WO2016138802A1 - 纤维素为原料制备生物质石墨烯的方法 - Google Patents

纤维素为原料制备生物质石墨烯的方法 Download PDF

Info

Publication number
WO2016138802A1
WO2016138802A1 PCT/CN2016/071540 CN2016071540W WO2016138802A1 WO 2016138802 A1 WO2016138802 A1 WO 2016138802A1 CN 2016071540 W CN2016071540 W CN 2016071540W WO 2016138802 A1 WO2016138802 A1 WO 2016138802A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
graphene
raw material
carbonization
preparing
Prior art date
Application number
PCT/CN2016/071540
Other languages
English (en)
French (fr)
Inventor
付宏刚
王蕾
唐一林
张金柱
郑应福
蒋保江
Original Assignee
黑龙江大学
济南圣泉集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黑龙江大学, 济南圣泉集团股份有限公司 filed Critical 黑龙江大学
Priority to PL16758418T priority Critical patent/PL3266743T3/pl
Priority to EP16758418.4A priority patent/EP3266743B1/en
Priority to US15/555,289 priority patent/US10494263B2/en
Priority to KR1020177024636A priority patent/KR101981416B1/ko
Priority to JP2017563379A priority patent/JP6457667B2/ja
Priority to ES16758418T priority patent/ES2804948T3/es
Publication of WO2016138802A1 publication Critical patent/WO2016138802A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a method for preparing graphene, and more particularly to a method for preparing biomass graphene using cellulose as a raw material.
  • Biomass is a natural cellulose source that is considered to be the most valuable and abundant renewable resource on the planet.
  • the annual yield of natural cellulosic biomass exceeds 700 million tons, with corn cobs and orange stalks accounting for more than 30%.
  • Biomass is rich in nutritive value and useful chemical ingredients. Although it is widely used in industry, agriculture and animal husbandry, more than 50% of biomass is still not used.
  • China lacks comprehensive measures for the effective use of biomass (corn kernels and orange stalks, etc.), which often causes serious air pollution, which is also the result of frequent smog and fine particles with a diameter less than PM2.5 in the air. An important factor that is high.
  • China is at the forefront of the world in the deep processing of biomass, it has already made a successful road in the development, development and comprehensive utilization of plant orange stalks. However, if the unreasonable use of biomass is eliminated, it will also cause secondary pollution to the environment.
  • graphene materials have been widely used in the energy environment, mainly due to the large surface area and excellent electron conduction characteristics of two-dimensional graphene, and can also be used as additives for resins and rubbers. , can improve the physical properties of such materials to meet the needs of different fields.
  • CVD chemical vapor deposition
  • the other is reduction of graphite oxide.
  • Graphene produced by the CVD method is suitable for use as an electronic device, but usually requires harsh reaction conditions, expensive equipment, long cycle, low yield, and is not suitable for large-scale applications similar to those in the field of electrode materials.
  • the amount of strong oxidizing agent (concentrated sulfuric acid, potassium permanganate, etc.) required for the reduction of the graphite oxide method is several tens of times that of the graphite raw material, resulting in serious environmental pollution. Production costs remain high, which greatly limits the process of industrialization.
  • the existing graphene preparation method has the problems of complicated process, poor production safety, high production cost, complicated equipment required for reaction, harsh reaction conditions, low yield, and the like, and thus is difficult to industrialize. Therefore, the inventors have been studying alternatives that can overcome the above obstacles and allow the formation of high quality graphene.
  • the method creatively proposes a method for preparing biomass graphene by using cellulose as a raw material. The method has simple preparation process, low cost, high output, strong production safety, controllable product size and physical properties, and can realize industrial production.
  • One of the objects of the present invention is to solve the problems of complicated preparation process of existing graphene, poor production safety, high production cost, complicated equipment required for reaction, harsh reaction conditions, and low yield.
  • Step 1 Preparing a catalyst solution: adding the catalyst to distilled water, stirring for 10 to 30 minutes, obtaining a uniform catalyst solution, wherein the ratio of the solute to the solvent in the catalyst solution is 2: 100 ⁇ 3
  • Step 2 Preparation of precursor: Biomass cellulose is added to the catalyst solution obtained in the first step, stirred for l ⁇ 4h, then deoxidized and dried at high temperature to obtain a precursor, wherein cellulose The mass ratio to the solvent is 3 : 100 ⁇ 40 : 100;
  • Step 3 heat treatment: pre-carbonization: the precursor obtained in the second step is placed in a nitrogen, argon or hydrogen atmosphere, heated to a temperature of 220 to 650 ° C at a temperature of 10 to 20 ° C / min , pre-carbonization for l ⁇ 6h; secondary carbonization: heating at a heating rate of 5 ⁇ 16 ° C / min to 900 ⁇ 1650 ° C heat treatment pre-carbonization product 4 ⁇ 15h, the precursor prepared in the second step is carried out Secondary carbonization treatment;
  • Step 4 acid treatment, water washing and drying: the product obtained in the third step is treated with an acid, centrifuged and then washed with distilled water until neutral, and then dried at 80 to 110 ° C to obtain graphite. Alkene.
  • the cellulose is from corn cob, corn stalk, sorghum stalk, soybean stalk, bulrush
  • one or more kinds of cellulose extracted from coconut shells and palm shells are included in coconut shells and palm shells.
  • the catalyst is one or a mixture of FeCl 2 , FeCl 3 , K 3 [Fe(CN) 6 ] or K 4 [Fe(CN) 6 ].
  • the stirring time is 13-25 min; the ratio of the solute to the solvent in the catalyst solution is 3 : 100 ⁇ 25 : 100.
  • the stirring time is 15-20 min; in the catalyst solution
  • the ratio of solute to solvent is 4 : 100 ⁇ 15 : 100.
  • the stirring enthalpy described in the second step is 2 to 3 h
  • the reaction conditions for deoxidation at the high temperature are: 110 to 205 ⁇ reaction 6 to 161 or the microwave intensity is 3 to 91 ⁇ ⁇
  • the temperature is 110 ⁇ 170 °C
  • the reaction is 5min ⁇ 2h.
  • reaction condition of the deoxidation at the high temperature in the second step is: 120 ⁇ 180 ° C reaction 8 ⁇ 1
  • the pre-carbonization treatment condition in the third step is: heating to 300 ⁇ 450 ° C at a heating rate of ll ⁇ 16 ° C / min, pre-carbonizing the precursor obtained in the second step 2 ⁇ 5h;
  • the secondary carbonization treatment condition is: heating at a heating rate of 5 to 12 ° C / min to 1000 to 1550 ° C heat treatment pre-carbonization product 5 to 10 h.
  • the pre-carbonization treatment condition in the third step is: heating to 330 ⁇ 420 ° C at a heating rate of 12 to 16 ° C / min, pre-carbonizing the precursor obtained in the second step 2 ⁇ 4h;
  • the secondary carbonization treatment condition is: heating at a heating rate of 6 to 10 ° C / min to 1050 ⁇ 1450 ° C heat treatment pre-carbonization product 5 ⁇ 8h.
  • the acid used in the acid treatment in the step 4 is one or more of sulfuric acid, perchloric acid or nitric acid; and the drying temperature is 90-105 °C.
  • the use of cellulose extracted from a wide range of inexpensive biomass as a carbon source for the preparation of graphene reduces production costs while increasing yield.
  • the yield of graphene is above 99%.
  • the method of the invention has the advantages of uniform size of graphene, single or multi-layer two-dimensional layer structure, size of 0.5 ⁇ 2 ⁇ , electrical conductivity of 25000 ⁇ 45000S/m, wide application range; applicable to fuel cells, large In the fields of capacitors, fuel cells, etc., it can also be used as an additive for resins and rubbers.
  • the raw material used in the invention is green, non-toxic, mild in reaction conditions, high in production safety, and easy to realize industrial production.
  • 1 is a schematic view showing a process flow for preparing graphene in the present invention
  • 2 is a transmission electron micrograph of graphene prepared in Example 12;
  • FIG. 3 is a Raman spectrum of graphene prepared in Example 12.
  • FIG. 1 is a schematic view showing a process flow for preparing graphene in the present invention.
  • Example 1 The method for preparing biomass graphene from cellulose as the raw material in the present embodiment is completed by the following steps:
  • Step 1 Preparation of a catalyst solution: 18g of FeCl 2 was added to 100ml of distilled water, stirred for 25min, a uniform catalyst solution was obtained, wherein the ratio of solute to solvent in the catalyst solution was 18: 100;
  • Step two preparing a precursor: adding cellulose to the catalyst solution obtained in the first step, stirring
  • Step 3 heat treatment: pre-carbonization: the precursor obtained in the second step is placed in a nitrogen, argon or hydrogen atmosphere, heated to 280 ° C at a heating rate of 10 ° C / min, The precursor obtained in the second step is pre-carbonized for 3 hours; the secondary carbonization is further heated to a temperature of 10 ° C / min to a heat treatment rate of 1050 ° C for 6 h, and the precursor prepared in the second step is subjected to secondary carbonization treatment. ;
  • Step 4 Acid treatment, water washing and drying: The product obtained in the third step is treated with an acid, centrifuged, washed with distilled water until neutral, and then dried at 105 ° C; that is, graphene is obtained.
  • the transmission electron micrograph of the graphene prepared in this Example 1 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 1 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, has a single layer or a multilayer two-dimensional layer structure, and the size is 0.5 ⁇ 2 ⁇ , the electrical conductivity is 25000 ⁇ 45000S/cm or more; the yield of graphene in this embodiment is 99.9% or more.
  • Example 2 This example differs from Example 1 in that the cellulose described in the first step is cellulose extracted from soybean stalk biomass.
  • the transmission electron micrograph of the graphene prepared in Example 2 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 2 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene has uniform dimensions, and has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 3 This example differs from Example 2 in that the catalyst described in the first step is a mixture of FeCl 2 and FeCl 3 .
  • the transmission electron micrograph of the graphene prepared in Example 3 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 3 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 4 This example differs from Example 3 in that: the deoxidation reaction conditions at the high temperature described in the second step are 7 h at 175 ° C, or at a microwave intensity of 4.5 kW and a temperature of 150 °. C reaction lh.
  • the transmission electron micrograph of the graphene prepared in the present Example 4 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 4 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene has uniform dimensions, and has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 5 This example differs from Example 4 in that the cellulose described in the first step is cellulose extracted from sorghum stalk biomass.
  • the transmission electron micrograph of the graphene prepared in Example 5 was similar to the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in Example 5 was similar to the Raman spectrum of the graphene prepared in Example 12, as shown in FIG.
  • the graphene has uniform dimensions, and has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 6 This example differs from Example 5 in that the cellulose described in the first step is cellulose extracted from the bulrush biomass.
  • the transmission electron micrograph of the graphene prepared in Example 6 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 6 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 7 This example differs from Example 6 in that the catalyst described in the first step is K 3 [Fe(CN) 6
  • the transmission electron micrograph of the graphene prepared in this Example 7 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 7 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 8 This example differs from Example 7 in that the catalyst described in the first step is K 4 [Fe(CN) 6
  • the transmission electron micrograph of the graphene prepared in this Example 8 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 8 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, has a single layer or a multilayer two-dimensional layer structure, and the size is 0.5 ⁇ 2 ⁇ , the electrical conductivity is 25000 ⁇ 45000S/cm or more; the yield of graphene in this embodiment is 99.9% or more.
  • Example 9 This example differs from Example 8 in that the catalyst described in the first step is FeCl 2 .
  • the transmission electron micrograph of the graphene prepared in Example 9 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 9 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene has uniform dimensions, and has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 10 This example differs from Example 9 in that the deoxidation reaction conditions at the high temperature described in the second step are carried out at 160 ° C for 9 hours.
  • the transmission electron micrograph of the graphene prepared in this Example 10 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 10 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene has uniform dimensions, and has a single layer or a multilayer two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 11 This example differs from Example 10 in that the deoxidation reaction conditions at the high temperature described in the third step are a microwave intensity of 6 kW and a temperature of 135 ° C for 0.5 h.
  • the transmission electron micrograph of the graphene prepared in this Example 11 was similar to that of the transmission electron micrograph of Example 12, as shown in FIG.
  • the Raman spectrum of the graphene prepared in this Example 11 is similar to the Raman spectrum of the graphene prepared in Example 12, as shown in Fig. 3.
  • the graphene is uniform in size, and has a two-layer or multi-layered two-dimensional layer structure, and the size is
  • the electrical conductivity is 25,000 to 45,000 S/cm or more; the yield of graphene in the present embodiment is 99.9% or more.
  • Example 12 The preparation method of the two-dimensional graphene nanocarbon material of the present embodiment is completed by the following steps: [0065] Step 1: Preparing a catalyst solution: 8 g of K 3 [Fe(CN) 6 ] catalyst Adding to 125g of distilled water, stirring for 15min, a uniform catalyst solution is obtained; [0066] Step 2: Preparation of precursor: 17g of cellulose extracted from sorghum stalks is added to the potassium ferricyanide solution of step 1, stirred for 3 hours, and then at a microwave power of 6 kW and a reaction temperature of 140 ° C. Deoxidation and drying at a high temperature to obtain a precursor;
  • Step 3 Heat treatment: pre-carbonization: under a nitrogen atmosphere, to 12. The C/min heating rate is heated to 350.
  • Step 4 Acid treatment, water washing and drying: The product of the third step is treated with nitric acid, centrifuged, and then washed with distilled water to neutrality, and then dried at 90 ° C; that is, graphene is obtained.
  • FIG. 2 is a transmission electron micrograph of graphene prepared in Example 12.
  • FIG. 3 is a Raman spectrum diagram of graphene prepared in Example 12. [0070] FIG.
  • the transmission electron micrograph of the graphene prepared in this Example 12 is shown in Fig. 2.
  • the microstructure of the prepared product is a two-dimensional layer having a size of about 700 nm.
  • the Raman spectrum of this graphene is shown in Fig. 3.
  • the sharp 2D peak appears in the same layer, which further proves the graphene structure. generate.
  • the conductivity of the sample was 32700 S/m, indicating that the graphene prepared by this method has good conductivity.
  • the present invention uses the cellulose extracted from a wide range of inexpensive biomass as a carbon source to prepare graphene, which reduces the production cost while improving the yield.
  • the yield of graphene is above 99%.
  • Different properties of the graphene can be obtained by changing the type of the cellulose and the catalyst and the reaction conditions.
  • the method of the invention has the advantages of uniform size of graphene, single or multi-layer two-dimensional layer structure, size of 0.5 ⁇ 2 ⁇ , electrical conductivity of 25000 ⁇ 45000S/m, wide application range; applicable to fuel cell, large size In the fields of capacitors, fuel cells, etc., it can also be used as an additive for resins and rubbers.
  • the raw materials used in the present invention are green and non-toxic, and the reaction conditions are mild. High production safety, easy to achieve industrial production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

提供一种利用纤维素为原料制备生物质石墨烯的方法,包括:催化剂溶液的配制;纤维素与催化剂离子配位、高温脱氧,得到前驱体;热处理、预碳化;酸处理、干燥即得到石墨烯。该方法简单、成本低、产量高、生产安全性强、产品尺寸及其它物理性质可控,可以实现工业化生产。该石墨烯形貌均一,具有单层或多层的二维层状结构,尺寸为0.5~2μm,导电率为25000~45000S/m,可用于超级电容器、锂离子电池的电极材料,也可作为添加剂加入到树脂、橡胶中以提高它们的物理性质。

Description

说明书 发明名称:纤维素为原料制备生物质石墨烯的方法 技术领域
[0001] 本发明涉及一种石墨烯的制备方法, 特别是利用纤维素为原料制备生物质石墨 烯的方法。
背景技术
[0002] 生物质是一种天然纤维素原料, 被认为是地球上最有价值、 最丰富的可再生资 源。 在中国, 天然纤维素生物质的年产率超过 7亿吨, 其中玉米芯和桔秆占 30% 以上。 生物质中含有丰富的营养价值以及有用的化学成分, 虽然被广泛用于工 业、 农业及畜牧业, 但是仍有 50%以上的生物质没有被利用。 目前, 我国在生 物质 (玉米芯和桔秆等)的有效利用方面缺乏综合措施, 往往造成严重的空气污染 , 这也是导致雾霾现象频发及空气中直径小于 PM2.5的细颗粒物浓度居高不下的 重要因素。 虽然我国在生物质的深加工方面走在世界前列, 已经在植物桔秆的 幵发、 研制和综合利用方面走出了一条成功的道路。 然而, 如果不合理利用生 物质废澄, 也会对环境造成二次污染。
[0003] 近年来, 石墨烯材料在能源环境领域中具有较为广泛的应用, 主要是由于二维 的石墨烯具有超大的比表面积、 杰出的电子传导特性, 同吋也可以作为树脂、 橡胶的添加剂, 可以提高这类材料的物理性质以满足不同领域的需求。 目前, 合成石墨烯的方法中应用较多的主要有两种: 一种是化学气相沉积法 (CVD), 另 一种是还原氧化石墨法。 CVD法生产的石墨烯, 适合于做电子器件, 但是通常 需要苛刻的反应条件、 昂贵的设备、 较长的周期、 较低的产率, 不适合类似于 在电极材料领域的大规模应用。 还原氧化石墨法所需要强氧化剂 (浓硫酸、 高锰 酸钾等)的用量为石墨原料的几十倍, 导致环境污染严重。 生产成本居高不下, 从而大大限制了其产业化的进程。
[0004] 综上所述, 现有石墨烯制备方法存在工艺复杂、 生产安全性差、 生产成本高、 反应所需设备复杂、 反应条件苛刻、 产量低等问题, 从而难以工业化生产。 因 此, 本发明人一直研究能够克服上述障碍并允许形成高质量的石墨烯的可选方 法, 创造性地提出了利用纤维素为原料制备生物质石墨烯的方法, 本方法的制 备工艺简单、 成本低、 产量高、 生产安全性强、 产品尺寸及物理性质可控, 可 以实现工业化生产。
技术问题
[0005] 本发明的目的之一是: 解决现有石墨烯制备工艺复杂、 生产安全性差、 生产成 本高、 反应所需设备复杂、 反应条件苛刻、 产量低等问题。
问题的解决方案
技术解决方案
[0006] 首先, 纤维素为原料制备生物质石墨烯的方法, 制备步骤为:
[0007] 步骤一: 配制催化剂溶液: 将催化剂加入到蒸馏水中, 搅拌 10〜30min后, 得 到均一的所述催化剂溶液, 其中所述催化剂溶液中溶质与溶剂的比为 2: 100〜3
5: 100;
[0008] 步骤二: 制备前驱体: 将生物质纤维素加入到所述步骤一得到的所述催化剂溶 液中, 搅拌 l〜4h, 然后在高温下脱氧、 烘干, 得到前驱体, 其中纤维素与溶剂 的质量比为 3: 100〜40: 100;
[0009] 步骤三: 热处理: 预碳化: 将所述步骤二得到的所述前驱体放入氮气、 氩气或 者氢气环境下, 以 10〜20°C/min升温速率加热至 220〜650°C, 使其预碳化 l〜6h ; 二次炭化: 再以 5〜16°C/min升温速率加热至 900〜1650°C热处理预碳化生成物 4〜15h, 使所述步骤二制备的前驱体进行二次炭化处理;
[0010] 步骤四: 酸处理、 水洗干燥: 用酸处理所述步骤三得到的生成物, 离心分离后 再用蒸馏水洗涤至中性, 然后在 80〜110°C条件下烘干, 即得到石墨烯。
[0011] 进一步的, 所述的纤维素为从玉米芯、 玉米桔秆、 高粱桔秆、 大豆桔秆、 蒲草
、 椰壳、 棕榈壳中提取的一种或几种纤维素。
[0012] 进一步的, 所述步骤一中催化剂为 FeCl 2、 FeCl 3、 K 3[Fe(CN) 6]或 K 4[Fe(CN) 6] 中的一种或者几种混合。
[0013] 进一步的, 所述步骤一中的: 所述搅拌吋间为 13-25min; 所述的催化剂溶液中 溶质与溶剂的比为 3 : 100〜25: 100。
[0014] 进一步的, 所述步骤一中的: 所述搅拌吋间为 15-20min; 所述的催化剂溶液中 溶质与溶剂的比为 4: 100〜15: 100。
[0015] 进一步的, 所述步骤二中所述的搅拌吋间为 2〜3h, 所述高温下脱氧的反应条 件为: 110〜205^反应6〜161或者是在微波强度为3〜91^\¥、 温度为 110〜170°C 下, 反应 5min〜2h。
[0016] 进一步的, 所述步骤二中所述高温下脱氧的反应条件为: 120〜180°C反应 8〜1
2h或者是在微波强度为 4〜7kW、 温度为 130〜160°C下, 反应 20min〜1.5h。
[0017] 进一步的, 所述步骤三中预碳化处理条件为: 以 l l〜16°C/min升温速率加热至 300〜450°C, 将所述步骤二得到的所述前驱体预碳化 2〜5h; 所述二次炭化处理 条件为: 以 5〜 12°C/min升温速率加热至 1000〜 1550°C热处理预碳化生成物 5〜 10 h。
[0018] 进一步的, 所述步骤三中预碳化处理条件为: 以 12〜16°C/min升温速率加热至 330〜420°C, 将所述步骤二得到的所述前驱体预碳化 2〜4h; 所述二次炭化处理 条件为: 再以 6〜 10°C/min升温速率加热至 1050〜 1450°C热处理预碳化生成物 5〜 8h。
[0019] 进一步的, 所述步骤四中的酸处理中使用的酸为硫酸、 高氯酸或硝酸中的一种 或几种; 所述烘干的温度为 90-105°C。
发明的有益效果
有益效果
[0020] 采用从来源广泛、 价廉的生物质提取的纤维素为碳源制备石墨烯, 在提高产量 的同吋降低了生产成本。 石墨烯的产率在 99%以上。 通过改变纤维素及催化剂 的种类及反应条件, 可以得到不同性质的石墨烯。 本发明方法制得石墨烯的尺 寸均一, 具有单层或者多层的二维层状结构, 尺寸在 0.5〜2μηι, 电导率为 25000 〜45000S/m, 应用范围广; 可应用于燃料电池、 超大电容器、 燃料电池等领域 , 也可以作为树脂、 橡胶等的添加剂。 本发明使用的原料绿色无毒, 反应条件 温和, 生产安全性高, 易于实现工业化生产。
对附图的简要说明
附图说明
[0021] 图 1是本发明中制备石墨烯的工艺流程示意图; [0022] 图 2是实施例 12制备的石墨烯的透射电子显微镜照片;
[0023] 图 3是实施例 12制备的石墨烯的拉曼光谱图。
本发明的实施方式
[0024] 下文将结合附图详细描述本发明的实施例。 应当注意的是, 下述实施例中描述 的技术特征或者技术特征的组合不应当被认为是孤立的, 它们可以被相互组合 从而达到更好的技术效果。
[0025] 图 1是本发明中制备石墨烯的工艺流程示意图
[0026] 从图 1中可以看出以纤维素为原料制备石墨烯的具体工艺流程为: S1 : 催化剂 溶液的配制; S2: 纤维素与催化剂离子配位、 高温脱氧, 得到前驱体; S3: 热 处理; S4: 酸处理、 干燥; S5: 即得到石墨烯。
[0027] 实施例 1 : 本实施例以纤维素为原料制备生物质石墨烯的方法是由下述步骤完 成的:
[0028] 步骤一: 配制催化剂溶液: 将 18gFeCl 2加入到 100ml蒸馏水中, 搅拌 25min后, 得到均一的催化剂溶液, 其中所述催化剂溶液中溶质与溶剂的比为 18: 100;
[0029] 步骤二: 制备前驱体: 将纤维素加入到所述步骤一得到的催化剂溶液中, 搅拌
2h, 然后再 140°C条件下反应 10h, 进行脱氧、 烘干, 得到前驱体, 其中纤维素与 溶剂的质量比为 26: 100;
[0030] 步骤三: 热处理: 预碳化: 将所述步骤二得到的所述前驱体放入氮气、 氩气或 者氢气环境下, 以 10°C/min升温速率加热至 280°C, 将所述步骤二得到的前驱体 预碳化 3h; 二次炭化: 再以 8°C/min升温速率加热至 1050°C热处理预碳化生成物 6 h, 使所述步骤二制备的前驱体进行二次炭化处理;
[0031] 步骤四: 酸处理、 水洗干燥: 用酸处理所述步骤三得到的生成物, 离心分离后 再用蒸馏水洗涤至中性, 然后在 105°C条件下烘干; 即得到石墨烯。
[0032] 本实施例 1制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 1制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0033] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在 0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0034] 实施例 2: 本实施例与实施例 1不同的是: 步骤一中所述的纤维素为大豆桔秆生 物质中提取的纤维素。
[0035] 本实施例 2制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 2制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0036] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0037] 实施例 3: 本实施例与实施例 2不同的是: 步骤一中所述的催化剂为 FeCl 2 与 FeCl 3两种混合。
[0038] 本实施例 3制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 3制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0039] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0040] 实施例 4: 本实施例与实施例 3不同的是: 步骤二中所述的高温下脱氧反应条件 为 175°C下反应 7h, 或者是在微波强度为 4.5kW、 温度为 150°C反应 lh。
[0041] 本实施例 4制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 4制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0042] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0043] 实施例 5: 本实施例与实施例 4不同的是: 步骤一中所述的纤维素为高粱桔秆生 物质中提取的纤维素。 [0044] 本实施例 5制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 5制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0045] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0046] 实施例 6: 本实施例与实施例 5不同的是: 步骤一中所述的纤维素为蒲草生物质 中提取的纤维素。
[0047] 本实施例 6制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 6制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0048] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0049] 实施例 7: 本实施例与实施例 6不同的是: 步骤一中所述的催化剂为 K 3[Fe(CN) 6
[0050] 本实施例 7制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 7制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0051] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0052] 实施例 8: 本实施例与实施例 7不同的是: 步骤一中所述的催化剂为 K 4[Fe(CN) 6
[0053] 本实施例 8制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 8制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0054] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在 0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0055] 实施例 9: 本实施例与实施例 8不同的是: 步骤一中所述的催化剂为 FeCl 2
[0056] 本实施例 9制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 9制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0057] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0058] 实施例 10: 本实施例与实施例 9不同的是: 步骤二中所述的高温下脱氧反应条 件为 160°C下反应 9h。
[0059] 本实施例 10制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 10制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0060] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0061] 实施例 11 : 本实施例与实施例 10不同的是: 步骤三中所述的高温下脱氧反应条 件为微波强度为 6kW、 温度为 135°C反应 0.5h。
[0062] 本实施例 11制备得到的石墨烯的透射电子显微镜照片与实施例 12的透射电子显 微镜照片相近, 如图 2所示。 本实施例 11制备得到的石墨烯的拉曼光谱图与实施 例 12制备得到的石墨烯的拉曼光谱图相似, 如图 3所示。
[0063] 本实施例制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构, 尺寸在
0.5〜2μηι, 导电率在 25000〜45000S/cm以上; 本实施例中石墨烯的产率在 99.9% 以上。
[0064] 实施例 12: 本实施例二维石墨烯纳米碳材料的制备方法是由下述步骤完成的: [0065] 步骤一: 配制催化剂溶液: 将 8g K 3[Fe(CN) 6]催化剂加入到 125g蒸馏水中, 搅 拌 15min后, 得到均一的催化剂溶液; [0066] 步骤二: 制备前驱体: 将 17g高粱桔秆中提取的纤维素加入到步骤一的铁氰化 钾溶液中, 搅拌 3h, 然后再在微波功率为 6kW、 反应温度为 140°C下反应高温下 脱氧、 烘干, 得到前驱体;
[0067] 步骤三: 热处理: 预碳化: 在氮气环境下, 以 12。C/min升温速率加热至 350。C
, 将步骤二得到的前驱体预碳化 2h; 二次炭化: 再以 6°C/min升温速率加热至 105
0°C热处理预碳化生成物 5h;
[0068] 步骤四: 酸处理、 水洗干燥: 用硝酸处理步骤三的生成物, 离心分离后再用蒸 馏水洗涤至中性, 然后在 90°C条件下烘干; 即得到石墨烯。
[0069] 图 2是实施例 12制备的石墨烯的透射电子显微镜照片。
[0070] 图 3是实施例 12制备的石墨烯的拉曼光谱图。
[0071] 本实施例 12制备的石墨烯的透射电子显微镜照片如图 2所示, 由图中可以看出 , 制备产品的微观结构为二维层状, 尺寸为 700nm左右。 此石墨烯的拉曼谱图如 图 3所示, G峰高于 D峰, 两个峰的强度之比 IG/ID = 6.4, 同吋出现了尖锐的 2D峰 , 这进一步证明石墨烯结构的生成。 样品的电导率为 32700S/m, 说明该方法制 备的石墨烯的导电性很好。
[0072] 从上述实施例中可以看出: 本发明采用从来源广泛、 价廉的生物质提取的纤维 素为碳源制备石墨烯, 在提高产量的同吋降低了生产成本。 石墨烯的产率在 99 %以上。 通过改变纤维素及催化剂的种类及反应条件, 可以得到不同性质的石 墨烯。 本发明方法制得石墨烯的尺寸均一, 具有单层或者多层的二维层状结构 , 尺寸在 0.5〜2μηι, 电导率为 25000〜45000S/m, 应用范围广; 可应用于燃料电 池、 超大电容器、 燃料电池等领域, 也可以作为树脂、 橡胶等的添加剂。 本发 明使用的原料绿色无毒, 反应条件温和。 生产安全性高, 易于实现工业化生产
[0073] 本文虽然已经给出了本发明的一些实施例, 但是本领域的技术人员应当理解, 在不脱离本发明精神的情况下, 可以对本文的实施例进行改变。 上述实施例只 是示例性的, 不应以本文的实施例作为本发明权利范围的限定。

Claims

权利要求书
纤维素为原料制备生物质石墨烯的方法, 其特征在于, 制备的步骤为 步骤一: 配制催化剂溶液: 将催化剂加入到蒸馏水中, 搅拌 10〜30mi n后, 得到均一的所述催化剂溶液, 其中所述催化剂溶液中溶质与溶 剂的比为 2: 100〜35: 100;
步骤二: 制备前驱体: 将生物质纤维素加入到所述步骤一得到的所述 催化剂溶液中, 搅拌 l〜4h, 然后在高温下脱氧、 烘干, 得到前驱体 , 其中纤维素与溶剂的质量比为 3: 100〜40: 100;
步骤三: 热处理: 预碳化: 将所述步骤二得到的所述前驱体放入氮气 、 氩气或者氢气环境下, 以 10〜20°C/min升温速率加热至 220〜650°C , 将所述步骤二得到的前驱体预碳化 l〜6h; 二次炭化: 再以 5〜16°C /min升温速率加热至 900〜1650°C热处理预碳化生成物 4〜15h, 使所 述步骤二制备的前驱体进行二次炭化处理;
步骤四: 酸处理、 水洗干燥: 用酸处理所述步骤三得到的生成物, 离 心分离后再用蒸馏水洗涤至中性, 然后在 80〜110°C条件下烘干, 即 得到石墨烯。
根据权利要求 1所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述的纤维素为从玉米芯、 玉米桔秆、 高粱桔秆、 大豆桔秆 、 蒲草、 椰壳、 棕榈壳中提取的一种或几种纤维素。
根据权利要求 1或 2任一项所述的纤维素为原料制备生物质石墨烯的方 法, 其特征在于, 所述步骤一中催化剂为 FeCl 2、 FeCl 3、 K 3[Fe(CN) 6;^K 4[Fe(CN) 6]中的一种或者几种混合。
根据权利要求 1所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤一中的: 所述搅拌吋间为 13-25min; 所述的催化剂 溶液中溶质与溶剂的比为 3: 100〜25: 100。
根据权利要求 4所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤一中的: 所述搅拌吋间为 15-20min; 所述的催化剂 溶液中溶质与溶剂的比为 4: 100〜15: 100。
根据权利要求 5所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤二中所述的搅拌吋间为 2〜3h, 所述高温下脱氧的 反应条件为: 110〜205°C反应 6〜16h或者是在微波强度为 3〜9kW、 温度为 110〜 170°C下, 反应 5min〜2h。
根据权利要求 6所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤二中所述高温下脱氧的反应条件为: 120〜180°C反 应 8〜12h或者是在微波强度为 4〜7kW、 温度为 130〜160°C下, 反应 2 0min〜1.5h。
根据权利要求 7所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤三中预碳化处理条件为: 以 l l〜16°C/min升温速率 加热至 300〜450°C, 将所述步骤二得到的所述前驱体预碳化 2〜5h; 所述二次炭化处理条件为: 以 5〜 12°C/min升温速率加热至 1000〜 155 0°C热处理预碳化生成物 5〜 10h。
根据权利要求 8所述的纤维素为原料制备生物质石墨烯的方法, 其特 征在于, 所述步骤三中预碳化处理条件为: 以 12〜16°C/min升温速率 加热至 330〜420°C, 将所述步骤二得到的所述前驱体预碳化 2〜4h; 所述二次炭化处理条件为: 再以 6〜 10°C/min升温速率加热至 1050〜 1 450°C热处理预碳化生成物 5〜8h。
根据权利要求 1或 9任一项所述的纤维素为原料制备生物质石墨烯的方 法, 其特征在于, 所述步骤四中的酸处理中使用的酸为硫酸、 高氯酸 或硝酸中的一种或几种; 所述烘干的温度为 90-105°C。
PCT/CN2016/071540 2015-03-04 2016-01-21 纤维素为原料制备生物质石墨烯的方法 WO2016138802A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL16758418T PL3266743T3 (pl) 2015-03-04 2016-01-21 Sposób otrzymywania grafenu z biomasy poprzez zastosowanie celulozy jako surowca
EP16758418.4A EP3266743B1 (en) 2015-03-04 2016-01-21 Method for preparing biomass graphene by using cellulose as raw material
US15/555,289 US10494263B2 (en) 2015-03-04 2016-01-21 Method for preparing biomass graphene by using cellulose as raw material
KR1020177024636A KR101981416B1 (ko) 2015-03-04 2016-01-21 셀룰로오스를 원료로 바이오매스 그래핀을 제조하는 방법
JP2017563379A JP6457667B2 (ja) 2015-03-04 2016-01-21 セルロースを原料とするバイオマスグラフェンの調製方法
ES16758418T ES2804948T3 (es) 2015-03-04 2016-01-21 Método para obtener grafeno de biomasa usando celulosa como materia prima

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510096254.2A CN104724699B (zh) 2015-03-04 2015-03-04 纤维素为原料制备生物质石墨烯的方法
CN201510096254.2 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016138802A1 true WO2016138802A1 (zh) 2016-09-09

Family

ID=53449204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071540 WO2016138802A1 (zh) 2015-03-04 2016-01-21 纤维素为原料制备生物质石墨烯的方法

Country Status (9)

Country Link
US (1) US10494263B2 (zh)
EP (1) EP3266743B1 (zh)
JP (1) JP6457667B2 (zh)
KR (1) KR101981416B1 (zh)
CN (1) CN104724699B (zh)
ES (1) ES2804948T3 (zh)
PL (1) PL3266743T3 (zh)
PT (1) PT3266743T (zh)
WO (1) WO2016138802A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221069B2 (en) * 2014-11-03 2019-03-05 Research Institute Of Petroleum Industry Producing graphene and nanoporous graphene
CN104724699B (zh) 2015-03-04 2017-04-26 黑龙江大学 纤维素为原料制备生物质石墨烯的方法
CN105054293A (zh) * 2015-08-09 2015-11-18 王干 一种新型石墨烯复合型香烟过滤嘴
US11006664B2 (en) 2015-08-09 2021-05-18 Jinan Shengquan Group Share Holding Co., Ltd. Graphene adsorbing material, preparation method therefor and application thereof, and cigarette filter tip and cigarette
CN105054291A (zh) * 2015-08-09 2015-11-18 王干 一种石墨烯复合香烟过滤嘴及带过滤嘴香烟
CN105060288B (zh) * 2015-09-21 2017-03-01 中南大学 一种以生物质废料为原料制备石墨烯的方法
CN105504341B (zh) * 2015-11-20 2017-06-16 营口圣泉高科材料有限公司 一种复合物及其制备方法以及一种高分子材料及其制备方法
CN105502330A (zh) * 2015-10-15 2016-04-20 营口圣泉高科材料有限公司 一种碳纳米结构的复合物及其制备方法
WO2017063434A1 (zh) 2015-10-15 2017-04-20 济南圣泉集团股份有限公司 一种含碳纳米结构的复合物、使用其的高分子材料及制备方法
TWI588089B (zh) * 2015-10-20 2017-06-21 Acelon Chem & Fiber Corp 製備石墨烯摻混天然纖維素熔噴不織布的方法
EP3202848B1 (en) * 2015-10-27 2021-03-17 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyester material, composite polyester fibre, preparation method therefor and use thereof
CN105504696B (zh) * 2015-10-27 2017-12-15 济南圣泉集团股份有限公司 一种复合聚酯材料、制备方法和用途
CN105524452B (zh) * 2015-10-27 2018-10-30 营口圣泉高科材料有限公司 一种碳纳米结构复合聚氨酯泡沫、制备方法和用途
CA3001424A1 (en) * 2015-10-27 2017-05-04 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyurethane foam containing graphene, and preparation method and use
CN105506771B (zh) * 2015-10-27 2017-12-05 济南圣泉集团股份有限公司 一种复合聚酯纤维、其制备方法和用途
CN105504700B (zh) * 2015-10-27 2017-12-19 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯材料、制备方法和用途
CN105504199B (zh) * 2015-11-27 2019-01-08 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途
CN105525384B (zh) * 2016-01-22 2019-05-10 济南圣泉集团股份有限公司 一种改性中空棉的用途
WO2017084542A1 (zh) * 2015-11-20 2017-05-26 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
WO2017084621A1 (zh) * 2015-11-20 2017-05-26 济南圣泉集团股份有限公司 一种功能性合成材料及其制备方法、制品
CN105525377B (zh) * 2015-11-26 2018-08-17 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
US10941273B2 (en) 2015-11-20 2021-03-09 Jinan Shengquan Group Share Holding Co., Ltd. Graphene-containing modified latex as well as preparation method therefor and application thereof
CN105623002B (zh) * 2015-11-27 2018-03-27 济南圣泉集团股份有限公司 一种含有石墨烯的乳胶及其制备方法和应用
CN105502366A (zh) * 2015-12-30 2016-04-20 成都新柯力化工科技有限公司 一种以生物质为原料制备石墨烯的方法
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN106243415B (zh) * 2016-01-14 2017-11-24 济南圣泉集团股份有限公司 一种天然乳胶的保存方法以及制得的乳胶制品
CN105603718B (zh) * 2016-02-05 2019-02-19 济南圣泉集团股份有限公司 一种复合纤维、及其制备方法和用途
CN105800600B (zh) * 2016-02-29 2018-05-01 武汉理工大学 利用果皮制备氮自掺杂三维石墨烯的方法
CN105800599B (zh) * 2016-02-29 2018-08-07 武汉理工大学 利用多孔豆壳制备氮自掺杂多孔石墨烯的方法
CN106467298B (zh) * 2016-05-04 2018-06-19 济南圣泉集团股份有限公司 一种石墨烯材料及其制备方法
CN106008880A (zh) * 2016-06-25 2016-10-12 丁玉琴 一种抗开裂微孔骨架封孔材料的制备方法
CN106467299A (zh) * 2016-06-27 2017-03-01 济南圣泉集团股份有限公司 一种石墨烯基多级孔电容炭及其制备方法、及电容器
CN106477563B (zh) * 2016-10-18 2018-07-20 天津理工大学 一种以昆虫翅膀为原料制备石墨烯和石墨烯基材料的方法
CN106744830B (zh) * 2016-11-24 2019-04-09 华南理工大学 一种以生物为碳源制备三维多孔/二维片层石墨烯的方法
CN107177399B (zh) * 2017-06-01 2019-10-22 吴锋 一种高浓度高稳定抗磨性石墨烯润滑油添加剂的制备工艺
CN107686106A (zh) * 2017-08-22 2018-02-13 杨子中 以麦草提取纤维素制备生物质石墨烯的方法
CN107793816A (zh) * 2017-10-26 2018-03-13 山东圣泉新材料股份有限公司 一种多功能乳胶漆及其制备方法和应用
CN107987661B (zh) * 2017-12-29 2020-01-21 西北农林科技大学 一种生物质石墨烯改性生漆重防腐复合涂料及其制备方法
CN108641341B (zh) * 2018-05-10 2020-11-20 河南迪怡疗护科技开发有限公司 一种抗菌型医用材料及其制备方法和抗菌型医疗器械
CN110655064A (zh) * 2018-06-28 2020-01-07 深圳市晟诚世纪科技有限公司 一种石墨烯材料的制备方法及石墨烯材料
KR102197603B1 (ko) * 2018-12-24 2020-12-31 포항공과대학교 산학협력단 탄산가스 레이저를 활용한 셀룰로오스 나노섬유 기반의 그래핀 제작 방법
CN109879281A (zh) * 2019-03-19 2019-06-14 华中科技大学 一种生物质基多孔炭的制备方法及产品
KR102216959B1 (ko) 2019-05-13 2021-02-18 한국전력공사 그래핀 제조용 조성물, 이를 이용한 그래핀 제조 방법 및 그래핀
CN110341251B (zh) * 2019-07-12 2021-05-28 杭州恒邦实业有限公司 一种石墨烯面膜布及其制备方法
CN110357077A (zh) * 2019-07-23 2019-10-22 路英军 一种生物质石墨烯制备方法
CN110485209B (zh) * 2019-08-07 2021-12-21 大连工业大学 一种具有速热性能的石墨烯复合纸的制备及其应用
CN112226053B (zh) * 2020-11-04 2022-01-28 中国矿业大学 生物质基石墨烯增强可降解高分子复合材料及其制备方法
CN112707386A (zh) * 2020-12-28 2021-04-27 桂林电子科技大学 一种废弃生物质衍生石墨烯材料的制备方法及其应用
KR20230148534A (ko) 2022-04-18 2023-10-25 가천대학교 산학협력단 바이오매스 나노공극 그래핀 메모리 및 그의 제조방법
CN114506841B (zh) * 2022-04-19 2022-07-08 中科南京绿色制造产业创新研究院 一种层间结构可控的生物质-石墨烯复合电极材料及其制备方法和应用
WO2024091109A1 (en) * 2022-10-27 2024-05-02 Nanomalaysia Berhad Method for preparing synthetic graphite and its derivatives from biomass waste
WO2024177021A1 (ja) * 2023-02-21 2024-08-29 国立大学法人福井大学 処理方法および混合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332684A (zh) * 2013-07-12 2013-10-02 海南光宇生物科技有限公司 一种石墨烯的制备方法
CN103449399A (zh) * 2013-07-09 2013-12-18 新疆师范大学 以生物质为原料制备类石墨烯结构碳材料
CN103935986A (zh) * 2014-02-28 2014-07-23 中国科学院宁波材料技术与工程研究所 一种以生物碳源材料高产率制备石墨烯的方法
CN104016341A (zh) * 2014-07-01 2014-09-03 济南圣泉集团股份有限公司 一种多孔石墨烯的制备方法
CN104045077A (zh) * 2014-05-27 2014-09-17 陈永 一种石墨烯三维分级多孔炭材料及制备方法
CN104118873A (zh) * 2014-08-13 2014-10-29 济南圣泉集团股份有限公司 一种活性多孔石墨烯的制备方法
CN104724699A (zh) * 2015-03-04 2015-06-24 黑龙江大学 纤维素为原料制备生物质石墨烯的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445234B (zh) * 2009-01-06 2011-01-05 黑龙江大学 石墨化碳纳米材料的制备方法
CN101618870B (zh) * 2009-07-02 2011-07-27 黑龙江大学 配位组装合成石墨烯的方法
US9540244B2 (en) * 2013-06-05 2017-01-10 Mississippi State University Methods for synthesizing graphene from a lignin source
CN103466613A (zh) * 2013-10-11 2013-12-25 中南林业科技大学 一种以木质素为原料制备石墨烯的方法
CN104328523B (zh) * 2014-11-20 2016-01-20 济南圣泉集团股份有限公司 包含石墨烯的粘胶纤维及其制备方法
US11006664B2 (en) 2015-08-09 2021-05-18 Jinan Shengquan Group Share Holding Co., Ltd. Graphene adsorbing material, preparation method therefor and application thereof, and cigarette filter tip and cigarette
CN105060288B (zh) 2015-09-21 2017-03-01 中南大学 一种以生物质废料为原料制备石墨烯的方法
CN105502330A (zh) 2015-10-15 2016-04-20 营口圣泉高科材料有限公司 一种碳纳米结构的复合物及其制备方法
CN105504341B (zh) 2015-11-20 2017-06-16 营口圣泉高科材料有限公司 一种复合物及其制备方法以及一种高分子材料及其制备方法
WO2017063434A1 (zh) 2015-10-15 2017-04-20 济南圣泉集团股份有限公司 一种含碳纳米结构的复合物、使用其的高分子材料及制备方法
CN105504700B (zh) 2015-10-27 2017-12-19 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯材料、制备方法和用途
CN105504696B (zh) 2015-10-27 2017-12-15 济南圣泉集团股份有限公司 一种复合聚酯材料、制备方法和用途
CN105504199B (zh) 2015-11-27 2019-01-08 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚氨酯泡沫、制备方法和用途
CN105524452B (zh) 2015-10-27 2018-10-30 营口圣泉高科材料有限公司 一种碳纳米结构复合聚氨酯泡沫、制备方法和用途
CN105506771B (zh) 2015-10-27 2017-12-05 济南圣泉集团股份有限公司 一种复合聚酯纤维、其制备方法和用途
WO2017084542A1 (zh) 2015-11-20 2017-05-26 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
CN105525384B (zh) 2016-01-22 2019-05-10 济南圣泉集团股份有限公司 一种改性中空棉的用途
CN105525377B (zh) 2015-11-26 2018-08-17 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
WO2017084621A1 (zh) 2015-11-20 2017-05-26 济南圣泉集团股份有限公司 一种功能性合成材料及其制备方法、制品
CN105623002B (zh) 2015-11-27 2018-03-27 济南圣泉集团股份有限公司 一种含有石墨烯的乳胶及其制备方法和应用
CN105502366A (zh) 2015-12-30 2016-04-20 成都新柯力化工科技有限公司 一种以生物质为原料制备石墨烯的方法
WO2017114174A1 (zh) 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN106243415B (zh) 2016-01-14 2017-11-24 济南圣泉集团股份有限公司 一种天然乳胶的保存方法以及制得的乳胶制品
CN105603718B (zh) 2016-02-05 2019-02-19 济南圣泉集团股份有限公司 一种复合纤维、及其制备方法和用途
CN105800600B (zh) 2016-02-29 2018-05-01 武汉理工大学 利用果皮制备氮自掺杂三维石墨烯的方法
CN105800599B (zh) 2016-02-29 2018-08-07 武汉理工大学 利用多孔豆壳制备氮自掺杂多孔石墨烯的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449399A (zh) * 2013-07-09 2013-12-18 新疆师范大学 以生物质为原料制备类石墨烯结构碳材料
CN103332684A (zh) * 2013-07-12 2013-10-02 海南光宇生物科技有限公司 一种石墨烯的制备方法
CN103935986A (zh) * 2014-02-28 2014-07-23 中国科学院宁波材料技术与工程研究所 一种以生物碳源材料高产率制备石墨烯的方法
CN104045077A (zh) * 2014-05-27 2014-09-17 陈永 一种石墨烯三维分级多孔炭材料及制备方法
CN104016341A (zh) * 2014-07-01 2014-09-03 济南圣泉集团股份有限公司 一种多孔石墨烯的制备方法
CN104118873A (zh) * 2014-08-13 2014-10-29 济南圣泉集团股份有限公司 一种活性多孔石墨烯的制备方法
CN104724699A (zh) * 2015-03-04 2015-06-24 黑龙江大学 纤维素为原料制备生物质石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3266743A4 *

Also Published As

Publication number Publication date
JP2018511554A (ja) 2018-04-26
PL3266743T3 (pl) 2020-11-16
EP3266743B1 (en) 2020-04-01
CN104724699B (zh) 2017-04-26
EP3266743A4 (en) 2018-08-22
JP6457667B2 (ja) 2019-01-23
PT3266743T (pt) 2020-07-07
US20180037460A1 (en) 2018-02-08
EP3266743A1 (en) 2018-01-10
KR101981416B1 (ko) 2019-05-22
KR20170137712A (ko) 2017-12-13
ES2804948T3 (es) 2021-02-09
US10494263B2 (en) 2019-12-03
CN104724699A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2016138802A1 (zh) 纤维素为原料制备生物质石墨烯的方法
Li et al. A critical review on the application and recent developments of post-modified biochar in supercapacitors
CN105552371B (zh) 氮掺杂石墨烯‑碳纳米角复合材料的制备及应用
WO2017219943A1 (zh) 一种复合型石油焦基活性炭及其制备方法、超级电容器
CN102464313B (zh) 石墨烯的制备方法
CN105645403A (zh) 一种高性能氮掺杂三维石墨烯的制备方法
CN109873152B (zh) 一种锂离子电池用石墨烯-硅基复合负极材料及其制备方法
CN102568641B (zh) 一种负载纳米金属颗粒的石墨烯复合材料的制备方法
EP2660199A1 (en) Composite material of carbon-coated graphene oxide, preparation method and application thereof
CN104701498B (zh) 一种生物碳/钒酸铵锂离子电池正极材料的制备方法
NO20170575A1 (en) Method for producing activated carbon
CN104045077A (zh) 一种石墨烯三维分级多孔炭材料及制备方法
CN106486295A (zh) 高比电容的石墨烯/高表面活性炭复合材料的制备方法
Yue et al. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption
CN105914048A (zh) 一种多孔碳-石墨烯-金属氧化物复合材料及其制备方法和应用
CN112736235B (zh) 生物质/碳纳米管诱导Fe3O4纳米复合材料及其作为锂离子电池负极材料的应用
CN105752969A (zh) 利用天然多孔及层状结构蔬菜制备多原子自掺杂石墨烯的方法
Mo et al. N-doped mesoporous carbon nanosheets for supercapacitors with high performance
CN104386676A (zh) 一种石墨烯的制备方法
Gong et al. An emerging class of carbon materials: Synthesis and applications of carbon flowers
CN113363463B (zh) 污泥/生物质共热解焦炭包覆磷酸铁锂的正极材料及其制备方法和应用
Zhao et al. Discarded dates as a sustainable source to prepare porous carbon-aerogel with multiple energy storage functions
Vijayalakshmi et al. High capacitance sustainable low-cost cold plasma exposed activated carbon electrode derived from orange peel waste to eco-friendly technique
CN113511654B (zh) 一种电容炭及其制备方法
Liu et al. Characteristics and Electrochemical Performances of Nitrogen-doped Graphene Prepared using different carbon and nitrogen sources as Anode for Lithium Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024636

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555289

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016758418

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE