WO2010070775A1 - 超高強度インジェクタブルハイドロゲル及びその製造方法 - Google Patents

超高強度インジェクタブルハイドロゲル及びその製造方法 Download PDF

Info

Publication number
WO2010070775A1
WO2010070775A1 PCT/JP2009/002789 JP2009002789W WO2010070775A1 WO 2010070775 A1 WO2010070775 A1 WO 2010070775A1 JP 2009002789 W JP2009002789 W JP 2009002789W WO 2010070775 A1 WO2010070775 A1 WO 2010070775A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
alkylene group
branched compound
solution
formula
Prior art date
Application number
PCT/JP2009/002789
Other languages
English (en)
French (fr)
Inventor
鄭雄一
酒井崇匡
佐々木伸雄
柴山充弘
鈴木茂樹
Original Assignee
株式会社ネクスト21
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ネクスト21, 国立大学法人東京大学 filed Critical 株式会社ネクスト21
Priority to US13/139,629 priority Critical patent/US20120122949A1/en
Priority to JP2010542805A priority patent/JP5706691B2/ja
Publication of WO2010070775A1 publication Critical patent/WO2010070775A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33306Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3324Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the present invention relates to a hydrogel having a three-dimensional network structure, a manufacturing method thereof, and the like.
  • JP 2000-502380 A discloses a gel prepared by mixing multi-branched polymers.
  • the gel obtained in this publication has low strength and cannot be applied to in vivo load sites such as knee cartilage, vertebral body, or intervertebral disc.
  • the gel currently used for the operation of knee cartilage and intervertebral disc cannot be said to have sufficient strength, and degeneration of the gel occurs when it is introduced into the living body for a long time. For this reason, there has been a problem in that periodic surgery is required when used on a part to which a load is applied.
  • An object of the present invention is to provide a high-strength hydrogel and a method for producing the same.
  • the object of the present invention is to provide a method for producing hydrogels having different decomposition rates.
  • the present invention is based on the knowledge that a high-strength hydrogel can be produced by adjusting the pH of the solution, the ionic strength in the solution, and the buffer concentration in the solution. Moreover, the present invention can produce a high-strength hydrogel having a uniform polymer network structure by polymerizing two types of four-branched compounds after uniformly dispersing two types of four-branched compounds. It is based on the knowledge that.
  • the first aspect of the present invention relates to a method for producing a hydrogel.
  • the method for producing a hydrogel of the present invention comprises a first solution containing a first four-branched compound and a first buffer solution, and a second solution containing a second four-branched compound and a second buffer solution. Mixing step.
  • the first four-branched compound is represented by the following formula (I).
  • n 11 to n 14 are the same or different and each represents an integer of 25 to 250.
  • R 11 to R 14 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R. 16 —O—R 17 —, —R 16 —NH—R 17 —, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, Or —R 16 —CO—NH—R 17 — is shown.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • the second four-branched compound is represented by the following formula (II).
  • n 21 to n 24 are the same or different and each represents an integer of 20 to 250.
  • R 21 to R 24 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R.
  • R 25 represents a C 1 -C 7 alkylene group.
  • R 26 represents a C 1 -C 3 alkylene group.
  • R 27 represents a C 1 -C 5 alkylene group.
  • the pH of the first buffer solution is 5 to 9, and the concentration of the first buffer solution is 20 to 200 mM, the pH of the second buffer solution is 5 to 9, and the second buffer solution. Concentration of 20 to 200 mM.
  • the pH of the first solution is higher than the second solution pH.
  • the first four-branched compound of the present invention has an amino group.
  • the amino group of the first four-branched compound tends to be in a cation state and tends to repel each other (FIGS. 2 and 3A).
  • the amino group in the cationic state is less reactive with the functional group (N-hydroxy-succinimidyl (NHS)) of the second tetramolecular compound (FIG. 2).
  • the pH of the first solution is increased (inclined toward the alkaline side), the amino group of the first four-branched compound is likely to move from —NH 3+ to —NH 2 . Is highly reactive (FIG. 2).
  • the pH of the solution of the second four-branched compound is 7 or more
  • the ester bond is easily decomposed, and the reactivity with the first four-branched compound is lowered. Therefore, the gel strength is weakened. Therefore, by adjusting the pH of the first and second buffer solutions, the pH of the first and second solutions can be adjusted, and the reaction rate of the first four-branched compound and the second four-branched compound can be adjusted. , High strength hydrogel can be manufactured.
  • a high-strength hydrogel having a uniform structure can be produced by setting the buffer concentration to 20 mM to 200 mM.
  • the time (reaction rate) until the gelation of the hydrogel can be adjusted.
  • a high-strength hydrogel having a structure can be produced.
  • the first buffer solution includes one or more of a phosphate buffer solution and a phosphate buffered saline.
  • the second buffer includes one or more of a phosphate buffer, a citrate / phosphate buffer, a phosphate buffered saline, or a citrate / phosphate buffered saline. As shown in Examples described later, by using such a buffer solution, a high-strength hydrogel having a uniform structure can be produced.
  • a preferred embodiment of the first aspect of the present invention a mixed solution after the mixing step, the salt concentration is exemplified 0 ⁇ 1 ⁇ 10 2 mM, even 1 ⁇ 10 -1 ⁇ 1 ⁇ 10 2 mM Good.
  • the salt concentration in the mixed solution is high, the anion of the salt interacts with the cation of the first four-branched compound, and the repulsion between the cations is reduced.
  • the repulsion between cations is reduced, it becomes difficult to uniformly mix the two types of four-branched compounds (FIGS. 3A and 3B). If the two types of four-branched compounds are not uniformly mixed, a hydrogel having a uniform three-dimensional structure is not produced, and the strength of the hydrogel is weakened.
  • the strength of the gel decreases as the salt concentration in the mixed solution increases. Therefore, as shown in the examples described later, by setting the salt concentration in the mixed solution to the above concentration, the two types of four-branched compounds are uniformly mixed without being affected by the anion of the salt. Hydrogels can be produced.
  • the first solution has a pH of 5 to 9, and the first buffer is a 20 mM to 100 mM phosphate buffer.
  • the second solution has a pH of 5 to 7.5, and the second buffer is a 20 mM to 100 mM phosphate buffer or a 20 to 100 mM citrate / phosphate buffer. is there.
  • the pH of the first solution is high, it is difficult to uniformly mix the first four-branched compound and the second four-branched compound. If the pH of the second solution is too high, the ester of the second four-branched compound is decomposed.
  • the first four-branched compound and the second four-branched compound are obtained by setting the pH of the first solution to 5-9 and the pH of the second solution to 5-7.5.
  • a hydrogel having a uniform three-dimensional structure can be produced, which can be efficiently and uniformly mixed. Further, as shown in the examples described later, when the buffer solution concentration is too low, the pH buffering capacity in the mixed solution is low. On the other hand, if the concentration is too high, the strength of the hydrogel decreases. Therefore, a higher strength hydrogel can be produced effectively by setting the first and second buffer concentrations to 20 to 100 mM.
  • the mixed solution after the mixing step has an average pH of 6 to 8 immediately after mixing until 30 seconds later.
  • the first four-branched compound of the present invention has an amino group.
  • amino groups are present in a cation state of 95% or more and repel each other (FIG. 3A).
  • the cationic amino group does not react with the functional group (N-hydroxy-succinimidyl (NHS) group) of the second four-branched compound (FIG. 2).
  • the fraction of the non-cationic amino group that can react with NHS is maintained at about 5%, so that the first four-branched compound and the second four-branched compound are maintained. It is possible to effectively prevent the compounds from mixing unevenly, increase the final reaction rate, and produce a uniform high-strength hydrogel.
  • a first solution containing a first four-branched compound and a first buffer a second solution containing a second four-branched compound and a second buffer
  • the first four-branched compound is represented by the following formula (I).
  • n 11 to n 14 are the same or different and each represents an integer of 25 to 250.
  • R 11 to R 14 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • the second four-branched compound is represented by the general formula (II). In the formula (II), n 21 to n 24 are the same or different and each represents an integer of 20 to 250.
  • R 21 to R 24 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R. 26 —O—R 27 —, —R 26 —NH—R 27 —, —R 26 —CO 2 —R 27 —, —R 26 —CO 2 —NH—R 17 —, —R 26 —CO—R 27 —, Or —R 26 —CO—NH—R 27 — is shown.
  • R 25 represents a C 1 -C 7 alkylene group.
  • R 26 represents a C 1 -C 3 alkylene group.
  • R 27 represents a C 1 -C 5 alkylene group.
  • the pH of the first buffer solution is 5 to 9, and the concentration of the first buffer solution is 20 to 200 mM, the pH of the second buffer solution is 5 to 9, and the second buffer solution The concentration is 20 to 200 mM.
  • the pH of the first solution is preferably higher than the pH of the second solution.
  • the hydrogel manufactured using the manufacturing method of the present invention has a strength that surpasses that of living cartilage. Further, as shown in the examples described later, the hydrogel of the present invention does not show cytotoxicity. Therefore, according to the hydrogel of the present invention, it can be effectively used for the treatment of bone, cartilage or intervertebral disk defect or bone, cartilage or intervertebral disk degeneration.
  • the third aspect of the present invention relates to a hydrogel comprising a first four-branched compound and a second four-branched compound in a composition ratio of 0.8: 1 to 1.2: 1.
  • the first four-branched structure compound is represented by the following general formula (I).
  • n 11 to n 14 are the same or different and each represents an integer of 25 to 250.
  • R 11 to R 14 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • the second four-branched structure compound is represented by the general formula (II). In the formula (II), n 21 to n 24 are the same or different and each represents an integer of 20 to 250.
  • R 21 to R 24 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R. 26 —O—R 27 —, —R 26 —NH—R 27 —, —R 26 —CO 2 —R 27 —, —R 26 —CO 2 —NH—R 17 —, —R 26 —CO—R 27 —, Or —R 26 —CO—NH—R 27 — is shown.
  • R 25 represents a C 1 -C 7 alkylene group.
  • R 26 represents a C 1 -C 3 alkylene group.
  • R 27 represents a C 1 -C 5 alkylene group.
  • the neutron scattering curve of the hydrogel is fitted with an Ornstein-Zernike (OZ) function.
  • OZ Ornstein-Zernike
  • the scattering curve obtained from the neutron scattering measurement group of the hydrogel of the present invention is fitted to a curve represented by an OZ function. That is, the hydrogel of the present invention has a uniform gel structure.
  • the hydrogel has high strength, and can be suitably used in a biological site where a load is applied such as knee cartilage, vertebral body, and intervertebral disc.
  • a preferred embodiment of the third aspect of the present invention is the hydrogel as described above having a compressive breaking strength of 10 to 120 MPa.
  • the hydrogel of the present invention has a strength exceeding the strength of living cartilage (10 MPa). Therefore, it can be preferably used in a living body body where a load is applied such as knee cartilage or vertebral body.
  • a composition ratio of 0.3 to 0.7: 0 to 0.65: 0 to a first four-branched compound, a second four-branched compound, and a third four-branched compound Relates to the hydrogel contained at 0.65.
  • the composition ratio of the first four-branched compound, the second four-branched compound, and the third four-branched compound of the hydrogel of the present invention is 0.3 to 0.7: 0.1 to 0.65: 0. It may be 1 to 0.65.
  • the first four-branched compound is represented by the formula (I). In the formula (I), n 11 to n 14 are the same or different and each represents an integer of 50 to 60.
  • R 11 to R 14 are the same or different C 1 to C 7 alkylene groups.
  • the second four-branched compound is represented by the formula (II).
  • n 21 to n 24 are the same or different and represent an integer of 45 to 55.
  • R 21 to R 24 are the same or different —CO—R. 25— (R 25 represents a C 1 -C 7 alkylene group).
  • the third four-branched compound is represented by the formula (II), and in the formula (II), n 21 to n 24 are the same or different and represent 45 to 55 integers, and R 21 R 24 is the same or different C 1 -C 7 alkylene group.
  • the decomposition rate can be adjusted while having high strength. Therefore, the hydrogel of the present invention can be decomposed in accordance with the regeneration rate at the site where the hydrogel is introduced by adjusting the decomposition rate. Therefore, it can be suitably used for bone, cartilage, or a defective portion of the intervertebral disc, or a degenerated portion of the bone, cartilage, or intervertebral disc.
  • a high-strength hydrogel and a method for producing the same can be provided.
  • the present invention can provide hydrogels having different decomposition rates.
  • FIG. 4 is a graph instead of a drawing showing the compression elastic modulus (kPa) of a gel in which the molar ratio (r) of TAPEG and TNPEG is mixed in the range of 0.33 to 3.0.
  • FIG. 5 is a graph instead of a drawing showing the breaking strain (%) and the breaking strength (MPa) of a gel mixed in a TAPEG / TNPEG molar ratio range of 0.6 to 1.4.
  • FIG. 6 is a graph replaced with a drawing showing the results of compressive breaking strength measurement of hydrogel.
  • FIG. 7 is a graph replaced with a drawing showing neutron scattering measurement results of hydrogel.
  • FIG. 8 is a photograph replacing a drawing of the back of a mouse in which hydrogel was implanted.
  • FIG. 8 is a photograph replacing a drawing of the back of a mouse in which hydrogel was implanted.
  • FIG. 9 is a photograph replacing a drawing of a canine knee cartilage implanted with hydrogel.
  • FIG. 9A to FIG. 9C are photographs replaced with drawings showing an implanted portion two months after the operation.
  • FIG. 9D to FIG. 9F are photographs replaced with drawings showing the implanted part 4 months after the operation.
  • FIG. 10 is a photograph replacing a drawing of a porcine intervertebral disc embedded with hydrogel.
  • FIG. 10A is a photograph replacing a drawing during implantation of hydrogel.
  • FIG. 10B is a photograph replacing a drawing showing an intervertebral disc after hydrogel is implanted.
  • FIG. 11 is a graph replaced with a drawing showing the decomposition rate of the gel.
  • FIG. 10 is a photograph replacing a drawing of a porcine intervertebral disc embedded with hydrogel.
  • FIG. 10A is a photograph replacing a drawing during implantation of hydrogel.
  • FIG. 10B is a photograph replacing a drawing showing an intervert
  • FIG. 12 is a graph instead of a drawing showing cell proliferation activity in each cell of NIH3T3, MC3T3-E1, and ATDC5 in the presence of hydrogel.
  • the vertical axis indicates the cell proliferation activity (absorbance value).
  • FIG. 12A shows the results of proliferation activity of NIH3T3 cells.
  • FIG. 12B shows the results of proliferation activity of MC3T3-E1 cells.
  • FIG. 12C shows the proliferation activity results of ATDC5 cells.
  • the first aspect of the present invention relates to a method for producing a hydrogel.
  • the method for producing a hydrogel of the present invention comprises a first solution containing a first four-branched compound and a first buffer solution, and a second solution containing a second four-branched compound and a second buffer solution.
  • a mixing step of mixing is included.
  • Hydrogel is a gel-like substance containing a hydrophilic polymer containing a large amount of water.
  • the hydrogel of the present invention is produced from two or more types of four-branched compounds.
  • Examples of the first four-branched compound of the present invention include compounds represented by the following formula (I).
  • R 11 to R 14 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R. 16 —O—R 17 —, —R 16 —NH—R 17 —, —R 16 —CO 2 —R 17 —, —R 16 —CO 2 —NH—R 17 —, —R 16 —CO—R 17 —, Or —R 16 —CO—NH—R 17 — is shown.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • n 11 to n 14 may be the same or different. The closer the values of n 11 to n 14 are, the more the hydrogel can take a uniform three-dimensional structure and the higher the strength. For this reason, in order to obtain a highly strong hydrogel, it is preferable that it is the same. When the value of n 11 to n 14 is too high, the strength of the hydrogel is weakened, and when the value of n 11 to n 14 is too low, the hydrogel is hardly formed due to steric hindrance of the compound. Therefore, n 11 to n 14 are integer values of 25 to 250, preferably 35 to 180, more preferably 50 to 115, and particularly preferably 50 to 60.
  • the molecular weight of the first four-branched compound of the present invention is 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, 1 ⁇ 10 4 to 2 ⁇ 10 4 Da is more preferable.
  • R 11 to R 14 are linker sites that connect the functional group and the core portion of the first four-branched compound.
  • R 11 to R 14 may be the same or different, but are preferably the same in order to produce a high-strength hydrogel having a uniform three-dimensional structure.
  • R 11 to R 14 are a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 15 —, —CO—R 15 —, —R 16 —O—R 17 —, —R 16.
  • R 15 represents a C 1 -C 7 alkylene group.
  • R 16 represents a C 1 -C 3 alkylene group.
  • R 17 represents a C 1 -C 5 alkylene group.
  • the C 1 -C 7 alkylene group means an alkylene group having 1 to 7 carbon atoms which may have a branch, and is a straight chain C 1 -C 7 alkylene group or one or two or more.
  • Examples of C 1 -C 7 alkylene groups are methylene, ethylene, propylene, butylene.
  • C 1 -C 7 alkylene groups are —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, —CH (CH 3 ) —, — (CH 2 ) 3 —, — ( CH (CH 3 )) 2 —, — (CH 2 ) 2 —CH (CH 3 ) —, — (CH 2 ) 3 —CH (CH 3 ) —, — (CH 2 ) 2 —CH (C 2 H 5 )-,-(CH 2 ) 6 -,-(CH 2 ) 2 -C (C 2 H 5 ) 2- , and-(CH 2 ) 3 C (CH 3 ) 2 CH 2- .
  • the “C 2 -C 7 alkenylene group” is an alkenylene group having 2 to 7 carbon atoms having one or two or more double bonds in the chain or having a branched chain. And a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms of adjacent carbon atoms from an alkylene group.
  • the first four-branched compound when the bond between the linker portion and the core portion of the first four-branched compound is an ester bond, the first four-branched compound is easily decomposed in vivo.
  • the bond between the linker moiety and the core portion of the first four-branched compound is an ether bond, the first four-branched compound is difficult to be decomposed in vivo. That is, the decomposability of the first four-branched compound varies depending on R 11 to R 14 . Therefore, by using such a first four-branched compound, it becomes possible to control the decomposition rate of the produced hydrogel.
  • two or more compounds represented by the above formula (I) may be used.
  • R 11 to R 14 that form an ether bond a C 1 -C 7 alkylene group is preferable, and an ethylene group, a propylene group, and a butylene group are preferable.
  • the functional group of the first four-branched compound of the present invention is preferably an amino group.
  • the functional group of the first four-branched compound having nucleophilicity and the functional group of the second four-branching compound having electrophilicity are bonded together by a chemical reaction to provide high strength. It becomes a three-dimensional structure. Therefore, the functional group of the first four-branched compound of the present invention can be a nucleophilic functional group other than an amino group. Examples of such a nucleophilic functional group include —SH and —CO 2 PhNO 2 (Ph represents o-, m-, or p-phenylene group).
  • a nuclear functional group can be used as appropriate.
  • the concentration of the first four-branched compound represented by the above formula (I) in the first solution is 10 mg / mL to 500 mg / mL. If the concentration of the four-branched compound is too low, the gel strength is weakened. If the concentration of the four-branched compound is too high, the structure of the hydrogel becomes nonuniform and the gel strength is weakened. Therefore, 20 to 400 mg / mL is preferable, 50 mg / mL to 300 mg / mL is more preferable, and 100 to 200 mg / mL is more preferable.
  • Examples of the second four-branched compound of the present invention include compounds represented by the following formula (II).
  • n 21 to n 24 may be the same or different. The closer the values of n 21 to n 24 are, the more preferable the hydrogel can have a uniform three-dimensional structure and high strength, and the same is preferable. If the values of n 21 to n 24 are too high, the strength of the hydrogel becomes weak, and if the values of n 21 to n 24 are too low, the hydrogel is difficult to form due to steric hindrance of the compound.
  • n 21 to n 24 are integer values of 5 to 300, preferably 20 to 250, more preferably 30 to 180, still more preferably 45 to 115, and even more preferably 45 to 55.
  • the molecular weight of the second four-branched compound of the present invention is 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and 1 ⁇ 10 4 to 2 ⁇ . 10 4 Da is more preferable.
  • R 21 to R 24 are linker sites that connect the functional group and the core portion of the second four-branched compound.
  • R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength hydrogel having a uniform three-dimensional structure.
  • R 21 to R 24 are the same or different and each represents a C 1 -C 7 alkylene group, a C 2 -C 7 alkenylene group, —NH—R 25 —, —CO—R 25 —, —R.
  • R 25 represents a C 1 -C 7 alkylene group.
  • R 26 represents a C 1 -C 3 alkylene group.
  • R 27 represents a C 1 -C 5 alkylene group.
  • the second four-branched compound when the bond between the linker moiety and the core portion of the second four-branched compound becomes an ester bond, the second four-branched compound is easily decomposed in vivo.
  • the bond between the linker moiety and the core portion of the second four-branched compound is an ether bond, the second four-branched compound is difficult to be decomposed in vivo. That is, the decomposability of the second four-branched compound varies depending on R 21 to R 24 . Therefore, by using such a second four-branched compound, the decomposition rate of the produced hydrogel can be controlled.
  • R 21 to R 24 that form an ether bond are preferably C 1 -C 7 alkylene groups, preferably C 2 -C 6 alkylene groups, and more preferably C 3 -C 5 alkylene groups.
  • R 21 to R 24 to be an ester bond are —CO—R 25 (R 25 represents a C 1 -C 7 alkylene group) or —CO—NH—R 25 —, and more preferably —CO—R 25 (R 25 represents a C 3 -C 5 alkylene group).
  • the functional group of the second four-branched compound of the present invention is preferably an N-hydroxy-succinimidyl (NHS) group.
  • NHS N-hydroxy-succinimidyl
  • the functional group of the first four-branched compound having nucleophilicity and the functional group of the second four-branching compound having electrophilicity are bonded by a chemical reaction. And a high-strength three-dimensional structure. Therefore, other active ester groups having electrophilicity may be used as the functional group of the second four-branched compound of the present invention.
  • Examples of such an active ester group include a sulfosuccinimidyl group, a maleimidyl group, a phthalimidyl group, an imidazolyl group, and a nitrophenyl group, and those skilled in the art can appropriately use known active ester groups.
  • the functional groups of the second four-branched compound may be the same or different, but are preferably the same. When the functional groups of the second four-branched compound are the same, the reactivity with the functional group of the first four-branched compound becomes uniform, and a high-strength hydrogel having a uniform three-dimensional structure can be easily obtained.
  • the concentration of the second four-branched compound contained in the second solution of the present invention is 10 mg / mL to 500 mg / mL. If the concentration of the four-branched compound is too low, the gel strength is weakened. If the concentration of the four-branched compound is too high, the structure of the hydrogel becomes nonuniform and the gel strength is weakened. Therefore, 20 to 400 mg / mL is preferable, 50 mg / mL to 300 mg / mL is more preferable, and 100 to 200 mg / mL is more preferable.
  • the first four-branched compound and the second four-branched compound may be mixed at a molar ratio of 0.5: 1 to 1.5: 1.
  • the first four-branched compound of the present invention has a nucleophilic functional group (for example, an amino group).
  • the second four-branched compound of the present invention has an electrophilic functional group (for example, N-hydroxy-succinimidyl (NHS) group).
  • the functional groups of the first or second four-branched compound of the present invention can each react 1: 1. Therefore, it is preferable that the mixing molar ratio of the first four-branched compound and the second four-branched compound is closer to 1: 1.
  • the mixing molar ratio of the first four-branched compound and the second four-branched compound of the hydrogel of the present invention is preferably 0.8: 1 to 1.2: 1, 0.9 to 1: 1.1 to 1 is more preferable.
  • the mixing molar ratio of the first four-branched compound and the second four-branched compound is 0.8: 1 to 1.2: 1. , Gels with strength exceeding cartilage (10 MPa) can be produced.
  • the hydrogel production method for controlling the decomposition rate uses two or three or more kinds of four-branched compounds.
  • the present invention binds a tetra-branched compound having a nucleophilic functional group at each end and a tetra-branched compound having an electrophilic functional group at each end in a mixed molar ratio of 0.8 to 1.2. This makes it possible to make a high-strength hydrogel. Further, as described above, when the bond between the core portion of the four-branched compound and the linker site is an ester bond, the decomposition of the four-branched compound proceeds.
  • the four-branched compound When the bond at the core portion linker site of the four-branched compound is an ether bond, the four-branched compound is not decomposed and remains in a stable state. Therefore, if a tetra-branched compound having a nucleophilic functional group at each end and a tetra-branched compound having an electrophilic functional group at each end are mixed in a molar ratio of 0.8 to 1.2, the nucleophilic functional group
  • the four-branched compound having an or an electrophilic functional group can contain an ester bond or an ether bond, respectively.
  • the four-branched compound having a nucleophilic functional group or the four-branched compound having an electrophilic functional group may each be two or more types of four-branched compounds.
  • a person skilled in the art can appropriately adjust the ratio including an ester bond or an ether bond, and which bond is used for a tetra-branched compound having a nucleophilic functional group or a tetra-branched compound having an electrophilic functional group. it can.
  • the first solution or the second solution contains a buffer solution, and the pH of each solution is adjusted.
  • the buffer solution refers to a solution having the ability to prevent the pH in the solution from changing significantly (pH buffering ability).
  • the buffer solution of the present invention include phosphate buffer solution, citrate buffer solution, citrate / phosphate buffer solution, acetate buffer solution, borate buffer solution, tartaric acid buffer solution, Tris buffer solution, Tris hydrochloride buffer solution, Examples include phosphate buffered saline or citrate / phosphate buffered saline.
  • the first buffer solution and the second buffer solution may be the same or different.
  • the first buffer solution and the second buffer solution may be used by mixing two or more kinds of buffer solutions.
  • the concentration of the buffer solution of the present invention is 10 mM to 500 mM. As shown in the examples described later, when the buffer solution concentration is low, the pH buffering ability of the buffer solution is low, and pH control is not appropriately performed. On the other hand, when the buffer solution concentration is too high, the buffer solution component prevents hydrogel formation. Therefore, the concentration of the buffer solution of the present invention is preferably 20 to 200 mM, more preferably 20 mM to 100 mM. If the pH of the buffer solution of the present invention is too acidic and alkaline, a hydrogel having a uniform structure cannot be formed. Therefore, the pH of the buffer solution of the present invention is preferably 5-9.
  • the first four-branched compound and the second four-branched compound of the present invention are mixed in the mixing step.
  • a step of adding and mixing the second solution to the first solution a step of adding and mixing the first solution to the second solution, the first solution and the second solution A step of mixing an equal amount of the solution is given.
  • the addition rate and mixing rate of the first solution or the second solution are not particularly limited, and those skilled in the art can appropriately adjust them.
  • the mixing step of the present invention can be performed using, for example, a two-component mixing syringe as disclosed in International Publication WO2007 / 083522.
  • the temperature of the two liquids at the time of mixing is not particularly limited as long as the first four-branched compound and the second four-branched compound are dissolved and each liquid has fluidity. If the temperature is too low, the compound is difficult to dissolve, or the fluidity of the solution is low, and the first four-branched compound and the second four-branched compound are hardly mixed uniformly. On the other hand, if the temperature is too high, it becomes difficult to control the reactivity of the first four-branched compound and the second four-branched compound.
  • the temperature of the solution when the first four-branched compound and the second four-branched compound are mixed includes 1 ° C. to 100 ° C., preferably 5 ° C. to 50 ° C., 10 to 30 ° C. is more preferable.
  • the temperatures of the two liquids may be different, but the same temperature is preferable because the two liquids are easily mixed.
  • the mixed solution obtained by the mixing step preferably has a salt concentration of 0 to 1 ⁇ 10 2 mM, and may be 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 2 .
  • the salt concentration in the mixed solution increases, the ionic strength in the mixed solution increases. As the ionic strength increases, the electrostatic repulsion between positively charged amino groups is blocked, so that the four-branched compound does not mix uniformly (FIG. 3B). Therefore, it is preferable that the salt concentration in the mixed solution is not high. Therefore, the salt concentration of the mixed solution is preferably 100 mM or less, and more preferably 50 mM or less.
  • the second four-branched compound is preferably present stably so as not to be hydrolyzed.
  • the pH of the solution of the second four-branched compound before mixing is preferably 5 to 6.5.
  • 95 to 99% of the first four-branched compound is in a non-cationic amino group having a binding ability with the second four-branched compound in order to prevent uneven mixing.
  • the pH of the solution immediately after mixing is preferably 6-8.
  • the pH of the first solution is preferably higher than the pH of the second solution.
  • the pH of the solution can be measured by a known method such as using a commercially available pH meter.
  • the start of mixing refers to the time when the first solution and the second solution are in contact with each other.
  • a first solution containing a first buffer solution having a pH of 7.5 or more, and a second solution containing a second buffer solution having a pH of 6.5 or less The method of mixing is mentioned. Since the first and second solutions of the present invention contain a buffer solution, the pH does not change abruptly with solutions having different pHs. A person skilled in the art appropriately adjusts the pH of each of the first and second solutions by adjusting the types and concentrations of the first buffer solution and the second buffer solution contained in the first and second solutions. , The pH after mixing can be changed.
  • the second aspect of the present invention relates to a hydrogel produced by the above method.
  • the hydrogel produced by the production method of the present invention has high strength, and the gelation time can be adjusted by adjusting the pH of the solution.
  • the hydrogel of the present invention can adjust the time until gelation, so that it is easy to make a shape suitable for the introduction portion. Therefore, as will be described later, the hydrogel of the present invention can be used for bone, cartilage, or intervertebral disk defect in orthopedic surgery of bone, cartilage, or intervertebral disc that is loaded in the living body, such as knee cartilage surgery and disc surgery.
  • the hydrogel of the present invention may be administered directly to the affected area using the two-component mixing syringe described above, or after forming the hydrogel according to the type of the site to be introduced in advance. Hydrogel may be introduced into the affected area.
  • the third aspect of the present invention relates to a hydrogel containing the first four-branched compound and the second four-branched compound in a composition ratio of 0.5: 1.0 to 1.5: 1.
  • the nucleophilic functional group of the first four-branched compound and the electrophilic functional group of the second four-branched compound can react 1: 1. Therefore, the composition ratio of the first four-branched compound and the second four-branched compound is preferably closer to 1: 1.
  • the composition ratio of the first four-branched compound and the second four-branched compound of the hydrogel of the present invention is preferably 0.8: 1 to 1.2: 1. 9 to 1: 1.1 to 1 is more preferable.
  • the mixing molar ratio of the first four-branched compound and the second four-branched compound is 0.8: 1 to 1.2: 1.
  • Gels with strength exceeding cartilage (10 MPa) can be produced.
  • the scattering curve of neutron scattering of the hydrogel can be fitted with the Olstein-Zernike (OZ) function. Thereby, it can be evaluated that the structure of the hydrogel is uniform.
  • the scattering curve of the neutron scattering of the hydrogel is fitted by the Ornstein-Zernike (OZ) function” means that the approximate curve represented by the neutron scattering measurement group of the hydrogel is expressed by the “Gauss function”. "Corresponding to a” theoretical curve represented by the OZ function "", not "a curve combining the theoretical curve represented by the OZ function and the theoretical curve represented by the OZ function”. It can be evaluated by curve fitting that the approximate curve expressed by the neutron scattering measurement group of hydrogel correlates with the theoretical curve expressed by the OZ function.
  • the degree of overlap (degree of fitting) ) May be 80% or more, more preferably 90% or more.
  • a method for calculating the degree of fitting by superimposing two lines in this manner is known and can be appropriately performed by those skilled in the art.
  • a preferred embodiment of the third aspect of the present invention is a hydrogel having a compressive breaking strength of 10 MPa or more.
  • the compressive breaking strength of the hydrogel of the present invention can be examined by a known method using a known measuring instrument.
  • An example of the compression rupture strength measuring device is a compression tester (Instron 3365) manufactured by Instron.
  • the compressive breaking strength is the maximum stress at which a gel sample breaks when a compressive load is applied to the gel sample.
  • the compressive breaking strength can be expressed by a value obtained by dividing a compressive force when a uniaxial load is applied to a cylindrical gel sample by a cross-sectional area perpendicular to the axis.
  • the hydrogel of the present invention preferably has a pressure of 10 MPa or more, which exceeds the compressive breaking strength of living cartilage.
  • a hydrogel having such a compressive breaking strength it can be suitably used for a bone defect portion or a bone deformed portion where a high load is applied.
  • the hydrogel of the present invention Since the hydrogel of the present invention has high strength and can adjust the time until gelation, it can be applied to the knee cartilage or the intervertebral disc, which is the in vivo load site, in the bone, cartilage, or the disc defect, or the bone, cartilage, Or it can be used suitably for the deformed part of the intervertebral disc. Moreover, the gel of this invention can adjust the time to gelatinization by adjusting the pH of a solution. Moreover, if a two-component mixing syringe as disclosed in the pamphlet of International Publication No. WO 2007/083522 is used, gel injection on site can be performed. Therefore, the hydrogel of the present invention can provide a new treatment method in orthopedic surgery or the like.
  • the hydrogel of the present invention enables administration of the gel using the disc imaging method.
  • the disc imaging method is a method of injecting gel from the posterior direction using a disc needle. In this way, since gel can be injected into the nucleus pulposus without performing skin incision, minimally invasive surgery can be performed with less burden on the patient's body.
  • the hydrogel of the present invention is a useful novel substance that has the mechanical properties of an intervertebral disc in the short term and is expected to have a preventive effect on intervertebral degeneration in the long term.
  • the hydrogel of the present invention may be injected on-site after discectomy (LOVE method) or endoscopic nucleotomy.
  • the hydrogel of the present invention can be injected on-site and the time until gelation can be adjusted. Therefore, it can be artificially adjusted so that it gels in a state suitable for the shape of the affected area. Therefore, early recovery after surgery can be expected, and postoperative disc degeneration can be prevented.
  • the present invention provides a treatment for a defect in a bone, cartilage, or intervertebral disc using a hydrogel containing the first four-branched compound and the second four-branched compound in a composition ratio of 0.8: 1 to 1.2: 1.
  • Method Also provided is a method for treating a deformed portion of a bone, cartilage, or intervertebral disc using a hydrogel comprising a first four-branched compound and a second four-branched compound in a composition ratio of 0.8: 1 to 1.2: 1.
  • the hydrogel of the present invention has an intervertebral disc mechanical property in a short period, and is expected to have a preventive effect on intervertebral degeneration in the long term.
  • TAPEG tetraamine-polyethylene glycol
  • TNPEG N-hydroxy-succinimidyl-polyethylene glycol
  • THPEG tetrahydroxyl-polyethylene glycol
  • TAPEG THPEG (0.1935 mmol, 3.87 g, 1.0 equiv) was dissolved in benzene, freeze-dried, dissolved in 62 mL of THF, and triethylamine (TEA) (0.1935 mmol, 3.87 g, 1.0 equiv) was added.
  • TAA triethylamine
  • MsCl methanesulfonyl chloride
  • a THF solution of MsCl was added dropwise to a THF solution of THPEG and TEA over about 1 minute, stirred in an ice bath for 30 minutes, and then stirred at room temperature for 1.5 hours. After completion of the reaction, it was reprecipitated in diethyl ether and the precipitate was removed by filtration. Furthermore, it wash
  • n 11 to n 14 were 50 to 60 when the molecular weight of TAPEG was about 10,000 (10 kDa), and 100 to 115 when the molecular weight was about 20,000 (20 kDa).
  • TNPEG THPEG (0.2395 mmol, 4.79 g, 1.0 equiv) was dissolved in THF, 0.7 mol / l glutaric acid / THF solution (4.790 mmol, 6.85 mL, 20 equiv) was added, and Ar was present. , Stirred for 6 hours. After completion of the reaction, it was added dropwise to 2-propanol and centrifuged 3 times. The obtained white solid was transferred to a 300 mL eggplant flask, and the solvent was distilled off under reduced pressure using an evaporator. The residue was dissolved in benzene and the insoluble material was removed by filtration.
  • Tetra-PEG-COOH as a white solid whose terminal was modified with a carboxyl group.
  • This Tetra-PEG-COOH (0.2165 mmol, 4.33 g, 1.0 equiv) was dissolved in THF, and N-hydrosuccinimide (2.589 mmol, 0.299 g, 12 equiv), N, N′-diisopropylsuccinimide (1 .732 mmol, 0.269 mL, 8.0 equiv) was added, and the mixture was heated and stirred at 40 ° C. for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure using an evaporator.
  • TNPEG TNPEG
  • n 21 to n 24 were 45 to 55 when the molecular weight of TNPEG was about 10,000 (10 k), and 90 to 115 when the molecular weight was about 20,000 (20 k).
  • the reaction rate is extremely important. If the reaction is too early, the viscosity of the solution increases before the four-branched compounds are uniformly mixed, and a uniform network structure cannot be obtained. On the other hand, if it is too slow, the degradable active ester site will be hydrolyzed, resulting in a low final reaction rate. Therefore, it is considered that the one made in pure water has a non-uniform network structure and a reduced strength because a gel is formed before mixing. In other words, it is considered that the one made in pure water has a non-uniform network structure and a reduced strength because a gel is formed before mixing.
  • phosphate buffer pH 6.0, 7.4, 9
  • citrate buffer pH 6.0, 7.4, 9.0
  • the obtained solution was quickly mixed into two liquids and gelled at 37 ° C., and the gel strength after gelation was measured.
  • the pressure at the time of entering a cylindrical sample having a diameter of 15 mm and a height of 7.5 mm into a cylindrical sample having a diameter of 2 mm and penetrating up to 98% was used.
  • TAPEG (10k) and TNPEG (10k) at a concentration of 100 mg / mL, phosphate buffer (pH 7.4, 2 mM, 20 mM, 100 mM, 200 mM), citric acid It was dissolved in a buffer solution (pH 7.4, 2 mM, 20 mM, 100 mM, 200 mM). After the adjustment, the obtained solution was quickly mixed into two liquids and gelled at 37 ° C., and the gel strength after gelation was measured. As the strength, the pressure when an intruding rod having a diameter of 2 mm was penetrated into a cylindrical sample having a height of 15 mm and a height of 7.5 mm was used up to 98%.
  • the buffer concentration is considered not to greatly affect the reaction rate.
  • the gel strength showed a high value around a buffer concentration of 20 mM to 100 mM.
  • the buffer limit of the buffer solution is low and the pH cannot be controlled, so that the gelation speed is increased, and thus a uniform structure cannot be obtained. That is, when the tetrabranched compound is 100 mg / mL, the solution can be maintained at an appropriate pH if the concentration of the buffer is 20 mM or more.
  • the reason why the strength decreased on the high concentration side is considered to be that the four-branched compound was not mixed uniformly.
  • the active ester site of TNPEG (IIa) is hydrolyzed and does not contribute to the reaction. It is considered that by reducing only the pH of the TNPEG solution, hydrolysis can be suppressed and the final reaction rate is improved.
  • TAPEG and PNPEG TAPEG (Ia) molecular weight about 10 k
  • TNPEG (IIa) molecular weight about 10 k
  • total amount of precursor 600 mg
  • Equal liquid amounts of each compound solution were mixed at room temperature so that the molar ratio of TAPEG (Ia) and TNPEG (IIa) was in the range of 0.33 to 3.0
  • gelation was performed for 2 hours, diameter 15 mm, Molded on a cylinder with a height of 7.5 mm.
  • the compression test was performed at a speed of 0.75 mm / min using a mechanical test device (manufactured by Instron Corporation (INSTRON 3365)), and the results are shown in FIGS.
  • FIG. 4 is a graph instead of a drawing showing the compression elastic modulus (kPa) of a gel in which the molar ratio (r) of TAPEG (Ia) and TNPEG (IIa) is mixed in the range of 0.33 to 3.0.
  • the hydrogel of the present invention comprises TAPEG (Ia) and TNPEG (IIa) in a composition ratio of 0.6: 1 to 1.4: 1, preferably 0.8: 1 to 1.2: 1. It was shown that a hydrogel having a uniform network structure was formed.
  • TAPEG (Ia) and TNPEG (IIa) having a molecular weight of 20,000 were dissolved in a 100 mM phosphate buffer solution and a citrate / phosphate buffer solution at a concentration of 160 mg / mL, and the two solutions were mixed.
  • a colorless and transparent hydrogel was formed in about 1 minute.
  • a cylindrical sample having a diameter of 7 mm and a height of 3.5 mm was prepared, and a compressive strength test was performed using a compression tester (Instron). The results are shown in FIG.
  • the vertical axis in FIG. 6 indicates stress [MPa], and the horizontal axis indicates the strain [%] of the hydrogel.
  • this hydrogel did not break even when applied with a strain of 90% or more, and could withstand a stress exceeding 100 MPa. This value is far beyond the strength of the conventional hydrogel, 10 MPa, which is the breaking stress of living cartilage, and it can be applied to articular cartilage and high load intervertebral discs. It is done.
  • TAPEG (Ia) and TNPEG (IIa) having a molecular weight of 10,000 at various concentrations in 50 mM phosphate buffer solution (pH 7.4), citric acid / phosphate buffer solution (pH 5) 8) was dissolved, and the two liquids were mixed to prepare a hydrogel.
  • the obtained hydrogel was subjected to neutron scattering measurement in order to analyze the heterogeneity in the structure. The results are shown in FIG.
  • “Gauss + OZ” indicates the scattering curve of a normal hydrogel (eg, PTHF (U102)), and the Ornstein-Zernike (OZ) function caused by the thermal fluctuation of the polymer and the non-existence present in the system. It can be written as a sum of Gauss functions that represent excess scattering from uniformity.
  • “Gauss” indicates a Gaussian function curve representing excessive scattering when the gel is non-uniform.
  • “OZ” represents an OZ function curve representing neutron scattering when the gel is uniform.
  • “hydrogel” indicates the hydrogel of the present invention. As shown in FIG.
  • FIG. 9A to 9C show an implanted part 2 months after the operation
  • FIGS. 9D to 9F show an implanted part 4 months after the operation.
  • hydrogel remained in the affected area, and no inflammatory reaction or toxic reaction was observed.
  • FIG. 10A shows a photograph during implantation
  • FIG. 10B shows a photograph of the intervertebral disc after implantation.
  • TAPEG (Ia) (following formula (Ia)
  • TNPEG (IIa) (following formula (IIa)
  • TNPEG (IIb) (following formula (IIb) )
  • n 11 to n 14 were 50 to 60, and the molecular weight was about 10,000 (10k).
  • n 21 to n 24 were 45 to 55, and the molecular weight was about 10,000 (10k).
  • n 21 to n 24 were 45 to 55, and the molecular weight was about 10,000 (10k).
  • Table 7 shows the results of comparing the mechanical strength of the three types of gels produced.
  • the three types of hydrogels had almost the same breaking strain, breaking strength, and compression modulus.
  • the degradation rate of the gel was examined.
  • the prepared three kinds of gels were allowed to stand in a simulated body fluid at 37 ° C., and the swelling rate of the gels was measured. The results are shown in FIG.
  • the vertical axis indicates the swelling rate, and the horizontal axis indicates the number of days of standing. The higher the swelling rate, the more the gel is degraded.
  • the swelling rate of pattern 2 was constant after swelling to some extent. That is, it was shown that it hardly decomposes.
  • Pattern 1 showed that the swelling rate increased with the passage of days and the gel was decomposed, and although not shown in FIG. 11, it was completely decomposed after 2 months.
  • Pattern 3 showed an intermediate behavior between pattern 1 and pattern 2. From this, it was shown that the degradation rate of the gel can be controlled by changing the mixing ratio of TNPEG (IIa) and TNPEG (IIb).
  • hydrogel corresponding to 0.25% vol / vol, 0.5% vol / vol, 1.0% vol / vol of the culture solution is immersed in the culture solution using a transwell and cultured for 24 hours. did.
  • the hydrogel used was a combination of patterns 2 in Table 6.
  • cell proliferation activity was measured using Cell counting kit-8 (manufactured by Wako).
  • the cell proliferation activity was examined by measuring the absorbance (OD 450 nm) of each well. The results are shown in FIG.
  • the vertical axis in FIG. 12 represents the cell proliferation activity (absorbance measurement value).
  • FIG. 12A shows the results for NIH3T3.
  • FIG. 12B shows the results for MC3T3-E1.
  • FIG. 12C shows the result of ATDC5.
  • the present invention can be widely used in the medical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

 【課題】  本発明は,高強度なハイドロゲル及びその製造方法を提供することを目的とする。本発明は,分解速度の異なるハイドロゲルの製造方法を提供することを目的とする。  【解決手段】   本発明は,溶液のpH,溶液中のイオン強度,溶液中の緩衝液濃度を調整することで,高強度なハイドロゲルを製造することができるという知見に基づくものである。また本発明は,2種類の四分岐化合物を均一に分散させた後に,2種類の四分岐化合物を重合させることで,均一な高分子網目構造を有する高強度なハイドロゲルを製造することができるという知見に基づくものである。  

Description

超高強度インジェクタブルハイドロゲル及びその製造方法
 本発明は,3次元網目構造のハイドロゲル,およびその製造方法などに関する。
 従来,シーリングや癒着防止などの医療目的でポリマーを用いたゲルが使用されてきた。特表2000-502380号公報には,多分岐ポリマーを混合して作製するゲルが開示されている。しかし,同公報で得られるゲルは,強度が弱く,膝軟骨,椎体,又は椎間板など生体内荷重部位へ適用することができない。
 国際公開WO2006/013612号パンフレットには,2種類のモノマーを混合するハイドロゲルの製造方法が開示されている。同パンフレットでは,2種類のモノマーを混合して多重網目構造を形成させることによりハイドロゲルを製造する。しかし,同パンフレットに開示されたハイドロゲルは,生体内荷重部位へ適用できるほど十分な強度ではない。
 このように,現在,膝軟骨や椎間板(髄核)の手術に用いられているゲルは,強度が十分とはいえず,生体内に長期間導入して用いるとゲルの変性が起こる。そのため,荷重負荷がかかる部位へ使用すると定期的な手術が必要になるという問題があった。
特表2000-502380号公報 国際公開WO2006/013612号パンフレット
 本発明は,高強度なハイドロゲル及びその製造方法を提供することを目的とする。
 本発明は,分解速度の異なるハイドロゲルの製造方法を提供することを目的とする。
 本発明は,溶液のpH,溶液中のイオン強度,溶液中の緩衝液濃度を調整することで,高強度なハイドロゲルを製造することができるという知見に基づくものである。また本発明は,2種類の四分岐化合物を均一に分散させた後に,2種類の四分岐化合物を重合させることで,均一な高分子網目構造を有する高強度なハイドロゲルを製造することができるという知見に基づくものである。
 本発明の第1の側面は,ハイドロゲルの製造方法に関する。本発明のハイドロゲルの製造方法は,第1の四分岐化合物と第1の緩衝液を含む第1の溶液と,第2の四分岐化合物と第2の緩衝液を含む第2の溶液とを混合する混合工程とを含む。前記第1の四分岐化合物は,下記式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000001
 前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものである。式(I)中,R11~R14は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示す。ここで,R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。
 前記第2の四分岐化合物は,下記式(II)で表わされる。
Figure JPOXMLDOC01-appb-C000002
 前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものである。式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示す。ここで,R25はC-Cアルキレン基を示す。R26はC-Cアルキレン基を示す。R27はC-Cアルキレン基を示す。
 そして,第1の緩衝液のpHが5~9,及び前記第1の緩衝液の濃度が20~200mMであり,前記第2の緩衝液のpHが5~9,及び前記第2の緩衝液の濃度が20~200mMである。また第1の溶液のpHは,前記第2の溶液pHよりも高い。このような2種類の四分岐化合物を用いることで,図1及び図2に示す反応が起こり,均一な網目構造を有するハイドロゲルを製造することができる。
 上記のとおり,本発明の第1の四分岐化合物は,アミノ基を有する。酸性溶液中では,第1の四分岐化合物のアミノ基がカチオンの状態となりやすく,互いに反発しやすくなる(図2,図3A)。そして,カチオン状態のアミノ基は,第2の四分子化合物の官能基(N-ヒドロキシ-スクシンイミジル(NHS))と反応性が低下する(図2)。一方,第1の溶液のpHが高くなる(アルカリ性側に傾く)と,第1の四分岐化合物のアミノ基が-NH3+から-NHへと移りやすくなるので,第2の四分岐化合物との反応性が高くなる(図2)。しかし,第2の四分岐化合物は,溶液のpHが7以上になると,エステル結合が分解されやすくなり,第1の四分岐化合物との反応性が低下してくる。そのため,ゲル強度が弱くなってしまう。そのため,第1及び第2の緩衝液のpHを調節することで,第1及び第2の溶液のpHを調節でき,第1の四分岐化合物と第2の四分岐化合物の反応速度を調節し,高強度なハイドロゲルを製造することができる。
 また,後述する実施例で示されたとおり,緩衝液濃度が低すぎると,溶液中のpH緩衝能が低下し,高強度のハイドロゲルを製造することができない。そして,緩衝液濃度が高すぎても,第1の四分岐化合物と第2の四分岐化合物の混合を阻害するために,高強度のハイドロゲルを製造することができない。よって,後述する実施例で示されたとおり,緩衝液の濃度を20mM~200mMとすることで,均一構造を有する高強度なハイドロゲルを製造することができる。
 よって,第1及び第2の緩衝液のpH,溶液中の緩衝液濃度を上記のように調整することで,ハイドロゲルのゲル化までの時間(反応速度)を調整することができ,さらに均一構造を有する高強度なハイドロゲルを製造することができる。
 本発明の第1の側面の好ましい態様は,前記第1の緩衝液は,リン酸緩衝液,またはリン酸緩衝生理食塩水のいずれか1つ又は2つ以上を含む。前記第2の緩衝液は,リン酸緩衝液,クエン酸・リン酸緩衝液,リン酸緩衝生理食塩水,またはクエン酸・リン酸緩衝生理食塩水のいずれか1つ又は2つ以上を含む。後述する実施例に示されたとおり,このような緩衝液を用いることで,均一構造を有する高強度なハイドロゲルを製造することができる。
 本発明の第1の側面の好ましい態様は,前記混合工程後の混合溶液は,塩濃度が0~1×10mMがあげられ,1×10-1~1×10mMであってもよい。混合溶液中の塩濃度が高いと,塩のアニオンが第1の四分岐化合物のカチオンと相互作用し,カチオン同士の反発が低減する。カチオン同士の反発が低減すると,2種類の四分岐化合物を均一に混合しにくくなる(図3A,図3B)。2種類の四分岐化合物が均一に混合されていないと,均一な3次元構造を有するハイドロゲルが作製されず,ハイドロゲルの強度が弱くなる。後述する実施例でも示されたとおり,混合溶液中の塩濃度が高くなるとゲルの強度が弱くなる。よって,後述する実施例で示されたとおり,混合溶液中の塩濃度を上記濃度とすることで,塩のアニオンによる影響を受けず,2種類の四分岐化合物が均一に混合され,高強度のハイドロゲルを製造することができる。
 本発明の第1の側面の好ましい態様は,前記第1の溶液は,前記pHが5~9であり,前記第1の緩衝液が20mM~100mMのリン酸緩衝液である。前記第2の溶液は,前記pHが5~7.5であり,前記第2の緩衝液が20mM~100mMのリン酸緩衝液,又は20~100mMのクエン酸・リン酸緩衝液のいずれかである。上記のとおり,第1の溶液のpHが高いと,第1の四分岐化合物と第2の四分岐化合物が均一に混合しにくい。また,第2の溶液のpHが高すぎると,第2の四分岐化合物のエステルが分解されてしまう。第2の四分岐化合物のエステルが分解されると,四分岐化合物の末端の官能基が外れる。これにより,第1の四分岐化合物と第2の四分岐化合物は結合することができなくなる。よって,作製されるハイドロゲルの強度が低下する。そのため,本発明のように,第1の溶液のpHを5~9,第2の溶液のpHを5~7.5とすることで,第1の四分岐化合物と第2の四分岐化合物を効率よく均一に混合することができ,均一な3次元構造を有するハイドロゲルを製造することができる。また,後述する実施例に示されたとおり,緩衝液濃度が低すぎると,混合溶液中のpH緩衝能が低い。一方,濃度が高すぎるとハイドロゲルの強度が低下する。そのため,第1及び第2の緩衝液濃度を,20~100mMとすることで,より高強度なハイドロゲルを効果的に製造することができる。
 本発明の第1の側面の好ましい態様は,前記混合工程後の混合溶液は,混合直後から30秒後までの平均pHは,6~8である。上記のとおり,本発明の第1の四分岐化合物は,アミノ基を有する。アミノ基は,pHが8以下の溶液中では95%以上がカチオンの状態で存在し,互いに反発し合う(図3A)。そして,カチオン性のアミノ基は,第2の四分岐化合物の官能基(N-ヒドロキシ-スクシンイミジル(NHS)基)と反応しない(図2)。そのため,混合開始時から混合30秒後の混合溶液のpHを6~8としておくことで,第1の四分岐化合物と第2の四分岐化合物とが局所的に結合することを防ぎ,溶液中に両化合物を均一に分散させることができる(図3A)。その後,5%程度存在する非カチオン性のアミノ基(-NH)がNHSと反応するに伴って,第1の四分岐化合物のアミノ基の平衡状態が-NH3+から-NHへと移り,第2の四分岐化合物との反応が進行する(図2)。このように混合後の溶液のpHを調整することで,NHSと反応しうる非カチオン性のアミノ基の分率を5%程度に保つことにより,第1の四分岐化合物と第2の四分岐化合物が不均一に混合すること効果的に防ぐことができ,最終的な反応率を上昇させ,均一な高強度なハイドロゲルを製造することができる。
 本発明の第2の側面は,第1の四分岐化合物と第1の緩衝液とを含む第1の溶液と,第2の四分岐化合物と第2の緩衝液とを含む第2の溶液とを混合する混合工程とを含む,製造方法で製造されたハイドロゲルに関する。前記第1の四分岐化合物は,下記式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000003
 前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものである。式(I)中,R11~R14は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示す。ここで,R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。前記第2の四分岐化合物は,前記一般式(II)で表わされる。
Figure JPOXMLDOC01-appb-C000004
 前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものである。式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示す。ここで,R25はC-Cアルキレン基を示す。R26はC-Cアルキレン基を示す。R27はC-Cアルキレン基を示す。
 前記第1の緩衝液のpHが5~9,及び前記第1の緩衝液の濃度が20~200mMであり,前記第2の緩衝液のpHが5~9,及び前記第2の緩衝液の濃度が20~200mMである。前記第1の溶液のpHは,前記第2の溶液pHよりも高いほうが好ましい。
 後述する実施例で示されたとおり,本発明の製造方法を用いて製造したハイドロゲルは,生体軟骨をしのぐ強度を有する。また,後述する実施例で示されたとおり,本発明のハイドロゲルは細胞毒性を示さない。よって,本発明のハイドロゲルによれば,骨,軟骨,若しくは椎間板の欠損部,又は骨,軟骨,若しくは椎間板の変性部の治療に効果的に用いることができる。
 本発明の第3の側面は,第1の四分岐化合物と第2の四分岐化合物とを,組成比0.8:1~1.2:1で含むハイドロゲルに関する。前記第1の四分岐構造化合物は,下記一般式(I)で表わされる。
Figure JPOXMLDOC01-appb-C000005
 前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものである。式(I)中,R11~R14は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示す。ここで,R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。前記第2の四分岐構造化合物は,前記一般式(II)で表わされる。
Figure JPOXMLDOC01-appb-C000006
 前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものである。式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示す。ここで,R25はC-Cアルキレン基を示す。R26はC-Cアルキレン基を示す。R27はC-Cアルキレン基を示す。
 前記ハイドロゲルの中性子散乱の散乱曲線は,オルンシュタイン-ゼルニケ(OZ)関数でフィッティングされる。後述する実施例で示されたとおり,本発明のハイドロゲルの中性子散乱測定値群から得られる散乱曲線は,OZ関数で表わされる曲線にフィッティングする。すなわち,本発明のハイドロゲルは,均一なゲル構造を有する。このような均一なゲル構造を有することで,ハイドロゲルは高強度になり,膝軟骨や椎体や椎間板など荷重負荷がかかる生体部位において好適に使用することができる。
 本発明の第3の側面の好ましい態様は,圧縮破断強度が10~120MPaである上記に記載のハイドロゲルである。後述する実施例で示されたとおり,本発明のハイドロゲルは,生体軟骨強度(10MPa)を超える強度を有する。よって,膝軟骨や椎体など荷重負荷がかかる生体部位において好適に使用することができる。
 本発明の第4の側面は,第1の四分岐化合物と第2の四分岐化合物と第3の四分岐化合物とを,組成比0.3~0.7:0~0.65:0~0.65で含むハイドロゲルに関する。本発明のハイドロゲルの第1の四分岐化合物と第2の四分岐化合物と第3の四分岐化合物の組成比は,組成比0.3~0.7:0.1~0.65:0.1~0.65であってもよい。前記第1の四分岐化合物は,前記式(I)で表わされる。前記式(I)中,n11~n14は,それぞれ同一又は異なり,50~60の整数を示すものである。前記式(I)中,R11~R14は,同一又は異なるC~Cアルキレン基である。前記第2の四分岐化合物は,前記式(II)で表わされる。前記式(II)中,n21~n24は,それぞれ同一又は異なり,45~55の整数を示すものであり,前記式(II)中,R21~R24は同一又は異なる-CO-R25-(R25はC~Cアルキレン基を示す)である。前記第3の四分岐化合物は,前記式(II)で表わされ,前記式(II)中,n21~n24は,それぞれ同一又は異なり,45~55整数を示すものであり,R21~R24は同一又は異なるC~Cアルキレン基である。後述する実施例で示されたとおり,このような組成比のハイドロゲルとすることで,高強度でありながら,分解速度を調整することができる。よって,本発明のハイドロゲルは,分解速度を調節することにより,ハイドロゲルを導入した部位での再生速度に合わせてハイドロゲルを分解させることができる。よって,骨,軟骨,若しくは椎間板の欠損部,骨,軟骨,若しくは椎間板の変性部に好適に使用することができる。
 本発明によれば,高強度なハイドロゲル及びその製造方法を提供できる。
 本発明は,分解速度の異なるハイドロゲルを提供することができる。
図1は,ハイドロゲルの構造を示す図面である。 図2は,第1の四分岐化合物と第2の四分岐化合物の反応状態を示す図面である。 図3は,第1の四分岐化合物と第2の四分岐化合物の溶液中での分布を概略的に示した図面である。図3Aは,第1の四分岐化合物と第2の四分岐化合物が溶液中で均一に混合している状態を示す図面である。図3Bは,塩アニオンによって,第1の四分岐化合物と第2の四分岐化合物の溶液中の分布が不均一になることを示す図面である。 図4は,TAPEGとTNPEGのモル比率(r)を0.33~3.0の範囲で混合したゲルの圧縮弾性率(kPa)を示す図面に替わるグラフである。 図5は,TAPEGとTNPEGのモル比率0.6~1.4の範囲で混合したゲルの破断歪み(%)及び破断強度(MPa)を示す図面に替わるグラフである。 図6は,ハイドロゲルの圧縮破断強度測定の結果を示す図面に替わるグラフである。 図7は,ハイドロゲルの中性子散乱測定結果を示す図面に替わるグラフである。 図8は,ハイドロゲルを埋植したマウス背部の図面に替わる写真である。 図9は,ハイドロゲルを埋植したイヌ膝軟骨の図面に替わる写真である。図9A~図9Cは,手術後2か月後の埋植部を示す図面に替わる写真である。図9D~図9Fは,手術後4か月後の埋植部を示す図面に替わる写真である。 図10は,ハイドロゲルを埋植したブタ椎間板の図面に替わる写真である。図10Aは,ハイドロゲルを埋植中の図面に替わる写真である。図10Bは,ハイドロゲルを埋植後の椎間板を示す図面に替わる写真である。 図11は,ゲルの分解速度を示す図面に替わるグラフである。 図12は,ハイドロゲル存在下でのNIH3T3,MC3T3-E1,ATDC5の各細胞における細胞増殖活性を示す図面に替わるグラフである。図12中,縦軸は,細胞の増殖活性(吸光度値)を示す。図12Aは,NIH3T3細胞の増殖活性結果を示す。図12Bは,MC3T3-E1細胞の増殖活性結果を示す。図12Cは,ATDC5細胞の増殖活性結果を示す。
 本発明の第1の側面は,ハイドロゲルの製造方法に関する。本発明のハイドロゲルの製造方法は,第1の四分岐化合物と第1の緩衝液を含む第1の溶液と,第2の四分岐化合物と第2の緩衝液を含む第2の溶液とを混合する混合工程を含む。
 ハイドロゲルとは,多量の水を含んだ親水性の高分子を含むゲル状の物質である。本発明のハイドロゲルは,2種類以上の四分岐化合物から製造される。
 本発明の第1の四分岐化合物として,下記式(I)で表わされる化合物があげられる。
Figure JPOXMLDOC01-appb-C000007
 式(I)中,R11~R14は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示す。ここで,R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。
 n11~n14は,それぞれ同一でも又は異なってもよい。n11~n14の値が近いほど,ハイドロゲルは均一な立体構造をとることができ,高強度となる。このため,高強度のハイドロゲルを得るためには,同一であることが好ましい。n11~n14の値が高すぎるとハイドロゲルの強度が弱くなり,n11~n14の値が低すぎると化合物の立体障害によりハイドロゲルが形成されにくい。そのため,n11~n14は,25~250の整数値があげられ,35~180が好ましく,50~115がさらに好ましく,50~60が特に好ましい。そして,本発明の第1の四分岐化合物の分子量としては,5×10~5×10Daがあげられ,7.5×10~3×10Daが好ましく,1×10~2×10Daがより好ましい。
 上記式(I)中,R11~R14は,官能基と第1の四分岐化合物のコア部分をつなぐリンカー部位である。R11~R14は,それぞれ同一でも異なってもよいが,均一な立体構造を有する高強度なハイドロゲルを製造するためには同一であることが好ましい。R11~R14は,C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示す。ここで,R15はC-Cアルキレン基を示す。R16はC-Cアルキレン基を示す。R17はC-Cアルキレン基を示す。
 ここで,C-Cアルキレン基とは,分岐を有してもよい炭素数が1以上7以下のアルキレン基を意味し,直鎖C-Cアルキレン基又は1つ又は2つ以上の分岐を有するC-Cアルキレン基(分岐を含めた炭素数が2以上7以下)を意味する。C-Cアルキレン基の例は,メチレン基,エチレン基,プロピレン基,ブチレン基である。C-Cアルキレン基の例は,-CH2-,-(CH2)2-,-(CH2)3-,-CH(CH3)-,-(CH2)3-,-(CH(CH3))2-,-(CH2)2-CH(CH3)-,-(CH2)3-CH(CH3)-,-(CH2)2-CH(C25)-,-(CH2)6-,-(CH2)2-C(C25)2-,及び-(CH2)3C(CH3)2CH2-などが挙げられる。
 「C-Cアルケニレン基」とは,鎖中に1個若しくは2個以上の二重結合を有する状又は分枝鎖状の炭素原子数2~7個のアルケニレン基であり,例えば,前記アルキレン基から隣り合った炭素原子の水素原子の2~5個を除いてできる二重結合を有する2価基が挙げられる。
 なお,リンカー部と第1の四分岐化合物のコア部分との結合がエステル結合となるとき,第1の四分岐化合物は生体内において分解されやすくなる。それに対して,リンカー部位と第1の四分岐化合物のコア部分との結合がエーテル結合となるとき,第1の四分岐化合物は生体内において分解されにくくなる。すなわち,R11~R14によって,第1の四分岐化合物の分解性が変化する。よって,このような第1の四分岐化合物を用いることで,製造されるハイドロゲルの分解速度を制御することも可能になる。分解速度を制御したハイドロゲルを製造する場合,上記式(I)で表わされる2種以上の化合物を用いてもよい。エーテル結合となるR11~R14として,C-Cアルキレン基が好ましく,エチレン基,プロピレン基,及びブチレン基が好ましい。
 なお,上記式(I)で示したように,本発明の第1の四分岐化合物の官能基はアミノ基が好ましい。しかし,本発明のハイドロゲルは,求核性を有する第1の四分岐化合物の官能基と,求電子性を有する第2の四分岐化合物の官能基とが化学反応により結合して高強度な立体構造になる。そのため,本発明の第1の四分岐化合物の官能基は,アミノ基以外の求核性官能基を用いることもできる。このような求核性官能基として,-SH,又は-COPhNO(Phは,o-,m-,又はp-フェニレン基を示す)などがあげられ,当業者であれば公知の求核性官能基を適宜用いることができる。
 上記式(I)で表わされる第1の四分岐化合物の第1の溶液中濃度は,10mg/mL~500mg/mLがあげられる。四分岐化合物濃度が,低すぎるとゲルの強度が弱くなり,四分岐化合物濃度が高すぎるとハイドロゲルの構造が不均一になりゲルの強度が弱くなる。そのため,20~400mg/mLが好ましく,50mg/mL~300mg/mLがより好ましく,100~200mg/mLがさらに好ましい。
 本発明の第2の四分岐化合物としては,下記式(II)で表わされる化合物があげられる。
Figure JPOXMLDOC01-appb-C000008
 前記式(II)中,n21~n24は,それぞれ同一でも又は異なってもよい。n21~n24の値は近いほど,ハイドロゲルは均一な立体構造をとることができ,高強度となるので好ましく,同一である方が好ましい。n21~n24の値が高すぎるとハイドロゲルの強度が弱くなり,n21~n24の値が低すぎると化合物の立体障害によりハイドロゲルが形成されにくい。そのため,n21~n24は,5~300の整数値があげられ,20~250が好ましく,30~180がより好ましく,45~115がさらに好ましく,45~55であればさらに好ましい。本発明の第2の四分岐化合物の分子量としては,5×10~5×10Daがあげられ,7.5×10~3×10Daが好ましく,1×10~2×10Daがより好ましい。
 上記式(II)中,R21~R24は,官能基と第2の四分岐化合物のコア部分をつなぐリンカー部位である。R21~R24は,それぞれ同一でも異なってもよいが,均一な立体構造を有する高強度なハイドロゲルを製造するためには同一であることが好ましい。式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示す。ここで,R25はC-Cアルキレン基を示す。R26はC-Cアルキレン基を示す。R27はC-Cアルキレン基を示す。
 なお,リンカー部位と第2の四分岐化合物のコア部分との結合がエステル結合となるとき,第2の四分岐化合物は生体内において分解されやすくなる。それに対して,リンカー部位と第2の四分岐化合物のコア部分との結合がエーテル結合となるとき,第2の四分岐化合物は生体内において分解されにくくなる。すなわち,R21~R24によって,第2の四分岐化合物の分解性が変化する。よって,このような第2の四分岐化合物を用いることで,作製されるハイドロゲルの分解速度を制御することも可能になる。エーテル結合となるR21~R24として,好ましくはC-Cアルキレン基であり,C-Cアルキレン基が好ましく,C-Cアルキレン基がより好ましい。エステル結合となるR21~R24としては,-CO-R25(R25はC-Cアルキレン基を示す)又は-CO-NH-R25-であり,より好ましくは-CO-R25(R25はC-Cアルキレン基を示す)である。
 なお,上記式(II)で示したように,本発明の第2の四分岐化合物の官能基はN-ヒドロキシ-スクシンイミジル(NHS)基が好ましい。しかし,上記のとおり,本発明のハイドロゲルは,求核性を有する第1の四分岐化合物の官能基と,求電子性を有する第2の四分岐化合物の官能基とが化学反応により結合して高強度な立体構造になる。そのため,本発明の第2の四分岐化合物の官能基として,求電子性を有する他の活性エステル基を用いてもよい。このような活性エステル基としては,スルホスクシンイミジル基,マレイミジル基,フタルイミジル基,イミダゾーイル基,又はニトロフェニル基などがあげられ,当業者であれば公知の活性エステル基を適宜用いることができる。第2の四分岐化合物の官能基は,それぞれ同一であっても,異なってもよいが,同一である方が好ましい。第2の四分岐化合物の官能基が同一であることによって,第1の四分岐化合物の官能基との反応性が均一になり,均一な立体構造を有する高強度のハイドロゲルを得やすくなる。
 本発明の第2の溶液中に含まれる第2の四分岐化合物濃度は,10mg/mL~500mg/mLがあげられる。四分岐化合物濃度が,低すぎるとゲルの強度が弱くなり,四分岐化合物濃度が高すぎるとハイドロゲルの構造が不均一になりゲルの強度が弱くなる。そのため,20~400mg/mLが好ましく,50mg/mL~300mg/mLがより好ましく,100~200mg/mLがさらに好ましい。
 本発明のハイドロゲルの製造方法において第1の四分岐化合物と第2の四分岐化合物は,モル比0.5:1~1.5:1で混合すればよい。本発明の第1の四分岐化合物は,求核性官能基(例えば,アミノ基)を有する。一方,本発明の第2の四分岐化合物は,求電子性官能基(例えば,N-ヒドロキシ-スクシンイミジル(NHS)基)を有する。本発明の第1又は第2の四分岐化合物の官能基はそれぞれ1:1で反応しうる。よって,第1の四分岐化合物と第2の四分岐化合物の混合モル比は1:1に近いほど好ましい。後述する実施例で示されたとおり,本発明のハイドロゲルの第1の四分岐化合物と第2の四分岐化合物との混合モル比は,0.8:1~1.2:1が好ましく,0.9~1:1.1~1がさらに好ましい。後述する実施例で示されたとおり,本発明の製造方法では,第1の四分岐化合物と第2の四分岐化合物との混合モル比が0.8:1~1.2:1であれば,軟骨(10MPa)を超える強度のゲルを製造することができる。
 本発明において,分解速度を制御するためのハイドロゲルの製造方法では,2又は3種以上の四分岐化合物を用いる。上記したとおり,本発明は,各末端に求核性官能基を有する四分岐化合物と各末端に求電子性官能基を有する四分岐化合物が0・8~1.2の混合モル比で結合することで高強度なハイドロゲルを作ることができる。また,上記したとおり,四分岐化合物のコア部分とリンカー部位の結合がエステル結合であるとき,四分岐化合物の分解が進む。そして,四分岐化合物のコア部分リンカー部位の結合がエーテル結合であるとき,四分岐化合物は分解されず安定状態のままである。よって,各末端に求核性官能基を有する四分岐化合物と各末端に求電子性官能基を有する四分岐化合物が0・8~1.2のモル比で混合すれば,求核性官能基を有する四分岐化合物又は求電子性官能基を有する四分岐化合物は,それぞれエステル結合又はエーテル結合を含むことができる。この場合,求核性官能基を有する四分岐化合物,又は求電子性官能基を有する四分岐化合物は,それぞれ2種類以上の四分岐化合物であってもよい。当業者であれば,適宜エステル結合又はエーテル結合を含む割合,求核官能基を有する四分岐化合物と求電子性官能基を有する四分岐化合物のどちらにどの結合を用いるかなど適宜調整することができる。
 本発明の好ましい態様は,第1の溶液,又は第2の溶液に緩衝液を含み,それぞれの溶液のpHを調整する。本発明において緩衝液とは,溶液中のpHが大幅に変化することを妨げる能力(pH緩衝能)を有する液をいう。本発明の緩衝液としては,例えば,リン酸緩衝液,クエン酸緩衝液,クエン酸・リン酸緩衝液,酢酸緩衝液,ホウ酸緩衝液,酒石酸緩衝液,トリス緩衝液,トリス塩酸緩衝液,リン酸緩衝生理食塩水,又はクエン酸・リン酸緩衝生理食塩水があげられる。本発明の製造方法において,第1の緩衝液と第2の緩衝液は,同じでも異なってもよい。また,第1の緩衝液及び第2の緩衝液は,それぞれ2種以上の緩衝液を混合して用いてもよい。本発明の緩衝液の濃度としては,10mM~500mMがあげられる。後述する実施例に示したとおり,緩衝液濃度が低い場合には,緩衝液のpH緩衝能が低く,pHの制御が適切に行われない。一方,緩衝液濃度が高すぎる場合には,緩衝液成分が,ハイドロゲル形成を妨げる。そのため,本発明の緩衝液の濃度としては,20~200mMが好ましく,20mM~100mMがより好ましい。本発明の緩衝液のpHは,酸性度及びアルカリ度が強すぎると,均一構造を有するハイドロゲルが形成されない。そのため,本発明の緩衝液のpHは,5~9であることが好ましい。
 本発明の第1の四分岐化合物と第2の四分岐化合物は,混合工程で混合される。本発明の混合工程としては,第1の溶液に第2の溶液を添加して混合する工程,第2の溶液に第1の溶液を添加して混合する工程,第1の溶液と第2の溶液とを等量ずつ混合する工程があげられる。本発明の製造方法において,第1の溶液又は第2の溶液の添加速度,混合速度は特に限定されず,当業者であれば適宜調整することができる。
 本発明の混合工程は,たとえば国際公開WO2007/083522号パンフレットに開示されたような二液混合シリンジを用いて行うことができる。混合時の二液の温度は,特に限定されず,第1の四分岐化合物と第2の四分岐化合物がそれぞれ溶解され,それぞれの液が流動性を有する状態の温度であればよい。温度が低すぎると化合物が溶解されにくく,または溶液の流動性が低くなり,第1の四分岐化合物と第2の四分岐化合物が均一に混ざりにくい。一方,温度が高すぎると第1の四分岐化合物と第2の四分岐化合物の反応性を制御しにくくなる。そのため,本発明の製造工程において,第1の四分岐化合物と第2の四分岐化合物を混合するときの溶液の温度としては,1℃~100℃が挙げられ,5℃~50℃が好ましく,10℃~30℃がより好ましい。本発明の混合工程において,二液の温度は異なってもよいが,温度が同じである方が,二液が混合されやすいので好ましい。
 本発明の製造方法において,混合工程によって得られる混合溶液は,塩濃度が0~1×10mMであることが好ましく,1×10-1~1×10であってもよい。後述する実施例で示されたとおり,混合溶液中の塩濃度が高くなると,混合溶液中のイオン強度が上昇する。イオン強度が上昇すると,正に帯電したアミノ基同士の静電反発が遮断されるため,四分岐化合物が均一に混合しなくなる(図3B)。そのため,混合溶液中の塩濃度が高くない方が好ましい。そのため,混合溶液の塩濃度は,100mM以下であることが好ましく,50mM以下であることがさらに好ましい。
 また,本発明の製造方法において,第2の四分岐化合物は加水分解しないよう安定に存在することが好ましい。このためには,混合前の第2の四分岐化合物の溶液のpHは5~6.5であることが好ましい。また,混合後の溶液においては,不均一な混合を防ぐために,第1の四分岐化合物の95~99%は第2の四分岐化合物との結合能を有する非カチオン性のアミノ基の状態で存在することが好ましい。このような工程を経るためには,混合直後の溶液のpHは6~8であることが望ましい。このため,本発明の製造方法において,第1の溶液のpHは,第2の溶液のpHよりも高い方が好ましい。溶液のpHは,市販のpHメーターを用いるなど公知の方法で測定することができる。このように,混合後のpHを6~8に保ち,NHSと反応可能な非カチオン性のアミノ基を5%以下に保つことにより,均一で強固なハイドロゲルを製造することが可能になる。なお,本明細書において混合開始とは,第1の溶液と第2の溶液とが接したときからをいう。
 このように混合後にpHを高くする方法としては,pHが7.5以上の第1の緩衝液を含む第1の溶液と,pH6.5以下の第2の緩衝液を含む第2の溶液とを混合する方法があげられる。本発明の第1及び第2の溶液は,緩衝液を含むので,異なるpHの溶液によって急激にpHが変化することがない。当業者であれば,第1及び第2の溶液のそれぞれのpHは,第1及び第2の溶液に含まれる第1の緩衝液及び第2の緩衝液の種類,濃度等を適宜調整して,混合後のpHを変化させることができる。
 本発明の第2の側面は,上記方法で製造されたハイドロゲルに関する。上記のとおり本発明の製造方法で製造されたハイドロゲルは,高強度であり,溶液のpHを調整することによって,ゲル化の時間を調整することができる。このように本発明のハイドロゲルは,ゲル化までの時間を調節することができるので,導入部に適合した形状を作りやすい。そのため,後述するように,本発明のハイドロゲルは,膝軟骨手術や椎間板手術など,生体において荷重負荷がかかる骨,軟骨,又は椎間板の整形外科的手術において,骨,軟骨,若しくは椎間板の欠損部補填物質,又は骨,軟骨,若しくは椎間板の変性部補填物質として好適に用いることができる。整形外科手術において,本発明のハイドロゲルは,上記した二液混合シリンジを用いて,患部に直接投与してもよいし,あらかじめ導入する部位の型に合わせてハイドロゲルを形成して形成後のハイドロゲルを患部に導入してもよい。
 本発明の第3の側面は,第1の四分岐化合物と第2の四分岐化合物とを組成比0.5:1.0~1.5:1で含む,ハイドロゲルに関する。上述したとおり,第1の四分岐化合物の求核性官能基と第2の四分岐化合物の求電子性官能基は1:1で反応しうる。よって,第1の四分岐化合物と第2の四分岐化合物の組成比は1:1に近いほど好ましい。後述する実施例で示されたとおり,本発明のハイドロゲルの第1の四分岐化合物と第2の四分岐化合物との組成比は,0.8:1~1.2:1が好ましく,0.9~1:1.1~1がさらに好ましい。後述する実施例で示されたとおり,本発明の製造方法では,第1の四分岐化合物と第2の四分岐化合物との混合モル比が0.8:1~1.2:1であれば,軟骨(10MPa)を超える強度のゲルを製造することができる。このような製造方法で製造されるハイドロゲルは,ハイドロゲルの中性子散乱の散乱曲線が,オルシュタイン-ゼルニケ(OZ)関数でフィッティングすることができる。これにより,ハイドロゲルの構造が均一であることを評価することができる。
 “ハイドロゲルの中性子散乱の散乱曲線が,オルンシュタイン-ゼルニケ(OZ)関数でフィッティングされる”とは,ハイドロゲルの中性子散乱測定値群から表わされる近似曲線が,「ガウス(Gauss)関数で表わされる理論曲線と,OZ関数で表わされる理論曲線とを組み合わせた曲線」ではなく,「OZ関数で表わされる理論曲線」に相関することをいう。ハイドロゲルの中性子散乱測定値群から表わされる近似曲線が,OZ関数で表わされる理論曲線と相関することは,曲線フィッティングで評価することができる。具体的には,中性子散乱測定で得られた測定値群で表わされる近似曲線に,OZ関数で表わされる理論曲線を,重なりが最も大きくなるように重ね合わせた時,重なりの程度(フィッティングの程度)が,80%以上であればよく,より好ましくは90%以上である。このように2本の線を重ね合わせて,フィッティングの程度を算出する方法は,公知であり,当業者であれば適宜行うことができる。
 本発明の第3の側面の好ましい態様は,圧縮破断強度が10MPa以上のハイドロゲルである。本発明のハイドロゲルの圧縮破断強度は,公知の測定機器を用いて,公知の方法で調べることができる。圧縮破断強度測定機器としては,たとえば,Instron社製の圧縮試験機(Instron 3365)があげられる。圧縮破断強度とは,ゲル試料に圧縮荷重を加えた時に,ゲル試料が破断する最大応力のことをさす。圧縮破断強度は,円柱状のゲル試料に対して,1軸荷重をかけた時の圧縮力をその軸に垂直な断面積で割った値で表わすことができる。本発明のハイドロゲルは,生体軟骨の圧縮破断強度を超える10MPa以上であることが好ましい。このような圧縮破断強度を有するハイドロゲルを用いることで,高負荷がかかる骨欠損部や骨変形部に好適に用いることができる。
 本発明のハイドロゲルは,高強度であり,ゲル化までの時間を調整できるので,生体内荷重部位である膝軟骨や椎間板などに,骨,軟骨,若しくは椎間板の欠損部,又は骨,軟骨,若しくは椎間板の変形部に好適に使用することができる。また,本発明のゲルは,溶液のpHを調整することで,ゲル化までの時間を調整することが可能である。また,国際公開WO2007/083522号パンフレットに開示されたような二液混合シリンジを用いれば,オンサイト(on site)でのゲル注入が可能になる。よって,ゲルを本発明のハイドロゲルは,整形外科手術などにおいて新しい治療方法を提供することができる。現在の膝軟骨や椎間板を補強する手術では,皮膚を切開し,患部を開口してゲルを導入している。それに対して,本発明のハイドロゲルは,椎間板造影方法を用いたゲルの投与が可能になる。椎間板造影方法とは,後側方向より椎間板用針を用いてゲルを注入する方法である。このように,皮膚切開を行わず,椎間板髄核へゲルを注入することができるので,患者の体への負担を少ない低侵襲手術を行うことができる。このように本発明のハイドロゲルは,短期間的には椎間板の力学的特性を有し,長期間的には椎間変性に対する予防効果が期待される有用な新規物質である。
 また,本発明のハイドロゲルは,椎間板切除術(LOVE法)又は内視鏡的髄核摘出術後にオンサイトでゲルを注入してもよい。本発明のハイドロゲルは,オンサイトで注入し,ゲル化までの時間を調整することができる。そのため,患部の形状に適合した状態でゲル化させるように,人為的に調整することができる。よって,術後の早期回復が期待でき,さらに術後の椎間板変性を予防することができる。
 さらに,本発明のハイドロゲルは,ヘルニアモデルとしても使用することができる。ヘルニアモデルとしては,腰椎前側方アプローチで後腹膜の後方より侵入し椎体前面を展開し,18G(ゲージ)又は20G(ゲージ)針と10mLシリンジを用いて髄核を吸引後,ゲルを注入し経過を観察することができる。
 すなわち,本発明は,第1の四分岐化合物と第2の四分岐化合物とを組成比0.8:1~1.2:1で含むハイドロゲルを用いる骨,軟骨,又は椎間板の欠損部治療方法;第1の四分岐化合物と第2の四分岐化合物とを組成比0.8:1~1.2:1で含むハイドロゲルを用いる骨,軟骨,又は椎間板の変形部治療方法をも提供する。本発明のハイドロゲルは,短期間的には椎間板の力学的特性を有し,長期間的には椎間変性に対する予防効果が期待される。
四分岐化合物の作製
 2つの四分岐化合物TAPEG(テトラアミン-ポリエチレングリコール)とTNPEG(N-ヒドロキシ-スクシンイミジル-ポリエチレングリコール(NHS-PEG))は,末端にヒドロキシル基を有するTHPEG(テトラヒドロキシル-ポリエチレングリコール)をそれぞれアミノ化,スクシンイミジル化することによって得た。
THPEGの作製
 開始剤のペンタエリスリトール(0.4572mmol,62.3mg)をDMSO/THF(v/v=3:2)50mLの混合溶媒に溶解させ,メタル化剤にカリウムナフレン(0.4157mmol,1.24mg)を用い,エチレンオキシド(200mmol,10.0mL)を加え,約2日間,Ar存在下,60℃で加熱攪拌した。反応終了後,ジエチルエーテルに再沈殿させ,濾過により沈殿物を取り出した。さらに,ジエチルエーテルで3回洗浄し,得られた白色固体を減圧乾燥することにより,20kのTHPEGを得た。
TAPEGの作製
 THPEG(0.1935mmol,3.87g,1.0equiv)をベンゼンに溶解させ,凍結乾燥した後,THF62mLに溶解させ,トリエチルアミン(TEA)(0.1935mmol,3.87g,1.0equiv)を加えた。別のナスフラスコにTHF31mLとメタンスルホニルクロライド(MsCl)(0.1935mmol,3.87g,1.0equiv)を加え,氷浴につけた。THPEG,TEAのTHF溶液にMsClのTHF溶液を約1分間かけて滴下し,30分間氷浴中で攪拌した後,室温で1時間半攪拌した。反応終了後,ジエチルエーテルに再沈殿させ,濾過により沈殿物を取り出した。さらに,ジエチルエーテルで3回洗浄し,得られた白色固体をナスフラスコに移し,25%アンモニア水250mLを加え,4日間攪拌した。反応終了後,エバポレーターにより溶媒を減圧留去し,水を外液に2,3回透析を行い,凍結乾燥することにより,白色固体のTAPEGを得た。作製したTAPEGの化学式は式(Ia)に示した。式(Ia)中,n11~n14は,TAPEGの分子量が約10,000(10kDa)のとき50~60であり,分子量が約20,000(20kDa)のとき100~115であった。
Figure JPOXMLDOC01-appb-C000009
TNPEGの作製
 THPEG(0.2395mmol,4.79g,1.0equiv)をTHFに溶解させ,0.7mol/lグルタル酸/THF溶液(4.790mmol,6.85mL,20equiv)を加え,Ar存在下,6時間攪拌した。反応終了後,2-プロパノールに滴下し,遠心分離機に3回かけた。得られた白色固体は300mLナスフラスコに移し,エバポレーターにより溶媒を減圧留去した。残渣をベンゼンに溶解させ,不溶物を濾過によって取り除いた。得られた濾液を凍結乾燥により溶媒を除去することで,末端がカルボキシル基で修飾された白色固体のTetra-PEG-COOHを得た。このTetra-PEG-COOH(0.2165mmol,4.33g,1.0equiv)をTHFに溶解させ,N-ハイドロスクシンイミド(2.589mmol,0.299g,12equiv),N,N’-ジイソプロピルスクシンイミド(1.732mmol,0.269mL,8.0equiv)を加え,3時間,40℃で加熱攪拌した。反応終了後,エバポレーターにより溶媒を減圧留去した。クロロホルムに溶解させ,飽和食塩水で3回抽出し,クロロホルム層を取り出した。さらに,硫酸マグネシウムで脱水,濾過を行った後,エバポレーターにより溶媒を減圧留去した。得られた残渣のベンゼン凍結乾燥を行い,白色固体のTNPEGを得た。作製したTNPEGの化学式は式(IIa)に示した。式(IIa)中,n21~n24は,TNPEGの分子量が約10,000(10k)のとき45~55であり,分子量が約20,000(20k)のとき90~115であった。
 
Figure JPOXMLDOC01-appb-C000010
ゲルの強度に与える溶媒種の効果
 TAPEG(Ia)(10k),TNPEG(IIa)(10k)をそれぞれ100mg/mLの濃度で純水,リン酸緩衝液(pH7.4),リン酸緩衝生理食塩水(PBS),生理食塩水に溶解させた。調整後,得られた溶液を速やかに二液混合し,37℃でゲル化させ,ゲル化後のゲル強度を測定した。強度としては,直径15mm,高さ7.5mmの円筒状サンプルに直径2mmの進入棒を進入させ,98%まで進入させた際の圧力を用いた。
 結果,すべてのゲルは100%の変形においても破断せず,高い変形に対しても破断しないでゲルであるといえる。ゲル化速度に関しては,純水中が最も早く数十秒でゲル化した。その後,リン酸緩衝液,PBSと続き,生理食塩水は最も遅く5分程度であった。ゲル強度の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明において反応速度は極めて重要である。反応が早すぎると,四分岐化合物同士が均一に混合される前に溶液の粘度が高くなってしまい均一な網目構造を得ることができない。一方,遅すぎると分解性の活性エステル部位が加水分解してしまうために,最終的な反応率が低くなる。よって,純水中で作製したものは,混合前にゲルが形成されてしまうために,網目構造が不均一になり,強度が減少していると考えられる。すなわち,純水中で作製したものは,混合前にゲルが形成されてしまうために,網目構造が不均一になり,強度が減少していると考えられる。一方で,生理食塩水中で作製したものは,反応中に活性エステル部位が加水分解したために,反応率が低下し,強度が減少していると考えられる。そのために,中間的な反応速度を有するリン酸緩衝液,PBSにおいては反応率が高く,力学強度も上昇したと考えられる。
ゲル化強度及びゲル化時間に与える溶媒pHの効果
 TAPEG(Ia)(10k),TNPEG(IIa)(10k)をそれぞれ100mg/mLの濃度でリン酸緩衝液(pH6.0,7.4,9.0),クエン酸緩衝液(pH6.0,7.4,9.0)に溶解させた。調整後,得られた溶液を速やかに二液混合し,37℃でゲル化させ,ゲル化後のゲル強度を測定した。強度としては,直径15mm,高さ7.5mmの円筒状サンプルに直径2mmの進入棒を侵入させ,98%まで侵入させた際の圧力を用いた。
 結果,すべてのゲルは,100%の変形においても破断しなかった。ゲル化速度はpHが高いほど早く,pH9.0では1分以内,pH6.0では5分程度でゲル化した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 
 この結果,中間的な反応速度を示すpHの溶媒を使用したときに,高い強度を持つハイドロゲルが得られた。pH7.4付近が最適値であると考えられる。また,クエン酸緩衝液はリン酸緩衝液と比べて,pH7付近での緩衝能力が低く,pH制御がうまくいかなかったために,このような結果になったと考えられる。よって,pH7付近で高い緩衝能力を有するリン酸緩衝液が最も適していると考えられる。
ゲル強度及びゲル化時間に与える緩衝液濃度の効果
 TAPEG(10k),TNPEG(10k)をそれぞれ100mg/mLの濃度でリン酸緩衝液(pH7.4,2mM,20mM,100mM,200mM),クエン酸緩衝液(pH7.4,2mM,20mM,100mM,200mM)に溶解させた。調整後,得られた溶液を速やかに二液混合し,37℃でゲル化させ,ゲル化後のゲル強度を測定した。強度としては,15mm,高さ7.5mmの円筒状サンプルに直径2mmの侵入棒を侵入させ,98%まで侵入させた際の圧力を用いた。
 結果,すべてのゲルは100%の変形においても破断しなかった。ゲル化速度は緩衝液濃度が高いほど低かったが,すべてのゲルは1~2分程度でゲル化した。その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 その結果,反応速度はあまり変化しなかったことにより,緩衝液濃度は反応速度には大きく影響しないと考えられる。しかしながら,ゲル強度は緩衝液濃度が20mMから100mMのあたりで高い値を示した。緩衝液濃度が低い場合いは,緩衝液の緩衝限界が低くpHの制御ができなかったために,ゲル化速度が速くなり,それにより均一な構造が得られなかったと考えられる。すなわち,四分岐化合物が100mg/mLの場合,緩衝液の濃度を20mM以上にすれば,溶液を適切なpHに保つことができる。それに対して,高濃度側で強度が低下した理由は,四分岐化合物が均一に混合されなかったためであると考えられる。pH7付近においては,アミノ基はプロトン化し正電荷を帯びているために,アミノ基同士は反発する。この反発によって,TAPEG(Ia)とTNPEG(IIa)の混合が促進されると考えられる。緩衝液濃度が高い場合には,イオン強度が高いため,アミノ基同士の反発が遮断され,混合状態が均一にならなかったために,均一な構造になったと考えられる。
ゲル強度及びゲル化時間に与える塩濃度の効果
 TAPEG(Ia)(10k),TNPEG(IIa)(10k)をそれぞれ100mg/mLの濃度で塩化ナトリウム濃度,0mM,50mM,100mM,200mM溶解させた水溶液及びリン酸緩衝液(pH7.4,20mM)に溶解させた。調整後,得られた溶液を速やかに二液混合し,37℃でゲル化させ,ゲル化後のゲル強度を測定した。強度としては,直径15mm,高さ7.5mmの円筒状サンプルに直径2mmの侵入棒を侵入させ,98%まで侵入させた際の圧力を用いた。
 結果,すべてのゲルは100%の変形においても破断しなかった。ゲル化速度はイオン強度が高いほど低かった。また,純水のものは反応速度が高く1分以内でゲル化した。それに対して,リン酸緩衝液を用いたものは,1~2分程度でゲル化した。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 純水を用いた場合,リン酸緩衝液を用いた場合,共に,塩濃度が高い場合にはゲルの強度が減少した。これは,イオン強度の上昇により,アミノ基同士の静電反発が遮断され四分岐化合物同士の混合状態が不均一になったためであると考えられる。
ゲル作製溶媒の最適化実験
 TAPGE(Ia)(10k),TNPEG(IIa)(10k)の両方をリン酸緩衝液(pH7.4,50mM),及びTAPEG(Ia)のみをリン酸緩衝液(pH7.4,50mM),TNPEG(IIa)のみをクエン酸・リン酸緩衝液(pH5.8,5.0mM)にそれぞれ100mg/mLの濃度で溶解させた。調整後,得られた溶液を速やかに二液混合し,37℃でゲル化した。ゲル形状は直径15mm,高さ7.5mmの円筒形に成形し,ゲルの圧縮弾性率を測定した。
 結果,TAPEG(Ia)をリン酸緩衝液(pH7.4,50mM),TNPEG(IIa)をクエン酸・リン酸緩衝液(pH5.8,50mM)に溶解させて作製した方が,ゲルの弾性率は高かった。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 pHが高い状態では,TNPEG(IIa)の活性エステル部位は加水分解し,反応に寄与しなくなる。TNPEG溶液のpHのみを下げたことにより,加水分解を抑制することが可能となり最終的な反応率が向上したと考えられる。
TAPEGとPNPEGの混合比率検討
 TAPEG(Ia)(分子量約10k)とTNPEG(IIa)(分子量約10k)(前駆物質の全量=600mg)をそれぞれpH7.2およびpH7.4の100mMリン酸緩衝液(10mL)に一定全量溶解した。TAPEG(Ia)とTNPEG(IIa)のモル比率を0.33~3.0の範囲になるように,等液量の各化合物溶液を室温下で混合し,ゲル化は2時間,直径15mm,高さ7.5mmの円筒形上に成形した。圧縮試験は機械的試験装置(Instron Corporation製(INSTRON3365)を用いて,速度0.75mm/minで行った。結果を図4及び図5に示した。
 図4は,TAPEG(Ia)とTNPEG(IIa)のモル比率(r)を0.33~3.0の範囲で混合したゲルの圧縮弾性率(kPa)を示す図面に替わるグラフである。図5は,TAPEG(Ia)とTNPEG(IIa)のモル比率0.6~1.4の範囲で混合したゲルの破断歪み(%)及び破断強度(MPa)を示す図面に替わるグラフである。図4及び図5の結果より,圧縮弾性率および破断強度の最大値は,r=1.0のときであり,等モルの四分岐化合物が互いに反応していることを示された。そして1成分が過剰又は不足するとゲルが弱くなることが示された。さらに圧縮弾性率の値は,成分が過剰又は不足であっても,rが逆数同士ではほぼ同一であり,圧縮弾性率は同様に減少した。このことは,網目構造が類似していることを示唆している。このような化学量論性および対称性が高いゲル化プロセスは前例がなく,ハイドロゲルの均一な網目構造を形成していると考えられる。四分岐化合物の最適量および最適比が,均一な網目構造を形成するのに必要であることが示された。
 図4及び図5より,TAPEG(Ia)とTNPEG(IIa)のモル比率が0.6~1.4の間では,破断強度0.8MPa以上のゲルが得られることが示された(図5)。そして,モル比0.8~1.2では圧縮弾性率が約40kPa(図4)となり,破断強度が約1MPa(図5)と高強度になり,生体材料としても好適に使用されうることが示された。よって,本発明のハイドロゲルは,TAPEG(Ia)とTNPEG(IIa)とを組成比0.6:1~1.4:1,好ましくは0.8:1~1.2:1の範囲で有することにより,均一な網目構造を有するハイドロゲルが形成されることが示された。
圧縮破断強度の測定
 分子量20,000のTAPEG(Ia)とTNPEG(IIa)を160mg/mLの濃度で100mMのリン酸緩衝溶液,クエン酸・リン酸緩衝溶液に溶解させ,二液を混合した結果,1分程度で無色・透明なハイドロゲルが形成された。直径7mm,高さ3.5mmの円筒状のサンプルを作製し,圧縮試験機(Instron)を用いて圧縮強度試験を行った。その結果を図6に示した。図6の縦軸は応力[MPa]をしめし,横軸はハイドロゲルの歪み[%]を示す。この結果,このハイドロゲルは,90%以上の歪みを与えても破断することなく,また,100MPaを超える応力にも耐えることができた。この値は,従来のハイドロゲルの強度はおろか,生体軟骨の破断応力である10MPaをはるかに凌駕する値であり,関節軟骨を始め,高負荷のかかる椎間板などへの応用も可能であると考えられる。
中性子散乱測定による網目構造の均一性解析
 分子量10,000のTAPEG(Ia)とTNPEG(IIa)を様々な濃度で50mMのリン酸緩衝溶液(pH7.4),クエン酸・リン酸緩衝溶液(pH5.8)に溶解させ,二液を混合することでハイドロゲルを作製した。得られたハイドロゲルに対して,構造における不均一性を解析するために,中性子散乱測定を行った。その結果を図7に示した。
 図7中,「ガウス+OZ」は,通常のハイドロゲル(例:PTHF(U102))の散乱曲線を示し,ポリマーの熱揺らぎに起因するオルンシュタイン-ゼルニケ(OZ)関数と系内に存在する不均一性からの過剰散乱を表すガウス(Gauss)関数の足し合わせで書くことができる。図7中「ガウス」は,ゲルが不均一のときの過剰散乱を表すガウス関数曲線を示す。図7中「OZ」は,ゲルが均一なときの中性子散乱を表すOZ関数曲線を表す。図7中「ハイドロゲル」は,本発明のハイドロゲルを示す。図7に示したように,通常のハイドロゲルにおいて,ガウス関数の寄与は小角領域における曲線の立ち上がりに見られる。それに対して本発明のハイドロゲルから得られた錯乱関数はガウス関数の寄与は一切存在せず,OZ関数のみで記述することが可能であった。このような実験結果は,これまでに得られたいかなるハイドロゲルにおいても観察されておらず,当ハイドロゲルがこれまでにない非常に均一な構造を有していることを強く支持するものである。この著しい均一性は,ハイドロゲルの有する高い機械的強度に強く寄与していると考えられる。
マウス背部への皮下埋植試験
 分子量20,000のTAPEG(Ia)とTNPEG(IIa)を160mg/mLの濃度で100mMのリン酸緩衝溶液(pH7.4),クエン酸・リン酸緩衝溶液(pH5.8)に溶解させた。得られた溶液を二液混合シリンジにロードし,C57BL/6マウスの背部へ注入した。その後,マウス皮下において,ゲル化が起こったことを触診により確認した。埋食後1ヶ月でマウスを解剖し,埋植部の組織観察を行った。埋植部の写真を図8に示した。結果,一切の炎症反応や毒性反応は見られなかった。
イヌ膝軟骨への埋植試験
 関節軟骨疾患への適用の試験をするために,イヌ膝軟骨に直径3mmの欠損を作製し,二液混合シリンジを用いてオンサイトでゲルを作製した。手術後2ヶ月・4ヶ月で解剖し,埋植部を観察した。その結果を図9に示した。図9A~図9Cは,手術後2か月後の埋植部を示し,図9D~図9Fは,手術後4か月後の埋植部を示す。結果,患部にハイドロゲルは残っており,炎症反応や毒性反応は見られなかった。
ブタ椎間板への埋植試験
 椎間板用充填剤としての適用の試験をするために,ブタの椎体より髄核を抽出し,その空隙に二液混合シリンジを用いてハイドロゲルを作製した。椎体内の髄核を除いた空隙部においてハイドロゲルの作製は可能であった。その結果を図10に示した。図10Aは,埋植中の写真を示し,図10Bは,埋植後の椎間板の写真を示す。
ゲルの分解速度の検討
 ゲルの分解速度を検討するために,TAPEG(Ia)(下記式(Ia)),TNPEG(IIa)(下記式(IIa)),及びTNPEG(IIb)(下記式(IIb))の3種類の四分岐化合物を用いた。
 式(Ia)中,n11~n14は50~60であり,分子量は約10,000(10k)であった。
Figure JPOXMLDOC01-appb-C000011
 式(IIa)中,n21~n24は45~55であり,分子量は約10,000(10k)であった。
Figure JPOXMLDOC01-appb-C000012
 式(IIb)中,n21~n24は45~55であり,分子量は約10,000(10k)であった。
Figure JPOXMLDOC01-appb-C000013
 上記3種類の化合物をリン酸緩衝液(pH7.4,20mM)に溶解して60mg/mLとした。それぞれの組み合わせと混合の比率を表6に示した。下記表6の比率にしたがって,それぞれを混合し,ゲルを作製した。
Figure JPOXMLDOC01-appb-T000006
 作製した3種類のゲルの力学的強度の比較結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 表5の結果からわかるように,3種類のハイドロゲルは,破断歪み,破断強度,圧縮弾性率はほぼ同じであった。これらのゲルを用いて,ゲルの分解速度の検討を行った。作製した3種類のゲルを,37℃の疑似体液中に静置し,ゲルの膨潤率を測定した。その結果を図11に示した。縦軸は膨潤率,横軸は静置した日数を示す。膨潤率が高ければ高いほど,ゲルが分解されたことを示す。図11に示されたとおり,パターン2はある程度膨潤後,膨潤率は一定であった。すなわちほとんど分解されないことが示された。パターン1は日数の経過とともに膨潤率が上昇し,ゲルが分解されることが示され,図11には示していないが2か月後には完全に分解された。パターン3はパターン1とパターン2の中間的な挙動を示した。このことから,TNPEG(IIa)TNPEG(IIb)の混合比を変えることで,ゲルの分解速度をコントロールできることが示された。
ハイドロゲル存在下での細胞増殖活性の検討
 まウス繊維芽細胞株NIH3T3,マウス軟骨前駆細胞株ATDC5,マウス骨芽細胞株MC3T3-E1をそれぞれ12wellプレートに40,000個/2mL/wellで播種し,24時間培養した。なお,培養培地は,Dulbecco’s Modified Eagle Medium(DMEM)(Sigma社製)に,10%FBS(Gibco社製)および1%ペニシリン/ストレプトマイシンを含む培地を用いた。各種細胞を24時間培養後,培養培地を新鮮な培地に交換した。その後,培養液の0.25%vol/vol,0.5%vol/vol,1.0%vol/volに相当するハイドロゲルをトランスウェルを使用して培養液中に浸漬し,24時間培養した。なお,ハイドロゲルは,表6中,パターン2の組み合わせのものを用いた。各細胞に関して,Cell counting kit-8(Wako社製)を使用して,細胞増殖活性を測定した。細胞増殖活性は,各wellの吸光度(OD450nm)を測定することで調べた。その結果を図12に示した。
 図12は,ハイドロゲル存在下でのNIH3T3,MC3T3-E1,ATDC5の各細胞における細胞増殖活性(n=6)を示す図面に替わるグラフである。図12中縦軸は,細胞の増殖活性(吸光度測定値)を示す。図12Aは,NIH3T3の結果を示す。図12Bは,MC3T3-E1の結果を示す。図12Cは,ATDC5の結果を示す。その結果,ゲル非存在下とゲル存在下を比較しても,各細胞の何れにおいても細胞増殖活性には大きな変化はなかった。また,ゲルの量を増加させても細胞増殖活性には,大きな変化はなかった。従って,ハイドロゲルは様々な細胞に対して細胞毒性を示さないことが明らかとなった。よって,本発明のハイドロゲルは生体材料として好適に使用することができることが示された。
 本発明は,医療産業において広く利用されうる。
 

Claims (10)

  1.  ハイドロゲルの製造方法であって,
     第1の四分岐化合物と第1の緩衝液を含む第1の溶液と,第2の四分岐化合物と第2の緩衝液を含む第2の溶液とを混合する混合工程とを含み,
     前記第1の四分岐化合物は,
      下記式(I)で表わされ,
    Figure JPOXMLDOC01-appb-C000014
      前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものであり,
      前記式(I)中,R11~R14は,それぞれ同一又は異なり,
       C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示し,
        ここで,R15はC-Cアルキレン基を示し,
        R16はC-Cアルキレン基を示し,
        R17はC-Cアルキレン基を示し,
     前記第2の四分岐化合物は,
      下記式(II)で表わされ,
    Figure JPOXMLDOC01-appb-C000015
      前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものであり,
      前記式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示し,
        ここで,R25はC-Cアルキレン基を示し,
        R26はC-Cアルキレン基を示し,
        R27はC-Cアルキレン基を示し,
     前記第1の溶液のpHは,前記第2の溶液のpHよりも高く,
     前記第1の緩衝液は,
      pHが5~9,及び濃度が20~200mMであり,
     前記第2の緩衝液は,
      pHが5~9,及び濃度が20~200mMである,
     ハイドロゲルの製造方法。
  2.  前記R11~R14は,C-Cアルキレン基であり,
     前記R21~R24は,-CO-R25-(R25はC-Cアルキレン基を示す)である,
     請求項1に記載の製造方法。
  3.  前記R11~R14は,C-Cアルキレン基であり,
     前記R21~R24は,-CO-R25-(R25はC-Cアルキレン基を示す)である,
     請求項1に記載の製造方法。
  4.  前記第1の緩衝液は,
      リン酸緩衝液,又はリン酸緩衝生理食塩水のいずれか1つ又は2つ以上を含み,
     前記第2の緩衝液は,
      リン酸緩衝液,クエン酸・リン酸緩衝液,リン酸緩衝生理食塩水,又はクエン酸・リン酸緩衝生理食塩水のいずれか1つ又は2つ以上を含む,
     請求項1に記載の製造方法。
  5.  前記混合工程後の混合溶液は,
      塩濃度が1×10-1~1×10mMである,
     請求項1に記載の製造方法。
  6.  前記第1の緩衝液は,
      前記pHが5~9である20mM~100mMのリン酸緩衝液であり,
     前記第2の緩衝液は,
      前記pHが5~7.5である20mM~100mMのリン酸緩衝液,又は前記pHが5~7.5である20~100mMのクエン酸・リン酸緩衝液のいずれかである,
     請求項1に記載の製造方法。
  7.  第1の四分岐化合物と第1の緩衝液とを含む第1の溶液と,第2の四分岐化合物と第2の緩衝液とを含む第2の溶液とを混合する混合工程とを含み,
     前記第1の四分岐化合物は,
      下記式(I)で表わされ,
    Figure JPOXMLDOC01-appb-C000016
      前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものであり,
      前記式(I)中,R11~R14は,それぞれ同一又は異なり,
       C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,-R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示し,
        ここで,R15はC-Cアルキレン基を示し,
        R16はC-Cアルキレン基を示し,
        R17はC-Cアルキレン基を示し,
     前記第2の四分岐化合物は,
      下記式(II)で表わされ,
    Figure JPOXMLDOC01-appb-C000017
      前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものであり,
      前記式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示し,
        ここで,R25はC-Cアルキレン基を示し,
        R26はC-Cアルキレン基を示し,
        R27はC-Cアルキレン基を示し,
     前記第1の溶液のpHは,前記第2の溶液のpHよりも高く,
     前記第1の緩衝液は,
      pHが5~9,及び濃度が20~200mMであり,
     前記第2の緩衝液は,
      pHが5~9,及び濃度が20~200mMである,
     ハイドロゲルの製造方法により製造されたハイドロゲル。
  8.  第1の四分岐化合物と第2の四分岐化合物とを,組成比0.8:1~1.2:1で含むハイドロゲルであって,
     前記第1の四分岐構造化合物は,
      下記式(I)で表わされ,
    Figure JPOXMLDOC01-appb-C000018
      前記式(I)中,n11~n14は,それぞれ同一又は異なり,25~250の整数を示すものであり,
      前記式(I)中,R11~R14は,それぞれ同一又は異なり,
       C-Cアルキレン基,C-Cアルケニレン基,-NH-R15-,-CO-R15-,
       -R16-O-R17-,-R16-NH-R17-,-R16-CO-R17-,-R16-CO-NH-R17-,-R16-CO-R17-,又は-R16-CO-NH-R17-を示し,
        ここで,R15はC-Cアルキレン基を示し,
        R16はC-Cアルキレン基を示し,
        R17はC-Cアルキレン基を示し,
     前記第2の四分岐構造化合物は,
      前記式(II)で表わされ,
    Figure JPOXMLDOC01-appb-C000019
      前記式(II)中,n21~n24は,それぞれ同一又は異なり,20~250の整数を示すものであり,
      前記式(II)中,R21~R24は,それぞれ同一又は異なり,C-Cアルキレン基,C-Cアルケニレン基,-NH-R25-,-CO-R25-,-R26-O-R27-,-R26-NH-R27-,-R26-CO-R27-,-R26-CO-NH-R17-,-R26-CO-R27-,又は-R26-CO-NH-R27-を示し,
        ここで,R25はC-Cアルキレン基を示し,
        R26はC-Cアルキレン基を示し,
        R27はC-Cアルキレン基を示し,
     前記ハイドロゲルの中性子散乱の散乱曲線が,オルンシュタイン-ゼルニケ関数でフィッティングされる,
     ハイドロゲル。
  9.  圧縮破断強度が10~120MPaである,
     請求項8に記載のハイドロゲル。
  10.  第1の四分岐化合物と第2の四分岐化合物と第3の四分岐化合物とを,組成比0.3~0.7:0.1~0.65:0.1~0.65で含むハイドロゲルであって,
     前記第1の四分岐化合物は,下記式(I)で表わされ,
    Figure JPOXMLDOC01-appb-C000020
    式(I)中,n11~n14は,それぞれ同一又は異なり,50~60の整数を示すものであり,R11~R14は,同一又は異なるC~Cアルキレン基であり,
     前記第2の四分岐化合物は,下記式(II)で表わされ,
    Figure JPOXMLDOC01-appb-C000021
     式(II)中,n21~n24は,それぞれ同一又は異なり,45~55を示すものであり,R21~R24は,同一又は異なる-CO-R25-(R25はC~Cアルキレン基を示す)である,
     前記第3の四分岐化合物は,前記式(II)で表わされ,
     式(II)中,n21~n24は,それぞれ同一又は異なり,45~55の整数を示すものであり,R21~R24は,同一又は異なるC-Cアルキレン基である,
     ハイドロゲル。
     
PCT/JP2009/002789 2008-12-19 2009-06-19 超高強度インジェクタブルハイドロゲル及びその製造方法 WO2010070775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/139,629 US20120122949A1 (en) 2008-12-19 2009-06-19 Ultra-high strength injectable hydrogel and process for producing the same
JP2010542805A JP5706691B2 (ja) 2008-12-19 2009-06-19 ハイドロゲルの製造方法,及びハイドロゲル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008324313 2008-12-19
JP2008-324313 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010070775A1 true WO2010070775A1 (ja) 2010-06-24

Family

ID=42268462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002789 WO2010070775A1 (ja) 2008-12-19 2009-06-19 超高強度インジェクタブルハイドロゲル及びその製造方法

Country Status (3)

Country Link
US (1) US20120122949A1 (ja)
JP (1) JP5706691B2 (ja)
WO (1) WO2010070775A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075975A (ja) * 2011-09-30 2013-04-25 Nof Corp 分岐型ヘテロ多官能性ポリオキシアルキレン化合物、及びその中間体
WO2013146745A1 (ja) * 2012-03-30 2013-10-03 国立大学法人 東京大学 イオン液体含有ゲルの製造方法
JP2013234292A (ja) * 2012-05-10 2013-11-21 National Institute For Materials Science 分岐型ポリマー、架橋ポリマー、インジェクタブルハイドロゲル、ハイドロゲル形成キット
WO2014157186A1 (ja) * 2013-03-28 2014-10-02 国立大学法人 東京大学 温度応答性ポリマーを含む低膨潤度の新規ハイドロゲル
JP2015137430A (ja) * 2014-01-20 2015-07-30 国立大学法人福井大学 ゲル繊維およびその不織布
WO2016143647A1 (ja) * 2015-03-10 2016-09-15 国立大学法人 東京大学 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
JP2017529438A (ja) * 2014-09-26 2017-10-05 ザ プロクター アンド ギャンブル カンパニー ポリエーテルアミンを含有する洗浄組成物
JP2019187692A (ja) * 2018-04-23 2019-10-31 国立大学法人東京農工大学 ハイドロゲルおよびその製造方法
WO2020027016A1 (ja) * 2018-07-31 2020-02-06 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
KR20200036077A (ko) * 2018-09-18 2020-04-07 주식회사 티앤알바이오팹 바이오 잉크 공급 시스템 및 이를 이용한 삼차원 바이오 프린팅 방법
WO2020189645A1 (ja) * 2019-03-20 2020-09-24 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
JP2021078377A (ja) * 2019-11-15 2021-05-27 株式会社リコー 積層体
WO2021106662A1 (ja) * 2019-11-28 2021-06-03 国立大学法人 東京大学 高度に均一なゲル及びその製造方法
WO2022019182A1 (ja) * 2020-07-22 2022-01-27 国立大学法人 東京大学 腱又は靭帯の治療用ゲル材料
WO2023145765A1 (ja) * 2022-01-31 2023-08-03 国立大学法人 東京大学 多孔質構造を有するハイドロゲルの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692021B2 (ja) * 2016-01-06 2020-05-13 国立大学法人 東京大学 眼科治療用ゲル材料
JP6998042B2 (ja) * 2017-01-19 2022-01-18 国立大学法人 東京大学 グルコース検出用蛍光ゲル及びそれを用いた連続的グルコースモニタリング方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502082A (ja) * 1992-07-02 1996-03-05 コラーゲン コーポレイション 生体適合性ポリマー結合体
JP2000502380A (ja) * 1995-12-18 2000-02-29 コラーゲン コーポレイション 架橋ポリマー組成物およびその使用方法
JP2003503367A (ja) * 1999-06-11 2003-01-28 シアウォーター・コーポレイション キトサンとポリ(エチレングリコール)または関連ポリマーから得られるヒドロゲル
WO2006013612A1 (ja) * 2004-06-18 2006-02-09 Hokkaido Technology Licensing Office Co., Ltd. 人工半月板
JP2006516548A (ja) * 2002-12-30 2006-07-06 アンジオテック インターナショナル アクツィエン ゲゼルシャフト 迅速ゲル化ポリマー組成物からの薬物送達法
JP2007217699A (ja) * 1998-12-04 2007-08-30 Incept Llc 生体適合性架橋ポリマー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312725B1 (en) * 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
ATE546481T1 (de) * 1999-08-27 2012-03-15 Angiodevice Internat Gmbh Biologisch verträgliche polymervorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502082A (ja) * 1992-07-02 1996-03-05 コラーゲン コーポレイション 生体適合性ポリマー結合体
JP2000502380A (ja) * 1995-12-18 2000-02-29 コラーゲン コーポレイション 架橋ポリマー組成物およびその使用方法
JP2007217699A (ja) * 1998-12-04 2007-08-30 Incept Llc 生体適合性架橋ポリマー
JP2003503367A (ja) * 1999-06-11 2003-01-28 シアウォーター・コーポレイション キトサンとポリ(エチレングリコール)または関連ポリマーから得られるヒドロゲル
JP2006516548A (ja) * 2002-12-30 2006-07-06 アンジオテック インターナショナル アクツィエン ゲゼルシャフト 迅速ゲル化ポリマー組成物からの薬物送達法
WO2006013612A1 (ja) * 2004-06-18 2006-02-09 Hokkaido Technology Licensing Office Co., Ltd. 人工半月板

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075975A (ja) * 2011-09-30 2013-04-25 Nof Corp 分岐型ヘテロ多官能性ポリオキシアルキレン化合物、及びその中間体
WO2013146745A1 (ja) * 2012-03-30 2013-10-03 国立大学法人 東京大学 イオン液体含有ゲルの製造方法
JP2013234292A (ja) * 2012-05-10 2013-11-21 National Institute For Materials Science 分岐型ポリマー、架橋ポリマー、インジェクタブルハイドロゲル、ハイドロゲル形成キット
WO2014157186A1 (ja) * 2013-03-28 2014-10-02 国立大学法人 東京大学 温度応答性ポリマーを含む低膨潤度の新規ハイドロゲル
JP2015137430A (ja) * 2014-01-20 2015-07-30 国立大学法人福井大学 ゲル繊維およびその不織布
JP2017529438A (ja) * 2014-09-26 2017-10-05 ザ プロクター アンド ギャンブル カンパニー ポリエーテルアミンを含有する洗浄組成物
WO2016143647A1 (ja) * 2015-03-10 2016-09-15 国立大学法人 東京大学 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
JPWO2016143647A1 (ja) * 2015-03-10 2017-12-21 国立大学法人 東京大学 ゲル前駆体クラスターを用いた低濃度ゲルの製造方法、及び当該製造方法により得られるゲル
US10550225B2 (en) 2015-03-10 2020-02-04 The University Of Tokyo Process for producing low-concentration gel using gel-precursor clusters, and gel obtained by said production process
JP7009298B2 (ja) 2018-04-23 2022-01-25 国立大学法人東京農工大学 生体組織シーラント用ハイドロゲルおよびその製造方法
JP2019187692A (ja) * 2018-04-23 2019-10-31 国立大学法人東京農工大学 ハイドロゲルおよびその製造方法
WO2020027016A1 (ja) * 2018-07-31 2020-02-06 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
JPWO2020027016A1 (ja) * 2018-07-31 2021-08-10 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
JP7272672B2 (ja) 2018-07-31 2023-05-12 国立大学法人 東京大学 スポンジ様の多孔体構造を有する高分子ゲル
KR102160642B1 (ko) 2018-09-18 2020-09-29 주식회사 티앤알바이오팹 바이오 잉크 공급 시스템 및 이를 이용한 삼차원 바이오 프린팅 방법
KR20200036077A (ko) * 2018-09-18 2020-04-07 주식회사 티앤알바이오팹 바이오 잉크 공급 시스템 및 이를 이용한 삼차원 바이오 프린팅 방법
WO2020189645A1 (ja) * 2019-03-20 2020-09-24 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
AU2020240750B2 (en) * 2019-03-20 2023-07-06 Ricoh Company, Ltd. Cell culture carrier, and method and device for producing same
JP7472900B2 (ja) 2019-03-20 2024-04-23 株式会社リコー 細胞培養担体、並びにその製造方法及び製造装置
JP2021078377A (ja) * 2019-11-15 2021-05-27 株式会社リコー 積層体
WO2021106662A1 (ja) * 2019-11-28 2021-06-03 国立大学法人 東京大学 高度に均一なゲル及びその製造方法
WO2022019182A1 (ja) * 2020-07-22 2022-01-27 国立大学法人 東京大学 腱又は靭帯の治療用ゲル材料
WO2023145765A1 (ja) * 2022-01-31 2023-08-03 国立大学法人 東京大学 多孔質構造を有するハイドロゲルの製造方法

Also Published As

Publication number Publication date
US20120122949A1 (en) 2012-05-17
JPWO2010070775A1 (ja) 2012-05-24
JP5706691B2 (ja) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5706691B2 (ja) ハイドロゲルの製造方法,及びハイドロゲル
US10517987B2 (en) Adhesive complex coacervates and methods of making and using thereof
Shu et al. In situ crosslinkable hyaluronan hydrogels for tissue engineering
Zhao et al. Ultra-tough injectable cytocompatible hydrogel for 3D cell culture and cartilage repair
US20190151512A1 (en) Microgel Compositions
CN101557801B (zh) 含有低分子量藻酸盐的水凝胶和从其制备的生物构建物
EP3456749B1 (en) A substituted polyvinyl alcohol reagent
JP2019509387A (ja) ジェランガムヒドロゲル、調製物、方法、およびそれらの使用
US20160243275A1 (en) Polymer hydrogel adhesives formed with multiple crosslinking mechanisms at physiologic ph
WO2003087019A1 (fr) Produit de modification d'acide hyaluronique
JP6851377B2 (ja) 骨再生のための生物活性重合体
US9889086B2 (en) Bioadhesive and injectable hydrogel
US10653802B2 (en) Photoluminescent hydrogel
EP3431140B1 (en) Nerve regeneration-inducing material
Li et al. Synthesis of thiol-terminated PEG-functionalized POSS cross-linkers and fabrication of high-strength and hydrolytic degradable hybrid hydrogels in aqueous phase
EP1962918B1 (en) Microgel particle
Adhikari et al. Evaluation of in situ curable biodegradable polyurethanes containing zwitterion components
CA2274661A1 (en) Improved hydrogel for tissue engineering
EP1609491B1 (en) Barrier membrane
EP4190316A1 (en) Biomimetic tissue-adhesive hydrogel patch for preventing or treating cartilage or bone diseases
CN113301927A (zh) 生物相容性材料
WO2021153489A1 (ja) 再生医療用ゲル材料
EP4382142A1 (en) Composition for preparing organic-inorganic complex hydrogel and kit for preparing organic-inorganic complex hydrogel comprising same
EP4306548A1 (en) Hydrogels for cell therapy
Yakufu et al. Carbene-mediated gelatin and hyaluronic acid hydrogel paints with ultra adhesive ability for arthroscopic cartilage repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13139629

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09833088

Country of ref document: EP

Kind code of ref document: A1