WO2016138858A1 - 一种同步除盐除难降解有机物的电化学废水处理方法 - Google Patents

一种同步除盐除难降解有机物的电化学废水处理方法 Download PDF

Info

Publication number
WO2016138858A1
WO2016138858A1 PCT/CN2016/075325 CN2016075325W WO2016138858A1 WO 2016138858 A1 WO2016138858 A1 WO 2016138858A1 CN 2016075325 W CN2016075325 W CN 2016075325W WO 2016138858 A1 WO2016138858 A1 WO 2016138858A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wastewater
oxide
electrochemical
ions
Prior art date
Application number
PCT/CN2016/075325
Other languages
English (en)
French (fr)
Inventor
李玉平
段锋
曹宏斌
张懿
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2016138858A1 publication Critical patent/WO2016138858A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Definitions

  • the invention belongs to the technical field of wastewater treatment of salt-containing refractory organic matter, and in particular, relates to a method for synchronous desalination and removal of organic matter in wastewater containing low concentration salt and low concentration refractory organic matter.
  • patent CN 102001776A uses high-salt organic wastewater treatment by sulfuric acid precipitation, electro-adsorption desalination, and electric de-chlorination respectively;
  • patent CN 102452753A treats salt-containing organic wastewater by electro-adsorption desalination, catalytic oxidation and flocculation in sequence;
  • patent CN101481178 utilizes microorganisms
  • the fuel cell realizes the simultaneous removal of organic matter, desalination and electricity generation, but is limited to biodegradable organic wastewater, and has a poor removal effect on refractory organic matter. Therefore, there is currently no technology for simultaneous desalination and removal of organic matter.
  • Electrosorption desalination technology is a desalination technology that has developed rapidly in recent years. It utilizes the principle that the porous material forms an electric double layer after being energized and can store a large amount of ions, and the salt ions are removed from the solution, and has the advantages of low working voltage (1-2V), environmental friendliness, low energy consumption, and simple operation. Compared with reverse osmosis technology, it consumes less energy and requires less influent pretreatment. However, conventional electrosorption technology still cannot effectively remove organic matter, and the presence of organic substances may also cause electrode contamination.
  • the object of the present invention is to overcome the shortcomings of the conventional electro-adsorption desalination technology that can not effectively remove organic matter and the electrochemical oxidation technology cannot be desalted, and provide an electrochemical wastewater treatment method for simultaneous demineralization and degradation of organic matter.
  • An electrochemical wastewater treatment method for synchronous demineralization and degrading organic matter uses a porous carbon material electrode as a positive and negative electrode to assemble an electrochemical device, and the wastewater containing the salt and the refractory organic matter is passed through an electrochemical device.
  • the oxygen-containing gas is introduced, a voltage is applied, and optionally Fe 2+ or Fe 3+ ions are added, so that the refractory organics are degraded and the salts are simultaneously removed.
  • the principle of the present invention is: using a porous carbon material electrode as a positive electrode and a negative electrode, respectively, by applying an applied voltage, introducing an oxygen-containing gas, and optionally adding Fe 2+ or Fe 3+ ions, an electrochemical reaction occurs to generate Cl 2 ,
  • An oxidizing substance such as H 2 O 2 or hydroxyl radical ( ⁇ OH) contributes to the degradation of refractory organic matter, and the electrode has a good electrosorption effect on salt ions, realizing the synchronization of refractory organic matter and salt ions.
  • the positive and negative ions are respectively concentrated on the surface of the negative electrode and the positive electrode to be removed from the solution, and O 2 is reduced on the surface of the negative electrode to generate H 2 O 2 , and optionally Fe 2+ or Fe 3+ is added.
  • the strong oxidizing ⁇ OH, Cl - is formed on the surface of the positive electrode to generate active chlorine species such as Cl 2 and HClO, thereby degrading and mineralizing the organic matter.
  • Negative electrode O 2 +2H + +2e - ⁇ H 2 O 2 (3)
  • H 2 O 2 and Fe 2+ further react as follows:
  • the present invention is directed to wastewater containing low concentration salts and low concentrations of refractory organics.
  • the high specific surface area material is used to remove the salt by electrosorption of the anion and cation, and the refractory organic matter is removed by controlling the cathode and anode potential to generate active oxygen component and active chlorine component.
  • the invention fully utilizes the anode and cathode, combines the characteristics of electrosorption demineralization and electrochemical oxidation to simultaneously remove salts and refractory organic substances, and utilizes the synergistic effect between the two, the removal efficiency is high, and the removal cost is low.
  • the positive and negative electrodes may be made of the same porous carbon material or different porous carbon materials.
  • the porous carbon material electrode is a sheet material prepared from a carbon material, a binder, and optionally a metal oxide.
  • the carbon material has a mass fraction of 25% to 95% (for example, 30%, 40%, 50%, 60%, 70%, 80% or 90%) in the electrode, and the metal oxide is 0% to 25%. % (for example 5%, 10%, 15% or 20%), the binder is 5% to 50% (for example 10%, 20%, 30% or 40%).
  • the carbon material is any one of graphite, activated carbon, activated carbon fiber, carbon aerogel, mesoporous carbon, carbon nanotube or graphene or a mixture of at least two.
  • the metal oxide is any one of iron oxide, copper oxide, nickel oxide, cobalt oxide, manganese oxide, zinc oxide or titanium oxide or a mixture of at least two.
  • the metal oxide is supported on the carbon material by an impregnation method or a coprecipitation method.
  • the binder is an organic polymer, preferably polytetrafluoroethylene or polyvinylidene fluoride or the like.
  • the oxygen-containing gas is oxygen or air.
  • a voltage of 2 to 4 V is applied.
  • the wastewater containing the salt and the refractory organic matter is controlled to waste during the passage of the electrochemical device
  • the temperature of the water is 10 to 60 ° C, for example, 15 ° C, 20 ° C, 25 ° C, 30 ° C, 35 ° C, 40 ° C, 45 ° C, 50 ° C or 55 ° C.
  • the concentration of Fe 2+ or Fe 3+ ions is 0-0.5 mmol/L, preferably 0-0.5 mmol/L and does not include 0, that is, 0-0.5 mmol of Fe 2+ is added per 1 L of wastewater or Fe 3+ ion.
  • the voltage is applied for a period of from 10 min to 5 h, such as 20 min, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 3.5 h, 4 h or 4.5 h.
  • the wastewater contains Cl - ions at a concentration of 0.1 to 5 g/L.
  • the total salt concentration in the wastewater is 0.1 to 5 g/L, and the present invention can efficiently achieve salt removal in the low concentration salt wastewater.
  • the refractory organic substance is any one of phenols, halogenated aromatic hydrocarbons, nitrobenzenes or dyes, or a mixture of at least two thereof, and the concentration thereof is 0.01 to 10 mmol/L, and the present invention can be highly effective.
  • the degradation of refractory organics in low concentration refractory organic wastewater is achieved.
  • An exemplary electrochemical wastewater treatment method for simultaneous desalination and degradation of organic matter is as follows: preparing a porous carbon material electrode as a positive and negative electrode of an electrochemical treatment unit, and the positive and negative electrodes may be the same or different.
  • the solution in the liquid storage tank is exposed to oxygen, a small amount of FeSO 4 or Fe 2 (SO 4 ) 3 is added , the solution enters the electrochemical treatment unit, a certain voltage is applied to the electrode ( ⁇ 2V), and the positive and negative salt ions are concentrated on the surface of the negative electrode and the positive electrode, respectively.
  • the salt ions are removed from the solution; the H 2 O 2 and Fe ions generated during the electrode reaction process generate strong oxidizing OH, and also generate oxidizing substances such as Cl 2 to degrade the refractory organic matter, and the solution flows back to the storage after being treated.
  • the tank is circulated and circulated through the electrochemical processing unit.
  • the present invention has the following beneficial effects:
  • the applied voltage in the removal process of the invention is higher than the conventional electrosorption desalination technology, and the removal rate of the salt ions can reach more than 80%.
  • the invention can simultaneously remove refractory organic matter and remove organic matter. The rate can reach 100%, which broadens the application range of conventional electrosorption desalination technology.
  • the invention can be used for advanced treatment of wastewater, reducing waste water treatment process, saving space and reducing energy consumption.
  • FIG. 1 is a schematic diagram of an electrochemical device for synchronous desalination and degrading organic matter provided by the present invention.
  • 1 DC steady current regulated power supply
  • 2 plexiglass end plate
  • 3 electrode
  • 4 silica gel separator
  • 5 peristaltic pump
  • 6 thermostatic bath
  • 7 liquid storage tank
  • 8 conductivity/pH electrode.
  • the electrochemical wastewater treatment method for synchronously removing salt and removing difficult organic matter by using the electrochemical device shown in FIG. 1 is as follows: the porous carbon material electrode is prepared as the positive and negative electrodes of the electrochemical treatment unit, and the positive and negative electrodes may be the same or different.
  • the solution in the liquid storage tank is exposed to oxygen, a small amount of FeSO 4 or Fe 2 (SO 4 ) 3 is added , the solution enters the electrochemical treatment unit, a certain voltage is applied to the electrode ( ⁇ 2V), and the positive and negative salt ions are concentrated on the surface of the negative electrode and the positive electrode, respectively.
  • the salt ions are removed from the solution; the H 2 O 2 and Fe ions generated during the electrode reaction process generate strong oxidizing OH, and also generate oxidizing substances such as Cl 2 to degrade the refractory organic matter, and the solution flows back to the storage after being treated.
  • the tank is circulated and circulated through the electrochemical processing unit.
  • the process of the invention treats wastewater containing NaCl and phenol.
  • the carbon aerogel/polyvinylidene fluoride electrode is prepared as the positive and negative electrodes of the electrochemical wastewater treatment unit, and the positive and negative electrodes are the same, wherein the carbon aerogel mass fraction is 95%, the polyvinylidene fluoride is 5%, and the metal oxide is not contained.
  • the total mass of the electrode is 1 g.
  • the solution in the reservoir was exposed to oxygen at 500 ml/min without the addition of Fe ions. 100 ml of waste water containing 0.1 g/L NaCl and 1 mmol/L phenol was circulated through the electrochemical treatment unit at a flow rate of 40 ml/min, the wastewater temperature was 10 ° C, and a voltage of 2 V was applied.
  • the salt removal rate was 80%, the phenol removal rate was 70%, and the TOC removal rate was 45%. If oxygen is not introduced, the salt removal rate is only 60%, and the phenol removal rate is only 50%. The oxygen is introduced to promote electrochemical oxidation to remove organic matter, thereby promoting electrosorption and demineralization. If the composition of the positive and negative electrodes is modified to a carbon aerogel mass fraction of 90%, polyvinylidene fluoride 5%, metal oxide (such as TiO 2 ) 5%, the salt removal rate is 90%, and the phenol removal rate is 80%. The TOC removal rate is 50%, indicating that the addition of metal oxide can promote electrochemical oxidation to remove organic matter and electrosorption demineralization.
  • the process of the invention treats wastewater containing NaCl and phenol.
  • the process of the invention treats wastewater containing NaCl and phenol.
  • the mesoporous carbon/polyvinylidene fluoride electrode was prepared as the positive and negative electrodes of the electrochemical wastewater treatment unit, and the positive and negative electrodes were the same, wherein the mesoporous carbon mass fraction was 95%, the polyvinylidene fluoride content was 5%, and the metal oxide was not contained.
  • the total mass is 20g.
  • the solution in the reservoir was exposed to oxygen at 500 ml/min and 0.5 mmol/L FeSO 4 was added .
  • 100 ml of wastewater containing 5 g/L NaCl and 10 mmol/L phenol was circulated through the electrode at a flow rate of 40 ml/min.
  • the temperature of the wastewater was 10 ° C, and the applied voltage was 4 V.
  • the salt removal rate was 55%, and the phenol removal rate was 100%.
  • the TOC removal rate is 60%. If FeSO 4 is not added, the phenol removal rate is 90% and the TOC removal rate is 45%. It shows that the addition of Fe 2+ generates strong oxidizing substances and promotes phenol degradation.
  • the process of the invention treats wastewater containing NaCl and 4-chlorophenol.
  • the carbon aerogel/polyvinylidene fluoride electrode is prepared as the positive and negative electrodes of the electrochemical wastewater treatment unit, and the positive and negative electrodes are the same, wherein the carbon aerogel mass fraction is 95%, the polyvinylidene fluoride content is 5%, and the metal oxide is not contained.
  • the total mass of the electrode is 10g.
  • the solution in the reservoir was exposed to oxygen at 500 ml/min, and 0.5 mmol/L Fe 2 (SO 4 ) 3 was added .
  • the process of the invention treats wastewater containing salt and 4-nitrobenzene.
  • activated carbon/polytetrafluoroethylene electrode as positive electrode (in which the activated carbon mass fraction is 80% and the polyvinylidene fluoride content is 20%), and an activated carbon/manganese dioxide/polytetrafluoroethylene electrode is prepared as the negative electrode (wherein the activated carbon mass)
  • the fraction is 72%, the manganese dioxide content is 8%, the polyvinylidene fluoride content is 20%, the manganese dioxide is loaded onto the activated carbon surface by the impregnation method, and the positive and negative electrodes are respectively 10 g.
  • the solution in the reservoir was exposed to oxygen at 500 ml/min and 0.5 mmol/L FeSO 4 was added .
  • the process of the invention treats wastewater containing salt and rhodamine B.
  • the mesoporous carbon/titanium dioxide/polyvinylidene fluoride electrode was prepared as the positive and negative electrodes of the electrochemical wastewater treatment unit, and the positive and negative electrodes were the same, wherein the activated carbon mass fraction was 72%, the titanium dioxide content was 8%, the polyvinylidene fluoride content was 20%, and titanium dioxide.
  • the surface of the activated carbon was loaded by dipping, and the total mass of the electrode was 10 g.
  • the solution in the reservoir was exposed to oxygen at 500 ml/min and 0.5 mmol/L FeSO 4 was added .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种同步除盐除难降解有机物的电化学废水处理方法,使用多孔碳材料电极作为正负电极组装成电化学装置,将含有盐和难降解有机物的废水通过电化学装置,通过通入含氧气体,施加电压,并加入任选地Fe2+或Fe3+离子,使得难降解有机物得到降解和盐类得到同步去除。利用高比表面积材料对阴阳离子的电吸附作用除盐,通过控制阴极和阳极电位生成活性氧组分和活性氯组分氧化去除难降解有机物。

Description

一种同步除盐除难降解有机物的电化学废水处理方法 技术领域
本发明属于含盐含难降解有机物废水处理技术领域,具体地,主要针对含有低浓度盐和低浓度难降解有机物的废水的同步除盐除难降解有机物的方法。
背景技术
随着经济的发展和人口的膨胀,工业及生活所需的淡水资源日益匮乏,而废水回用成为发展的趋势。要达到回用水的水质要求,需要除去废水中的少量难降解有机物和盐类。这通常需要两种或者两种以上的技术来分别去除有机物和盐。例如专利CN 102001776A分别采用硫化沉淀、电吸附脱盐、电解除氯等技术处理高含盐有机废水;专利CN 102452753A对含盐有机废水依次采用电吸附脱盐、催化氧化和絮凝来处理;专利CN101481178利用微生物燃料电池实现同步除有机物、脱盐和产电,但仅限于可生化处理的有机废水,对于难降解有机物去除效果不好。因此目前缺少同步除盐除难降解有机物的技术。
一般来说,高级氧化技术(如O3催化氧化、光催化、电催化等)产生强氧化性的羟基自由基(·OH),可以完全矿化难降解有机物,但这种技术不能脱盐。而反渗透、电渗析等脱盐技术只是将有机物浓缩,无法降解有机物。电吸附脱盐技术(CDI)是近年来发展很快的一种脱盐技术。它利用多孔材料在通电后形成双电层、能够储存大量离子的原理将盐离子从溶液中除去,具有工作电压低(1-2V)、环境友好、能耗低、操作简便等优点。相比反渗透技术,它能耗更低,进水预处理要求低。但常规电吸附技术仍然不能有效去除有机物,有机物的存在还可能造成电极污染。
发明内容
本发明的目的在于克服常规电吸附脱盐技术不能有效去除有机物以及电化学氧化技术无法脱盐的缺点,提供一种同步除盐除难降解有机物的电化学废水处理方法。
为了实现上述目的,本发明采用了如下技术方案:
一种同步除盐除难降解有机物的电化学废水处理方法,所述方法使用多孔碳材料电极作为正负电极组装成电化学装置,将含有盐和难降解有机物的废水通过电化学装置,通过通入含氧气体,施加电压,并加入任选地Fe2+或Fe3+离子,使得难降解有机物得到降解和盐类得到同步去除。
本发明的原理是:使用多孔碳材料电极分别作为正极和负极,通过施加外加电压、通入含氧气体以及加入任选地Fe2+或Fe3+离子,发生电化学反应,产生Cl2、H2O2、羟基自由基(·OH)等氧化性的物质,有助于难降解有机物的降解,同时电极对盐离子有很好的电吸附作用,实现了难降解有机物和盐离子的同步去除。具体为:施加一定电压后,正负离子分别在负极和正极的表面富集而从溶液中除去,O2在负极表面还原产生H2O2,与任选地加入的Fe2+或Fe3+生成强氧化性的·OH,Cl-在正极表面氧化产生Cl2和HClO等活性氯物质,从而将有机物降解矿化。
正负极发生的反应如下:
2Cl-→Cl2(g)+2e-  (1)
正极:Cl2(g)+H2O→2H++Cl-+ClO-  (2)
负极:O2+2H++2e-→H2O2  (3)
若加入Fe3+离子,则在负极发生如下反应:
Fe3++e-→Fe2+  (4)
H2O2与Fe2+进一步发生如下反应:
H2O2+Fe2++H+→·OH+Fe3++H2O  (5)
本发明主要针对含有低浓度盐和低浓度难降解有机物的废水。利用高比表面积材料对阴阳离子的电吸附作用除盐,通过控制阴极和阳极电位生成活性氧组分和活性氯组分氧化去除难降解有机物。本发明充分利用阴阳极,结合电吸附除盐和电化学氧化法的特点同步去除盐类和难降解有机物,并利用两者之间的协同效应,去除效率高,去除成本低。
在本发明中,正负电极可以采用完全相同的多孔碳材料,也可以采用不同的多孔碳材料。
优选地,所述多孔碳材料电极为碳材料、粘结剂以及任选地金属氧化物制备的片状电极。
优选地,所述碳材料在电极中质量分数为25%~95%(例如30%、40%、50%、60%、70%、80%或90%),金属氧化物为0%~25%(例如5%、10%、15%或20%),粘结剂为5%~50%(例如10%、20%、30%或40%)。
优选地,所述碳材料为石墨、活性碳、活性碳纤维、碳气凝胶、介孔碳、碳纳米管或石墨烯中的任意一种或者至少两种的混合物。
优选地,所述金属氧化物为铁氧化物、铜氧化物、镍氧化物、钴氧化物、锰氧化物、锌氧化物或钛氧化物中的任意一种或者至少两种的混合物。
优选地,所述金属氧化物通过浸渍法或者共沉淀法负载到碳材料上。
优选地,所述粘结剂为有机聚合物,优选聚四氟乙烯或聚偏氟乙烯等。
优选地,所述含氧气体为氧气或空气。
优选地,施加电压2~4V。
优选地,含有盐和难降解有机物的废水在通过电化学装置过程中,控制废 水的温度10~60℃,例如15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃或55℃。
优选地,Fe2+或Fe3+离子的浓度为0~0.5mmol/L,优选为0~0.5mmol/L且不包括0,即,每1L废水中加入0~0.5mmol的Fe2+或Fe3+离子。
优选地,施加电压的时间为10min~5h,例如20min、1h、1.5h、2h、2.5h、3h、3.5h、4h或4.5h。
优选地,所述废水中含有Cl-离子,其浓度为0.1~5g/L。
优选地,所述废水中总盐浓度为0.1~5g/L,本发明可以高效的实现低浓度盐废水中的盐的脱除。
优选地,所述难降解有机物为苯酚类、卤代芳烃类、硝基苯类或染料类等中的任意一种或者至少两种的混合物,其浓度为0.01~10mmol/L,本发明可以高效的实现低浓度难降解有机物废水中的难降解有机物的降解去除。
示例性的一种同步除盐除难降解有机物的电化学废水处理方法,步骤如下:制备多孔碳材料电极作为电化学处理单元正负极,正负电极可以相同或是不同。
储液槽里的溶液曝氧气,加入少量FeSO4或Fe2(SO4)3,溶液进入电化学处理单元,电极外加一定电压(≥2V),正负盐离子分别在负极和正极表面富集,盐离子从溶液中去除;电极反应过程中产生的H2O2与Fe离子生成强氧化性·OH,还产生Cl2等氧化性物质,将难降解有机物降解,经处理后溶液流回储液槽,并循环通过电化学处理单元。
与现有技术相比,本发明具有如下有益效果:
本发明在去除过程中施加外加电压比常规电吸附脱盐技术高,对盐离子的去除率可达80%以上。此外,本发明可以同步去除难降解有机物,有机物去除 率可达100%,拓宽了常规电吸附脱盐技术的应用范围。而且,本发明可以用于废水深度处理,减少废水处理工艺流程,节约场地,降低能耗。
附图说明
图1为本发明提供的用于同步除盐除难降解有机物的电化学装置示意图。
其中:1为直流稳流稳压电源,2为有机玻璃端板,3为电极,4为硅胶隔板,5为蠕动泵,6为恒温槽,7为储液槽,8为电导率/pH电极。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
采用如图1所示的电化学装置同步除盐除难降解有机物的电化学废水处理方法,步骤如下:制备多孔碳材料电极作为电化学处理单元正负极,正负电极可以相同或是不同。储液槽里的溶液曝氧气,加入少量FeSO4或Fe2(SO4)3,溶液进入电化学处理单元,电极外加一定电压(≥2V),正负盐离子分别在负极和正极表面富集,盐离子从溶液中去除;电极反应过程中产生的H2O2与Fe离子生成强氧化性·OH,还产生Cl2等氧化性物质,将难降解有机物降解,经处理后溶液流回储液槽,并循环通过电化学处理单元。
实施例1
本发明方法对含NaCl和苯酚的废水进行处理。
制备碳气凝胶/聚偏氟乙烯电极作为电化学废水处理单元正负极,正负极相同,其中碳气凝胶质量分数为95%,聚偏氟乙烯5%,不含金属氧化物,电极总质量1g。储液槽里的溶液以500ml/min曝氧气,不加入Fe离子。将100ml含有0.1g/L NaCl和1mmol/L苯酚的废水以40ml/min的流速循环通过电化学处理单元,废水温度10℃,外加电压2V。通电5h后,除盐率为80%,苯酚去除率为70%,TOC去除率为45%。如果不通入氧气,除盐率仅为60%,苯酚去除 率仅为50%,通入氧气促进电化学氧化去除有机物,进而促进电吸附除盐,两者存在协同作用。如果将正负极组成修改为碳气凝胶质量分数为90%,聚偏氟乙烯5%,金属氧化物(如TiO2)5%,则除盐率为90%,苯酚去除率为80%,TOC去除率为50%,说明金属氧化物的加入可以促进电化学氧化去除有机物和电吸附除盐。
实施例2
本发明方法对含NaCl和苯酚的废水进行处理。
制备碳气凝胶/聚偏氟乙烯电极作为正极(其中碳气凝胶质量分数为95%,聚偏氟乙烯5%),制备碳气凝胶/四氧化三铁/聚偏氟乙烯电极作为负极(其中碳气凝胶质量分数为25%,四氧化三铁含量25%,聚偏氟乙烯含量50%,四氧化三铁通过共沉淀法负载到碳气凝胶表面),正负电极质量分别为1g。储液槽里的溶液以500ml/min曝氧气,不加入Fe离子。将100ml含有0.1g/L NaCl和0.01mmol/L苯酚的废水以40ml/min的流速循环通过电极,废水温度60℃,外加电压4V。通电10min后,除盐率为50%,苯酚去除率为65%,TOC去除率为40%。如果不通入氧气,除盐率仅为25%,苯酚去除率仅为50%,通入氧气促进电化学氧化去除有机物,进而促进电吸附除盐,说明两者存在协同作用。
实施例3
本发明方法对含NaCl和苯酚的废水进行处理。
制备介孔碳/聚偏氟乙烯电极作为电化学废水处理单元正负极,正负极相同,其中介孔碳质量分数为95%,聚偏氟乙烯含量5%,不含金属氧化物,电极总质量20g。储液槽里的溶液以500ml/min曝氧气,加入0.5mmol/L FeSO4。将100ml含有5g/L NaCl和10mmol/L苯酚的废水以40ml/min的流速循环通过电极,废水温度10℃,外加电压4V,通电5h后,除盐率为55%,苯酚去除率为100%, TOC去除率为60%。如果不加入FeSO4,苯酚去除率为90%,TOC去除率为45%。说明加入Fe2+生成强氧化性物质,促进苯酚降解。
实施例4
本发明方法对含NaCl和4-氯苯酚的废水进行处理。
制备碳气凝胶/聚偏氟乙烯电极作为电化学废水处理单元正负极,正负极相同,其中碳气凝胶质量分数为95%,聚偏氟乙烯含量5%,不含金属氧化物,电极总质量10g。储液槽里的溶液以500ml/min曝氧气,加入0.5mmol/L Fe2(SO4)3。将100ml含有1g/L盐(其中含0.5g/L NaCl)和1mmol/L 4-氯苯酚的废水以40ml/min的流速循环通过电极,废水温度60℃,外加电压4V。通电5h后,除盐率为75%,4-氯苯酚去除率为80%,TOC去除率为50%。如果不加入Fe2(SO4)3,4-氯苯酚去除率为65%,TOC去除率仅为30%,说明加入Fe3+生成强氧化性物质,促进4-氯苯酚降解。
实施例5
本发明方法对含盐和4-硝基苯的废水进行处理。
制备活性碳/聚四氟乙烯电极作为正极(其中活性碳质量分数为80%,聚偏氟乙烯含量20%),制备活性碳/二氧化锰/聚四氟乙烯电极作为负极(其中活性碳质量分数为72%,二氧化锰含量8%,聚偏氟乙烯含量20%,二氧化锰通过浸渍法负载到活性碳表面),正负极质量分别为10g。储液槽里的溶液以500ml/min曝氧气,加入0.5mmol/L FeSO4。将100ml含有2g/L盐(其中含1g/LNaCl)和1mmol/L 4-硝基苯的废水以40ml/min的流速循环通过电极,废水温度60℃,外加电压4V。通电5h后,除盐率为90%,4-硝基苯去除率为100%,TOC去除率75%。如果不加入FeSO4,4-硝基苯去除率为90%,TOC去除率为55%。说明加入Fe2+生成强氧化性物质,促进4-硝基苯降解。
实施例6
本发明方法对含盐和罗丹明B的废水进行处理。
制备介孔碳/二氧化钛/聚偏氟乙烯电极作为电化学废水处理单元正负极,正负极相同,其中活性碳质量分数为72%,二氧化钛含量8%,聚偏氟乙烯含量20%,二氧化钛通过浸渍法负载到活性碳表面,电极总质量10g。储液槽里的溶液以500ml/min曝氧气,加入0.5mmol/L FeSO4。将100ml含有1g/L NaCl和1mmol/L罗丹明B的废水以40ml/min的流速循环通过电极,废水温度10℃,外加电压4V。通电5h后,除盐率为95%,罗丹明B去除率为100%,TOC去除率65%。如果不加入FeSO4,罗丹明B去除率为80%,TOC去除率为40%。说明加入Fe2+生成强氧化性物质,促进罗丹明B降解。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种同步除盐除难降解有机物的电化学废水处理方法,所述方法使用多孔碳材料电极作为正负电极组装成电化学装置,将含有盐和难降解有机物的废水通过电化学装置,通过通入含氧气体,施加电压,并加入任选地Fe2+或Fe3+离子,使得难降解有机物得到降解和盐类得到同步去除。
  2. 如权利要求1所述的方法,其特征在于,所述多孔碳材料电极为碳材料、粘结剂以及任选地金属氧化物制备的片状电极。
  3. 如权利要求2所述的方法,其特征在于,所述碳材料在电极中质量分数为25%~95%,金属氧化物为0%~25%,粘结剂为5%~50%。
  4. 如权利要求2所述的方法,其特征在于,所述碳材料为石墨、活性碳、活性碳纤维、碳气凝胶、介孔碳、碳纳米管或石墨烯中的任意一种或者至少两种的混合物。
  5. 如权利要求2或4所述的方法,其特征在于,所述金属氧化物为铁氧化物、铜氧化物、镍氧化物、钴氧化物、锰氧化物、锌氧化物或钛氧化物中的任意一种或者至少两种的混合物;
    优选地,所述金属氧化物通过浸渍法或者共沉淀法负载到碳材料上;
    优选地,所述粘结剂为有机聚合物,优选聚四氟乙烯或聚偏氟乙烯等。
  6. 如权利要求1-5之一所述的方法,其特征在于,所述含氧气体为氧气或空气;
    优选地,施加电压2~4V。
  7. 如权利要求1-6之一所述的方法,其特征在于,施加电压的时间为10min~5h;
    优选地,含有盐和难降解有机物的废水在通过电化学装置过程中,控制废水的温度10~60℃。
  8. 如权利要求1-7之一所述的方法,其特征在于,Fe2+或Fe3+离子的浓度为0~0.5mmol/L,优选为0~0.5mmol/L且不包括0。
  9. 如权利要求1-8之一所述的方法,其特征在于,所述废水中含有C1-离子,其浓度为0.1~5g/L;
    优选地,所述废水中总盐浓度为0.1~5g/L。
  10. 如权利要求1-9之一所述的方法,其特征在于,所述难降解有机物为苯酚类、卤代芳烃类、硝基苯类或染料类等中的任意一种或者至少两种的混合物,其浓度为0.01~10mmol/L。
PCT/CN2016/075325 2015-03-03 2016-03-02 一种同步除盐除难降解有机物的电化学废水处理方法 WO2016138858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510094785.8 2015-03-03
CN201510094785.8A CN104671364B (zh) 2015-03-03 2015-03-03 一种同步除盐除难降解有机物的电化学废水处理方法

Publications (1)

Publication Number Publication Date
WO2016138858A1 true WO2016138858A1 (zh) 2016-09-09

Family

ID=53307027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075325 WO2016138858A1 (zh) 2015-03-03 2016-03-02 一种同步除盐除难降解有机物的电化学废水处理方法

Country Status (2)

Country Link
CN (1) CN104671364B (zh)
WO (1) WO2016138858A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323337A (zh) * 2019-12-24 2020-06-23 大庆油田有限责任公司 一种清水配制、曝氧处理含聚污水稀释聚合物溶液评价工艺
CN111943326A (zh) * 2020-07-29 2020-11-17 暨南大学 一种具备除氨氮功能的电吸附-电氧化复合电极及其制作方法与应用
CN112992397A (zh) * 2021-03-26 2021-06-18 南华大学 交替式双阳极矿化去除低浓度含铀废水中铀的装置及方法
CN115010219A (zh) * 2022-05-18 2022-09-06 浙江工业大学 一种绿色新型降解乙腈废水的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671364B (zh) * 2015-03-03 2017-03-01 中国科学院过程工程研究所 一种同步除盐除难降解有机物的电化学废水处理方法
CN105236527B (zh) * 2015-10-30 2017-08-04 中山大学 一种废水同步连续脱盐除有机污染物的三维电极装置及方法
CN105668719B (zh) * 2016-04-28 2019-05-14 北京林业大学 负载钴氧化物的活性炭催化粒子电极及制备方法
CN106178968B (zh) * 2016-07-04 2019-08-13 大连理工大学 一种抗污染导电过滤双功能膜的制备方法
CN107311139A (zh) * 2017-05-04 2017-11-03 东莞理工学院 以葡萄糖为碳源制备的介孔碳材料及其应用
CN108423776B (zh) * 2018-04-10 2021-05-11 大连理工大学 一种电容去离子耦合电催化协同去除重金属和有机物的方法
CN109095545B (zh) * 2018-09-29 2021-08-10 吴洋洋 一种电化学与光催化协同处理高浓度有机废水的装置和方法
CN109987683A (zh) * 2019-04-08 2019-07-09 东莞理工学院 三氧化二铁活性炭纤维复合电吸附材料的制备方法及其应用
CN110028137B (zh) * 2019-04-25 2021-11-30 郑州大学 一种去除水体低价离子和cod的电吸附材料及应用
CN110581029B (zh) * 2019-09-11 2021-08-10 南京师范大学 一种三元复合电极及其制备方法和在电吸附中的应用
CN111547824B (zh) * 2020-02-18 2021-08-24 太原理工大学 一种从再生水中去除氯离子的方法及电极的制备方法
CN111392712B (zh) * 2020-04-13 2022-04-12 湘潭大学 一种氮改性介孔碳材料及其制备方法和作为电吸附脱盐电极材料的应用
CN111825171A (zh) * 2020-06-12 2020-10-27 武汉尚源新能环境有限公司 一种介孔炭电极的制备方法及有机废水处理设备
CN113149143B (zh) * 2021-02-10 2023-01-03 中国石油大学(北京) 基于层级疏水/亲水电极同步除盐和有机物的方法、装置
CN114014414B (zh) * 2021-10-08 2022-12-16 华南理工大学 一种铜离子处理方法
CN114314737B (zh) * 2021-12-28 2022-10-14 北京林业大学 光电协同强化同步脱盐降解有机物的污水处理方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100003528A (ko) * 2008-07-01 2010-01-11 회명산업 주식회사 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을이용한 난분해성 폐수 처리장치 및 방법
CN202508901U (zh) * 2012-02-17 2012-10-31 南京科盛环保科技有限公司 一种新型三维电Fenton催化氧化装置
CN103145217A (zh) * 2013-03-27 2013-06-12 中北大学 超重力多级阴极电Fenton法处理难降解废水的装置及工艺
CN104671364A (zh) * 2015-03-03 2015-06-03 中国科学院过程工程研究所 一种同步除盐除难降解有机物的电化学废水处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257844C (zh) * 2003-09-09 2006-05-31 大连理工大学 一种多相多元催化电解氧化污水处理方法与装置
CN100453472C (zh) * 2004-12-15 2009-01-21 中国科学院生态环境研究中心 一种利用光电芬顿反应高效去除水中有机物的方法及装置
CN101020590B (zh) * 2006-02-14 2010-08-11 北京国力源高分子科技研发中心 一种自由基处理高难度有机废水的方法
CN102781846B (zh) * 2009-06-29 2015-04-08 普罗特高公司 电化学处理废水的设备和方法
CN102311201B (zh) * 2010-07-07 2013-10-09 中国石油化工股份有限公司 一种高酸原油电脱盐废水的深度处理方法
CN102452753B (zh) * 2010-10-26 2013-07-31 中国石油化工股份有限公司 一种含盐有机废水的处理方法
RU2519383C1 (ru) * 2012-12-13 2014-06-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ очистки воды и водных растворов от анионов и катионов
CN104167299B (zh) * 2014-08-21 2017-11-28 中国科学院大连化学物理研究所 一种金属网加强的高面密度超级电容器电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100003528A (ko) * 2008-07-01 2010-01-11 회명산업 주식회사 전기분해와 광-펜톤산화공정이 결합된 복합산화공정을이용한 난분해성 폐수 처리장치 및 방법
CN202508901U (zh) * 2012-02-17 2012-10-31 南京科盛环保科技有限公司 一种新型三维电Fenton催化氧化装置
CN103145217A (zh) * 2013-03-27 2013-06-12 中北大学 超重力多级阴极电Fenton法处理难降解废水的装置及工艺
CN104671364A (zh) * 2015-03-03 2015-06-03 中国科学院过程工程研究所 一种同步除盐除难降解有机物的电化学废水处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, QIANG ET AL.: "Preparation and Electrochemical Performance of Copper Oxide/Porous Carbon Composites as Electrode Materials for Electrochemical Capacitors", JOURNAL OF INORGANIC MATERIALS, vol. 22, no. 5, 30 September 2007 (2007-09-30), ISSN: 1000-324X *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323337A (zh) * 2019-12-24 2020-06-23 大庆油田有限责任公司 一种清水配制、曝氧处理含聚污水稀释聚合物溶液评价工艺
CN111943326A (zh) * 2020-07-29 2020-11-17 暨南大学 一种具备除氨氮功能的电吸附-电氧化复合电极及其制作方法与应用
CN112992397A (zh) * 2021-03-26 2021-06-18 南华大学 交替式双阳极矿化去除低浓度含铀废水中铀的装置及方法
CN112992397B (zh) * 2021-03-26 2022-10-04 南华大学 交替式双阳极矿化去除低浓度含铀废水中铀的装置及方法
CN115010219A (zh) * 2022-05-18 2022-09-06 浙江工业大学 一种绿色新型降解乙腈废水的方法

Also Published As

Publication number Publication date
CN104671364B (zh) 2017-03-01
CN104671364A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016138858A1 (zh) 一种同步除盐除难降解有机物的电化学废水处理方法
Kim et al. Microbial desalination cells for energy production and desalination
KR102024747B1 (ko) 복합 폐수 처리시스템 및 이를 이용한 복합 폐수 처리방법
CN107129011B (zh) 一种电解—离子膜耦合处理高氯盐有机废水的装置及方法
CN106495396B (zh) 一种高盐高有机物化工废水的资源化处理系统及处理方法
WO2017101655A1 (zh) 一种多效光合微生物燃料电池及实现方法
WO2015165234A1 (zh) 一种离子交换树脂脱附液的无害化处置与资源化利用方法
CN102092820A (zh) 一种双池双效可见光响应光电芬顿去除水中有机物的方法及装置
JP2002285369A (ja) 過酸化水素水及び次亜ハロゲン化物の製造用電解槽及び方法
Gholizadeh et al. Improved power density and Cr/Pb removal using ozone in a microbial desalination cell
CN105731624A (zh) 一种利用非均相类Fenton反应催化氧化处理反渗透浓水的方法
CN104085962A (zh) 电化学原位产生羟基自由基的方法和装置
CN111943408B (zh) 一种电催化臭氧吸附膜过滤去除水中有机污染物的装置及方法
Abbas et al. Kinetics and energetic parameters study of phenol removal from aqueous solution by electro-fenton advanced oxidation using modified electrodes with PbO2 and graphene
CN108358363A (zh) 一种高盐有机污水的深度处理方法
Liu et al. Critical review on the pulsed electrochemical technologies for wastewater treatment: Fundamentals, current trends, and future studies
CN108178252B (zh) 一种四电极双电解系统及采用该系统处理难降解有机废水方法
JP2005218983A (ja) 電解酸化を利用した廃水処理方法及び装置
KR102117548B1 (ko) 광전기투석 수처리 장치 및 이를 이용한 탈염 및 오염물 산화가 동시에 이루어지는 수처리 방법
CN109626518B (zh) 磁性石墨烯基Fen+三维电极非均相电Fenton处理印染废水的方法
Aryanti et al. The influence of applied current density and agitation speed during electrocoagulation of textile wastewater
Kim et al. Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function
CN205367823U (zh) Fenton法结合双极膜技术处理高盐工业废水电解槽
Tien et al. Electrochemical water treatment technology in Viet Nam: achievement &future development
KR101914027B1 (ko) 탄소전극을 이용한 전기화학적 수처리 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758473

Country of ref document: EP

Kind code of ref document: A1