically includes a polymer species having a plurality of polyethylene glycol skeleton branches, and in particular, a polymer having four polyethylene glycol skeleton branches. Species are preferred.
  • Such a gel composed of a tetra-branched polyethylene glycol skeleton is generally known as a Tetra-PEG gel, and has an electrophilic functional group such as an active ester structure and a nucleophilic functional group such as an amino group at each end.
  • a network structure network is constructed by an AB-type cross-end coupling reaction between two types of four-branched polymers having the following.
  • Tetra-PEG gels have been reported by previous studies to have an ideal uniform network structure with no heterogeneity in the polymer network in the size region of 200 nm or less (Matsunaga et al., Macromolecules, Vol. 42, No. 4, pp. 1344-1351, 2009).
  • Tetra-PEG gel can be easily prepared in situ by simple two-component mixing of each polymer solution, and the gelation time can be controlled by adjusting the pH and ionic strength during gel preparation. It is. And since this gel has PEG as a main component, it is excellent also in biocompatibility.
  • polymers other than the polyethylene glycol skeleton can be used as long as they can be cross-linked to form a network structure.
  • a polymer having a polyvinyl skeleton such as methyl methacrylate can also be used.
  • the polymer unit forming the gel precursor cluster has one or more nucleophilic groups in the side chain or terminal.
  • a means for reacting and crosslinking two kinds of polymer species that is, a first polymer unit having a functional group and a second polymer unit having one or more electrophilic functional groups at the side chain or terminal is preferable.
  • the total of the nucleophilic functional group and the electrophilic functional group is preferably 5 or more. These functional groups are more preferably present at the terminal.
  • the gel precursor cluster may have a composition in which the content of the first polymer unit is larger than the content of the second polymer unit, or the content of the second polymer unit is the first polymer unit.
  • the composition may be higher than the content of.
  • a polymer gel can be obtained by crosslinking two or more kinds of gel precursor clusters having different compositions.
  • nucleophilic functional group present in the polymer unit examples include an amino group, —SH, or —CO 2 PhNO 2 (Ph represents an o-, m-, or p-phenylene group).
  • the nucleophilic functional group is a —SH group.
  • the nucleophilic functional groups may be the same or different, but are preferably the same. When the functional groups are the same, the reactivity with the electrophilic functional group that forms a cross-linked bond becomes uniform, and it becomes easy to obtain a gel having a uniform three-dimensional structure.
  • an active ester group can be used as the electrophilic functional group present in the polymer unit.
  • active ester groups include N-hydroxy-succinimidyl (NHS) group, sulfosuccinimidyl group, maleimidyl group, phthalimidyl group, imidazolyl group, acryloyl group, and nitrophenyl group.
  • the electrophilic functional group is a maleimidyl group.
  • the electrophilic functional groups may be the same or different, but are preferably the same. When the functional groups are the same, the reactivity with the nucleophilic functional group that forms a cross-linked bond becomes uniform, and it becomes easy to obtain a gel having a uniform three-dimensional structure.
  • Preferred non-limiting specific examples of the polymer unit having a nucleophilic functional group at the end are, for example, represented by the following formula (I) having four polyethylene glycol skeleton branches and an amino group at the end. Compounds.
  • R 11 to R 14 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R 16 —O—R 17 —, —R 16 —NH—R 17 —, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, Or —R 16 —CO—NH—R 17 —, wherein R 15 represents a C 1 -C 7 alkylene group, R 16 represents a C 1 -C 3 alkylene group, and R 17 represents C It shows the 1 -C 5 alkylene group. )
  • n 11 to n 14 may be the same or different from each other. As the values of n 11 to n 14 are closer, a uniform three-dimensional structure can be obtained and the strength becomes higher. For this reason, in order to obtain a highly strong gel, it is preferable that it is the same. When the value of n 11 to n 14 is too high, the gel strength is weakened, and when the value of n 11 to n 14 is too low, the gel is hardly formed due to steric hindrance of the compound. Therefore, n 11 to n 14 include integer values of 25 to 250, preferably 35 to 180, more preferably 50 to 115, and particularly preferably 50 to 60. The molecular weight is 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and more preferably 1 ⁇ 10 4 to 2 ⁇ 10 4 Da.
  • R 11 to R 14 are linker sites that connect the functional group and the core portion.
  • R 11 to R 14 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
  • R 11 to R 14 are a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R 16 —O—R 17 —, —R 16 —NH—R 17 —, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, or —R 16 —CO—NH— R 17 -is shown.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • C 1 -C 7 alkylene group means an alkylene group having 1 to 7 carbon atoms which may have a branch, and is a straight chain C 1 -C 7 alkylene group or one or two It means a C 2 -C 7 alkylene group having 2 or more branches (the number of carbons including branches is 2 or more and 7 or less).
  • Examples of C 1 -C 7 alkylene groups are a methylene group, an ethylene group, a propylene group and a butylene group.
  • C 1 -C 7 alkylene groups are —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH (CH 3 ) —, — (CH 2 ) 3 —, — ( CH (CH 3 )) 2 —, — (CH 2 ) 2 —CH (CH 3 ) —, — (CH 2 ) 3 —CH (CH 3 ) —, — (CH 2 ) 2 —CH (C 2 H 5 )-,-(CH 2 ) 6 -,-(CH 2 ) 2 -C (C 2 H 5 ) 2- , and-(CH 2 ) 3 C (CH 3 ) 2 CH 2- .
  • the “C 2 -C 7 alkenylene group” is an alkenylene group having 2 to 7 carbon atoms in the form of a chain having one or two or more double bonds in the chain or having a branched chain. And a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms of adjacent carbon atoms from an alkylene group.
  • polymer unit having an electrophilic functional group at the terminal include, for example, four polyethylene glycol skeleton branches and an N-hydroxy-succinimidyl (NHS) group at the terminal.
  • polymer unit having an electrophilic functional group at the terminal include, for example, four polyethylene glycol skeleton branches and an N-hydroxy-succinimidyl (NHS) group at the terminal.
  • NHS N-hydroxy-succinimidyl
  • n 21 to n 24 may be the same or different. The closer the values of n 21 to n 24 are, the more preferable it is because the gel can have a uniform three-dimensional structure and has high strength, and the same is preferable. If the value of n 21 to n 24 is too high, the gel strength is weakened. If the value of n 21 to n 24 is too low, the gel is difficult to be formed due to steric hindrance of the compound. Therefore, n 21 to n 24 may be integer values of 5 to 300, preferably 20 to 250, more preferably 30 to 180, still more preferably 45 to 115, and even more preferably 45 to 55.
  • the molecular weight of the second four-branched compound of the present invention is 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and 1 ⁇ 10 4 to 2 ⁇ . 10 4 Da is more preferable.
  • R 21 to R 24 are linker sites that connect the functional group and the core portion.
  • R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
  • R 21 to R 24 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R 26 —O—R 27 —, —R 26 —NH—R 27 —, —R 26 —CO 2 —R 27 —, —R 26 —CO 2 —NH—R 17 —, —R 26 —CO—R 27 —, Or —R 26 —CO—NH—R 27 — is shown.
  • R 25 represents a C 1 -C 7 alkylene group.
  • R 26 represents a C 1 -C 3 alkylene group.
  • R 27 represents a C 1 -C 5 alkylene group.
  • the alkylene group and the alkenylene group may have one or more arbitrary substituents.
  • substituents include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group.
  • a group, an aryl group, and the like can be mentioned, but are not limited thereto.
  • the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moiety of other substituents containing an alkyl moiety (for example, an alkyloxy group or an aralkyl group).
  • a functional group when defined as “may have a substituent”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, When it has two or more substituents, they may be the same or different.
  • substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent.
  • step a) by adjusting the initial concentration of the precursor unit, the precursor unit is reacted under a condition below the critical gelation concentration, and a sol state that does not lead to gelation, A cluster of polymers with the structure just before is formed. Since this cluster can be said to be a precursor to the final gel, it is referred to as a “gel precursor cluster” in the present application.
  • the initial concentration of the precursor unit to a condition lower than the critical gelation concentration
  • a condition lower than the critical gelation concentration for example, when using two types of polymer units having a nucleophilic functional group or an electrophilic functional group as described above, Do not cause gelation by using low-concentration conditions that include them in an equivalent amount but not enough to cause gelation as a whole, or by reducing the concentration of one polymer unit to a low concentration, ie, non-equivalents Conditions can be used.
  • the critical gelation concentration depends on the type of precursor unit used, but such concentration is known in the art or can be easily determined experimentally by those skilled in the art. be able to. Typically, it is 5 to 50 g / L, and the lower limit is about 1/5 of the overlapping density.
  • the overlapping concentration is a concentration at which the polymer unit fills the solution, and the calculation method can refer to, for example, Polymer® Physics (by M. Rubinstein, R. Colby). Specifically, for example, it can be determined from the viscosity measurement of a dilute solution using the Flory Fox equation.
  • Step a) can typically be performed by mixing or stimulating a solution containing two types of precursor units. It can also be carried out by radical polymerization of a monomer using a radical initiator.
  • concentration, the addition rate, the mixing rate, and the mixing ratio of each solution are not particularly limited, and can be appropriately adjusted by those skilled in the art. In addition, even when three or more kinds of precursor units are used, it will be apparent that a solution containing the corresponding precursor units can be prepared in the same manner and mixed appropriately.
  • the solvent of the solution containing the precursor unit water, alcohols such as ethanol, DMSO, and the like can be used.
  • an appropriate pH buffer solution such as a phosphate buffer solution can be used.
  • a two-component mixing syringe as disclosed in International Publication No. WO2007 / 083522 can be used.
  • the temperature of the two liquids at the time of mixing is not particularly limited as long as the precursor units are dissolved and each liquid has fluidity.
  • the temperature of the solution when mixing may be in the range of 1 ° C. to 100 ° C.
  • the temperature of the two liquids may be different, but the same temperature is preferable because the two liquids are easily mixed.
  • step b) the gel precursor clusters obtained in step a) are further reacted with each other to crosslink each other three-dimensionally to obtain a polymer gel as a final product.
  • the gel precursor cluster is formed so as to be in a state before the gel point, the substituent used for crosslinking in each precursor unit remains in an unreacted state.
  • the final gel is formed.
  • a cross-linking agent for cross-linking the gel precursor clusters can be added or stimulated.
  • a crosslinking agent those having the same substituent as the crosslinking group in the polymer unit can be used, and the polymer unit itself can be used as a crosslinking agent and can be additionally added.
  • the concentration is lower.
  • a crosslinking agent bis (sulfosuccinimidyl) glutarate (BS 2 G), DL-dithiothreitol (DTT), a synthetic peptide having a thiol group at the terminal, or the like can be used.
  • BS 2 G bis (sulfosuccinimidyl) glutarate
  • DTT DL-dithiothreitol
  • a synthetic peptide having a thiol group at the terminal or the like
  • a stimulus for crosslinking for example, a functional group that causes photodimerization (maleimide group or the like) can be irradiated with ultraviolet light.
  • the final gel can be obtained in a reaction time of 2 hours or less, preferably a reaction time of 1 hour or less.
  • a long reaction time is required (depending on the system, for example, about 8 hours when the polymer content is 10 g / L or less).
  • a gel can be produced in a much shorter time.
  • step b) Other reaction solution conditions in step b) are the same as in step a).
  • the polymer gel obtained according to the present invention is obtained in a short reaction time as described above while the polymer content is low, and controls physical properties such as elastic modulus within a desired range. Is possible. As shown in FIG. 2, the elastic modulus in the vicinity of the gel point generally increases drastically, so that a low elastic modulus gel controlled to a specific value in a low elastic modulus range such as 10 to 1000 Pa is obtained. It was difficult. On the other hand, the gel of the present invention has an elastic modulus controlled in a low elastic region by producing the gel via the gel precursor cluster.
  • the polymer gel of the present invention is a polymer gel having a three-dimensional network structure formed by cross-linking polymer units, and has a low concentration of polymer content, a low region elastic modulus, and a specific fractal. It has a dimension.
  • the polymer content in the polymer gel of the present invention is 50 g / L or less, preferably 40 g / L or less, more preferably 15 to 30 g / L.
  • the polymer gel of the present invention has a storage elastic modulus G ′ of 1 to 10000 Pa, preferably 10 to 1000 Pa. This range corresponds to the vitreous body (several tens of Pa) and vocal cords (several hundreds Pa) in the living body.
  • the polymer gel of the present invention preferably has a loss elastic modulus G ′′ of 1 to 100 Pa. These elastic moduli can be calculated by a known method using a known measuring instrument.
  • the polymer gel of the present invention preferably has a fractal dimension of 1.5 to 2.5. More preferably, it has a fractal dimension of 1.5 to 2.0.
  • the fractal dimension is an index representing how close the crosslinked structure in the gel is to a three-dimensional structure, and the calculation method thereof is known in the art as described above.
  • the volume of the polymer gel in the range of 30 to 40 ° C. in an aqueous solution has a degree of swelling in the range of volume change of 90 to 500% with respect to the volume at the time of gel preparation. It has a swelling pressure of 001 to 5 kPa.
  • the swelling degree is in the range of 100 to 200%, and the swelling pressure is 0.1 to 2 kPa.
  • a low swelling pressure means that the pressure applied to the outside when the gel is placed in a closed space is low. In other words, even in the living body, even when it absorbs moisture and expands with time, it means that tissue damage is low.
  • the gel precursor cluster has a first polymer unit having one or more nucleophilic functional groups on the side chain or terminal and a second polymer unit having one or more electrophilic functional groups on the side chain or terminal.
  • the gel precursor cluster comprises a first gel precursor cluster having a composition in which the content of the first polymer unit is larger than the content of the second polymer unit, and the second polymer unit.
  • Two types of gel precursor clusters of the second gel precursor cluster having a composition higher than the content of the first polymer unit can be used, and these two types of gel precursor clusters having different compositions can be used together. It can be a crosslinked polymer gel having a three-dimensional network structure.
  • the polymer gel of the present invention can be processed into various shapes such as a thin film according to its use.
  • any method known in the art can be used.
  • the thin film can be obtained by a technique such as coating on a flat substrate such as glass in a state where the gel has fluidity before it is completely solidified.
  • TAPEG tetraamine-polyethylene glycol
  • TNPEG N-hydroxy-succinimidyl-polyethylene glycol
  • THPEG tetrahydroxyl-polyethylene glycol having a hydroxyl group at the terminal
  • SHPEG tetrathiol-polyethylene glycol
  • MAPEG tetramaleimidyl-polyethylene glycol
  • maleimidyl group at the terminal were those commercially available from NOF Corporation. .
  • the molecular weight of all is 10,000.
  • TAPEG synthesis THPEG (0.1935 mmol, 3.87 g, 1.0 equiv) was dissolved in benzene, lyophilized, dissolved in 62 mL of THF, and triethylamine (TEA) (0.1935 mmol, 3.87 g, 1.0 equiv) was added. . To another eggplant flask, 31 mL of THF and methanesulfonyl chloride (MsCl) (0.1935 mmol, 3.87 g, 1.0 equiv) were added and placed in an ice bath.
  • TFA triethylamine
  • a THF solution of MsCl was added dropwise to a THF solution of THPEG and TEA over about 1 minute, stirred in an ice bath for 30 minutes, and then stirred at room temperature for 1 hour and a half. After completion of the reaction, it was reprecipitated in diethyl ether, and the precipitate was taken out by filtration. Furthermore, it wash
  • TAPEG TAPEG
  • n 11 to n 14 were 50 to 60 when the molecular weight of TAPEG was about 10,000 (10 kDa), and 100 to 115 when the molecular weight was about 20,000 (20 kDa).
  • TNPEG THPEG (0.2395 mmol, 4.79 g, 1.0 equiv) was dissolved in THF, 0.7 mol / L glutaric acid / THF solution (4.790 mmol, 6.85 mL, 20 equiv) was added, and Ar was present for 6 hours. Stir. After completion of the reaction, it was added dropwise to 2-propanol and centrifuged 3 times. The obtained white solid was transferred to a 300 mL eggplant flask, and the solvent was distilled off under reduced pressure using an evaporator. The residue was dissolved in benzene, and the insoluble material was removed by filtration.
  • Tetra-PEG-COOH was dissolved in THF, and N-hydrosuccinamide (2.589 mmol, 0.299 g, 12 equiv), N, N′-diisopropylsk Cinamide (1.732 mmol, 0.269 mL, 8.0 equiv) was added, and the mixture was stirred with heating at 40 ° C. for 3 hr. After completion of the reaction, the solvent was distilled off under reduced pressure using an evaporator.
  • TNPEG TNPEG as a white solid.
  • the chemical formula of the prepared TNPEG is shown in Formula (IIa).
  • n 21 to n 24 were 45 to 55 when the molecular weight of TNPEG was about 10,000 (10 k), and 90 to 115 when the molecular weight was about 20,000 (20 k).
  • TAPEG 1.0 ⁇ 10 4 g / mol
  • TNPEG 1.0 ⁇ 10 4 g / mol
  • the total polymer concentration was 60 g / L.
  • the obtained two solutions were mixed in another container, and defoamed and stirred with a rotation / revolution mixer. Thereafter, the mixture was quickly transferred to a falcon tube, capped to prevent drying, and allowed to stand at room temperature for 12 hours.
  • Gel precursor cluster 2 [SHPEG + MAPEG] Gel precursor cluster 2 was similarly synthesized using SHPEG and MAPEG. The total polymer concentration was 60 g / L. At this time, a plurality of samples containing two types of gel precursor clusters containing either one in excess were prepared so that SHPEG: MAPEG had a molar ratio of (1-r): r.
  • concentration of a gel precursor cluster is shown in FIG.
  • the vertical axis in FIG. 5 is the gelation time t gel (seconds), and the horizontal axis is the polymer content c (g / L) in the polymer gel.
  • ⁇ in the figure is an example of the polymer gel of the present invention gelled by the gel precursor cluster, ⁇ is a comparative example gelled directly from the polymer unit by the conventional method without using the gel precursor cluster It is. As a result, it is understood that a polymer gel can be obtained in a short reaction time when gelled by a gel precursor cluster.
  • the gelation time of 7 hours or more is required in the case of the conventional method, whereas when the gel precursor cluster of the present invention is used. Gelled within 1.5 hours. Moreover, in the region having a higher concentration than that, when the gel precursor cluster was used, the gelation time was less than 30 minutes.
  • ⁇ in the figure is an example of the polymer gel of the present invention gelled by the gel precursor cluster
  • is a comparative example gelled directly from the polymer unit by the conventional method without using the gel precursor cluster It is.
  • the gel precursor cluster of the present invention gelled in 3 minutes. This indicates that the gel precursor cluster can be injected into the eye during vitreous surgery and gelled in vivo.
  • FIG. 8 shows the results of measuring the dynamic viscosity characteristics at the gelation critical point when using initial concentrations of various polymer units.
  • the vertical axis in FIG. 8 is the storage elastic modulus G ′ ( ⁇ in the figure) and the loss elastic modulus G ′′ ( ⁇ in the figure), and the horizontal axis is the frequency.
  • (A) to (d) are respectively As shown in Fig. 8, the power law of G 'and G "increased as the initial concentration decreased.
  • the fractal dimension of the gel precursor cluster was calculated by dynamic scaling theory. The result is shown in FIG.
  • the vertical axis in FIG. 9 is the fractal dimension, and the horizontal axis is the initial density. From the figure, it is suggested that the fractal dimension D deviates downward from the theoretical predicted value (dotted line in the figure) as the concentration is lower, and a sparser structure is formed.
  • Example 3 the polymer concentration dependency of the elastic modulus of the polymer gel 2 obtained in Example 3 was measured.
  • the results are shown in FIG. ⁇ in the figure is an example of the polymer gel of the present invention gelled by the gel precursor cluster, and ⁇ is a comparative example gelled directly from the polymer unit by the conventional method without using the gel precursor cluster It is. In either case, the polymer gel of the present invention shows a higher elastic modulus, suggesting that an effective three-dimensional network structure is formed.
  • FIG. ⁇ is an example of a polymer gel of the present invention gelled by a gel precursor cluster (polymer concentration 10 g / L), and ⁇ is a polymer unit by a conventional method without using a gel precursor cluster. It is a comparative example (polymer concentration 140 g / L) directly gelled. As shown in FIG. 13, in the comparative example, the equilibrium reached 12 kPa with time, but in the polymer gel of the present invention, it was always constant at about 0.19 kPa. This result shows that the polymer gel of the present invention can be used stably for a long period of time even when applied for a long period of time in a living body.
  • Tri-APEG triamine-polyethylene glycol
  • Tri-NPEG tri-N-hydroxy-succinimidyl-polyethylene glycol (NHS-PEG)
  • Tri-APEG triamine-polyethylene glycol
  • Tri-NPEG tri-N-hydroxy-succinimidyl-polyethylene glycol
  • the total polymer concentration was 40 g / L.
  • the obtained two solutions were mixed in another container, and defoamed and stirred with a rotation / revolution mixer. Thereafter, the mixture was quickly transferred to a falcon tube, capped to prevent drying, and allowed to stand at room temperature for 12 hours.
  • the resulting solution was diluted with water to 25 g / L.
  • the amount of unreacted amino groups in the solution was calculated, and a cross-linking agent (Bis- (sulfosuccinimidyl) glutarate (BS 2 G)) was added so as to be equal to that amount, followed by defoaming and stirring with a rotation / revolution mixer. Thereafter, the mixture was quickly transferred to a falcon tube, capped to prevent drying, and allowed to stand at room temperature for 12 hours. Finally, a gel was obtained in the same manner as the four-branch system.
  • TMPEG Tetra-PEG-maleimide
  • TTPEG Tetra-PEG-thiol
  • the total polymer concentration was 60 g / L.
  • the obtained two solutions were mixed with a falcon tube, capped to prevent drying, and allowed to stand at room temperature for 12 hours.
  • Preparation of polymer gel Weigh the gel precursor cluster solution so that the total amount of polymer gel is 2 mL and the polymer concentration is 13 g / L (Group 1) and 11 g / L (Group 2), respectively, and put into a syringe. I put it in. For groups 1 and 2, calculate the amount of unreacted maleimide group and thiol group in each solution, and weigh each of the cross-linking agents (DL-dithiothreitol and 1,8-Bismaleimidodiethyleneglycol) so that they are equal to the amount. It was.
  • This cross-linking agent is dissolved in citrate-phosphate buffer (pH 5.8, 5 mM (NaCl, 149 mM)) of the total amount of the polymer gel and the difference amount of the gel precursor cluster, respectively. Placed in syringe. The two solutions were mixed using a three-way stool and injected 1 mL into the back of an anesthetized mouse. As a comparative example, TMPEG alone (Monomer A) and TTPEG alone (Monomer B) were dissolved in citrate-phosphate buffer (pH 5.8, 5 mM (NaCl, 149 mM)) to 15 g / L, respectively.
  • citrate and citrate-phosphate buffer pH 5.8, 5 mM (NaCl, 149 mM) (control sample) were prepared, and 1 mL each was injected into anesthetized mice. One week after injection, mouse tissues were observed.

Abstract

【課題】 短時間で作製でき、かつ弾性率や膨張圧等の制御された物性を有する低濃度の高分子含有量のゲルを提供することを課題とする。 【解決手段】 ゲル前駆体クラスターが互いに架橋して3次元網目構造を形成している高分子ゲルの製造方法であって、a)臨界ゲル化濃度未満のモノマーユニット又はポリマーユニットを架橋させて前記ゲル前駆体クラスターを形成する工程、ここで、前記ゲル前駆体クラスターは貯蔵弾性率G'と損失弾性率G"においてG'<G"の関係性を有し;及びb)前記ゲル前駆体クラスターを架橋剤により互いに架橋させることによって、3次元網目構造を有するゲルを得る工程、を含むことを特徴とする、該製造方法。

Description

ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
 本発明は、新規な高分子ハイドロゲルに関する。
 近年、網状構造を有する高分子ゲルは、その優れた保水能力及び生体適合性等の特性を有することから、人工組織や再生足場用材料等として生体内に埋設する研究が注目されている(非特許文献1)。しかしながら、高分子ゲルは、水中ではゲル内部と外部環境の濃度差から生じる浸透圧や経時変化等による分解によって膨張してしまうため、埋設された周囲の組織に圧迫障害を引き起こすという問題があった。
 かかる膨張圧は、ゲルを構成する高分子濃度の二乗に比例するため、膨潤による影響は特に高分子濃度が高い場合に顕著となる。膨潤率を下げるために架橋度を上げたとしても、経時変化によって架橋が切断されることになるために、高分子の濃度を下げることが本質的な解決策となる。しかしながら、膨潤による組織障害が生じないレベルまで高分子濃度を低減させてしまうと、従来の高分子ゲルの製造方法では短時間でゲルを作成することは困難であった。また、高分子濃度が低く、ゲル化点近傍の領域でゲルを形成させる場合には、弾性率等の物性が劇的に変化するため、その物性を制御することが困難であった。
Sakaiら、Macromolecules、41、5379-5384、2008 Kurakazuら、Macromolecules、43、3935-3940、2010 Kamataら、Science、343、873-875、2014
 そこで、本発明は、生体内に埋設した際の膨潤による組織障害の問題を回避し得るゲル及びその製造方法の開発を目的とし、短時間で作製でき、かつ弾性率や膨張圧等の制御された物性を有する低濃度の高分子含有量のゲルを提供することを課題とする。
 本発明者らは、前記課題を解決すべく鋭意検討の結果、作為的にゲル化寸前の状態、より詳細には貯蔵弾性率G’が損失弾性率G”より小さい状態を有するゲル前駆体クラスターを形成し、その後のゲル化反応における種として用いることによって、当該ゲル前駆体クラスターが非常にゲル化しやすいポリマーユニットとして機能し、短時間で、かつ制御された物性を有する低高分子濃度のゲルを得ることができることを見出し、本発明を完成するに至ったものである。
 すなわち、本発明は、一態様において、
(1)ゲル前駆体クラスターが互いに架橋して3次元網目構造を形成している高分子ゲルの製造方法であって、a)臨界ゲル化濃度未満のモノマーユニット又はポリマーユニットを架橋させて前記ゲル前駆体クラスターを形成する工程、ここで、前記ゲル前駆体クラスターは貯蔵弾性率G’と損失弾性率G”においてG’<G”の関係性を有し;及びb)前記ゲル前駆体クラスターを架橋剤により互いに架橋させることによって、3次元網目構造を有するゲルを得る工程、を含むことを特徴とする、該製造方法を提供するものである。
 また、本発明の製造方法に関する好ましい態様は、
(2)前記損失弾性率G”が、1Hzの周波数において0.005~5Paの範囲である、上記(1)に記載の製造方法;
(3)前記ゲル前駆体クラスターが、1.5~2.5のフラクタル次元を有する、上記(1)又は(2)に記載の製造方法;
(4)前記ゲル前駆体クラスターが、10~1000nmの範囲の直径を有する、上記(1)~(3)のいずれか1に記載の製造方法;
(5)前記ゲルが、50g/L以下の高分子含有量である、上記(1)~(4)のいずれか1に記載の製造方法;
(6)前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、上記(1)~(5)のいずれか1に記載の製造方法;
(7)前ゲル前駆体クラスターが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、上記(1)~(6)のいずれか1に記載の製造方法;
(8)前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、上記(7)に記載の製造方法; 
(9)前記ゲル前駆体クラスターが、第1のゲル前駆体クラスターと第2のゲル前駆体クラスターからなり、前記第1のゲル前駆体クラスターは、第1のポリマーユニットの含有量が第2のポリマーユニットの含有量より多く、前記第2のゲル前駆体クラスターは、第2のポリマーユニットの含有量が第1のポリマーユニットの含有量より多い、上記(7)又は(8)に記載の製造方法;
(10)前記工程b)が、1時間以内の反応時間で行われる、上記(1)~(9)のいずれか1に記載の製造方法;及び
(11)前記工程b)における架橋剤が、ビス(スルホスクシンイミジル)グルタレート(BSG)やDL-ジチオトレイトール(DTT)、又は末端にチオール基を有する合成ペプチドである、上記(1)~(10)のいずれか1に記載の製造方法
を提供するものである。
 別の態様において、本発明は、ゲル前駆体クラスターに関し、
(12)臨界ゲル化濃度未満のモノマーユニット又はポリマーユニットを架橋させて得られるゲル前駆体クラスターであって、溶媒を含み、貯蔵弾性率G’と損失弾性率G”においてG’<G”の関係性を有する、該ゲル前駆体クラスター;
(13)前記損失弾性率G”が、1Hzの周波数において、0.005~5Paの範囲である、上記(12)に記載のゲル前駆体クラスター;
(14)前記ゲル前駆体クラスターが、1.5~2.5のフラクタル次元を有する、上記(12)又は(13)に記載のゲル前駆体クラスター;
(15)前記ゲル前駆体クラスターが、10~1000nmの範囲の直径を有する、上記(12)~(14)のいずれか1に記載のゲル前駆体クラスター;
(16)前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、上記(12)~(15)のいずれか1に記載のゲル前駆体クラスター;
(17)側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、上記(12)~(16)のいずれか1に記載のゲル前駆体クラスター;及び
(18)前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、上記(17)に記載のゲル前駆体クラスター
を提供するものである。
 さらなる態様において、本発明は、高分子ゲルに関し、
(19)上記(1)~(11)のいずれか1に記載の製造方法により得られる、高分子ゲル;
(20)ポリマーユニットが互いに架橋することにより3次元網目構造を形成した高分子ゲルであって、溶媒を含み、50g/L以下の高分子含有量、1Hzの周波数において1~10000Paの貯蔵弾性率G’、及び1.5~3.0のフラクタル次元を有する、ことを特徴とする、該高分子ゲル;
(21)1~100Paの損失弾性率G”を有する、上記(20)に記載の高分子ゲル;
(22)前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、上記(20)又は(21)に記載の高分子ゲル;
(23)前記ポリマーユニットが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、上記(20)~(22)のいずれか1に記載の高分子ゲル;
(24)前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、上記(23)に記載の高分子ゲル;
(25)水溶液中、30~40℃の範囲における前記高分子ゲルの体積が、ゲル作成時の体積に対して90~500%の体積変化の範囲の膨潤度であり、0.001~5kPaの膨潤圧を有する、上記(20)~(24)のいずれか1に記載の高分子ゲル;及び
(26)前記膨潤度が100~200%の範囲であり、前記膨潤圧が0.1~2kPaである、上記(25)に記載の高分子ゲル
を提供するものである。
 本発明によれば、作為的にゲル化寸前の状態で形成させたゲル前駆体クラスターを種として用いてゲル化させることによって、低濃度の高分子含有量のゲルを弾性率や膨潤度等の物性を制御しつつ、短時間で作製することが可能となる。それにより、生体内に埋設した場合等において膨潤による組織障害の問題を回避し得るゲルを提供することができる。かかるゲルは、人工声帯などの生体内の閉鎖腔や半閉鎖腔において適用することができる。
図1は、本発明の製造方法の概要を示す模式図である。 図2は、一般的なゲル化工程における、弾性率の時間変化を示すグラフである。 図3は、本発明の製造方法の工程a)における、弾性率の時間変化を示すグラフである。 図4は、本発明の製造方法の工程b)における、弾性率の時間変化を示すグラフである。 図5は、ゲル前駆体クラスター1[TAPEG+TNPEG]を用いた本発明の場合(△)と比較例(○)について、ゲル化時間を示すグラフである。 図4は、ゲル前駆体クラスター2[SHPEG+MAPEG]を用いた本発明の場合(○)と比較例(□)について、ゲル化時間を示すグラフである。 図7は、ゲル前駆体クラスター1[TAPEG+TNPEG]のサイズ分布を示すグラフである。 図8は、ゲル前駆体クラスター1[TAPEG+TNPEG]のゲル化臨界点における動的粘度特性を測定した結果を示すグラフである。 図9は、ゲル前駆体クラスター1[TAPEG+TNPEG]のフラクタル次元を示すグラフである。 図10は、高分子ゲル1[TAPEG+TNPEG]における弾性率の高分子濃度依存性を示すグラフである。 図11は、高分子ゲル2[SHPEG+MAPEG]における弾性率の高分子濃度依存性を示すグラフである。 図12は、半閉鎖空間における高分子ゲル1[TAPEG+TNPEG]の膨潤の時間変化を示す画像である。 図13は、ハイドロゲル2[SHPEG+MAPEG]について、膨潤圧の時間変化を測定した結果を示すグラフである。
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 図1は、本発明の製造方法の概要を示す模式図である。第1の工程として、図1a)に示すように、最終的に高分子ゲルを構成することとなるモノマーユニットもしくはポリマーユニット(以下、これらを「前駆体ユニット」という。)を、いったんゲル化の寸前の状態で反応させて、未だゲル形成に至らない構造を有する、すなわちゾル状態のポリマークラスターを形成させる。そのうえで、第2の工程として、図1b)に示すように、第2の工程として、適切な架橋剤を添加し、これらクラスター(ゲル前駆体クラスター)どうしをさらに反応させ、互いに3次元的に架橋させることで最終生成物である高分子ゲルを得ることを特徴とするものである。ここで、ゲル前駆体クラスターは、後述のように必ずしも同一組成の単一種である場合に限らず、異なる組成を有する複数のゲル前駆体クラスターを用いることもできる。
 本発明は、当該ゲル前駆体クラスターを、いわば最終的なゲルの前駆体或いは中間体として用いるという新規なコンセプトに基づくものである。これにより、低濃度の高分子含有量の場合でも、短時間にゲルを形成させることができ、また、低弾性領域においてもゲルの弾性率を制御できるという従来技術では困難であった手法を見出したものである。ここで、「ゲル」とは、一般に、高粘度で流動性を失った分散系をいう。
(1)ゲル前駆体クラスター
 本発明において用いられるゲル前駆体クラスターは、上述のように、ゲル化の寸前の状態、すなわち臨界ゲル化濃度未満の条件で前駆体ユニットを反応させることによって得られるゾル状のポリマークラスターである。ここで、「臨界ゲル化濃度と」は、特定の前駆体ユニットの架橋によって3次元構造のゲルを構築する系において、当該ゲル化を達成するために必要な前駆体ユニットの最低濃度を意味し、最低ゲル化濃度とも呼ばれる。本発明において、臨界ゲル化濃度という語には、例えば、2種以上の前駆体ユニットが用いられる系では、それら全体の濃度がゲル化に至る濃度に達しない場合に加えて、1種の前駆体ユニットの濃度だけが低い場合、すなわち各前駆体ユニットの比率が非当量であることによってゲル化を生じさせない場合も含まれる。
 当該ゲル前駆体クラスターは、前駆体ユニットが相互に結合ないし架橋した構造を有するものの、未だゲル化に至らない条件で形成されたものであるため、前駆体ユニットにおいて未反応の状態の置換基が存在する。かかる置換基が、ゲル前駆体クラスター間の反応において互いにさらなる架橋を形成することにより3次元網目構造を有する最終的な高分子ゲルが得られることとなる。
 当該ゲル前駆体クラスターは、貯蔵弾性率G’と損失弾性率G”においてG’<G”の関係性を有する。図2に示すように、一般に、ゲル化する以前のポリマーでは損失弾性率G”の値が貯蔵弾性率G’より大きく、その後、ゲル化とともに、これらの物性値の大小が逆転してG’のほうが大きくなることが知られている。そして、G’=G”となる点が、いわゆるゲル化点である。したがって、ゲル前駆体クラスターがG’<G”であることは、それがゾル状態であって、未だゲル化に至っていない状態であることを意味する。好ましくは、1Hzの周波数においてG’<G”<100G’である。
 好ましくは、当該ゲル前駆体クラスターのG”は、1Hzの周波数において0.005~5Paの範囲であり、より好ましくは、0.01~1Pa、さらに好ましくは、0.01~0.5Paの範囲である。これらの弾性率は、レオメーター等の公知の測定機器を用いて、動的粘弾性測定等の公知の方法で算出することができる。
 また、本発明におけるゲル前駆体クラスターは、好ましくは、1.5~2.5のフラクタル次元を有する。より好ましくは、1.5~2.0のフラクタル次元を有する。ここで、フラクタル次元とは、ポリマーユニットによる架橋構造が、どの程度3次元的な構造に近い状態かを表す指標であり、その算出方法は、例えば、(W. Hess, T. A. Vilgis, and H. H. Winter, Macromolecules 21, 2536 (1988))を参照することができる。具体的には、例えば、ゲル化点における動的粘弾性特性の変化から、動的スケーリング理論を用いて計算することができる。
 本発明におけるゲル前駆体クラスターは、好ましくは、10~1000nm、より好ましくは、50~200nmの直径を有する。また、好ましくは、その分布において、100nm程度の直径を有するゲル前駆体クラスターの存在割合が最も多いことが望ましい。
 ゲル前駆体クラスターを形成するために用られる前駆体ユニットは、溶液中でのゲル化反応(架橋反応等)によってゲルを形成し得るモノマーもしくはポリマーであれば、当該技術分野において公知のものを最終的なゲルの用途や形状等に応じて用いることができる。より詳細には、ゲル前駆体クラスターから得られる最終的なゲルにおいて、ポリマーが互いに架橋にすることにより網目構造、特に、3次元網目構造を形成し得るポリマーユニットが好ましい。
 ゲル前駆体クラスターを形成するために用られるモノマーユニットは、例えば、ビニル骨格を有するものが挙げられる。また、ゲル前駆体クラスターを形成するために用られるポリマーユニットとしては、代表的には、複数のポリエチレングリコール骨格の分岐を有するポリマー種が挙げられ、特に、4つのポリエチレングリコール骨格の分岐を有するポリマー種が好ましい。かかる四分岐型のポリエチレングリコール骨格よりなるゲルは、一般に、Tetra-PEGゲルとして知られており、それぞれ末端に活性エステル構造等の求電子性の官能基とアミノ基等の求核性の官能基を有する2種の四分岐高分子間のAB型クロスエンドカップリング反応によって網目構造ネットワークが構築される。Tetra-PEGゲルは、これまでの研究から、200nm以下のサイズ領域で高分子網目に不均一性がなく、理想的な均一網目構造を有することが報告されている(Matsunagaら、Macromolecules、Vol.42、No.4、pp.1344-1351、2009)。また、Tetra-PEGゲルは各高分子溶液の単純な二液混合で簡便にその場で作製可能であり、ゲル調製時のpHやイオン強度を調節することでゲル化時間を制御することも可能である。そして、このゲルはPEGを主成分としているため、生体適合性にも優れている。
 ただし、互いに架橋して網目構造ネットワークを形成し得るものであればポリエチレングリコール骨格以外のポリマーも用いることができる。例えば、メチルメタクリレートなどのポリビニル骨格を有するポリマーも用いることができる。
 必ずしもこれらに限定されるものではないが、最終的なゲルにおいて、網目構造ネットワークを形成するためには、ゲル前駆体クラスターを形成する前記ポリマーユニットが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性官能基を有する第2のポリマーユニットの2種類のポリマー種を反応させて架橋させる手段が好適である。ここで、求核性官能基と求電子性官能基の合計は、5以上であることが好ましい。これらの官能基は、末端に存在することがさらに好ましい。また、ゲル前駆体クラスターは、第1のポリマーユニットの含有量が第2のポリマーユニットの含有量より多い組成であることもできるし、又は第2のポリマーユニットの含有量が第1のポリマーユニットの含有量より多い組成であることもできる。後述のように、好ましい態様において、このような組成が異なる2種類以上のゲル前駆体クラスターを架橋させて高分子ゲルを得ることができる。
 ポリマーユニットに存在する求核性官能基としては、アミノ基、-SH、又は-COPhNO(Phは、o-、m-、又はp-フェニレン基を示す)などを挙げることができ、当業者であれば公知の求核性官能基を適宜用いることができる。好ましくは、求核性官能基は-SH基である。求核性官能基は、それぞれ同一であっても、異なってもよいが、同一である方が好ましい。官能基が同一であることによって、架橋結合を形成することとなる求電子性官能基との反応性が均一になり、均一な立体構造を有するゲルを得やすくなる。
 ポリマーユニットに存在する求電子性官能基としては、活性エステル基を用いることができる。このような活性エステル基としては、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基などを挙げることができ、当業者であればその他の公知の活性エステル基を適宜用いることができる。好ましくは、求電子性官能基はマレイミジル基である。求電子性官能基は、それぞれ同一であっても、異なってもよいが、同一である方が好ましい。官能基が同一であることによって、架橋結合を形成することとなる求核性官能基との反応性が均一になり、均一な立体構造を有するゲルを得やすくなる。
 末端に求核性官能基を有するポリマーユニットとして好ましい非限定的な具体例には、例えば、4つのポリエチレングリコール骨格の分岐を有し、末端にアミノ基を有する下記式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、R11~R14は、それぞれ同一又は異なり、C-Cアルキレン基、C-Cアルケニレン基、-NH-R15-、-CO-R15-、-R16-O-R17-、-R16-NH-R17-、-R16-CO-R17-、-R16-CO-NH-R17-、-R16-CO-R17-、又は-R16-CO-NH-R17-を示し、ここで、R15はC-Cアルキレン基を示し、R16はC-Cアルキレン基を示し、R17はC-Cアルキレン基を示す。)
 n11~n14は、それぞれ同一でも又は異なってもよい。n11~n14の値が近いほど、均一な立体構造をとることができ、高強度となる。このため、高強度のゲルを得るためには、同一であることが好ましい。n11~n14の値が高すぎるとゲルの強度が弱くなり、n11~n14の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n11~n14は、25~250の整数値が挙げられ、35~180が好ましく、50~115がさらに好ましく、50~60が特に好ましい。そして、その分子量としては、5×10~5×10Daが挙げられ、7.5×10~3×10Daが好ましく、1×10~2×10Daがより好ましい。
 上記式(I)中、R11~R14は、官能基とコア部分をつなぐリンカー部位である。R11~R14は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。R11~R14は、C-Cアルキレン基、C-Cアルケニレン基、-NH-R15-、-CO-R15-、-R16-O-R17-、-R16-NH-R17-、-R16-CO-R17-、-R16-CO-NH-R17-、-R16-CO-R17-、又は-R16-CO-NH-R17-を示す。ここで、R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。
 ここで、「C-Cアルキレン基」とは、分岐を有してもよい炭素数が1以上7以下のアルキレン基を意味し、直鎖C-Cアルキレン基又は1つ又は2つ以上の分岐を有するC-Cアルキレン基(分岐を含めた炭素数が2以上7以下)を意味する。C-Cアルキレン基の例は、メチレン基、エチレン基、プロピレン基、ブチレン基である。C-Cアルキレン基の例は、-CH2-、-(CH2)2-、-(CH2)3-、-CH(CH3)-、-(CH2)3-、-(CH(CH3))2-、-(CH2)2-CH(CH3)-、-(CH2)3-CH(CH3)-、-(CH2)2-CH(C25)-、-(CH2)6-、-(CH)2-C(C25)2-、及び-(CH2)3C(CH3)2CH2-などが挙げられる。
 「C-Cアルケニレン基」とは、鎖中に1個若しくは2個以上の二重結合を有する状又は分枝鎖状の炭素原子数2~7個のアルケニレン基であり、例えば、前記アルキレン基から隣り合った炭素原子の水素原子の2~5個を除いてできる二重結合を有する2価基が挙げられる。
 一方、末端に求電子性官能基を有するポリマーユニットとして好ましい非限定的な具体例には、例えば、4つのポリエチレングリコール骨格の分岐を有し、末端にN-ヒドロキシ-スクシンイミジル(NHS)基を有する下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式(II)中、n21~n24は、それぞれ同一でも又は異なってもよい。n21~n24の値は近いほど、ゲルは均一な立体構造をとることができ、高強度となるので好ましく、同一である方が好ましい。n21~n24の値が高すぎるとゲルの強度が弱くなり、n21~n24の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n21~n24は、5~300の整数値が挙げられ、20~250が好ましく、30~180がより好ましく、45~115がさらに好ましく、45~55であればさらに好ましい。本発明の第2の四分岐化合物の分子量としては、5×10~5×10Daがあげられ、7.5×10~3×10Daが好ましく、1×10~2×10Daがより好ましい。
 上記式(II)中、R21~R24は、官能基とコア部分をつなぐリンカー部位である。R21~R24は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。式(II)中、R21~R24は、それぞれ同一又は異なり、C-Cアルキレン基、C-Cアルケニレン基、-NH-R25-、-CO-R25-、-R26-O-R27-、-R26-NH-R27-、-R26-CO-R27-、-R26-CO-NH-R17-、-R26-CO-R27-、又は-R26-CO-NH-R27-を示す。ここで、R25はC-Cアルキレン基を示す。R26はC-Cアルキレン基を示す。R27はC-Cアルキレン基を示す。
 本明細書において、アルキレン基及びアルケニレン基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、アシル基、又はアリール基などを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルキルオキシ基やアラルキル基など)のアルキル部分についても同様である。
 また、本明細書において、ある官能基について「置換基を有していてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。
 上記式(I)及び式(II)のポリマーユニットの場合には、それらがアミド結合によって連結した構造のゲル前駆体クラスターが得られる。なお、後述のように、その場合、最終的に得られるゲルにおいても、各ポリマーユニットがアミド結合によって架橋した構造となる。
(2)ゲル化工程
 本発明の製造方法におけるゲル化反応工程の典型的な態様としては、
a)臨界ゲル化濃度未満のモノマーユニット又はポリマーユニット(前駆体ユニット)を架橋させてゲル前駆体となるクラスターを形成する工程(図1a)
b)前記ゲル前駆体クラスターを架橋剤により互いに架橋させることによって、最終的な目的物である3次元網目構造を有するゲルを得る工程(図1b)、
を含む。
 工程a)では、上述のとおり、前駆体ユニットの初期濃度を調節することによって、臨界ゲル化濃度未満の条件で前駆体ユニットを反応させ、ゲル化に至らないゾル状態、好ましくは、ゲル化の寸前の構造を有するポリマーのクラスターを形成させる。このクラスターは、いわば最終的なゲルに対する前駆体といえるものであるため、本願においては、当該クラスターを「ゲル前駆体クラスター」という。
 前駆体ユニットの初期濃度を臨界ゲル化濃度未満の条件に調節する手法として、例えば、上記のように求核性官能基又は求電子性官能基を有する2種類のポリマーユニットを用いる場合には、それらを当量含むが全体としてゲル化に至るには十分ではない低濃度の条件を用いること、或いは、1種のポリマーユニットの濃度を低濃度として、すなわち非当量とすることによってゲル化を生じさせない条件を用いることができる。
 一般に、臨界ゲル化濃度(最低ゲル化濃度)は、用いる前駆体ユニットの種類に依存するが、かかる濃度は当該技術分野において公知であるか、或いは当業者であれば実験的に容易に把握することができる。典型的には、5~50g/Lであり、下限は重なりあい濃度の1/5程度の濃度である。ここで、重なりあい濃度は、ポリマーユニットが溶液中を充填する濃度であり、その算出方法は、例えば、Polymer Physics(M. Rubinstein, R.Colby著)を参照することができる。具体的には、例えば、希薄溶液の粘度測定より、フローリーフォックスの式を用いて求めることができる。
 工程a)は、典型的には、2種類の前駆体ユニットを含む溶液を混合することもしくは刺激を与えることによって行うことができる。また、ラジカル開始剤をもちいたモノマーのラジカル重合によっても行うことができる。各溶液の濃度、添加速度、混合速度、混合割合は特に限定されず、当業者であれば適宜調整することができる。また、3種以上の前駆体ユニットを用いる場合でも、同様にして、対応する前駆体ユニットを含む溶液を調製し、それらを適宜混合することができることは明らかであろう。前駆体ユニットを含む溶液の溶媒としては、水、エタノールなどのアルコール類、DMSOなどを用いることができる。当該溶液が水溶液である場合には、リン酸緩衝液などの適切なpH緩衝液を用いることができる。
 混合する手段としては、例えば、国際公開WO2007/083522号公報に開示されたような二液混合シリンジを用いて行うことができる。混合時の二液の温度は、特に限定されず、前駆体ユニットがそれぞれ溶解され、それぞれの液が流動性を有する状態の温度であればよい。例えば、混合するときの溶液の温度としては、1℃~100℃の範囲が挙げられる。二液の温度は異なってもよいが、温度が同じである方が、二液が混合されやすいので好ましい。
  次に、工程b)では、工程a)で得られたゲル前駆体クラスターどうしをさらに反応させ、互いに3次元的に架橋させることで最終生成物である高分子ゲルが得られる。上述のとおり、ゲル前駆体クラスターは、ゲル化点以前の状態となるよう形成されているため、各前駆体ユニットにおける架橋に用いられる置換基は未反応の状態で残存している。ゲル前駆体クラスター中の当該置換基を他のゲル前駆体クラスターの残存置換基と反応させて、架橋することにより最終的なゲルが形成させることとなるのである。
 好ましくは、当該工程b)では、ゲル前駆体クラスターを互いに架橋するための架橋剤を添加することや刺激を与えることができる。そのような架橋剤としては、ポリマーユニット中の架橋基と同じ置換基を有するものを用いることができ、ポリマーユニット自体を架橋剤として用い、追加で添加することもできる。例えば、工程a)において、求核性官能基又は求電子性官能基を有する2種類のポリマーユニットを非当量で反応させて、ゲル前駆体クラスターを得た場合には、濃度がより少ないほうの官能基を有する架橋剤を添加することによって、ゲル前駆体クラスター間を架橋することができる。そのような架橋剤としては、ビス(スルホスクシンイミジル) グルタレート(BSG)やDL-ジチオトレイトール(DTT)、或いは末端にチオール基を有する合成ペプチド等を用いることができる。また、架橋のための刺激としては、例えば光二量化を起こすような官能基(マレイミド基など)に対して、紫外光を照射することができる。
 好ましくは、工程b)では、2時間以内の反応時間、好ましくは1時間以内の反応時間で、最終的なゲルを得ることができる。一般に、高分子を低濃度で含むゲルを作製する場合には、反応時間として長時間を要する(系にも依存するが、例えば、高分子含有量が10g/L以下の場合に約8時間)の対して、本発明では、はるかに短時間でゲルを作製することができる。
 工程b)における他の反応溶液条件等は、工程a)と同様である。
(3)高分子ゲル
 本発明によって得られる高分子ゲルは、ポリマー含有量が低濃度でありながら、上述のように短い反応時間で得られるとともに、弾性率等の物性を所望の範囲に制御することが可能なものである。図2に示すように、一般的に、ゲル化点付近における弾性率はドラスティックに上昇するため、10~1000Pa等の低弾性率の範囲で特定の値に制御した低弾性率のゲルを得ることは困難であった。これに対し、本発明のゲルは、上記のゲル前駆体クラスターを経由してゲルを作製することで、低弾性領域において制御された弾性率を有するものである。
 従って、本発明の高分子ゲルは、ポリマーユニットが互いに架橋することにより3次元網目構造を形成した高分子ゲルであって、低濃度の高分子含有量、低領域の弾性率、及び特定のフラクタル次元を有することを特徴とする。
 本発明の高分子ゲルにおける高分子含有量は、50g/L以下、好ましくは40g/L以下、より好ましくは、15~30g/Lである。
 本発明の高分子ゲルは、1~10000Pa、好ましくは、10~1000Paの貯蔵弾性率G’を有する。かかる範囲は、生体における硝子体(数10Pa)や声帯(数100Pa)に対応するものである。また、好ましくは、本発明の高分子ゲルは1~100Paの損失弾性率G”を有する。これらの弾性率は、公知の測定機器を用いて、公知の方法で算出することができる。
 さらに、本発明の高分子ゲルは、好ましくは、1.5~2.5のフラクタル次元を有する。より好ましくは、1.5~2.0のフラクタル次元を有する。当該フラクタル次元は、ゲルにおける架橋構造がどの程度3次元的な構造に近い状態かを表す指標であり、その算出方法は、上述のとおり当該技術分野において公知である。
 本発明の高分子ゲルは、水溶液中、30~40℃の範囲における前記高分子ゲルの体積が、ゲル作成時の体積に対して90~500%の体積変化の範囲の膨潤度であり、0.001~5kPaの膨潤圧を有する。好ましくは、前記膨潤度が100~200%の範囲であり、膨潤圧が0.1~2kPaである。膨潤圧が低いことは、ゲルを閉鎖空有においた時の外部に与える圧力が低いことを意味する。つまり、生体内において、時間経過とともに水分を吸収して膨張した場合でも、組織障害性が低いことを意味する。
 本発明の高分子ゲルを構成するポリマーユニットは、上述したゲル前駆体クラスターの場合と同様のものを用いることができる。好ましい態様において、ゲル前駆体クラスターが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる場合、当該ゲル前駆体クラスターは、第1のポリマーユニットの含有量が第2のポリマーユニットの含有量より多い組成である第1のゲル前駆体クラスターと、第2のポリマーユニットの含有量が第1のポリマーユニットの含有量より多い組成である第2のゲル前駆体クラスターの2種類のゲル前駆体クラスターを用いることができ、これら組成の異なる2種類のゲル前駆体クラスターが互いに架橋した3次元網目構造の高分子ゲルであることができる。
 本発明の高分子ゲルは、その用途に応じて、薄膜状等の種々の形状に加工することができる。そのような加工は、当該技術分野において知られている任意の手法を用いることができる。例えば、薄膜の場合には、例えば、ゲルが完全に固化する前の流動性を有する状態で、ガラス等の平面基板上に塗布する等の手法により薄膜を得ることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
ポリマーユニットの合成
 TAPEG(テトラアミン-ポリエチレングリコール)とTNPEG(N-ヒドロキシ-スクシンイミジル-ポリエチレングリコール(NHS-PEG))を、末端にヒドロキシル基を有するTHPEG(テトラヒドロキシル-ポリエチレングリコール)をそれぞれアミノ化、スクシンイミジル化することによって得た。
 また、末端に-SH基を有するSHPEG(テトラチオール-ポリエチレングリコール)及び末端にマレイミジル基を有するMAPEG(テトラマレイミジル-ポリエチレングリコール)は、それぞれ日油株式会社から市販されているものを用いた。分子量はいずれも10,000である。
 以下の実験では、H NMRスペクトルは、日本電子のJNM-ECS400(400MHz)を用いて解析した。重水素化クロロホルムを溶媒として用い、テトラメチルシランを内部標準とした。分子量はブルカーダルトニクスの質量分析計Ultraflex IIIのリニアポジティブイオンモードを用いて決定した。
1.THPEGの合成:
 開始剤のペンタエリスリトール(0.4572mmol、62.3mg)をDMSO/THF(v/v=3:2)50mLの混合溶媒に溶解させ、メタル化剤にカリウムナフレン(0.4157mmol、1.24mg)を用い、エチレンオキシド(200mmol、10.0mL)を加え、約2日間、Ar存在下、60℃で加熱攪拌した。反応終了後、ジエチルエーテルに再沈殿させ、濾過により沈殿物を取り出した。さらに、ジエチルエーテルで3回洗浄し、得られた白色固体を減圧乾燥することにより、20kのTHPEGを得た。
2.TAPEGの合成:
 THPEG(0.1935mmol、3.87g、1.0equiv)をベンゼンに溶解させ、凍結乾燥した後、THF62mLに溶解させ、トリエチルアミン(TEA)(0.1935mmol、3.87g、1.0equiv)を加えた。別のナスフラスコにTHF31mLとメタンスルホニルクロライド(MsCl)(0.1935mmol、3.87g、1.0equiv)を加え、氷浴につけた。THPEG、TEAのTHF溶液にMsClのTHF溶液を約1分間かけて滴下し、30分間氷浴中で攪拌した後、室温で1時間半攪拌した。反応終了後、ジエチルエーテルに再沈殿させ、濾過により沈殿物を取り出した。さらに、ジエチルエーテルで3回洗浄し、得られた白色固体をナスフラスコに移し、25%アンモニア水250mLを加え、4日間攪拌した。反応終了後、エバポレーターにより溶媒を減圧留去し、水を外液に2、3回透析を行い、凍結乾燥することにより、白色固体のTAPEGを得た。作製したTAPEGの化学式は式(Ia)に示した。式(Ia)中、n11~n14は、TAPEGの分子量が約10、000(10kDa)のとき50~60であり、分子量が約20、000(20kDa)のとき100~115であった。
Figure JPOXMLDOC01-appb-C000003
3.TNPEGの合成:
 THPEG(0.2395mmol、4.79g、1.0equiv)をTHFに溶解させ、0.7mol/Lグルタル酸/THF溶液(4.790mmol、6.85mL、20equiv)を加え、Ar存在下、6時間攪拌した。反応終了後、2-プロパノールに滴下し、遠心分離機に3回かけた。得られた白色固体は300mLナスフラスコに移し、エバポレーターにより溶媒を減圧留去した。残渣をベンゼンに溶解させ、不溶物を濾過によって取り除いた。得られた濾液を凍結乾燥により溶媒を除去することで、末端がカルボキシル基で修飾された白色固体のTetra-PEG-COOHを得た。このTetra-PEG-COOH(0.2165mmol、4.33g、1.0equiv)をTHFに溶解させ、N-ハイドロスクシンアミド(2.589mmol、0.299g、12equiv)、N、N’-ジイソプロピルスクシンアミド(1.732mmol、0.269mL、8.0equiv)を加え、3時間、40℃で加熱攪拌した。反応終了後、エバポレーターにより溶媒を減圧留去した。クロロホルムに溶解させ、飽和食塩水で3回抽出し、クロロホルム層を取り出した。さらに、硫酸マグネシウムで脱水、濾過を行った後、エバポレーターにより溶媒を減圧留去した。得られた残渣のベンゼン凍結乾燥を行い、白色固体のTNPEGを得た。作製したTNPEGの化学式は式(IIa)に示した。式(IIa)中、n21~n24は、TNPEGの分子量が約10、000(10k)のとき45~55であり、分子量が約20、000(20k)のとき90~115であった。
Figure JPOXMLDOC01-appb-C000004
ゲル前駆体クラスターの合成
 ゲル化反応における前駆体となるゲル前駆体クラスターを以下のとおり合成した。
(1)ゲル前駆体クラスター1[TAPEG+TNPEG]
 まず、実施例1で合成したTAPEG(1.0 x 104 g/mol)及びTNPEG(1.0 x 104 g/mol)をそれぞれ同量の81 mMのリン酸バッファーとクエン酸-リン酸バッファーに溶解させた。このとき、物質量比をTAPEG/TNPEG = 1/0.23、全体のポリマー濃度を60 g/Lとした。得られた2つの溶液を別の容器で混合させ、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。
 当該工程における貯蔵弾性率G’と損失弾性率G”の時間変化を図3に示す。反応の終点において、G’<G”の関係性を有しており、未だゲル形成に至らないゾル状態のポリマークラスターであることを示している。
(2)ゲル前駆体クラスター2[SHPEG+MAPEG]
SHPEG及びMAPEGを用いて、同様にゲル前駆体クラスター2を合成した。全体のポリマー濃度を60 g/Lとした。この際、SHPEG:MAPEGが(1-r):rのモル比となるよう、いずれかが過剰に含まれる2種のゲル前駆体クラスターを含む複数のサンプルを調製した。
高分子ゲルの合成
 実施例2で合成したゲル前駆体クラスターを用いて、高分子ゲルを以下のとおり合成した。
(1)高分子ゲル1[TAPEG+TNPEG]
 実施例2で得られたゲル前駆体クラスター1の溶液を25 g/Lになるように水で希釈した。溶液中の未反応のアミノ基量を算出し、それと等量になるように架橋剤(Bis-(sulfosuccinimidyl) glutarate(BS2G))を添加し、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。
 当該工程における貯蔵弾性率G’と損失弾性率G”の時間変化を図4に示す。反応の終点において、G’>G”の関係性を有しており、ゲル前駆体クラスターが架橋することによって高分子ゲルが形成されたことを示している。
 また、ゲル前駆体クラスターの濃度を変えて、ゲル化を行った場合の反応時間を図5に示す。図5の縦軸はゲル化時間tgel(秒)、横軸は高分子ゲルにおける高分子含有量c(g/L)である。図中の△がゲル前駆体クラスターによりゲル化させた本発明の高分子ゲルの実施例であり、○がゲル前駆体クラスターを用いずに従来の手法によりポリマーユニットから直接ゲル化させた比較例である。その結果、ゲル前駆体クラスターによりゲル化させた場合には、短い反応時間で高分子ゲルが得られることが分かる。特に、高分子含有量が8g/L程度の低濃度の場合では、従来手法の場合には7時間以上のゲル化時間を要するのに対し、本発明のゲル前駆体クラスターを用いた場合には、1.5時間以内でゲル化した。また、それより高濃度の領域では、ゲル前駆体クラスターを用いた場合には、30分未満のゲル化時間であった。
2)高分子ゲル2[SHPEG+MAPEG]
 実施例2で得られたゲル前駆体クラスター2を用いて同様に高分子ゲルを作成した。SHPEGが過剰なゲル前駆体クラスター(10 g/L;r=0.37)と、MAPEGが過剰なゲル前駆体クラスター(10 g/L;r=0.63)をNaClを含むクエン酸バッファーでそれぞれ6g/Lに希釈し、等量を混合した。図5と同様に、ゲル前駆体クラスターの濃度を変えてゲル化を行った場合の反応時間を図6に示す。図中の○がゲル前駆体クラスターによりゲル化させた本発明の高分子ゲルの実施例であり、□がゲル前駆体クラスターを用いずに従来の手法によりポリマーユニットから直接ゲル化させた比較例である。特に、高分子含有量が7g/L程度の低濃度の場合では、本発明のゲル前駆体クラスターを用いた場合には、3分でゲル化した。これは、硝子体手術時においてゲル前駆体クラスターを眼内に注入し、in vivoでゲル化させることができることを示している。
ゲル前駆体クラスターの物性
1.ゲル前駆体クラスターのサイズ
 実施例2で合成したゲル前駆体クラスター1のサイズ分布を測定した結果を図7に示す。横軸のRhはゲル前駆体クラスターの粒子直径(nm)、縦軸のG(Γ-1)は、特性緩和時間分布関数である。その結果、ゲル前駆体クラスターの粒子直径は、数百nmであり、100nm程度のものが最も多いことが分かった。実施例2で合成したゲル前駆体クラスター2についてもほぼ同様の結果が得られた。
2.弾性率
 溶液中のゲル前駆体クラスター1について、レオメーター(Physica MCR501、Anton Paar社製)を用いて動的粘弾性測定を行い、貯蔵弾性率G’及び損失弾性率G”を算出した。その結果、1HzにおけるG”は、0.1<G”<100Paの範囲であり、G’<G”<100G’であった。このことから、上記図3でも示したように、実施例2で得られたゲル前駆体クラスター1は、ゲル化臨界には至っていない構造であることを確認した。実施例2で合成したゲル前駆体クラスター2についてもほぼ同様の結果が得られた。
3.フラクタル次元
 種々のポリマーユニットの初期濃度を用いた場合の、ゲル化臨界点における動的粘度特性を測定した結果を図8に示す。図8の縦軸は、貯蔵弾性率G’(図中の○)及び損失弾性率G”(図中の△)であり、横軸は周波数である。(a)~(d)はそれぞれ、初期濃度の条件である。図8に示すように、初期濃度が低くなるほど、G’とG”の冪乗則が増加した。この結果を用いて、動的スケーリング理論によりゲル前駆体クラスターのフラクタル次元を計算した。その結果を図9に示す。図9の縦軸はフラクタル次元、横軸は初期濃度である。図より、濃度が低くなるほど、フラクタル次元Dは理論の予測値(図中の点線)から下方に乖離し、より疎な構造が形成されていることが示唆された。
高分子ゲルの物性
 また、実施例3で得られた高分子ゲル1の弾性率の高分子濃度依存性を測定した。その結果、図10に示すように、20g/Lの低濃度領域であり、かつ貯蔵弾性率G’が400Paより小さい低弾性率領域において、弾性率が高分子含有量に比例することが示された。これは、ゲル前駆体クラスターからゲル化させる手法を用いることによって、低弾性率領域においても、ゲルの弾性率の制御が可能であることを実証するものである。
 同様に、実施例3で得られた高分子ゲル2の弾性率のポリマー濃度依存性を測定した。結果を図11に示す。図中の○がゲル前駆体クラスターによりゲル化させた本発明の高分子ゲルの実施例であり、□がゲル前駆体クラスターを用いずに従来の手法によりポリマーユニットから直接ゲル化させた比較例である。いずれの場合も本発明の高分子ゲルのほうが高い弾性率を示し、効果的な3次元網目構造が形成されていることが示唆される。
 また、疑似的な半閉鎖空間において、実施例3で得られた高分子ゲル1の膨潤の時間変化を観測した。ガラス容器中に高分子ゲルを入れ、リン酸緩衝溶液を加え一晩放置した。その結果、図12に示すように、溶液中においても体積変化を示さなかった。これは、当該高分子ゲルが半閉鎖空間において非膨潤であり、生体内の閉鎖空間や半閉鎖空間に適用できる可能性を示唆する結果である。
 さらに、実施例3で得られた高分子ゲル2について、膨潤圧の時間変化を測定した結果を図13に示す。図中の○がゲル前駆体クラスターによりゲル化させた本発明の高分子ゲルの実施例(ポリマー濃度10g/L)であり、□がゲル前駆体クラスターを用いずに従来の手法によりポリマーユニットから直接ゲル化させた比較例(ポリマー濃度140g/L)である。図13に示すように、比較例では時間経過とともに12kPaの平衡に至るが、本発明の高分子ゲルでは0.19kPa程度で常に一定であった。この結果は、本発明の高分子ゲルが、生体内に適用され長時間経過した場合であっても、長期間安定に用いることが可能であることを示すものである。
ゲル前駆体クラスターの汎用性
 様々な系で四分岐系と同様な手順で低濃度ゲルを作製することで、ゲル前駆体クラスターの汎用性を検討した。
[三分岐系]
 分子量が共に2.0 x 105のTri-APEG(トリアミン-ポリエチレングリコール)とTri-NPEG(トリ-N-ヒドロキシ-スクシンイミジル-ポリエチレングリコール(NHS-PEG))を、それぞれ同量の45 mMのリン酸バッファーとクエン酸-リン酸バッファーに溶解させた。このとき、物質量比をTri-APEG/Tri-NPEG = 1/0.49、全体のポリマー濃度を40 g/Lとした。得られた2つの溶液を別の容器で混合させ、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。得られた溶液を25 g/Lになるように水で希釈した。溶液中の未反応のアミノ基量を算出し、それと等量になるように架橋剤(Bis-(sulfosuccinimidyl) glutarate(BS2G))を添加し、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。最終的には、四分岐系と同様にゲルが得られた。
[四分岐/二分岐系]
 分子量がそれぞれ2.0 x 105と1.0 x 105のTetra-APEG(トリアミン-ポリエチレングリコール)とLinear-NPEG(リニア-N-ヒドロキシ-スクシンイミジル-ポリエチレングリコール(NHS-PEG))を、それぞれ同量の42 mMのリン酸バッファーとクエン酸-リン酸バッファーに溶解させた。このとき、物質量比をTri-APEG/Tri-NPEG = 1/1.17、全体のポリマー濃度を40 g/Lとした。得られた2つの溶液を別の容器で混合させ、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。得られた溶液を25 g/Lになるように水で希釈した。溶液中の未反応のアミノ基量を算出し、それと等量になるように架橋剤(Bis-(sulfosuccinimidyl) glutarate(BS2G))を添加し、自転・公転ミキサーにより脱泡・撹拌した。その後、混合液を素早くファルコンチューブに移し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。最終的には、四分岐系と同様にゲルが得られた。
 三分岐系および四分岐/二分岐系でも四分岐系と同様の手順でゲルが得られたことから、ゲル前駆体クラスターの汎用性は高いことが分かった。
マウスへの注入実験
 以下の手順により、本発明の高分子ゲルをマウス中に注入した。
1.ゲル前駆体クラスターの調製
 Tetra-PEG-maleimide(TMPEG) (1.0 x 104 g/mol) 及びTetra-PEG-thiol(TTPEG) (1.0 x 104 g/mol) の物質量比が下表のようになるように量り取り、それぞれ同量のクエン酸-リン酸バッファー (pH 5.8, 5 mM (NaCl, 149 mM)) に溶解させた。このとき、全体のポリマー濃度を60 g/Lとした。得られた2つの溶液をファルコンチューブで混合し、乾燥を防ぐためにキャップをした上で、室温で12時間静置した。
Figure JPOXMLDOC01-appb-T000005
2.高分子ゲルの調製
 高分子ゲルの全量が2 mL、ポリマー濃度がそれぞれ13 g/L(グループ1)、11 g/L(グループ2)になるようにゲル前駆体クラスター溶液を量りとり、シリンジに入れた。また、グループ1及び2について、それぞれの溶液中の未反応のマレイミド基、チオール基量を算出し、それと等量になるように架橋剤 (DL-Dithiothreitol及び1, 8 - Bismaleimidodiethyleneglycol) をそれぞれ量り取った。この架橋剤を、それぞれ高分子ゲルの全量とゲル前駆体クラスターの差分量のクエン酸-リン酸バッファー (pH 5.8, 5 mM (NaCl, 149 mM)) に溶解させ、上記のシリンジとは別のシリンジに入れた。三方便を使用して二つの溶液を混合し、麻酔を打ったマウスの背中に1 mL注入した。また、比較例として、TMPEGのみ (Monomer A) 、TTPEGのみ (Monomer B)を15g/Lになるようにそれぞれクエン酸-リン酸バッファー (pH 5.8, 5 mM (NaCl, 149 mM))に溶解させたものとクエン酸-リン酸バッファー (pH 5.8, 5 mM (NaCl, 149 mM))のみ(対照サンプル)の試料を用意し、麻酔を打ったマウスにそれぞれ1 mL注入した。注入から1週間後にマウスの組織を観察した。
 その結果、グループ1及び2のいずれも、ゲルの分解や拒絶反応は見られず、注入から1週間後も皮膚下にゲルの存在が認識された。一方、モノマーのみを注入した場合には、毒作用を伴わずに分解した。全てのマウスは、体重変化もなく正常であった。

Claims (26)

  1. ゲル前駆体クラスターが互いに架橋して3次元網目構造を形成している高分子ゲルの製造方法であって、
    a)臨界ゲル化濃度未満のモノマーユニット又はポリマーユニットを架橋させて前記ゲル前駆体クラスターを形成する工程、ここで、前記ゲル前駆体クラスターは貯蔵弾性率G’と損失弾性率G”においてG’<G”の関係性を有し;及び
    b)前記ゲル前駆体クラスターを架橋剤により互いに架橋させることによって、3次元網目構造を有するゲルを得る工程、
    を含むことを特徴とする、該製造方法。
  2. 前記損失弾性率G”が、1Hzの周波数において0.005~5Paの範囲である、請求項1に記載の製造方法。
  3. 前記ゲル前駆体クラスターが、1.5~2.5のフラクタル次元を有する、請求項1又は2に記載の製造方法。
  4. 前記ゲル前駆体クラスターが、10~1000nmの範囲の直径を有する、請求項1~3のいずれか1項に記載の製造方法。
  5. 前記ゲルが、50g/L以下の高分子含有量である、請求項1~4のいずれか1項に記載の製造方法。
  6. 前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、請求項1~5のいずれか1項に記載の製造方法。
  7. 前記ゲル前駆体クラスターが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、請求項1~6のいずれか1項に記載の製造方法。
  8. 前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、請求項7に記載の製造方法。
  9. 前記ゲル前駆体クラスターが、第1のゲル前駆体クラスターと第2のゲル前駆体クラスターからなり、
    前記第1のゲル前駆体クラスターは、第1のポリマーユニットの含有量が第2のポリマーユニットの含有量より多く、
    前記第2のゲル前駆体クラスターは、第2のポリマーユニットの含有量が第1のポリマーユニットの含有量より多い、
    請求項7又は8に記載の製造方法。
  10. 前記工程b)が、1時間以内の反応時間で行われる、請求項1~9のいずれか1項に記載の製造方法。
  11. 前記工程b)における架橋剤が、ビス(スルホスクシンイミジル)グルタレート(BSG)やDL-ジチオトレイトール(DTT)、又は末端にチオール基を有する合成ペプチドである、請求項1~10のいずれか1項に記載の製造方法。
  12. 臨界ゲル化濃度未満のモノマーユニット又はポリマーユニットを架橋させて得られるゲル前駆体クラスターであって、
    溶媒を含み、
    貯蔵弾性率G’と損失弾性率G”においてG’<G”の関係性を有する、
    該ゲル前駆体クラスター。
  13. 前記損失弾性率G”が、1Hzの周波数において、0.005~5Paの範囲である、請求項12に記載のゲル前駆体クラスター。
  14. 前記ゲル前駆体クラスターが、1.5~2.5のフラクタル次元を有する、請求項12又は13に記載のゲル前駆体クラスター。
  15. 前記ゲル前駆体クラスターが、10~1000nmの範囲の直径を有する、請求項12~14のいずれか1項に記載のゲル前駆体クラスター。
  16. 前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、請求項12~15のいずれか1項に記載のゲル前駆体クラスター。
  17. 側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、請求項12~16のいずれか1項に記載のゲル前駆体クラスター。
  18. 前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、請求項17に記載のゲル前駆体クラスター。
  19. 請求項1~11のいずれか1項に記載の製造方法により得られる、高分子ゲル。
  20. ポリマーユニットが互いに架橋することにより3次元網目構造を形成した高分子ゲルであって、
    溶媒を含み、
    50g/L以下の高分子含有量、
    1Hzの周波数において1~10000Paの貯蔵弾性率G’、及び
    1.5~3.0のフラクタル次元を有する、
    ことを特徴とする、該高分子ゲル。
  21. 1~100Paの損失弾性率G”を有する、請求項20に記載の高分子ゲル。
  22. 前記モノマーユニットがビニル骨格を有するものであり、又は前記ポリマーユニットが、ポリエチレングリコール骨格又はポリビニル骨格を有する、請求項20又は21に記載の高分子ゲル。
  23. 前記ポリマーユニットが、側鎖又は末端に1以上の求核性官能基を有する第1のポリマーユニットと、側鎖又は末端に1以上の求電子性の官能基を有する第2のポリマーユニットからなる、請求項20~22のいずれか1項に記載の高分子ゲル。
  24. 前記求核性官能基が、アミノ基、-SH、及び-COPhNOよりなる群から選択され、前記求電子性官能基が、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、マレイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基、及びニトロフェニル基よりなる群から選択される、請求項23に記載の高分子ゲル。
  25. 水溶液中、30~40℃の範囲における前記高分子ゲルの体積が、ゲル作成時の体積に対して90~500%の体積変化の範囲の膨潤度であり、0.001~5kPaの膨潤圧を有する、請求項24~25のいずれか1項に記載の高分子ゲル。
  26. 前記膨潤度が100~200%の範囲であり、前記膨潤圧が0.1~2kPaである、請求項25に記載の高分子ゲル。
PCT/JP2016/056522 2015-03-10 2016-03-03 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル WO2016143647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/551,442 US10550225B2 (en) 2015-03-10 2016-03-03 Process for producing low-concentration gel using gel-precursor clusters, and gel obtained by said production process
CN201680014534.7A CN107428930B (zh) 2015-03-10 2016-03-03 使用了凝胶前体簇的低浓度凝胶的制造方法和通过该制造方法得到的凝胶
JP2017505016A JP6712081B2 (ja) 2015-03-10 2016-03-03 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
EP16761617.6A EP3269755A4 (en) 2015-03-10 2016-03-03 Process for producing low-concentration gel using gel-precursor clusters, and gel obtained by said production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-047388 2015-03-10
JP2015047388 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016143647A1 true WO2016143647A1 (ja) 2016-09-15

Family

ID=56879553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056522 WO2016143647A1 (ja) 2015-03-10 2016-03-03 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル

Country Status (6)

Country Link
US (1) US10550225B2 (ja)
EP (1) EP3269755A4 (ja)
JP (1) JP6712081B2 (ja)
CN (1) CN107428930B (ja)
TW (1) TWI683842B (ja)
WO (1) WO2016143647A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119296A1 (ja) * 2016-01-06 2017-07-13 国立大学法人 東京大学 眼科治療用ゲル材料
WO2020027016A1 (ja) * 2018-07-31 2020-02-06 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
WO2020189645A1 (ja) * 2019-03-20 2020-09-24 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
JP2020150846A (ja) * 2019-03-20 2020-09-24 国立大学法人 東京大学 ハイドロゲル組成物
WO2021153489A1 (ja) * 2020-01-28 2021-08-05 国立大学法人 東京大学 再生医療用ゲル材料
WO2021199950A1 (ja) * 2020-03-31 2021-10-07 テルモ株式会社 人工血管および人工血管の製造方法
WO2021225144A1 (ja) * 2020-05-08 2021-11-11 国立大学法人 東京大学 止血用ポリマー材料キット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712243A1 (en) * 2019-03-20 2020-09-23 Ricoh Company, Ltd. Liquid set for droplet discharging apparatus
JP2021078377A (ja) * 2019-11-15 2021-05-27 株式会社リコー 積層体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510837A (ja) * 1995-07-28 1999-09-21 フォーカル,インコーポレイテッド 薬物送達のための制御された放出薬剤および組織処置薬剤としての使用のためのマルチブロック生分解性ヒドロゲル
JP2007111300A (ja) * 2005-10-21 2007-05-10 National Institute For Materials Science 局所投与型徐放性生体内分解吸収性医用材料
WO2007083522A1 (ja) * 2006-01-18 2007-07-26 Next21 K. K. 医療用ゲル形成組成物,その組成物の投与デバイス及び薬剤放出制御担体
JP2010519183A (ja) * 2007-02-06 2010-06-03 インセプト エルエルシー 生理溶液の溶出のためのタンパク質の沈殿を用いる重合
WO2010070775A1 (ja) * 2008-12-19 2010-06-24 株式会社ネクスト21 超高強度インジェクタブルハイドロゲル及びその製造方法
JP2011246714A (ja) * 2010-05-27 2011-12-08 Confluent Surgical Inc 様々な架橋度を有するヒドロゲル移植物
WO2012035598A1 (ja) * 2010-09-13 2012-03-22 株式会社グッドマン 医療用材料、乾燥体及びそれらの製造方法
JP2012096038A (ja) * 2010-11-03 2012-05-24 Tyco Healthcare Group Lp 止血用移植物
JP2015137430A (ja) * 2014-01-20 2015-07-30 国立大学法人福井大学 ゲル繊維およびその不織布

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312725B1 (en) * 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
AU4977800A (en) 1999-04-26 2000-11-10 California Institute Of Technology (in situ) forming hydrogels
US20080220047A1 (en) 2007-03-05 2008-09-11 Sawhney Amarpreet S Low-swelling biocompatible hydrogels
CN201427420Y (zh) 2008-08-29 2010-03-24 纸艺制品有限公司 一种纸基复合材料
US20100100123A1 (en) 2008-10-17 2010-04-22 Confluent Surgical, Inc. Hemostatic implant
US8734930B2 (en) 2010-05-27 2014-05-27 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8734824B2 (en) 2010-05-27 2014-05-27 Covidien LLP Hydrogel implants with varying degrees of crosslinking
US8754564B2 (en) 2010-05-27 2014-06-17 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8591929B2 (en) 2010-05-27 2013-11-26 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8968783B2 (en) 2010-05-27 2015-03-03 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8883185B2 (en) 2010-05-27 2014-11-11 Covidien Lp Hydrogel implants with varying degrees of crosslinking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510837A (ja) * 1995-07-28 1999-09-21 フォーカル,インコーポレイテッド 薬物送達のための制御された放出薬剤および組織処置薬剤としての使用のためのマルチブロック生分解性ヒドロゲル
JP2007111300A (ja) * 2005-10-21 2007-05-10 National Institute For Materials Science 局所投与型徐放性生体内分解吸収性医用材料
WO2007083522A1 (ja) * 2006-01-18 2007-07-26 Next21 K. K. 医療用ゲル形成組成物,その組成物の投与デバイス及び薬剤放出制御担体
JP2010519183A (ja) * 2007-02-06 2010-06-03 インセプト エルエルシー 生理溶液の溶出のためのタンパク質の沈殿を用いる重合
WO2010070775A1 (ja) * 2008-12-19 2010-06-24 株式会社ネクスト21 超高強度インジェクタブルハイドロゲル及びその製造方法
JP2011246714A (ja) * 2010-05-27 2011-12-08 Confluent Surgical Inc 様々な架橋度を有するヒドロゲル移植物
WO2012035598A1 (ja) * 2010-09-13 2012-03-22 株式会社グッドマン 医療用材料、乾燥体及びそれらの製造方法
JP2012096038A (ja) * 2010-11-03 2012-05-24 Tyco Healthcare Group Lp 止血用移植物
JP2015137430A (ja) * 2014-01-20 2015-07-30 国立大学法人福井大学 ゲル繊維およびその不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269755A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121307A (ja) * 2016-01-06 2017-07-13 国立大学法人 東京大学 眼科治療用ゲル材料
WO2017119296A1 (ja) * 2016-01-06 2017-07-13 国立大学法人 東京大学 眼科治療用ゲル材料
JPWO2020027016A1 (ja) * 2018-07-31 2021-08-10 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
WO2020027016A1 (ja) * 2018-07-31 2020-02-06 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
JP7272672B2 (ja) 2018-07-31 2023-05-12 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
US20210155799A1 (en) * 2018-07-31 2021-05-27 The University Of Tokyo Polymer gel having sponge-like porous structure
CN113614179A (zh) * 2019-03-20 2021-11-05 株式会社理光 细胞培养载体及其制造方法和装置
JP2020150846A (ja) * 2019-03-20 2020-09-24 国立大学法人 東京大学 ハイドロゲル組成物
JP7203313B2 (ja) 2019-03-20 2023-01-13 国立大学法人 東京大学 ハイドロゲル組成物
WO2020189645A1 (ja) * 2019-03-20 2020-09-24 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
JP7472900B2 (ja) 2019-03-20 2024-04-23 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
WO2021153489A1 (ja) * 2020-01-28 2021-08-05 国立大学法人 東京大学 再生医療用ゲル材料
WO2021199950A1 (ja) * 2020-03-31 2021-10-07 テルモ株式会社 人工血管および人工血管の製造方法
WO2021225144A1 (ja) * 2020-05-08 2021-11-11 国立大学法人 東京大学 止血用ポリマー材料キット

Also Published As

Publication number Publication date
US10550225B2 (en) 2020-02-04
TW201714925A (zh) 2017-05-01
US20180030205A1 (en) 2018-02-01
EP3269755A1 (en) 2018-01-17
EP3269755A4 (en) 2018-11-21
CN107428930A (zh) 2017-12-01
CN107428930B (zh) 2020-01-17
JPWO2016143647A1 (ja) 2017-12-21
TWI683842B (zh) 2020-02-01
JP6712081B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2016143647A1 (ja) ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
WO2017119296A1 (ja) 眼科治療用ゲル材料
CN108014365B (zh) 一种封闭剂水凝胶及其试剂盒和制备方法
JP7272672B2 (ja) スポンジ様の多孔体構造を有する高分子ゲル
EP3167000B1 (en) Thiolated peg-pva hydrogels
WO2013039071A1 (ja) イオン液体含有ゲル状組成物、ゲル状薄膜、及びその製造方法
BR112019011780B1 (pt) Polímero compreendendo carbono de material biológico, seu processo de obtenção e seu uso
Li et al. Synthesis of thiol-terminated PEG-functionalized POSS cross-linkers and fabrication of high-strength and hydrolytic degradable hybrid hydrogels in aqueous phase
Xia et al. Stretchy and strong polyurethane–urea supramolecular (PUUS) hydrogels with various stimulus-responsive behaviours: the effect of chain-extenders
WO2014157186A1 (ja) 温度応答性ポリマーを含む低膨潤度の新規ハイドロゲル
Chen et al. In situ forming hydrogels based on oxidized hydroxypropyl cellulose and Jeffamines
WO2021153489A1 (ja) 再生医療用ゲル材料
JP2021176422A (ja) 止血用ポリマー材料キット
JP7203313B2 (ja) ハイドロゲル組成物
WO2024085197A1 (ja) 粒子状物質を局所放出するためのキャリア材料
EP4331633A1 (en) Method for producing hydrogel having porous structure
EP2147031A1 (en) Stereo photo hydrofel, a process of making said stereo photo hydrogel, polymers for use in making such hydrogel and a pharmaceutical comprising said polymers
KR20190012129A (ko) 고분자 히알루론산의 체내 지속성 향상용 조성물 및 이를 포함하는 주사용 피부 필러 조성물
WO2016133135A1 (ja) 医用組成物、医用キット、及び止血剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505016

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761617

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE