WO2016140256A1 - 蓄電装置用外装材、及びそれを用いた蓄電装置 - Google Patents

蓄電装置用外装材、及びそれを用いた蓄電装置 Download PDF

Info

Publication number
WO2016140256A1
WO2016140256A1 PCT/JP2016/056393 JP2016056393W WO2016140256A1 WO 2016140256 A1 WO2016140256 A1 WO 2016140256A1 JP 2016056393 W JP2016056393 W JP 2016056393W WO 2016140256 A1 WO2016140256 A1 WO 2016140256A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage device
base material
power storage
exterior material
Prior art date
Application number
PCT/JP2016/056393
Other languages
English (en)
French (fr)
Inventor
渉 伊集院
佐々木 聡
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015041274A external-priority patent/JP6819029B2/ja
Priority claimed from JP2015041271A external-priority patent/JP6596844B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP16758949.8A priority Critical patent/EP3267506B1/en
Priority to CN202210322936.0A priority patent/CN114696014A/zh
Priority to KR1020177026073A priority patent/KR102662941B1/ko
Priority to CN201680012536.2A priority patent/CN107408642A/zh
Publication of WO2016140256A1 publication Critical patent/WO2016140256A1/ja
Priority to US15/690,576 priority patent/US10693111B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an exterior material for a power storage device and a power storage device using the same.
  • the battery contents (positive electrode, separator, negative electrode, electrolyte, etc.) are covered with an exterior material including an aluminum foil layer in order to prevent moisture from entering the interior. It has been adopted.
  • a lithium ion battery employing such a configuration is called an aluminum laminate type lithium ion battery.
  • An aluminum laminate type lithium ion battery forms a recess in a part of the exterior material by cold molding, accommodates the battery contents in the recess, folds the remaining part of the exterior material, and heats the edge portion.
  • An embossed type lithium ion battery sealed with a seal is known. (For example, refer to Patent Document 1).
  • the deeper the recess formed by cold forming the more battery contents can be accommodated, so the energy density can be increased.
  • the adhesive layer and the metal foil layer may break. Therefore, the exterior material is required to improve deep drawability.
  • the exterior material manufacturing process may require a laminating process for laminating a plurality of layers and an adhesive drying process for bonding the layers.
  • the base material layer may undergo heat shrinkage due to heating during lamination or drying, and adhesion between the base material layer and the metal foil layer may be reduced. The decrease in adhesion between the base material layer and the metal foil layer due to heat is likely to occur not only in a high temperature environment during lamination or drying, but also in a warm water or a high temperature and high humidity environment.
  • the electrolyte in the battery may leak out.
  • the leaked electrolyte may adhere to the surrounding batteries, or the surrounding batteries may be exposed to the electrolyte atmosphere by the leaked electrolyte, which may corrode the metal foil layer. .
  • the adhesion between the base material layer and the metal foil layer may be reduced.
  • the exterior material when storing the exterior material for a long period of time, due to the decrease in the adhesion between the base material layer and the metal foil layer as described above, there is no separation between the base material layer and the metal foil layer. May occur. For this reason, the exterior material can be peeled off between the base material layer and the metal foil layer for a long time even when exposed to heat (high temperature, warm water and high temperature and high humidity) and / or an electrolyte solution. There is a need for excellent adhesion that can be controlled over a wide range.
  • This invention is made
  • the present invention provides an exterior material for a power storage device having a structure in which at least a base material layer, an adhesive layer, a metal foil layer, a sealant adhesive layer, and a sealant layer are laminated in this order.
  • the base material layer is a layer made of a polyamide film having a 95 ° C. hot water shrinkage of less than 5% and a 180 ° C. hot shrinkage of 4 to 16%, or a 95 ° C. hot water shrinkage of 5%.
  • an exterior material for a power storage device which is a layer made of a polyester film having a hot shrinkage rate of 10 to 25%.
  • a deep drawing is provided by including a base material layer made of a polyamide film or a polyester film in which both 95 ° C. hot water shrinkage and 180 ° C. hot shrinkage are within the specific range. While improving the moldability, the adhesion between the base material layer and the metal foil layer can be maintained during the production and use of the battery. Therefore, according to the exterior material for a power storage device, the molding depth can be improved without causing breakage of the adhesive layer and the metal foil layer, and the heat (high temperature, warm water and high temperature and high humidity) and / or the electrolytic solution can be used. Even if it is a case where it exposes, it can suppress over a long period that peeling arises between a base material layer and a metal foil layer.
  • the power storage device exterior material further includes an easy adhesion treatment layer provided between the base material layer and the adhesive layer.
  • an easy adhesion treatment layer provided between the base material layer and the adhesive layer.
  • the easy adhesion treatment layer may be a layer containing at least one resin selected from the group consisting of a polyester resin, an acrylic resin, a polyurethane resin, an epoxy resin, and an acrylic graft polyester resin. preferable. Thereby, while being able to improve the adhesiveness between a base material layer and a contact bonding layer, deep drawing moldability can be improved more.
  • the power storage device exterior material further includes a corrosion prevention treatment layer provided on both surfaces of the metal foil layer.
  • a corrosion prevention treatment layer provided on both surfaces of the metal foil layer.
  • the corrosion prevention treatment layer preferably contains a rare earth element oxide and phosphoric acid or phosphate. Thereby, the adhesiveness between a base material layer and a metal foil layer can be improved more.
  • the rare earth element oxide is preferably cerium oxide. Thereby, the adhesiveness between a base material layer and a metal foil layer can be improved more.
  • the present invention also includes a battery element including an electrode, a lead extending from the electrode, and a container for housing the battery element.
  • the container includes the outer packaging material for a power storage device of the present invention, and the sealant layer includes Provided is a power storage device which is formed to be inside.
  • a power storage device since the power storage device exterior material of the present invention is used as a container for accommodating battery elements, a deep recess can be formed in the container without causing breakage or the like.
  • the power storage device can suppress the separation between the base material layer and the metal foil layer over a long period of time even when the exterior material is exposed to heat and / or an electrolytic solution.
  • an exterior material for a power storage device that can maintain the adhesion between the base material layer and the metal foil layer during the manufacture and use of the battery while improving the deep drawability, and the same A power storage device using can be provided.
  • FIG. 1 It is a schematic sectional drawing of the exterior material for electrical storage apparatuses which concerns on one Embodiment of this invention. It is a figure which shows the embossing type exterior material obtained using the exterior material for electrical storage devices which concerns on one Embodiment of this invention, (a) is the perspective view, (b) is the embossing shown to (a). It is a longitudinal cross-sectional view along the bb line of the type exterior material.
  • FIG. 1 It is a perspective view which shows the process of manufacturing a secondary battery using the exterior material for electrical storage devices which concerns on one Embodiment of this invention, (a) shows the state which prepared the exterior material for electrical storage devices, (b) Is a state in which an exterior material for a power storage device processed into an embossed type and a battery element are prepared, and (c) is a state in which a part of the exterior material for a power storage device is folded and an end is melted. ) Shows a state where both sides of the folded portion are folded upward.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of an exterior material for a power storage device of the present invention.
  • an exterior material (exterior material for a power storage device) 10 of this embodiment includes a base material layer 11, an easy adhesion treatment layer 12 provided on one surface side of the base material layer 11, An adhesive layer 13 provided on the side opposite to the base material layer 11 of the easy adhesion treatment layer 12 and a corrosion prevention treatment layer 15a on both sides provided on the opposite side of the easy adhesion treatment layer 12 of the adhesive layer 13 , 15b, a sealant adhesive layer 16 provided on the opposite side of the adhesive layer 13 of the metal foil layer 14, and a metal foil layer 14 provided on the opposite side of the sealant adhesive layer 16.
  • the sealant layer 17 is sequentially laminated.
  • the corrosion prevention treatment layer 15a is provided on the surface of the metal foil layer 14 on the adhesive layer 13 side
  • the corrosion prevention treatment layer 15b is provided on the surface of the metal foil layer 14 on the sealant adhesion layer 16 side.
  • the base material layer 11 is the outermost layer and the sealant layer 17 is the innermost layer. That is, the exterior material 10 is used with the base material layer 11 facing the outside of the power storage device and the sealant layer 17 facing the inside of the power storage device.
  • each layer will be described.
  • the base material layer 11 provides the exterior material 10 with heat resistance in a pressurization heat fusion process, which will be described later in manufacturing the power storage device, and resistance to the electrolyte solution leaked from the other power storage device. This is a layer for suppressing the generation of pinholes that may occur during distribution.
  • the substrate layer 11 is a layer made of a polyamide film having a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage ratio of 4 to 16%, or a 95 ° C. hot water shrinkage ratio of 5%. %, And a layer formed of a polyester film having a hot shrinkage of 10 to 25% at 180 ° C.
  • the 95 ° C. hot water shrinkage is a value measured by the following method. That is, the 95 ° C. hot water shrinkage ratio is determined by immersing a test piece obtained by cutting the base material layer 11 into a size of 10 cm in length ⁇ 10 cm in width in 95 ° C. hot water for 30 minutes. The dimensional change rate before and after immersion in two orthogonal directions is calculated based on the following formula (I) and is calculated as an average value of the dimensional change rates in the two directions.
  • the vertical direction and the horizontal direction of a test piece shall be made to correspond with MD direction (machine feed direction) and TD direction (perpendicular direction of MD direction) of a base material layer original fabric, respectively. That is, when the base material layer 11 consists of a biaxially stretched film, the vertical direction and the horizontal direction of a test piece correspond to either one of the two extending directions of a film, respectively.
  • the 180 ° C. hot shrinkage rate is obtained by heating a test piece obtained by cutting the base material layer 11 to a size of 10 cm in length ⁇ 10 cm in width in an oven at 180 ° C. for 30 minutes.
  • the dimensional change rate before and after heating in two directions) is calculated based on the following formula (I), and is calculated as an average value of the dimensional change rates in the two directions.
  • the vertical direction and horizontal direction of a test piece are the same as that of the case of 95 degreeC hot-water shrinkage.
  • Dimensional change rate (%) ⁇ (XY) / X ⁇ ⁇ 100 (I) [X: dimensions before immersion in hot water or before heat treatment in oven, Y: dimensions after immersion in hot water or after heat treatment in oven]
  • base material layer 11 made of a polyamide film having a 95 ° C. hot water shrinkage rate of less than 5% and a 180 ° C. hot shrinkage rate of 4 to 16% is referred to as “base material layer 11a”, and the 95 ° C. hot water shrinkage rate.
  • base material layer 11b The base material layer 11 made of a polyester film having a thickness of less than 5% and a 180 ° C. hot shrinkage of 10 to 25% is referred to as “base material layer 11b” and will be described.
  • the 95 degreeC hot-water shrinkage rate of the polyamide film which comprises base material layer 11a is less than 5%, when exposed to heat and / or electrolyte solution, base material layer 11a and metal foil Generation of peeling between the layer 14 can be suppressed over a long period of time. Moreover, since it can suppress that peeling arises between the base material layer 11a and the metal foil layer 14 over a long period of time, it is preferable that the 95 degreeC hot-water shrinkage rate of a polyamide film is 4% or less. From the same viewpoint, the polyamide film preferably has a 95 ° C. hot water shrinkage of 0% or more.
  • the 180 degreeC hot shrinkage rate of the polyamide film which comprises the base material layer 11a is 4% or more, deep drawing moldability can be improved, and the adhesive layer 13 and metal foil layer The molding depth capable of deep drawing can be improved without causing 14 breakage.
  • the 180 degreeC hot contraction rate of a polyamide film is 5% or more from a viewpoint of improving deep drawing moldability more.
  • the 180 ° C. hot shrinkage of the polyamide film constituting the base material layer 11a in the exterior material 10 is 16% or less, when exposed to heat and / or an electrolytic solution, It is possible to suppress the occurrence of peeling with the metal foil layer 14 over a long period of time. Moreover, it is possible to prevent heat wrinkles from being generated due to heat shrinkage caused by heat applied during manufacturing.
  • the base material layer 11a is preferably a layer made of a biaxially stretched polyamide film from the viewpoint of obtaining better deep drawability.
  • polyamide resin constituting the biaxially stretched polyamide film examples include nylon 6, nylon 6,6, a copolymer of nylon 6 and nylon 6,6, nylon 6,10, polymetaxylylene adipamide (MXD6) , Nylon 11, nylon 12 and the like.
  • nylon 6 (ONy) is preferable from the viewpoint of excellent heat resistance, puncture strength, and impact strength.
  • Examples of the stretching method for the biaxially stretched film include a sequential biaxial stretching method, a tubular biaxial stretching method, and a simultaneous biaxial stretching method.
  • the biaxially stretched film is preferably stretched by a tubular biaxial stretching method from the viewpoint of obtaining better deep drawability.
  • the thickness of the base material layer 11a is preferably 6 to 40 ⁇ m, and more preferably 10 to 30 ⁇ m. When the thickness of the base material layer 11a is 6 ⁇ m or more, there is a tendency that the pinhole resistance and insulation of the power storage device exterior material 10 can be improved. If the thickness of the base material layer 11a exceeds 40 ⁇ m, the total thickness of the power storage device exterior material 10 is increased, which may be undesirable because the electric capacity of the battery may have to be reduced.
  • the 95 ° C. hot water shrinkage rate of the polyester film constituting the base material layer 11b in the exterior material 10 is less than 5%, the base material layer 11b and the metal foil are exposed when exposed to heat and / or an electrolytic solution. Generation of peeling between the layer 14 can be suppressed over a long period of time. Moreover, since it can suppress that peeling arises between the base material layer 11b and the metal foil layer 14 over a long period of time, it is preferable that the 95 degreeC hot-water shrinkage rate of a polyester film is 4% or less. From the same viewpoint, the 95 ° C. hot water shrinkage of the polyester film is preferably 0% or more.
  • the 180 degreeC hot shrinkage rate of the polyester film which comprises the base material layer 11b is 10% or more, deep drawing moldability can be improved, and the adhesive layer 13 and metal foil layer The molding depth capable of deep drawing can be improved without causing 14 breakage.
  • the 180 degreeC hot shrinkage rate of the polyester film which comprises the base material layer 11b is 25% or less, when exposed to heat and / or electrolyte solution, It is possible to suppress the occurrence of peeling with the metal foil layer 14 over a long period of time. Moreover, it is possible to prevent heat wrinkles from being generated due to heat shrinkage caused by heat applied during manufacturing.
  • the base material layer 11b is preferably a layer made of a biaxially stretched polyester film from the viewpoint of obtaining better deep drawability.
  • polyester resin constituting the biaxially stretched polyester film examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and copolyester.
  • Examples of the stretching method for the biaxially stretched film include a sequential biaxial stretching method, a tubular biaxial stretching method, and a simultaneous biaxial stretching method.
  • the biaxially stretched film is preferably stretched by a tubular biaxial stretching method and a simultaneous biaxial stretching method from the viewpoint of obtaining better deep drawability.
  • the thickness of the base material layer 11b is preferably 6 to 40 ⁇ m, and more preferably 10 to 30 ⁇ m. When the thickness of the base material layer 11b is 6 ⁇ m or more, there is a tendency that the pinhole resistance and insulating properties of the power storage device exterior material 10 can be improved. If the thickness of the base material layer 11b exceeds 40 ⁇ m, the total thickness of the power storage device exterior material 10 is increased, which is not desirable because it may be necessary to reduce the electric capacity of the battery.
  • the easy adhesion treatment layer 12 is provided on one surface side of the base material layer 11 and is disposed between the base material layer 11 and the adhesive layer 13.
  • the easy adhesion treatment layer 12 is a layer for improving the adhesiveness between the base material layer 11 and the adhesive layer 13 and thus improving the adhesiveness between the base material layer 11 and the metal foil layer 14.
  • the easy adhesion treatment layer 12 may not be provided. In that case, in order to improve the adhesiveness between the base material layer 11 and the adhesive layer 13, and consequently improve the adhesiveness between the base material layer 11 and the metal foil layer 14, the adhesive layer of the base material layer 11 is used.
  • the 13th surface may be corona treated.
  • the easy adhesion treatment layer 12 is preferably a layer containing at least one resin selected from the group consisting of a polyester resin, an acrylic resin, a polyurethane resin, an epoxy resin, and an acrylic graft polyester resin.
  • the easy-adhesion treatment layer 12 is made of, for example, at least one resin selected from the group consisting of a polyester resin, an acrylic resin, a polyurethane resin, an epoxy resin, and an acrylic graft polyester resin on one surface of the base material layer 11. It can be formed by applying a coating agent as a main component.
  • polyester resin a copolymer polyester in which a copolymer component is introduced to lower the glass transition temperature is preferable from the viewpoint of adhesiveness.
  • the copolymer polyester preferably has water solubility or water dispersibility from the viewpoint of coatability.
  • a copolyester a copolyester in which at least one group selected from the group consisting of sulfonic acid groups or alkali metal bases thereof is bonded (hereinafter referred to as “sulfonic acid group-containing copolyester”) is used. It is preferable to use it.
  • the sulfonic acid group-containing copolymer polyester means a polyester in which at least one group selected from the group consisting of a sulfonic acid group or an alkali metal base thereof is bonded to a part of a dicarboxylic acid component or a glycol component, Copolymer prepared by using an aromatic dicarboxylic acid component containing at least one group selected from the group consisting of sulfonic acid groups or alkali metal bases thereof in a proportion of 2 to 10 mol% based on the total acid components Polyester is preferred.
  • dicarboxylic acid 5-sodium sulfoisophthalic acid is suitable.
  • other dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, p- ⁇ -oxyethoxybenzoic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-dicarboxydiphenyl, 4,4 ′.
  • -Dicarboxybenzophenone bis (4-carboxyphenyl) ethane, adipic acid, sebacic acid, cyclohexane-1,4-dicarboxylic acid and the like.
  • glycol component for producing the sulfonic acid group-containing copolymer polyester ethylene glycol is mainly used.
  • addition of propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanedimethanol, bisphenol A ethylene oxide addition Products, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like can be used.
  • ethylene glycol propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexane dimethanol or the like as a copolymerization component in terms of improving compatibility with polystyrene sulfonate.
  • the polyester resin a modified polyester copolymer, for example, a block copolymer modified with polyester, urethane, epoxy or the like, a graft copolymer, or the like may be used.
  • the easy adhesion treatment layer 12 may further contain a resin other than the polyester resin. Examples of such a resin include a urethane resin and an acrylic resin.
  • alkyl acrylate examples include alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2 -Ethylhexyl group, lauryl group, stearyl group, cyclohexyl group, phenyl group, benzyl group, phenylethyl group, etc.); 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl Hydroxyl group-containing monomers such as methacrylate; acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N, N Amide group-containing monomers such as dimethylolacrylamide, N-methoxymethyl
  • monomers include, for example, epoxy group-containing monomers such as allyl glycidyl ether; sulfonic acid groups such as styrene sulfonic acid, vinyl sulfonic acid and salts thereof (lithium salt, sodium salt, potassium salt, ammonium salt, etc.) Monomers containing salts; monomers containing carboxyl groups or salts thereof such as crotonic acid, itaconic acid, maleic acid, fumaric acid, and salts thereof (lithium salts, sodium salts, potassium salts, ammonium salts, etc.); maleic anhydride Monomers containing acid anhydrides such as acid and itaconic anhydride; vinyl isocyanate, allyl isocyanate, styrene, vinyl methyl ether, vinyl ethyl ether, vinyl trisalkoxysilane, alkyl maleic acid monoester, alkyl fumaric acid Monoester, acrylonitrile, methacrylonitrile, al
  • acrylic resin can be used vinyl chloride.
  • acrylic resin a modified acrylic copolymer, for example, a block copolymer modified with polyester, urethane, epoxy, or the like, a graft copolymer, or the like may be used.
  • the glass transition point (Tg) of the acrylic resin used in the present embodiment is not particularly limited, but is preferably 0 to 90 ° C., more preferably 10 to 80 ° C. If the Tg is low, the adhesiveness under high temperature and high humidity may decrease, and if it is high, cracks may occur during stretching. From the viewpoint of suppressing them, the Tg of the acrylic resin is within the above range. Is preferred.
  • the weight average molecular weight of the acrylic resin used in the present embodiment is preferably 100,000 or more, and more preferably 300,000 or more. If the weight average molecular weight is low, the heat-and-moisture resistance may decrease.
  • the easy adhesion treatment layer 12 may further contain a resin other than an acrylic resin. Examples of such a resin include a polyester resin and a urethane resin.
  • the polyurethane resin As the polyurethane resin, an aqueous polyurethane resin is preferable.
  • the water-based polyurethane resin is preferably a self-emulsifying type from the viewpoint of small particle size and good stability.
  • the particle diameter of the water-based polyurethane resin is preferably about 10 to 100 nm.
  • the water-based polyurethane resin used in this embodiment preferably has a glass transition point (Tg) of 40 ° C to 150 ° C. When Tg is 40 ° C. or higher, there is a tendency that it is possible to sufficiently suppress the occurrence of blocking when winding into a roll after coating. On the other hand, if the Tg is too higher than the drying temperature after coating, it is difficult to form a uniform film. Therefore, the Tg is preferably 150 ° C. or lower.
  • a crosslinking agent may be used together with the water-based polyurethane resin.
  • a water-based polyurethane crosslinking agent a general-purpose water-soluble crosslinking agent such as a water-soluble epoxy compound can be used.
  • a water-soluble epoxy compound is a compound having solubility in water and having two or more epoxy groups.
  • water-soluble epoxy compound examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, neo Polyepoxy compounds obtained by etherification of 1 mol of glycols such as pentyl glycol and 2 mol of epichlorohydrin, and esters of 1 mol of dicarboxylic acids such as phthalic acid, terephthalic acid, adipic acid and oxalic acid and 2 mol of epichlorohydrin And diepoxy compounds obtained by the conversion.
  • the water-soluble epoxy compound is not limited to these.
  • These water-soluble crosslinking agents crosslink with the water-based polyurethane resin, improve the water resistance and solvent resistance of the coating film, and improve the adhesion between the easy adhesion treatment layer 12 and the base material layer 11 and the adhesive layer 13. Contribute.
  • resin other than a urethane resin examples include a polyester resin and an acrylic resin.
  • the easy adhesion treatment layer 12 may include, for example, the above-described resin as a main component and a curing agent such as a polyfunctional isocyanate, a polyfunctional glycidyl compound, or a melamine compound.
  • a curing agent such as a polyfunctional isocyanate, a polyfunctional glycidyl compound, or a melamine compound.
  • the coating agent used for forming the easy adhesion treatment layer 12 may be a solvent system or an aqueous system.
  • a dispersion type (dispersion) using an aqueous main agent has a large molecular weight, improves intermolecular cohesion, and is effective for adhesion between the easy adhesion treatment layer 12, the base material layer 11, and the adhesive layer 13. is there.
  • the thickness of the easy adhesion treatment layer 12 is preferably 0.02 to 0.5 ⁇ m, and more preferably 0.04 to 0.3 ⁇ m.
  • the thickness of the easy adhesion treatment layer 12 is 0.02 ⁇ m or more, it is easy to form a uniform easy adhesion treatment layer 12 and a more sufficient easy adhesion effect tends to be obtained.
  • the thickness of the easy adhesion treatment layer 12 is 0.5 ⁇ m or less, the deep drawability of the exterior material 10 tends to be further improved.
  • the adhesive layer 13 is a layer that bonds the base material layer 11 and the metal foil layer 14 together.
  • the adhesive layer 13 is bonded to the base material layer 11 via the easy adhesion treatment layer 12.
  • the adhesive layer 13 has an adhesive force necessary for firmly bonding the base material layer 11 and the metal foil layer 14, and the metal foil layer 14 is broken by the base material layer 11 during cold forming. It also has follow-up property for suppressing this (performance for reliably forming the adhesive layer 13 on the member without peeling even if the member is deformed / stretched).
  • a curable polyurethane adhesive can be used.
  • the molar ratio of the isocyanate group of the curing agent to the hydroxyl group of the main agent is preferably 1 to 10, more preferably 2 to 5.
  • the polyurethane adhesive is subjected to aging at 40 ° C. for 4 days or more after coating, whereby the reaction between the hydroxyl group of the main agent and the isocyanate group of the curing agent proceeds, whereby the base material layer 11 and the metal foil layer 14. It becomes possible to bond more firmly.
  • the thickness of the adhesive layer 13 is preferably 1 to 10 ⁇ m and more preferably 2 to 6 ⁇ m from the viewpoint of obtaining desired adhesive strength, followability, workability, and the like.
  • Metal foil layer 14 examples of the metal foil layer 14 include various metal foils such as aluminum and stainless steel, and the metal foil layer 14 is preferably an aluminum foil from the viewpoint of workability such as moisture resistance and spreadability, and cost.
  • the aluminum foil may be a general soft aluminum foil, but is preferably an aluminum foil containing iron from the viewpoint of excellent pinhole resistance and extensibility during molding.
  • the iron content is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass.
  • the iron content is 0.1% by mass or more, it is possible to obtain the exterior material 10 having more excellent pinhole resistance and spreadability.
  • the iron content is 9.0% by mass or less, it is possible to obtain the exterior material 10 having more flexibility.
  • a soft aluminum foil subjected to an annealing treatment for example, an aluminum foil made of 8021 material and 8079 material in the JIS standard
  • an annealing treatment for example, an aluminum foil made of 8021 material and 8079 material in the JIS standard
  • an aluminum foil made of 8021 material and 8079 material in the JIS standard is more preferable from the viewpoint that it can impart a desired extensibility during molding.
  • the metal foil used for the metal foil layer 14 is preferably subjected to a degreasing treatment, for example, in order to obtain a desired electrolytic solution resistance.
  • the metal foil is preferably one whose surface is not etched.
  • a degreasing process for example, a wet type degreasing process or a dry type degreasing process can be used, but a dry type degreasing process is preferable from the viewpoint of simplifying the manufacturing process.
  • Examples of the dry-type degreasing treatment include a method of performing a degreasing treatment by increasing a treatment time in a step of annealing a metal foil. In the annealing treatment performed to soften the metal foil, sufficient electrolytic solution resistance can be obtained even with the degreasing treatment performed simultaneously.
  • the dry type degreasing treatment treatments such as a frame treatment and a corona treatment which are treatments other than the annealing treatment may be used. Further, as the dry type degreasing treatment, for example, a degreasing treatment in which contaminants are oxidatively decomposed and removed by active oxygen generated when the metal foil is irradiated with ultraviolet rays having a specific wavelength may be used.
  • the wet type degreasing treatment for example, acid degreasing treatment, alkali degreasing treatment or the like can be used.
  • the acid used for the acid degreasing treatment include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. These acids may be used individually by 1 type, and may use 2 or more types together.
  • an alkali used for an alkali degreasing process sodium hydroxide with a high etching effect can be used, for example.
  • the wet type degreasing treatment described above can be performed, for example, by an immersion method or a spray method.
  • the thickness of the metal foil layer 14 is preferably 9 to 200 ⁇ m, more preferably 15 to 150 ⁇ m, and further preferably 15 to 100 ⁇ m, from the viewpoint of barrier properties, pinhole resistance and workability. preferable.
  • the thickness of the metal foil layer 14 is 9 ⁇ m or more, the metal foil layer 14 is hardly broken even when stress is applied by molding.
  • the thickness of the metal foil layer 14 is 200 ⁇ m or less, an increase in mass of the exterior material can be reduced, and a decrease in weight energy density of the power storage device can be suppressed.
  • the corrosion prevention treatment layers 15a and 15b serve to suppress the corrosion of the metal foil layer 14 due to the electrolytic solution or hydrofluoric acid generated by the reaction between the electrolytic solution and moisture.
  • the corrosion prevention treatment layer 15 a plays a role of increasing the adhesion between the metal foil layer 14 and the adhesive layer 13.
  • the corrosion prevention treatment layer 15 b plays a role of increasing the adhesion between the metal foil layer 14 and the sealant adhesive layer 16.
  • the corrosion prevention treatment layer 15a and the corrosion prevention treatment layer 15b may be layers having the same configuration or different configurations.
  • Corrosion prevention treatment layers 15a and 15b are, for example, coating agents having a degreasing treatment, a hydrothermal alteration treatment, an anodizing treatment, a chemical conversion treatment, and a corrosion prevention ability for a layer that is a base material of the corrosion prevention treatment layers 15a and 15b. It can be formed by carrying out a coating-type corrosion prevention treatment in which coating is applied, or a corrosion prevention treatment combining these treatments.
  • degreasing treatment, hydrothermal modification treatment, anodizing treatment, particularly hydrothermal modification treatment and anodizing treatment are performed by dissolving the surface of the metal foil (aluminum foil) with a treating agent and having excellent corrosion resistance.
  • This is a treatment for forming an aluminum compound (boehmite, anodized).
  • such a treatment may be included in the definition of chemical conversion treatment in order to obtain a structure in which a co-continuous structure is formed from the metal foil layer 14 to the corrosion prevention treatment layers 15a and 15b.
  • Degreasing treatment includes acid degreasing and alkali degreasing.
  • the acid degreasing include a method using acid degreasing obtained by mixing inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid as described above alone or by mixing them.
  • an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved with the above-described inorganic acid is used, so that not only the degreasing effect of the metal foil layer 14 but also a passive metal fluoride is obtained. This is effective in terms of resistance to hydrofluoric acid.
  • the alkaline degreasing include a method using sodium hydroxide and the like.
  • hydrothermal modification treatment for example, boehmite treatment obtained by immersing the metal foil layer 14 in boiling water to which triethanolamine is added can be used.
  • anodizing treatment for example, an alumite treatment can be used.
  • chemical conversion treatment for example, chromate treatment, zirconium treatment, titanium treatment, vanadium treatment, molybdenum treatment, calcium phosphate treatment, strontium hydroxide treatment, cerium treatment, ruthenium treatment, or a combination of two or more of these is used. be able to.
  • These hydrothermal modification treatment, anodizing treatment, and chemical conversion treatment are preferably performed in advance with the above-described degreasing treatment.
  • the chemical conversion treatment is not limited to a wet method, and for example, a treatment agent used for these treatments may be mixed with a resin component and applied.
  • a treatment agent used for these treatments may be mixed with a resin component and applied.
  • coating type chromate process is preferable from a viewpoint of a waste liquid process.
  • the coating agent used in the coating type corrosion prevention treatment for coating the coating agent having the corrosion prevention performance contains at least one selected from the group consisting of rare earth oxide sols, anionic polymers, and cationic polymers.
  • a coating agent is mentioned.
  • a method using a coating agent containing a rare earth element oxide sol is preferable.
  • the method using the coating agent containing the rare earth element oxide sol is a pure coating type corrosion prevention treatment. By using this method, a corrosion prevention effect is imparted to the metal foil layer 14 even by a general coating method. It is possible. Moreover, the layer formed using the rare earth element oxide sol has a corrosion prevention effect (inhibitor effect) of the metal foil layer 14 and is also a material suitable from the environmental aspect.
  • rare earth element oxide fine particles for example, particles having an average particle diameter of 100 nm or less
  • examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide. Of these, cerium oxide is preferable. Thereby, the adhesiveness between the metal foil layers 14 can be further improved.
  • various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, ether solvents and the like can be used. Of these, water is preferred.
  • the rare earth element oxides contained in the corrosion prevention treatment layers 15a and 15b can be used singly or in combination of two or more.
  • rare earth element oxide sols are used as dispersion stabilizers, such as inorganic acids such as nitric acid, hydrochloric acid and phosphoric acid, and organic substances such as acetic acid, malic acid, ascorbic acid and lactic acid. It is preferable to contain acids, salts thereof and the like. Of these dispersion stabilizers, it is particularly preferable to use phosphoric acid or phosphate. As a result, not only the dispersion stabilization of rare earth element oxide particles, but also the improvement of adhesion between the metal foil layer 14 and the use of hydrofluoric acid in the use of a lithium ion battery exterior material, utilizing the chelating ability of phosphoric acid.
  • phosphoric acid or phosphate used as a dispersion stabilizer include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, alkali metal salts and ammonium salts thereof.
  • condensed phosphoric acid such as trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and ultrametaphosphoric acid, or alkali metal salts and ammonium salts thereof are preferable for the functional expression as a lithium ion battery exterior material.
  • dry film-forming properties drying capacity, heat quantity
  • the phosphate a water-soluble salt is preferable.
  • the phosphoric acid or phosphate contained in the corrosion prevention treatment layers 15a and 15b can be used alone or in combination of two or more.
  • the blending amount of phosphoric acid or a salt thereof in the rare earth element oxide sol is preferably 1 part by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the rare earth element oxide.
  • the upper limit of the phosphoric acid or salt thereof added to 100 parts by mass of the rare earth element oxide may be in a range not accompanied by a decrease in the function of the rare earth element oxide sol, and is 100 parts by mass or less with respect to 100 parts by mass of the rare earth element oxide.
  • 50 parts by mass or less is more preferable, and 20 parts by mass or less is more preferable.
  • the layer formed from the rare earth element oxide sol described above is an aggregate of inorganic particles, the cohesive force of the layer itself is low even after the drying curing process. Therefore, in order to supplement the cohesive force of this layer, it is preferable to make a composite with an anionic polymer.
  • anionic polymer examples include a polymer having a carboxy group, and examples thereof include poly (meth) acrylic acid (or a salt thereof) or a copolymer obtained by copolymerizing poly (meth) acrylic acid as a main component.
  • the copolymer component of the copolymer includes alkyl (meth) acrylate monomers (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.); (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxy (meth) acrylamide, N, N-dialkoxy (Meth) acrylamide, (alkoxy groups include methoxy, ethoxy
  • vinylidene, ethylene, propylene, vinyl chloride, vinyl acetate, and butadiene examples include vinylidene, ethylene, propylene, vinyl chloride, vinyl acetate, and butadiene.
  • the anionic polymer plays a role of improving the stability of the corrosion prevention treatment layers 15a and 15b (oxide layers) obtained using the rare earth element oxide sol. This is due to the effect of protecting the hard and brittle oxide layer with an acrylic resin component and the effect of capturing ion contamination (especially sodium ions) derived from phosphate contained in the rare earth oxide sol (cation catcher). Achieved. That is, when the corrosion prevention treatment layers 15a and 15b obtained using the rare earth element oxide sol contain alkali metal ions or alkaline earth metal ions such as sodium in particular, starting from the place containing the ions. The corrosion prevention treatment layers 15a and 15b are liable to deteriorate. Therefore, the resistance of the corrosion prevention treatment layers 15a and 15b is improved by fixing sodium ions and the like contained in the rare earth oxide sol by the anionic polymer.
  • the corrosion prevention treatment layers 15a and 15b combined with the anionic polymer and the rare earth element oxide sol have the same corrosion prevention performance as the corrosion prevention treatment layers 15a and 15b formed by subjecting the metal foil layer 14 to the chromate treatment.
  • the anionic polymer preferably has a structure in which a polyanionic polymer that is essentially water-soluble is crosslinked.
  • the crosslinking agent used for forming the structure include compounds having an isocyanate group, a glycidyl group, a carboxy group, and an oxazoline group.
  • Examples of the compound having an isocyanate group include diisocyanates such as tolylene diisocyanate, xylylene diisocyanate or hydrogenated products thereof, hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate or hydrogenated products thereof, and isophorone diisocyanate compounds. Or adducts obtained by reacting these isocyanates with polyhydric alcohols such as trimethylolpropane, bures obtained by reacting with water, or isocyanurates which are trimers. Isocyanates; or block polyisocyanates obtained by blocking these polyisocyanates with alcohols, lactams, oximes, and the like.
  • diisocyanates such as tolylene diisocyanate, xylylene diisocyanate or hydrogenated products thereof, hexamethylene diisocyanate, 4,4′-diphenylmethane diisocyanate or hydrogenated products thereof, and isophorone diis
  • Examples of the compound having a glycidyl group include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, Epoxy compounds that react with glycols such as neopentyl glycol and epichlorohydrin, epoxy compounds that react with polychlorinated alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbyl and epichlorohydrin, phthalates
  • Examples thereof include an epoxy compound obtained by reacting a dicarboxylic acid such as acid, terephthalic acid, oxalic acid or adipic acid with epichlorohydrin.
  • Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids, and it is also possible to use poly (meth) acrylic acid and alkali (earth) metal salts of poly (meth) acrylic acid. is there.
  • the compound having an oxazoline group for example, a low molecular compound having two or more oxazoline units, or a polymerizable monomer such as isopropenyl oxazoline, (meth) acrylic acid, (meth) acrylic acid alkyl ester And a compound obtained by copolymerizing an acrylic monomer such as hydroxyalkyl (meth) acrylate.
  • silane coupling agents include ⁇ -glycidoxypropyl-trimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -chloropropylmethoxysilane, Vinyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, and particularly anions
  • epoxy silane, amino silane, and isocyanate silane are preferable.
  • the blending amount of the crosslinking agent is preferably 1 to 50 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the anionic polymer.
  • the ratio of the crosslinking agent is 1 part by mass or more with respect to 100 parts by mass of the anionic polymer, a crosslinked structure is easily formed.
  • the ratio of the crosslinking agent is 50 parts by mass or less with respect to 100 parts by mass of the anionic polymer, the pot life of the coating liquid is improved.
  • the method of crosslinking the anionic polymer is not limited to the above-mentioned crosslinking agent, and may be a method of forming ionic crosslinking using a titanium or zirconium compound. Moreover, you may apply the coating composition which forms the corrosion prevention process layer 15a to these materials.
  • the corrosion prevention treatment layers 15a and 15b by chemical conversion treatment represented by chromate treatment are formed with an inclined structure with the metal foil layer 14, and in particular, hydrofluoric acid, hydrochloric acid, nitric acid. Then, the metal foil layer 14 is treated using a chemical conversion treatment agent containing sulfuric acid or a salt thereof, and then a chemical conversion treatment layer is formed on the metal foil layer 14 by the action of a chromium-based or non-chromium-based compound.
  • the said chemical conversion treatment uses the acid for a chemical conversion treatment agent, it is accompanied by deterioration of a working environment and corrosion of a coating apparatus.
  • the coating-type corrosion prevention treatment layers 15a and 15b described above do not require an inclined structure to be formed on the metal foil layer 14. Therefore, the properties of the coating agent are not subject to restrictions such as acidity, alkalinity, and neutrality, and a good working environment can be realized.
  • the chromate treatment using a chromium compound is preferably the coating-type corrosion prevention treatment layers 15a and 15b from the viewpoint that an alternative is required for environmental hygiene.
  • the corrosion prevention treatment layers 15a and 15b may have a laminated structure in which a cationic polymer is further laminated as necessary.
  • a cationic polymer examples include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is graphed on an acrylic main skeleton, polyallylamine, or derivatives thereof. And aminophenol resins.
  • Examples of the “polymer having a carboxylic acid” forming an ionic polymer complex include polycarboxylic acid (salt), a copolymer in which a comonomer is introduced into polycarboxylic acid (salt), a polysaccharide having a carboxy group, and the like. It is done.
  • Examples of the polycarboxylic acid (salt) include polyacrylic acid or an ionic salt thereof.
  • Examples of the polysaccharide having a carboxy group include carboxymethyl cellulose or an ionic salt thereof.
  • Examples of the ionic salt include alkali metal salts and alkaline earth metal salts.
  • the primary amine graph acrylic resin is a resin obtained by graphing a primary amine on an acrylic main skeleton.
  • the acrylic main skeleton include various monomers used in the above-described acrylic polyol, such as poly (meth) acrylic acid.
  • the primary amine graphed on the acrylic main skeleton include ethyleneimine.
  • polyallylamine or derivatives thereof homopolymers or copolymers of allylamine, allylamine amide sulfate, diallylamine, dimethylallylamine, etc. can be used. Furthermore, these amines can be free amines or acetic acid or hydrochloric acid. Stabilized products can also be used. Further, maleic acid, sulfur dioxide or the like can be used as a copolymer component. Furthermore, it is possible to use a type in which a primary amine is partially methoxylated to impart thermal crosslinkability. These cationic polymers may be used alone or in combination of two or more. Among the above, the cationic polymer is preferably at least one selected from the group consisting of polyallylamine and derivatives thereof.
  • the cationic polymer is preferably used in combination with a crosslinking agent having a functional group capable of reacting with an amine / imine such as a carboxy group or a glycidyl group.
  • a crosslinking agent used in combination with the cationic polymer a polymer having a carboxylic acid that forms an ionic polymer complex with polyethyleneimine can also be used.
  • a polycarboxylic acid (salt) such as polyacrylic acid or an ionic salt thereof, or the like
  • a copolymer having a carboxy group such as carboxymethylcellulose or an ionic salt thereof.
  • the cationic polymer is also described as one component constituting the corrosion prevention treatment layers 15a and 15b.
  • the cationic polymer itself also has electrolyte resistance and anti-fluorine resistance. This is because the compound was found to be capable of imparting acidity. This factor is presumed to be because the metal foil layer 14 is prevented from being damaged by capturing fluorine ions with a cationic group (anion catcher).
  • the cationic polymer is also very preferable in terms of improving the adhesion between the corrosion prevention treatment layer 15 b and the sealant adhesive layer 16.
  • the cationic polymer is water-soluble like the anionic polymer described above, the water resistance can be improved by forming a crosslinked structure using the above-mentioned crosslinking agent.
  • a crosslinked structure can be formed even if a cationic polymer is used, when a rare earth oxide sol is used for forming the corrosion prevention treatment layers 15a and 15b, an anionic polymer is used as the protective layer. Instead, a cationic polymer may be used.
  • examples of combinations of the above-described coating type corrosion prevention treatments are as follows: (1) only rare earth oxide sol, (2) only anionic polymer, (3) only cationic polymer, (4) rare earth oxide Sol + anionic polymer (laminated composite), (5) rare earth oxide sol + cationic polymer (laminated composite), (6) (rare earth oxide sol + anionic polymer: laminated composite) / cationic polymer ( (Multilayered), (7) (rare earth oxide sol + cationic polymer: laminated composite) / anionic polymer (multilayered), and the like. Of these, (1) and (4) to (7) are preferable, and (4) to (7) are more preferable.
  • the corrosion prevention treatment layer 15a (6) is particularly preferable because the corrosion prevention effect and the anchor effect (adhesion improvement effect) can be further realized.
  • the corrosion prevention treatment layer 15b (6) and (7) are particularly preferable because the resistance to the electrolyte solution on the sealant layer 17 side can be more easily maintained.
  • the present embodiment is not limited to the above combination.
  • the cationic polymer is a very preferable material in that it has a good adhesiveness with the modified polyolefin resin mentioned in the description of the sealant adhesive layer 16 described later.
  • the layer 16 is composed of a modified polyolefin resin, it is possible to design such that a cationic polymer is provided on the surface in contact with the sealant adhesive layer 16 (for example, configurations (5) and (6)).
  • the corrosion prevention treatment layers 15a and 15b are not limited to the layers described above.
  • it may be formed using an agent in which phosphoric acid and a chromium compound are blended in a resin binder (aminophenol resin or the like), such as a coating chromate that is a known technique. If this processing agent is used, it becomes possible to form a layer having both a corrosion prevention function and adhesion.
  • the chemical conversion treatment layer a layer formed by degreasing treatment, hydrothermal modification treatment, anodizing treatment, chemical conversion treatment, or a combination of these treatments
  • the cationic property described above is used.
  • Corrosion treatment layer 15a per unit area of the 15b mass preferably in the range of 0.005 ⁇ 0.200g / m 2, more preferably in the range of 0.010 ⁇ 0.100g / m 2. If it is 0.005 g / m 2 or more, the metal foil layer 14 is easily imparted with a corrosion prevention function. Even if the mass per unit area exceeds 0.200 g / m 2 , the corrosion prevention function is saturated and does not change much. On the other hand, when the rare earth oxide sol is used, if the coating film is thick, curing due to heat at the time of drying becomes insufficient, and there is a possibility that the cohesive force is lowered. In addition, although it described with the mass per unit area in the said content, if specific gravity is known, it is also possible to convert thickness from there.
  • the thickness of the corrosion prevention treatment layers 15a and 15b is preferably 10 nm to 5 ⁇ m, and more preferably 20 to 500 nm, from the viewpoint of the corrosion prevention function and the function as an anchor.
  • the sealant adhesive layer 16 is a layer that bonds the metal foil layer 14 on which the corrosion prevention treatment layer 15 b is formed and the sealant layer 17.
  • the exterior material 10 is roughly divided into a thermal laminate configuration and a dry laminate configuration depending on the adhesive component that forms the sealant adhesive layer 16.
  • the adhesive component for forming the sealant adhesive layer 16 in the heat laminate configuration is preferably an acid-modified polyolefin resin obtained by graft-modifying a polyolefin resin with an acid. Since the acid-modified polyolefin-based resin has a polar group introduced in a part of the non-polar polyolefin-based resin, the acid-modified polyolefin-based resin has a polarity with the sealant layer 17 formed of a non-polar polyolefin-based resin film or the like. In many cases, it can be firmly adhered to both of the corrosion prevention treatment layers 15b.
  • the use of the acid-modified polyolefin resin improves the resistance of the exterior material 10 to the contents such as the electrolyte, and even if hydrofluoric acid is generated inside the battery, the adhesive strength is reduced due to deterioration of the sealant adhesive layer 16. It is easy to prevent.
  • polyolefin resin of the acid-modified polyolefin resin examples include low density, medium density and high density polyethylene; ethylene- ⁇ olefin copolymer; polypropylene; and propylene- ⁇ olefin copolymer.
  • the polyolefin resin in the case of a copolymer may be a block copolymer or a random copolymer.
  • a copolymer obtained by copolymerizing a polar molecule such as acrylic acid or methacrylic acid with the above-described one, or a polymer such as a crosslinked polyolefin can be used as the polyolefin resin.
  • Examples of the acid that modifies the polyolefin resin include carboxylic acid, epoxy compound, and acid anhydride, and maleic anhydride is preferable.
  • the acid-modified polyolefin resin used for the sealant adhesive layer 16 may be one type or two or more types.
  • the sealant adhesive layer 16 having a heat laminate structure can be formed by extruding the adhesive component with an extrusion device.
  • the thickness of the heat-bonded sealant adhesive layer 16 is preferably 2 to 50 ⁇ m.
  • Examples of the adhesive component for forming the sealant adhesive layer 16 having a dry laminate structure include the same adhesives as those mentioned for the adhesive layer 13.
  • the composition of the adhesive may be designed so that it is a main component of a skeleton that is difficult to hydrolyze and that can improve the crosslinking density. preferable.
  • dimer fatty acid is an acid obtained by dimerizing various unsaturated fatty acids, and examples of the structure include acyclic, monocyclic, polycyclic and aromatic ring types.
  • the fatty acid that is the starting material for the dimer fatty acid is not particularly limited. Moreover, you may introduce
  • curing agent with respect to the main ingredient which comprises the sealant contact bonding layer 16 it is possible to use the isocyanate compound which can be used also as a chain extender of a polyester polyol, for example.
  • the crosslinking density of the adhesive coating film increases, leading to improvements in solubility and swelling, and an increase in the urethane group concentration can also be expected to improve substrate adhesion.
  • the sealant adhesive layer 16 having a dry laminate structure has a highly hydrolyzable bonding portion such as an ester group and a urethane group
  • a heat laminate structure is used as the sealant adhesive layer 16 for applications requiring higher reliability. It is preferable to use the adhesive component.
  • the sealant adhesive layer 16 is formed by blending the above-mentioned various curing agents in a coating solution obtained by dissolving or dispersing an acid-modified polyolefin resin in a solvent such as toluene or methylcyclohexane (MCH), and applying and drying. To do.
  • the adhesive resin is easily oriented in the MD direction (extrusion direction) due to stress generated during the extrusion molding.
  • an elastomer may be blended in the sealant adhesive layer 16 in order to relax the anisotropy of the sealant adhesive layer 16.
  • blended with the sealant contact bonding layer 16 an olefin-type elastomer, a styrene-type elastomer, etc. can be used, for example.
  • the average particle size of the elastomer is preferably a particle size that can improve the compatibility between the elastomer and the adhesive resin and can improve the effect of relaxing the anisotropy of the sealant adhesive layer 16.
  • the average particle diameter of the elastomer is preferably 200 nm or less, for example.
  • the average particle size of the elastomer can be obtained, for example, by taking a photograph of an enlarged cross section of the elastomer composition with an electron microscope and then measuring the average particle size of the dispersed crosslinked rubber component by image analysis. .
  • the said elastomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the elastomer added to the sealant adhesive layer 16 (100% by mass) is, for example, preferably 1 to 25% by mass, and more preferably 10 to 20% by mass.
  • the blending amount of the elastomer is 1% by mass or more, the compatibility with the adhesive resin is improved, and the effect of relaxing the anisotropy of the sealant adhesive layer 16 tends to be improved.
  • sealant adhesive layer 16 for example, a dispersion type adhesive resin liquid in which an adhesive resin is dispersed in an organic solvent may be used.
  • the thickness of the sealant adhesive layer 16 is preferably 8 ⁇ m or more and 50 ⁇ m or less, and more preferably 20 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the sealant adhesive layer 16 is 8 ⁇ m or more, sufficient adhesive strength between the metal foil layer 14 and the sealant layer 17 can be easily obtained. It is possible to easily reduce the amount of moisture entering.
  • the thickness of the sealant adhesive layer 16 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the sealant adhesive layer 16 is 1 ⁇ m or more, sufficient adhesion strength between the metal foil layer 14 and the sealant layer 17 is easily obtained, and when the thickness is 5 ⁇ m or less, the sealant adhesive layer 16 is not cracked. Can be suppressed.
  • the sealant layer 17 is a layer that imparts a sealing property to the exterior material 10 by heat sealing, and is a layer that is disposed on the inner side and assembled by heat fusion when the power storage device is assembled.
  • the sealant layer 17 include a polyolefin resin or a resin film made of an acid-modified polyolefin resin obtained by graft-modifying an acid such as maleic anhydride to a polyolefin resin.
  • a polyolefin-based resin that improves the barrier property of water vapor and can form the power storage device without being excessively crushed by heat sealing is preferable, and polypropylene is particularly preferable.
  • polystyrene resin examples include low density, medium density and high density polyethylene; ethylene- ⁇ olefin copolymer; polypropylene; and propylene- ⁇ olefin copolymer.
  • the polyolefin resin in the case of a copolymer may be a block copolymer or a random copolymer. These polyolefin resin may be used individually by 1 type, and may use 2 or more types together.
  • each of the above-mentioned types of polypropylene that is, random polypropylene, homopolypropylene, and block polypropylene, includes a low crystalline ethylene-butene copolymer, a low crystalline propylene-butene copolymer, ethylene, butene, and propylene.
  • a terpolymer made of a component copolymer, silica, zeolite, an antiblocking agent (AB agent) such as acrylic resin beads, a fatty acid amide slip agent, or the like may be added.
  • Examples of the acid-modified polyolefin resin include the same as those mentioned in the sealant adhesive layer 16.
  • the sealant layer 17 may be a single layer film or a multilayer film, and may be selected according to a required function.
  • a multilayer film in which a resin such as an ethylene-cycloolefin copolymer and polymethylpentene is interposed can be used.
  • sealant layer 17 may contain various additives such as a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer and a tackifier.
  • sealant layer 17 When a heat-weldable film formed by extrusion molding is used as the sealant layer 17, there is an orientation tendency in the extrusion direction of the heat-weldable film. For this reason, an elastomer may be blended in the heat-weldable film from the viewpoint of relaxing the anisotropy of the sealant layer 17 due to orientation. Thereby, it can suppress that the sealant layer 17 whitens when cold-molding the exterior
  • the same material as the material exemplified as the elastomer constituting the sealant adhesive layer 16 can be used.
  • the sealant layer 17 has a multilayer film structure
  • at least one of the plurality of layers constituting the multilayer film structure may include an elastomer.
  • the sealant layer 17 has a three-layer laminated structure composed of laminated random polypropylene layer / block polypropylene layer / random polypropylene layer
  • the elastomer may be blended only in the block polypropylene layer or only in the random polypropylene layer. You may mix
  • a lubricant may be included in order to impart slipperiness to the sealant layer 17.
  • the sealant layer 17 contains the lubricant
  • the side or corner of the recess having a high stretch ratio in the power storage device exterior material 10 It becomes possible to suppress that the part which becomes becomes unnecessarily extended
  • the content of the lubricant in the sealant layer 17 (100% by mass) is preferably 0.001% by mass to 0.5% by mass.
  • the content of the lubricant in the sealant layer 17 is preferably 0.001% by mass to 0.5% by mass.
  • There exists a tendency which can suppress more that the sealant layer 17 whitens at the time of cold molding as content of a lubricant is 0.001 mass% or more.
  • there exists a tendency which can suppress the fall of the adhesive strength between the surfaces of the other layer which contacts the surface of the sealant layer 17 as content of a lubricant is 0.5 mass% or less.
  • the thickness of the sealant layer 17 is preferably 10 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m. When the thickness of the sealant layer 17 is 20 ⁇ m or more, sufficient heat seal strength can be obtained, and when it is 90 ⁇ m or less, the amount of water vapor entering from the edge of the exterior material can be reduced.
  • Step S11 A step of forming the corrosion prevention treatment layer 15a on one surface of the metal foil layer 14 and the corrosion prevention treatment layer 15b on the other surface of the metal foil layer 14.
  • Process S12 The process of forming the easily bonding process layer 12 on one surface of the base material layer 11, and obtaining a laminated body.
  • Step S13 A step of bonding the surface of the corrosion prevention treatment layer 15a opposite to the metal foil layer 14 and the surface of the laminate on the side of the easy adhesion treatment layer 12 via the adhesive layer 13.
  • Step S14 A step of forming a sealant layer 17 via a sealant adhesive layer 16 on the surface of the corrosion prevention treatment layer 15b opposite to the metal foil layer 14.
  • step S11 the corrosion prevention treatment layer 15a is formed on one surface of the metal foil layer 14, and the corrosion prevention treatment layer 15b is formed on the other surface of the metal foil layer 14.
  • the corrosion prevention treatment layers 15a and 15b may be formed separately, or both may be formed at once.
  • a corrosion prevention treatment agent base material of the corrosion prevention treatment layer
  • 15a and 15b are formed at once.
  • drying, curing, and baking are sequentially performed to form the corrosion prevention treatment layer 15 a, the same is applied to the other surface of the metal foil layer 14.
  • the corrosion prevention treatment layer 15b may be formed.
  • the order in which the corrosion prevention treatment layers 15a and 15b are formed is not particularly limited. Further, different corrosion prevention treatment agents may be used for the corrosion prevention treatment layer 15a and the corrosion prevention treatment layer 15b, or the same one may be used.
  • the corrosion prevention processing agent for coating type chromate processing etc. can be used, for example.
  • the coating method of the corrosion inhibitor is not particularly limited. For example, gravure coating method, gravure reverse coating method, roll coating method, reverse roll coating method, die coating method, bar coating method, kiss coating method, comma coating method, etc. Can be used.
  • an untreated metal foil layer may be used, or a metal foil layer subjected to degreasing treatment by wet type degreasing treatment or dry type degreasing treatment may be used.
  • step S ⁇ b> 12 the easy adhesion treatment layer 12 is formed on one surface of the base material layer 11.
  • an in-line coating method will be described as an example of a method for forming the easy adhesion treatment layer 12.
  • an aqueous coating solution containing a dispersion in which the above-described resin that is the main component of the easy adhesion treatment layer 12 is dispersed with a dispersant is prepared.
  • the said aqueous coating liquid is apply
  • the applied aqueous coating solution is dried, and then the thermoplastic resin film is stretched in at least a uniaxial direction.
  • the formation method of the easily bonding process layer 12 is not limited to the said method, You may use what kind of method.
  • the timing which forms the easily bonding process layer 12 is not limited to this Embodiment.
  • step S13 the surface opposite to the metal foil layer 14 of the corrosion prevention treatment layer 15a and the surface on the easy adhesion treatment layer 12 side of the laminate are dry-laminated using an adhesive that forms the adhesion layer 13. It is pasted together by the technique.
  • an aging treatment may be performed in the range of room temperature to 100 ° C. in order to promote adhesion.
  • the aging time is, for example, 1 to 10 days.
  • Step S14 After step S13, the base material layer 11, the easy adhesion treatment layer 12, the adhesion layer 13, the corrosion prevention treatment layer 15a, the metal foil layer 14 and the corrosion prevention treatment layer 15b are laminated in this order on the corrosion prevention treatment layer 15b of the laminate.
  • a sealant layer 17 is formed on the surface opposite to the metal foil layer 14 via a sealant adhesive layer 16.
  • the sealant layer 17 may be laminated by dry lamination, sandwich lamination, or the like, or may be laminated together with the sealant adhesive layer 16 by a coextrusion method. From the viewpoint of improving adhesiveness, the sealant layer 17 is preferably laminated by, for example, sandwich lamination, or is preferably laminated by the coextrusion method together with the sealant adhesive layer 16, and more preferably by sandwich lamination.
  • the exterior material 10 is obtained through the steps S11 to S14 described above. Note that the process sequence of the manufacturing method of the packaging material 10 is not limited to the method of sequentially performing the above steps S11 to S14. For example, the order of steps to be performed may be changed as appropriate, such as step S11 after step S12.
  • the power storage device includes a battery element 1 including an electrode, a lead 2 extending from the electrode, and a container for housing the battery element 1, and the container includes an exterior material 10 for the power storage device and a sealant layer 17 on the inside. Formed to be.
  • the container may be obtained by stacking two exterior materials with the sealant layers 17 facing each other, and heat-sealing the peripheral edge of the overlaid exterior material 10, or by folding back one exterior material. It may be obtained by overlapping and similarly heat-sealing the peripheral portion of the exterior material 10.
  • the power storage device may include the exterior material 20 as a container. Examples of the power storage device include secondary batteries such as lithium ion batteries, nickel metal hydride batteries, and lead storage batteries, and electrochemical capacitors such as electric double layer capacitors.
  • the lead 2 is sandwiched and sealed by an exterior material 10 that forms a container with the sealant layer 17 inside.
  • the lead 2 may be clamped by the exterior material 10 via a tab sealant.
  • FIG. 2 is a view showing the embossed type exterior member 30.
  • FIGS. 3A to 3D are perspective views showing a manufacturing process of a one-side molded battery using the exterior material 10.
  • the secondary battery 40 is a double-sided molded battery that is manufactured by bonding two exterior materials such as the embossed type exterior material 30 and bonding the exterior materials together while adjusting the alignment. Also good. Further, the embossed type exterior material 30 may be formed using the exterior material 20.
  • the secondary battery 40 which is a one-side molded battery, can be manufactured by, for example, the following steps S21 to S25.
  • Step S21 A step of preparing the outer packaging material 10, the battery element 1 including the electrodes, and the leads 2 extending from the electrodes.
  • Step S22 A step of forming a recess 32 for disposing the battery element 1 on one side of the exterior material 10 (see FIGS. 3A and 3B).
  • Step S23 The battery element 1 is arranged in the molding processing area (recessed portion 32) of the embossed-type exterior member 30, and the embossed-type exterior member 30 is folded and overlapped so that the lid portion 34 covers the recessed portion 32, and extends from the battery element 1.
  • Step S24 Leave one side other than the side sandwiching the lead 2 and pressurize and melt the other side, then inject the electrolyte from the remaining side and pressurize and heat-bond the remaining side in a vacuum state Step (see FIG. 3C).
  • Step S25 A step of cutting the end portion of the pressurization heat fusion other than the side sandwiching the lead 2 and bending it to the side of the molding area (recess 32) (see FIG. 3D).
  • step S21 the exterior material 10, the battery element 1 including the electrodes, and the leads 2 extending from the electrodes are prepared.
  • the exterior material 10 is prepared based on the above-described embodiment. There is no restriction
  • a recess 32 for disposing the battery element 1 on the sealant layer 17 side of the exterior material 10 is formed.
  • the planar shape of the recess 32 is a shape that matches the shape of the battery element 1, for example, a rectangular shape in plan view.
  • the recess 32 is formed, for example, by pressing a pressing member having a rectangular pressure surface against a part of the exterior material 10 in the thickness direction. Further, the pressing position, that is, the recess 32 is formed at a position deviated from the center of the exterior material 10 cut into a rectangle toward one end in the longitudinal direction of the exterior material 10. Thereby, the other end part side which does not form the recessed part 32 after a shaping
  • a method of forming the recess 32 includes a molding process using a mold (deep drawing molding).
  • a molding method a female mold and a male mold disposed so as to have a gap larger than the thickness of the exterior material 10 are used, and the male mold is pushed into the female mold together with the exterior material 10. Is mentioned.
  • the embossed type exterior material 30 is obtained by forming the recess 32 in the exterior material 10.
  • the embossed type exterior member 30 has a shape as shown in FIG. 2, for example.
  • FIG. 2 (a) is a perspective view of the embossed type exterior member 30, and
  • FIG. 2 (b) is a longitudinal section along the line bb of the embossed type exterior member 30 shown in FIG. 2 (a).
  • step S23 In step S ⁇ b> 23, the battery element 1 including the positive electrode, the separator, the negative electrode, and the like is disposed in the molding processing area (recess 32) of the embossed type exterior material 30. Further, the lead 2 extending from the battery element 1 and bonded to the positive electrode and the negative electrode, respectively, is drawn out from the molding area (recess 32). Thereafter, the embossed type exterior member 30 is folded back at substantially the center in the longitudinal direction, and the sealant layers 17 are stacked so as to be inside, and one side of the embossed type exterior member 30 sandwiching the lead 2 is subjected to pressure heat fusion.
  • the pressure heat fusion is controlled by three conditions of temperature, pressure, and time, and is appropriately set. The temperature of the pressure heat fusion is preferably equal to or higher than the temperature at which the sealant layer 17 is melted.
  • the thickness of the sealant layer 17 before heat sealing is preferably 40% or more and 80% or less with respect to the thickness of the lead 2.
  • the heat-sealing resin tends to sufficiently fill the end of the lead 2, and when the thickness is equal to or less than the upper limit value, the exterior material 10 of the secondary battery 40.
  • the thickness of the end can be moderately suppressed, and the amount of moisture permeating from the end of the exterior material 10 can be reduced.
  • step S24 one side other than the side sandwiching the lead 2 is left and the other side is subjected to pressure heat fusion. Thereafter, an electrolytic solution is injected from the remaining side, and the remaining side is pressurized and heat-sealed in a vacuum state. The conditions for the pressure heat fusion are the same as in step S23.
  • Step S25 Edge edges of the peripheral pressure heat-sealing side other than the sides sandwiching the lead 2 are cut, and the sealant layer 17 protruding from the ends is removed. Then, the secondary battery 40 is obtained by folding the peripheral pressure heat-sealed portion toward the molding area 32 and forming the folded portion 42.
  • A-1-1 15 ⁇ m thick, 95 ° C. hot water shrinkage 3.6%, 180 ° C. hot shrinkage 5.3%.
  • A-1-2 Thickness 15 ⁇ m, 95 ° C. hot water shrinkage 2.8%, 180 ° C. hot shrinkage 3.0%.
  • B-1-1 Thickness 25 ⁇ m, 95 ° C.
  • B-1-2 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 4.0%, 180 ° C. hot shrinkage 4.8%.
  • B-1-3 25 ⁇ m thick, 95 ° C. hot water shrinkage 3.6%, 180 ° C. hot shrinkage 9.4%.
  • B-1-4 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.7%, 180 ° C. hot shrinkage 15.2%.
  • B-1-5 25 ⁇ m in thickness, 95 ° C. hot water shrinkage 2.6%, 180 ° C. hot shrinkage 2.7%.
  • B-1-6 25 ⁇ m in thickness, 95 ° C. hot water shrinkage 7.7%, 180 ° C. hot shrinkage 15.1%.
  • B-1-7 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 4.8%, 180 ° C. hot shrinkage 20.4%.
  • C-1-1 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 4.0%, 180 ° C. hot shrinkage 4.8%.
  • C-1-2 thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.6%, 180 ° C. hot shrinkage 9.4%.
  • C-1-3 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.7%, 180 ° C. hot shrinkage 15.2%.
  • D-1-1 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.7%, 180 ° C. hot shrinkage 4.5%.
  • D-1-2 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.4%, 180 ° C. hot shrinkage 2.8%.
  • Coating agent water-soluble polyester “Aronmelt PES-1000” manufactured by Toagosei Co., Ltd., self-emulsifying type polyisocyanate “Aquanate 100” manufactured by Nihon Polyurethane Industry Co., Ltd., and spherical silica manufactured by Nippon Shokubai Chemical Co., Ltd. Fine particles “Seahoster KE-P30” (average particle size 0.3 ⁇ m) were added at a blending ratio (mass ratio) of 95/5 / 0.5, and diluted with water.
  • Example 1-1 the power storage device exterior material 10 was produced by the following method. First, as the metal foil layer 14, a soft aluminum foil 8079 material (manufactured by Toyo Aluminum Co., Ltd.) having a thickness of 40 ⁇ m was prepared. Subsequently, sodium polyphosphate-stabilized cerium oxide sol (corrosion prevention treatment agent) was applied to both surfaces of the metal foil layer 14 by gravure coating using distilled water as a solvent and adjusting the solid content concentration to 10% by mass. At this time, phosphoric acid was 10 mass parts with respect to 100 mass parts of cerium oxide.
  • a soft aluminum foil 8079 material manufactured by Toyo Aluminum Co., Ltd.
  • sodium polyphosphate-stabilized cerium oxide sol corrosion prevention treatment agent
  • a baking treatment is sequentially performed to form a corrosion prevention treatment layer 15a on one surface of the metal foil layer 14 and corrosion prevention on the other surface.
  • a treatment layer 15b was formed.
  • the baking conditions were a temperature of 150 ° C. and a processing time of 30 seconds.
  • the base material layer 11 a nylon film A-1-1 was used, and one side of the base material layer 11 was subjected to corona treatment.
  • a polyurethane-based adhesive was applied as an adhesive layer 13 on the surface of the metal foil layer 14 opposite to the metal foil layer 14 of the corrosion prevention treatment layer 15a.
  • the metal foil layer 14 and the corona-treated surface of the base material layer 11 were bonded via the adhesive layer 13 by a dry laminating method. Thereafter, the structure composed of the base material layer 11, the adhesive layer 13, the corrosion prevention treatment layer 15a, the metal foil layer 14, and the corrosion prevention treatment layer 15b is left in an atmosphere at a temperature of 60 ° C. for 6 days, thereby aging. Processed.
  • a sealant adhesive layer 16 On the surface opposite to the metal foil layer 14 of the corrosion prevention treatment layer 15b, as a sealant adhesive layer 16, a polyurethane adhesive in which polyisocyanate is blended with acid-modified polyolefin dissolved in a mixed solvent of toluene and methylcyclohexane. was applied. Next, by a dry laminating method, a 40 ⁇ m-thick polyolefin film (a film obtained by corona-treating the surface of the unstretched polypropylene film on the sealant adhesive layer 16 side) and the metal foil layer 14 through the sealant adhesive layer 16. And were adhered.
  • the structure composed of the base material layer 11, the adhesive layer 13, the corrosion prevention treatment layer 15a, the metal foil layer 14, the corrosion prevention treatment layer 15b, the sealant adhesion layer 16, and the sealant layer 17 is placed in an atmosphere having a temperature of 40 ° C. Aging treatment was carried out by leaving it for 6 days. Thereby, the exterior material 10 for power storage devices was produced.
  • Comparative Example 1-1 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film A-1-2.
  • the molding depth at which deep drawing was possible was evaluated by the following method.
  • the power storage device exterior material 10 was placed in the molding apparatus so that the sealant layer 17 faced upward.
  • the molding depth of the molding apparatus was set to 5.0 to 7.5 mm every 0.5 mm, and cold molding was performed in an environment with a room temperature of 23 ° C. and a dew point temperature of ⁇ 35 ° C.
  • the punch mold has a rectangular cross section of 70 mm ⁇ 80 mm, has a punch radius (RP) of 1.00 mm on the bottom, and a punch corner radius (RCP) of 1.00 mm on the side. It was used.
  • a die mold having a 1.00 mm diradius (RD) on the upper surface of the opening was used. Whether or not there is a break in the cold-formed part and the presence or absence of a pinhole is confirmed visually while irradiating the exterior material 10 with light. The value was determined. The results are shown in Table 1.
  • the adhesion between the base material layer 11 and the metal foil layer 14 was evaluated by the following method.
  • the molding depth of the molding apparatus was set to 5 mm, and cold molding was performed in an environment with a room temperature of 23 ° C. and a dew point temperature of ⁇ 35 ° C.
  • the punch mold has a rectangular cross section of 70 mm ⁇ 80 mm, has a punch radius (RP) of 1.00 mm on the bottom, and a punch corner radius (RCP) of 1.00 mm on the side. It was used.
  • a die mold having a 1.00 mm diradius (RD) on the upper surface of the opening was used.
  • the beaker containing the exterior material 10 was sealed in a can and placed in a temperature environment of 40 ° C. for 2 hours to expose the exterior material 10 to the electrolytic solution.
  • the exterior material 10 was taken out from the beaker in the Ito can and placed in an oven at 110 ° C. in an environment of temperature 60 ° C. and humidity 95%, or warm water of 50 ° C.
  • the base layer 11 has a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage.
  • the packaging material of Example 1-1 using a polyamide film having a rate of 4 to 16% is compared with the packaging material of Comparative Example 1-1 using a polyamide film whose hot shrinkage at 180 ° C. does not satisfy the above conditions. Thus, it was confirmed that the deep drawability can be improved while maintaining the adhesion.
  • Example 1-2 In Example 1-2, instead of forming the corrosion prevention treatment layers 15a and 15b using sodium polyphosphate-stabilized cerium oxide sol, treatment comprising a phenol resin, a chromium fluoride compound, and phosphoric acid on both surfaces of the metal foil layer 14 Applying the liquid to form a film, baking, and performing chromate treatment to form the corrosion prevention treatment layers 15a and 15b, and the substrate layer 11 was changed to nylon film B-1-1. A power storage device exterior material 10 was produced in the same manner as in Example 1-1.
  • Example 1-3 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-2.
  • Example 1-4 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-3.
  • Example 1-5 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-4.
  • Comparative Example 1-2 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-5.
  • Comparative Example 1-3 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-6.
  • Comparative Example 1-4 a power storage device exterior material 10 was produced in the same manner as in Example 1-1 except that the base material layer 11 was changed to nylon film B-1-7.
  • the base material layer 11 has a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage.
  • the exterior material of Examples 1-2 to 1-5 using a polyamide film having a rate of 4 to 16% is a polyamide in which at least one of 95 ° C. hot water shrinkage and 180 ° C. hot shrinkage does not satisfy the above conditions It was confirmed that the deep drawability can be improved while maintaining good adhesion as compared with the exterior materials of Comparative Examples 1-2 to 1-4 using a film.
  • Example 1-6 In Example 1-6, the following changes were made to Example 1-1.
  • the base material layer 11 was changed to nylon film C-1-1.
  • the sealant adhesive layer 16 was formed by extruding maleic anhydride-modified polypropylene (trade name: Admer, manufactured by Mitsui Chemicals), which is a base material of the sealant adhesive layer 16. At this time, the thickness of the sealant adhesive layer 16 was 20 ⁇ m.
  • a polyolefin film having a thickness of 60 ⁇ m to be the sealant layer 17 (on the side of the sealant adhesive layer 16 of the unstretched polypropylene film) is formed on the corrosion prevention treatment layer 15b via the sealant adhesive layer 16 by the sandwich lamination method instead of the dry lamination method.
  • the film having a corona-treated surface was bonded (heat-pressed) at 180 ° C.
  • a power storage device exterior material 10 was produced in the same manner as in Example 1-1, except for the above change.
  • Example 1-7 a power storage device exterior material 10 was produced in the same manner as in Example 1-6, except that the base material layer 11 was changed to nylon film C-1-2.
  • Example 1-8 a power storage device exterior material 10 was produced in the same manner as in Example 1-6, except that the base material layer 11 was changed to nylon film C-1-3.
  • the base material layer 11 has a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage.
  • the exterior materials of Examples 1-6 to 1-8 using a polyamide film with a rate of 4 to 16% are deep drawn while maintaining adhesion even when the sealant adhesive layer 16 is provided by the sandwich lamination method. It was confirmed that the moldability can be improved.
  • Example 1-9 In Example 1-9, instead of subjecting one surface of the base material layer 11 to corona treatment, the easy adhesion treatment layer 12 is formed on the surface of the base material layer 11 on the adhesive layer 13 side, and the base material layer 11 is made of the nylon film D.
  • a power storage device exterior material 10 was produced in the same manner as in Example 1-1, except for changing to -1-1.
  • the easy adhesion treatment layer 12 is coated on one side of the base material layer 11 by using an in-line coating method so that the coating agent serving as a base material of the easy adhesion treatment layer 12 is 0.1 g / m 2 in solid content. Then, the easy adhesion treatment layer 12 having a thickness of about 0.1 ⁇ m was formed by drying.
  • Comparative Example 1-6 a power storage device exterior material 10 was produced in the same manner as in Example 1-9, except that the base material layer 11 was changed to nylon film D-1-2.
  • the 95 ° C. hot water shrinkage rate is less than 5% as the base material layer 11.
  • a packaging material of Example 1-9 using a polyamide film having a 180 ° C. hot shrinkage of 4 to 16% is a comparative example using a polyamide film having a 180 ° C. hot shrinkage not satisfying the above conditions. It was confirmed that the deep drawability can be improved while maintaining the adhesion as compared with the 1-6 exterior material.
  • A-2-1 Thickness 12 ⁇ m, 95 ° C. hot water shrinkage 3.5%, 180 ° C. hot shrinkage 18.7%.
  • A-2-2 thickness 12 ⁇ m, 95 ° C. hot water shrinkage 2.5%, 180 ° C. hot shrinkage 6.0%.
  • B-2-1 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.8%, 180 ° C. hot shrinkage 19.9%.
  • B-2-2 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.8%, 180 ° C. hot shrinkage 19.9%.
  • B-2-3 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.3%, 180 ° C. hot shrinkage 23.8%.
  • B-2-4 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.4%, 180 ° C. hot shrinkage 11.2%.
  • B-2-5 thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.6%, 180 ° C. hot shrinkage 5.7%.
  • B-2-6 25 ⁇ m thick, 95 ° C. hot water shrinkage 8.5%, 180 ° C. hot shrinkage 19.0%.
  • B-2-7 thickness 25 ⁇ m, 95 ° C.
  • C-2-1 Thickness 25 ⁇ m, 95 ° C. hot water shrinkage 2.6%, 180 ° C. hot shrinkage 18.4%.
  • C-2-2 thickness 25 ⁇ m, 95 ° C. hot water shrinkage 3.1%, 180 ° C. hot shrinkage 6.6%.
  • Coating agent water-soluble polyester “Aronmelt PES-1000” manufactured by Toagosei Co., Ltd., self-emulsifying type polyisocyanate “Aquanate 100” manufactured by Nihon Polyurethane Industry Co., Ltd., and spherical silica manufactured by Nippon Shokubai Chemical Co., Ltd. Fine particles “Seahoster KE-P30” (average particle size 0.3 ⁇ m) were added at a blending ratio (mass ratio) of 95/5 / 0.5, and diluted with water.
  • Example 2-1 the power storage device exterior material 10 was produced by the following method. First, as the metal foil layer 14, a soft aluminum foil 8079 material (manufactured by Toyo Aluminum Co., Ltd.) having a thickness of 40 ⁇ m was prepared. Subsequently, sodium polyphosphate-stabilized cerium oxide sol (corrosion prevention treatment agent) was applied to both surfaces of the metal foil layer 14 by gravure coating using distilled water as a solvent and adjusting the solid content concentration to 10% by mass. At this time, phosphoric acid was 10 mass parts with respect to 100 mass parts of cerium oxide.
  • a soft aluminum foil 8079 material manufactured by Toyo Aluminum Co., Ltd.
  • sodium polyphosphate-stabilized cerium oxide sol corrosion prevention treatment agent
  • a baking treatment is sequentially performed to form a corrosion prevention treatment layer 15a on one surface of the metal foil layer 14 and corrosion prevention on the other surface.
  • a treatment layer 15b was formed.
  • the baking conditions were a temperature of 150 ° C. and a processing time of 30 seconds.
  • a polyethylene terephthalate film A-2-1 was used, and one side of the base material layer 11 was subjected to corona treatment.
  • a polyurethane-based adhesive was applied as an adhesive layer 13 on the surface of the metal foil layer 14 opposite to the metal foil layer 14 of the corrosion prevention treatment layer 15a.
  • the metal foil layer 14 and the corona-treated surface of the base material layer 11 were bonded via the adhesive layer 13 by a dry laminating method. Thereafter, the structure composed of the base material layer 11, the adhesive layer 13, the corrosion prevention treatment layer 15a, the metal foil layer 14, and the corrosion prevention treatment layer 15b is left in an atmosphere at a temperature of 60 ° C. for 6 days, thereby aging. Processed.
  • a sealant adhesive layer 16 was formed on the surface of the corrosion prevention treatment layer 15b opposite to the metal foil layer 14.
  • the sealant adhesive layer 16 was formed by extruding maleic anhydride-modified polypropylene (trade name: Admer, manufactured by Mitsui Chemicals), which is a base material of the sealant adhesive layer 16.
  • Admer trademark: Admer, manufactured by Mitsui Chemicals
  • the thickness of the sealant adhesive layer 16 was 20 ⁇ m.
  • a sandwich lamination method a 60 ⁇ m-thick polyolefin film (non-stretched polypropylene film on the side of the sealant adhesive layer 16 side) was corona-treated on the corrosion prevention treatment layer 15b via the sealant adhesive layer 16. The film was bonded (heat-pressed) at 180 ° C. Thereby, the exterior material 10 for power storage devices was produced.
  • Comparative Example 2-1 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film A-2-2.
  • the molding depth at which deep drawing could be performed was evaluated by the following method.
  • the power storage device exterior material 10 was placed in the molding apparatus so that the sealant layer 17 faced upward.
  • the molding depth of the molding apparatus was set to 4.5 to 7.5 mm every 0.5 mm, and cold molding was performed in an environment with a room temperature of 23 ° C. and a dew point temperature of ⁇ 35 ° C.
  • the punch mold has a rectangular cross section of 70 mm ⁇ 80 mm, has a punch radius (RP) of 1.00 mm on the bottom, and a punch corner radius (RCP) of 1.00 mm on the side. It was used.
  • a die mold having a 1.00 mm diradius (RD) on the upper surface of the opening was used. Whether or not there is a break in the cold-formed part and the presence or absence of a pinhole is confirmed visually while irradiating the exterior material 10 with light. The value was determined. The results are shown in Table 5. In the table, “ ⁇ 4.5” indicates that at least one of fracture and pinhole occurred at a molding depth of 4.5 mm.
  • the adhesion between the base material layer 11 and the metal foil layer 14 was evaluated by the following method.
  • the power storage device exterior material 10 was placed in the molding apparatus so that the sealant layer 17 faced upward.
  • the molding depth of the molding apparatus was set to 5 mm, and cold molding was performed in an environment with a room temperature of 23 ° C. and a dew point temperature of ⁇ 35 ° C.
  • the punch mold has a rectangular cross section of 70 mm ⁇ 80 mm, has a punch radius (RP) of 1.00 mm on the bottom, and a punch corner radius (RCP) of 1.00 mm on the side. It was used.
  • a die mold having a 1.00 mm diradius (RD) on the upper surface of the opening was used.
  • the beaker containing the exterior material 10 was sealed in a can and placed in a temperature environment of 40 ° C. for 2 hours to expose the exterior material 10 to the electrolytic solution.
  • the exterior material 10 was taken out from the beaker in the Ito can and placed in an oven at 110 ° C. in an environment of temperature 60 ° C. and humidity 95%, or warm water of 50 ° C.
  • the base material layer 11 has a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage.
  • the packaging material of Example 2-1 using a polyester film with a rate of 10 to 25% is compared with the packaging material of Comparative Example 2-1 using a polyester film whose hot shrinkage at 180 ° C. does not satisfy the above conditions. Thus, it was confirmed that the deep drawability can be improved while maintaining the adhesion.
  • Example 2-2 In Example 2-2, the following changes were made to Example 2-1.
  • a polyurethane adhesive in which polyisocyanate was blended with acid-modified polyolefin dissolved in a mixed solvent of toluene and methylcyclohexane was applied.
  • a 40 ⁇ m-thick polyolefin film (a film obtained by corona-treating the surface of the non-stretched polypropylene film on the side of the sealant adhesive layer 16) is formed by the dry lamination method instead of the sandwich lamination method through the sealant adhesive layer 16.
  • the metal foil layer 14 were bonded together.
  • Example 2-2 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the above changes were made.
  • the base material layer 11 has a 95 ° C. hot water shrinkage rate of less than 5% and a 180 ° C. hot shrinkage.
  • the exterior material of Example 2-2 using a polyester film with a rate of 10 to 25% improves the deep drawability while maintaining the adhesion even when the sealant adhesive layer 16 is provided by the dry lamination method. It was confirmed that it was possible.
  • Example 2-3 In Example 2-3, instead of forming the corrosion prevention treatment layers 15a and 15b using sodium polyphosphate-stabilized cerium oxide sol, a treatment comprising a phenol resin, a chromium fluoride compound, and phosphoric acid on both surfaces of the metal foil layer 14 A coating is formed by applying a liquid, and chromate treatment is performed by baking to form corrosion prevention treatment layers 15a and 15b, and the base material layer 11 is changed to polyethylene terephthalate film B-2-1. A power storage device exterior material 10 was produced in the same manner as in Example 2-1.
  • Example 2-4 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-2.
  • Example 2-5 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-3.
  • Example 2-6 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-4.
  • Comparative Example 2-2 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-5.
  • Comparative Example 2-3 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-6.
  • Comparative Example 2-4 a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the base material layer 11 was changed to polyethylene terephthalate film B-2-7.
  • the base material layer 11 has a 95 ° C. hot water shrinkage ratio of less than 5% and a 180 ° C. hot shrinkage.
  • the exterior material of Examples 2-3 to 2-6 using a polyester film having a rate of 10 to 25% is a polyester in which at least one of 95 ° C. hot water shrinkage and 180 ° C. hot shrinkage does not satisfy the above conditions It was confirmed that the deep drawability can be improved while maintaining the adhesion as compared with the exterior materials of Comparative Examples 2-2 to 2-4 using a film.
  • Example 2--7 In Example 2-7, instead of subjecting one side of the base material layer 11 to corona treatment, the easy adhesion treatment layer 12 is formed on the surface of the base material layer 11 on the adhesive layer 13 side, and the base material layer 11 is made of a polyethylene terephthalate film.
  • a power storage device exterior material 10 was produced in the same manner as in Example 2-1, except that the change was made to C-2-1.
  • the easy adhesion treatment layer 12 is coated on one side of the base material layer 11 by using an in-line coating method so that the coating agent serving as a base material of the easy adhesion treatment layer 12 is 0.1 g / m 2 in solid content. Then, the easy adhesion treatment layer 12 having a thickness of about 0.1 ⁇ m was formed by drying.
  • Comparative Example 2-5 a power storage device exterior material 10 was produced in the same manner as in Example 2-7, except that the base material layer 11 was changed to polyethylene terephthalate film C-2-2.
  • the 95 ° C. hot water shrinkage rate is less than 5% as the base material layer 11.
  • the outer packaging material of Example 2-7 using a polyester film having a 180 ° C. hot shrinkage of 10 to 25% is a comparative example using a polyester film having a 180 ° C. hot shrinkage not satisfying the above conditions. It was confirmed that the deep drawability can be improved while maintaining the adhesion as compared with the exterior material 2-5.
  • SYMBOLS 1 Battery element, 2 ... Lead, 10 ... Exterior material (exterior material for power storage device), 11 ... Base material layer, 12 ... Easy adhesion treatment layer, 13 ... Adhesive layer, 14 ... Metal foil layer, 15a, 15b ... Corrosion Prevention treatment layer, 16 ... sealant adhesive layer, 17 ... sealant layer, 30 ... embossed type exterior material, 32 ... molding process area (concave part), 34 ... lid part, 40 ... secondary battery.

Abstract

 少なくとも基材層、接着層、金属箔層、シーラント接着層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、基材層が、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムからなる層、又は、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムからなる層である、蓄電装置用外装材。

Description

蓄電装置用外装材、及びそれを用いた蓄電装置
 本発明は、蓄電装置用外装材、及びそれを用いた蓄電装置に関する。
 蓄電装置としては、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタが知られている。携帯機器の小型化又は設置スペースの制限等により蓄電装置のさらなる小型化が求められており、エネルギー密度が高いリチウムイオン電池が注目されている。リチウムイオン電池に用いられる外装材としては、従来は金属製の缶が用いられていたが、軽量で、放熱性が高く、低コストで作製できる多層フィルムが用いられるようになっている。
 上記多層フィルムを外装材に用いるリチウムイオン電池では、内部への水分の浸入を防止するため、アルミニウム箔層を含む外装材により電池内容物(正極、セパレータ、負極、電解液等)を覆う構成が採用されている。このような構成を採用したリチウムイオン電池は、アルミラミネートタイプのリチウムイオン電池と呼ばれている。
 アルミラミネートタイプのリチウムイオン電池は、例えば、外装材の一部に冷間成型によって凹部を形成し、該凹部内に電池内容物を収容し、外装材の残りの部分を折り返して縁部分をヒートシールで封止したエンボスタイプのリチウムイオン電池が知られている。(例えば、特許文献1参照)。このようなリチウムイオン電池では、冷間成型によって形成される凹部を深くするほど、より多くの電池内容物を収容できるため、エネルギー密度をより高くすることができる。
特開2013-101765号公報
 しかし、従来の蓄電装置用外装材に深い凹部を形成する深絞り成型を行うと接着層及び金属箔層の破断を生じることがある。そのため、外装材には、深絞り成型性の向上が求められている。
 また、外装材の製造工程では、複数の層を積層させるためのラミネート工程及び層間を接着する接着剤の乾燥工程を必要とする場合がある。しかし、ラミネート時又は乾燥時の加熱により基材層が熱収縮を起こし、基材層と金属箔層との間の密着性が低下することがある。熱による基材層と金属箔層との間の密着性の低下は、ラミネート時又は乾燥時の高温環境下だけでなく、温水中又は高温高湿環境下でも生じやすい。
 さらに、電池の製造工程では、電池内の電解液が外部に漏れ出す場合がある。このとき、漏れ出した電解液がその周辺の電池に付着したり、漏れ出した電解液によりその周辺の電池が電解液雰囲気にさらされたりすることで、金属箔層が腐食されることがある。このように外装材が電解液にさらされた場合も、基材層と金属箔層との間の密着性が低下するおそれがある。
 そして、外装材を長期間保管した際には、上述したような基材層と金属箔層との間の密着性の低下に起因して、基材層と金属箔層との間で剥離が生じることがある。そのため、外装材には、熱(高温、温水及び高温高湿)及び/又は電解液にさらされた場合であっても、基材層と金属箔層との間で剥離が生じることを長期間にわたって抑制することができる優れた密着性が求められている。
 本発明は上記事情に鑑みてなされたものであり、深絞り成型性を向上させつつ、電池の製造時及び使用時において基材層と金属箔層との間の密着性を維持することができる蓄電装置用外装材、及びそれを用いた蓄電装置を提供することを目的とする。
 上記目的を達成するために、本発明は、少なくとも基材層、接着層、金属箔層、シーラント接着層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、上記基材層が、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムからなる層、又は、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムからなる層である、蓄電装置用外装材を提供する。
 上記蓄電装置用外装材によれば、95℃熱水収縮率及び180℃熱間収縮率の双方が上記特定の範囲内であるポリアミドフィルム又はポリエステルフィルムからなる基材層を備えることにより、深絞り成型性を向上させつつ、電池の製造時及び使用時において基材層と金属箔層との間の密着性を維持することができる。そのため、上記蓄電装置用外装材によれば、接着層及び金属箔層の破断を生じることなく成型深度を向上させることができるとともに、熱(高温、温水及び高温高湿)及び/又は電解液にさらされた場合であっても基材層と金属箔層との間で剥離が生じることを長期間にわたって抑制することができる。
 上記蓄電装置用外装材は、上記基材層と上記接着層との間に設けられた易接着処理層を更に備えていることが好ましい。これにより、基材層と接着層との間の密着性をより向上させることができるとともに、深絞り成型性をより向上させることができる。
 上記蓄電装置用外装材において、上記易接着処理層が、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂及びアクリルグラフトポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含む層であることが好ましい。これにより、基材層と接着層との間の密着性をより向上させることができるとともに、深絞り成型性をより向上させることができる。
 上記蓄電装置用外装材は、上記金属箔層の両面に設けられた腐食防止処理層を更に備えていることが好ましい。これにより、基材層と金属箔層との間の密着性をより向上させることができる。
 上記蓄電装置用外装材において、上記腐食防止処理層が、希土類元素酸化物、及び、リン酸又はリン酸塩を含むことが好ましい。これにより、基材層と金属箔層との間の密着性をより向上させることができる。
 上記蓄電装置用外装材において、上記希土類元素酸化物が酸化セリウムであることが好ましい。これにより、基材層と金属箔層との間の密着性をより向上させることができる。
 本発明はまた、電極を含む電池要素と、上記電極から延在するリードと、上記電池要素を収容する容器とを備え、上記容器は上記本発明の蓄電装置用外装材から、上記シーラント層が内側となるように形成されている、蓄電装置を提供する。かかる蓄電装置では、電池要素を収容する容器として上記本発明の蓄電装置用外装材を用いているため、破断等が生じることなく容器に深い凹部を形成することができる。また、上記蓄電装置は、外装材が熱及び/又は電解液にさらされた場合でも、基材層と金属箔層との間で剥離が生じることを長期間にわたって抑制することができる。
 本発明によれば、深絞り成型性を向上させつつ、電池の製造時及び使用時において基材層と金属箔層との間の密着性を維持することができる蓄電装置用外装材、及びそれを用いた蓄電装置を提供することができる。
本発明の一実施形態に係る蓄電装置用外装材の概略断面図である。 本発明の一実施形態に係る蓄電装置用外装材を用いて得られるエンボスタイプ外装材を示す図であり、(a)は、その斜視図であり、(b)は、(a)に示すエンボスタイプ外装材のb-b線に沿った縦断面図である。 本発明の一実施形態に係る蓄電装置用外装材を用いて二次電池を製造する工程を示す斜視図であり、(a)は、蓄電装置用外装材を準備した状態を示し、(b)は、エンボスタイプに加工された蓄電装置用外装材と電池要素を準備した状態を示し、(c)は、蓄電装置用外装材の一部を折り返して端部を溶融した状態を示し、(d)は、折り返された部分の両側を上方に折り返した状態を示す。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。
[蓄電装置用外装材]
 図1は、本発明の蓄電装置用外装材の一実施形態を模式的に表す断面図である。図1に示すように、本実施形態の外装材(蓄電装置用外装材)10は、基材層11と、該基材層11の一方の面側に設けられた易接着処理層12と、該易接着処理層12の基材層11とは反対側に設けられた接着層13と、該接着層13の易接着処理層12とは反対側に設けられた、両面に腐食防止処理層15a,15bを有する金属箔層14と、該金属箔層14の接着層13とは反対側に設けられたシーラント接着層16と、該シーラント接着層16の金属箔層14とは反対側に設けられたシーラント層17と、が順次積層された積層体である。ここで、腐食防止処理層15aは金属箔層14の接着層13側の面に、腐食防止処理層15bは金属箔層14のシーラント接着層16側の面に、それぞれ設けられている。外装材10は、基材層11が最外層、シーラント層17が最内層である。すなわち、外装材10は、基材層11を蓄電装置の外部側、シーラント層17を蓄電装置の内部側に向けて使用される。以下、各層について説明する。
(基材層11)
 基材層11は、蓄電装置を製造する際における後述する加圧熱融着工程における耐熱性及び他の蓄電装置から漏れ出した電解液に対する耐電解液性を外装材10に付与し、加工又は流通の際に起こり得るピンホールの発生を抑制するための層である。また、基材層11は、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムからなる層、又は、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムからなる層である。
 ここで、95℃熱水収縮率は、以下の方法で測定される値である。すなわち、95℃熱水収縮率は、基材層11を縦10cm×横10cmのサイズに切断した試験片を、95℃の熱水中に30分間浸漬し、試験片の縦方向及び横方向(直交する2方向)における浸漬前後の寸法変化率を下記式(I)に基づいて求め、2方向の寸法変化率の平均値として算出したものである。なお、試験片の縦方向及び横方向は、それぞれ基材層原反のMD方向(機械送り方向)及びTD方向(MD方向の垂直方向)に一致させるものとする。つまり、基材層11が二軸延伸フィルムからなる場合には、試験片の縦方向及び横方向はそれぞれフィルムの2つの延伸方向のいずれか一方に一致している。
 また、180℃熱間収縮率は、基材層11を縦10cm×横10cmのサイズに切断した試験片を、180℃のオーブン内で30分間加熱し、試験片の縦方向及び横方向(直交する2方向)における加熱前後の寸法変化率を下記式(I)に基づいて求め、2方向の寸法変化率の平均値として算出したものである。なお、試験片の縦方向及び横方向は、95℃熱水収縮率の場合と同様である。
 寸法変化率(%)={(X-Y)/X}×100   ・・・(I)
[X:熱水への浸漬処理前又はオーブン内での加熱処理前の寸法、Y:熱水への浸漬処理後又はオーブン内での加熱処理後の寸法]
 以下、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムからなる基材層11を「基材層11a」、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムからなる基材層11を「基材層11b」と呼び、それぞれについて説明する。
(基材層11a)
 外装材10において、基材層11aを構成するポリアミドフィルムの95℃熱水収縮率が5%未満であることにより、熱及び/又は電解液にさらされた場合に、基材層11aと金属箔層14との間で剥離が生じることを長期間にわたって抑制することができる。また、基材層11aと金属箔層14との間で剥離が生じることをより長期間にわたって抑制することができることから、ポリアミドフィルムの95℃熱水収縮率は4%以下であることが好ましい。また、同様の観点から、ポリアミドフィルムの95℃熱水収縮率は0%以上であることが好ましい。
 また、外装材10において、基材層11aを構成するポリアミドフィルムの180℃熱間収縮率が4%以上であることにより、深絞り成型性を向上させることができ、接着層13及び金属箔層14の破断を生じることなく深絞り成型可能な成型深度を向上させることができる。また、深絞り成型性をより向上させる観点から、ポリアミドフィルムの180℃熱間収縮率は5%以上であることが好ましい。一方、外装材10において、基材層11aを構成するポリアミドフィルムの180℃熱間収縮率が16%以下であることにより、熱及び/又は電解液にさらされた場合に、基材層11aと金属箔層14との間で剥離が生じることを長期間にわたって抑制することができる。また、製造時にかかる熱による熱収縮によって熱シワが発生するのを防ぐことができる。
 基材層11aは、より優れた深絞り成型性が得られる観点から、二軸延伸ポリアミドフィルムからなる層であることが好ましい。
 二軸延伸ポリアミドフィルムを構成するポリアミド樹脂としては、例えば、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)、ナイロン11、ナイロン12等が挙げられる。これらの中でも、耐熱性、突刺強度及び衝撃強度に優れる観点から、ナイロン6(ONy)が好ましい。
 二軸延伸フィルムにおける延伸方法としては、例えば、逐次二軸延伸法、チューブラー二軸延伸法、同時二軸延伸法等が挙げられる。二軸延伸フィルムは、より優れた深絞り成型性が得られる観点から、チューブラー二軸延伸法により延伸されたものであることが好ましい。
 基材層11aの厚さは、6~40μmであることが好ましく、10~30μmであることがより好ましい。基材層11aの厚さが6μm以上であることにより、蓄電装置用外装材10の耐ピンホール性及び絶縁性を向上できる傾向がある。基材層11aの厚さが40μmを超えると蓄電装置用外装材10の総厚が大きくなり、電池の電気容量を小さくしなければいけなくなる場合があるため望ましくない。
(基材層11b)
 外装材10において、基材層11bを構成するポリエステルフィルムの95℃熱水収縮率が5%未満であることにより、熱及び/又は電解液にさらされた場合に、基材層11bと金属箔層14との間で剥離が生じることを長期間にわたって抑制することができる。また、基材層11bと金属箔層14との間で剥離が生じることをより長期間にわたって抑制することができることから、ポリエステルフィルムの95℃熱水収縮率は4%以下であることが好ましい。また、同様の観点から、ポリエステルフィルムの95℃熱水収縮率は0%以上であることが好ましい。
 また、外装材10において、基材層11bを構成するポリエステルフィルムの180℃熱間収縮率が10%以上であることにより、深絞り成型性を向上させることができ、接着層13及び金属箔層14の破断を生じることなく深絞り成型可能な成型深度を向上させることができる。一方、外装材10において、基材層11bを構成するポリエステルフィルムの180℃熱間収縮率が25%以下であることにより、熱及び/又は電解液にさらされた場合に、基材層11bと金属箔層14との間で剥離が生じることを長期間にわたって抑制することができる。また、製造時にかかる熱による熱収縮によって熱シワが発生するのを防ぐことができる。
 基材層11bは、より優れた深絞り成型性が得られる観点から、二軸延伸ポリエステルフィルムからなる層であることが好ましい。
 二軸延伸ポリエステルフィルムを構成するポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル等が挙げられる。
 二軸延伸フィルムにおける延伸方法としては、例えば、逐次二軸延伸法、チューブラー二軸延伸法、同時二軸延伸法等が挙げられる。二軸延伸フィルムは、より優れた深絞り成型性が得られる観点から、チューブラー二軸延伸法及び同時二軸延伸法により延伸されたものであることが好ましい。
 基材層11bの厚さは、6~40μmであることが好ましく、10~30μmであることがより好ましい。基材層11bの厚さが6μm以上であることにより、蓄電装置用外装材10の耐ピンホール性及び絶縁性を向上できる傾向がある。基材層11bの厚さが40μmを超えると蓄電装置用外装材10の総厚が大きくなり、電池の電気容量を小さくしなければいけなくなる場合があるため望ましくない。
(易接着処理層12)
 易接着処理層12は、基材層11の一方の面側に設けられ、基材層11と接着層13との間に配置されている。易接着処理層12は、基材層11と接着層13との間の密着性を向上させ、ひいては基材層11と金属箔層14との間の密着性を向上させるための層である。蓄電装置用外装材10において、易接着処理層12は設けられていなくてもよい。その場合、基材層11と接着層13との間の密着性を向上させ、ひいては基材層11と金属箔層14との間の密着性を向上させるために、基材層11の接着層13側の面をコロナ処理してもよい。
 易接着処理層12は、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂及びアクリルグラフトポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含む層であることが好ましい。かかる易接着処理層12は、例えば、基材層11の一方の面上に、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂及びアクリルグラフトポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を主成分とする塗工剤を塗布して形成することができる。
<ポリエステル樹脂>
 ポリエステル樹脂としては、接着性の点から、共重合成分を導入しガラス転移温度を低下させた共重合ポリエステルが好ましい。共重合ポリエステルは、塗工性の点から水溶性もしくは水分散性を有することが好ましい。このような共重合ポリエステルとしては、スルホン酸基又はそのアルカリ金属塩基からなる群より選択される少なくとも1種の基が結合した共重合ポリエステル(以下、「スルホン酸基含有共重合ポリエステル」という)を用いることが好ましい。
 ここでスルホン酸基含有共重合ポリエステルとは、ジカルボン酸成分又はグリコール成分の一部にスルホン酸基又はそのアルカリ金属塩基からなる群より選択される少なくとも1種の基が結合したポリエステルをいい、中でも、スルホン酸基又はそのアルカリ金属塩基からなる群より選択される少なくとも1種の基を含有した芳香族ジカルボン酸成分を全酸成分に対して2~10モル%の割合で用いて調製した共重合ポリエステルが好ましい。
 このようなジカルボン酸の例としては、5-ナトリウムスルホイソフタル酸が好適である。この場合、他のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、p-β-オキシエトキシ安息香酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニル、4,4’-ジカルボキシベンゾフェノン、ビス(4-カルボキシフェニル)エタン、アジピン酸、セバシン酸、シクロヘキサン-1,4-ジカルボン酸等が挙げられる。
 スルホン酸基含有共重合ポリエステルを製造するためのグリコール成分としては、エチレングリコールが主として用いられ、この他に、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等を用いることができる。中でも、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジメタノール等を共重合成分として用いると、ポリスチレンスルホン酸塩との相溶性が向上するという点で好ましい。
 また、ポリエステル樹脂としては、変性ポリエステル共重合体、例えば、ポリエステル、ウレタン、エポキシなどで変性したブロック共重合体、グラフト共重合体などを使用してもよい。本実施形態では、易接着処理層12と基材層11及び接着層13との間の密着性を向上させるために、易接着処理層12にポリエステル樹脂以外の樹脂を更に含有させてもよい。このような樹脂としては、例えば、ウレタン樹脂、アクリル樹脂などが挙げられる。
<アクリル樹脂>
 アクリル樹脂を構成するモノマー成分としては、例えば、アルキルアクリレート、アルキルメタクリレート(アルキル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、ラウリル基、ステアリル基、シクロヘキシル基、フェニル基、ベンジル基、フェニルエチル基などが挙げられる);2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレートなどのヒドロキシ基含有モノマー;アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-フェニルアクリルアミドなどのアミド基含有モノマー;N,N-ジエチルアミノエチルアクリレート、N,N-ジエチルアミノエチルメタクリレートなどのアミノ基含有モノマー;グリシジルアクリレート、グリシジルメタクリレートなどのエポキシ基含有モノマー;アクリル酸、メタクリル酸およびそれらの塩(リチウム塩、ナトリウム塩、カリウム塩など)などのカルボキシル基、またはその塩を含有するモノマーなどを用いることができる。これらは1種を単独で用いてもよく、2種以上を用いて共重合させてもよい。更に、これらは上記以外の他のモノマーと併用することができる。
 他のモノマーとしては、例えば、アリルグリシジルエーテルなどのエポキシ基含有モノマー;スチレンスルホン酸、ビニルスルホン酸およびそれらの塩(リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩など)などのスルホン酸基またはその塩を含有するモノマー;クロトン酸、イタコン酸、マレイン酸、フマール酸、およびそれらの塩(リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩など)などのカルボキシル基またはその塩を含有するモノマー;無水マレイン酸、無水イタコン酸などの酸無水物を含有するモノマー;ビニルイソシアネート、アリルイソシアネート、スチレン、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリスアルコキシシラン、アルキルマレイン酸モノエステル、アルキルフマール酸モノエステル、アクリロニトリル、メタクリロニトリル、アルキルイタコン酸モノエステル、塩化ビニリデン、酢酸ビニル、塩化ビニルなどを用いることができる。また、アクリル樹脂としては、変性アクリル共重合体、例えば、ポリエステル、ウレタン、エポキシなどで変性したブロック共重合体、グラフト共重合体などを使用してもよい。
 本実施形態において用いられるアクリル樹脂のガラス転移点(Tg)は特に限定されるものではないが、好ましくは0~90℃であり、より好ましくは10~80℃である。Tgが低いと高温高湿下での密着性が低下したり、高いと延伸時にクラックが発生したりすることがあるため、それらを抑制する観点から、アクリル樹脂のTgは上記範囲内であることが好ましい。
 また、本実施形態において用いられるアクリル樹脂の重量平均分子量は10万以上であることが好ましく、30万以上であることがより好ましい。重量平均分子量が低いと耐湿熱性が低下する場合がある。本実施形態では、易接着処理層12と基材層11及び接着層13との間の密着性を向上させるために、易接着処理層12にアクリル樹脂以外の樹脂を更に含有させてもよい。このような樹脂としては、例えば、ポリエステル樹脂、ウレタン樹脂などが挙げられる。
<ポリウレタン樹脂>
 ポリウレタン樹脂としては、水系ポリウレタン樹脂が好ましい。水系ポリウレタン樹脂としては、粒子径が小さく、安定性が良好な点から、自己乳化型が好ましい。水系ポリウレタン樹脂の粒子径は、10~100nm程度にするとよい。本実施形態に用いる水系ポリウレタン樹脂は、そのガラス転移点(Tg)が40℃~150℃であることが望ましい。Tgが40℃以上であると塗工後ロール状に巻き取る際にブロッキングが発生することを十分に抑制できる傾向がある。一方、塗工後の乾燥温度よりTgが高すぎると均一な膜を形成し難いため、Tgは150℃以下であることが好ましい。
 また、本実施形態では、水系ポリウレタン樹脂とともに架橋剤を用いてもよい。水系ポリウレタンの架橋剤としては、水溶性エポキシ化合物等、汎用の水溶性架橋剤が使用できる。水溶性エポキシ化合物は、水への溶解性があり、2個以上のエポキシ基を有する化合物である。水溶性エポキシ化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のグリコール類1モルと、エピクロルヒドリン2モルとのエーテル化によって得られるポリエポキシ化合物、及び、フタル酸、テレフタル酸、アジピン酸、シュウ酸等のジカルボン酸類1モルとエピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物等が挙げられる。但し、水溶性エポキシ化合物はこれらに限定されるものではない。
 これら水溶性架橋剤は、水系ポリウレタン樹脂と架橋し、塗膜の耐水性、耐溶剤性を向上し、易接着処理層12と基材層11及び接着層13との間の密着性向上にも寄与する。本実施形態では、易接着処理層12と基材層11及び接着層13との間の密着性を向上させるためにウレタン樹脂以外の樹脂を更に含有させてもよい。このような樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂などが挙げられる。
 また、易接着処理層12は、例えば、主成分である上記樹脂と、多官能イソシアネート、多官能グリシジル化合物、メラミン系化合物等の硬化剤と、を含むように構成してもよい。このように、主成分である上記樹脂と、多官能イソシアネート、多官能グリシジル化合物、メラミン系化合物等の硬化剤と、を含むことにより、架橋構造を取り入れることが可能となるので、強硬な易接着処理層12を構成することができる。
 易接着処理層12を形成するために使用する塗工剤は、溶剤系でもよいし、水系でもよい。水系の主剤を用いた分散タイプ(ディスパージョン)は、分子量が大きく、分子間凝集力が向上して、易接着処理層12と基材層11及び接着層13との間の密着性に有効である。
 易接着処理層12の厚さは、0.02~0.5μmであることが好ましく、0.04~0.3μmであることがより好ましい。易接着処理層12の厚さが0.02μm以上であると、均一な易接着処理層12を形成し易く、より十分な易接着効果が得られる傾向がある。一方、易接着処理層12の厚さが0.5μm以下であることにより、外装材10の深絞り成型性をより向上できる傾向がある。
(接着層13)
 接着層13は、基材層11と金属箔層14とを接着する層である。接着層13は、基材層11とは易接着処理層12を介して接着する。接着層13は、基材層11と金属箔層14とを強固に接着するために必要な密着力を有すると共に、冷間成型する際において、基材層11によって金属箔層14が破断されることを抑制するための追随性(部材が変形・伸縮したとしても、剥離することなく部材上に接着層13を確実に形成するための性能)も有する。
 接着層13を構成する接着剤としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール等のポリオールよりなる主剤と、芳香族系、脂肪族系等のイソシアネートよりなる硬化剤と、を有する二液硬化型のポリウレタン系接着剤を用いることができる。上記接着剤において、主剤の水酸基に対する硬化剤のイソシアネート基のモル比(=NCO/OH)は、1~10が好ましく、2~5がより好ましい。
 上記ポリウレタン系接着剤は、塗工後、例えば40℃で4日以上のエージングを行うことで、主剤の水酸基と硬化剤のイソシアネート基との反応が進行し、基材層11と金属箔層14とのより強固な接着が可能となる。
 接着層13の厚さは、所望の接着強度、追随性、及び加工性等を得る観点から、1~10μmが好ましく、2~6μmがより好ましい。
(金属箔層14)
 金属箔層14としては、アルミニウム及びステンレス鋼等の各種金属箔が挙げられ、防湿性及び延展性等の加工性、並びにコストの面から、金属箔層14はアルミニウム箔であることが好ましい。アルミニウム箔は一般の軟質アルミニウム箔であってもよいが、耐ピンホール性及び成形時の延展性に優れる点から、鉄を含むアルミニウム箔であることが好ましい。
 鉄を含むアルミニウム箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた耐ピンホール性及び延展性を有する外装材10を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた外装材10を得ることができる。
 また、アルミニウム箔としては、所望の成型時の延展性を付与できる点から、焼鈍処理を施した軟質アルミニウム箔(例えば、JIS規格でいう8021材、8079材よりなるアルミニウム箔)がさらに好ましい。
 金属箔層14に使用する金属箔は、所望の耐電解液性を得るために、例えば、脱脂処理が施されていることが好ましい。また、製造工程を簡便にするためには、上記金属箔としては、表面がエッチングされていないものが好ましい。上記脱脂処理としては、例えば、ウェットタイプの脱脂処理またはドライタイプの脱脂処理を用いることができるが、製造工程を簡便にする観点から、ドライタイプの脱脂処理が好ましい。
 上記ドライタイプの脱脂処理としては、例えば、金属箔を焼鈍処理する工程において、処理時間を長くすることで脱脂処理を行う方法が挙げられる。金属箔を軟質化するために施される焼鈍処理の際に、同時に行われる脱脂処理程度でも充分な耐電解液性が得られる。
 また、上記ドライタイプの脱脂処理としては、上記焼鈍処理以外の処理であるフレーム処理及びコロナ処理等の処理を用いてもよい。さらに、上記ドライタイプの脱脂処理としては、例えば、金属箔に特定波長の紫外線を照射した際に発生する活性酸素により、汚染物質を酸化分解及び除去する脱脂処理を用いてもよい。
 上記ウェットタイプの脱脂処理としては、例えば、酸脱脂処理、アルカリ脱脂処理等の処理を用いることができる。上記酸脱脂処理に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸等の無機酸を用いることができる。これらの酸は、1種を単独で使用してもよいし、2種以上を併用してもよい。また、アルカリ脱脂処理に使用するアルカリとしては、例えば、エッチング効果が高い水酸化ナトリウムを用いることができる。また、弱アルカリ系の材料及び界面活性剤等が配合された材料を用いて、アルカリ脱脂処理を行ってもよい。上記説明したウェットタイプの脱脂処理は、例えば、浸漬法、スプレー法により行うことができる。
 金属箔層14の厚さは、バリア性、耐ピンホール性及び加工性の点から、9~200μmであることが好ましく、15~150μmであることがより好ましく、15~100μmであることが更に好ましい。金属箔層14の厚さが9μm以上であることにより、成型加工により応力がかかっても破断しにくくなる。金属箔層14の厚さが200μm以下であることにより、外装材の質量増加を低減でき、蓄電装置の重量エネルギー密度低下を抑制することができる。
(腐食防止処理層15a,15b)
 腐食防止処理層15a,15bは、電解液、又は、電解液と水分の反応により発生するフッ酸による金属箔層14の腐食を抑制する役割を果たす。また、腐食防止処理層15aは、金属箔層14と接着層13との密着力を高める役割を果たす。また、腐食防止処理層15bは、金属箔層14とシーラント接着層16との密着力を高める役割を果たす。腐食防止処理層15a及び腐食防止処理層15bは、同一の構成の層であってもよく、異なる構成の層であってもよい。
 腐食防止処理層15a,15bは、例えば、腐食防止処理層15a,15bの母材となる層に対して、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、腐食防止能を有するコーティング剤を塗工するコーティングタイプの腐食防止処理あるいはこれらの処理を組み合わせた腐食防止処理を実施することで形成することができる。
 上述した処理のうち脱脂処理、熱水変成処理、陽極酸化処理、特に熱水変性処理及び陽極酸化処理は、処理剤によって金属箔(アルミニウム箔)表面を溶解させ、耐腐食性に優れる金属化合物(アルミニウム化合物(ベーマイト、アルマイト))を形成させる処理である。このため、このような処理は、金属箔層14から腐食防止処理層15a,15bまで共連続構造を形成している構造を得るために、化成処理の定義に包含されるケースもある。
 脱脂処理としては、酸脱脂、アルカリ脱脂が挙げられる。酸脱脂としては上述した硫酸、硝酸、塩酸、フッ酸などの無機酸を単独あるいはこれらを混合して得られた酸脱脂を用いる方法などが挙げられる。また酸脱脂として、一ナトリウム二フッ化アンモニウムなどのフッ素含有化合物を上記無機酸で溶解させた酸脱脂剤を用いることで、金属箔層14の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、耐フッ酸性という点で有効である。アルカリ脱脂としては、水酸化ナトリウムなどを用いる方法が挙げられる。
 上記熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中に金属箔層14を浸漬処理することで得られるベーマイト処理を用いることができる。上記陽極酸化処理としては、例えば、アルマイト処理を用いることができる。また、上記化成処理としては、例えば、クロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、或いはこれらを2種以上組み合わせた処理を用いることができる。これらの熱水変成処理、陽極酸化処理、化成処理は、上述した脱脂処理を事前に施すことが好ましい。
 なお、上記化成処理としては、湿式法に限らず、例えば、これらの処理に使用する処理剤を樹脂成分と混合し、塗布する方法を用いてもよい。また、上記腐食防止処理としては、その効果を最大限にすると共に、廃液処理の観点から、塗布型クロメート処理が好ましい。
 腐食防止性能を有するコーティング剤を塗工するコーティングタイプの腐食防止処理に用いられるコーティング剤としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤が挙げられる。特に、希土類元素酸化物ゾルを含有するコーティング剤を用いる方法が好ましい。
 希土類元素酸化物ゾルを含有するコーティング剤を用いる方法は、純粋なコーティングタイプの腐食防止処理であり、この方法を用いることで、一般的なコーティング方法でも金属箔層14に腐蝕防止効果を付与させることが可能である。また、希土類元素酸化物ゾルを用いて形成される層は、金属箔層14の腐蝕防止効果(インヒビター効果)を有し、かつ、環境側面的にも好適な材料である。
 希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられる。中でも、酸化セリウムが好ましい。これにより、金属箔層14との間の密着性をより向上させることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができる。中でも、水が好ましい。腐食防止処理層15a,15bに含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。
 希土類元素酸化物ゾルは、希土類元素酸化物粒子の分散を安定化させるために、分散安定化剤として、硝酸、塩酸、リン酸などの無機酸、酢酸、リンゴ酸、アスコルビン酸、乳酸などの有機酸、それらの塩等を含有することが好ましい。これらの分散安定化剤のうち、特にリン酸又はリン酸塩を用いることが好ましい。これにより、希土類元素酸化物粒子の分散安定化だけでなく、リチウムイオン電池用外装材の用途において、リン酸のキレート能力を利用した、金属箔層14との間の密着性向上、フッ酸の影響で溶出した金属物イオンを捕獲(不動態形成)することによる電解液耐性の付与、低温でもリン酸の脱水縮合を起こし易いことによる希土類元素酸化物層の凝集力向上などの効果が期待できる。分散安定化剤として用いられるリン酸又はリン酸塩としては、例えば、オルトリン酸、ピロリン酸、メタリン酸、これらのアルカリ金属塩、アンモニウム塩などが挙げられる。中でも、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸などの縮合リン酸、あるいはこれらのアルカリ金属塩及びアンモニウム塩が、リチウムイオン電池用外装材としての機能発現に好ましい。特に、希土類元素酸化物ゾルを含むコーティング組成物を用いて、各種コーティング法により希土類酸化物を含む層を形成させる時の乾燥造膜性(乾燥能力、熱量)を考慮すると、低温での反応性に優れる剤が好ましく、低温での脱水縮合性に優れる点から、ナトリウム塩が好ましい。リン酸塩としては、水溶性の塩が好ましい。腐食防止処理層15a,15bに含まれるリン酸又はリン酸塩は、1種を単独で又は2種以上を組み合わせて用いることができる。
 希土類元素酸化物ゾル中、リン酸あるいはその塩の配合量としては、希土類元素酸化物100質量部に対し、1質量部以上が好ましく、5質量部以上がより好ましい。1質量部以上であると、ゾルの安定化が良好であると共にリチウムイオン電池用外装材としての機能を満たすことが容易である。希土類元素酸化物100質量部に対するリン酸あるいはその塩の配合上限は、希土類元素酸化物ゾルの機能低下を伴わない範囲であればよく、希土類元素酸化物100質量部に対し、100質量部以下が好ましく、50質量部以下がより好ましく、20質量部以下がさらに好ましい。
 ただし、上述した希土類元素酸化物ゾルから形成される層は無機粒子の集合体であるため、乾燥キュアの工程を経ても、その層自身の凝集力は低い。そこで、この層の凝集力を補うために、アニオン性ポリマーで複合化させることが好適である。
 アニオン性ポリマーとしては、カルボキシ基を有するポリマーが挙げられ、例えば、ポリ(メタ)アクリル酸(あるいはその塩)、あるいはポリ(メタ)アクリル酸を主成分として共重合した共重合体が挙げられる。該共重合体の共重合成分としては、アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド等のアミド基含有モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエ卜キシラン等のシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネー卜等のイソシアネー卜基含有モノマー等が挙げられる。また、スチレン、α-メチルスチレン、ビニルメチルエーテル、ビニルエチルエーテル、マレイン酸、アルキルマレイン酸モノエステル、フマル酸、アルキルフマル酸モノエステル、イタコン酸、アルキルイタコン酸モノエステル、(メタ)アクリロニトリル、塩化ビニリデン、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ブタジエン等が挙げられる。
 アニオン性ポリマーは、希土類元素酸化物ゾルを用いて得られた腐食防止処理層15a,15b(酸化物層)の安定性を向上させる役割を果たす。これは、硬くて脆い酸化物層をアクリル系樹脂成分で保護する効果、及び、希土類酸化物ゾルに含まれるリン酸塩由来のイオンコンタミネーション(特にナトリウムイオン)を捕捉する(カチオンキャッチャー)効果によって達成される。つまり、希土類元素酸化物ゾルを用いて得られた腐食防止処理層15a,15b中に、特にナトリウム等のアルカリ金属イオン又はアルカリ土類金属イオンが含まれると、該イオンを含む場所を起点にして腐食防止処理層15a,15bが劣化し易くなる。そのため、アニオン性ポリマーによって希土類酸化物ゾルに含まれるナトリウムイオン等を固定化することで、腐食防止処理層15a,15bの耐性が向上する。
 アニオン系ポリマーと希土類元素酸化物ゾルと組み合わせた腐食防止処理層15a,15bは、金属箔層14にクロメート処理を施して形成した腐食防止処理層15a,15bと同等の腐食防止性能を有する。アニオン系ポリマーは、本質的に水溶性であるポリアニオン系ポリマーが架橋された構造であることが好ましい。該構造の形成に用いる架橋剤としては、例えば、イソシアネー卜基、グリシジル基、カルボキシ基、オキサゾリン基を有する化合物が挙げられる。さらにはシランカップリング剤を用いてシロキサン結合を有する架橋部位を導入することも可能である。
 イソシアネー卜基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネートあるいはその水素添加物、ヘキサメチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートあるいはその水素添加物、イソホロンジイソシアネー卜などのジイソシアネー卜類;あるいはこれらのイソシアネー卜類を、トリメチロールプロパンなどの多価アルコールと反応させたアダクト体、水と反応させることで得られたビューレッ卜体、あるいは三量体であるイソシアヌレート体などのポリイソシアネー卜類;あるいはこれらのポリイソシアネー卜類をアルコール類、ラクタム類、オキシム類などでブロック化させたブロックポリイソシアネー卜などが挙げられる。
 グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等のグリコール類とエピクロルヒドリンを作用させたエポキシ化合物、グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリ卜ール、ソルビ卜ール等の多価アルコール類とエピクロルヒドリンを作用させたエポキシ化合物、フタル酸、テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸とエピクロルヒドリンとを作用させたエポキシ化合物などが挙げられる。
 カルボキシ基を有する化合物としては、各種脂肪族あるいは芳香族ジカルボン酸などが挙げられ、さらにはポリ(メタ)アクリル酸及びポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いることも可能である。
 オキサゾリン基を有する化合物としては、例えば、オキサゾリンユニットを2つ以上有する低分子化合物、あるいはイソプロペニルオキサゾリンのような重合性モノマーを用いる場合には、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキル等のアクリル系モノマーを共重合させた化合物が挙げられる。
 シランカップリング剤としては、γ-グリシドキシプロピル卜リメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシランが挙げられ、特にアニオン性ポリマーとの反応性を考慮すると、エポキシシラン、アミノシラン、イソシアネートシランが好ましい。
 架橋剤の配合量は、アニオン性ポリマー100質量部に対し、1~50質量部が好ましく、10~20質量部がより好ましい。架橋剤の比率がアニオン性ポリマー100質量部に対して1質量部以上であれば、架橋構造が充分に形成され易い。架橋剤の比率がアニオン性ポリマー100質量部に対して50質量部以下であれば、塗液のポットライフが向上する。
 アニオン性ポリマーを架橋する方法は、上記架橋剤に限らず、チタニウム、ジルコニウム化合物を用いてイオン架橋を形成する方法等であってもよい。また、これらの材料は、腐食防止処理層15aを形成するコーティング組成物を適用してもよい。
 以上説明した腐食防止処理層15a,15bにおいて、クロメート処理に代表される化成処理による腐食防止処理層15a,15bは、金属箔層14との傾斜構造を形成させるため、特にフッ酸、塩酸、硝酸、硫酸あるいはこれらの塩を配合した化成処理剤を用いて金属箔層14に処理を施し、次いでクロム系又はノンクロム系の化合物を作用させて化成処理層を金属箔層14に形成させる。しかし、上記化成処理は、化成処理剤に酸を用いていることから、作業環境の悪化及びコーティング装置の腐食を伴う。
 一方、前述したコーティングタイプの腐食防止処理層15a,15bは、クロメート処理に代表される化成処理とは異なり、金属箔層14に対して傾斜構造を形成させる必要がない。そのため、コーティング剤の性状は、酸性、アルカリ性、中性等の制約を受けることがなく、良好な作業環境を実現できる。加えて、クロム化合物を用いるクロメート処理は、環境衛生上、代替案が求められている点からも、コーティングタイプの腐食防止処理層15a,15bが好ましい。
 腐食防止処理層15a,15bは、必要に応じて、さらにカチオン性ポリマーを積層した積層構造としてもよい。カチオン性ポリマーとしては、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーとからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフ卜させた1級アミングラフトアクリル樹脂、ポリアリルアミンあるいはこれらの誘導体、アミノフェノール樹脂等が挙げられる。
 イオン高分子錯体を形成する「カルボン酸を有するポリマー」としては、例えば、ポリカルボン酸(塩)、ポリカルボン酸(塩)にコモノマーを導入した共重合体、カルボキシ基を有する多糖類等が挙げられる。ポリカルボン酸(塩)としては、例えば、ポリアクリル酸あるいはそのイオン塩などが挙げられる。カルボキシ基を有する多糖類としては、例えば、カルボキシメチルセルロースあるいはそのイオン塩などが挙げられる。イオン塩としては、アルカリ金属塩、アルカリ土類金属塩等が挙げられる。
 1級アミングラフ卜アクリル樹脂は、アクリル主骨格に1級アミンをグラフ卜させた樹脂である。該アクリル主骨格としては、ポリ(メタ)アクリル酸など、上述したアクリルポリオールで用いられる各種モノマーが挙げられる。該アクリル主骨格にグラフ卜させる1級アミンとしては、エチレンイミン等が挙げられる。
 ポリアリルアミンまたはその誘導体としては、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミンなどの単独重合体あるいは共重合体を用いることが可能であり、さらに、これらのアミンはフリーのアミンでも酢酸あるいは塩酸による安定化物でも用いることが可能である。またさらに共重合体成分として、マレイン酸、二酸化イオウなどを用いることも可能である。さらには1級アミンを部分メトキシ化させることで熱架橋性を付与させたタイプも用いることが可能である。これらのカチオン性ポリマーは、1種単独で用いてもよく、2種以上を併用してもよい。カチオン性ポリマーとしては、上記の中でも、ポリアリルアミン及びその誘導体からなる群から選ばれる少なくとも1種が好ましい。
 カチオン性ポリマーは、カルボキシ基、グリシジル基等のアミン/イミンと反応が可能な官能基を有する架橋剤と併用することが好ましい。カチオン性ポリマーと併用する架橋剤としては、ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーも使用でき、例えば、ポリアクリル酸あるいはそのイオン塩等のポリカルボン酸(塩)、あるいはこれにコモノマーを導入した共重合体、カルボキシメチルセルロースあるいはそのイオン塩等のカルボキシ基を有する多糖類等が挙げられる。
 本実施形態においては、カチオン性ポリマーも腐食防止処理層15a,15bを構成する一構成要素として記載している。その理由は、リチウムイオン電池用外装材で要求される電解液耐性、フッ酸耐性を付与させるべく様々な化合物を用い鋭意検討を行った結果、カチオン性ポリマー自体にも、電解液耐性、耐フッ酸性を付与することが可能な化合物であることが判明したためである。この要因は、フッ素イオンをカチオン性基で捕捉する(アニオンキャッチャー)ことで、金属箔層14が損傷することを抑制しているためであると推測される。また、カチオン性ポリマーは、腐食防止処理層15bとシーラント接着層16の接着性の向上の点でも非常に好ましい。また、カチオン性ポリマーは、前述したアニオン性ポリマーと同様に水溶性であるため、上記架橋剤を用いて架橋構造を形成させることで耐水性を向上させることができる。このように、カチオン性ポリマーを用いても架橋構造を形成させることができることから、腐食防止処理層15a,15bの形成に希土類酸化物ゾルを用いた場合には、その保護層としてアニオン性ポリマーの代わりにカチオン性ポリマーを用いてもよい。
 以上の内容から、上述したコーティングタイプの腐食防止処理の組み合わせの事例として、(1)希土類酸化物ゾルのみ、(2)アニオン性ポリマーのみ、(3)カチオン性ポリマーのみ、(4)希土類酸化物ゾル+アニオン性ポリマー(積層複合化)、(5)希土類酸化物ゾル+カチオン性ポリマー(積層複合化)、(6)(希土類酸化物ゾル+アニオン性ポリマー:積層複合化)/カチオン性ポリマー(多層化)、(7)(希土類酸化物ゾル+カチオン性ポリマー:積層複合化)/アニオン性ポリマー(多層化)、等が挙げられる。中でも(1)及び(4)~(7)が好ましく、(4)~(7)がより好ましい。また、腐食防止処理層15aの場合、腐食防止効果とアンカー効果(密着性向上効果)が一層で実現できることから、(6)が特に好ましい。また、腐食防止処理層15bの場合、シーラント層17側の電解液耐性をより保持し易くなることから、(6)及び(7)が特に好ましい。ただし、本実施形態は、上記組み合せに限られるわけではない。たとえば腐食防止処理の選択の事例として、カチオン性ポリマーは、後述するシーラント接着層16の説明で挙げる変性ポリオレフィン樹脂との接着性が良好であるという点でも非常に好ましい材料であることから、シーラント接着層16を変性ポリオレフィン樹脂で構成される場合においては、シーラント接着層16に接する面にカチオン性ポリマーを設ける(例えば、構成(5)及び(6)などの構成)といった設計が可能である。
 ただし腐食防止処理層15a,15bは上述した層には限定されない。例えば、公知技術である塗布型クロメートのように、樹脂バインダー(アミノフェノール樹脂など)にリン酸とクロム化合物を配合した剤を用いて形成してもよい。該処理剤を用いれば、腐食防止機能と密着性を双方兼ね備えた層を形成することが可能になる。また、上述した化成処理層(脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいはこれら処理の組み合わせにより形成した層)に対して、密着性を向上させるために、上述してきたカチオン性ポリマー及び/又はアニオン性ポリマーを用いて複合的な処理を施したり、あるいはこれらの処理の組み合わせに対して多層構造としてカチオン性ポリマー及び/又はアニオン性ポリマーを積層させたりすることも可能である。また、塗液の安定性を考慮する必要があるが、上述してきた希土類酸化物ゾルとカチオン性ポリマーあるいはアニオン性ポリマーとを事前に一液化して得られたコーティング剤を使用して腐食防止機能と密着性の両方を兼ね備えた層とすることができる。
 腐食防止処理層15a,15bの単位面積あたりの質量は0.005~0.200g/mの範囲内が好ましく、0.010~0.100g/mの範囲内がより好ましい。0.005g/m以上であれば、金属箔層14に腐食防止機能を付与し易い。また、上記単位面積当たりの質量が0.200g/mを超えても、腐食防止機能は飽和してあまり変らない。一方、希土類酸化物ゾルを用いた場合には、塗膜が厚いと乾燥時の熱によるキュアが不充分となり、凝集力の低下を伴うおそれがある。なお、上記内容では単位面積あたりの質量で記載しているが、比重がわかればそこから厚みを換算することも可能である。
 腐食防止処理層15a,15bの厚さは、腐食防止機能、及びアンカーとしての機能の点から、例えば10nm~5μmであることが好ましく、20~500nmであることがより好ましい。
(シーラント接着層16)
 シーラント接着層16は、腐食防止処理層15bが形成された金属箔層14とシーラント層17を接着する層である。外装材10は、シーラント接着層16を形成する接着成分によって、熱ラミネート構成とドライラミネート構成に大きく分けられる。
 熱ラミネート構成におけるシーラント接着層16を形成する接着成分は、ポリオレフィン系樹脂を酸でグラフト変性した酸変性ポリオレフィン系樹脂であることが好ましい。酸変性ポリオレフィン系樹脂は、無極性であるポリオレフィン系樹脂の一部に極性基が導入されていることから、無極性のポリオレフィン系樹脂フィルム等で構成された場合のシーラント層17と、極性を有することが多い腐食防止処理層15bの両方に強固に密着することができる。また、酸変性ポリオレフィン系樹脂を使用することで、外装材10の電解液等の内容物に対する耐性が向上し、電池内部でフッ酸が発生してもシーラント接着層16の劣化による密着力の低下を防止し易い。
 酸変性ポリオレフィン系樹脂のポリオレフィン系樹脂としては、例えば、低密度、中密度及び高密度のポリエチレン;エチレン-αオレフィン共重合体;ポリプロピレン;並びに、プロピレン-αオレフィン共重合体等が挙げられる。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。また、ポリオレフィン樹脂としては、上記したものにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。ポリオレフィン系樹脂を変性する酸としては、カルボン酸、エポキシ化合物及び酸無水物等が挙げられ、無水マレイン酸であることが好ましい。シーラント接着層16に使用する酸変性ポリオレフィン系樹脂は、1種であってもよく、2種以上であってもよい。
 熱ラミネート構成のシーラント接着層16は、上記接着成分を押出し装置で押し出すことで形成できる。熱ラミネート構成のシーラント接着層16の厚さは2~50μmであることが好ましい。
 ドライラミネート構成のシーラント接着層16を形成する接着成分としては、例えば、接着層13で挙げたものと同様の接着剤が挙げられる。この場合、電解液による膨潤及びフッ酸による加水分解を抑制するため、加水分解し難い骨格の主剤で、かつ架橋密度の向上が可能な組成となるように、接着剤の組成を設計することが好ましい。
 架橋密度を向上させる場合、例えば、ダイマー脂肪酸、ダイマー脂肪酸のエステルもしくは水素添加物、ダイマー脂肪酸の還元グリコール、ダイマー脂肪酸のエステルもしくは水素添加物の還元グリコールを接着剤に添加するとよい。上記ダイマー脂肪酸は、各種不飽和脂肪酸を二量化させた酸であり、その構造としては、非環型、単環型、多環型、芳香環型が例示できる。
 ダイマー脂肪酸の出発物質である脂肪酸は特に限定されない。また、このようなダイマー脂肪酸を必須成分として、通常のポリエステルポリオールで用いられるような二塩基酸を導入しても構わない。シーラント接着層16を構成する主剤に対する硬化剤としては、例えば、ポリエステルポリオールの鎖伸長剤としても使用できるイソシアネート化合物を用いることが可能である。これにより、接着剤塗膜の架橋密度が高まり、溶解性及び膨潤性の向上につながるとともに、ウレタン基濃度が高まることで基材密着性の向上も期待できる。
 ドライラミネート構成のシーラント接着層16は、エステル基及びウレタン基等の加水分解性の高い結合部を有しているので、より高い信頼性が求められる用途には、シーラント接着層16として熱ラミネート構成の接着成分を用いることが好ましい。例えば酸変性ポリオレフィン樹脂を、トルエン、メチルシクロヘキサン(MCH)等の溶剤にて溶解、あるいは、分散させた塗液に上述した各種硬化剤を配合し、塗布、乾燥させることでシーラント接着層16を形成する。
 シーラント接着層16を押出成型により形成する場合、押出成型時に発生する応力等により、接着樹脂がMD方向(押出す方向)に配向し易い。この場合、シーラント接着層16の異方性を緩和するために、シーラント接着層16にエラストマーを配合してもよい。シーラント接着層16に配合するエラストマーとしては、例えば、オレフィン系エラストマー、スチレン系エラストマー等を用いることができる。
 上記エラストマーの平均粒径は、エラストマーと接着樹脂との相溶性が向上し、またシーラント接着層16の異方性を緩和する効果を向上させることが可能な粒径が好ましい。具体的には、上記エラストマーの平均粒径は、例えば、200nm以下が好ましい。
 なお、エラストマーの平均粒径は、例えば、電子顕微鏡により、エラストマー組成物の断面を拡大した写真を撮影し、その後、画像解析により、分散した架橋ゴム成分の平均粒径を測定することで求められる。上記エラストマーは、1種を単独で使用してもよいし、2種以上を併用して使用してもよい。
 シーラント接着層16にエラストマーを配合する場合、シーラント接着層16(100質量%)中に添加するエラストマーの配合量は、例えば、1~25質量%が好ましく、10~20質量%がより好ましい。エラストマーの配合量を1質量%以上とすることで、接着樹脂との相溶性が向上すると共に、シーラント接着層16の異方性を緩和する効果が向上する傾向がある。また、エラストマーの配合量を25質量%以下とすることで、シーラント接着層16が電解液によって膨潤することを抑制する効果が向上する傾向がある。
 シーラント接着層16として、例えば、接着樹脂を有機溶媒に分散させたディスパージョンタイプの接着樹脂液を用いてもよい。
 シーラント接着層16の厚さは、熱ラミネート構成の場合には、8μm以上50μm以下であることが好ましく、20μm以上40μm以下であることがより好ましい。シーラント接着層16の厚さが8μm以上であることにより、金属箔層14とシーラント層17との十分な接着強度が得られ易く、50μm以下であることにより、外装材端面から内部の電池要素に浸入する水分量を低減し易くすることができる。また、シーラント接着層16の厚さは、ドライラミネート構成の場合には、1μm以上5μm以下であることが好ましい。シーラント接着層16の厚さが1μm以上であることにより、金属箔層14とシーラント層17との十分な接着強度が得られ易く、5μm以下であることにより、シーラント接着層16の割れの発生を抑制することができる。
(シーラント層17)
 シーラント層17は、外装材10に対し、ヒートシールによる封止性を付与する層であり、蓄電装置の組み立て時に内側に配置されて熱融着される層である。シーラント層17としては、ポリオレフィン系樹脂、又はポリオレフィン系樹脂に無水マレイン酸等の酸をグラフト変性させた酸変性ポリオレフィン系樹脂からなる樹脂フィルムが挙げられる。中でも、水蒸気のバリア性を向上させ、ヒートシールによって過度に潰れることなく蓄電装置の形態を構成可能なポリオレフィン系樹脂が好ましく、ポリプロピレンが特に好ましい。
 ポリオレフィン系樹脂としては、例えば、低密度、中密度及び高密度のポリエチレン;エチレン-αオレフィン共重合体;ポリプロピレン;並びに、プロピレン-αオレフィン共重合体等が挙げられる。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 また、上記各タイプのポリプロピレン、すなわち、ランダムポリプロピレン、ホモポリプロピレン、ブロックポリプロピレンには、低結晶性のエチレン-ブテン共重合体、低結晶性のプロピレン-ブテン共重合体、エチレンとブテンとプロピレンの3成分共重合体からなるターポリマー、シリカ、ゼオライト、アクリル樹脂ビーズ等のアンチブロッキング剤(AB剤)、脂肪酸アマイド系のスリップ剤等を添加してもよい。
 酸変性ポリオレフィン系樹脂としては、例えば、シーラント接着層16で挙げたものと同様のものが挙げられる。
 シーラント層17は、単層フィルムであってもよく、多層フィルムであってもよく、必要とされる機能に応じて選択すればよい。例えば、防湿性を付与する点では、エチレン-環状オレフィン共重合体及びポリメチルペンテン等の樹脂を介在させた多層フィルムが使用できる。
 また、シーラント層17は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤及び粘着付与剤等の各種添加材を含んでいてもよい。
 シーラント層17として、押出成型により形成した熱溶着性フィルムを使用する場合、該熱溶着性フィルムの押出し方向に配向傾向がある。このため、配向によるシーラント層17の異方性を緩和する観点から、熱溶着性フィルムにエラストマーを配合してもよい。これにより、蓄電装置用外装材10を冷間成型して凹部を形成する際にシーラント層17が白化することを抑制できる。
 シーラント層17を構成するエラストマーとしては、例えば、シーラント接着層16を構成するエラストマーとして例示した材料と同じ材料を用いることができる。シーラント層17が多層フィルム構造である場合、多層フィルム構造を構成する複数の層のうち、少なくとも1層がエラストマーを含むように構成してもよい。例えば、シーラント層17として、積層されたランダムポリプロピレン層/ブロックポリプロピレン層/ランダムポリプロピレン層よりなる3層積層構造の場合、エラストマーは、ブロックポリプロピレン層のみに配合してもよいし、ランダムポリプロピレン層のみに配合してもよいし、ランダムポリプロピレン層とブロックポリプロピレン層との両方に配合してもよい。
 また、シーラント層17に滑り性を付与するために、滑剤を含有させてもよい。このように、シーラント層17が滑剤を含有することで、冷間成型により、蓄電装置用外装材10に凹部を形成する際、蓄電装置用外装材10において延伸率の高い凹部の辺又は角となる部分が必要以上に延伸されることを抑制可能となる。これにより、金属箔層14とシーラント接着層16との間が剥離したり、シーラント層17とシーラント接着層16とにおいてクラックによる破断及び白化が生じたりすることを抑制することができる。
 シーラント層17に滑剤を含有させる場合、シーラント層17(100質量%)中の滑剤の含有量は、0.001質量%~0.5質量%が好ましい。滑剤の含有量が0.001質量%以上であると、冷間成型時にシーラント層17が白化することをより抑制できる傾向がある。また、滑剤の含有量が0.5質量%以下であると、シーラント層17の面と接触する他の層の面との間における密着強度の低下を抑制できる傾向がある。
 シーラント層17の厚さは、10~100μmであることが好ましく、20~60μmであることがより好ましい。シーラント層17の厚さが20μm以上であることにより、十分なヒートシール強度を得ることができ、90μm以下であることにより、外装材端部からの水蒸気の浸入量を低減することができる。
[外装材の製造方法]
 次に、外装材10の製造方法について説明する。なお、外装材10の製造方法は以下の方法に限定されない。
 外装材10の製造方法として、例えば、下記の工程S11~S14を有する方法が挙げられる。
工程S11:金属箔層14の一方の面上に腐食防止処理層15aを形成し、金属箔層14の他方の面上に腐食防止処理層15bを形成する工程。
工程S12:基材層11の一方の面上に易接着処理層12を形成し、積層体を得る工程。
工程S13:腐食防止処理層15aの金属箔層14とは反対側の面と、上記積層体の易接着処理層12側の面とを、接着層13を介して貼り合わせる工程。
工程S14:腐食防止処理層15bの金属箔層14とは反対側の面上に、シーラント接着層16を介してシーラント層17を形成する工程。
(工程S11)
 工程S11では、金属箔層14の一方の面上に腐食防止処理層15aを形成し、金属箔層14の他方の面上に腐食防止処理層15bを形成する。腐食防止処理層15a及び15bは、それぞれ別々に形成されてもよく、両方が一度に形成されてもよい。具体的には、例えば、金属箔層14の両方の面に腐食防止処理剤(腐食防止処理層の母材)を塗布し、その後、乾燥、硬化、焼付けを順次行うことで、腐食防止処理層15a及び15bを一度に形成する。また、金属箔層14の一方の面に腐食防止処理剤を塗布し、乾燥、硬化、焼き付けを順次行って腐食防止処理層15aを形成した後、金属箔層14の他方の面に同様にして腐食防止処理層15bを形成してもよい。腐食防止処理層15a及び15bの形成順序は特に制限されない。また、腐食防止処理剤は、腐食防止処理層15aと腐食防止処理層15bとで異なるものを用いてもよく、同じのものを用いてもよい。上記腐食防止処理剤としては、例えば、塗布型クロメート処理用の腐食防止処理剤等を用いることができる。腐食防止処理剤の塗布方法は、特に限定されないが、例えば、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、ダイコート法、バーコート法、キスコート法、コンマコート法等の方法を用いることができる。なお、金属箔層14として、未処理の金属箔層を用いてもよいし、ウェットタイプの脱脂処理又はドライタイプの脱脂処理により、脱脂処理を施した金属箔層を用いてもよい。
(工程S12)
 工程S12では、基材層11の一方の面上に易接着処理層12を形成する。ここでは、易接着処理層12の形成方法の一例として、インラインコート法について説明する。始めに、易接着処理層12の主成分となる上記樹脂を分散剤で分散させた分散体を含有する水性塗布液を準備する。次いで、結晶配向が完了する前の熱可塑性樹脂フィルム(基材層11の母材)の一方の面に、上記水性塗布液を塗布する。次いで、塗布された上記水性塗布液を乾燥させ、その後、熱可塑性樹脂フィルムを少なくとも一軸方向に延伸させる。
 次いで、熱処理により、熱可塑性樹脂フィルムの配向を完了させることで、基材層11の一方の面上に易接着処理層12が形成された積層体が得られる。このようなインラインコート法を用いて易接着処理層12を形成することで、基材層11と易接着処理層12との間の密着性が向上する。なお、易接着処理層12の形成方法は、上記方法に限定されることなく、いかなる方法を用いてもよい。また、易接着処理層12を形成するタイミングは、本実施の形態に限定されない。
(工程S13)
 工程S13では、腐食防止処理層15aの金属箔層14とは反対側の面と、上記積層体の易接着処理層12側の面とが、接着層13を形成する接着剤を用いてドライラミネーション等の手法で貼り合わせられる。工程S13では、接着性の促進のため、室温~100℃の範囲でエージング(養生)処理を行ってもよい。エージング時間は、例えば、1~10日である。
(工程S14)
 工程S13後、基材層11、易接着処理層12、接着層13、腐食防止処理層15a、金属箔層14及び腐食防止処理層15bがこの順に積層された積層体の腐食防止処理層15bの金属箔層14とは反対側の面上に、シーラント接着層16を介してシーラント層17が形成される。シーラント層17は、ドライラミネーション及びサンドイッチラミネーション等によって積層されてもよく、シーラント接着層16とともに共押出し法によって積層されてもよい。シーラント層17は、接着性向上の点から、例えばサンドイッチラミネーションによって積層される、又は、シーラント接着層16とともに共押出し法によって積層されることが好ましく、サンドイッチラミネーションによって積層されることがより好ましい。
 以上説明した工程S11~S14により、外装材10が得られる。なお、外装材10の製造方法の工程順序は、上記工程S11~S14を順次実施する方法に限定されない。例えば、工程S12を行ってから工程S11を行う等、実施する工程の順序を適宜変更してもよい。
[蓄電装置]
 次に、外装材10を容器として備える蓄電装置について説明する。蓄電装置は、電極を含む電池要素1と、上記電極から延在するリード2と、電池要素1を収容する容器とを備え、上記容器は蓄電装置用外装材10から、シーラント層17が内側となるように形成される。上記容器は、2つの外装材をシーラント層17同士を対向させて重ね合わせ、重ねられた外装材10の周縁部を熱融着して得られてもよく、また、1つの外装材を折り返して重ね合わせ、同様に外装材10の周縁部を熱融着して得られてもよい。また、蓄電装置は、外装材20を容器として備えていてもよい。蓄電装置としては、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタが挙げられる。
 リード2は、シーラント層17を内側として容器を形成する外装材10によって挟持され、密封されている。リード2は、タブシーラントを介して、外装材10によって挟持されていてもよい。
[蓄電装置の製造方法]
 次に、上述した外装材10を用いて蓄電装置を製造する方法について説明する。なお、ここでは、エンボスタイプ外装材30を用いて二次電池40を製造する場合を例に挙げて説明する。図2は上記エンボスタイプ外装材30を示す図である。図3の(a)~(d)は、外装材10を用いた片側成型加工電池の製造工程を示す斜視図である。二次電池40としては、エンボスタイプ外装材30のような外装材を2つ設け、このような外装材同士を、アライメントを調整しつつ、貼り合わせて製造される、両側成型加工電池であってもよい。また、エンボスタイプ外装材30は、外装材20を用いて形成されてもよい。
 片側成型加工電池である二次電池40は、例えば、以下の工程S21~S25により製造することができる。
工程S21:外装材10、電極を含む電池要素1、並びに上記電極から延在するリード2を準備する工程。
工程S22:外装材10の片面に電池要素1を配置するための凹部32を形成する工程(図3(a)及び図3(b)参照)。
工程S23:エンボスタイプ外装材30の成型加工エリア(凹部32)に電池要素1を配置し、凹部32を蓋部34が覆うようにエンボスタイプ外装材30を折り返し重ねて、電池要素1から延在するリード2を挟持するようにエンボスタイプ外装材30の一辺を加圧熱融着する工程(図3(b)及び図3(c)参照)。
工程S24:リード2を挟持する辺以外の一辺を残し、他の辺を加圧熱融着し、その後、残った一辺から電解液を注入し、真空状態で残った一辺を加圧熱融着する工程(図3(c)参照)。
工程S25:リード2を挟持する辺以外の加圧熱融着辺端部をカットし、成型加工エリア(凹部32)側に折り曲げる工程(図3(d)参照)。
(工程S21)
 工程S21では、外装材10、電極を含む電池要素1、並びに上記電極から延在するリード2を準備する。外装材10は、上述した実施形態に基づき準備する。電池要素1及びリード2としては特に制限はなく、公知の電池要素1及びリード2を用いることができる。
(工程S22)
 工程S22では、外装材10のシーラント層17側に電池要素1を配置するための凹部32が形成される。凹部32の平面形状は、電池要素1の形状に合致する形状、例えば平面視矩形状とされる。凹部32は、例えば矩形状の圧力面を有する押圧部材を、外装材10の一部に対してその厚み方向に押圧することで形成される。また、押圧する位置、すなわち凹部32は、長方形に切り出した外装材10の中央より、外装材10の長手方向の一方の端部に偏った位置に形成する。これにより、成型加工後に凹部32を形成していないもう片方の端部側を折り返し、蓋(蓋部34)とすることができる。
 凹部32を形成する方法としてより具体的には、金型を用いた成型加工(深絞り成型)が挙げられる。成型方法としては、外装材10の厚さ以上のギャップを有するように配置された雌型と雄型の金型を用い、雄型の金型を外装材10とともに雌型の金型に押し込む方法が挙げられる。雄型の金型の押込み量を調整することで、凹部32の深さ(深絞り量)を所望の量に調整できる。外装材10に凹部32が形成されることにより、エンボスタイプ外装材30が得られる。このエンボスタイプ外装材30は、例えば図2に示すような形状を有している。ここで、図2(a)は、エンボスタイプ外装材30の斜視図であり、図2(b)は、図2(a)に示すエンボスタイプ外装材30のb-b線に沿った縦断面図である。
(工程S23)
 工程S23では、エンボスタイプ外装材30の成型加工エリア(凹部32)内に、正極、セパレータ及び負極等から構成される電池要素1が配置され。また、電池要素1から延在し、正極と負極にそれぞれ接合されたリード2が成型加工エリア(凹部32)から外に引き出される。その後、エンボスタイプ外装材30は、長手方向の略中央で折り返され、シーラント層17同士が内側となるように重ねられ、エンボスタイプ外装材30のリード2を挟持する一辺が加圧熱融着される。加圧熱融着は、温度、圧力及び時間の3条件で制御され、適宜設定される。加圧熱融着の温度は、シーラント層17を融解する温度以上であることが好ましい。
 なお、シーラント層17の熱融着前の厚さは、リード2の厚さに対し40%以上80%以下であることが好ましい。シーラント層17の厚さが上記下限値以上であることにより、熱融着樹脂がリード2端部を十分充填できる傾向があり、上記上限値以下であることにより、二次電池40の外装材10端部の厚さを適度に抑えることができ、外装材10端部からの水分の浸入量を低減することができる。
(工程S24)
 工程S24では、リード2を挟持する辺以外の一辺を残し、他の辺の加圧熱融着が行われる。その後、残った一辺から電解液を注入し、残った一辺が真空状態で加圧熱融着される。加圧熱融着の条件は工程S23と同様である。
(工程S25)
 リード2を挟持する辺以外の周縁加圧熱融着辺端部がカットされ、端部からははみだしたシーラント層17が除去される。その後、周縁加圧熱融着部を成型加工エリア32側に折り返し、折り返し部42を形成することで、二次電池40が得られる。
 以上、本発明の蓄電装置用外装材及び蓄電装置の製造方法の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(基材層の用意)
 基材層11として、チューブラー二軸延伸法により製造された下記のナイロンフィルムA-1-1~A-1-2、B-1-1~B-1-7、C-1-1~C-1-3及びD-1-1~D-1-2を用意した。各ナイロンフィルムの厚さ、95℃熱水収縮率及び180℃熱間収縮率を以下に示す。
A-1-1:厚さ15μm、95℃熱水収縮率3.6%、180℃熱間収縮率5.3%。
A-1-2:厚さ15μm、95℃熱水収縮率2.8%、180℃熱間収縮率3.0%。
B-1-1:厚さ25μm、95℃熱水収縮率4.0%、180℃熱間収縮率4.8%。
B-1-2:厚さ25μm、95℃熱水収縮率4.0%、180℃熱間収縮率4.8%。
B-1-3:厚さ25μm、95℃熱水収縮率3.6%、180℃熱間収縮率9.4%。
B-1-4:厚さ25μm、95℃熱水収縮率3.7%、180℃熱間収縮率15.2%。
B-1-5:厚さ25μm、95℃熱水収縮率2.6%、180℃熱間収縮率2.7%。
B-1-6:厚さ25μm、95℃熱水収縮率7.7%、180℃熱間収縮率15.1%。
B-1-7:厚さ25μm、95℃熱水収縮率4.8%、180℃熱間収縮率20.4%。
C-1-1:厚さ25μm、95℃熱水収縮率4.0%、180℃熱間収縮率4.8%。
C-1-2:厚さ25μm、95℃熱水収縮率3.6%、180℃熱間収縮率9.4%。
C-1-3:厚さ25μm、95℃熱水収縮率3.7%、180℃熱間収縮率15.2%。
D-1-1:厚さ25μm、95℃熱水収縮率3.7%、180℃熱間収縮率4.5%。
D-1-2:厚さ25μm、95℃熱水収縮率2.4%、180℃熱間収縮率2.8%。
(易接着処理層形成用塗工剤の調製)
 易接着処理層形成用塗工剤として、下記組成の塗工剤を調製した。
 塗工剤:東亞合成株式会社製の水溶性ポリエステル「アロンメルトPES-1000」に、ニホンポリウレタン工業株式会社製の自己乳化型ポリイソシアネート「アクアネート100」および日本触媒化学工業株式会社製の真球状シリカ微粒子「シーホスターKE-P30」(平均粒子径0.3μm)を95/5/0.5の配合比(質量比)で加え、水で希釈した。
(実施例1-1)
 実施例1-1では、以下の手法により、蓄電装置用外装材10を作製した。始めに、金属箔層14として、厚さ40μmの軟質アルミニウム箔8079材(東洋アルミニウム株式会社製)を準備した。次いで、金属箔層14の両面に、グラビアコートにより、溶媒として蒸留水を使用し、かつ固形分濃度10質量%に調整したポリリン酸ナトリウム安定化酸化セリウムゾル(腐食防止処理剤)を塗布した。このとき、酸化セリウム100質量部に対して、リン酸は10質量部とした。
 次いで、塗布されたポリリン酸ナトリウム安定化酸化セリウムゾルを乾燥させた後、焼付け処理を順次行うことで、金属箔層14の一方の面に腐食防止処理層15aを形成し、他方の面に腐食防止処理層15bを形成した。このとき、焼き付け条件としては、温度を150℃、処理時間を30秒とした。
 次いで、基材層11としては、ナイロンフィルムA-1-1を用い、基材層11の片面をコロナ処理した。
 次いで、金属箔層14の腐食防止処理層15aの金属箔層14とは反対側の面に、接着層13として、ポリウレタン系接着剤を塗布した。次いで、ドライラミネート法により、接着層13を介して、金属箔層14と基材層11のコロナ処理された面とを接着させた。その後、基材層11、接着層13、腐食防止処理層15a、金属箔層14、及び腐食防止処理層15bからなる構造体を、温度が60℃の雰囲気中で6日間放置することで、エージング処理した。
 次いで、腐食防止処理層15bの金属箔層14とは反対側の面に、シーラント接着層16として、トルエン及びメチルシクロヘキサンの混合溶媒に溶解させた酸変性ポリオレフィンにポリイソシアネートを配合したポリウレタン系接着剤を塗布した。次いで、ドライラミネート法により、シーラント接着層16を介して、シーラント層17となる厚さ40μmのポリオレフィンフィルム(無延伸ポリプロピレンフィルムのシーラント接着層16側の面をコロナ処理したフィルム)と金属箔層14とを接着させた。その後、基材層11、接着層13、腐食防止処理層15a、金属箔層14、腐食防止処理層15b、シーラント接着層16、及びシーラント層17からなる構造体を、温度が40℃の雰囲気中で6日間放置することで、エージング処理した。これにより、蓄電装置用外装材10を作製した。
(比較例1-1)
 比較例1-1では、基材層11をナイロンフィルムA-1-2に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例1-1及び比較例1-1で作製した蓄電装置用外装材10について、深絞り成型が可能な成型深度を以下の方法で評価した。まず、蓄電装置用外装材10を、シーラント層17が上方を向くように成型装置内に配置した。成型装置の成型深さを0.5mmごとに5.0~7.5mmに設定し、室温23℃、露点温度-35℃の環境下で冷間成型した。なお、パンチ金型には、70mm×80mmの長方形の横断面を有し、底面に1.00mmのパンチラジアス(RP)を有し、側面に1.00mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に1.00mmのダイラジアス(RD)を有するものを使用した。冷間成型を行った部分の破断及びピンホールの有無を、外装材10にライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。結果を表1に示す。
<密着性の評価>
 実施例1-1及び比較例1-1で作製した蓄電装置用外装材10について、基材層11と金属箔層14との間の密着性を以下の方法で評価した。まず、蓄電装置用外装材10を、シーラント層17が上方を向くように成型装置内に配置した。成型装置の成型深さを5mmに設定し、室温23℃、露点温度-35℃の環境下で冷間成型した。なお、パンチ金型には、70mm×80mmの長方形の横断面を有し、底面に1.00mmのパンチラジアス(RP)を有し、側面に1.00mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に1.00mmのダイラジアス(RD)を有するものを使用した。
 次いで、冷間成型した外装材10を、1M六フッ化リン酸リチウム溶液(溶媒体積比=炭酸エチル:炭酸ジメチル:炭酸ジメチル=1:1:1)30mLが入った100mL容量のビーカーに入れた。次いで、外装材10が入ったビーカーを一斗缶内に封入して40℃の温度環境下に2時間置くことで、外装材10を電解液にさらした。その後、一斗缶内のビーカーから外装材10を取り出し、110℃のオーブン内、温度60℃湿度95%の環境下、又は、50℃の温水中に入れた。そして、その1週間後、2週間後、3週間後及び4週間後に、外装材10の基材層11と金属箔層14との間の剥離の有無を目視にて確認し、基材層11と金属箔層14との間に剥離が確認されなかった期間の最大値(単位:週)を求めた。その結果に基づき、以下の評価基準により基材層11と金属箔層14との間の密着性を評価した。結果を表1に示す。
A:4週間後でも剥離が確認されなかった。
B:3週間後には剥離が確認されなかったが、4週間後には剥離が生じていた。
C:2週間後には剥離が確認されなかったが、3週間後には剥離が生じていた。
D:1週間後には剥離が確認されなかったが、2週間後には剥離が生じていた。
E:1週間後に剥離が生じていた。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、基材層11の厚さを15μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムを用いた実施例1-1の外装材は、180℃熱間収縮率が上記条件を満たさないポリアミドフィルムを用いた比較例1-1の外装材と比較して、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(実施例1-2)
 実施例1-2では、ポリリン酸ナトリウム安定化酸化セリウムゾルを用いて腐食防止処理層15a及び15bを形成する代わりに金属箔層14の両面にフェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液を塗布して皮膜を形成し、焼付けすることによりクロメート処理を行って腐食防止処理層15a及び15bを形成し、且つ、基材層11をナイロンフィルムB-1-1に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(実施例1-3)
 実施例1-3では、基材層11をナイロンフィルムB-1-2に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(実施例1-4)
 実施例1-4では、基材層11をナイロンフィルムB-1-3に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(実施例1-5)
 実施例1-5では、基材層11をナイロンフィルムB-1-4に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(比較例1-2)
 比較例1-2では、基材層11をナイロンフィルムB-1-5に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(比較例1-3)
 比較例1-3では、基材層11をナイロンフィルムB-1-6に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(比較例1-4)
 比較例1-4では、基材層11をナイロンフィルムB-1-7に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例1-2~1-5及び比較例1-2~1-4で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表2に示す。
<密着性の評価>
 実施例1-2~1-5及び比較例1-2~1-4で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、基材層11の厚さを25μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムを用いた実施例1-2~1-5の外装材は、95℃熱水収縮率及び180℃熱間収縮率の少なくとも一方が上記条件を満たさないポリアミドフィルムを用いた比較例1-2~1-4の外装材と比較して、密着性を良好に維持しつつ、深絞り成型性を向上できることが確認された。
(実施例1-6)
 実施例1-6では、実施例1-1に対して以下の変更を行った。実施例1-6では、基材層11をナイロンフィルムC-1-1に変更した。また、シーラント接着層16は、シーラント接着層16の母材となる無水マレイン酸変性ポリプロピレン(三井化学社製、商品名:アドマー)を押出すことで形成した。このとき、シーラント接着層16の厚さは20μmとした。また、ドライラミネート法の代わりにサンドイッチラミネーション法により、シーラント接着層16を介して、腐食防止処理層15bに、シーラント層17となる厚さ60μmのポリオレフィンフィルム(無延伸ポリプロピレンフィルムのシーラント接着層16側の面をコロナ処理したフィルム)を180℃で接着(加熱圧着)した。実施例1-6では、上記の変更をした以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。
(実施例1-7)
 実施例1-7では、基材層11をナイロンフィルムC-1-2に変更した以外は実施例1-6と同様にして、蓄電装置用外装材10を作製した。
(実施例1-8)
 実施例1-8では、基材層11をナイロンフィルムC-1-3に変更した以外は実施例1-6と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例1-6~1-8で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表3に示す。
<密着性の評価>
 実施例1-6~1-8で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果から明らかなように、基材層11の厚さを25μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムを用いた実施例1-6~1-8の外装材は、サンドイッチラミネーション法によりシーラント接着層16を設けた場合でも、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(実施例1-9)
 実施例1-9では、基材層11の片面をコロナ処理する代わりに基材層11の接着層13側の面に易接着処理層12を形成し、且つ、基材層11をナイロンフィルムD-1-1に変更した以外は実施例1-1と同様にして、蓄電装置用外装材10を作製した。易接着処理層12は、インラインコート法を用いて、基材層11の片面に易接着処理層12の母材となる塗工剤を固形分で0.1g/mとなるように塗工し、乾燥させることで、厚さ約0.1μmの易接着処理層12を形成した。
(比較例1-6)
 比較例1-6では、基材層11をナイロンフィルムD-1-2に変更した以外は実施例1-9と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例1-9及び比較例1-6で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表4に示す。
<密着性の評価>
 実施例1-9及び比較例1-6で作製した蓄電装置用外装材10について、上述した実施例1-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示した結果から明らかなように、基材層11の厚さを25μmとし、易接着処理層12を設けた外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムを用いた実施例1-9の外装材は、180℃熱間収縮率が上記条件を満たさないポリアミドフィルムを用いた比較例1-6の外装材と比較して、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(基材層の用意)
 基材層11として、同時二軸延伸法により製造された下記のポリエチレンテレフタレートフィルムA-2-1~A-2-2、B-2-1~B-2-7及びC-2-1~C-2-2を用意した。各ポリエチレンテレフタレートフィルムの厚さ、95℃熱水収縮率及び180℃熱間収縮率を以下に示す。
A-2-1:厚さ12μm、95℃熱水収縮率3.5%、180℃熱間収縮率18.7%。
A-2-2:厚さ12μm、95℃熱水収縮率2.5%、180℃熱間収縮率6.0%。
B-2-1:厚さ25μm、95℃熱水収縮率2.8%、180℃熱間収縮率19.9%。
B-2-2:厚さ25μm、95℃熱水収縮率2.8%、180℃熱間収縮率19.9%。
B-2-3:厚さ25μm、95℃熱水収縮率3.3%、180℃熱間収縮率23.8%。
B-2-4:厚さ25μm、95℃熱水収縮率2.4%、180℃熱間収縮率11.2%。
B-2-5:厚さ25μm、95℃熱水収縮率2.6%、180℃熱間収縮率5.7%。
B-2-6:厚さ25μm、95℃熱水収縮率8.5%、180℃熱間収縮率19.0%。
B-2-7:厚さ25μm、95℃熱水収縮率6.0%、180℃熱間収縮率19.9%。
C-2-1:厚さ25μm、95℃熱水収縮率2.6%、180℃熱間収縮率18.4%。
C-2-2:厚さ25μm、95℃熱水収縮率3.1%、180℃熱間収縮率6.6%。
(易接着処理層形成用塗工剤の調製)
 易接着処理層形成用塗工剤として、下記組成の塗工剤を調製した。
 塗工剤:東亞合成株式会社製の水溶性ポリエステル「アロンメルトPES-1000」に、ニホンポリウレタン工業株式会社製の自己乳化型ポリイソシアネート「アクアネート100」および日本触媒化学工業株式会社製の真球状シリカ微粒子「シーホスターKE-P30」(平均粒子径0.3μm)を95/5/0.5の配合比(質量比)で加え、水で希釈した。
(実施例2-1)
 実施例2-1では、以下の手法により、蓄電装置用外装材10を作製した。始めに、金属箔層14として、厚さ40μmの軟質アルミニウム箔8079材(東洋アルミニウム株式会社製)を準備した。次いで、金属箔層14の両面に、グラビアコートにより、溶媒として蒸留水を使用し、かつ固形分濃度10質量%に調整したポリリン酸ナトリウム安定化酸化セリウムゾル(腐食防止処理剤)を塗布した。このとき、酸化セリウム100質量部に対して、リン酸は10質量部とした。
 次いで、塗布されたポリリン酸ナトリウム安定化酸化セリウムゾルを乾燥させた後、焼付け処理を順次行うことで、金属箔層14の一方の面に腐食防止処理層15aを形成し、他方の面に腐食防止処理層15bを形成した。このとき、焼き付け条件としては、温度を150℃、処理時間を30秒とした。
 次いで、基材層11としては、ポリエチレンテレフタレートフィルムA-2-1を用い、基材層11の片面をコロナ処理した。
 次いで、金属箔層14の腐食防止処理層15aの金属箔層14とは反対側の面に、接着層13として、ポリウレタン系接着剤を塗布した。次いで、ドライラミネート法により、接着層13を介して、金属箔層14と基材層11のコロナ処理された面とを接着させた。その後、基材層11、接着層13、腐食防止処理層15a、金属箔層14、及び腐食防止処理層15bからなる構造体を、温度が60℃の雰囲気中で6日間放置することで、エージング処理した。
 次いで、腐食防止処理層15bの金属箔層14とは反対側の面に、シーラント接着層16を形成した。このとき、シーラント接着層16は、シーラント接着層16の母材となる無水マレイン酸変性ポリプロピレン(三井化学社製、商品名:アドマー)を押出すことで形成した。このとき、シーラント接着層16の厚さは20μmとした。次いで、サンドイッチラミネーション法により、シーラント接着層16を介して、腐食防止処理層15bに、シーラント層17となる厚さ60μmのポリオレフィンフィルム(無延伸ポリプロピレンフィルムのシーラント接着層16側の面をコロナ処理したフィルム)を180℃で接着(加熱圧着)した。これにより、蓄電装置用外装材10を作製した。
(比較例2-1)
 比較例2-1では、基材層11をポリエチレンテレフタレートフィルムA-2-2に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例2-1及び比較例2-1で作製した蓄電装置用外装材10について、深絞り成型が可能な成型深度を以下の方法で評価した。まず、蓄電装置用外装材10を、シーラント層17が上方を向くように成型装置内に配置した。成型装置の成型深さを0.5mmごとに4.5~7.5mmに設定し、室温23℃、露点温度-35℃の環境下で冷間成型した。なお、パンチ金型には、70mm×80mmの長方形の横断面を有し、底面に1.00mmのパンチラジアス(RP)を有し、側面に1.00mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に1.00mmのダイラジアス(RD)を有するものを使用した。冷間成型を行った部分の破断及びピンホールの有無を、外装材10にライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。結果を表5に示す。表中、「<4.5」は、成型深度4.5mmで破断及びピンホールの少なくとも一方が生じていたことを示す。
<密着性の評価>
 実施例2-1及び比較例2-1で作製した蓄電装置用外装材10について、基材層11と金属箔層14との間の密着性を以下の方法で評価した。まず、蓄電装置用外装材10を、シーラント層17が上方を向くように成型装置内に配置した。成型装置の成型深さを5mmに設定し、室温23℃、露点温度-35℃の環境下で冷間成型した。なお、パンチ金型には、70mm×80mmの長方形の横断面を有し、底面に1.00mmのパンチラジアス(RP)を有し、側面に1.00mmのパンチコーナーラジアス(RCP)を有するものを使用した。また、ダイ金型には、開口部上面に1.00mmのダイラジアス(RD)を有するものを使用した。
 次いで、冷間成型した外装材10を、1M六フッ化リン酸リチウム溶液(溶媒体積比=炭酸エチル:炭酸ジメチル:炭酸ジメチル=1:1:1)30mLが入った100mL容量のビーカーに入れた。次いで、外装材10が入ったビーカーを一斗缶内に封入して40℃の温度環境下に2時間置くことで、外装材10を電解液にさらした。その後、一斗缶内のビーカーから外装材10を取り出し、110℃のオーブン内、温度60℃湿度95%の環境下、又は、50℃の温水中に入れた。そして、その1週間後、2週間後、3週間後、4週間後及び9週間後に、外装材10の基材層11と金属箔層14との間の剥離の有無を目視にて確認し、基材層11と金属箔層14との間に剥離が確認されなかった期間の最大値(単位:週)を求めた。その結果に基づき、以下の評価基準により基材層11と金属箔層14との間の密着性を評価した。結果を表5に示す。B以上の評価であれば、基材層11と金属箔層14との間の密着性は良好であるといえる。
A:9週間後でも剥離が確認されなかった。
B:4週間後には剥離が確認されなかったが、9週間後には剥離が生じていた。
C:3週間後には剥離が確認されなかったが、4週間後には剥離が生じていた。
D:2週間後には剥離が確認されなかったが、3週間後には剥離が生じていた。
E:1週間後には剥離が確認されなかったが、2週間後には剥離が生じていた。
F:1週間後に剥離が生じていた。
Figure JPOXMLDOC01-appb-T000005
 表5に示した結果から明らかなように、基材層11の厚さを12μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムを用いた実施例2-1の外装材は、180℃熱間収縮率が上記条件を満たさないポリエステルフィルムを用いた比較例2-1の外装材と比較して、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(実施例2-2)
 実施例2-2では、実施例2-1に対して以下の変更を行った。実施例2-2では、シーラント接着層16として、トルエン及びメチルシクロヘキサンの混合溶媒に溶解させた酸変性ポリオレフィンにポリイソシアネートを配合したポリウレタン系接着剤を塗布した。また、サンドイッチラミネーション法に代えてドライラミネート法により、シーラント接着層16を介して、シーラント層17となる厚さ40μmのポリオレフィンフィルム(無延伸ポリプロピレンフィルムのシーラント接着層16側の面をコロナ処理したフィルム)と金属箔層14とを接着させた。その後、基材層11、接着層13、腐食防止処理層15a、金属箔層14、腐食防止処理層15b、シーラント接着層16、及びシーラント層17からなる構造体を、温度が40℃の雰囲気中で6日間放置することで、エージング処理した。実施例2-2では、上記の変更をした以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例2-2で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表6に示す。
<密着性の評価>
 実施例2-2で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示した結果から明らかなように、基材層11の厚さを12μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムを用いた実施例2-2の外装材は、ドライラミネート法によりシーラント接着層16を設けた場合でも、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(実施例2-3)
 実施例2-3では、ポリリン酸ナトリウム安定化酸化セリウムゾルを用いて腐食防止処理層15a及び15bを形成する代わりに金属箔層14の両面にフェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液を塗布して皮膜を形成し、焼付けすることによりクロメート処理を行って腐食防止処理層15a及び15bを形成し、且つ、基材層11をポリエチレンテレフタレートフィルムB-2-1に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(実施例2-4)
 実施例2-4では、基材層11をポリエチレンテレフタレートフィルムB-2-2に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(実施例2-5)
 実施例2-5では、基材層11をポリエチレンテレフタレートフィルムB-2-3に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(実施例2-6)
 実施例2-6では、基材層11をポリエチレンテレフタレートフィルムB-2-4に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(比較例2-2)
 比較例2-2では、基材層11をポリエチレンテレフタレートフィルムB-2-5に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(比較例2-3)
 比較例2-3では、基材層11をポリエチレンテレフタレートフィルムB-2-6に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
(比較例2-4)
 比較例2-4では、基材層11をポリエチレンテレフタレートフィルムB-2-7に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例2-3~2-6及び比較例2-2~2-4で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表7に示す。
<密着性の評価>
 実施例2-3~2-6及び比較例2-2~2-4で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示した結果から明らかなように、基材層11の厚さを25μmとした外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムを用いた実施例2-3~2-6の外装材は、95℃熱水収縮率及び180℃熱間収縮率の少なくとも一方が上記条件を満たさないポリエステルフィルムを用いた比較例2-2~2-4の外装材と比較して、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
(実施例2-7)
 実施例2-7では、基材層11の片面をコロナ処理する代わりに基材層11の接着層13側の面に易接着処理層12を形成し、且つ、基材層11をポリエチレンテレフタレートフィルムC-2-1に変更した以外は実施例2-1と同様にして、蓄電装置用外装材10を作製した。易接着処理層12は、インラインコート法を用いて、基材層11の片面に易接着処理層12の母材となる塗工剤を固形分で0.1g/mとなるように塗工し、乾燥させることで、厚さ約0.1μmの易接着処理層12を形成した。
(比較例2-5)
 比較例2-5では、基材層11をポリエチレンテレフタレートフィルムC-2-2に変更した以外は実施例2-7と同様にして、蓄電装置用外装材10を作製した。
<成型深度の評価>
 実施例2-7及び比較例2-5で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、深絞り成型が可能な成型深度を評価した。結果を表8に示す。
<密着性の評価>
 実施例2-7及び比較例2-5で作製した蓄電装置用外装材10について、上述した実施例2-1等と同じ試験方法により、基材層11と金属箔層14との間の密着性を評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示した結果から明らかなように、基材層11の厚さを25μmとし、易接着処理層12を設けた外装材において、基材層11として95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムを用いた実施例2-7の外装材は、180℃熱間収縮率が上記条件を満たさないポリエステルフィルムを用いた比較例2-5の外装材と比較して、密着性を維持しつつ、深絞り成型性を向上できることが確認された。
 1…電池要素、2…リード、10…外装材(蓄電装置用外装材)、11…基材層、12…易接着処理層、13…接着層、14…金属箔層、15a,15b…腐食防止処理層、16…シーラント接着層、17…シーラント層、30…エンボスタイプ外装材、32…成型加工エリア(凹部)、34…蓋部、40…二次電池。

Claims (7)

  1.  少なくとも基材層、接着層、金属箔層、シーラント接着層、及び、シーラント層がこの順で積層された構造を有する蓄電装置用外装材であって、
     前記基材層が、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が4~16%であるポリアミドフィルムからなる層、又は、95℃熱水収縮率が5%未満であり且つ180℃熱間収縮率が10~25%であるポリエステルフィルムからなる層である、蓄電装置用外装材。
  2.  前記基材層と前記接着層との間に設けられた易接着処理層を更に備える、請求項1に記載の蓄電装置用外装材。
  3.  前記易接着処理層が、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂及びアクリルグラフトポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含む層である、請求項2に記載の蓄電装置用外装材。
  4.  前記金属箔層の両面に設けられた腐食防止処理層を更に備える、請求項1~3のいずれか一項に記載の蓄電装置用外装材。
  5.  前記腐食防止処理層が、希土類元素酸化物、及び、リン酸又はリン酸塩を含む、請求項4に記載の蓄電装置用外装材。
  6.  前記希土類元素酸化物が酸化セリウムである、請求項5に記載の蓄電装置用外装材。
  7.  電極を含む電池要素と、前記電極から延在するリードと、前記電池要素を収容する容器とを備え、
     前記容器は請求項1~6のいずれか一項に記載の蓄電装置用外装材から、前記シーラント層が内側となるように形成されている、蓄電装置。
PCT/JP2016/056393 2015-03-03 2016-03-02 蓄電装置用外装材、及びそれを用いた蓄電装置 WO2016140256A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16758949.8A EP3267506B1 (en) 2015-03-03 2016-03-02 Outer packaging material for electricity storage device and electricity storage device using same
CN202210322936.0A CN114696014A (zh) 2015-03-03 2016-03-02 蓄电装置用封装材料、及使用其的蓄电装置
KR1020177026073A KR102662941B1 (ko) 2015-03-03 2016-03-02 축전 장치용 외장재 및 그것을 사용한 축전 장치
CN201680012536.2A CN107408642A (zh) 2015-03-03 2016-03-02 蓄电装置用封装材料、及使用其的蓄电装置
US15/690,576 US10693111B2 (en) 2015-03-03 2017-08-30 Outer packaging material for electric storage device and electric storage device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015041274A JP6819029B2 (ja) 2015-03-03 2015-03-03 蓄電装置用外装材、及びそれを用いた蓄電装置
JP2015-041271 2015-03-03
JP2015041271A JP6596844B2 (ja) 2015-03-03 2015-03-03 蓄電装置用外装材、及びそれを用いた蓄電装置
JP2015-041274 2015-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/690,576 Continuation US10693111B2 (en) 2015-03-03 2017-08-30 Outer packaging material for electric storage device and electric storage device using the same

Publications (1)

Publication Number Publication Date
WO2016140256A1 true WO2016140256A1 (ja) 2016-09-09

Family

ID=56849374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056393 WO2016140256A1 (ja) 2015-03-03 2016-03-02 蓄電装置用外装材、及びそれを用いた蓄電装置

Country Status (4)

Country Link
US (1) US10693111B2 (ja)
EP (1) EP3267506B1 (ja)
CN (3) CN107408642A (ja)
WO (1) WO2016140256A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055976A (ja) * 2016-09-29 2018-04-05 昭和電工パッケージング株式会社 包装材及びその製造方法
JP2019016563A (ja) * 2017-07-10 2019-01-31 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
CN110447123A (zh) * 2017-03-21 2019-11-12 大日本印刷株式会社 电池用包装材料、其制造方法、电池用包装材料用聚对苯二甲酸丁二醇酯膜和电池
CN110832662A (zh) * 2017-07-10 2020-02-21 凸版印刷株式会社 蓄电装置用封装材料以及使用了该封装材料的蓄电装置
WO2021033708A1 (ja) * 2019-08-20 2021-02-25 大日本印刷株式会社 蓄電デバイス用外装材の成形工程における品質管理方法、蓄電デバイスの製造方法、蓄電デバイス用外装材、及び蓄電デバイス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862084B2 (ja) * 2015-10-07 2021-04-21 昭和電工パッケージング株式会社 包装材、ケースおよび蓄電デバイス
JP6037070B1 (ja) * 2016-02-22 2016-11-30 大日本印刷株式会社 調光セル
KR20170139303A (ko) * 2016-06-09 2017-12-19 주식회사 엘지화학 이차전지
CN109844984B (zh) * 2016-10-20 2022-05-03 凸版印刷株式会社 蓄电装置用封装材料以及使用其的蓄电装置
JPWO2018123662A1 (ja) * 2016-12-28 2019-11-21 日本ゼオン株式会社 フィルム
JP7033414B2 (ja) * 2017-09-14 2022-03-10 昭和電工パッケージング株式会社 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
CN108179407A (zh) * 2017-12-19 2018-06-19 乐凯胶片股份有限公司 一种软包锂电池用钝化液及其包装材料
US10849235B1 (en) * 2020-05-20 2020-11-24 Tactotek Oy Method of manufacture of a structure and structure
CN113745718A (zh) * 2020-05-29 2021-12-03 昭和电工包装株式会社 蓄电设备外包装材料用层叠体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331897A (ja) * 2005-05-27 2006-12-07 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP2013006412A (ja) * 2011-05-24 2013-01-10 Toray Ind Inc 積層体
WO2014017457A1 (ja) * 2012-07-24 2014-01-30 ユニチカ株式会社 冷間成形用ポリエステルフィルムおよびその製造方法
JP2014069384A (ja) * 2012-09-28 2014-04-21 Toray Ind Inc 積層体
US20150030910A1 (en) * 2013-07-29 2015-01-29 Showa Denko Packaging Co., Ltd. Packaging material and molded case

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562468B1 (ko) * 2000-12-26 2006-03-17 주식회사 코오롱 스팀살균이 가능한 이축연신 폴리아미드 필름의 제조방법
DE60237501D1 (de) * 2001-06-20 2010-10-14 Dainippon Printing Co Ltd Batterieverpackungsmaterial
GB0602678D0 (en) * 2006-02-09 2006-03-22 Dupont Teijin Films Us Ltd Polyester film and manufacturing process
TWI501446B (zh) * 2010-09-08 2015-09-21 Toppan Printing Co Ltd 鋰離子電池用外裝材料
TWI511351B (zh) * 2010-10-14 2015-12-01 Toppan Printing Co Ltd 鋰離子電池用外裝材料
KR101879609B1 (ko) * 2010-12-24 2018-07-18 도레이 카부시키가이샤 폴리에스테르 필름 및 그것을 사용한 적층체
JP5948796B2 (ja) 2011-11-07 2016-07-06 凸版印刷株式会社 リチウムイオン電池用外装材
KR102021325B1 (ko) * 2011-11-07 2019-09-16 도판 인사츠 가부시키가이샤 축전 디바이스용 외장재
JP5942385B2 (ja) 2011-11-07 2016-06-29 凸版印刷株式会社 蓄電デバイス用外装材
EP2779266B1 (en) * 2011-11-07 2017-08-02 Toppan Printing Co., Ltd. Outer-covering material for electricity-storage device
JP2014069383A (ja) * 2012-09-28 2014-04-21 Toray Ind Inc 積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331897A (ja) * 2005-05-27 2006-12-07 Showa Denko Packaging Co Ltd 電池ケース用包材及び電池用ケース
JP2013006412A (ja) * 2011-05-24 2013-01-10 Toray Ind Inc 積層体
WO2014017457A1 (ja) * 2012-07-24 2014-01-30 ユニチカ株式会社 冷間成形用ポリエステルフィルムおよびその製造方法
JP2014069384A (ja) * 2012-09-28 2014-04-21 Toray Ind Inc 積層体
US20150030910A1 (en) * 2013-07-29 2015-01-29 Showa Denko Packaging Co., Ltd. Packaging material and molded case

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055976A (ja) * 2016-09-29 2018-04-05 昭和電工パッケージング株式会社 包装材及びその製造方法
WO2018061375A1 (ja) * 2016-09-29 2018-04-05 昭和電工パッケージング株式会社 包装材及びその製造方法
CN110447123A (zh) * 2017-03-21 2019-11-12 大日本印刷株式会社 电池用包装材料、其制造方法、电池用包装材料用聚对苯二甲酸丁二醇酯膜和电池
CN110447123B (zh) * 2017-03-21 2022-07-08 大日本印刷株式会社 电池用包装材料、其制造方法、电池用包装材料用聚对苯二甲酸丁二醇酯膜和电池
JP2019016563A (ja) * 2017-07-10 2019-01-31 凸版印刷株式会社 蓄電装置用外装材、及びそれを用いた蓄電装置
CN110832662A (zh) * 2017-07-10 2020-02-21 凸版印刷株式会社 蓄电装置用封装材料以及使用了该封装材料的蓄电装置
EP3654400A4 (en) * 2017-07-10 2020-05-20 Toppan Printing Co., Ltd. EXTERNAL PACKAGING MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRICITY STORAGE DEVICE USING THE SAME
US11264662B2 (en) 2017-07-10 2022-03-01 Toppan Printing, Co., Ltd. Materials for power storage devices and power storage devices using the same
CN110832662B (zh) * 2017-07-10 2023-03-31 凸版印刷株式会社 蓄电装置用封装材料以及使用了该封装材料的蓄电装置
WO2021033708A1 (ja) * 2019-08-20 2021-02-25 大日本印刷株式会社 蓄電デバイス用外装材の成形工程における品質管理方法、蓄電デバイスの製造方法、蓄電デバイス用外装材、及び蓄電デバイス
JP6849162B1 (ja) * 2019-08-20 2021-03-24 大日本印刷株式会社 蓄電デバイス用外装材の成形工程における品質管理方法、蓄電デバイスの製造方法、蓄電デバイス用外装材、及び蓄電デバイス

Also Published As

Publication number Publication date
CN205631608U (zh) 2016-10-12
EP3267506A1 (en) 2018-01-10
EP3267506A4 (en) 2018-11-21
US20170365825A1 (en) 2017-12-21
CN107408642A (zh) 2017-11-28
US10693111B2 (en) 2020-06-23
CN114696014A (zh) 2022-07-01
KR20170125047A (ko) 2017-11-13
EP3267506B1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2016140256A1 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP6596844B2 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
WO2017135361A1 (ja) 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
US10651433B2 (en) Packaging material for power storage device, and method of producing packaging material for power storage device
CN108140749B (zh) 蓄电装置用封装材料、及使用其的蓄电装置
JP2023133324A (ja) 蓄電装置用外装材及びそれを用いた蓄電装置
JP2019029220A (ja) 蓄電装置用外装材
WO2017170720A1 (ja) 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
JP2017091767A (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
US11205814B2 (en) Power storage device packaging material and power storage device using the packaging material
CN110832662B (zh) 蓄电装置用封装材料以及使用了该封装材料的蓄电装置
JP6943045B2 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP7185995B2 (ja) 蓄電装置用外装材の製造方法及び蓄電装置の製造方法
JP7240081B2 (ja) 蓄電装置用外装材及び蓄電装置用外装材の製造方法
JP2017126490A (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP2018147782A (ja) 蓄電デバイス用外装材
WO2017047634A1 (ja) 蓄電装置用外装材及び蓄電装置用外装材の製造方法
JP2017139122A (ja) 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
JP2017059388A (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP7078077B2 (ja) 蓄電装置用外装材の製造方法
JP7377417B2 (ja) 蓄電装置用外装材及び蓄電装置用外装材の製造方法
KR102662941B1 (ko) 축전 장치용 외장재 및 그것을 사용한 축전 장치
JP2017076532A (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP6819029B2 (ja) 蓄電装置用外装材、及びそれを用いた蓄電装置
JP2017139123A (ja) 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016758949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177026073

Country of ref document: KR

Kind code of ref document: A