WO2016143602A1 - 樹脂微粒子分散体、抄造物及び摩擦板 - Google Patents

樹脂微粒子分散体、抄造物及び摩擦板 Download PDF

Info

Publication number
WO2016143602A1
WO2016143602A1 PCT/JP2016/056216 JP2016056216W WO2016143602A1 WO 2016143602 A1 WO2016143602 A1 WO 2016143602A1 JP 2016056216 W JP2016056216 W JP 2016056216W WO 2016143602 A1 WO2016143602 A1 WO 2016143602A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
particle dispersion
resin fine
mass
polyacrylamide
Prior art date
Application number
PCT/JP2016/056216
Other languages
English (en)
French (fr)
Inventor
誠二 木本
木田 成信
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201680015364.4A priority Critical patent/CN107429486B/zh
Priority to EP16761572.3A priority patent/EP3269876A4/en
Priority to US15/555,688 priority patent/US10358773B2/en
Priority to JP2016565711A priority patent/JP6124101B2/ja
Publication of WO2016143602A1 publication Critical patent/WO2016143602A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/72Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/10Composite fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/36Polyalkenyalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles

Definitions

  • the present invention relates to a resin fine particle dispersion that is optimal for producing paper products such as paper. Specifically, the present invention relates to a resin fine particle dispersion in which a paper product having excellent heat resistance and strong mechanical strength is obtained, and the residual amount of resin particles in the waste water after paper making is small and the load on the environment is small. The present invention also relates to a paper product and a friction plate obtained using this resin fine particle dispersion.
  • the paper-like substance can be obtained, for example, by a method (paper making method) for making a dispersion in which fibers and a resin binder are essential.
  • the resin binder used in the papermaking method include a water-soluble resol type phenol resin, a phenol resin emulsion, a hexamethylenetetramine-cured novolac type phenol resin powder, and a resol type phenol resin powder.
  • the papermaking method has the following problems: (1) When a water-soluble resol type phenol resin or phenol resin emulsion is used as a resin binder, it is usually agglomerated with a fixing agent such as aluminum sulfate or polyaluminum chloride. . In this case, the efficiency of aggregation is not good, and there is a problem that the resin binder flows out into the waste water during papermaking (the load on the environment is high).
  • the resole resin When a resole resin is used as the resin binder, the resole resin usually contains 0.05 to 0.3% free formaldehyde and 5 to 10% free phenol. Therefore, these free monomers are easily washed away with water during papermaking, and the load on the environment is increased as described above.
  • the burden on the environment can be reduced, but the flowability of the resin is poor, and as a result, the cured product obtained by thermosetting after papermaking There is a problem of insufficient strength.
  • Patent Document 1 a resin composition containing a phenol resin powder and an epoxy resin powder as a resin binder.
  • the dispersion containing the resin composition disclosed in Patent Document 1 it is insufficient to reduce the environmental load.
  • the resin composition has an insufficient role as a binder for binding fibers, and as a result, the heat resistance and strength of the resulting article (paper product) are also insufficient.
  • the problem to be solved by the present invention is a resin fine particle dispersion in which the residual amount of resin particles is small in the waste water after paper making and the load on the environment is low, and furthermore, a paper product having excellent heat resistance and strong mechanical strength is obtained. It is to provide a dispersion. Another object of the present invention is to provide a paper product excellent in heat resistance and strong mechanical strength, preferably a friction plate.
  • the present inventors have reduced the outflow of free monomer and resin binder into the waste water by containing ionic polyacrylamide in the resin fine particle dispersion.
  • the amount of papermaking that can be produced per unit amount of the dispersion is increased because the outflow of the resin binder is reduced (yield is improved), and the resulting papermaking is excellent in heat resistance and mechanical strength,
  • the resulting papermaking has been found to be particularly suitable for use as an automatic transmission (Automatic Transmission, simply abbreviated as “AT”) for automobiles, etc., or as a friction plate used in single or plural transmissions for motorcycles, etc.
  • AT Automatic Transmission
  • the present invention provides a resin fine particle dispersion characterized by containing resin fine particles (A), fiber material (B), ionic polyacrylamide (C) and water as essential components.
  • the present invention provides a paper product using the resin fine particle dispersion.
  • the present invention provides a friction plate using the resin fine particle dispersion.
  • the resin fine particle dispersion of the present invention is characterized by containing resin fine particles (A), fiber material (B), ionic polyacrylamide (C) and water as essential components.
  • the type of resin constituting the resin fine particles (A) is not particularly limited, but is preferably fine particles made of a resin composition containing a phenol resin as an essential component.
  • the phenol resin can be broadly classified into a novolac type phenol resin (N) and a resol type phenol resin (R). In the present invention, either one may be used, or both may be used in combination.
  • the number average molecular weight (Mn) of these phenol resins is in the range of 300 to 2,000 because the resin particles (A) are excellent in affinity with ionic polyacrylamide (C) and dispersibility in water. Preferably there is.
  • the number average molecular weight (Mn) is measured using gel permeation chromatography (hereinafter abbreviated as “GPC”) under the following measurement conditions.
  • Examples of the novolac type phenol resin (N) include those obtained by reacting a phenolic hydroxyl group-containing compound and an aldehyde compound in the presence of an acid catalyst.
  • phenolic hydroxyl group-containing compound examples include phenol, cresol, xylenol, ethylphenol, butylphenol, octylphenol, phenylphenol, aminophenol, naphthol, bisphenol, biphenol, resorcin, catechol, and a part of hydrogen atoms in these compounds. Or a compound in which all or a halogen is substituted. These may be used alone or in combination of two or more. Among these, phenol, cresol, and xylenol are preferable.
  • aldehyde compound examples include formaldehyde, acetaldehyde, benzaldehyde, naphthaldehyde, and compounds in which part or all of hydrogen atoms in these compounds are substituted with halogen. These may be used alone or in combination of two or more.
  • the acid catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and boric acid; and organic acids such as oxalic acid, acetic acid, and paratoluenesulfonic acid. These may be used alone or in combination of two or more.
  • the production conditions for the novolak type phenol resin (N) include, for example, a method of reacting at 50 to 100 ° C. for about 1 to 7 hours.
  • the reaction molar ratio of the phenolic hydroxyl group-containing compound to the aldehyde compound [aldehyde compound / phenolic hydroxyl group-containing compound] is preferably in the range of 0.5 to 2.0, and in the range of 0.6 to 1.8. Is more preferable, and a range of 0.7 to 1.6 is particularly preferable.
  • the resol type phenol resin (R) comprises a resol type phenol resin (R1) obtained by reacting a phenolic hydroxyl group-containing compound and an aldehyde compound in the presence of a basic catalyst, or a novolac type phenol resin and an aldehyde compound.
  • R1 resol type phenol resin
  • R2 resol type phenolic resin obtained by reacting in the presence of a basic catalyst.
  • Examples of the phenolic hydroxyl group-containing compound and aldehyde compound used in the production of the resol type phenol resin (R) include the same as those used in the production of the novolak type phenol resin (N).
  • Examples of the novolac type phenol resin include those obtained by reacting the phenolic hydroxyl group-containing compound and the aldehyde compound in the same manner as the above-mentioned novolac type phenol resin (N).
  • One type of novolak type phenol resin may be used alone, or two or more types may be used in combination.
  • Examples of the basic catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, and amines such as ammonia, triethylamine, tetraethylenediamine, and N-ethylpiperazine. These may be used alone or in combination of two or more.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide
  • amines such as ammonia, triethylamine, tetraethylenediamine, and N-ethylpiperazine. These may be used alone or in combination of two or more.
  • the production conditions of the resol type phenol resin (R) include, for example, a method of reacting at 50 to 100 ° C. for about 1 to 7 hours.
  • the reaction molar ratio of the phenolic hydroxyl group-containing compound to the aldehyde compound [aldehyde compound / phenolic hydroxyl group-containing compound] is preferably in the range of 0.6 to 3.0. A range of 0.7 to 2.5 is more preferable, and a range of 0.8 to 2.0 is particularly preferable.
  • the reaction ratio between the novolak type phenol resin and the aldehyde compound is such that the number average molecular weight (Mn) of the obtained resol type phenol resin (R) is in the range of 300 to 2,000. It is preferable to adjust to.
  • the resin composition constituting the resin fine particles (A) may contain a compound other than the phenol resin.
  • examples of other compounds include epoxy resins, amine compounds, polyester resins, polyamide resins, amino resins, and acrylic resins. These may be used alone or in combination of two or more. Among these, an epoxy resin or an amine compound is preferable because a paper product having excellent mechanical strength can be obtained.
  • the proportion of the phenol resin in the resin composition is preferably in the range of 10 to 80% by mass, and preferably in the range of 25 to 60% by mass.
  • the proportion of the phenol resin in the resin composition is preferably in the range of 50 to 98% by mass.
  • the method for obtaining the resin fine particles (A) using the resin composition is not particularly limited, and examples thereof include a method of forming particles by mechanical / physical means.
  • the fiber material (B) used in the present invention is, for example, wood pulp, linter pulp, hemp, cotton, aromatic polyamide fiber, nylon, polyester, rayon, phenol fiber, aramid fiber, carbon fiber, novoloid fiber, silicon carbide Organic fibers such as glass fibers, rock wool, slag wool, silicate fibers, silica fibers, alumina fibers, alumina-silica fibers, potassium titanate fibers, carbon fibers, silicon nitride, etc .; steel fibers, stainless fibers, stainless steel Examples thereof include metal fibers such as steel fibers, copper fibers, brass fibers and brass fibers. These can be appropriately selected according to the use of the resin fine particle dispersion, and may be used alone or in combination of two or more.
  • inorganic fibers having high heat resistance, particularly glass fibers are preferable, and even if they are organic fibers, wood pulp and aramid fibers have excellent high-temperature characteristics, and are therefore preferable for use as a papermaking type friction material.
  • the present invention by using ionic polyacrylamide (C), it is possible to agglomerate the resin fine particles (A), the fiber material (B), and the filler contained as necessary, and fix them uniformly. . As a result, the amount of resin flowing out into the waste water is reduced, and the drainage load can be reduced. And since the said resin fine particle (A) can be fixed uniformly in the case of papermaking, it becomes possible to obtain the papermaking excellent in heat resistance and intensity
  • the ionic polyacrylamide (C) used in the present invention is a polyacrylamide having a cationic group, an anionic group, or both in the molecular structure.
  • acrylamide and a polymerizable monomer having an ionic group The polymer etc. which use as an essential raw material are mentioned.
  • the polymerizable monomer having an ionic group can be roughly classified into a polymerizable monomer having a cationic group and a polymerizable monomer having an anionic group.
  • the polymerizable monomer having a cationic group include dimethylaminopropyl (meth) acrylamide, quaternary salt of dimethylaminopropyl (meth) acrylamide and methyl chloride, dimethylaminoethyl (meth) acrylate, dimethylaminoethyl (meta ) A quaternary salt of acrylate and methyl chloride. These may be used alone or in combination of two or more. Among these, dimethylaminopropyl (meth) acrylamide or quaternary salt of dimethylaminopropyl (meth) acrylamide and methyl chloride is preferable because it is easily available.
  • Examples of the polymerizable monomer having an anionic group include (meth) acrylic acid, [(meth) acryloyloxy] acetic acid, 2-carboxyethyl (meth) acrylate, 3-carboxypropyl acrylate, and 1- [succinic acid. 2- (acryloyloxy) ethyl], phthalic acid-1- (2-acryloyloxyethyl), hydrogen hexahydrophthalate 2- (acryloyloxy) ethyl, (anhydrous) maleic acid, fumaric acid, citraconic acid, itaconic acid, etc. Is mentioned. These may be used alone or in combination of two or more. Among these, (meth) acrylic acid or itaconic acid is preferable because it is easily available.
  • the ionic polyacrylamide (C) may use other polymerizable monomers as a raw material in addition to acrylamide and the polymerizable monomer having the ionic group.
  • examples of the other polymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl (meth).
  • aromatic ring-containing (meth) acrylates such as phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dihydroxypropyl Hydroxyl group-containing (meth) acrylate such as acrylate; isocyanate group-containing (meth) acrylate such as 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate; glycidyl (meth) Glycidyl group-containing (meth) acrylates such as acrylate and 4-hydroxybutyl acrylate glycidyl ether; 3-methacryloxypropyl Containing silyl group such as trimeth,
  • the ionic polyacrylamide (C) is preferably a polymerizable monomer having 50% by mole or more in its raw material having acrylamide or an ionic group, and 80% by mole or more being a polymerizable monomer having acrylamide or an ionic group. It is preferable that
  • the ionic polyacrylamide (C) is prepared by adding isopropyl alcohol, allyl alcohol, sodium diphosphite, allyl sulfone to an aqueous solution of about 5 to 30% by mass containing acrylamide or a polymerizable monomer having the ionic group.
  • a chain transfer agent such as sodium acid is appropriately used, and polymerization initiators such as ammonium persulfate, potassium persulfate, sodium persulfate and their persulfates under conditions where the polymerization initiation pH is 3 to 6 and sodium bisulfite, etc. It can be produced by a method in which a reducing agent is added and heated at 35 to 95 ° C. for 1 to 10 hours.
  • the ionic polyacrylamide (C) can be roughly classified into the following three types depending on the type of ionic group in the molecular structure. 1. Zwitterionic polyacrylamide (C1) having both a cationic group and an anionic group as an ionic group 2. Cationic polyacrylamide (C2) having only cationic groups as ionic groups 3. Anionic polyacrylamide (C3) having only a cationic group as an ionic group
  • the amphoteric polyacrylamide (C1) only needs to have both a cationic group and an anionic group in the molecular structure.
  • acrylamide, a polymerizable monomer having a cationic group, and an anionic group can be used.
  • examples thereof include polymers having a polymerizable monomer, and other polymerizable monomers as necessary.
  • the polymerizable monomer having the anionic group and the polymerizable monomer having the cationic group are used in a total range of 1.1 to 32 mol%. It is preferable.
  • the molar ratio of the polymerizable monomer having an anionic group to the polymerizable monomer having a cationic group is 10.
  • the ratio is preferably / 90 to 80/20, and more preferably 20/80 to 60/40.
  • the cationic polyacrylamide (C2) only needs to have a cationic group in the molecular structure, and includes, for example, acrylamide, a polymerizable monomer having a cationic group, and, if necessary, other polymerizable monomers.
  • a polymer is mentioned.
  • the polymerizable monomer having a cationic group is preferably used in the range of 1 to 30 mol%, and preferably in the range of 5 to 25 mol%. .
  • the anionic polyacrylamide (C3) only needs to have an anionic group in the molecular structure, and includes, for example, acrylamide, a polymerizable monomer having an anionic group, and, if necessary, other polymerizable monomers.
  • a polymer is mentioned.
  • the polymerizable monomer having an anionic group is preferably used in the range of 1 to 30 mol%, and preferably in the range of 5 to 25 mol%. .
  • the ionic polyacrylamide (C) may be used alone or in combination of two or more.
  • the ionic polyacrylamide (C) preferably has a degree of ionization in the range of ⁇ 5 to 5 meq / g because a paper product having excellent heat resistance and strength can be obtained. More specifically, when the ionic polyacrylamide (C) is the zwitterionic polyacrylamide (C1), the ionization degree is preferably in the range of ⁇ 4 to 4 meq / g, and ⁇ 3 to 3 meq / g. The range of g is more preferable. When the ionic polyacrylamide (C) is the cationic polyacrylamide (C2), the ionization degree is preferably in the range of 0.01 to 10 meq / g, and in the range of 0.1 to 8 meq / g.
  • the ionic polyacrylamide (C) is the anionic polyacrylamide (C3)
  • the ionization degree is preferably in the range of ⁇ 10 to ⁇ 0.01 meq / g, and ⁇ 8 to ⁇ 0.1 meq / g. More preferably, it is the range.
  • the ionization degree of the ionic polyacrylamide (C) is measured by the following method. 1. An aqueous solution containing 0.005% by mass of ionic polyacrylamide (C) is prepared by diluting ionic polyacrylamide (C) in water. 2. When the aqueous solution is acidic, the pH of the aqueous solution is adjusted to 7.0 using 0.1 mol / L sodium hydroxide. When the aqueous solution is alkaline, an aqueous solution of 0.5% by mass of sulfuric acid is used. The pH of the is adjusted to 7.0.
  • the ionic polyacrylamide (C) is the zwitterionic polyacrylamide (C1) and is an anionic polyacrylamide when the pH is adjusted to 7.0
  • the aqueous solution having the pH adjusted to 7.0 Polyallyl diallyldimethylammonium chloride (hereinafter abbreviated as “p-DADMAC”) is added until the streaming potential becomes zero, and the degree of ionization is measured based on the amount of p-DADMAC added.
  • the ionic polyacrylamide (C) is the zwitterionic polyacrylamide (C1) and is a polyacrylamide that exhibits a cationic property when the pH is adjusted to 7.0
  • the aqueous solution having the pH adjusted to 7.0 Polyvinyl potassium sulfate (hereinafter abbreviated as “PVSK”) is added until the streaming potential becomes zero, and the degree of ionization is measured based on the amount of PVSK added.
  • PVSK Polyvinyl potassium sulfate
  • the ionic polyacrylamide (C) is the cationic polyacrylamide (C2)
  • PVSK is added until the flow potential of the aqueous solution whose pH is adjusted to 7.0 is zero, and the degree of ionization is based on the amount of PVSK added. Measure.
  • p-DADMAC is added until the flow potential of the aqueous solution whose pH is adjusted to 7.0 is zero, and the added amount of p-DADMAC The ionization degree is measured based on
  • the streaming potential is measured using a Mutek flow potential meter (PCD).
  • PCD Mutek flow potential meter
  • the ionic polyacrylamide (C) is a resin fine particle dispersion in which the residual amount of the resin particles (A) is small in the waste water after paper making and the load on the environment is small, and is excellent in heat resistance and mechanical. Since a paper product having a high strength can be obtained, the viscosity in the case of a 10% by mass aqueous solution is preferably in the range of 300 to 100,000 cps (25 ° C., Brookfield viscosity), and is 800 to 20,000 cps. Is more preferable.
  • the ionic polyacrylamide (C) may be a commercially available product.
  • Examples of the amphoteric polyacrylamide (C1) include “Harmide EX-200” and “Harmide EX-300” manufactured by Harima Kasei Co., Ltd.
  • Examples of the cationic polyacrylamide (C2) include “Polystron 705”, “Araffix 100”, “Araffix 255” manufactured by Arakawa Chemical Co., Ltd., “Harifix U-570”, Harima Kasei Co., Ltd. Is mentioned.
  • Examples of the anionic polyacrylamide (C3) include “Polystron 117” manufactured by Arakawa Chemical Co., Ltd., Harima Kasei Co., Ltd. “Harmide C-10”, “Harmide B-15”, and the like.
  • the compounding amount of the ionic polyacrylamide (C) in the resin fine particle dispersion is 0.001 to 2.0 masses per 100 mass parts of the fiber material (B) because a paper product having high mechanical strength can be obtained. Is preferably in the range of 0.01 to 1.5 parts by mass.
  • the ionic polyacrylamide (C) is preferably blended so that the ionic parameter determined by the following formula is in the range of ⁇ 0.45 to 0.35 meq / g. More preferably, the ionic polyacrylamide (C) is blended so as to be in the range of 33 meq / g.
  • Ionicity parameter (meq / g) ⁇ [ionization degree of ionic polyacrylamide (C) (meq / g) ⁇ mixing ratio of ionic polyacrylamide (C) to fiber material (B) (mass%)]
  • the resin fine particle dispersion of the present invention may contain a curing agent (D) in addition to the resin fine particles (A), the fiber material (B), the ionic polyacrylamide (C) and water.
  • a curing agent (D) in addition to the resin fine particles (A), the fiber material (B), the ionic polyacrylamide (C) and water.
  • the resin fine particles (A) are made of a resin composition containing a novolac type phenol resin (N)
  • examples of the curing agent (D) include amine compounds such as hexamethylenetetramine; paraformaldehyde, 1, 3 Aldehyde compounds such as 1,5-trioxane; epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenol novolac type epoxy resin, and resol type phenol resin. These may be used alone or in combination of two or more.
  • one or more selected from the group consisting of hexamethylenetetramine, a resol type phenol resin and an epoxy resin are preferable because a paper product having excellent heat resistance and mechanical strength can be obtained and easily obtained.
  • the blending amount of the curing agent (D) is preferably in the range of 3 to 20 parts by mass and more preferably in the range of 5 to 15 parts by mass with respect to 100 parts by mass of the resin fine particles (A).
  • the resin fine particles (A) are made of a resin composition containing a novolac type phenol resin (N), the resin fine particles (A), the fiber material
  • the blending ratio of (B), ionic polyacrylamide (C), curing agent (D), and water is 0.1 to 50% by mass of resin fine particles (A) and 0.5 to 80% by mass of fiber material (B).
  • a dispersion having good dispersion is obtained.
  • the resin fine particles (A) are made of a resin composition containing a resol type phenol resin (R), the resin fine particles (A), the fiber material (B), the ionic polyacrylamide (C), and water are mixed.
  • the ratio is 0.1 to 50% by mass of resin fine particles (A), 0.5 to 80% by mass of fiber material (B), 0.001 to 1% by mass of ionic polyacrylamide (C), and 50 to 99% by mass of water.
  • a dispersion having good dispersion, a high yield rate, a low environmental impact, and a paper product excellent in mechanical strength can be obtained. More preferably, it is in the range of ⁇ 40 mass%, fiber material (B) 1 ⁇ 70 mass%, ionic polyacrylamide (C) 0.002 ⁇ 0.9 mass%, curing agent (D) 60 ⁇ 98 mass%. preferable.
  • the paper product of the present invention is obtained by paper making using the resin fine particle dispersion of the present invention.
  • the resin fine particle dispersion of the present invention is formed into a sheet according to a conventional method, and a paper product on paper can be obtained by heating and pressing the sheet.
  • the resin fine particle dispersion of the present invention can be suitably used as a dispersion for obtaining a paper product.
  • This paper product can be used, for example, instead of a material that has been conventionally produced by a method of impregnating a fiber material with a resin solution (impregnation method).
  • a friction plate such as a wet friction material, a half board, a semi-half board, and an air filter.
  • a friction modifier may be added as necessary.
  • the friction modifier include inorganic substances such as wollastonite, diatomaceous earth, silica, barium sulfate, calcium carbonate, and silicon oxide, cashew dust, and graphite. Two or more kinds of these friction modifiers may be used in combination.
  • the ratio of the fiber material (B) to the friction modifier is preferably 1 to 60 parts by mass with respect to 100 parts by mass of the fiber material (B).
  • the resin fine particle dispersion of the present invention may contain a curing accelerator in order to accelerate the curing of the epoxy resin.
  • a hardening accelerator the general purpose thing currently used as a ring-opening catalyst of an epoxy group can be used. Examples thereof include imidazoles such as 2-phenylimidazole and 2-phenyl-4-methylimidazole and phosphorus compounds represented by TPP (triphenylphosphine).
  • TPP triphenylphosphine
  • the curing accelerator is in a liquid state, it is preferably added in advance to the novolac type phenol resin (N) by hot melt mixing.
  • the amount of the curing accelerator is 0.05 to 3% by mass, preferably 0.1 to 1.0% by mass, based on the epoxy resin used.
  • Preparation Example 1 (Preparation of resin fine particles (A-1)) A novolac type phenolic resin (N-1) and a resol type phenolic resin (R-2) are blended at a mass ratio of 80:20, mixed while being pulverized in a mortar, and a novolac type phenolic resin (N- A mixture of fine particles in which the fine particles of 1) and the fine particles of the resol type phenol resin (R-2) were mixed was obtained. The nonvolatile content at 200 ° C. of this mixture was measured and found to be 96.2% by mass. Hereinafter, this mixture is abbreviated as resin fine particles (A-1).
  • Preparation Example 2 [Preparation of resin fine particles (A-2)] Novolak type phenolic resin (N-1) and cresol type epoxy resin EPICLON N-690 (manufactured by DIC Corporation) were blended at a mass ratio of 33:67 and mixed while being crushed in a mortar. A mixture of fine particles in which fine particles of novolac type phenol resin (N-1) and fine particles of EPICLON N-690 were mixed was obtained. The nonvolatile content at 200 ° C. of this mixture was measured and found to be 98.3 mass%. Hereinafter, this mixture is abbreviated as resin fine particles (A-2).
  • Preparation Example 3 [Preparation of resin fine particles (A-3)]
  • the fine particles of resole phenolic resin (Bellpearl S899) manufactured by Air Water Velpearl Co., Ltd. were used as resin fine particles of resole phenolic resin as they were.
  • the nonvolatile content of the fine particles at 200 ° C. was measured and found to be 94.2% by mass.
  • these fine particles are abbreviated as resin fine particles (A-3).
  • Preparation Example 4 [Preparation of resin fine particles (A-4)]
  • the resol type phenol resin (R-1) was pulverized in a mortar to obtain fine particles of the resol type phenol resin (R-1).
  • the nonvolatile content at 200 ° C. of the fine particles was measured and found to be 89.2% by mass.
  • these fine particles are abbreviated as resin fine particles (A-4).
  • Preparation Example 5 [Preparation of resin fine particles (A-5)] A novolac type phenol resin (N-1) and hexamethylenetetramine are blended in a mass ratio of 94: 6 and mixed while being pulverized in a mortar. A mixture of fine particles mixed with methylenetetramine was obtained. The nonvolatile content at 200 ° C. of this mixture was measured and found to be 98.3 mass%. Hereinafter, this mixture is abbreviated as resin fine particles (A-5).
  • Synthesis Example 4 [Synthesis of ionic polyacrylamide (C-1)] In a 1000 ml four-necked flask equipped with a stirrer, thermometer, condenser and nitrogen inlet tube, 543.2 g of water, 4.16 g of itaconic acid, 7.49 g of dimethylaminopropyl acrylamide, 138.05 g of 50% aqueous acrylamide, 2% 16.82 g of sodium hypophosphite aqueous solution was charged, and then adjusted to pH 4.0 with 15% sulfuric acid aqueous solution. The temperature was raised to 60 ° C.
  • ionic polyacrylamide (C-1) having a nonvolatile content of 10.2%. Obtained.
  • the ionization degree of ionic polyacrylamide (C-1) at pH 7 was -0.5 meq / g in terms of solid content.
  • the viscosity of 10.2% aqueous solution of ionic polyacrylamide (C-1) was 20,000 cps.
  • Synthesis Example 5 [Synthesis of ionic polyacrylamide (C-2)] In a 1000 ml four-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen inlet tube, 543.2 g of water, 28.12 g of dimethylaminopropylacrylamide, 116.57 g of 50% aqueous acrylamide solution, and 2% aqueous sodium hypophosphite solution 16 .82 g was charged, and then adjusted to pH 4.0 with a 15% aqueous sulfuric acid solution. The temperature was raised to 60 ° C. while introducing nitrogen gas, and 3.65 g of 5% aqueous ammonium persulfate solution was added to initiate the polymerization reaction.
  • ionic polyacrylamide (C-2) having a nonvolatile content of 10.2%. Obtained.
  • the ionization degree of ionic polyacrylamide (C-2) at pH 7 was +2.0 meq / g in terms of solid content.
  • the viscosity of 10.2% aqueous solution of ionic polyacrylamide (C-2) was 45,000 cps.
  • ionic polyacrylamide (C-3) having a nonvolatile content of 10.2%. Obtained.
  • the ionization degree of ionic polyacrylamide (C-3) at pH 7 was -1.6 meq / g in terms of solid content.
  • the viscosity of a 10.2% aqueous solution of ionic polyacrylamide (C-3) was 15,000 cps.
  • Example 1 Production of Resin Fine Particle Dispersion (1) 1 L of water (conductivity: 350 ⁇ S / cm, pH 7.5), 5.9 g of pulp, 5.9 g of aramid fiber (Twaron 1097 manufactured by Toray Industries, Inc.), diatomaceous earth (Toshin) 5.2 g of Celite 281 manufactured by Kasei Co., Ltd. was added and stirred for 1 minute with a mixer. Thereafter, 7.59 g of resin fine particles (A-1) were added, and the mixture was further stirred for 1 minute.
  • A-1 resin fine particles
  • ionic polyacrylamide (C-1) was 0.2% by mass in solid content with respect to the fiber component
  • ionic polyacrylamide (C-2) was in solid content with respect to the fiber component. 0.01% by mass was added to obtain a resin fine particle dispersion (1).
  • the ionic parameter determined by the following formula was ⁇ 0.08 meq / g.
  • Ionic parameter (meq / g) ⁇ [ionization degree of ionic polyacrylamide (C) (meq / g) ⁇ mixing ratio of ionic polyacrylamide (C) to fiber material (B) (mass%)]
  • paper was made by a 250 ⁇ 250 mm square sheet machine (paper making machine) to obtain a paper product.
  • the obtained paper product was press-dehydrated, dried at 100 ° C. for 3 minutes, and then heat-cured at 200 ° C. for 10 minutes to obtain a cured paper product.
  • the yield rate during papermaking, the amount of environmental load, and the strength of the hardened papermaking were evaluated according to the following methods. The evaluation results are shown in Table 2.
  • yield rate (%) [(mass after curing) / (total of fiber component mass and solid mass of resin fine particles)] ⁇ 100
  • the COD measurement was in accordance with JIS K 0102 17 method.
  • the content of the phenolic hydroxyl group-containing compound was determined according to JIS K 0102 28.1 method.
  • the strength of the papermaking was determined by measuring the tensile shear strength. Specifically, a shear strength of 0.8 mm ⁇ 25 mm ⁇ 150 mm steel plate (JIS G 3141) is degreased with acetone, and after applying an adhesive, the hardened paper cut out to 15 mm ⁇ 25 mm is press-bonded, A sample for measuring tensile shear strength was prepared. The tensile shear strength was measured at a load full scale of 5 kN and a test speed of 1 mm / min.
  • Example 2 to 13 and Comparative Examples 1 to 7 A cured paper product was obtained in the same manner as in Example 1 except that the blending amount was as described in Table 1. The same evaluation as in Example 1 was performed, and the results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

紙等の抄造物を製造するのに最適な樹脂微粒子水分散体に関する。具体的には、耐熱性に優れ、機械的強度も強い抄造物が得られ、且つ、抄造後の排水に樹脂粒子の残存量が少なく、環境への負荷が少ない樹脂微粒子水分散体を提供することを目的とする。樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水を必須の成分として含有することを特徴とする樹脂微粒子分散体、これを用いた抄造物、及び摩擦板を提供する。

Description

樹脂微粒子分散体、抄造物及び摩擦板
 本発明は、紙等の抄造物を製造するのに最適な樹脂微粒子分散体に関する。具体的には、耐熱性に優れ、機械的強度も強い抄造物が得られ、且つ、抄造後の排水に樹脂粒子の残存量が少なく環境への負荷が少ない樹脂微粒子分散体に関する。また、この樹脂微粒子分散体を用いて得られる抄造物及び摩擦板に関する。
 ペーパー状の物質は、例えば、繊維と樹脂結合剤を必須とする分散体を抄造する方法(抄造法)により得ることができる。抄造法において使用される樹脂結合剤として、水溶性レゾール型フェノール樹脂、フェノール樹脂エマルジョン、ヘキサメチレンテトラミン硬化のノボラック型フェノール樹脂粉末、レゾール型フェノール樹脂粉末等がある。
 しかしながら、前記抄造法には次のような問題がある
 (1)水溶性レゾール型フェノール樹脂やフェノール樹脂エマルジョンを樹脂結合剤として用いる場合、通常は硫酸アルミニウム、ポリ塩化アルミニウムなどの定着剤で凝集させる。この際に、凝集の効率が良好ではなく、抄造する際に排水中に樹脂結合剤が流出してしまう問題がある(環境への負荷が高い。)。
 (2)樹脂結合剤としてノボラック型フェノール樹脂を用いる場合、ノボラック樹脂とヘキサメチレンテトラミン等の硬化剤とを単に混合させたものが用いられる。しかしながら、これらは、単に混合されているだけのものであるため、抄造の際には、このヘキサメチレンテトラミン等の硬化剤が水に溶解して流失されやすく上記と同様に環境への負荷が高くなってしまう。また、硬化剤が流出してしまうため、抄造後に熱硬化させて得られる硬化物の強度が十分でない問題がある。
 (3)樹脂結合剤としてレゾール樹脂を用いる場合、レゾール樹脂には、通常遊離ホルムアルデヒド0.05~0.3%、遊離フェノール5~10%程度含まれている。その為に、抄造の際にこれらの遊離モノマーが水と共に流失されやすく上記と同様に環境への負荷が高くなってしまう。レゾール樹脂中の遊離モノマーを低減させたレゾール樹脂を用いることにより、環境への負荷を低くすることができるが、樹脂の流れ性が悪く、その結果、抄造後に熱硬化させて得られる硬化物の強度が十分でない問題がある。
 上記の問題を解決する為に、例えば、樹脂結合剤としてフェノール系樹脂粉末とエポキシ樹脂粉末とを含む樹脂組成物を用いることが開示されている(例えば、特許文献1参照。)。しかしながら、前記特許文献1に開示された樹脂組成物を含む分散体を用いても、環境への負荷を低減するには不十分である。また、当該樹脂組成物は、繊維を結合させる結合剤としての役割も不十分で、その結果、得られる物品(抄造物)の耐熱性、強度についても不十分であった。
特開平11-217793号公報
 本発明が解決しようとする課題は、抄造後の排水に樹脂粒子の残存量が少なく環境への負荷が少ない樹脂微粒子分散体で、しかも、耐熱性に優れ、機械的強度も強い抄造物が得られる分散体を提供することにある。また、本発明は、耐熱性に優れ、機械的強度も強い抄造物、好ましくは、摩擦板を提供することにある。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、樹脂微粒子分散体中にイオン性のポリアクリルアミドを含有させることにより、排水中への遊離モノマーや樹脂結合剤の流出が少なくなること、樹脂結合剤の流出が少なくなることから分散体の単位量当たり製造できる抄造物の量が増えること(歩留りが向上する。)、得られる抄造物が耐熱性と機械的強度に優れること、得られる抄造物は自動車等の自動変速機(Automatic Transmission、単に「AT」とも略する。)や、オートバイ等の変速機に単数または複数用いられる摩擦板として特に好適に使用できること等を見出し、本発明を完成するに至った。
 即ち、本発明は、樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水を必須の成分として含有することを特徴とする樹脂微粒子分散体を提供するものである。
 更に、本発明は、前記樹脂微粒子分散体を用いてなる抄造物を提供するものである。
 更に、本発明は、前記樹脂微粒子分散体を用いてなる摩擦板を提供するものである。
 本発明の樹脂微粒子分散体を用いる事により、環境の負荷を少なくしつつ、且つ、歩留りも高く抄造物を得ることが出来る。この抄造物は、特に摩擦板として好適に使用できる。
 本発明の樹脂微粒子分散体は、樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水を必須の成分として含有することを特徴とする。
 前記樹脂微粒子(A)を構成する樹脂の種類は特に限定されるものではないが、フェノール樹脂を必須の成分とする樹脂組成物を用いてなる微粒子であることが好ましい。該フェノール樹脂は、ノボラック型フェノール樹脂(N)とレゾール型フェノール樹脂(R)とに大別できるが、本発明ではどちらを用いても良く、また、両者を併用しても良い。
 これらフェノール樹脂の数平均分子量(Mn)は、イオン性ポリアクリルアミド(C)との親和性、及び、水に対する分散性に優れる樹脂粒子(A)となることから、300~2,000の範囲であることが好ましい。
 なお、本発明において数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)を用いて、下記の測定条件で測定したものである。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:東ソー株式会社製「TSKgel 4000HXL」(7.8mmI.D.×300mm)+東ソー株式会社製「TSKgel 3000HXL」(7.8mmI.D.×300mm)+東ソー株式会社製「TSKgel 2000HXL」(7.8mmI.D.×300mm)東ソー株式会社製「TSKgel 1000HXL」(7.8mmI.D.×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)、
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」、
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1mL
 標準試料:下記単分散ポリスチレンとフェノールモノマーを使用した。
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 前記ノボラック型フェノール樹脂(N)は、例えば、フェノール性水酸基含有化合物とアルデヒド化合物とを酸触媒の存在下で反応させて得られるものが挙げられる。
 前記フェノール性水酸基含有化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、オクチルフェノール、フェニルフェノール、アミノフェノール、ナフトール、ビスフェノール、ビフェノール、レゾルシン、カテコール、及びこれらの化合物中の水素原子の一部乃至全部がハロゲンで置換された化合物等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。これらの中でも、フェノール、クレゾール、キシレノールが好ましい。
 前記アルデヒド化合物は、例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ナフトアルデヒド及びこれらの化合物中の水素原子の一部乃至全部がハロゲンで置換された化合物等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。
 前記酸触媒は、例えば、塩酸、硫酸、燐酸、ホウ酸などの無機酸類;蓚酸、酢酸、パラトルエンスルホン酸等の有機酸類等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。
 前記ノボラック型フェノール樹脂(N)の製造条件は、例えば、50~100℃で1~7時間程度反応させる方法が挙げられる。
 前記フェノール性水酸基含有化合物とアルデヒド化合物との反応モル比〔アルデヒド化合物/フェノール性水酸基含有化合物〕は、0.5~2.0の範囲であることが好ましく、0.6~1.8の範囲であることがより好ましく、0.7~1.6の範囲であることが特に好ましい。
 前記レゾール型フェノール樹脂(R)は、フェノール性水酸基含有化合物とアルデヒド化合物とを塩基性触媒の存在下で反応させて得られるレゾール型フェノール樹脂(R1)や、ノボラック型フェノール樹脂とアルデヒド化合物とを塩基性触媒の存在下で反応させて得られるレゾール型フェノール樹脂(R2)等が挙げられる。
 前記レゾール型フェノール樹脂(R)の製造で用いるフェノール性水酸基含有化合物やアルデヒド化合物は、ノボラック型フェノール樹脂(N)の製造で用いるものと同様のものが挙げられる。
 前記ノボラック型フェノール樹脂は、前記フェノール性水酸基含有化合物と前記アルデヒド化合物とを前述のノボラック型フェノール樹脂(N)同様の方法で反応させて得られるものが挙げられる。ノボラック型フェノール樹脂は一種類を単独で使用しても良いし、2種以上を併用しても良い。
 前記塩基性触媒は、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、アンモニア、トリエチルアミン、テトラエチレンジアミン、N-エチルピペラジン等のアミン類が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。
 前記レゾール型フェノール樹脂(R)の製造条件は、例えば、50~100℃で1~7時間程度反応させる方法が挙げられる。
 前記レゾール型フェノール樹脂(R1)について、フェノール性水酸基含有化合物とアルデヒド化合物との反応モル比〔アルデヒド化合物/フェノール性水酸基含有化合物〕は、0.6~3.0の範囲であることが好ましく、0.7~2.5の範囲であることがより好ましく、0.8~2.0の範囲であることが特に好ましい。
 前記レゾール型フェノール樹脂(R2)について、ノボラック型フェノール樹脂とアルデヒド化合物との反応比率は、得られるレゾール型フェノール樹脂(R)の数平均分子量(Mn)が300~2,000の範囲となるように調節することが好ましい。
 前記樹脂微粒子(A)を構成する樹脂組成物は、前記フェノール樹脂以外のその他の化合物を含有していても良い。その他の化合物は、例えば、エポキシ樹脂や、アミン化合物、ポリエステル樹脂、ポリアミド樹脂、アミノ樹脂、アクリル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、機械強度に優れる抄造物が得られることから、エポキシ樹脂又はアミン化合物が好ましい。前記樹脂組成物がエポキシ樹脂を含有する場合には、樹脂組成物中の前記フェノール樹脂の割合は10~80質量%の範囲であることが好ましく、25~60質量%の範囲であることが好ましい。また、前記樹脂組成物がアミン化合物を含有する場合には、樹脂組成物中の前記フェノール樹脂の割合は50~98質量%の範囲であることが好ましい。
 前記樹脂組成物を用いて樹脂微粒子(A)を得る方法は特に限定されず、機械的・物理的手段で粒子化する方法等が挙げられる。
 本発明で用いる繊維材料(B)は、例えば、例えば、木材パルプ、リンターパルプ、麻、木綿、芳香族ポリアミド繊維、ナイロン、ポリエステル、レーヨン、フェノール繊維、アラミド繊維、炭素繊維、ノボロイド繊維、炭化ケイ素等の有機繊維;ガラス繊維、ロックウール、スラグウール、シリケート繊維、シリカ繊維、アルミナ繊維、アルミナ-シリカ繊維、チタン酸カリウム繊維、カーボン繊維、窒化ケイ素等の無機繊維;スチール繊維、ステンレス繊維、ステンレススチール繊維、銅繊維、黄銅繊維、真鍮繊維等の金属繊維等が挙げられる。これらは樹脂微粒子分散体の用途に応じて適宜選択することができ、それぞれ単独で使用しても良いし、2種以上を併用しても良い。中でも、耐熱性が高い無機繊維、特にはガラス繊維が好ましく、有機繊維であっても木材パルプやアラミド繊維は優れた高温特性を有することから、抄紙タイプの摩擦材として使用するのに好ましい。
 本発明ではイオン性ポリアクリルアミド(C)を用いる事により、樹脂微粒子(A)、繊維材料(B)、及び、必要に応じて含有させる充填剤を凝集させ、均一に定着させる事が可能になる。これにより、排水に流出する樹脂分が少なくなり、排水負荷を低減できる。そして、抄造の際に前記樹脂微粒子(A)を均一に定着する事が出来るようになることから耐熱性、強度に優れる抄造物を得ることが可能となる。
 本発明で用いるイオン性ポリアクリルアミド(C)は、分子構造中にカチオン性基、アニオン性基、又はこれらの両方を有するポリアクリルアミドであり、例えば、アクリルアミドと、イオン性基を有する重合性モノマーとを必須の原料とする重合体等が挙げられる。
 前記イオン性基を有する重合性モノマーは、カチオン性基を有する重合性モノマーと、アニオン性基を有する重合性モノマーとに大別できる。前記カチオン性基を有する重合性モノマーは、例えば、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドと塩化メチルとの4級塩、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートと塩化メチルとの4級塩等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。中でも、入手が容易であることから、ジメチルアミノプロピル(メタ)アクリルアミド、又は、ジメチルアミノプロピル(メタ)アクリルアミドと塩化メチルとの4級塩が好ましい。
 前記アニオン性基を有する重合性モノマーは、例えば、(メタ)アクリル酸、[(メタ)アクリロイルオキシ]酢酸、(メタ)アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピル、コハク酸1-[2-(アクリロイルオキシ)エチル]、フタル酸-1-(2-アクリロイルオキシエチル)、ヘキサヒドロフタル酸水素2-(アクリロイルオキシ)エチル、(無水)マレイン酸、フマル酸、シトラコン酸、イタコン酸等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種以上を併用しても良い。中でも、入手が容易であることから、(メタ)アクリル酸又はイタコン酸が好ましい。
 前記イオン性ポリアクリルアミド(C)は、アクリルアミドと前記イオン性基を有する重合性モノマーに加え、その他の重合性モノマーを原料として用いても良い。前記その他の重合性モノマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等のシクロ環含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ジヒドロキシプロピルアクリレート等の水酸基含有(メタ)アクリレート;2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のグリシジル基含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 前記イオン性ポリアクリルアミド(C)は、その原料中の50モル%以上がアクリルアミド又はイオン性基を有する重合性モノマーであることが好ましく、80モル%以上がアクリルアミド又はイオン性基を有する重合性モノマーであることが好ましい。
 前記イオン性ポリアクリルアミド(C)は、例えば、アクリルアミドや前記イオン性基を有する重合性モノマーを仕込んだ5~30質量%程度の水溶液に、イソプロピルアルコール、アリルアルコール、ジ亜リン酸ナトリウム、アリルスルホン酸ナトリウム等の連鎖移動剤を適宜使用し、重合開始pHが3~6の条件下において過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムやこれらの過硫酸塩等の重合開始剤と亜硫酸水素ナトリウム等の還元剤を加えて、35~95℃で、1~10時間加熱する方法により製造することができる。
 前記イオン性ポリアクリルアミド(C)は、分構造中のイオン性基の種類により、次の3種類に大別することができる。
1.イオン性基としてカチオン性基とアニオン性基との両方を有する両イオン性ポリアクリルアミド(C1)
2.イオン性基としてカチオン性基のみを有するカチオン性ポリアクリルアミド(C2)
3.イオン性基としてカチオン性基のみを有するアニオン性ポリアクリルアミド(C3)
 前記両イオン性ポリアクリルアミド(C1)は、分子構造中にカチオン性基とアニオン性基との両方を有するものであればよく、例えば、アクリルアミド、カチオン性基を有する重合性モノマー、アニオン性基を有する重合性モノマー、及び必要に応じてその他の重合性モノマーからなる重合体が挙げられる。中でも、前記両イオン性ポリアクリルアミド(C1)の反応原料中、前記アニオン性基を有する重合性モノマーと前記カチオン性基を有する重合性モノマーとを合計で1.1~32モル%の範囲で用いることが好ましい。また、アニオン性基を有する重合性モノマーと前記カチオン性基を有する重合性モノマーとのモル比[(アニオン性基を有する重合性モノマー)/(前記カチオン性基を有する重合性モノマー)]が10/90~80/20となる割合であることが好ましく、20/80~60/40となる割合であることがより好ましい。
 前記カチオン性ポリアクリルアミド(C2)は、分子構造中にカチオン性基を有するものであればよく、例えば、アクリルアミド、カチオン性基を有する重合性モノマー、及び必要に応じてその他の重合性モノマーからなる重合体が挙げられる。中でも、前記カチオン性ポリアクリルアミド(C2)の反応原料中、前記カチオン性基を有する重合性モノマーを1~30モル%の範囲で用いることが好ましく、5~25モル%の範囲で用いることが好ましい。
 前記アニオン性ポリアクリルアミド(C3)は、分子構造中にアニオン性基を有するものであればよく、例えば、アクリルアミド、アニオン性基を有する重合性モノマー、及び必要に応じてその他の重合性モノマーからなる重合体が挙げられる。中でも、前記アニオン性ポリアクリルアミド(C3)の反応原料中、前記アニオン性基を有する重合性モノマーを1~30モル%の範囲で用いることが好ましく、5~25モル%の範囲で用いることが好ましい。
 前記イオン性ポリアクリルアミド(C)は、一種類を単独で用いても良いし、2種類以上を併用しても良い。
 前記イオン性ポリアクリルアミド(C)は、耐熱性、強度に優れる抄造物が得られることから、イオン化度が-5~5meq/gの範囲であることが好ましい。より具体的には、イオン性ポリアクリルアミド(C)が前記両イオン性ポリアクリルアミド(C1)である場合にはイオン化度が-4~4meq/gの範囲であることが好ましく、-3~3meq/gの範囲であることがより好ましい。イオン性ポリアクリルアミド(C)が前記カチオン性ポリアクリルアミド(C2)である場合にはイオン化度が0.01~10meq/gの範囲であることが好ましく、0.1~8meq/gの範囲であることがより好ましい。イオン性ポリアクリルアミド(C)が前記アニオン性ポリアクリルアミド(C3)である場合にはイオン化度が-10~-0.01meq/gの範囲であることが好ましく、-8~-0.1meq/gの範囲であることがより好ましい。
 本発明において、前記イオン性ポリアクリルアミド(C)のイオン化度は下記の方法により測定する。
1.イオン性ポリアクリルアミド(C)を水に希釈し、イオン性ポリアクリルアミド(C)を0.005質量%含む水溶液を調整する。
2.該水溶液が酸性の場合は0.1モル/Lの水酸化ナトリウムを用いて水溶液のpHを7.0に調整し、この水溶液がアルカリ性の場合は0.5質量%の硫酸水溶液を用いて水溶液のpHを7.0に調整する。
 イオン性ポリアクリルアミド(C)が前記両イオン性ポリアクリルアミド(C1)であり、pHを7.0に調整した際にアニオン性を示すポリアクリルアミドである場合、pHを7.0に調整した水溶液の流動電位がゼロになるまでポリ塩化ジアリルジメチルアンモニウムクロライド(以下「p-DADMAC」と略記する)を添加し、p-DADMACの添加量に基づきイオン化度を測定する。
 イオン性ポリアクリルアミド(C)が前記両イオン性ポリアクリルアミド(C1)であり、pHを7.0に調整した際にカチオン性を示すポリアクリルアミドである場合、pHを7.0に調整した水溶液の流動電位がゼロになるまでポリビニル硫酸カリウム(以下「PVSK」と略記する)を添加し、PVSKの添加量に基づきイオン化度を測定する。
 イオン性ポリアクリルアミド(C)が前記カチオン性ポリアクリルアミド(C2)である場合、pHを7.0に調整した水溶液の流動電位がゼロになるまでPVSKを添加し、PVSKの添加量に基づきイオン化度を測定する。
 イオン性ポリアクリルアミド(C)が前記アニオン性ポリアクリルアミド(C3)である場合、pHを7.0に調整した水溶液の流動電位がゼロになるまでp-DADMACを添加し、p-DADMACの添加量に基づきイオン化度を測定する。
 尚、前記流動電位は、Mutek社製流動電位計(PCD)を用いて測定する。
 前記イオン性ポリアクリルアミド(C)は、抄造後の排水に樹脂粒子(A)の残存量が少なく、環境への負荷が少ないフ樹脂微粒子分散体が得られ、且つ、耐熱性に優れ、機械的強度も強い抄造物が得られることから、10質量%水溶液とした場合の粘度が300~100,000cps(25℃、ブルック・フィールド粘度)の範囲であることが好ましく、800~20,000cpsのものがより好ましい。
 前記イオン性ポリアクリルアミド(C)は、市販品を使用する事もできる。前記両イオン性ポリアクリルアミド(C1)としては、例えば、ハリマ化成(株)製の「ハーマイドEX-200」、「ハーマイドEX-300」等が挙げられる。前記カチオン性ポリアクリルアミド(C2)としては、例えば、荒川化学(株)製「ポリストロン705」、「アラフィックス100」、「アラフィックス255」、ハリマ化成(株)「ハリフィックスU-570」等が挙げられる。前記アニオン性ポリアクリルアミド(C3)としては、例えば、荒川化学(株)製「ポリストロン117」、ハリマ化成(株)「ハーマイドC-10」、「ハーマイドB-15」等が挙げられる。
 樹脂微粒子分散体における前記イオン性ポリアクリルアミド(C)の配合量は、機械的強度の高い抄造物が得られることから、繊維材料(B)100質量部に対して0.001~2.0質量部の範囲であることが好ましく、0.01~1.5質量部の範囲であることがより好ましい。
 更に好ましくは、下記式で求められるイオン性パラメーターが-0.45~0.35meq/gの範囲となるようにイオン性ポリアクリルアミド(C)を配合することが好ましく、-0.42~0.33meq/gの範囲となるようにイオン性ポリアクリルアミド(C)を配合することがより好ましい。
 イオン性パラメーター(meq/g)=Σ〔イオン性ポリアクリルアミド(C)のイオン化度(meq/g)×繊維材料(B)に対するイオン性ポリアクリルアミド(C)の配合比率(質量%)〕
 本発明の樹脂微粒子分散体は、樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水の他、硬化剤(D)を含有していても良い。前記樹脂微粒子(A)がノボラック型フェノール樹脂(N)を含有する樹脂組成物からなる場合には、前記硬化剤(D)として、例えば、ヘキサメチレンテトラミン等のアミン化合物;パラホルムアルデヒド、1,3,5-トリオキサン等のアルデヒド化合物;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂等のエポキシ樹脂、レゾール型フェノール樹脂等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。
 これらの中でも、ヘキサメチレンテトラミン、レゾール型フェノール樹脂およびエポキシ樹脂からなる群から選ばれる一種以上のものが、耐熱性、機械的強度に優れる抄造物が得られ、また、入手しやすいことから好ましい。
 前記硬化剤(D)の配合量は、樹脂微粒子(A)100質量部に対して、3~20質量部の範囲であることが好ましく、5~15質量部の範囲であることがより好ましい。
 本発明の樹脂微粒子分散体中の各成分の配合割合について、前記樹脂微粒子(A)がノボラック型フェノール樹脂(N)を含有する樹脂組成物からなる場合には、樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)、硬化剤(D)、及び水の配合割合が、樹脂微粒子(A)0.1~50質量%、繊維材料(B)0.5~80質量%、イオン性ポリアクリルアミド(C)0.001~1質量%、硬化剤(D)0.1~75質量%、水50~99質量%の範囲であることが、分散が良好な分散体となり、歩留まり率が高く、環境への負荷が少なく、更に機械的強度に優れる抄造物が得られる事から好ましく、樹脂微粒子(A)0.2~40質量%、繊維材料(B)1~70質量%、イオン性ポリアクリルアミド(C)0.002~0.9質量%、硬化剤(D)0.2~70質量%、水60~98質量%の範囲であることがより好ましい。
 前記樹脂微粒子(A)がレゾール型フェノール樹脂(R)を含有する樹脂組成物からなる場合には、樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)、及び水の配合割合が、樹脂微粒子(A)0.1~50質量%、繊維材料(B)0.5~80質量%、イオン性ポリアクリルアミド(C)0.001~1質量%、水50~99質量%の範囲であることが、分散が良好な分散体となり、歩留まり率が高く、環境への負荷が少なく、更に機械的強度に優れる抄造物が得られる事から好ましく、樹脂微粒子(A)0.2~40質量%、繊維材料(B)1~70質量%、イオン性ポリアクリルアミド(C)0.002~0.9質量%、硬化剤(D)60~98質量%の範囲であることがより好ましい。
 本発明の抄造物は、本発明の樹脂微粒子分散体を用いて抄造して得られることを特徴とする。具体的には、本発明の樹脂微粒子分散体を常法に従ってシート化し、このシートを加熱、加圧することによりペーパー上の抄造物を得ることができる。
 本発明の樹脂微粒子分散体は上記の通り、抄造物を得るための分散体として好適に用いることができる。この抄造物は、例えば、従来、繊維材料に樹脂溶液を含侵する方法(含侵法)にて製造されていた材の代わりに使用する事ができる。具体的には、湿式摩擦材等の摩擦板、ハーフボード、セミハーフボード、エアーフィルター等が挙げられる。
 本発明の樹脂微粒子分散体を用いて摩擦板を得る場合、必要に応じて摩擦調整剤を加えても良い。摩擦調整剤としては、例えば、ウオラストナイト、珪藻土、シリカ、硫酸バリウム、炭酸カルシウム、酸化珪素などの無機物やカシューダスト、グラファイト等が挙げられる。これらの摩擦調整剤は2種以上混合使用しても良い。尚、繊維材料(B)と摩擦調整剤の比率は繊維材料(B)100質量部に対して、1~60質量部が好ましい。
 また、硬化剤(D)としてエポキシ樹脂を用いる場合、本発明の樹脂微粒子分散体にはエポキシ樹脂の硬化を促進するため、硬化促進剤を含有させることもできる。硬化促進剤としては、エポキシ基の開環触媒として使用されている汎用のものが使用できる。例えば、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類やTPP(トリフェニルフォスフィン)で代表されるリン系化合物等である。この硬化促進剤が液状である場合は、予めノボラック型フェノール樹脂(N)に熱溶融混合により内添しておくのが好ましい。この硬化促進剤の量は使用するエポキシ樹脂に対して、0.05~3質量%であり、好ましくは0.1~1.0質量%である。
 以下に実施例を挙げて本発明を説明する。例中の%はすべて質量基準とする。
 合成例1〔ノボラック型フェノール樹脂(N-1)の合成〕
 攪拌機、温度計、冷却管をセットした500mlの4ツ口フラスコにフェノール94.1g(1モル)、37%ホルムアルデヒド64.9g(0.8モル)、しゅう酸・2水和物0.56g(0.004モル)を仕込み、1時間かけて100℃まで昇温し、100℃で5時間反応させた。その後、180℃まで常圧脱水させた。さらに水蒸気を吹き込みながら180℃で減圧脱水を2時間実施し、取り出しを行い、数平均分子量(Mn)792のノボラック型フェノール樹脂(N-1)を得た。
 合成例2〔レゾール型フェノール樹脂(R-1)の合成〕
 攪拌機、温度計、冷却管をセットした500mlの4ツ口フラスコにフェノール94.1g(1モル)、37%ホルムアルデヒド101.5g(1.25モル)、25%アンモニア水20.5g(0.3モル)仕込み、1時間かけて80℃に昇温し、80℃で2時間反応させた。減圧脱水しながら95℃まで昇温後、取り出し、(Mn)330のレゾール型フェノール樹脂(R-1)を得た。
 合成例3〔レゾール型フェノール樹脂(R-2)の合成〕
 攪拌機、温度計、冷却管をセットした500mlの4ツ口フラスコにフェノール94.1g(1モル)、37%ホルムアルデヒド121.7g(1.5モル)、25%アンモニア水13.5g(0.3モル)仕込み、1時間かけて80℃に昇温し、80℃で2時間反応させた。減圧脱水しながら95℃まで昇温後、取り出し(Mn)407のレゾール型フェノール樹脂(R-2)を得た。
 調製例1〔樹脂微粒子(A-1)の調製〕
 ノボラック型フェノール樹脂(N-1)とレゾール型フェノール樹脂(R-2)とを、質量比で80:20となる割合で配合し、乳鉢で粉砕しながら混合し、ノボラック型フェノール樹脂(N-1)の微粒子とレゾール型フェノール樹脂(R-2)の微粒子とが混在する微粒子の混合物を得た。この混合物の200℃における不揮発分を測定すると96.2質量%であった。以下、この混合物を樹脂微粒子(A-1)と略記する。
 調製例2〔樹脂微粒子(A-2)の調製〕
 ノボラック型フェノール樹脂(N-1)とクレゾール型エポキシ樹脂であるEPICLON N-690(DIC株式会社製)とを、質量比で33:67となる割合で配合し、乳鉢で粉砕しながら混合し、ノボラック型フェノール樹脂(N-1)の微粒子とEPICLON N-690の微粒子とが混在する微粒子の混合物を得た。この混合物の200℃における不揮発分を測定すると98.3質量%であった。以下、この混合物を樹脂微粒子(A-2)と略記する。
 調製例3〔樹脂微粒子(A-3)の調製〕
 エアウォーター・ベルパール(株)のレゾール型フェノール樹脂の微粒子(ベルパールS899)をそのままレゾール型フェノール樹脂の樹脂微粒子として用いた。この微粒子の200℃における不揮発分を測定すると94.2質量%であった。以下、この微粒子を樹脂微粒子(A-3)と略記する。
 調製例4〔樹脂微粒子(A-4)の調製〕
 レゾール型フェノール樹脂(R-1)を乳鉢で粉砕しレゾール型フェノール樹脂(R-1)の微粒子を得た。この微粒子の200℃における不揮発分を測定すると89.2質量%であった。以下、この微粒子を樹脂微粒子(A-4)と略記する。
 調製例5〔樹脂微粒子(A-5)の調製〕
 ノボラック型フェノール樹脂(N-1)とヘキサメチレンテトラミンとを、質量比で94:6となる割合で配合し、乳鉢で粉砕しながら混合し、ノボラック型フェノール樹脂(N-1)の微粒子とヘキサメチレンテトラミンとが混在する微粒子の混合物を得た。この混合物の200℃における不揮発分を測定すると98.3質量%であった。以下、この混合物を樹脂微粒子(A-5)と略記する。
 合成例4〔イオン性ポリアクリルアミド(C-1)の合成〕
 攪拌機、温度計、冷却管、窒素導入管をセットした1000mlの4ツ口フラスコに水543.2g、イタコン酸4.16g、ジメチルアミノプロピルアクリルアミド7.49g、50%アクリルアミド水溶液138.05g、2%次亜燐酸ナトリウム水溶液16.82gを仕込み、次いで15%硫酸水溶液でpH4.0に調整した。窒素ガス導入下60℃に昇温し、5%過硫酸アンモニウム水溶液3.65g加え、重合反応を開始した。その後、75℃で1.5時間反応させ、5%過硫酸アンモニウム水溶液1.82g追加し、更に1.5時間反応させ、イオン性ポリアクリルアミド(C-1)の不揮発分10.2%の水溶液を得た。イオン性ポリアクリルアミド(C-1)のpH7におけるイオン化度は固形分換算で-0.5meq/gであった。イオン性ポリアクリルアミド(C-1)の10.2%水溶液粘度は20,000cpsであった。
 合成例5〔イオン性ポリアクリルアミド(C-2)の合成〕
 攪拌機、温度計、冷却管、窒素導入管をセットした1000mlの4ツ口フラスコに水543.2g、ジメチルアミノプロピルアクリルアミド28.12g、50%アクリルアミド水溶液116.57g、2%次亜燐酸ナトリウム水溶液16.82gを仕込み、次いで15%硫酸水溶液でpH4.0に調整した。窒素ガス導入下60℃に昇温し、5%過硫酸アンモニウム水溶液3.65g加え、重合反応を開始した。その後、75℃で1.5時間反応させ、5%過硫酸アンモニウム水溶液1.82g追加し、更に1.5時間反応させ、イオン性ポリアクリルアミド(C-2)の不揮発分10.2%の水溶液を得た。イオン性ポリアクリルアミド(C-2)のpH7におけるイオン化度は固形分換算で+2.0meq/gであった。イオン性ポリアクリルアミド(C-2)の10.2%水溶液粘度は45,000cpsであった。
 合成例6〔イオン性ポリアクリルアミド(C-3)の合成〕
 攪拌機、温度計、冷却管、窒素導入管をセットした1000mlの4ツ口フラスコに水543.2g、イタコン酸23.42g、50%アクリルアミド水溶液133.63g、2%次亜燐酸ナトリウム水溶液16.82gを仕込み、次いで15%硫酸水溶液でpH4.0に調整した。窒素ガス導入下60℃に昇温し、5%過硫酸アンモニウム水溶液3.65g加え、重合反応を開始した。その後、75℃で1.5時間反応させ、5%過硫酸アンモニウム水溶液1.82g追加し、更に1.5時間反応させ、イオン性ポリアクリルアミド(C-3)の不揮発分10.2%の水溶液を得た。イオン性ポリアクリルアミド(C-3)のpH7におけるイオン化度は固形分換算で-1.6meq/gであった。イオン性ポリアクリルアミド(C-3)の10.2%水溶液の粘度は15,000cpsであった。
 実施例1 樹脂微粒子分散体(1)の製造
 水1L(電導度:350μS/cm、pH7.5)にパルプ5.9g、アラミド繊維(東レ株式会社製トワロン1097)5.9g、珪藻土(東新化成株式会社製セライト281)5.2gを入れミキサーで1分間攪拌した。その後、樹脂微粒子(A-1)を7.59g添加し、更に1分間攪拌させた。その後、水2.4Lを追加し、イオン性ポリアクリルアミド(C-1)を繊維成分に対し固形分で0.2質量%、イオン性ポリアクリルアミド(C-2)を繊維成分に対し固形分で0.01質量%添加し、樹脂微粒子分散体(1)を得た。下記式で求められるイオン性パラメーターは-0.08meq/gであった。
 イオン性パラメーター(meq/g)=Σ〔イオン性ポリアクリルアミド(C)のイオン化度(meq/g)×繊維材料(B)に対するイオン性ポリアクリルアミド(C)の配合比率(質量%)〕
 こ樹脂微粒子分散体(1)を用いて、250×250mmの角型シートマシン(抄造機)により抄造し抄造物を得た。得られた抄造物をプレス脱水後、100℃で3分乾燥させた後、200℃×10分熱硬化させ、硬化された抄造物を得た。
 抄造する際の歩留まり率、環境への負荷の量、硬化された抄造物の強度を下記方法に従って評価した。評価結果を第2表に示す。
 <抄造する際の歩留まり率の評価方法>
 下記式に従い歩留まり率(%)を求めた。歩留まり率(%)が高い程、抄造後の排水に樹脂粒子の残存量が少なく環境への負荷が少ないと言える。
 歩留まり率(%)=〔(硬化後質量)÷(繊維成分質量と樹脂微粒子の固形分質量との合計)〕×100
 <環境への負荷の量>
 樹脂微粒子分散体を用いて抄造物を得た際に排出される排水に対する化学的酸素要求量(COD)と、該排水中のフェノール性水酸基含有化合物の含有量を測定した。CODが低い程、また、排水中のフェノール性水酸基含有化合物の含有量が少ない程、環境への負荷が少ないと言える。CODの測定はJIS K 0102  17法に従った。フェノール性水酸基含有化合物の含有量の定はJIS K 0102 28.1法に従った。
 <硬化された抄造物の強度の評価方法>
 抄造物の強度は、引張りせん断強度を測定する事により行った。具体的には、せん断強度は0.8mm×25mm×150mmの鋼板(JIS G 3141)をアセトン脱脂し、接着剤を塗布し後、15mm×25mmに切り出した硬化された抄造物をプレス接着し、引張りせん断強度測定用のサンプルを作成した。引張りせん断強度の測定は、荷重フルスケール5kN、試験速度1mm/minにより行った。
 実施例2~13及び比較例1~7
 第1表に記載の通りの配合量とした以外は、実施例1と同様にして硬化された抄造物を得た。実施例1と同様の評価を行い、その結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1. 樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水を必須の成分として含有することを特徴とする樹脂微粒子分散体。
  2. 前記樹脂微粒子(A)が、フェノール樹脂を必須の成分とする樹脂組成物を用いてなる微粒子である請求項1記載の樹脂微粒子分散体。
  3. イオン性ポリアクリルアミド(C)のイオン化度が-5~5meq/gの範囲である請求項1記載の樹脂微粒子分散体。
  4.  イオン性ポリアクリルアミド(C)の配合量が、繊維材料(B)100質量部に対して0.001~2.0質量部の範囲である請求項1記載の樹脂微粒子分散体。
  5. 下記式で求められるイオン性パラメーターが-0.45~0.35meq/gの範囲である請求項1記載の樹脂微粒子分散体。
     イオン性パラメーター(meq/g)=Σ〔イオン性ポリアクリルアミド(C)のイオン化度(meq/g)×繊維材料(B)に対するイオン性ポリアクリルアミド(C)の配合比率(質量%)〕
  6. 樹脂微粒子(A)、繊維材料(B)、イオン性ポリアクリルアミド(C)及び水の他、硬化剤(D)を含有する請求項1記載の樹脂微粒子分散体。
  7. 請求項1~6のいずれか1項記載の樹脂微粒子分散体を用いてなる抄造物。
  8. 請求項1~6のいずれか1項記載の樹脂微粒子分散体を用いてなる摩擦板。
PCT/JP2016/056216 2015-03-12 2016-03-01 樹脂微粒子分散体、抄造物及び摩擦板 WO2016143602A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680015364.4A CN107429486B (zh) 2015-03-12 2016-03-01 树脂微粒分散体、造纸物和摩擦板
EP16761572.3A EP3269876A4 (en) 2015-03-12 2016-03-01 Resin particle dispersion, sheet product, and friction plate
US15/555,688 US10358773B2 (en) 2015-03-12 2016-03-01 Resin particle dispersion, sheet product, and friction plate
JP2016565711A JP6124101B2 (ja) 2015-03-12 2016-03-01 摩擦板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-049470 2015-03-12
JP2015049470 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143602A1 true WO2016143602A1 (ja) 2016-09-15

Family

ID=56879141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056216 WO2016143602A1 (ja) 2015-03-12 2016-03-01 樹脂微粒子分散体、抄造物及び摩擦板

Country Status (6)

Country Link
US (1) US10358773B2 (ja)
EP (1) EP3269876A4 (ja)
JP (1) JP6124101B2 (ja)
CN (1) CN107429486B (ja)
TW (1) TWI707893B (ja)
WO (1) WO2016143602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200332162A1 (en) * 2017-12-18 2020-10-22 3M Innovative Properties Company Phenolic resin composition comprising polymerized ionic groups, abrasive articles and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159595A (ja) * 1986-12-22 1988-07-02 群栄化学工業株式会社 抄紙内添紙の製造方法
JPH026684A (ja) * 1988-03-28 1990-01-10 Allied Colloids Ltd パルプ脱水方法
JPH1046490A (ja) * 1996-07-25 1998-02-17 Mitsui Petrochem Ind Ltd 塗被紙用組成物
JPH11286900A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 繊維板用バインダー、繊維板およびその製造方法
US20040011102A1 (en) * 2002-07-17 2004-01-22 Sears Karl D. Lignocellulose fiber composite with soil conditioners
JP2004307815A (ja) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd 抄紙用レゾール型フェノール樹脂乳濁液及びその製造方法
JP2004332830A (ja) * 2003-05-08 2004-11-25 Dainatsukusu:Kk 高トルク容量湿式ペーパー摩擦材
JP2006070381A (ja) * 2004-09-01 2006-03-16 Fuji Photo Film Co Ltd 画像記録材料用支持体及び画像記録材料
JP2007254946A (ja) * 2006-02-27 2007-10-04 Nippon Paper Industries Co Ltd オフセット印刷用中性新聞用紙
JP2010236153A (ja) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd 印刷用紙の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045608A (en) * 1974-09-23 1977-08-30 Todd Robert A Friction facing with porous sheet base
US4101500A (en) 1976-10-26 1978-07-18 Monsanto Company Brake lining compositions having friction particles of an aromatic amine modified novolac resin and an aromatic carboxylic compound
CA1330290C (en) 1987-01-12 1994-06-21 David Graham Izard Method for manufacturing a mineral panel
JPH07305052A (ja) * 1994-03-17 1995-11-21 Osaka Gas Co Ltd 摩擦材の製造方法
CA2249621A1 (en) * 1996-04-08 1997-10-16 Karl T. Mckeague Patterned surface friction materials, clutch plate members and methods of making and using same
JP3959821B2 (ja) 1998-01-26 2007-08-15 大日本インキ化学工業株式会社 低排水負荷抄造法
JP3643018B2 (ja) * 1999-07-22 2005-04-27 アイシン化工株式会社 クラッチ用摩擦板の製造方法及び製造装置
JP2005233264A (ja) * 2004-02-18 2005-09-02 Tokai Carbon Co Ltd 湿式クラッチ
JP4970799B2 (ja) * 2006-01-26 2012-07-11 日本製紙株式会社 電子写真用転写紙
AU2007208685B2 (en) 2006-01-26 2010-03-04 Harima Chemicals, Inc. Paper containing preaggregated filler and process for producing the same
WO2010080154A1 (en) * 2009-01-09 2010-07-15 Borgwarner Inc. Friction material including a plurality of binder particles with friction modifying particles bound thereto
CN102002883B (zh) * 2010-09-20 2012-10-31 华南理工大学 一种湿式纸基摩擦材料及其制备方法和应用
WO2012040830A1 (en) 2010-10-01 2012-04-05 Fpinnovations Cellulose-reinforced high mineral content products and methods of making the same
US9447575B2 (en) * 2010-11-01 2016-09-20 Toyobo Co., Ltd. Polyamide resin composition, expanded polyamide resin molding, and automotive resin molding
US20150247289A1 (en) * 2012-10-02 2015-09-03 Sumitomo Bakelite Co., Ltd. Laminate and composite

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159595A (ja) * 1986-12-22 1988-07-02 群栄化学工業株式会社 抄紙内添紙の製造方法
JPH026684A (ja) * 1988-03-28 1990-01-10 Allied Colloids Ltd パルプ脱水方法
JPH1046490A (ja) * 1996-07-25 1998-02-17 Mitsui Petrochem Ind Ltd 塗被紙用組成物
JPH11286900A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 繊維板用バインダー、繊維板およびその製造方法
US20040011102A1 (en) * 2002-07-17 2004-01-22 Sears Karl D. Lignocellulose fiber composite with soil conditioners
JP2004307815A (ja) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd 抄紙用レゾール型フェノール樹脂乳濁液及びその製造方法
JP2004332830A (ja) * 2003-05-08 2004-11-25 Dainatsukusu:Kk 高トルク容量湿式ペーパー摩擦材
JP2006070381A (ja) * 2004-09-01 2006-03-16 Fuji Photo Film Co Ltd 画像記録材料用支持体及び画像記録材料
JP2007254946A (ja) * 2006-02-27 2007-10-04 Nippon Paper Industries Co Ltd オフセット印刷用中性新聞用紙
JP2010236153A (ja) * 2009-03-31 2010-10-21 Nippon Paper Industries Co Ltd 印刷用紙の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269876A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200332162A1 (en) * 2017-12-18 2020-10-22 3M Innovative Properties Company Phenolic resin composition comprising polymerized ionic groups, abrasive articles and methods

Also Published As

Publication number Publication date
JP6124101B2 (ja) 2017-05-10
TWI707893B (zh) 2020-10-21
CN107429486A (zh) 2017-12-01
US20180044857A1 (en) 2018-02-15
JPWO2016143602A1 (ja) 2017-04-27
EP3269876A4 (en) 2018-08-08
EP3269876A1 (en) 2018-01-17
TW201702291A (zh) 2017-01-16
US10358773B2 (en) 2019-07-23
CN107429486B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
JP6044820B2 (ja) 接着剤組成物及び湿式摩擦板
Pilato Phenolic resins: 100 Years and still going strong
JP2013209439A (ja) バイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂、バイオマス変性フェノール樹脂組成物及びバイオマス変性フェノール樹脂硬化物
US9862823B2 (en) Resin composition for wet friction material, phenolic resin for wet friction material and wet friction material
JP5831497B2 (ja) レゾール型フェノール樹脂の製造方法
JP6124101B2 (ja) 摩擦板
WO2011099259A1 (ja) フェノール樹脂組成物、その硬化物および摩擦材
CN116948615A (zh) 一种提高地层承压能力的环氧树脂堵漏材料及油基钻井液
JP5376238B2 (ja) フェノール樹脂の製造方法
JP5110823B2 (ja) 有機系摩擦調整材
JP5861927B2 (ja) 熱硬化性樹脂組成物及び摩擦材
JP4367323B2 (ja) 熱硬化性樹脂組成物
WO2018061584A1 (ja) 摩擦材用フェノール樹脂組成物および摩擦材
WO2022113549A1 (ja) フェノール樹脂組成物およびその製造方法
JP5716942B2 (ja) レゾール型フェノール樹脂の製造方法、レゾール型フェノール樹脂、及び摩擦材
JP2007246689A (ja) 摩擦材用フェノール樹脂組成物、及び摩擦材
JP2013170171A (ja) 熱硬化性樹脂組成物及び摩擦材
JP3959821B2 (ja) 低排水負荷抄造法
JP2006083318A (ja) フェノール樹脂組成物とその製造方法
JP2006193538A (ja) 摩擦材用フェノール樹脂組成物とその製造方法
JP2003073489A (ja) プリプレグ及び成形物
JPH0324499B2 (ja)
WO2022215554A1 (ja) 摩擦材用熱硬化性樹脂組成物および摩擦材
JP2005213399A (ja) 熱硬化性樹脂組成物及び摩擦材
JP2020083938A (ja) フェノール樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565711

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555688

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016761572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE