WO2016121175A1 - オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ - Google Patents

オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ Download PDF

Info

Publication number
WO2016121175A1
WO2016121175A1 PCT/JP2015/079788 JP2015079788W WO2016121175A1 WO 2016121175 A1 WO2016121175 A1 WO 2016121175A1 JP 2015079788 W JP2015079788 W JP 2015079788W WO 2016121175 A1 WO2016121175 A1 WO 2016121175A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
mol
organopolysiloxane
formula
Prior art date
Application number
PCT/JP2015/079788
Other languages
English (en)
French (fr)
Inventor
宗直 廣神
土田 和弘
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP15880068.0A priority Critical patent/EP3252062B1/en
Priority to KR1020177022943A priority patent/KR102176683B1/ko
Priority to CN201580074542.6A priority patent/CN107207542A/zh
Priority to US15/546,242 priority patent/US20180022876A1/en
Publication of WO2016121175A1 publication Critical patent/WO2016121175A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a novel organopolysiloxane containing an organic group having a sulfide group, a rubber compounding agent, a rubber composition, and a tire.
  • the sulfur-containing organosilicon compound is useful as an essential component for the production of a tire comprising a silica-filled rubber composition.
  • Silica-filled tires are excellent in performance, particularly in abrasion resistance, rolling resistance and wet grip properties in automobile applications. Such performance improvement is closely related to improvement in fuel efficiency of tires, and has been actively studied recently.
  • the silica filled rubber composition reduces the rolling resistance of the tire and improves wet grip, but has a high unvulcanized viscosity. Multi-step kneading is required and there is a problem in workability. Therefore, in a rubber composition in which an inorganic filler such as silica is simply blended, there is a problem that the dispersion of the filler is insufficient, and the fracture strength and wear resistance are greatly reduced.
  • Patent Document 1 Japanese Patent Publication No. 51-20208.
  • sulfur-containing organosilicon compounds compounds containing an alkoxysilyl group and a polysulfidesilyl group in the molecule, such as bis-triethoxysilylpropyl tetrasulfide and bis-triethoxysilylpropyl disulfide, are known to be effective.
  • Patent Documents 2 to 5 JP-T-2004-525230, JP-A-2004-18511, JP-A-2002-145890, US Pat. No. 6,229,036).
  • Patent Document 11 Patent No. 55744063
  • Patent No. 55744063 has an example using a polysiloxane having a polysulfide group and a long-chain alkyl group, but the tire rubber has a large sulfide group equivalent and realizes a desired low fuel consumption. No composition has been obtained.
  • the present invention has been made in view of the above circumstances, and provides an organopolysiloxane capable of realizing desired low fuel consumption at the time of tire manufacture and capable of greatly reducing the hysteresis loss of a cured rubber composition.
  • Another object of the present invention is to provide a rubber compounding agent containing the organopolysiloxane, a rubber composition obtained by compounding the rubber compounding agent, and a tire formed using the rubber composition.
  • a monovalent hydrocarbon group having 5 to 10 carbon atoms such as a sulfide group-containing organic group, a long-chain alkyl group, a hydrolyzable group and / or the like. It has been found that a rubber composition using a rubber compounding agent mainly composed of an organopolysiloxane containing a hydroxyl group and having a sulfide equivalent weight of 1,000 g / mol or less satisfies a desired low fuel consumption tire characteristic.
  • the present invention has been made.
  • the present invention provides the following organopolysiloxane, rubber compounding agent, rubber composition and tire.
  • An organopolysiloxane comprising an organic group having a sulfide group represented by the following average composition formula (1) and having a sulfide equivalent of 1,000 g / mol or less.
  • A is a sulfide group-containing divalent organic group
  • B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
  • C is a hydrolyzable group and / or hydroxyl group
  • R 1 is a carbon number 1 to 4 monovalent hydrocarbon groups
  • a, b, c, d are 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 2, and 0 ⁇ 2a + b + c + d ⁇ 4)
  • the sulfide group-containing divalent organic group of A is represented by the following formula (2): * -(CH 2 ) n -S x- (CH 2 ) n- * (2) (In the formula, n is an integer of 1 to 10, and x is a statistical average value of 1 to 6.
  • the C hydrolyzable group and / or hydroxyl group is represented by the following formula (3): * -OR 2 (3) (Wherein, R 2 represents an alkyl group, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkenyl group or a hydrogen atom having 2 to 10 carbon atoms having 1 to 20 carbon atoms.
  • the organopolysiloxane according to [1] which is represented by: [3] The organopolysiloxane according to [1] or [2], wherein, in the average composition formula (1), B is a monovalent hydrocarbon group having 8 to 10 carbon atoms. [4] The organopolysiloxane according to any one of [1] to [3], wherein the sulfide equivalent is 500 to 800 g / mol. [5] The following general formula (4) (In the formula, n is an integer of 1 to 10, and x is a statistical average value of 1 to 6.
  • R 3 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, or the number of carbon atoms.
  • R 4 is an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms
  • y is an integer of 1 to 3 Represents.
  • An organopolysiloxane comprising a cohydrolyzed condensate of 0 to 10 mol
  • the rubber compounding agent according to [6] which is a ratio of 95.
  • a rubber composition comprising the rubber compounding agent according to [6] or [7].
  • the organopolysiloxane of the present invention has a sulfide group-containing organic group, a monovalent hydrocarbon group having 5 to 10 carbon atoms such as a long-chain alkyl group, a hydrolyzable group and / or a hydroxyl group, and a sulfide equivalent. Is relatively small and has a high content of sulfide groups, so that a tire formed using a rubber composition using a rubber compounding agent based on the organopolysiloxane satisfies the desired low fuel consumption tire characteristics. can do.
  • Organopolysiloxanes each containing a monovalent hydrocarbon group having 5 to 10 carbon atoms such as an organic group having a sulfide group, a long-chain alkyl group, a hydrolyzable group and / or a hydroxyl group according to the present invention have the following average composition formula ( 1) and the sulfide equivalent is 1,000 g / mol or less.
  • A is a sulfide group-containing divalent organic group
  • B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
  • C is a hydrolyzable group and / or hydroxyl group
  • R 1 is a carbon number 1 to 4 monovalent hydrocarbon groups
  • a, b, c, d are 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 2, and 0 ⁇ 2a + b + c + d ⁇ 4)
  • A is a sulfide group-containing divalent organic group, and more specifically, one represented by the following formula (2) is preferable.
  • * -(CH 2 ) n -S x- (CH 2 ) n- * (2) (In the formula, n is an integer of 1 to 10, preferably 2 to 4, and x is a statistical average value of 1 to 6, preferably 2 to 4. * ⁇ , ⁇ * represents a bond. )
  • sulfide group-containing divalent organic group —CH 2 —S 2 —CH 2 —, -C 2 H 4 -S 2 -C 2 H 4 -, -C 3 H 6 -S 2 -C 3 H 6- , -C 4 H 8 -S 2 -C 4 H 8 -, —CH 2 —S 4 —CH 2 —, -C 2 H 4 -S 4 -C 2 H 4 -, -C 3 H 6 -S 4 -C 3 H 6- , -C 4 H 8 -S 4 -C 4 H 8 - Etc.
  • B is a monovalent hydrocarbon group having 5 to 10 carbon atoms, preferably 8 to 10 carbon atoms, and examples of the monovalent hydrocarbon group include linear, branched or cyclic pentyl groups having 5 to 10 carbon atoms. Groups, hexyl groups, octyl groups, decyl groups and other alkyl groups, C6-C10 phenyl groups, tolyl groups, naphthyl groups and other aryl groups. Of these, an octyl group and a decyl group are preferred.
  • C is a hydrolyzable group and / or a hydroxyl group, and more specifically, one represented by the following formula (3) is preferable.
  • * -OR 2 (3) (Wherein R 2 is an alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 3, carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or 2 carbon atoms.
  • examples of the alkyl group represented by R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, an octadecyl group, and the like. , A tolyl group, a naphthyl group, and the like.
  • examples of the aralkyl group include a benzyl group.
  • examples of the alkenyl group include a vinyl group, a propenyl group, and a pentenyl group.
  • R 2 is particularly preferably an ethyl group.
  • R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, and examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, and a propyl group. Of these, a methyl group is preferred.
  • A, b, c, d are 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 2, and 0 ⁇ 2a + b + c + d ⁇ 4, and the range of sulfide equivalents to be described later
  • a, b, and d mean the average number of moles of each organic group when the total number of moles of silicon atoms is 1, and the average number of moles of each organic group contained in one molecule. It shows that. Since A represents a divalent organic group, it is represented as 2a. Further, c represents the average number of mol% of hydrolyzable groups contained on the silicon atom with respect to 1 mol of the silicon atom.
  • the organopolysiloxane of the present invention has a sulfide equivalent of 1,000 g / mol or less, preferably a sulfide equivalent of 500 to 900 g / mol, more preferably a sulfide equivalent of 500 to 800 g / mol.
  • the sulfide equivalent will be described.
  • the sulfide equivalent means the mass of the organopolysiloxane containing 1 mol of sulfide groups, and is derived from the following formula.
  • Sulfide equivalent 32.1 ⁇ e ⁇ 100 / f (g / mol) (In the formula, e is the average sulfur chain length of the sulfide group, and f is the sulfur content (% by mass) in the organopolysiloxane.) If the sulfide equivalent exceeds 1,000 g / mol, there may be insufficient dispersibility in rubber when used as a filler treatment agent, or the abrasion resistance and rolling property of a silica-filled tire may be inferior. The desired effect cannot be obtained.
  • organopolysiloxane of the present invention in order to set the sulfide equivalent within the above range, it is preferable to set a to d in the above formula (1) within the above range. This can be achieved by adjusting the reaction ratio of various organosilicon compounds as raw materials in the range of a to d in the production of organopolysiloxane.
  • the sulfur content in the organopolysiloxane of the present invention is preferably 6 to 30% by mass, and more preferably 7 to 28% by mass. If the sulfur content is too low, the above-mentioned sulfide equivalent becomes large, so that the desired rubber properties may not be obtained. If it is too high, the effect may be saturated and uneconomical.
  • the sulfur content is a value measured by elemental analysis using CARLO ERBA Mod-1106 or the like.
  • the viscosity of the organopolysiloxane of the present invention is preferably 2 mm 2 / s to 10,000 mm 2 / s, more preferably 10 mm 2 / s to 5,000 mm 2 / s. If the viscosity is too large, the processability may deteriorate.
  • the viscosity is based on measurement at 25 ° C. using a capillary type kinematic viscometer.
  • the organopolysiloxane of the present invention is produced by the following general formula (4).
  • R 3 is an alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 3, carbon atoms, an aryl group having 6 to 10 carbon atoms, An aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms, preferably 2 to 4 carbon atoms
  • R 4 is an alkyl group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms, or 6 to 10 carbon atoms.
  • An aryl group, y represents an integer of 1 to 3, particularly 2 or 3.
  • an organic silicon compound represented by the following general formula (5) (Wherein R 3 , R 4 and y are as defined above, and p represents an integer of 5 to 10, preferably 8 to 10.)
  • the following general formula (6) (Wherein R 3 , R 4 and y are the same as above, q represents an integer of 1 to 4, preferably 1 to 3) It is carried out by cohydrolytic condensation with an organosilicon compound represented by
  • examples of the alkyl group represented by R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a decyl group, and an octadecyl group.
  • the alkenyl group includes a vinyl group, a propenyl group, a pentenyl group, and the like, among which an ethyl group is preferable.
  • Examples of the alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, and a decyl group.
  • Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. Of these, a methyl group is preferred.
  • the organosilicon compound represented by the above formula (4) is not particularly limited. Specifically, bis (trimethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (trimethoxysilyl) Propyl) disulfide, bis (triethoxysilylpropyl) disulfide and the like.
  • the organosilicon compound represented by the above formula (5) is not particularly limited, and specifically, pentyltrimethoxysilane, pentylmethyldimethoxysilane, pentyltriethoxysilane, pentylmethyldiethoxysilane, hexyltrimethoxysilane.
  • the organosilicon compound represented by the above formula (6) is not particularly limited. Specifically, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, methylethyldiethoxysilane, propyltrimethoxysilane, Examples include propylmethyldimethoxysilane and propylmethyldiethoxysilane.
  • the use amount of the organosilicon compounds of the above formulas (4), (5), and (6) is selected so that in the formula (1), a to d are the numbers described above.
  • the organosilicon compound of the formula (4) is 20 to 95 mol%, particularly 30 to 95 mol%, especially 40 to 40% of the whole organosilicon compound of the formulas (4), (5) and (6).
  • the organosilicon compound of the formula (5) is preferably 5 to 80 mol%, particularly preferably 5 to 70 mol%, particularly preferably 5 to 60 mol%
  • the organosilicon compound of the formula (6) The compound is preferably 0 to 10 mol%, particularly 0 to 5 mol%.
  • the cohydrolytic condensation can be performed by a known method, and the amount of water to be used can also be a known amount, and is usually 0 for a total of 1 mol of hydrolyzable silyl groups in the organosilicon compound. 0.5 to 0.99 mol, and more preferably 0.5 to 0.9 mol can be used.
  • an organic solvent may be used as necessary.
  • the solvent is not particularly limited, but specifically, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, decane, ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, formamide, dimethylformamide, Examples thereof include amide solvents such as N-methylpyrrolidone, aromatic hydrocarbon solvents such as benzene, toluene and xylene, alcohol solvents such as methanol, ethanol and propanol.
  • the amount used is not particularly limited, but is preferably about twice or less the mass of the organosilicon compound, and preferably about the same as the mass of the organosilicon compound.
  • a catalyst may be used as necessary for the production of the organopolysiloxane of the present invention.
  • the catalyst is not particularly limited, and specifically, acidic catalysts such as hydrochloric acid and acetic acid, Lewis acid catalysts such as tetrabutyl orthotitanate and ammonium fluoride, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium acetate, acetic acid Examples thereof include alkali metal salts such as potassium, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, calcium carbonate, sodium methoxide and sodium ethoxide, and amine compounds such as triethylamine, tributylamine, pyridine and 4-dimethylaminopyridine.
  • the amount of the catalyst in the case where a silane hydrolysis reaction catalyst and a silanol condensation reaction catalyst are used in combination is a total of 1 hydrolyzable silyl groups in the organosilicon compound.
  • the amount is preferably 0.001 to 0.05 (unit: molar equivalent) with respect to mole.
  • the cohydrolytic condensation can usually be carried out at 20 to 100 ° C., particularly 60 to 85 ° C. for 30 minutes to 20 hours, particularly 1 minute to 10 hours.
  • the rubber compounding agent of the present invention contains the organopolysiloxane (A) of the present invention. Moreover, it is also possible to use what mixed the organopolysiloxane (A) of this invention with the at least 1 sort (s) of powder (B) as a rubber compounding agent.
  • the powder (B) include carbon black, talc, calcium carbonate, stearic acid, silica, aluminum hydroxide, alumina, and magnesium hydroxide. From the viewpoint of reinforcing properties, silica and aluminum hydroxide are preferable, and silica is particularly preferable.
  • the blending amount of the powder (B) is preferably 70/30 to 5/95, more preferably 60/40 to 10 in terms of the mass ratio of the component (A) to the component (B) ((A) / (B)).
  • the ratio is / 90. If the amount of the powder (B) is too small, the rubber compounding agent becomes liquid, and it may be difficult to prepare the rubber kneader. If the amount of the powder (B) is too large, the total amount may increase with respect to the effective amount of the rubber compounding agent, which may increase the transportation cost.
  • the rubber compounding agent of the present invention is mixed with fatty acid, fatty acid salt, polyethylene, polypropylene, polyoxyalkylene, polyester, polyurethane, polystyrene, polybutadiene, polyisoprene, natural rubber, styrene-butadiene copolymer and other organic polymers and rubber. It is generally blended for tires such as vulcanizing agents, crosslinking agents, vulcanization accelerators, crosslinking accelerators, various oils, anti-aging agents, fillers, plasticizers, and other general rubbers. Various additives may be blended, and the form may be liquid or solid, further diluted with an organic solvent, or emulsified.
  • the compounding agent for rubber of the present invention is suitably used for a rubber composition containing a filler, particularly silica.
  • the rubber compounding agent is added in an amount of 0.2 to 30 parts by weight, particularly 1 to 20 parts by weight, based on 100 parts by weight of the filler compounded in the rubber composition. Is desirable. If the amount of organopolysiloxane added is too small, the desired rubber properties may not be obtained. On the contrary, if the amount is too large, the effect is saturated with respect to the amount added, which is uneconomical.
  • any rubber conventionally compounded in various rubber compositions for example, natural rubber (NR) ), Isoprene rubber (IR), various styrene-butadiene copolymer rubbers (SBR), various polybutadiene rubbers (BR), acrylonitrile-butadiene copolymer rubbers (NBR), butyl rubber (IIR) and the like, and ethylene- Propylene copolymer rubber (EPR, EPDM) or the like can be used alone or as an arbitrary blend.
  • natural rubber NR
  • IR Isoprene rubber
  • SBR various styrene-butadiene copolymer rubbers
  • BR various polybutadiene rubbers
  • BR acrylonitrile-butadiene copolymer rubbers
  • IIR acrylonitrile-butadiene copolymer rubbers
  • EPR ethylene- Propylene copolymer rubber
  • Examples of the filler to be blended include silica, talc, clay, aluminum hydroxide, magnesium hydroxide, calcium carbonate, and titanium oxide.
  • the compounding quantity of a filler can be made into the conventional general compounding quantity, unless it contradicts the objective of this invention.
  • the rubber composition using the rubber compounding agent of the present invention includes carbon black, a vulcanizing agent, a crosslinking agent, a vulcanization accelerator, a crosslinking accelerator, various oils, an anti-aging agent, a plasticizer.
  • Various additives generally blended for tires such as an agent and other general rubbers can be blended. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.
  • the organopolysiloxane of the present invention can be used in place of a known silane coupling agent, but the addition of other silane coupling agents is optional and has been conventionally performed. You may add the arbitrary silane coupling agents used together with a silica filler.
  • Typical examples thereof include vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -aminoethyl- ⁇ -aminopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxy Propyltriethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, bis-triethoxysilylpropyl tetrasulfide,
  • the rubber composition obtained by compounding the rubber compounding agent of the present invention can be kneaded by a general method to obtain a composition, which can be used after vulcanization or crosslinking.
  • the tire of the present invention is characterized by using the above rubber composition, and the above rubber composition is preferably used for a tread.
  • the tire according to the present invention can achieve desired low fuel consumption because the rolling resistance is greatly reduced and the wear resistance is also greatly improved.
  • the tire of the present invention has a conventionally known structure and is not particularly limited, and can be produced by a normal method.
  • an inert gas such as nitrogen, argon, helium or the like can be used as the gas filled in the tire, in addition to normal or air with adjusted oxygen partial pressure.
  • Example 1 Into a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-846) In addition, 165.9 g (0.6 mol) of octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) and 162.0 g of ethanol were charged, and then 16.2 g of 0.5N hydrochloric acid water (water 0 .9 mol) was added dropwise.
  • a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by
  • the obtained silicone oligomer had a sulfur content of 14.7% by mass, a sulfide equivalent of 870 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “oligomer 1”. (—C 3 H 6 —S 4 —C 3 H 6 —) 0.25 (—C 8 H 17 ) 0.50 (—OC 2 H 5 ) 1.50 SiO 0.75
  • Example 2 Into a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-846) In addition, 138.3 g (0.5 mol) of octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) and 162.0 g of ethanol were placed, and then 14.9 g of 0.5N hydrochloric acid water (water 0) was added at room temperature.
  • a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Et
  • Example 3 Into a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-846) In addition, 110.6 g (0.4 mol) of octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) and 162.0 g of ethanol were charged, and then 13.5 g of 0.5N hydrochloric acid water (water 0 .75 mol) was added dropwise.
  • a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-
  • the obtained silicone oligomer had a sulfur content of 17.8% by mass, a sulfide equivalent of 723 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “oligomer 3”. (—C 3 H 6 —S 4 —C 3 H 6 —) 0.30 (—C 8 H 17 ) 0.40 (—OC 2 H 5 ) 1.50 SiO 0.75
  • Example 4 Into a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-846) In addition, 83.0 g (0.3 mol) of octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) and 162.0 g of ethanol were charged, and then 12.2 g of 0.5N hydrochloric acid water (water 0 .68 mol) was added dropwise.
  • a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer 161.7 g (0.3 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by
  • the obtained silicone oligomer had a sulfur content of 19.8% by mass, a sulfide equivalent of 649 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 4”. (-C 3 H 6 -S 4 -C 3 H 6 -) 0.33 (-C 8 H 17) 0.33 (-OC 2 H 5) 1.50 SiO 0.75
  • the obtained silicone oligomer had a sulfur content of 20.9% by mass, a sulfide equivalent of 615 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 5”. (-C 3 H 6 -S 4 -C 3 H 6 -) 0.36 (-C 8 H 17) 0.28 (-OC 2 H 5) 1.67 SiO 0.67
  • Example 6 In a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 231.8 g (0.43 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-846) In addition, 83.0 g (0.3 mol) of octyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-3083) and 162.0 g of ethanol were charged, and then 13.9 g of 0.5N hydrochloric acid water (water 0 .77 mol) was added dropwise.
  • a 1 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer 231.8 g (0.43 mol) of bis (triethoxysilylpropyl) tetrasulfide (manufactured
  • the obtained silicone oligomer had a sulfur content of 21.4% by mass, a sulfide equivalent of 599 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 6”. (-C 3 H 6 -S 4 -C 3 H 6 -) 0.37 (-C 8 H 17) 0.26 (-OC 2 H 5) 1.67 SiO 0.67
  • the obtained silicone oligomer had a sulfur content of 21.8% by mass, a sulfide equivalent of 589 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 7”. (—C 3 H 6 —S 4 —C 3 H 6 —) 0.38 (—C 8 H 17 ) 0.25 (—OC 2 H 5 ) 1.67 SiO 0.67
  • oligomer 8 (—C 3 H 6 —S 4 —C 3 H 6 —) 0.14 (—C 8 H 17 ) 0.71 (—OC 2 H 5 ) 1.50 SiO 0.75
  • the obtained silicone oligomer had a sulfur content of 9.8% by mass, a sulfide equivalent of 1,312 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 9”. (—C 3 H 6 —S 4 —C 3 H 6 —) 0.17 (—C 8 H 17 ) 0.67 (—OC 2 H 5 ) 1.50 SiO 0.75
  • the obtained silicone oligomer had a sulfur content of 11.8% by mass, a sulfide equivalent of 1,091 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “Oligomer 10”.
  • the obtained silicone oligomer had a sulfur content of 22.2% by mass, a sulfide equivalent of 579 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “oligomer 11”. (-C 3 H 6 -S 4 -C 3 H 6 -) 0.33 (-C 3 H 7) 0.33 (-OC 2 H 5) 1.50 SiO 0.75
  • the obtained silicone oligomer had a sulfur content of 23.6% by mass, a sulfide equivalent of 543 g / mol, and was represented by the following average composition formula.
  • the obtained oligomer is referred to as “oligomer 12”.
  • Examples 8 to 14, Comparative Examples 6 to 11 As shown in Tables 1 and 2, oil-extended emulsion polymerization SBR (JSR Co., Ltd. # 1712) 110 parts, NR (general RSS # 3 grade) 20 parts, carbon black (general N234 grade) 20 parts 50 parts of silica (Nippsil AQ manufactured by Nippon Silica Industry Co., Ltd.), oligomers of Examples 1 to 7 and Comparative Examples 1 to 5 or 6.5 parts of Comparative Compound A shown below, 1 part of stearic acid, anti-aging agent 6C ( A masterbatch was prepared by blending 1 part of Nouchi 6C) manufactured by Ouchi Shinsei Chemical Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Tires In General (AREA)

Abstract

 タイヤ製造時に所望の低燃費性を実現し、ゴム組成物硬化物のヒステリシスロスを大幅に低下させることが可能なオルガノポリシロキサン、該オルガノポリシロキサンを含むゴム用配合剤、該ゴム用配合剤を配合してなるゴム組成物、及び該ゴム組成物を用いて形成されたタイヤを提供する。 下記平均組成式(1)で表されるスルフィド基を有する有機基を含有し、かつスルフィド当量が1,000g/mol以下であることを特徴とするオルガノポリシロキサン。 (A)a(B)b(C)c(R1dSiO(4-2a-b-c-d)/2 (1) (式中、Aはスルフィド基含有二価有機基であり、Bは炭素数5~10の一価炭化水素基であり、Cは加水分解性基及び/又は水酸基であり、R1は炭素数1~4の一価炭化水素基であり、a、b、c、dは、0<2a<1、0<b<1、0<c<3、0≦d<2、且つ0<2a+b+c+d<4である。)

Description

オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ
 本発明は、スルフィド基を有する有機基を含有する新規なオルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤに関する。
 含硫黄有機ケイ素化合物は、シリカ充填ゴム組成物からなるタイヤの製造に必須成分として有用である。シリカ充填タイヤは、自動車用途で向上した性能、特に耐磨耗性、転がり抵抗及びウェットグリップ性に優れる。こういった性能向上はタイヤの低燃費性向上と密接に関連しており、昨今盛んに研究されている。
 低燃費性向上にはゴム組成物のシリカ充填率を上げることが必須であるが、シリカ充填ゴム組成物はタイヤの転がり抵抗を低減し、ウェットグリップ性を向上させるものの、未加硫粘度が高く、多段練り等を要し、作業性に問題がある。そのため、シリカ等の無機質充填剤を単に配合したゴム組成物においては、充填剤の分散が不足し、破壊強度及び耐磨耗性が大幅に低下するといった問題が生じる。そこで、無機質充填剤のゴム中への分散性向上、並びに充填剤とゴムマトリックスの化学結合をさせるため、含硫黄有機ケイ素化合物が必須であった(特許文献1:特公昭51-20208号公報)。
 含硫黄有機ケイ素化合物としては、アルコキシシリル基とポリスルフィドシリル基を分子内に含む化合物、例えば、ビス-トリエトキシシリルプロピルテトラスルフィドやビス-トリエトキシシリルプロピルジスルフィド等が有効であることが知られている(特許文献2~5:特表2004-525230号公報、特開2004-18511号公報、特開2002-145890号公報、米国特許第6229036号明細書)。
 上記ポリスルフィド基を有する有機ケイ素化合物の他に、シリカの分散性に有利なチオエステル型の封鎖メルカプト基含有有機ケイ素化合物や、水素結合によるシリカとの親和性に有利な加水分解性シリル基部分にアミノアルコール化合物をエステル交換したタイプの含硫黄有機ケイ素化合物の応用も知られている(特許文献6~10:特開2005-8639号公報、特開2008-150546号公報、特開2010-132604号公報、特許第4571125号公報、米国特許第6414061号明細書)。
 しかしながら、上記のような含硫黄有機ケイ素化合物を使用しても所望の低燃費性を実現するタイヤ用ゴム組成物を得るには至っておらず、他にもスルフィド型の化合物と比較して高コストである他、製造法が複雑であることから生産性に問題があるなど、種々課題が残されるものであった。
 また、特許文献11(特許第5574063号公報)では、ポリスルフィド基と長鎖アルキル基を有するポリシロキサンを用いた例があるが、スルフィド基当量が大きく、所望の低燃費性を実現するタイヤ用ゴム組成物を得るには至っていない。
特公昭51-20208号公報 特表2004-525230号公報 特開2004-18511号公報 特開2002-145890号公報 米国特許第6229036号明細書 特開2005-8639号公報 特開2008-150546号公報 特開2010-132604号公報 特許第4571125号公報 米国特許第6414061号明細書 特許第5574063号公報
 本発明は、上記事情に鑑みなされたもので、タイヤ製造時に所望の低燃費性を実現し、ゴム組成物硬化物のヒステリシスロスを大幅に低下させることが可能なオルガノポリシロキサンを提供することを目的とする。また、該オルガノポリシロキサンを含むゴム用配合剤、該ゴム用配合剤を配合してなるゴム組成物、及び該ゴム組成物を用いて形成されたタイヤを提供することを他の目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、スルフィド基含有有機基、長鎖アルキル基等の炭素数5~10の一価炭化水素基、加水分解性基及び/又は水酸基をそれぞれ含有し、かつスルフィド当量が1,000g/mol以下であるオルガノポリシロキサンを主成分とするゴム用配合剤を使用したゴム組成物が、所望の低燃費タイヤ特性を満足させることを見出し、本発明をなすに至った。
 従って、本発明は、下記のオルガノポリシロキサン、及びゴム用配合剤、ゴム組成物並びにタイヤを提供する。
〔1〕
 下記平均組成式(1)で表されるスルフィド基を有する有機基を含有し、かつスルフィド当量が1,000g/mol以下であることを特徴とするオルガノポリシロキサン。
  (A)a(B)b(C)c(R1dSiO(4-2a-b-c-d)/2     (1)
(式中、Aはスルフィド基含有二価有機基であり、Bは炭素数5~10の一価炭化水素基であり、Cは加水分解性基及び/又は水酸基であり、R1は炭素数1~4の一価炭化水素基であり、a、b、c、dは、0<2a<1、0<b<1、0<c<3、0≦d<2、且つ0<2a+b+c+d<4である。)
〔2〕
 前記Aのスルフィド基含有二価有機基が、下記式(2)
  *-(CH2n-Sx-(CH2n*     (2)
(式中、nは1~10の整数であり、xは統計的平均値で1~6を表す。*-、-*は結合手を示す。)
で表され、前記Cの加水分解性基及び/又は水酸基が、下記式(3)
  *-OR2     (3)
(式中、R2は炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルケニル基又は水素原子を表す。*-は結合手を示す。)
で表されることを特徴とする〔1〕に記載のオルガノポリシロキサン。
〔3〕
 上記平均組成式(1)において、Bが炭素数8~10の一価炭化水素基であることを特徴とする〔1〕又は〔2〕に記載のオルガノポリシロキサン。
〔4〕
 スルフィド当量が500~800g/molであることを特徴とする〔1〕~〔3〕のいずれかに記載のオルガノポリシロキサン。
〔5〕
 下記一般式(4)
Figure JPOXMLDOC01-appb-C000004
(式中、nは1~10の整数であり、xは統計的平均値で1~6を表す。R3は炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、又は炭素数2~10のアルケニル基であり、R4は炭素数1~10のアルキル基、又は炭素数6~10のアリール基であり、yは1~3の整数を表す。)
で表される有機ケイ素化合物20~95モル%と、下記一般式(5)
Figure JPOXMLDOC01-appb-C000005
(式中、R3、R4、yは上記と同様であり、pは5~10の整数を表す。)
で表される有機ケイ素化合物5~80モル%と、下記一般式(6)
Figure JPOXMLDOC01-appb-C000006
(式中、R3、R4、yは上記と同様であり、qは1~4の整数を表す。)
で表される有機ケイ素化合物0~10モル%との共加水分解縮合物からなるオルガノポリシロキサン。
〔6〕
 〔1〕~〔5〕のいずれかに記載のオルガノポリシロキサンを含んでなるゴム用配合剤。
〔7〕
 更に、少なくとも1種の粉体を含有してなり、前記オルガノポリシロキサン(A)と少なくとも1種の粉体(B)の質量比が、(A)/(B)=70/30~5/95の割合である〔6〕に記載のゴム用配合剤。
〔8〕
 〔6〕又は〔7〕に記載のゴム用配合剤を配合してなるゴム組成物。
〔9〕
 〔8〕に記載のゴム組成物を用いて形成されたタイヤ。
 本発明のオルガノポリシロキサンは、スルフィド基含有有機基と長鎖アルキル基等の炭素数5~10の一価炭化水素基と加水分解性基及び/又は水酸基とを有しており、かつスルフィド当量が比較的小さく、スルフィド基の含有量が多いため、該オルガノポリシロキサンを主成分とするゴム用配合剤を使用したゴム組成物を用いて形成されたタイヤは、所望の低燃費タイヤ特性を満足することができる。
 本発明のスルフィド基を有する有機基、長鎖アルキル基等の炭素数5~10の一価炭化水素基、加水分解性基及び/又は水酸基をそれぞれ含有するオルガノポリシロキサンは、下記平均組成式(1)で表され、かつスルフィド当量が1,000g/mol以下である。
  (A)a(B)b(C)c(R1dSiO(4-2a-b-c-d)/2     (1)
(式中、Aはスルフィド基含有二価有機基であり、Bは炭素数5~10の一価炭化水素基であり、Cは加水分解性基及び/又は水酸基であり、R1は炭素数1~4の一価炭化水素基であり、a、b、c、dは、0<2a<1、0<b<1、0<c<3、0≦d<2、且つ0<2a+b+c+d<4である。)
 上記式(1)中、Aはスルフィド基含有二価有機基であり、より具体的には、下記式(2)で表されるものが好ましい。
  *-(CH2n-Sx-(CH2n*     (2)
(式中、nは1~10、好ましくは2~4の整数であり、xは統計的平均値で1~6、好ましくは2~4を表す。*-、-*は結合手を示す。)
 前記スルフィド基含有二価有機基としては、
-CH2-S2-CH2-、
-C24-S2-C24-、
-C36-S2-C36-、
-C48-S2-C48-、
-CH2-S4-CH2-、
-C24-S4-C24-、
-C36-S4-C36-、
-C48-S4-C48
等が挙げられる。
 また、Bは炭素数5~10、好ましくは炭素数8~10の一価炭化水素基であり、一価炭化水素基としては、炭素数5~10の直鎖状、分岐状又は環状のペンチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、炭素数6~10のフェニル基、トリル基、ナフチル基等のアリール基などが挙げられ、直鎖状、分岐状又は環状のアルキル基が好ましく、中でもオクチル基、デシル基が好ましい。
 Cは加水分解性基及び/又は水酸基であり、より具体的には、下記式(3)で表されるものが好ましい。
  *-OR2     (3)
(式中、R2は炭素数1~20、好ましくは1~5、より好ましくは1~3のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10、好ましくは2~4のアルケニル基、又は水素原子を表す。*-は結合手を示す。この場合、-OR2中、R2が水素原子である-OH基の割合は、0~30モル%、特に0~10モル%であることが好ましい。)
 上記式(3)中、R2のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基などが挙げられ、アリール基としては、フェニル基、トリル基、ナフチル基などが挙げられ、アラルキル基としては、ベンジル基などが挙げられ、アルケニル基としては、ビニル基、プロペニル基、ペンテニル基などが挙げられる。R2としては、中でもエチル基が好ましい。
 上記式(1)中、R1は炭素数1~4の一価炭化水素基であり、一価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基が挙げられる。中でもメチル基が好ましい。
 また、a、b、c、dは、0<2a<1、0<b<1、0<c<3、0≦d<2、且つ0<2a+b+c+d<4であり、後述するスルフィド当量の範囲内とするためには、好ましくは0.2≦2a≦0.95、0.05≦b≦0.8、1≦c≦2、0≦d≦0.1、且つ1.3≦2a+b+c+d<4であり、より好ましくは0.4≦2a≦0.95、0.05≦b≦0.6、1≦c≦1.7、0≦d≦0.05、且つ1.5≦2a+b+c+d<4である。
 ここで、a、b、dは、ケイ素原子の合計モル数を1とした場合の各有機基の平均モル数を意味しており、各有機基が一分子中に平均何モル%含まれているかを示している。Aは二価の有機基を示すため2aという表記になる。また、cはケイ素原子1モルに対し、ケイ素原子上に加水分解性基が平均何モル%含まれているかを示している。
 本発明のオルガノポリシロキサンは、スルフィド当量が1,000g/mol以下、好ましくはスルフィド当量が500~900g/mol、より好ましくはスルフィド当量が500~800g/molのものである。
 ここで、スルフィド当量について説明する。スルフィド当量とは、スルフィド基1molを含むオルガノポリシロキサンの質量のことを示し、下記式により導き出される。
  スルフィド当量=32.1×e×100/f (g/mol)
(式中、eはスルフィド基の平均硫黄鎖長であり、fはオルガノポリシロキサン中の硫黄含有量(質量%)を示す。)
 スルフィド当量が1,000g/molを超えると、フィラーの処理剤として用いた際のゴム中への分散性が不足したり、シリカ充填タイヤの耐磨耗性や転がり性に劣る場合があるなど、所望の効果が得られない。なお、本発明のオルガノポリシロキサンにおいて、スルフィド当量を上記範囲とするためには、上述した式(1)中のa~dを上記範囲とすることが好ましく、この範囲とするためには、例えば、オルガノポリシロキサンを製造する際に、原料となる各種の有機ケイ素化合物の反応割合を上記a~dの範囲内となるように調整することで達成できる。
 また、本発明のオルガノポリシロキサン中の硫黄含有量は、6~30質量%であることが好ましく、7~28質量%であることがより好ましい。硫黄含有量が少なすぎると上記スルフィド当量が大きくなるため所望のゴム物性が得られない場合があり、多すぎると効果が飽和し、非経済的となる場合がある。なお、硫黄含有量は、CARLO ERBA社製 Mod-1106等を用いた元素分析により測定した値である。
 更に、本発明のオルガノポリシロキサンの粘度は、好ましくは2mm2/s~10,000mm2/sであり、より好ましくは10mm2/s~5,000mm2/sである。粘度が大きすぎると、加工性が悪化する場合がある。なお、粘度は毛細管式動粘度計による25℃における測定に基づく。
 本発明のオルガノポリシロキサンの製造は、下記一般式(4)
Figure JPOXMLDOC01-appb-C000007
(式中、n、xは上記と同様であり、R3は炭素数1~20、好ましくは1~5、より好ましくは1~3のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、又は炭素数2~10、好ましくは2~4のアルケニル基であり、R4は炭素数1~10、好ましくは1~3のアルキル基、又は炭素数6~10のアリール基であり、yは1~3の整数、特に2又は3を表す。)
で表される有機ケイ素化合物と、下記一般式(5)
Figure JPOXMLDOC01-appb-C000008
(式中、R3、R4、yは上記と同様であり、pは5~10、好ましくは8~10の整数を表す。)
で表される有機ケイ素化合物と、必要により、下記一般式(6)
Figure JPOXMLDOC01-appb-C000009
(式中、R3、R4、yは上記と同様であり、qは1~4、好ましくは1~3の整数を表す。)
で表される有機ケイ素化合物とを共加水分解縮合することにより行われる。
 上記式(4)~(6)中、R3のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基などが挙げられ、アリール基としては、フェニル基、トリル基、ナフチル基などが挙げられ、アラルキル基としては、ベンジル基などが挙げられ、アルケニル基としては、ビニル基、プロペニル基、ペンテニル基などが挙げられ、中でもエチル基が好ましい。
 R4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基などが挙げられ、アリール基としては、フェニル基、トリル基、ナフチル基などが挙げられ、中でもメチル基が好ましい。
 上記式(4)で表される有機ケイ素化合物としては、特に限定されないが、具体的には、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)ジスルフィドなどが挙げられる。
 上記式(5)で表される有機ケイ素化合物としては、特に限定されないが、具体的には、ペンチルトリメトキシシラン、ペンチルメチルジメトキシシラン、ペンチルトリエトキシシラン、ペンチルメチルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジエトキシシラン、オクチルトリメトキシシラン、オクチルメチルジメトキシシラン、オクチルトリエトキシシラン、オクチルメチルジエトキシシラン、デシルトリメトキシシラン、デシルメチルジメトキシシラン、デシルトリエトキシシラン、デシルメチルジエトキシシランなどが挙げられる。
 上記式(6)で表される有機ケイ素化合物としては、特に限定されないが、具体的には、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、メチルエチルジエトキシシラン、プロピルトリメトキシシラン、プロピルメチルジメトキシシラン、プロピルメチルジエトキシシランなどが挙げられる。
 ここで、上記式(4)、(5)、(6)の有機ケイ素化合物の使用量は、式(1)において、a~dが上述した数となるように選択される。具体的には、式(4)、(5)、(6)の有機ケイ素化合物全体に対し、式(4)の有機ケイ素化合物は20~95モル%、特に30~95モル%、とりわけ40~95モル%であることが好ましく、式(5)の有機ケイ素化合物は5~80モル%、特に5~70モル%、とりわけ5~60モル%であることが好ましく、式(6)の有機ケイ素化合物は0~10モル%、特に0~5モル%であることが好ましい。
 共加水分解縮合は、公知の方法によって行うことができ、使用する水の量も公知の量とすることができ、通常、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し、0.5~0.99モルであり、より好ましくは0.5~0.9モル使用することができる。
 本発明のオルガノポリシロキサンの製造には、必要に応じて有機溶媒を用いてもよい。溶媒としては特に限定されないが、具体的には、ペンタン、ヘキサン、ヘプタン、デカンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ホルムアミド、ジメチルホルムアミド、N-メチルピロリドンなどのアミド系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、メタノール、エタノール、プロパノールなどのアルコール系溶媒などが挙げられる。中でも、加水分解反応性に優れるという観点から、エタノール、i-プロパノールが好ましい。上記溶媒を使用する場合、その使用量は特に限定されないが、上記有機ケイ素化合物の質量の2倍量以下程度が好適であり、好ましくは有機ケイ素化合物の質量と同量以下程度である。
 また、本発明のオルガノポリシロキサンの製造には、必要に応じて触媒を用いてもよい。触媒としては特に限定されないが、具体的には、塩酸、酢酸などの酸性触媒、テトラブチルオルトチタネート、アンモニウムフルオリドなどのルイス酸触媒、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、酢酸ナトリウム、酢酸カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸カルシウム、ナトリウムメトキシド、ナトリウムエトキシドなどのアルカリ金属塩、トリエチルアミン、トリブチルアミン、ピリジン、4-ジメチルアミノピリジンなどのアミン化合物が挙げられる。シランの加水分解反応(及び/又は一部縮合)の触媒として、例えば塩酸を使用し、シラノールの縮合(オリゴマー化)の触媒として、例えば水酸化カリウムを使用することができる。触媒の量(シランの加水分解反応の触媒とシラノールの縮合反応の触媒を併用する場合はそれぞれの量)は、反応性に優れるという観点から、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し0.001~0.05(単位:モル当量)であるのが好ましい。
 なお、共加水分解縮合は、通常、20~100℃、特に60~85℃にて30分~20時間、特に1分~10時間行うことができる。
 本発明のゴム用配合剤は、本発明のオルガノポリシロキサン(A)を含むものである。また、本発明のオルガノポリシロキサン(A)を予め少なくとも1種の粉体(B)と混合したものをゴム用配合剤として使用することも可能である。粉体(B)としては、カーボンブラック、タルク、炭酸カルシウム、ステアリン酸、シリカ、水酸化アルミニウム、アルミナ、水酸化マグネシウム等が挙げられる。補強性の観点からシリカ及び水酸化アルミニウムが好ましく、シリカが特に好ましい。
 粉体(B)の配合量は、(A)成分と(B)成分の質量比((A)/(B))で好ましくは70/30~5/95、更に好ましくは60/40~10/90の割合である。粉体(B)の量が少なすぎるとゴム用配合剤が液状となり、ゴム混練機への仕込みが困難となる場合がある。粉体(B)の量が多すぎるとゴム用配合剤の有効量に対し、全体量が多くなってしまい輸送費用が高くなる場合がある。
 本発明のゴム用配合剤は、脂肪酸、脂肪酸塩、ポリエチレン、ポリプロピレン、ポリオキシアルキレン、ポリエステル、ポリウレタン、ポリスチレン、ポリブタジエン、ポリイソプレン、天然ゴム、スチレン-ブタジエン共重合体等の有機ポリマーやゴムと混合されたものでもよく、加硫剤、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、充填剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合してもよく、その形態として液体状でも固体状でもよく、更に有機溶剤に希釈したものでもよく、またエマルジョン化したものでもよい。
 本発明のゴム用配合剤は、フィラー、特にシリカ配合のゴム組成物に対して好適に用いられる。
 この場合、上記ゴム用配合剤の添加量はゴム組成物に配合されるフィラー100質量部に対して本発明のオルガノポリシロキサンを0.2~30質量部、特に1~20質量部添加するのが望ましい。オルガノポリシロキサンの添加量が少なすぎると所望のゴム物性が得られない場合がある。逆に多すぎると添加量に対して効果が飽和し、非経済的である。
 ここで、本発明のゴム用配合剤を用いるゴム組成物に主成分として配合されるゴムとしては、従来から各種ゴム組成物に一般的に配合されている任意のゴム、例えば、天然ゴム(NR)、イソプレンゴム(IR)、各種スチレン-ブタジエン共重合体ゴム(SBR)、各種ポリブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、ブチルゴム(IIR)などのジエン系ゴムやエチレン-プロピレン共重合体ゴム(EPR,EPDM)などを単独又は任意のブレンドとして使用することができる。また、配合されるフィラーとしては、シリカ、タルク、クレー、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、酸化チタン等が挙げられる。なお、フィラーの配合量は本発明の目的に反しない限り従来の一般的な配合量とすることができる。
 本発明のゴム用配合剤を用いるゴム組成物には、前述した必須成分に加えて、カーボンブラック、加硫剤、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができる。これら添加剤の配合量も本発明の目的に反しない限り従来の一般的な配合量とすることができる。
 なお、これらのゴム組成物において、本発明のオルガノポリシロキサンは、公知のシランカップリング剤の代わりをなすことも可能であるが、更に他のシランカップリング剤の添加は任意であり、従来からシリカ充填剤と併用される任意のシランカップリング剤を添加してもよい。それらの典型例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、β-アミノエチル-γ-アミノプロピルトリメトキシシラン、β-アミノエチル-γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、ビス-トリエトキシシリルプロピルテトラスルフィド、ビス-トリエトキシシリルプロピルジスルフィド等を挙げることができる。
 本発明のゴム用配合剤を配合してなるゴム組成物は、一般的な方法で混練して組成物とし、加硫又は架橋して使用することができる。
 本発明のタイヤは、上記のゴム組成物を用いることを特徴とし、上記のゴム組成物がトレッドに用いられていることが好ましい。本発明のタイヤは、転がり抵抗が大幅に低減されていることに加え、耐磨耗性も大幅に向上していることから、所望の低燃費性を実現できる。なお、本発明のタイヤは、従来公知の構造で特に限定はなく、通常の方法で製造できる。また、本発明のタイヤが空気入りのタイヤの場合、タイヤ内に充填する気体として通常のあるいは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
 以下、実施例及び比較例を示して本発明を詳しく説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記例において、部は質量部であり、Etはエチル基を示し、元素分析はCARLO ERBA社製 Mod-1106により測定したものである。粘度は毛細管式動粘度計を用いて25℃で測定した値である。
  [実施例1]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)161.7g(0.3mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)165.9g(0.6mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水16.2g(水0.9mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液7.8gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が80mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は14.7質量%であり、スルフィド当量は870g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー1とする。
(-C36-S4-C36-)0.25(-C8170.50(-OC251.50SiO0.75
  [実施例2]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)161.7g(0.3mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)138.3g(0.5mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水14.9g(水0.83mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液7.2gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が220mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は16.1質量%であり、スルフィド当量は796g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー2とする。
(-C36-S4-C36-)0.27(-C8170.45(-OC251.50SiO0.75
  [実施例3]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)161.7g(0.3mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)110.6g(0.4mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水13.5g(水0.75mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液6.5gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が800mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は17.8質量%であり、スルフィド当量は723g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー3とする。
(-C36-S4-C36-)0.30(-C8170.40(-OC251.50SiO0.75
  [実施例4]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)161.7g(0.3mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)83.0g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水12.2g(水0.68mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液5.9gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が2,000mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は19.8質量%であり、スルフィド当量は649g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー4とする。
(-C36-S4-C36-)0.33(-C8170.33(-OC251.50SiO0.75
  [実施例5]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)210.2g(0.39mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)83.0g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水13.0g(水0.72mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液6.3gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が70mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は20.9質量%であり、スルフィド当量は615g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー5とする。
(-C36-S4-C36-)0.36(-C8170.28(-OC251.67SiO0.67
  [実施例6]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)231.8g(0.43mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)83.0g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水13.9g(水0.77mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液6.7gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が220mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は21.4質量%であり、スルフィド当量は599g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー6とする。
(-C36-S4-C36-)0.37(-C8170.26(-OC251.67SiO0.67
  [実施例7]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)247.9g(0.46mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)83.0g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水14.6g(水0.81mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液7.0gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が2,600mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は21.8質量%であり、スルフィド当量は589g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー7とする。
(-C36-S4-C36-)0.38(-C8170.25(-OC251.67SiO0.67
  [比較例1]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)107.8g(0.2mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)276.5g(1.0mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水18.9g(水1.05mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液9.1gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が10mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は8.4質量%であり、スルフィド当量は1,533g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー8とする。
(-C36-S4-C36-)0.14(-C8170.71(-OC251.50SiO0.75
  [比較例2]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)107.8g(0.2mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)221.2g(0.8mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水16.2g(水0.9mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液7.8gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が20mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は9.8質量%であり、スルフィド当量は1,312g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー9とする。
(-C36-S4-C36-)0.17(-C8170.67(-OC251.50SiO0.75
  [比較例3]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)107.8g(0.2mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)165.9g(0.6mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水13.5g(水0.75mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液6.5gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が35mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は11.8質量%であり、スルフィド当量は1,091g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー10とする。
(-C36-S4-C36-)0.20(-C8170.60(-OC251.50SiO0.75
  [比較例4]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)161.7g(0.3mol)、プロピルトリエトキシシラン(信越化学工業(株)製、KBE-3033)61.9g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水12.2g(水0.68mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液5.9gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が350mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は22.2質量%であり、スルフィド当量は579g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー11とする。
(-C36-S4-C36-)0.33(-C370.33(-OC251.50SiO0.75
  [比較例5]
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業(株)製、KBE-846)247.9g(0.46mol)、プロピルトリエトキシシラン(信越化学工業(株)製、KBE-3033)61.9g(0.3mol)、エタノール162.0gを納めた後、室温にて0.5N塩酸水14.6g(水0.81mol)を滴下した。次いで、80℃にて2時間撹拌した。その後、濾過、5質量%KOH/EtOH溶液7.0gを滴下し、80℃で2時間撹拌した。更に、減圧濃縮、濾過することで、粘度が800mm2/sの褐色透明液体を得た。元素分析の結果、得られたシリコーンオリゴマーの硫黄含有量は23.6質量%であり、スルフィド当量は543g/molであり、下記平均組成式で示されるものであった。得られたオリゴマーをオリゴマー12とする。
(-C36-S4-C36-)0.38(-C370.25(-OC251.67SiO0.67
  [実施例8~14、比較例6~11]
 表1,2に示すように、油展エマルジョン重合SBR(JSR(株)製#1712)110部、NR(一般的なRSS#3グレード)20部、カーボンブラック(一般的なN234グレード)20部、シリカ(日本シリカ工業(株)製ニプシルAQ)50部、実施例1~7及び比較例1~5のオリゴマー又は下記に示す比較化合物A6.5部、ステアリン酸1部、老化防止剤6C(大内新興化学工業(株)製ノクラック6C)1部を配合してマスターバッチを調製した。これに亜鉛華3部、加硫促進剤DM(ジベンゾチアジルジスルフィド)0.5部、加硫促進剤NS(N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド)1部、硫黄1.5部を加えて混練し、ゴム組成物を得た。
〔比較化合物A〕
Figure JPOXMLDOC01-appb-C000010
 次に、ゴム組成物の未加硫又は加硫物性を下記の方法で測定した。結果を表1,2に示す。
〔未加硫物性〕
(1)ムーニー粘度
 JIS K 6300に準拠し、余熱1分、測定4分、温度130℃にて測定し、比較例11を100として指数で表した。指数値が小さいほど、ムーニー粘度が低く加工性に優れている。
〔加硫物性〕
(2)動的粘弾性
 粘弾性測定装置(レオメトリックス社製)を使用し、引張の動歪5%、周波数15Hz、60℃の条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を160gとした。tanδの値は比較例11を100として指数で表した。指数値が小さいほど、ヒステリシスロスが小さく低発熱性である。
(3)耐磨耗性
 JIS K 6264-2:2005に準拠し、ランボーン型磨耗試験機を用いて室温、スリップ率25%の条件で試験を行い、比較例11の磨耗量の逆数を100として指数で表した。指数値が大きいほど、磨耗量が少なく耐磨耗性に優れることを示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (9)

  1.  下記平均組成式(1)で表されるスルフィド基を有する有機基を含有し、かつスルフィド当量が1,000g/mol以下であることを特徴とするオルガノポリシロキサン。
      (A)a(B)b(C)c(R1dSiO(4-2a-b-c-d)/2     (1)
    (式中、Aはスルフィド基含有二価有機基であり、Bは炭素数5~10の一価炭化水素基であり、Cは加水分解性基及び/又は水酸基であり、R1は炭素数1~4の一価炭化水素基であり、a、b、c、dは、0<2a<1、0<b<1、0<c<3、0≦d<2、且つ0<2a+b+c+d<4である。)
  2.  前記Aのスルフィド基含有二価有機基が、下記式(2)
      *-(CH2n-Sx-(CH2n*     (2)
    (式中、nは1~10の整数であり、xは統計的平均値で1~6を表す。*-、-*は結合手を示す。)
    で表され、前記Cの加水分解性基及び/又は水酸基が、下記式(3)
      *-OR2     (3)
    (式中、R2は炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルケニル基、又は水素原子を表す。*-は結合手を示す。)
    で表されることを特徴とする請求項1に記載のオルガノポリシロキサン。
  3.  上記平均組成式(1)において、Bが炭素数8~10の一価炭化水素基であることを特徴とする請求項1又は2に記載のオルガノポリシロキサン。
  4.  スルフィド当量が500~800g/molであることを特徴とする請求項1~3のいずれか1項に記載のオルガノポリシロキサン。
  5.  下記一般式(4)
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1~10の整数であり、xは統計的平均値で1~6を表す。R3は炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、又は炭素数2~10のアルケニル基であり、R4は炭素数1~10のアルキル基、又は炭素数6~10のアリール基であり、yは1~3の整数を表す。)
    で表される有機ケイ素化合物20~95モル%と、下記一般式(5)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3、R4、yは上記と同様であり、pは5~10の整数を表す。)
    で表される有機ケイ素化合物5~80モル%と、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3、R4、yは上記と同様であり、qは1~4の整数を表す。)
    で表される有機ケイ素化合物0~10モル%との共加水分解縮合物からなるオルガノポリシロキサン。
  6.  請求項1~5のいずれか1項に記載のオルガノポリシロキサンを含んでなるゴム用配合剤。
  7.  更に、少なくとも1種の粉体を含有してなり、前記オルガノポリシロキサン(A)と少なくとも1種の粉体(B)の質量比が、(A)/(B)=70/30~5/95の割合である請求項6に記載のゴム用配合剤。
  8.  請求項6又は7に記載のゴム用配合剤を配合してなるゴム組成物。
  9.  請求項8に記載のゴム組成物を用いて形成されたタイヤ。
PCT/JP2015/079788 2015-01-26 2015-10-22 オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ WO2016121175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15880068.0A EP3252062B1 (en) 2015-01-26 2015-10-22 Organopolysiloxane, rubber compounding agent, rubber composition, and tire
KR1020177022943A KR102176683B1 (ko) 2015-01-26 2015-10-22 오가노폴리실록세인, 고무용 배합제, 고무 조성물 및 타이어
CN201580074542.6A CN107207542A (zh) 2015-01-26 2015-10-22 有机聚硅氧烷、橡胶用配合剂、橡胶组合物和轮胎
US15/546,242 US20180022876A1 (en) 2015-01-26 2015-10-22 Organopolysiloxane, rubber compounding agent, rubber composition, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015012317A JP6384338B2 (ja) 2015-01-26 2015-01-26 オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ
JP2015-012317 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121175A1 true WO2016121175A1 (ja) 2016-08-04

Family

ID=56542813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079788 WO2016121175A1 (ja) 2015-01-26 2015-10-22 オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ

Country Status (6)

Country Link
US (1) US20180022876A1 (ja)
EP (1) EP3252062B1 (ja)
JP (1) JP6384338B2 (ja)
KR (1) KR102176683B1 (ja)
CN (1) CN107207542A (ja)
WO (1) WO2016121175A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021650B2 (ja) * 2019-02-15 2022-02-17 信越化学工業株式会社 ゴム組成物及び有機ケイ素化合物
JP2021130730A (ja) 2020-02-18 2021-09-09 信越化学工業株式会社 オルガノポリシロキサン、ゴム組成物およびタイヤ
JP7413987B2 (ja) * 2020-12-11 2024-01-16 信越化学工業株式会社 ゴム組成物およびタイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002750A1 (ja) * 2012-06-27 2014-01-03 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
JP2014214091A (ja) * 2013-04-23 2014-11-17 信越化学工業株式会社 有機官能基含有オルガノポリシロキサンの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120208A (en) 1974-08-12 1976-02-18 Tatsuo Ikeno Anshodehatsukosuru tojishitsutairu oyobi sonotairuomochiita mozaikuban
JPS6248743A (ja) * 1985-08-28 1987-03-03 Shin Etsu Chem Co Ltd ゴム組成物
CN101139355A (zh) 1997-08-21 2008-03-12 通用电气公司 用于填充橡胶的封端巯基硅烷偶联剂
DE19844607A1 (de) 1998-09-29 2000-03-30 Degussa Sulfanylsilane
JP4367596B2 (ja) 2000-11-08 2009-11-18 信越化学工業株式会社 有機珪素化合物及びその製造方法
FR2823215B1 (fr) 2001-04-10 2005-04-08 Michelin Soc Tech Pneumatique et bande de roulement de pneumatique comportant a titre d'agent de couplage un tetrasulfure de bis-alkoxysilane
JP4450149B2 (ja) 2002-06-20 2010-04-14 信越化学工業株式会社 有機珪素化合物、その製造方法、及びゴム用配合剤
US6777569B1 (en) 2003-03-03 2004-08-17 General Electric Company Process for the manufacture of blocked mercaptosilanes
DE10327624B3 (de) 2003-06-20 2004-12-30 Degussa Ag Organosiliciumverbindungen, Verfahren zu ihrer Herstellung, sowie ihre Verwendung
JP4985935B2 (ja) 2006-12-20 2012-07-25 信越化学工業株式会社 ゴム用配合剤
JP5503137B2 (ja) 2008-12-04 2014-05-28 株式会社ブリヂストン 有機ケイ素化合物、並びにそれを用いたゴム組成物及びタイヤ
FR2957601B1 (fr) * 2010-03-18 2012-03-16 Michelin Soc Tech Pneumatique et composition de caoutchouc contenant un polymere greffe
JP5687671B2 (ja) * 2012-09-03 2015-03-18 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
CN103804724B (zh) * 2012-11-08 2018-01-12 住友橡胶工业株式会社 橡胶组合物及充气轮胎
EP2960285A4 (en) * 2013-02-25 2016-08-31 Yokohama Rubber Co Ltd TIRE RUBBER COMPOSITION FOR HEAVY LOADS AND PNEUMATIC TIRES
DE112014001758B4 (de) * 2013-03-29 2020-11-12 The Yokohama Rubber Co., Ltd. Verwendung einer Kautschukzusammensetzung zur Herstellung eines Schwerlast-Luftreifens und daraus hergestellter Schwerlast-Luftreifen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002750A1 (ja) * 2012-06-27 2014-01-03 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014028797A (ja) * 2012-06-27 2014-02-13 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製造方法
JP2014214091A (ja) * 2013-04-23 2014-11-17 信越化学工業株式会社 有機官能基含有オルガノポリシロキサンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252062A4 *

Also Published As

Publication number Publication date
KR102176683B1 (ko) 2020-11-09
JP2016138164A (ja) 2016-08-04
EP3252062A1 (en) 2017-12-06
CN107207542A (zh) 2017-09-26
KR20170108980A (ko) 2017-09-27
JP6384338B2 (ja) 2018-09-05
EP3252062A4 (en) 2018-09-19
EP3252062B1 (en) 2022-11-30
US20180022876A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5846332B2 (ja) タイヤトレッド用ゴム組成物及びこれを用いる空気入りタイヤ
JP6128247B2 (ja) 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
JP5915700B2 (ja) タイヤ用ゴム組成物
EP2960287A1 (en) Rubber composition for tire tread, and pneumatic tire using same
JP6349999B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
TW201808971A (zh) 有機矽化合物、以及使用其之橡膠用摻合劑及橡膠組成物
JP2008163125A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
WO2007132909A1 (ja) ビニルエーテル基でブロックされたメルカプトシラン(カップリング剤)並びにそれを用いたゴム組成物及び空気入りタイヤ
JP6384338B2 (ja) オルガノポリシロキサン、ゴム用配合剤、ゴム組成物及びタイヤ
JP2023153343A (ja) オルガノポリシロキサンを含むゴム組成物およびタイヤ
KR101686612B1 (ko) 중하중 타이어용 고무 조성물 및 공기입 타이어
KR102205799B1 (ko) 황 함유 유기 규소 화합물 및 그의 제조 방법, 고무용 배합제, 및 고무 조성물
JP2001192454A (ja) オルガノポリシロキサン、ゴム用配合剤及びそれを用いたゴム組成物並びにタイヤ
JP4336920B2 (ja) ゴム組成物
JP2015205844A (ja) 含硫黄有機ケイ素化合物及びその製造方法、ゴム用配合剤、ゴム組成物並びにタイヤ
JP5725365B2 (ja) ゴム組成物、その架橋物及びそれらの製造方法
JP7413987B2 (ja) ゴム組成物およびタイヤ
TWI688584B (zh) 矽烷改質聚合物、以及使用其之橡膠用摻合劑及橡膠組成物
JP6206152B2 (ja) 含硫黄有機ケイ素化合物及びその製造方法、ゴム用配合剤、並びにゴム組成物
WO2024101081A1 (ja) オルガノポリシロキサンおよびゴム組成物
WO2024101082A1 (ja) ゴム組成物およびオルガノポリシロキサン
JP6972839B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2014108995A (ja) ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880068

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015880068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177022943

Country of ref document: KR

Kind code of ref document: A