WO2016136660A1 - 車種判別装置、料金収受設備、車種判別方法及びプログラム - Google Patents

車種判別装置、料金収受設備、車種判別方法及びプログラム Download PDF

Info

Publication number
WO2016136660A1
WO2016136660A1 PCT/JP2016/055038 JP2016055038W WO2016136660A1 WO 2016136660 A1 WO2016136660 A1 WO 2016136660A1 JP 2016055038 W JP2016055038 W JP 2016055038W WO 2016136660 A1 WO2016136660 A1 WO 2016136660A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicle type
light
silhouette
vehicle body
Prior art date
Application number
PCT/JP2016/055038
Other languages
English (en)
French (fr)
Other versions
WO2016136660A8 (ja
Inventor
重隆 福▲崎▼
中山 博之
伸行 尾張
洋平 小島
健太 中尾
泰弘 山口
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to MYPI2017703055A priority Critical patent/MY188588A/en
Priority to KR1020177023320A priority patent/KR102001748B1/ko
Publication of WO2016136660A1 publication Critical patent/WO2016136660A1/ja
Publication of WO2016136660A8 publication Critical patent/WO2016136660A8/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present invention relates to a vehicle type identification device, a toll collection facility, a vehicle type identification method, and a program.
  • Toll collection facilities used on toll roads such as expressways accept bills, coins, etc. from the users and change payments in order to improve the efficiency of toll collection processing with users.
  • a toll collector that automatically performs the above and a vehicle type discriminating device that discriminates the vehicle type classification of the traveling vehicle.
  • the automatic fee collection machine collects the fee of the amount corresponding to the vehicle type classification determined by the vehicle type determination device from the user.
  • the above-described vehicle type identification device includes a vehicle detector that can detect and detect the passage of vehicles one by one, and a tread that can detect treading by a tire of a traveling vehicle (for example, Patent Documents). 1).
  • An ordinary vehicle detector includes a plurality of pairs of a light projecting unit that projects a light beam and a light receiving unit that receives the light beam. According to such a vehicle detector, when the vehicle enters between the pair of the light projecting unit and the light receiving unit, the light beam connecting the light projecting unit and the light receiving unit is blocked by the vehicle body. Therefore, the passage of the vehicle can be detected based on the detection signal from the light receiving unit corresponding to the shielded light beam.
  • the vehicle type discriminating apparatus uses the “number of axles” of the vehicle as one piece of information for discriminating the vehicle type classification.
  • the vehicle type discriminating device can identify the “number of axles” of the vehicle by detecting the number of times the tread is stepped on while the vehicle detector detects the passage of one vehicle.
  • the vehicle type identification device cannot specify the number of axles of the vehicle unless all the vehicle bodies have passed the vehicle detector. Therefore, conventionally, in a toll collection facility provided on a highway or the like, the maximum vehicle length of the traveling vehicle (for example, 18 m) is taken into account for the purpose of specifying the number of axles for all the traveling vehicles.
  • the vehicle type discriminating device and the automatic toll collector are installed so that the distance between them is not less than the maximum vehicle length.
  • the toll collection facility depending on the location conditions of the toll collection facility on an expressway or the like, it may be difficult to secure an installation space in which the distance between the vehicle type identification device and the toll collector is at least the maximum vehicle length. Then, in the toll collection facility, the number of axles, which is information necessary for determining the vehicle type classification, cannot be acquired, and the vehicle type classification of the traveling vehicle cannot be determined in detail. For this reason, it is not possible to set a fee according to a sufficiently detailed vehicle type classification for the user.
  • the present invention has been made in view of the above problems, and its object is to provide a vehicle type discriminating apparatus, toll collection, which can be installed in a place where sufficient installation space cannot be secured and which can discriminate in detail the vehicle type.
  • the object is to provide a facility, a vehicle type discrimination method, and a program.
  • the vehicle type identification device (1A) includes a plurality of light projecting units (S1) that are arranged side by side in the height direction and project light rays (P), and each of the plurality of light projecting units. And a plurality of light receiving units (S2) capable of receiving the light beam or the reflected light of the light beam, and a detection signal indicating whether or not the light beam or the reflected light is received by the plurality of light receiving units And determining whether or not the light beam is shielded or reflected, and among the regions where the plurality of light receiving portions are arranged, a predetermined region (C) occupied by the light receiving portion corresponding to the light shielded or reflected light
  • a vehicle body silhouette (Da) that is two-dimensional information obtained by arranging a plurality of the predetermined regions acquired at different times on a time axis, and acquiring the vehicle body silhouette and the vehicle type classification Separately classified reference patterns Comprising Dref, based on the Dref '), vehicle type identification
  • the vehicle type identification device can grasp a projection (vehicle body silhouette) indicating the vehicle body shape of the traveling vehicle. Since this projection has a sufficient amount of information to accurately discriminate the vehicle type classification of the vehicle, the vehicle type identification device allows the vehicle type classification without using information that cannot be acquired unless the entire vehicle passes. Can be determined in detail. Therefore, the vehicle type identification device can be installed in a place where a sufficient installation space cannot be secured, and the vehicle type classification can be determined in detail.
  • the vehicle type determination unit normalizes the acquired body silhouette to remove a fluctuation component corresponding to the travel speed of the vehicle.
  • the vehicle type classification to which the vehicle belongs is determined based on the comparison result between the normalized vehicle body silhouette (Da ′) subjected to the normalization process and the reference pattern.
  • the vehicle type identification device can acquire a normalized vehicle body silhouette from which a fluctuation component corresponding to the traveling speed is removed. Therefore, it is possible to suppress the variation in the determination result due to the difference in travel speed and improve the determination accuracy.
  • the above-described vehicle type determination device extracts a tire silhouette (Dt) indicating a region corresponding to a tire of the vehicle from the acquired vehicle body silhouette.
  • (113a) and an aspect ratio calculation unit (113b) that calculates an aspect ratio of the extracted tire silhouette when the time axis is a horizontal direction, and the vehicle type determination unit calculates
  • the normalization process is performed by multiplying the time axis by the aspect ratio. In this way, information (aspect ratio) necessary for the normalization process can be acquired based on the tire silhouette extracted from the vehicle body silhouette, so it is necessary to provide a new measuring means for the normalization process. Absent. Therefore, the cost of the entire device can be reduced.
  • the vehicle type determination unit includes the vehicle body silhouette and the traction that is defined in correspondence with the reference pattern and the vehicle that pulls the towed vehicle.
  • the vehicle type classification to which the vehicle belongs is determined based on the vehicle determination reference pattern (Dref ′). In this way, the vehicle type identification device can accurately determine whether or not the vehicle is towing the towed vehicle, and can appropriately determine the vehicle type classification according to the presence or absence of the towed vehicle.
  • the above-described vehicle type determination device further includes a tire size acquisition unit (114A) that acquires the tire size of the vehicle, and the vehicle type determination unit includes the vehicle body silhouette and the reference.
  • the vehicle type classification to which the vehicle belongs is determined based on the pattern and the acquired tire size.
  • the above-described vehicle type determination device further includes a travel speed acquisition unit (114B) that acquires the travel speed of the vehicle, and the vehicle type determination unit includes the vehicle body silhouette and the reference.
  • the vehicle type classification to which the vehicle belongs is determined based on the pattern and the acquired traveling speed.
  • the vehicle type determination unit newly acquires the travel speed acquired by the travel speed acquisition unit and the statistical data (F) for each vehicle type.
  • the vehicle type classification to which the vehicle belongs is determined based on the travel speed.
  • the vehicle type classification of the vehicle is determined based on the actual statistical data of the vehicle traveling through the toll collection facility, so that the accuracy of determining the vehicle type classification based on the difference in travel speed can be improved.
  • the vehicle type discriminating device described above and the vehicle type discriminating device are arranged on the downstream side of the vehicle type discriminating device in the lane direction, and the toll is collected between the vehicle and the discriminated vehicle type.
  • the vehicle type identification method is arranged in a plurality in the height direction, and is arranged corresponding to each of the light projecting unit that projects light and the plurality of light projecting units,
  • a plurality of programs are arranged side by side in the height direction, are arranged corresponding to each of a plurality of light projecting units that project light beams, and each of the plurality of light projecting units, Or a plurality of light receiving units capable of receiving the reflected light of the light beam, and a computer for discriminating a vehicle type classification to which a vehicle traveling in a lane belongs, the light receiving unit for receiving the light beam or the reflected light in the plurality of light receiving units.
  • Region acquisition means for acquiring a predetermined region occupied by a vehicle body, acquiring a vehicle body silhouette that is two-dimensional information configured by arranging a plurality of the predetermined regions acquired at different times on a time axis, and classifying the vehicle body silhouette and vehicle type by category Based on the classified reference pattern, the vehicle type discriminating means for discriminating the vehicle type classification in which the vehicle belongs, to function as a.
  • vehicle type discriminating device toll collection facility, car type discriminating method and program, it can be installed in a place where sufficient installation space cannot be secured, and the car type classification can be discriminated in detail.
  • FIG. 1 is a diagram illustrating an overall configuration of a fee collection facility according to the first embodiment.
  • the toll collection facility 1 is provided at an exit toll gate of an expressway that is a toll road, and the toll of the amount according to the vehicle type classification of the vehicle A on which the user rides is received from the expressway user. It is a facility for receiving payment.
  • the highway side (+ X direction side in FIG. 1) is also referred to as “upstream side” of the lane L or “front side in the traveling direction”.
  • the general road side (the ⁇ X direction side in FIG. 1) is also referred to as “downstream side” of the lane L or “back side in the traveling direction”.
  • the fee collection facility 1 includes a vehicle type identification device 1A and an automatic fee collection device 1B.
  • the vehicle type discriminating apparatus 1A is provided on the road side of the lane L, etc., and discriminates the vehicle type classification of the vehicle A traveling on the lane L.
  • the automatic toll collection machine 1B automatically performs reception processing of banknotes, coins, etc., change payment processing, etc. from the user (driver of the vehicle A, etc.).
  • the automatic toll collector 1B is provided on the road side of the lane L on the downstream side of the vehicle type discriminating apparatus 1A, and collects a fee of an amount corresponding to the vehicle type classification of the vehicle A determined by the vehicle type discriminating apparatus 1A.
  • the vehicle type identification device 1 ⁇ / b> A includes a vehicle detector 10 and a main control unit 11.
  • the vehicle detector 10 includes a light projecting tower 101 and a light receiving tower 102.
  • the light projecting tower 101 and the light receiving tower 102 of the vehicle detector 10 are at the same position in the lane direction ( ⁇ X direction) of the lane L, and both sides (+ Y direction side or ⁇ Y direction) in the lane width direction ( ⁇ Y direction).
  • On the roadside The light projecting tower 101 and the light receiving tower 102 are formed in a rectangular shape so as to extend in the height direction ( ⁇ Z direction) from the road surface, and have surfaces facing each other.
  • light projecting portions S1 that project a light beam P (for example, infrared light) of a predetermined wavelength toward the light receiving tower 102 are equally spaced in the height direction. Are arranged side by side.
  • a plurality of light receiving sections S2 that receive the light rays P projected by the light projecting section S1 are arranged at equal intervals in the height direction.
  • Each light receiving part S2 is arranged so as to have a one-to-one correspondence with each of the light projecting parts S1, and is capable of receiving the light beam P projected by the corresponding light projecting part S1.
  • Each light receiving unit S2 always outputs a detection signal corresponding to whether the light beam P projected from the corresponding light projecting unit S1 is received (non-shielded state) or not received (shielded state). Yes.
  • the vehicle detector 10 having the above configuration, when the vehicle A travels and enters the same position as the light projecting tower 101 and the light receiving tower 102 in the lane direction, the vehicle is between the light projecting unit S1 and the light receiving unit S2. Since the vehicle body A is arranged, some light rays P over a predetermined range corresponding to the vehicle body in the height direction are shielded (see FIG. 1).
  • the main control unit 11 determines the vehicle type classification of the traveling vehicle A and outputs the determination result to the automatic toll receiver 1B.
  • the vehicle type classification includes, for example, five classifications of “light vehicle”, “normal vehicle”, “medium-sized vehicle”, “large vehicle”, and “extra-large vehicle”.
  • the distance in the lane direction from the position where the vehicle type identification device 1A (vehicle detector 10) is arranged to the position where the automatic toll collector 1B is arranged is, for example, about 6 meters.
  • FIG. 2 is a diagram illustrating a functional configuration of the vehicle type identification device according to the first embodiment.
  • the vehicle type identification device 1 ⁇ / b> A includes a vehicle detector 10 and a main control unit 11. Moreover, the vehicle detector 10 has the light projection tower 101 and the light receiving tower 102, and outputs the detection signal according to the presence or absence of the light P reception as mentioned above.
  • the main control unit 11 includes a light shielding region acquisition unit 110 (region acquisition unit) and a vehicle type determination unit 111.
  • the light shielding area acquisition unit 110 receives an input of a detection signal indicating whether or not each of the light receiving units S2 receives the light beam P from the plurality of light receiving units S2, and determines whether or not the light beam P is shielded. Then, the light-shielding area acquisition unit 110 is a light-shielding area C that is a predetermined area occupied by the light-receiving part S2 corresponding to the light-shielded light P in the entire area in which the plurality of light-receiving parts S2 are arranged in the height direction (see FIG. 3A).
  • the vehicle type discriminating unit 111 acquires a vehicle body silhouette Da (see FIG. 3B) indicating the projection of the vehicle A based on the plurality of light blocking regions C acquired by the light blocking region acquiring unit 110. Then, the vehicle type determination unit 111 determines the vehicle type classification to which the vehicle A belongs based on the vehicle body silhouette Da and the reference pattern Dref (see FIGS. 7A to 7C) classified according to the vehicle type classification. Moreover, the vehicle type discrimination
  • the vehicle type determination unit 111 includes a vehicle body silhouette acquisition unit 112, a normalization processing unit 113, a tire size acquisition unit 114A, and a determination processing unit 115.
  • the vehicle body silhouette acquisition unit 112 arranges a plurality of light-shielding regions C acquired at different times on a predetermined time axis so that the vehicle travels on the vehicle detector 10 (between the light projection tower 101 and the light reception tower 102).
  • a vehicle body silhouette Da that is two-dimensional information about A is acquired.
  • the normalization processing unit 113 performs normalization processing on the vehicle body silhouette Da to obtain a normalized vehicle body silhouette Da ′. Specifically, the normalization processing unit 113 removes the fluctuation component corresponding to the travel speed from the vehicle body silhouette Da that varies according to the travel speed of the vehicle A traveling the vehicle detector 10 and depends on the travel speed.
  • a normalized vehicle body silhouette Da ′ (see FIG. 6B) is acquired.
  • the normalization processing unit 113 includes a tire silhouette extraction unit 113a and an aspect ratio calculation unit 113b. Details of these various functional units will be described later.
  • the tire size acquisition unit 114A acquires the size of the tire diameter (tire size) of the vehicle A with reference to the vehicle body silhouette Da (or the normalized vehicle body silhouette Da ′).
  • the discrimination processing unit 115 determines the vehicle type classification of the vehicle A (“light vehicle”, “normal vehicle”, “medium size vehicle”, “large size vehicle”) based on the normalized vehicle body silhouette Da ′ acquired as the vehicle A passes. , “Oversized car”).
  • the reference pattern Dref is classified in advance by vehicle type and recorded on the recording medium 116.
  • FIGS. 3A and 3B are a first diagram and a second diagram, respectively, for explaining the functions of the light-shielding region acquisition unit and the vehicle body silhouette acquisition unit according to the first embodiment.
  • FIGS. 4A and 4B are a third diagram and a fourth diagram, respectively, for explaining the functions of the light shielding area acquisition unit and the vehicle body silhouette acquisition unit according to the first embodiment.
  • FIG. 3A shows a state where the vehicle A belonging to the “ordinary vehicle” is located on the lane L between the light projecting tower 101 and the light receiving tower 102. In this case, as shown in FIG. 3A, the light beam P (FIG. 1) is blocked by the vehicle body of the vehicle A over a predetermined range in the height direction.
  • the light-shielding area acquisition unit 110 receives input of detection signals indicating whether or not the light P is received from all the light-receiving units S2, and determines whether or not each light P is shielded. And the light-shielding area
  • region acquisition part 110 acquires the one-dimensional information centering on the height direction by which each light-receiving part S2 is arranged based on each detection signal.
  • This one-dimensional information is information indicating the light shielding region C occupied by the light receiving unit S2 corresponding to the light shielded light P among the plurality of light receiving units S2 arranged in the height direction. As shown in FIG.
  • the light shielding region C indicated by the one-dimensional information corresponds to a range in which the vehicle body of the vehicle A passing through the vehicle detector 10 exists in the height direction.
  • the light-shielding area acquisition unit 110 continuously acquires one-dimensional information indicating the light-shielding area C every prescribed sampling time (on the order of several milliseconds).
  • FIG. 3B shows the vehicle body silhouette Da acquired by the vehicle body silhouette acquisition unit 112.
  • the vehicle body silhouette acquisition unit 112 generates the vehicle body silhouette Da, which is two-dimensional information, by arranging the one-dimensional information acquired by the light shielding region acquisition unit 110 on the time axis according to the acquisition time.
  • the vehicle body silhouette Da has a spatial axis in the height direction in which the light receiving portions S2 are arranged as a vertical axis, and a time axis indicating an acquisition time when each one-dimensional information is acquired as a horizontal axis. Two-dimensional information.
  • the vehicle body silhouette Da shows the projection of the side surface of the vehicle body of the vehicle A passing through the vehicle detector 10 as viewed from one side (+ Y direction side).
  • FIG. 4A shows a state in which the vehicle A belonging to the “large vehicle” (large truck or the like) is located on the lane L between the light projecting tower 101 and the light receiving tower 102. Also in this case, similarly to the case shown in FIG. 3A, the light shielding region acquisition unit 110 receives input of detection signals indicating the presence / absence of reception of the light beam P from all the light receiving units S2, and the vehicle body shape of the vehicle A passing therethrough One-dimensional information indicating the light shielding region C according to the above is acquired.
  • the vehicle length (the length in the lane direction) of the vehicle A that is a “large vehicle” is assumed to be larger than 6 meters. Then, as shown in FIG. 4A, even when the driver's seat (the front side (+ X direction side) of the vehicle body) of the large vehicle reaches the toll collector 1B in the lane direction, Part of the rear ( ⁇ X direction side) does not pass between the light projecting tower 101 and the light receiving tower 102. Therefore, in this case, as shown in FIG. 4B, the vehicle body silhouette acquisition unit 112 acquires the vehicle body silhouette Da corresponding to the projection of only the portion that has passed the vehicle detector 10 in the entire vehicle body of the vehicle A. In other words, the vehicle body silhouette Da in this case shows a projection of only about 6 meters of the front side of the entire vehicle body of the vehicle A.
  • the vehicle body silhouette Da is two-dimensional information that indicates the projection of the entire vehicle body or a part of the vehicle A passing therethrough.
  • the vehicle body silhouette Da is information having a time axis on the horizontal axis, and thus varies according to the traveling speed when the vehicle A passes the vehicle detector 10. For example, when the traveling speed of the vehicle A is relatively “low speed”, the time during which the vehicle A passes through the vehicle detector 10 becomes longer. It is stretched in the (time axis) direction. On the contrary, when the traveling speed of the vehicle A is relatively “high speed”, the time during which the vehicle A passes through the vehicle detector 10 is shortened, so the actual projection is compressed in the horizontal axis (time axis) direction. Will be.
  • FIG. 5 is a first diagram illustrating the function of the normalization processing unit according to the first embodiment.
  • the normalization processing unit 113 according to the present embodiment performs a process of removing a fluctuation component corresponding to the travel speed and normalizing the vehicle body silhouette Da that varies in the time axis direction according to the travel speed.
  • specific functions of the normalization processing unit 113 will be described.
  • the tire silhouette extraction unit 113a of the normalization processing unit 113 extracts a tire silhouette Dt indicating a region corresponding to the tire of the vehicle A from the vehicle body silhouette Da acquired by the vehicle body silhouette acquisition unit 112, as shown in FIG.
  • the tire silhouette extraction unit 113a first extracts the tire boundary pattern E from the boundary (edge) of the vehicle body silhouette Da.
  • the tire boundary pattern E is a portion corresponding to the projection of the tire in the boundary of the vehicle body silhouette Da.
  • all the vehicles A should be in contact with the road surface of the lane L with circular tires. Therefore, the tire boundary pattern E can be extracted by determining a boundary extending upward from the lowest side in the space axis (vertical axis) in the height direction of the vehicle body silhouette Da.
  • the aspect ratio calculation unit 113b of the normalization processing unit 113 calculates the aspect ratio of the extracted tire silhouette Dt when the time axis is the horizontal direction. Specifically, the aspect ratio calculation unit 113b refers to the long side a and the short side b of the tire silhouette Dt (elliptical shape) extracted as shown in FIG. 5, and calculates the aspect ratio b / a. .
  • FIG. 6A and 6B are a second diagram and a third diagram illustrating functions of the normalization processing unit according to the first embodiment, respectively.
  • the aspect ratio calculation unit 113b performs a process of multiplying the calculated aspect ratio b / a by the time axis of the tire silhouette Dt.
  • FIG. 6A shows an example of the vehicle body silhouette Da acquired when the traveling speed of the vehicle A is relatively “low speed”. That is, the vehicle body silhouette Da is in a state where the entire vehicle body of the vehicle A is stretched in the time axis direction.
  • the aspect ratio calculation unit 113b calculates an aspect ratio b / a (b / a ⁇ 1) based on the long side a and the short side b (b ⁇ a) of the tire silhouette Dt extracted from the vehicle body silhouette Da.
  • FIG. 6B shows a normalized vehicle body silhouette Da ′ obtained by performing a normalization process on the vehicle body silhouette Da shown in FIG. 6A.
  • the aspect ratio calculation unit 113b multiplies the calculated aspect ratio b / a (b / a ⁇ 1) on the time axis.
  • the vehicle body silhouette Da is compressed at a ratio of b / a over the entire time axis, and a portion corresponding to the tire silhouette Dt becomes a perfect circle.
  • the projection of the tire which should be a perfect circle, is “a” in the horizontal direction (time axis direction) due to the fluctuation component in the time axis direction according to the traveling speed of the vehicle A.
  • the vehicle body silhouette Da can be regarded as an actual projection of the vehicle body of the vehicle A stretched at a rate of “a / b” in the horizontal direction (time axis direction). Therefore, by multiplying by the aspect ratio b / a, the normalized vehicle body silhouette Da ′ that is the projection of the actual vehicle body can be acquired.
  • the normalization processing unit 113 acquires the normalized vehicle body silhouette Da ′ that is normalized by removing the fluctuation component according to the traveling speed. To do.
  • the normalized vehicle body silhouette Da ′ subjected to the normalization processing is, in principle, always showing the same projection even when the same vehicle A passes through the vehicle detector 10 at any traveling speed. Become.
  • the tire size acquisition unit 114A acquires the tire diameter (tire size) of the vehicle A with reference to the normalized vehicle body silhouette Da ′ indicating the actual projection of the vehicle body of the vehicle A. In the present embodiment, the tire size acquisition unit 114A simply acquires the normalized diameter (corresponding to the short side b in the present embodiment) of the tire silhouette Dt extracted by the tire silhouette extraction unit 113a.
  • (Function of the discrimination processing unit) 7A to 7C are first to third diagrams illustrating functions of the discrimination processing unit according to the first embodiment, respectively.
  • the discrimination processing unit 115 according to the present embodiment compares the acquisition process of the vehicle body silhouette Da and the normalized vehicle body silhouette Da ′ obtained through the normalization process with a reference pattern prepared in advance. Then, the vehicle type classification of the vehicle A is determined.
  • a plurality of reference patterns Dref as exemplified in FIGS. 7A to 7C are recorded in advance on the recording medium 116 provided in the main controller 11.
  • the reference patterns Dref shown in FIGS. 7A to 7C are classified according to vehicle type divisions, and are recorded in association with the corresponding vehicle type divisions.
  • the reference pattern Dref shown in FIG. 7A is a reference pattern Dref classified into the vehicle type classification of “ordinary vehicle”.
  • the reference pattern Dref shown in FIG. 7B is a reference pattern Dref classified into the vehicle type classification of “large vehicle” or “extra large vehicle”.
  • the reference pattern Dref is two-dimensional information having the same size as the normalized vehicle body silhouette Da ′, and a non-overlapping pattern Dref1 that partitions a predetermined region of the normalized vehicle body silhouette Da ′.
  • the overlapping pattern Dref2 is defined.
  • the non-overlapping pattern Dref1 and the overlapping pattern Dref2 are defined in advance so as to divide different regions according to the corresponding vehicle type divisions.
  • the non-overlapping pattern Dref1 defines a region in which the projection of the vehicle body is not always included (does not overlap when overlapped) for vehicles belonging to a certain vehicle type division. For example, when the normalized vehicle body silhouette Da ′ of the vehicle A belonging to “ordinary vehicle” is superimposed on the non-overlapping region Dref1 classified in the vehicle type classification of “ordinary vehicle”, the normalized vehicle body silhouette Da ′ is It does not overlap with this non-overlapping area Dref1 (see FIG. 7A). Similarly, the overlap pattern Dref2 defines a region that is always included in the projection of the vehicle body (overlapping when overlapped) for vehicles belonging to a certain vehicle type division.
  • the normalized vehicle body silhouette Da ′ of the vehicle A belonging to the “ordinary vehicle” is superimposed on the overlapping region Dref2 classified into the “ordinary vehicle” category, the normalized vehicle body silhouette Da ′ It overlaps so that all of the duplication area
  • region Dre2 may be included (refer FIG. 7A).
  • the normalized vehicle body silhouette Da ′ of the vehicle A belonging to the “large vehicle” is superimposed on the non-overlapping region Dref1 classified in the vehicle type classification of “large vehicle”, the normalized vehicle body silhouette Da is concerned. 'Does not overlap with this non-overlapping region Dref1 (see FIG. 7B).
  • the normalized vehicle body silhouette Da ′ of the vehicle A belonging to the “large vehicle” is superimposed on the overlapping region Dref2 classified into the “large vehicle” vehicle type classification, the normalized vehicle body silhouette Da ′ is It overlaps so that all the non-overlapping area
  • the normalized vehicle body silhouette Da ′ of the vehicle A belonging to the “large vehicle” is superimposed on the non-overlapping region Dref1 (FIG. 7A) for the “normal vehicle”, the normalized vehicle body silhouette Da ′ is It overlaps with the non-overlapping area Dref1 for “ordinary vehicle”. Therefore, in this case, it can be determined that the vehicle A is not a “normal vehicle”. Further, when the normalized vehicle body silhouette Da ′ of the vehicle A belonging to the “ordinary vehicle” is superimposed on the overlap region Dref2 (FIG. 7B) for the “large vehicle”, the normalized vehicle body silhouette Da ′ is “large vehicle”. It does not overlap with at least a part of the overlapping region Dref2 for “car”. Therefore, in this case, it can be determined that the vehicle A is not a “large vehicle”.
  • the discrimination processing unit 115 performs normalization by determining whether or not there is an overlap between the normalized vehicle body silhouette Da ′ and the reference pattern Dref (non-overlapping pattern Dref1, overlapping pattern Dref2) classified by vehicle type classification. It is specified whether the vehicle body silhouette Da ′ matches the reference pattern Dref classified into which vehicle type. Thereby, the discrimination
  • the reference pattern Dref shown in FIG. 7C is a tow vehicle discrimination reference pattern Dref ′ that is defined corresponding to the vehicle A (tow vehicle) that pulls the towed vehicle.
  • the tow vehicle discrimination reference pattern Dref ′ shown in FIG. 7C is used, for example, to determine whether or not the vehicle A belonging to the “ordinary vehicle” is towing the towed vehicle.
  • the reference pattern Dref ′ for towing vehicle discrimination includes a region corresponding to the projection of the vehicle A belonging to “ordinary vehicle” (that is, a non-overlapping region Dref1 and an overlapping region Dref2 equivalent to FIG. 7A), A non-overlapping area Dref1 and an overlapping area Dref2 are defined according to the projection of the connecting member.
  • the non-overlapping region Dref1 of the tow vehicle discrimination reference pattern Dref ′ corresponds to the region where the projection of the towed vehicle and the connecting member is assumed to be arranged, It is defined to be narrower than the non-overlapping area Dref1 (FIG. 7A) for the “normal vehicle”.
  • the normalized vehicle body silhouette Da ′ when the vehicle A belonging to the “ordinary vehicle” travels by towing the towed vehicle, the normalized vehicle body silhouette Da ′ includes a connecting member and a towed vehicle main body located on the rear side of the vehicle A. (See FIG. 7C). Therefore, in this case, the normalized vehicle body silhouette Da ′ of the vehicle A does not conform to the reference pattern Dref (FIG. 7A) corresponding to the “ordinary vehicle”, while the tow vehicle discrimination corresponding to the “traction vehicle”. It conforms to the reference pattern Dref ′ (FIG. 7C).
  • the discrimination processing unit 115 can discriminate the presence or absence of traction for any vehicle A belonging to the “ordinary vehicle”.
  • the determination processing unit 115 determines that the vehicle A is a “tow vehicle” as a result of the comparison between the normalized vehicle body silhouette Da ′ and the tow vehicle determination reference pattern Dref ′, for example,
  • the vehicle type classification is determined as “medium-sized vehicle” that is one rank higher than “ordinary vehicle”.
  • the determination processing unit 115 determines whether or not the normalized vehicle body silhouette Da ′ matches the “trailer head determination reference pattern” corresponding to the projection of the trailer head that does not pull the load. This makes it possible to determine whether the vehicle A is a large trailer (towing the load) or only a trailer head (not towing the load).
  • the determination processing unit 115 determines that the vehicle A is “only the trailer head” as a result of the comparison between the normalized vehicle body silhouette Da ′ and the reference pattern for determining the trailer head, for example, the vehicle type classification of the vehicle A Is determined as a “medium-sized vehicle”.
  • the recording medium 116 has a reference pattern Dref (and a reference pattern Dref ′ for towing vehicle determination) corresponding to “light vehicle”, “medium-sized vehicle”, and the like in advance. It is recorded.
  • the discrimination processing unit 115 may further discriminate the vehicle type classification of the vehicle A with reference to the tire size acquired by the tire size acquisition unit 114A.
  • the discrimination processing unit 115 discriminates that the vehicle A belongs to either “ordinary vehicle” or “medium-sized vehicle” as a result of the comparison between the normalized vehicle body silhouette Da ′ and the reference pattern Dref. Furthermore, the tire size (the diameter after normalization of the tire silhouette Dt) acquired by the tire size acquisition unit 114A is referred to.
  • the determination processing unit 115 determines that the vehicle A is an “ordinary vehicle” and the tire size exceeds a predetermined determination threshold. Determines that the vehicle A is a “medium-sized vehicle”.
  • the determination processing unit 115 further sets the tire size that can be acquired from the normalized vehicle body silhouette Da ′. Based on this, the vehicle type classification of the vehicle A is determined in more detail.
  • the vehicle type identification unit 111 acquires two-dimensional information (vehicle body silhouette Da) obtained by arranging the light shielding regions C on the time axis through the vehicle detector 10. To do. And the vehicle type discrimination
  • the vehicle type determination device 1A can thereby acquire information (such as the number of axles, etc.) that cannot be acquired unless the entire vehicle passes.
  • the vehicle type classification can be determined in detail without using). Therefore, the vehicle type identification device 1A can be installed in a place where a sufficient installation space cannot be secured, and the vehicle type classification can be determined in detail.
  • the tire silhouette extraction unit 113a extracts the tire silhouette Dt from the vehicle body silhouette Da.
  • the aspect ratio calculation unit 113b calculates the aspect ratio (b / a) of the extracted tire silhouette Dt, and normalizes the acquired vehicle body silhouette Da by multiplying the calculated aspect ratio by the time axis. I do. In this way, it is possible to acquire the normalized vehicle body silhouette Da ′ from which the fluctuation component corresponding to the traveling speed has been removed. Therefore, it is possible to suppress the variation in the determination result due to the difference in travel speed and improve the determination accuracy.
  • the vehicle type determination unit 111 is for determining a towed vehicle defined in correspondence with the normalized vehicle body silhouette Da ′ and the vehicle A that pulls the towed vehicle. Based on the comparison result with the reference pattern Dref ′, the vehicle type classification to which the vehicle A belongs is determined. By doing in this way, it can discriminate
  • the vehicle type determination device 1A further includes a tire size acquisition unit 114A that acquires the tire size of the vehicle A, and the vehicle type determination unit 111 includes a normalized vehicle body silhouette Da ′ and a reference pattern Dref.
  • the vehicle type classification to which the vehicle A belongs is further determined based on the tire size of the vehicle A acquired by the tire size acquisition unit 114A. In this way, even if the vehicle type classification cannot be uniquely determined only by the comparison result between the normalized vehicle body silhouette Da ′ and the reference pattern Dref, the tire size of the vehicle A is further set to the vehicle type classification. By using it as information for discrimination, it is possible to discriminate the vehicle type division in detail.
  • the determination processing unit 115 determines whether or not the normalized vehicle body silhouette Da ′ overlaps with the non-overlapping pattern Dref1 and the overlapping pattern Dref2 (FIGS. 7A to 7C).
  • the discrimination processing unit 115 calculates the degree of overlap between the normalized vehicle body silhouette Da ′ and the non-overlapping pattern Dref1 (overlapping pattern Dref2), and the normalized vehicle body silhouette Da ′ and the reference pattern Dref are calculated. Digitize the degree of matching.
  • determination processing part 115 specifies the reference pattern Dref with the highest said matching degree among the some reference patterns Dref classified according to vehicle classification. By doing in this way, it can suppress that a vehicle classification is misidentified by the presence or absence of slight overlap, for example by projection of the antenna etc. which were attached to the vehicle body.
  • the discrimination processing unit 115 is a region of the reference pattern Dref in which the normalized vehicle body silhouette Da ′ may or may not overlap (that is, a region that does not belong to either the overlapping pattern Dref1 or the non-overlapping pattern Dref2 (hereinafter referred to as “non-overlapping pattern Dref2”). , “Blank area”))) and the normalized vehicle body silhouette Da ′ may be used to determine the vehicle type classification. Specifically, first, the determination processing unit 115 selects a reference pattern Dref that satisfies the condition of whether or not there is an overlap between the normalized vehicle body silhouette Da ′ and each of the non-overlapping pattern Dref1 and the overlapping pattern Dref2.
  • the determination processing unit 115 further calculates a degree of overlap (blank area overlap degree) between the blank area and the vehicle body silhouette Da ′. Then, the reference pattern Dref having the largest blank area overlap degree is specified among the plurality of selected reference patterns Dref.
  • the normalized vehicle body silhouette Da ′ of the vehicle A that belongs to the “ordinary vehicle” and is not the towing vehicle includes the reference pattern Dref (FIG. 7A) for the “ordinary vehicle” and the reference pattern Dref ′ for towing vehicle discrimination. Since this applies to any of (FIG. 7C), it cannot be determined that the vehicle A is not a towing vehicle as it is. However, the reference area Dref ′ (FIG.
  • the discrimination processing unit 115 can correctly discriminate the vehicle A as “a“ normal vehicle ”that is not a tow vehicle” by specifying the reference pattern Dref having the largest margin area overlap.
  • the normalization processing unit 113 determines the vehicle body silhouette Da based on the aspect ratio b / a of the tire silhouette Dt (FIGS. 5, 6A, and 6B). Although described as performing the normalization process, other embodiments are not limited to this mode.
  • the vehicle type identification device 1A includes an additional speed measurement unit that can acquire the travel speed of the vehicle A, and performs a normalization process on the vehicle body silhouette Da based on the travel speed detected by the speed measurement unit. It may be.
  • the normalization processing unit 113 obtains the normalized vehicle body silhouette Da ′ by performing a process of correcting the time axis of the vehicle body silhouette Da by multiplying the correction coefficient according to the detected traveling speed.
  • the speed measuring means may be, for example, a Doppler speedometer provided on the road side of the lane L, or a step board provided on the road surface of the lane L.
  • you may utilize the detection time difference of the vehicle A by the several vehicle detector 10 provided in the lane direction of the lane L at predetermined intervals.
  • the tire size acquisition unit 114A refers to the tire silhouette Dt (long side a, short side b) extracted by the tire silhouette extraction unit 113a, and the tire of the vehicle A Although described as what acquires a size, in other embodiment, it is not limited to this aspect.
  • the tire size acquisition unit 114A refers to an image of the vehicle A displayed by a photographing device (camera or the like) provided on the road side, and performs predetermined image processing (tire extraction processing) on the acquired image.
  • the tire size may be specified.
  • the vehicle type identification unit 111 performs a normalization process on the vehicle body silhouette Da, and a normalized vehicle body silhouette in which a variation component according to the traveling speed of the vehicle A is eliminated. It has been described that Da ′ is acquired and the normalized vehicle body silhouette Da ′ is compared with the reference pattern Dref. However, in other embodiments, the present invention is not limited to this aspect.
  • the vehicle type determination unit 111 may directly compare the vehicle body silhouette Da acquired by the vehicle body silhouette acquisition unit 112 with the reference pattern Dref. In this case, the vehicle type determination unit 111 may further include a plurality of reference patterns Dref corresponding to the traveling speed of the vehicle A for each vehicle type division.
  • the normalization processing unit 113 (aspect ratio calculation unit 113b) according to the first embodiment, as shown in FIG. 6A, the aspect ratio b of the tire of the “frontmost wheel” of the vehicle A in the tire silhouette Dt.
  • the normalization process for the vehicle body silhouette Da is performed based only on / a, the present invention is not limited to this mode in other embodiments.
  • the aspect ratio calculation unit 113b when a plurality of tire silhouettes Dt corresponding to a plurality of axles (front wheels, rear wheels) of the vehicle A are acquired, the aspect ratio calculation unit 113b according to another embodiment of the plurality of tire silhouettes Dt
  • the aspect ratio b / a may be calculated for each, and the average value of each aspect ratio b / a may be applied in the normalization process.
  • the aspect ratio calculation unit 113b obtains the aspect ratio of each of the plurality of tires arranged at various positions of the vehicle body silhouette Da, and applies the aspect ratio to be applied on the assumption that these aspect ratios continuously change in the time axis direction. Normalization processing of the entire vehicle body silhouette Da may be performed by extrapolating the ratio. By doing in this way, even if the vehicle speed of the vehicle A changes (smoothly) while the vehicle detector 10 passes, the normalized vehicle body silhouette Da ′ can be obtained with high accuracy.
  • the vehicle type determination related to the automatic toll collection machine 1B has been described. However, in other embodiments, the vehicle type related to the manned booth and the automatic ticket issuing machine is replaced with the automatic charge collection machine 1B. The determination may be targeted.
  • FIG. 8 is a diagram illustrating a functional configuration of the vehicle type identification device according to the second embodiment.
  • the same functional configurations as those of the vehicle type identification device 1A according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the vehicle type determination device 1A (vehicle type determination unit 111) according to the second embodiment includes a travel speed acquisition unit 114B.
  • the traveling speed acquisition unit 114 ⁇ / b> B acquires the traveling speed of the vehicle A that passes through the vehicle detector 10.
  • the traveling speed acquisition unit 114B calculates the traveling speed of the vehicle A with reference to the long side a and the short side b of the tire silhouette Dt (FIGS. 5 and 6A) extracted by the tire silhouette extracting unit 113a. To do.
  • the horizontal axis of the tire silhouette Dt is a time axis and the vertical axis of the tire silhouette Dt is a spatial axis in the height direction
  • the traveling speed of the vehicle A can be acquired by calculating b / a [m / s] based on the width (short side b) of the vertical axis [m].
  • FIG. 9 is a diagram illustrating the function of the discrimination processing unit according to the second embodiment.
  • the discrimination processing unit 115 according to the second embodiment refers to the statistical data F for each vehicle type of the travel speed acquired by the travel speed acquisition unit 114B, so that the travel speed for the newly acquired vehicle A is set. Based on this, the vehicle type classification to which the vehicle A belongs is determined.
  • the statistical data F is information recorded in advance on the recording medium 116, and is statistical data on the traveling speed of a large number of vehicles A traveling on the toll collection facility 1 (FIG. 1).
  • the statistical data F is generated based on the traveling speed of the vehicle A sequentially acquired by the traveling speed acquisition unit 114B.
  • the statistical data F includes a travel speed probability distribution function f ⁇ b> 1 for a “large vehicle” and a travel speed probability distribution function f ⁇ b> 2 for an “extra large vehicle”.
  • the probability distribution function f1 is a probability distribution function specified from the travel speed statistical data F for the vehicle A belonging to the “large vehicle”.
  • the probability distribution function f2 is a probability distribution function specified from the travel speed statistical data F for the vehicle A belonging to the “extra-large vehicle”.
  • a vehicle belonging to an “extra-large vehicle” is heavier than a vehicle belonging to a “large vehicle”. Therefore, according to the law of inertia, the vehicle A belonging to the “extra-large vehicle” has a larger load required for deceleration, and it is difficult to stop suddenly.
  • all the vehicles A passing through the vehicle detector 10 need to stop at the automatic toll collector 1B arranged on the downstream side of the vehicle detector 10 in order to perform toll collection processing. Then, in order to stop at the automatic toll collector 1B, the vehicle A belonging to the “extra-large vehicle” needs to start decelerating at an earlier stage than the vehicle A belonging to the “large vehicle”. Therefore, the traveling speed at the time of passing through the vehicle detector 10 is statistically “low speed” in the “extra-large vehicle” than in the “large vehicle” (see FIG. 9).
  • the discrimination processing unit 115 is based on the comparison result between the normalized vehicle body silhouette Da ′ (FIG. 6B) and the reference pattern Dref (FIGS. 7A to 7C). Processing for discriminating the vehicle type classification of the vehicle A is performed. However, as described above, it is difficult to determine whether the vehicle A belongs to the “large vehicle” or the “extra large vehicle” only by the projection of the front side 6 meters (normalized vehicle body silhouette Da ′). There is a case.
  • the discrimination processing unit 115 discriminates that the vehicle A belongs to either the “large vehicle” or the “extra large vehicle” based on the comparison between the normalized vehicle body silhouette Da ′ and the reference pattern Dref, Further, the vehicle type classification of the vehicle A is determined with reference to the traveling speed of the vehicle A acquired by the traveling speed acquisition unit 114B and the statistical data F recorded on the recording medium 116. Specifically, the discrimination processing unit 115 substitutes the acquired travel speed into each of the probability distribution functions f1 and f2, and specifies the vehicle type category having the highest probability that the travel speed appears, so that the vehicle A It is discriminated whether it belongs to "large car” or "extra large car”.
  • the traveling speed acquisition unit 114B acquires the traveling speed of the vehicle A
  • the determination processing unit 115 includes the normalized vehicle body silhouette Da ′ and the reference pattern Dref.
  • the vehicle type classification to which the vehicle A belongs is determined based on the acquired traveling speed. In this way, even if the vehicle type classification cannot be uniquely determined only by the comparison result between the normalized vehicle body silhouette Da ′ and the reference pattern Dref, the traveling speed of the vehicle A is further set to the vehicle type classification. By using it as information for discrimination, it is possible to discriminate the vehicle type division in detail.
  • the vehicle A newly acquired by referring to the statistical data F for each vehicle type of the traveling speed acquired in the past in the toll collection facility 1 The vehicle type classification to which the vehicle A belongs is determined on the basis of the traveling speed.
  • the traveling speed of the vehicle traveling through the toll booths provided at various places on the highway is the location condition of the toll collection facility 1 (for example, whether there is a slope or a curve) even if the vehicle belongs to the same vehicle type category. It varies greatly according to each.
  • the vehicle type classification of the vehicle A is determined based on the actual statistical data F of the vehicle traveling through the toll collection facility 1, so the accuracy of determining the vehicle type classification based on the difference in travel speed is improved. Can be made.
  • the specific mode of the vehicle type identification device 1A according to the second embodiment is not limited to the above-described one, and various design changes and the like can be added without departing from the scope of the invention.
  • the travel speed acquisition unit 114B calculates the travel speed of the vehicle A with reference to the tire silhouette Dt extracted by the tire silhouette extraction unit 113a.
  • the traveling speed acquisition unit 114B may acquire the traveling speed of the vehicle A through a Doppler speedometer or the like separately provided on the road side of the lane L.
  • the vehicle detector 10 determines whether or not the light receiving unit S2 receives the light beam P projected from the opposing light projecting unit S1 (whether the light is not shielded by the vehicle body or the like). Based on the above description, the “transmission type” vehicle detector for detecting the presence of the vehicle A has been described, but the present invention is not limited to this mode in other embodiments.
  • the light projecting unit S1 and the light receiving unit S2 are provided on the same island I, and the light receiving unit S2 is a reflected light of the light beam P projected by the light projecting unit S1. It is arranged so that it can receive (the light P reflected by the vehicle body or the like).
  • the main control unit 11 of the vehicle type identification device 1A includes a “reflective region acquisition unit” instead of the light shielding region acquisition unit 110 according to each of the embodiments described above.
  • the reflection region acquisition unit receives an input of a detection signal indicating whether or not the reflected light is received by the plurality of light receiving units S2, and determines whether or not the light ray P is reflected. Then, a “reflective region”, which is a predetermined region occupied by the light receiving unit S2 corresponding to the reflected light ray P, is acquired from the entire region in which the plurality of light receiving units S2 are arranged in the height direction.
  • the vehicle type determination unit 111 arranges a plurality of “reflection areas” acquired by the reflection area acquisition unit on the time axis to show a vehicle body silhouette Da (FIG. 3B) that indicates the projection of the vehicle A. Reference).
  • the vehicle detector 10 is a “reflective” vehicle detector that detects the presence of the vehicle A by detecting the presence or absence of light rays P (reflected light) reflected by the vehicle body or the like. Good.
  • a program for realizing various functions of the main control unit 11 of the vehicle type identification device 1A is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer.
  • Various processes are performed by being read into the system and executed.
  • various processes of the main control unit 11 described above are stored in a computer-readable recording medium in the form of a program, and the above-described various processes are performed by the computer reading and executing the program.
  • the computer-readable recording medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the main control unit 11 is not limited to a mode configured by a single device, and is a mode in which various functional configurations of the main control unit 11 are provided over a plurality of devices connected via a network. May be.
  • the vehicle type discriminating apparatus According to the vehicle type discriminating apparatus, the vehicle type discriminating method, and the program described above, it is possible to install the vehicle in a place where a sufficient installation space cannot be secured, and to discriminate the vehicle type classification of the vehicle with high accuracy.
  • SYMBOLS 1 Charge collection equipment 1A Vehicle type discrimination device 1B Automatic charge collection machine 10 Vehicle detector 101 Light projection tower 102 Light reception tower 11 Main control part 110 Shading area acquisition part (area acquisition part) 111 Vehicle type discrimination unit 112 Car body silhouette acquisition unit 113 Normalization processing unit 113a Tire silhouette extraction unit 113b Aspect ratio calculation unit 114A Tire size acquisition unit 114B Traveling speed acquisition unit 115 Discrimination processing unit 116 Recording medium S1 Light projection unit S2 Light reception unit P Light beam C Shading area Da Car body silhouette Dt Tire silhouette Dref Reference pattern Dref1 Non-overlapping pattern Dref2 Overlapping pattern E Tire boundary pattern F Statistical data f1, f2 Probability distribution function

Abstract

 車種判別装置(1A)は、光線を投光する複数の投光部(S1)と、複数の投光部(S1)の各々と対応して配置され、光線(P)を受光可能な複数の受光部(S2)と、複数の受光部(S2)における光線(P)の受光の有無を示す検出信号の入力を受け付けて、複数の受光部(S2)が配置された領域のうち遮光されている光線(P)に対応する受光部(S2)が占める遮光領域を取得する遮光領域取得部(110)と、異なる時刻に取得された複数の遮光領域を時間軸上に並べて得られる二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別する車種判別部(111)と、を備えている。

Description

車種判別装置、料金収受設備、車種判別方法及びプログラム
 本発明は、車種判別装置、料金収受設備、車種判別方法及びプログラムに関する。
 本願は、2015年2月27日に、日本に出願された特願2015-038849号に基づき優先権を主張し、その内容をここに援用する。
 高速道路等の有料道路に用いられる料金収受設備(入口、出口料金所等)は、利用者との料金収受処理の効率化のため、利用者からの紙幣、硬貨等の受付や釣銭の支払い等を自動で行う料金自動収受機と、走行する車両の車種区分を判別する車種判別装置等と、を備えている。
 この場合、料金自動収受機は、車種判別装置によって判別された車種区分に応じた額の料金を利用者から徴収する。
 また、上述の車種判別装置は、車両の通過を一台ずつ分離して検知可能な車両検知器と、走行する車両のタイヤによる踏み付けを検出可能な踏板と、を備えている(例えば、特許文献1参照)。
 通常の車両検知器は、光線を投光する投光部と、当該光線を受光する受光部との複数の対により構成される。このような車両検知器によれば、投光部と受光部との対の間に車両が進入したとき、その車体によって投光部及び受光部の間を結ぶ光線が遮光される。したがって、当該遮光された光線に対応する受光部からの検出信号に基づいて、車両の通過を検知することができる。
 車種判別装置は、一般に、車種区分の判別のための情報の一つとして、車両の「車軸数」を用いている。車種判別装置は、車両検知器において一台の車両の通過を検出している間に上記踏板が踏まれた回数を検出することで当該車両の「車軸数」を特定することができる。
 しかしながら、上述の仕組みによれば、車種判別装置は、車体の全てが車両検知器を通過し終わった後でなければ、車両の車軸数を特定することができない。したがって、従来、高速道路等に設けられた料金収受設備においては、走行する全ての車両についての車軸数を特定可能とする目的で、走行する車両の最大車長(例えば、18m)を考慮して、車種判別装置と料金自動収受機との間隔が最大車長以上となるように設置されている。
特開平8-235487号公報
 しかしながら、高速道路等における上記料金収受設備の立地条件によっては、車種判別装置と料金自動収受機との間隔を最大車長以上とする設置スペースを確保することが困難な場合がある。そうすると、料金収受設備においては、車種区分を判別するために必要な情報である車軸数を取得することができず、走行する車両の車種区分を詳細に判別することができない。そのため、利用者に対し、十分に細分化された車種区分に応じた料金設定を行うことができない。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、十分な設置スペースを確保できない場所にも設置可能で、かつ、車種区分を詳細に判別可能な車種判別装置、料金収受設備、車種判別方法及びプログラムを提供することにある。
 本発明の一態様によれば、車種判別装置(1A)は、高さ方向に複数並べて配置され、光線(P)を投光する投光部(S1)と、複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部(S2)と、複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、前記光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域(C)を取得する領域取得部(110)と、異なる時刻に取得された複数の前記所定領域を時間軸上に並べて得られる二次元情報である車体シルエット(Da)を取得し、当該車体シルエットと車種区分別に分類された参照パターン(Dref、Dref’)とに基づいて、車両(A)が属する車種区分を判別する車種判別部(111)と、を備える。
 このようにすることで、車種判別装置は、走行する車両の車体形状を示す射影(車体シルエット)を把握することができる。この射影は、車両の車種区分を精度よく判別するために十分な情報量を有するものであるから、これにより、車種判別装置は、車両全体が通過しなければ取得できない情報を用いずとも車種区分を詳細に判別することができる。したがって、車種判別装置は、十分な設置スペースを確保できない場所にも設置可能で、かつ、車種区分を詳細に判別することができる。
 また、本発明の一態様によれば、上述の車種判別装置において、前記車種判別部は、取得された前記車体シルエットに対し、前記車両の走行速度に応じた変動成分を除去するための正規化処理を行うとともに、当該正規化処理が施された正規化車体シルエット(Da’)と前記参照パターンとの対比の結果に基づいて、前記車両が属する車種区分を判別する。
 このようにすることで、車種判別装置は、走行速度に応じた変動成分が除去された正規化車体シルエットを取得することができる。したがって、走行速度の相違に起因する判別結果のばらつきを抑制し、判別精度を向上させることができる。
 また、本発明の一態様によれば、上述の車種判別装置は、前記取得された前記車体シルエットのうち、前記車両のタイヤに対応する領域を示すタイヤシルエット(Dt)を抽出するタイヤシルエット抽出部(113a)と、抽出された前記タイヤシルエットの、前記時間軸を横方向とした場合における縦横比を算出する縦横比演算部(113b)と、を更に備え、前記車種判別部は、算出された前記縦横比を前記時間軸に乗算することで前記正規化処理を行う。
 このようにすることで、車体シルエットから抽出したタイヤシルエットに基づいて正規化処理に必要な情報(縦横比)を取得することができるので、正規化処理のために新たに計測手段を設ける必要がない。したがって、装置全体の低コスト化を図ることができる。
 また、本発明の一態様によれば、上述の車種判別装置において、前記車種判別部は、前記車体シルエットと、前記参照パターンであって被牽引車を牽引する車両に対応して規定された牽引車判別用参照パターン(Dref’)とに基づいて、前記車両が属する車種区分を判別する。
 このようにすることで、車種判別装置は、車両が被牽引車を牽引しているか否かを精度よく判別し、被牽引車の有無に応じて適切に車種区分の判別を行うことができる。
 また、本発明の一態様によれば、上述の車種判別装置は、前記車両のタイヤサイズを取得するタイヤサイズ取得部(114A)を更に備え、前記車種判別部は、前記車体シルエットと、前記参照パターンと、取得された前記タイヤサイズと、に基づいて、前記車両が属する車種区分を判別する。
 このようにすることで、車体シルエットと参照パターンと、のみでは車種区分を一意に判別できなかった場合であっても、更に、車両のタイヤサイズを車種区分の判別用の情報として用いることで、車種区分を詳細に判別することができる。
 また、本発明の一態様によれば、上述の車種判別装置は、前記車両の走行速度を取得する走行速度取得部(114B)を更に備え、前記車種判別部は、前記車体シルエットと、前記参照パターンと、取得された前記走行速度と、に基づいて、前記車両が属する車種区分を判別する。
 このようにすることで、車体シルエットと参照パターンと、のみでは車種区分を一意に判別できなかった場合であっても、更に、車両の走行速度を車種区分の判別用の情報として用いることで、車種区分を詳細に判別することができる。
 また、本発明の一態様によれば、上述の車種判別装置において、前記車種判別部は、前記走行速度取得部により取得された走行速度の車種区分別の統計データ(F)と、新たに取得された前記走行速度と、に基づいて、前記車両が属する車種区分を判別する。
 このようにすることで、料金収受設備を走行する車両の実際の統計データに基づいて車両の車種区分を判別するので、走行速度の相違に基づく車種区分の判別精度を向上させることができる。
 また、本発明の一態様は、上述の車種判別装置と、車線方向において前記車種判別装置の下流側に配置され、前記車両との間で、判別された前記車種区分に応じた料金の収受を行う料金自動収受機(1B)と、を有する料金収受設備(1)である。
 また、本発明の一態様によれば、車種判別方法は、高さ方向に複数並べて配置され、光線を投光する投光部と、複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部と、を用いて、車線を走行する車両が属する車種区分を判別する車種判別方法であって、複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、当該光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域を取得するステップと、異なる時刻に取得された複数の前記所定領域を時間軸上に並べて構成された二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別するステップと、を有する。
 また、本発明の一態様によれば、プログラムは、高さ方向に複数並べて配置され、光線を投光する投光部と、複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部と、を用いて、車線を走行する車両が属する車種区分を判別するコンピュータを、複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、当該光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域を取得する領域取得手段、異なる時刻に取得された複数の前記所定領域を時間軸上に並べて構成された二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別する車種判別手段、として機能させる。
 上述の車種判別装置、料金収受設備、車種判別方法及びプログラムによれば、十分な設置スペースを確保できない場所にも設置可能で、かつ、車種区分を詳細に判別できる。
第1の実施形態に係る料金収受設備の全体構成を示す図である。 第1の実施形態に係る車種判別装置の機能構成を示す図である。 第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第1の図である。 第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第2の図である。 第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第3の図である。 第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第4の図である。 第1の実施形態に係る正規化処理部の機能を説明する第1の図である。 第1の実施形態に係る正規化処理部の機能を説明する第2の図である。 第1の実施形態に係る正規化処理部の機能を説明する第3の図である。 第1の実施形態に係る判別処理部の機能を説明する第1の図である。 第1の実施形態に係る判別処理部の機能を説明する第2の図である。 第1の実施形態に係る判別処理部の機能を説明する第3の図である。 第2の実施形態に係る車種判別装置の機能構成を示す図である。 第2の実施形態に係る判別処理部の機能を説明する図である。
<第1の実施形態>
 以下、第1の実施形態に係る車種判別装置について、図1~図7Cを参照ながら説明する。
(全体構成)
 図1は、第1の実施形態に係る料金収受設備の全体構成を示す図である。
 本実施形態において、料金収受設備1は、有料道路である高速道路の出口料金所に設けられ、高速道路の利用者から、当該利用者が乗車する車両Aの車種区分に応じた額の料金の支払いを受けるための設備である。
 以下の説明において、高速道路側(図1における+X方向側)を車線Lの「上流側」、又は、「進行方向手前側」とも記載する。また、一般道路側(図1における-X方向側)を車線Lの「下流側」、又は、「進行方向奥側」とも記載する。
 図1に示すように、料金収受設備1は、車種判別装置1Aと、料金自動収受機1Bと、を備えている。
 車種判別装置1Aは、車線Lの路側等に設けられ、当該車線Lを走行する車両Aの車種区分を判別する。
 料金自動収受機1Bは、利用者(車両Aの運転者等)から紙幣、硬貨等の受付処理、釣銭の支払い処理等を自動で行う。料金自動収受機1Bは、車種判別装置1Aの下流側における車線Lの路側に設けられ、車種判別装置1Aによって判別された車両Aの車種区分に応じた額の料金を利用者から徴収する。
 図1に示すように、車種判別装置1Aは、車両検知器10と、主制御部11と、を有している。
 車両検知器10は、投光塔101と、受光塔102と、を有している。車両検知器10の投光塔101、受光塔102は、車線Lの車線方向(±X方向)における同じ位置であって、車線幅方向(±Y方向)における両側(+Y方向側又は-Y方向側)の路側にそれぞれ設置される。投光塔101、受光塔102は、路面から高さ方向(±Z方向)に伸びるように直方状に形成され、互いに対向する面を有している。
 投光塔101のうち受光塔102に対向する面には、受光塔102に向けて所定波長の光線P(例えば、赤外光線)を投光する投光部S1が、高さ方向に等間隔で複数並べて配置されている。
 一方、受光塔102のうち投光塔101に対向する面には、投光部S1が投光する光線Pを受光する受光部S2が、高さ方向に等間隔で複数並べて配置されている。各受光部S2は、投光部S1の各々と一対一に対応するように配置され、対応する投光部S1が投光する光線Pを受光可能とされている。各受光部S2は、対応する投光部S1から投光される光線Pを受光しているか(非遮光状態)、受光していないか(遮光状態)、に応じた検出信号を常時出力している。
 上記構成を有する車両検知器10によれば、車両Aが走行し、車線方向における投光塔101及び受光塔102と同じ位置に進入した場合、投光部S1と受光部S2との間に車両Aの車体が配されるため、高さ方向の車体に応じた所定範囲に渡るいくつかの光線Pが遮光される(図1参照)。
 主制御部11は、車両検知器10(受光部S2)からの検出信号に基づいて、走行する車両Aの車種区分を判別するとともに、当該判別の結果を料金自動収受機1Bに出力する処理を行う。本実施形態において、車種区分とは、例えば、「軽自動車」、「普通車」、「中型車」、「大型車」、「特大車」の五区分からなる。
 本実施形態において、車種判別装置1A(車両検知器10)が配置される位置から料金自動収受機1Bが配置される位置までの車線方向の距離は、例えば6メートル程度とされる。
(車種判別装置の機能構成)
 図2は、第1の実施形態に係る車種判別装置の機能構成を示す図である。
 図2に示すように、車種判別装置1Aは、車両検知器10と、主制御部11と、を備えている。また、車両検知器10は、投光塔101と受光塔102とを有しており、上述したように、光線Pの受光の有無に応じた検出信号を出力する。
 図2に示すように、主制御部11は、遮光領域取得部110(領域取得部)と、車種判別部111と、を備えている。
 遮光領域取得部110は、複数の受光部S2から、各受光部S2における光線Pの受光の有無を示す検出信号の入力を受け付けて、光線Pが遮光されているか否かを判定する。そして、遮光領域取得部110は、複数の受光部S2が高さ方向に並べて配置された領域全体のうち遮光されている光線Pに対応する受光部S2が占める所定領域である遮光領域C(図3A参照)を取得する。
 車種判別部111は、遮光領域取得部110によって取得された複数の遮光領域Cに基づいて車両Aの射影を示す車体シルエットDa(図3B参照)を取得する。そして、車種判別部111は、車体シルエットDaと車種区分別に分類された参照パターンDref(図7A~図7C参照)とに基づいて、車両Aが属する車種区分を判別する。また、車種判別部111は、車種区分の判別結果を料金自動収受機1Bに出力する。これにより、料金自動収受機1Bは、走行する車両Aの車種区分に応じた額の料金収受処理を行うことができる。
 より具体的には、車種判別部111は、車体シルエット取得部112と、正規化処理部113と、タイヤサイズ取得部114Aと、判別処理部115と、を備えている。
 車体シルエット取得部112は、異なる時刻に取得された複数の遮光領域Cを所定の時間軸上に並べることで、車両検知器10(投光塔101と受光塔102との間)を走行する車両Aについての二次元情報である車体シルエットDaを取得する。
 正規化処理部113は、車体シルエットDaに対し正規化処理を施して正規化車体シルエットDa’を取得する。具体的には、正規化処理部113は、車両検知器10を走行する車両Aの走行速度に応じて変動する車体シルエットDaから当該走行速度に応じた変動成分を除去して、走行速度に依存しない正規化車体シルエットDa’(図6B参照)を取得する。なお、正規化処理部113は、タイヤシルエット抽出部113aと、縦横比演算部113bと、を有している。これらの各種機能部の詳細については後述する。
 タイヤサイズ取得部114Aは、車体シルエットDa(又は、正規化車体シルエットDa’)を参照して車両Aのタイヤ径の大きさ(タイヤサイズ)を取得する。
 判別処理部115は、車両Aの通過に伴って取得された正規化車体シルエットDa’を基に車両Aの車種区分(「軽自動車」、「普通車」、「中型車」、「大型車」、「特大車」)を判別する。より具体的には、正規化車体シルエットDa’と、記録媒体116に予め記録された複数の参照パターンDrefと、を対比して、正規化車体シルエットDa’に適合する参照パターンDrefを特定する処理を行う。参照パターンDrefは、予め車種区分別に分類されて記録媒体116に記録されている。
 以下、車種判別装置1Aの各種機能構成について、詳細に説明する。
(遮光領域取得部、車体シルエット取得部の機能)
 図3A、図3Bは、それぞれ、第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第1の図、第2の図である。
 また、図4A、図4Bは、それぞれ、第1の実施形態に係る遮光領域取得部及び車体シルエット取得部の機能を説明する第3の図、第4の図である。
 図3Aは、「普通車」に属する車両Aが、車線L上において投光塔101と受光塔102との間に位置する状態を示している。この場合、図3Aに示すように、車両Aの車体により、高さ方向の所定範囲に渡って光線P(図1)が遮光される。遮光領域取得部110は、全ての受光部S2から光線Pの受光の有無を示す検出信号の入力を受け付けて、各光線Pが遮光されているか否かを判定する。そして、遮光領域取得部110は、各検出信号に基づいて、各受光部S2が配列される高さ方向を軸とする一次元情報を取得する。この一次元情報は、高さ方向に配列された複数の受光部S2のうち遮光されている光線Pに対応する受光部S2が占める遮光領域Cを示す情報である。図3Aに示すように、上記一次元状情報に示される遮光領域Cは、車両検知器10を通過する車両Aの車体が、高さ方向に存在する範囲に相当する。
 遮光領域取得部110は、規定されたサンプリング時間(数ミリ秒オーダ)ごとに、継続的に遮光領域Cを示す一次元情報を取得する。
 図3Bは、車体シルエット取得部112によって取得された車体シルエットDaを示している。
 車体シルエット取得部112は、遮光領域取得部110が取得した一次元情報をその取得時刻別に時間軸上に並べることで、二次元情報である車体シルエットDaを生成する。車体シルエットDaは、図3Bに示すように、各受光部S2が配列される高さ方向の空間軸を縦軸とし、各一次元情報が取得された取得時刻を示す時間軸を横軸とする二次元情報である。このようにすることで、車体シルエットDaには、車両検知器10を通過する車両Aの車体を一方側(+Y方向側)から見た側面の射影が示される。
 図4Aは、「大型車」(大型トラック等)に属する車両Aが車線L上において投光塔101と受光塔102との間に位置する状態を示している。この場合も、図3Aに示した場合と同様に、遮光領域取得部110は、全ての受光部S2から光線Pの受光の有無を示す検出信号の入力を受け付けて、通過する車両Aの車体形状に応じた遮光領域Cを示す一次元情報を取得する。
 ただし、「大型車」である車両Aの車長(車線方向の長さ)は、6メートルよりも大きい場合が想定される。そうすると、図4Aに示すように、大型車である車両Aの運転席(車体の前方側(+X方向側))が車線方向において料金自動収受機1Bに到達した段階においても、車両Aの車体の後方(-X方向側)の一部は、投光塔101と受光塔102との間を通過していない。
 したがって、この場合、車体シルエット取得部112は、図4Bに示すように、車両Aの車体全体のうち、車両検知器10を通過した部分のみの射影に相当する車体シルエットDaを取得する。即ち、この場合における車体シルエットDaには、車両Aの車体全体のうち前方側約6メートルの部分のみの射影が示される。
 図3A、図3B、図4A、図4Bに示したように、車体シルエットDaは、通過する車両Aの車体全体又は一部の射影を示す二次元情報である。しかしながら、上述した通り、車体シルエットDaは、横軸に時間軸をとる情報であるため、車両Aが車両検知器10を通過する際の走行速度に応じて変動する。
 例えば、車両Aの走行速度が相対的に“低速”であった場合、車両Aが車両検知器10の通過中の時間が長くなるため、車体シルエットDaは、車両Aの実際の射影が横軸(時間軸)方向に引き伸ばされたものとなる。逆に、車両Aの走行速度が相対的に“高速”であった場合、車両Aが車両検知器10の通過中の時間が短くなるため、実際の射影が横軸(時間軸)方向に圧縮されたものとなる。
(正規化処理部の機能)
 図5は、第1の実施形態に係る正規化処理部の機能を説明する第1の図である。
 本実施形態に係る正規化処理部113は、走行速度に応じて時間軸方向に変動する車体シルエットDaに対し、当該走行速度に応じた変動成分を除去して正規化する処理を行う。以下、正規化処理部113の具体的な機能について説明する。
 正規化処理部113のタイヤシルエット抽出部113aは、図5に示すように、車体シルエット取得部112が取得した車体シルエットDaから、車両Aのタイヤに対応する領域を示すタイヤシルエットDtを抽出する。
 具体的には、タイヤシルエット抽出部113aは、まず、車体シルエットDaの境界(エッジ)からタイヤ境界パターンEを抽出する。タイヤ境界パターンEは、車体シルエットDaの境界のうちタイヤの射影に対応する部分である。ここで、全ての車両Aは、車線Lの路面と円形のタイヤで接しているはずである。したがって、タイヤ境界パターンEは、車体シルエットDaの高さ方向の空間軸(縦軸)における最も下方側から上方に伸びる境界を判別することで抽出可能である。
 次に、タイヤシルエット抽出部113aは、タイヤ境界パターンEに対し、長辺a及び短辺bからなる楕円形(b=aの場合は円形)を適合させるパターンマッチング処理を行う。具体的には、タイヤシルエット抽出部113aは、タイヤ境界パターンEと、長辺aと短辺bとの複数の組み合わせが適用された複数の楕円形と、の形状を比較して一致度を算出する。一致度は、例えば、一般的な最小二乗法等に基づいて算出されるものであってよい。タイヤシルエット抽出部113aは、タイヤ境界パターンEとの一致度が最も高い楕円形をタイヤシルエットDtとして特定する。
 また、他の実施形態に係るタイヤシルエット抽出部113aは、タイヤ境界パターンEにおける車体シルエットDa上の座標(時間軸をxとし空間軸をyとする座標(x、y))を、楕円の方程式“(x2/a2)+(y2/b2)=1”に代入し、最小二乗法等の解析手段に基づいて誤差が最小となるパラメータa、bを求めるようにしてもよい。
 正規化処理部113の縦横比演算部113bは、抽出されたタイヤシルエットDtの、時間軸を横方向とした場合における縦横比を算出する。具体的には、縦横比演算部113bは、図5のように抽出されたタイヤシルエットDt(楕円形)の長辺a及び短辺bを参照し、その縦横比であるb/aを算出する。
 図6A、図6Bは、それぞれ、第1の実施形態に係る正規化処理部の機能を説明する第2の図、第3の図である。
 次に、縦横比演算部113bは、算出した縦横比b/aを、タイヤシルエットDtの時間軸に乗算する処理を行う。
 ここで、図6Aは、車両Aの走行速度が相対的に“低速”であった場合に取得される車体シルエットDaの例を示している。即ち、車体シルエットDaは、車両Aの車体全体が時間軸方向に引き伸ばされた状態となっている。縦横比演算部113bは、車体シルエットDaから抽出されたタイヤシルエットDtの長辺aと短辺b(b<a)とに基づいて縦横比b/a(b/a<1)を算出する。
 図6Bは、図6Aに示す車体シルエットDaに正規化処理を施して得た正規化車体シルエットDa’を示している。具体的には、縦横比演算部113bは、算出した縦横比b/a(b/a<1)を時間軸に乗算する。そうすると、車体シルエットDaが時間軸全体に渡りb/aの比率で圧縮され、タイヤシルエットDtに相当する箇所が真円となる。
 ここで、図6Aに示すタイヤシルエットDtでは、本来真円であるはずのタイヤの射影が、車両Aの走行速度に応じた時間軸方向の変動成分によって、横方向(時間軸方向)に“a/b”だけ引き伸ばされた楕円形となって示されている。つまり、車体シルエットDaは、車両Aの車体の実際の射影が横方向(時間軸方向)に“a/b”の割合で引き伸ばされたものと見なすことができる。したがって、縦横比b/aが乗算されることで、実際の車体の射影である正規化車体シルエットDa’を取得することができる。
 図5、図6A、図6Bに示した以上の各種処理を行うことで、正規化処理部113は、走行速度に応じた変動成分を除去して正規化された正規化車体シルエットDa’を取得する。正規化処理が施された正規化車体シルエットDa’は、原理的には、同一の車両Aが如何なる走行速度で車両検知器10を通過した場合であっても、常に同一の射影を示すものとなる。
(タイヤサイズ取得部の機能)
 タイヤサイズ取得部114Aは、車両Aの車体の実際の射影を示す正規化車体シルエットDa’を参照して、車両Aのタイヤ径(タイヤサイズ)を取得する。本実施形態において、タイヤサイズ取得部114Aは、単に、タイヤシルエット抽出部113aによって抽出されたタイヤシルエットDtの正規化後の直径(本実施形態では短辺bに相当)を取得する。
(判別処理部の機能)
 図7A~図7Cは、それぞれ、第1の実施形態に係る判別処理部の機能を説明する第1の図~第3の図である。
 上述したように、本実施形態に係る判別処理部115は、車体シルエットDaの取得処理、及び、その正規化処理を経て得られた正規化車体シルエットDa’を、予め用意された参照パターンと対比して、車両Aの車種区分を判別する。
 ここで、主制御部11に備えられる記録媒体116には、予め、図7A~図7Cに例示するような参照パターンDrefを複数記録されている。図7A~図7Cに示す参照パターンDrefは、車種区分別に分類され、それぞれ対応する車種区分に紐付いて記録されている。
 例えば、図7Aに示す参照パターンDrefは、「普通車」の車種区分に分類される参照パターンDrefである。また、図7Bに示す参照パターンDrefは、「大型車」又は「特大車」の車種区分に分類される参照パターンDrefである。
 図7A、図7Bに示すように、参照パターンDrefは、正規化車体シルエットDa’と同サイズの二次元情報であって、当該正規化車体シルエットDa’の所定領域を区画する非重複パターンDref1と、重複パターンDref2と、を規定する。非重複パターンDref1及び重複パターンDref2は、対応する車種区分に応じてそれぞれ異なる領域を区画するように予め規定されている。
 非重複パターンDref1は、ある車種区分に属する車両について、その車体の射影が常に含まれない(重ねたときに重複しない)領域を規定する。例えば、「普通車」の車種区分に分類された非重複領域Dref1に、「普通車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、この非重複領域Dref1に重複しない(図7A参照)。
 同様に、重複パターンDref2は、ある車種区分に属する車両について、その車体の射影に常に含まれる(重ねたときに重複する)領域を規定する。例えば、「普通車」の区分に分類された重複領域Dref2に、「普通車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、この非重複領域Dre2の全てを含むように重複する(図7A参照)。
 同様に、例えば、「大型車」の車種区分に分類された非重複領域Dref1に、「大型車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、この非重複領域Dref1に重複しない(図7B参照)。
 更に、「大型車」の車種区分に分類された重複領域Dref2に、「大型車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、この非重複領域Dre2の全てを含むように重複する(図7B参照)。
 一方、「普通車」用の非重複領域Dref1(図7A)に、「大型車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、当該「普通車」用の非重複領域Dref1と重複する。したがって、この場合、車両Aが「普通車」ではないことを判別することができる。
 また、「大型車」用の重複領域Dref2(図7B)に、「普通車」に属する車両Aの正規化車体シルエットDa’を重ねた場合には、当該正規化車体シルエットDa’は、「大型車」用の重複領域Dref2の少なくとも一部と重複しない。したがって、この場合、車両Aが「大型車」ではないことを判別することができる。
 以上のように、判別処理部115は、正規化車体シルエットDa’と、車種区分別に分類された参照パターンDref(非重複パターンDref1、重複パターンDref2)と、の重複の有無の判定により、正規化車体シルエットDa’がいずれの車種区分に分類された参照パターンDrefに適合するかを特定する。これにより、判別処理部115は、車両Aの車種区分を判別することができる。
 また、図7Cに示す参照パターンDrefは、被牽引車を牽引する車両A(牽引車)に対応して規定された牽引車判別用参照パターンDref’である。図7Cに示す牽引車判別用参照パターンDref’は、例えば、「普通車」に属する車両Aが被牽引車を牽引しているか否かを判別する際に用いられる。
 牽引車判別用参照パターンDref’は、「普通車」に属する車両Aの射影に応じた領域(即ち、図7Aと同等の非重複領域Dref1及び重複領域Dref2)に加え、更に、被牽引車及び連結部材の射影に応じた非重複領域Dref1、重複領域Dref2が規定される。具体的には、図7Cに示すように、牽引車判別用参照パターンDref’の非重複領域Dref1は、被牽引車及び連結部材の射影が配されると想定される領域に対応して、「普通車」用の非重複領域Dref1(図7A)よりも狭くなるように規定されている。
 ここで、「普通車」に属する車両Aが被牽引車を牽引して走行していた場合、その正規化車体シルエットDa’には、車両Aの後方側に位置する連結部材及び被牽引車本体の射影が含まれる(図7C参照)。したがって、この場合、当該車両Aの正規化車体シルエットDa’は、「普通車」に対応する参照パターンDref(図7A)には適合せず、一方、「牽引車」に対応する牽引車判別用参照パターンDref’(図7C)には適合する。
 このようにすることで、判別処理部115は、「普通車」に属する任意の車両Aに対し、牽引の有無を判別することができる。なお、判別処理部115は、正規化車体シルエットDa’と牽引車判別用参照パターンDref’との対比の結果、車両Aが「牽引車」であると判断した場合には、例えば、車両Aの車種区分を「普通車」の1ランク上の「中型車」と判別する。
 上記と同様の手法で、例えば、走行する車両Aが、「特大車」に属する(積荷を牽引する)トレーラーか、積荷を牽引しないトレーラーヘッドのみか、を判別することも可能である。即ち、判別処理部115は、正規化車体シルエットDa’が積荷を牽引しないトレーラーヘッドの射影に対応する「トレーラーヘッド判別用参照パターン」に適合するか否かを判定する。これにより、車両Aが(積荷を牽引する)大型トレーラーか、(積荷をけん引しない)トレーラーヘッドのみか、を判別することができる。判別処理部115は、正規化車体シルエットDa’と上記トレーラーヘッド判別用参照パターンとの対比の結果、車両Aが「トレーラーヘッドのみ」であると判断した場合には、例えば、車両Aの車種区分を「中型車」と判別する。
 記録媒体116には、図7A~図7Cに示した参照パターンDrefの他、「軽自動車」、「中型車」等に対応する参照パターンDref(及び、牽引車判別用参照パターンDref’)が予め記録されている。
 また、判別処理部115は、更に、タイヤサイズ取得部114Aによって取得されたタイヤサイズを参照して、車両Aの車種区分を判別してもよい。
 具体的には、判別処理部115は、正規化車体シルエットDa’と参照パターンDrefとの対比の結果、車両Aが「普通車」か「中型車」の何れかに属すると判別した場合には、更に、タイヤサイズ取得部114Aによって取得されたタイヤサイズ(タイヤシルエットDtの正規化後の直径)、を参照する。そして、判別処理部115は、当該車両Aのタイヤサイズが所定の判定閾値以下であった場合には、車両Aを「普通車」と判別し、タイヤサイズが所定の判定閾値を上回った場合には、車両Aを「中型車」と判別する。
 以上のように、判別処理部115は、正規化車体シルエットDa’に基づいて明確な車種区分の判別が困難である場合には、更に、当該正規化車体シルエットDa’から取得可能なタイヤサイズに基づいて、車両Aの車種区分をより詳細に判別する。
(作用効果)
 以上、第1の実施形態に係る車種判別装置1Aによれば、車種判別部111は、車両検知器10を通じて、遮光領域Cを時間軸上に並べて得られる二次元情報(車体シルエットDa)を取得する。そして、車種判別部111は、車体シルエットDa(正規化車体シルエットDa’)と車種区分別に分類された参照パターンDrefとに基づいて、車両Aが属する車種区分を判別する。
 このようにすることで、車種判別装置1Aは、車両Aの車体形状を示す射影(車体シルエットDa)を把握することができる。この射影は、車両Aの車種区分を精度よく判別するために十分な情報量を有するものであるから、これにより、車種判別装置1Aは、車両全体が通過しなければ取得できない情報(車軸数等)を用いずとも車種区分を詳細に判別することができる。したがって、車種判別装置1Aは、十分な設置スペースを確保できない場所にも設置可能で、かつ、車種区分を詳細に判別することができる。
 また、第1の実施形態に係る車種判別装置1Aによれば、タイヤシルエット抽出部113aは、車体シルエットDaからタイヤシルエットDtを抽出する。また、縦横比演算部113bは、抽出されたタイヤシルエットDtの縦横比(b/a)を算出し、取得された車体シルエットDaに対し、算出された縦横比を時間軸に乗じて正規化処理を行う。
 このようにすることで、走行速度に応じた変動成分が除去された正規化車体シルエットDa’を取得することができる。したがって、走行速度の相違に起因する判別結果のばらつきを抑制し、判別精度を向上させることができる。
 また、車体シルエットDaから抽出したタイヤシルエットDtに基づいて正規化処理に必要な情報(縦横比b/a)を取得することができるので、正規化処理のために新たに計測手段(速度計、踏板等)を設ける必要がない。したがって、低コスト化を図ることができる。
 また、第1の実施形態に係る車種判別装置1Aによれば、車種判別部111は、正規化車体シルエットDa’と、被牽引車を牽引する車両Aに対応して規定された牽引車判別用参照パターンDref’との対比の結果に基づいて、車両Aが属する車種区分を判別する。
 このようにすることで、車両Aが被牽引車を牽引しているか否かを精度よく判別し、被牽引車の有無に応じて適切に車種区分の判別を行うことができる。
 また、第1の実施形態に係る車種判別装置1Aは、車両Aのタイヤサイズを取得するタイヤサイズ取得部114Aを更に備え、車種判別部111は、正規化車体シルエットDa’と参照パターンDrefとの対比の結果に加え、更に、タイヤサイズ取得部114Aが取得した車両Aのタイヤサイズに基づいて、車両Aが属する車種区分を判別する。
 このようにすることで、正規化車体シルエットDa’と参照パターンDrefとの対比の結果だけでは車種区分を一意に判別できなかった場合であっても、更に、車両Aのタイヤサイズを車種区分の判別用の情報として用いることで、車種区分を詳細に判別することができる。
(第1の実施形態の変形例)
 以上、第1の実施形態に係る車種判別装置1Aについて詳細に説明したが、第1の実施形態に係る車種判別装置1Aの具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
 例えば、第1の実施形態に係る車種判別装置1Aにおいて、判別処理部115は、正規化車体シルエットDa’と、非重複パターンDref1及び重複パターンDref2(図7A~図7C)と、の重複の有無の判定を行うものとして説明したが、他の実施形態においてはこの態様に限定されない。
 他の実施形態に係る判別処理部115は、正規化車体シルエットDa’と非重複パターンDref1(重複パターンDref2)との重複の度合いを算出して、当該正規化車体シルエットDa’と参照パターンDrefとの一致度を数値化する。そして、判別処理部115は、車種区分別に分類された複数の参照パターンDrefのうち上記一致度が最も高い参照パターンDrefを特定する。
 このようにすることで、例えば車体に取り付けられたアンテナ等の射影によって、わずかな重複の有無で車種区分が誤判別されることを抑制することができる。
 更に、判別処理部115は、参照パターンDrefのうち正規化車体シルエットDa’が重複しても重複しなくともよい領域(即ち、重複パターンDref1、非重複パターンDref2の何れにも属さない領域(以下、「余白領域」と記載。))と、正規化車体シルエットDa’と、の重複の度合いに基づいて車種区分を判別してもよい。
 具体的には、まず、判別処理部115は、正規化車体シルエットDa’と非重複パターンDref1及び重複パターンDref2の各々との重複の有無の条件を満たす参照パターンDrefを選定する。ここで2つ以上の参照パターンDrefが選定された場合には、判別処理部115は、更に、上記余白領域と、車体シルエットDa’との重複の度合い(余白領域重複度)を算出する。そして、選定した複数の参照パターンDrefの中で余白領域重複度が最も大きい参照パターンDrefを特定する。
 ここで、「普通車」に属し、かつ、牽引車ではない車両Aの正規化車体シルエットDa’は、「普通車」用の参照パターンDref(図7A)と、牽引車判別用参照パターンDref’(図7C)の何れにも当てはまるため、このままでは車両Aが牽引車ではないことを判別することができない。
 しかし、参照パターンDref(図7A)に比べて牽引車判別用参照パターンDref’(図7C)の方が、被牽引車本体等の射影に対応する分だけ余白領域が大きく規定されている。そのため、牽引車ではない車両Aの正規化車体シルエットDa’と参照パターンDrefとの対比により算出される余白領域重複度は、牽引車判別用参照パターンDref’との対比により算出される余白領域重複度よりも高くなる。したがって、判別処理部115は、余白領域重複度が最も大きい参照パターンDrefを特定することで、当該車両Aを、“牽引車ではない「普通車」”として正しく判別することができる。
 また、第1の実施形態に係る車種判別装置1Aにおいて、正規化処理部113は、タイヤシルエットDt(図5、図6A、図6B)の縦横比b/aに基づいて、車体シルエットDaについての正規化処理を行うものとして説明したが、他の実施形態においてはこの態様に限定されない。
 例えば、車種判別装置1Aは、別途、車両Aの走行速度を取得可能な速度計測手段を備え、当該速度計測手段によって検出された走行速度に基づいて、車体シルエットDaについての正規化処理を行う態様であってもよい。この場合、正規化処理部113は、車体シルエットDaの時間軸に対し、検出された走行速度に応じた補正係数を乗算して補正する処理を行うことで、正規化車体シルエットDa’を取得することができる。
 なお、速度計測手段は、例えば、車線Lの路側に設けられたドップラー速度計、又は、車線Lの路面上に設けられた踏板等であってよい。また、車線Lの車線方向に所定の間隔を空けて設けられた複数の車両検知器10による車両Aの検知時間差を利用してもよい。
 また、第1の実施形態に係る車種判別装置1Aにおいて、タイヤサイズ取得部114Aは、タイヤシルエット抽出部113aが抽出したタイヤシルエットDt(長辺a、短辺b)を参照して車両Aのタイヤサイズを取得するものとして説明したが、他の実施形態においてはこの態様に限定されない。
 例えば、タイヤサイズ取得部114Aは、路側に設けられた撮影装置(カメラ等)によって映し出された車両Aの画像を参照し、取得された当該画像に対し所定の画像処理(タイヤ抽出処理)を行ってタイヤサイズを特定するものであってもよい。
 また、第1の実施形態に係る車種判別装置1Aにおいて、車種判別部111は、車体シルエットDaに正規化処理を施して、車両Aの走行速度に応じた変動成分が排された正規化車体シルエットDa’を取得し、当該正規化車体シルエットDa’と参照パターンDrefとを対比するものとして説明した。
 しかし、他の実施形態においてはこの態様に限定されず、例えば、車種判別部111は、車体シルエット取得部112が取得した車体シルエットDaを直接参照パターンDrefと対比してもよい。この場合、更に、車種判別部111は、一つの車種区分別に、車両Aの走行速度に応じた複数の参照パターンDrefを有していてもよい。
 また、第1の実施形態に係る正規化処理部113(縦横比演算部113b)は、図6Aに示したように、タイヤシルエットDtのうち、車両Aの“最前輪”のタイヤの縦横比b/aのみに基づいて、車体シルエットDaについての正規化処理を行う態様としたが、他の実施形態においてはこの態様に限定されない。
 例えば、他の実施形態に係る縦横比演算部113bは、車両Aの複数の車軸(前輪、後輪)に対応する複数のタイヤシルエットDtが取得された場合には、当該複数のタイヤシルエットDtの各々についての縦横比b/aを算出し、各縦横比b/aの平均値等を正規化処理において適用する態様であってもよい。
 また、縦横比演算部113bは、車体シルエットDaの各所に配された複数のタイヤ各々の縦横比を求めておき、これらの縦横比が時間軸方向に連続的に変化するものとして、適用する縦横比を外挿することで車体シルエットDa全体の正規化処理を行ってもよい。このようにすることで、車両検知器10の通過中に車両Aの車速が(滑らかに)変化した場合であっても、正規化車体シルエットDa’を精度よく取得することができる。
 また、第1の実施形態では、料金自動収受機1Bに関する車種判別を対象として説明したが、他の実施形態においては、料金自動収受機1Bに替えて、有人ブース、通行券自動発行機に関する車種判別を対象としてもよい。
<第2の実施形態>
 以下、第2の実施形態に係る車種判別装置について、図8、図9を参照ながら説明する。
(車種判別装置の機能構成)
 図8は、第2の実施形態に係る車種判別装置の機能構成を示す図である。
 第2の実施形態に係る車種判別装置1Aの各種機能構成のうち、第1の実施形態に係る車種判別装置1Aと同一の機能構成については同一の符号を付して説明を省略する。
 図8に示すように、第2の実施形態に係る車種判別装置1A(車種判別部111)は、走行速度取得部114Bを備えている。
 走行速度取得部114Bは、車両検知器10を通過する車両Aの走行速度を取得する。具体的には、走行速度取得部114Bは、タイヤシルエット抽出部113aによって抽出されたタイヤシルエットDt(図5、図6A)の長辺a、短辺bを参照して車両Aの走行速度を算出する。ここで、タイヤシルエットDtの横軸は時間軸であり、タイヤシルエットDtの縦軸は高さ方向の空間軸であるから、タイヤシルエットDtの横軸[s]の幅(例えば、長辺a)と、縦軸[m]の幅(短辺b)に基づいて、b/a[m/s]を算出することで、車両Aの走行速度を取得することができる。
(判別処理部の機能)
 図9は、第2の実施形態に係る判別処理部の機能を説明する図である。
 第2の実施形態に係る判別処理部115は、走行速度取得部114Bによって取得された走行速度の車種区分別の統計データFを参照することで、新たに取得された車両Aについての走行速度に基づいて、当該車両Aが属する車種区分を判別する。
 ここで、統計データFは、予め記録媒体116に記録された情報であって、料金収受設備1(図1)を走行する多数の車両Aの走行速度の統計データである。この統計データFは、走行速度取得部114Bが逐次取得する車両Aの走行速度に基づいて生成される。
 また、統計データFには、車種区分別に分類された走行速度の確率分布関数が記録される。例えば、図9に示すように、統計データFには、「大型車」についての走行速度の確率分布関数f1と、「特大車」についての走行速度の確率分布関数f2と、が記録されている。
 確率分布関数f1は、「大型車」に属する車両Aについての走行速度の統計データFから特定される確率分布関数である。同様に、確率分布関数f2は、「特大車」に属する車両Aについての走行速度の統計データFから特定される確率分布関数である。
 一般に、「大型車」に属する車両よりも「特大車」に属する車両の方が、牽引する積荷の重量が大きい。そのため、慣性の法則に従い、「特大車」に属する車両Aの方が減速に要する負荷が大きくなり、急峻に停止することが困難となる。
 一方、車両検知器10を通過する全ての車両Aは、料金収受処理を行うために、車両検知器10の下流側に配置された料金自動収受機1Bで停止する必要がある。そうすると、料金自動収受機1Bで停止するために、「特大車」に属する車両Aは、「大型車」に属する車両Aよりも早い段階で減速を開始する必要がある。したがって、車両検知器10を通過する時点における走行速度は、統計的に、「特大車」の方が「大型車」よりも“低速”となる(図9参照)。
 ここで、まず、判別処理部115は、第1の実施形態と同様に、正規化車体シルエットDa’(図6B)と参照パターンDref(図7A~図7C)との対比の結果に基づいて、車両Aの車種区分を判別する処理を行う。しかし、上述したように、前方側6メートルの射影(正規化車体シルエットDa’)のみでは、車両Aが「大型車」に属するか、「特大車」に属するか、までを判別することが困難な場合がある。
 そこで、判別処理部115は、正規化車体シルエットDa’と参照パターンDrefとの対比に基づいて、車両Aが「大型車」か「特大車」の何れかに属することを判別した場合には、更に、走行速度取得部114Bにより取得された車両Aの走行速度と、記録媒体116に記録された統計データFと、を参照して、車両Aの車種区分を判別する。
 具体的には、判別処理部115は、取得した走行速度を確率分布関数f1、f2の各々に代入し、当該走行速度が出現する確率が最も高い車種区分を特定することで、車両Aが「大型車」に属するか「特大車」に属するかを判別する。
(作用効果)
 以上、第2の実施形態に係る車種判別装置1Aによれば、走行速度取得部114Bは、車両Aの走行速度を取得し、判別処理部115は、正規化車体シルエットDa’と参照パターンDrefとの対比の結果に加え、更に、取得された走行速度に基づいて、車両Aが属する車種区分を判別する。
 このようにすることで、正規化車体シルエットDa’と参照パターンDrefとの対比の結果だけでは車種区分を一意に判別できなかった場合であっても、更に、車両Aの走行速度を車種区分の判別用の情報として用いることで、車種区分を詳細に判別することができる。
 また、第2の実施形態に係る車種判別装置1Aによれば、料金収受設備1において過去に取得された走行速度の車種区分別の統計データFを参照することで、新たに取得された車両Aについての走行速度に基づいて、当該車両Aが属する車種区分を判別する。
 ここで、高速道路の各所に設けられた料金所を走行する車両の走行速度は、同一の車種区分に属する車両であっても、料金収受設備1の立地条件(例えば、坂道やカーブの有無)に応じてそれぞれ大きく異なる。しかし、上記のようにすることで、料金収受設備1を走行する車両の実際の統計データFに基づいて車両Aの車種区分を判別するので、走行速度の相違に基づく車種区分の判別精度を向上させることができる。
(第2の実施形態の変形例)
 第2の実施形態に係る車種判別装置1Aの具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
 ここで、第2の実施形態に係る車種判別装置1Aによれば、走行速度取得部114Bは、タイヤシルエット抽出部113aによって抽出されたタイヤシルエットDtを参照して車両Aの走行速度を算出するものとして説明したが、他の実施形態においてはこの態様に限定されない。
 例えば、走行速度取得部114Bは、車線Lの路側に別途設けられたドップラー速度計等を通じて、車両Aの走行速度を取得するものであってもよい。
 なお、上述の各実施形態では、車両検知器10は、対向する投光部S1から投光された光線Pを受光部S2が受光するか否か(車体等によって遮光されていないか否か)に基づいて、車両Aの存在を検知する“透過型”の車両検知器として説明したが、他の実施形態においてはこの態様に限定されない。
 例えば、他の実施形態に係る車両検知器10は、投光部S1と受光部S2とが同じアイランドI上に設けられ、受光部S2は、投光部S1が投光した光線Pの反射光(光線Pが車体等によって反射されたもの)を受光可能なように配置される。
 この場合、車種判別装置1Aの主制御部11は、上述の各実施形態に係る遮光領域取得部110に替えて、“反射領域取得部”を備えるものとする。
 ここで、上記反射領域取得部(領域取得部)は、複数の受光部S2における上記反射光の受光の有無を示す検出信号の入力を受け付けて、光線Pが反射されているか否かを判定し、複数の受光部S2が高さ方向に並べて配置された領域全体のうち反射されている光線Pに対応する受光部S2が占める所定領域である“反射領域”を取得する。
 また、当該他の実施形態に係る車種判別部111は、上記反射領域取得部によって取得された複数の“反射領域”を時間軸上に並べることで車両Aの射影を示す車体シルエットDa(図3B参照)を取得する。
 このように、車両検知器10は、車体等によって反射された光線P(反射光)の受光の有無を検出することで車両Aの存在を検知する“反射型”の車両検知器であってもよい。
 なお、上述の各実施形態においては、車種判別装置1Aの主制御部11の各種機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、上述した主制御部11の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、主制御部11は、単一の装置で構成される態様に限定されず、主制御部11が有する各種機能構成が、ネットワークで接続される複数の装置に渡って具備される態様であってもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
 上述の車種判別装置、車種判別方法及びプログラムによれば、十分な設置スペースを確保できない箇所にも設置可能で、かつ、精度良く車両の車種区分を判別することができる。
1 料金収受設備
1A 車種判別装置
1B 料金自動収受機
10 車両検知器
101 投光塔
102 受光塔
11 主制御部
110 遮光領域取得部(領域取得部)
111 車種判別部
112 車体シルエット取得部
113 正規化処理部
113a タイヤシルエット抽出部
113b 縦横比演算部
114A タイヤサイズ取得部
114B 走行速度取得部
115 判別処理部
116 記録媒体
S1 投光部
S2 受光部
P 光線
C 遮光領域
Da 車体シルエット
Dt タイヤシルエット
Dref 参照パターン
Dref1 非重複パターン
Dref2 重複パターン
E タイヤ境界パターン
F 統計データ
f1、f2 確率分布関数

Claims (10)

  1.  高さ方向に複数並べて配置され、光線を投光する投光部と、
     複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部と、
     複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、前記光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域を取得する領域取得部と、
     異なる時刻に取得された複数の前記所定領域を時間軸上に並べて得られる二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別する車種判別部と、
     を備える車種判別装置。
  2.  前記車種判別部は、取得された前記車体シルエットに対し、前記車両の走行速度に応じた変動成分を除去するための正規化処理を行うとともに、当該正規化処理が施された正規化車体シルエットと前記参照パターンとの対比の結果に基づいて、前記車両が属する車種区分を判別する
     請求項1に記載の車種判別装置。
  3.  取得された前記車体シルエットのうち、前記車両のタイヤに対応する領域を示すタイヤシルエットを抽出するタイヤシルエット抽出部と、
     抽出された前記タイヤシルエットの、前記時間軸を横方向とした場合における縦横比を算出する縦横比演算部と、
     を更に備え、
     前記車種判別部は、算出された前記縦横比を前記時間軸に乗算することで前記正規化処理を行う
     請求項2に記載の車種判別装置。
  4.  前記車種判別部は、前記車体シルエットと、前記参照パターンであって被牽引車を牽引する車両に対応して規定された牽引車判別用参照パターンとに基づいて、前記車両が属する車種区分を判別する
     請求項1から請求項3の何れか一項に記載の車種判別装置。
  5.   前記車両のタイヤサイズを取得するタイヤサイズ取得部を更に備え、
     前記車種判別部は、前記車体シルエットと、前記参照パターンと、取得された前記タイヤサイズと、に基づいて、前記車両が属する車種区分を判別する
     請求項1から請求項4の何れか一項に記載の車種判別装置。
  6.  前記車両の走行速度を取得する走行速度取得部を更に備え、
     前記車種判別部は、前記車体シルエットと、前記参照パターンと、取得された前記走行速度と、に基づいて、前記車両が属する車種区分を判別する
     請求項1から請求項5の何れか一項に記載の車種判別装置。
  7.  前記車種判別部は、
     前記走行速度取得部により取得された走行速度の車種区分別の統計データと、新たに取得された前記走行速度と、に基づいて、前記車両が属する車種区分を判別する
     請求項6に記載の車種判別装置。
  8.  請求項1から請求項6の何れか一項に記載の車種判別装置と、
     車線方向において前記車種判別装置の下流側に配置され、前記車両との間で、判別された前記車種区分に応じた料金の収受を行う料金自動収受機と、
     を有する料金収受設備。
  9.  高さ方向に複数並べて配置され、光線を投光する投光部と、複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部と、を用いて、車線を走行する車両が属する車種区分を判別する車種判別方法であって、
     複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、当該光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域を取得するステップと、
     異なる時刻に取得された複数の前記所定領域を時間軸上に並べて構成された二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別するステップと、
     を有する車種判別方法。
  10.  高さ方向に複数並べて配置され、光線を投光する投光部と、複数の前記投光部の各々と対応して配置され、前記光線又は前記光線の反射光を受光可能な複数の受光部と、を用いて、車線を走行する車両が属する車種区分を判別するコンピュータを、
     複数の前記受光部における前記光線又は前記反射光の受光の有無を示す検出信号の入力を受け付けて、当該光線が遮光又は反射されているか否かを判定し、複数の前記受光部が配置された領域のうち遮光又は反射されている光線に対応する受光部が占める所定領域を取得する領域取得手段、
     異なる時刻に取得された複数の前記所定領域を時間軸上に並べて構成された二次元情報である車体シルエットを取得し、当該車体シルエットと車種区分別に分類された参照パターンとに基づいて、車両が属する車種区分を判別する車種判別手段、
     として機能させるプログラム。 
PCT/JP2016/055038 2015-02-27 2016-02-22 車種判別装置、料金収受設備、車種判別方法及びプログラム WO2016136660A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2017703055A MY188588A (en) 2015-02-27 2016-02-22 Vehicle type determination device, toll collection facility, vehicle type determination method, and program
KR1020177023320A KR102001748B1 (ko) 2015-02-27 2016-02-22 차종 판별 장치, 요금 수수 설비, 차종 판별 방법 및 프로그램

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038849A JP6440193B2 (ja) 2015-02-27 2015-02-27 車種判別装置、料金収受設備、車種判別方法及びプログラム
JP2015-038849 2015-02-27

Publications (2)

Publication Number Publication Date
WO2016136660A1 true WO2016136660A1 (ja) 2016-09-01
WO2016136660A8 WO2016136660A8 (ja) 2017-09-08

Family

ID=56788366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055038 WO2016136660A1 (ja) 2015-02-27 2016-02-22 車種判別装置、料金収受設備、車種判別方法及びプログラム

Country Status (4)

Country Link
JP (1) JP6440193B2 (ja)
KR (1) KR102001748B1 (ja)
MY (1) MY188588A (ja)
WO (1) WO2016136660A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109948610A (zh) * 2019-03-14 2019-06-28 西南交通大学 一种基于深度学习的视频中车辆细粒度分类方法
EP3706097A4 (en) * 2018-02-12 2021-01-06 Huawei Technologies Co., Ltd. INFORMATION PROCESSING METHOD AND DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081932B2 (ja) * 2018-02-09 2022-06-07 三菱重工機械システム株式会社 車両検知器、車両検知システム、車両検知方法、及びプログラム
JP7108486B2 (ja) 2018-07-20 2022-07-28 三菱重工機械システム株式会社 車両検知器
WO2020060571A1 (en) * 2018-09-22 2020-03-26 Google Llc Systems and methods for improved traffic conditions visualization

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225490A (ja) * 1992-02-07 1993-09-03 Toshiba Corp 車種判別装置
JPH08235488A (ja) * 1995-02-22 1996-09-13 Mitsubishi Heavy Ind Ltd 車種判別装置
JPH08273091A (ja) * 1995-03-31 1996-10-18 Toshiba Corp 車種判別装置
US5614894A (en) * 1992-07-06 1997-03-25 Centre D'etudes Techniques De 1'est Device to detect particularly one or several wheels of a vehicle or of a wheeled mobile engine and process for using this device
JPH11339175A (ja) * 1998-05-28 1999-12-10 Omron Corp 移動体管理装置
JP2002228423A (ja) * 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd タイヤ検出方法および装置
JP2013200656A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd 車両データ処理システム、車両データ処理方法、車両データ処理装置、プログラム、及び記録媒体
JP2014002534A (ja) * 2012-06-18 2014-01-09 Toshiba Corp 車種判別装置及び車種判別方法
JP2016038629A (ja) * 2014-08-05 2016-03-22 三菱重工業株式会社 車両検出装置、車両検出方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140650B2 (ja) 1995-02-22 2001-03-05 三菱重工業株式会社 車種判別装置
JPH08293090A (ja) * 1995-02-23 1996-11-05 Omron Corp 車軸検知装置、車種判別装置、車両ゲートシステム、及び車両検知装置
JP3222441B2 (ja) * 1999-09-07 2001-10-29 東急車輛製造株式会社 最低地上高規格外車両検知装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225490A (ja) * 1992-02-07 1993-09-03 Toshiba Corp 車種判別装置
US5614894A (en) * 1992-07-06 1997-03-25 Centre D'etudes Techniques De 1'est Device to detect particularly one or several wheels of a vehicle or of a wheeled mobile engine and process for using this device
JPH08235488A (ja) * 1995-02-22 1996-09-13 Mitsubishi Heavy Ind Ltd 車種判別装置
JPH08273091A (ja) * 1995-03-31 1996-10-18 Toshiba Corp 車種判別装置
JPH11339175A (ja) * 1998-05-28 1999-12-10 Omron Corp 移動体管理装置
JP2002228423A (ja) * 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd タイヤ検出方法および装置
JP2013200656A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd 車両データ処理システム、車両データ処理方法、車両データ処理装置、プログラム、及び記録媒体
JP2014002534A (ja) * 2012-06-18 2014-01-09 Toshiba Corp 車種判別装置及び車種判別方法
JP2016038629A (ja) * 2014-08-05 2016-03-22 三菱重工業株式会社 車両検出装置、車両検出方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3706097A4 (en) * 2018-02-12 2021-01-06 Huawei Technologies Co., Ltd. INFORMATION PROCESSING METHOD AND DEVICE
CN109948610A (zh) * 2019-03-14 2019-06-28 西南交通大学 一种基于深度学习的视频中车辆细粒度分类方法

Also Published As

Publication number Publication date
KR102001748B1 (ko) 2019-07-18
WO2016136660A8 (ja) 2017-09-08
KR20170107509A (ko) 2017-09-25
MY188588A (en) 2021-12-22
JP6440193B2 (ja) 2018-12-19
JP2016162084A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
WO2016136660A1 (ja) 車種判別装置、料金収受設備、車種判別方法及びプログラム
US10699567B2 (en) Method of controlling a traffic surveillance system
JP6443754B2 (ja) 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム
JP6569138B2 (ja) 車軸数検出装置、車種判別システム、車軸数検出方法及びプログラム
KR20170109017A (ko) 차종 판별 장치, 차종 판별 방법 및 프로그램
JP6554744B2 (ja) 車種判別装置、車種判別方法及びプログラム
JP6803272B2 (ja) 車体計測装置、料金収受システム、車体計測方法及びプログラム
JP2013238902A (ja) 距離計測センサによる車種判別システム
JP2019121106A (ja) 車両検知装置、車両検知システム、車両検知方法及び車両検知プログラム
JP6831223B2 (ja) 料金収受システム、料金収受方法及びプログラム
JP7362499B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
JP6521294B2 (ja) 課金処理装置、課金処理システム、課金処理方法及びプログラム
JP6727885B2 (ja) 車種判別システム、車種判別方法及びプログラム
JP7425645B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
KR100811555B1 (ko) 차량 측면 형상을 이용한 차종분류장치 및 그 방법
JP7365254B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
JP6795960B2 (ja) 牽引判定装置、牽引判定方法、およびプログラム
JP6845684B2 (ja) 車長計測装置および車長計測方法
JP7372893B2 (ja) 車種判別装置、車種判別方法、及びプログラム
JP6941700B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
JP6783632B2 (ja) 車幅計測システム、車幅計測方法及び料金収受設備
JPH08202983A (ja) 車両検知装置
JPS5834311A (ja) 移動体長さ判別装置
JP2021047795A (ja) 料金収受システム、料金収受システムによる処理方法及びプログラム
JPH02272699A (ja) 車両長さ判別装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023320

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755406

Country of ref document: EP

Kind code of ref document: A1