WO2016108725A1 - Способ получения плавленолитого калиевого фторфлогопита - Google Patents

Способ получения плавленолитого калиевого фторфлогопита Download PDF

Info

Publication number
WO2016108725A1
WO2016108725A1 PCT/RU2015/000715 RU2015000715W WO2016108725A1 WO 2016108725 A1 WO2016108725 A1 WO 2016108725A1 RU 2015000715 W RU2015000715 W RU 2015000715W WO 2016108725 A1 WO2016108725 A1 WO 2016108725A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
charge
mixture
feedstock
fluorine
Prior art date
Application number
PCT/RU2015/000715
Other languages
English (en)
French (fr)
Inventor
Александр Олегович ГУСЕВ
Дмитрий Александрович СИМАКОВ
Олег Валентинович СЛУЧЕНКОВ
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to AU2015372635A priority Critical patent/AU2015372635A1/en
Priority to US15/540,534 priority patent/US20180002186A1/en
Priority to BR112017013984A priority patent/BR112017013984A2/pt
Priority to CA2972376A priority patent/CA2972376A1/en
Priority to CN201580074313.4A priority patent/CN107207368A/zh
Priority to EP15875778.1A priority patent/EP3241816A4/en
Publication of WO2016108725A1 publication Critical patent/WO2016108725A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/24Oxygen compounds of fluorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D13/00Compounds of sodium or potassium not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Definitions

  • the invention relates to the manufacture of artificial fused mica materials, in particular to stone casting technology and compositions of the initial charge and can be used in the synthesis of new types of stone casting in the field of metallurgical, mining, refractory and construction industries.
  • the fluorophlogopite [KMg3 (AlSi3O10) F2] mineral is a synthetic analogue of the natural mica - phlogopite, in which hydroxyl (OH) anions are replaced by fluorine ions (F) ⁇ , which have the same charge with hydroxyl.
  • Fluorophlogopite material is made using masonry technology of mica crystals and products based on it.
  • the technology for producing fluorophlogopite stone casting is based on temperature synthesis from oxyfluoride melt, including oxides of potassium, magnesium, silicon, aluminum, etc., as well as fluorine ions.
  • Fluoroflogopit has strength, heat-resistant, erosion- and corrosion-resistant properties, due to which it is used in metallurgical, heat engineering, and high-precision equipment.
  • the invention relates to the field of development of mixtures and blends used for the production of artificially fused methods of glass, silicate, ceramic, fluorinated mica materials aimed at lowering the melting temperature of the starting component.
  • the disadvantages of these developments are: the use of expensive potassium silicofluoride and the use of potash (the interaction of which with the components of the mixture leads to the formation of carbon dioxide emissions).
  • the invention relates to a change in the technology of casting and crystallization of stone melt, the economic effect of the invention is considered to increase the amount of castable.
  • the disadvantage of this invention is the narrow focus of the economic effect, since the cost of raw materials remains high, and the process chain and equipment used in production require high energy costs.
  • the invention relates to the field of stone casting from sedimentary rocks and technical raw materials for the manufacture of cast mica-crystalline material.
  • the invention is directed to the production of fluorophlogopite material with a fine crystalline homogeneous structure with increased strength.
  • As the proposed improvement we use the approach of changing the crystallization properties of the melt by adding silicon carbide to the initial mixture in the range of 3–7% May.
  • a disadvantage of these inventions is the possibility of the formation of local concentrations of silicon carbide during mixture preparation. And also a probable partial burning of crystallization centers during melting and casting of the melt. The issue of energy intensity of the process remains open.
  • a method for producing fused potassium fluorophlogopite involves preparing a mixture by mixing mica and fluorine components, melting the resulting mixture, pouring the melt into the mold, holding, extracting the cast from the mold, and cooling.
  • the well-known patent is selected as the closest analogue (prototype).
  • prototype the closest analogue
  • the possibility of combining the initial charge is considered.
  • the disadvantage of this invention is the low corrosion and erosion resistance of the resulting fluorophlogopite, as well as the high cost of the product.
  • the objective of the present invention is to reduce the cost of production by reducing the number of production stages and energy costs, simplifying the hardware design, and reducing the risks of the crystallization stage.
  • the technical result of the invention is an increase in the chemical purity of potassium fluorophlogopite, an increase in the corrosion and erosion resistance of the material, an increase in the accuracy of the product yield in terms of chemical composition.
  • the technical result is achieved by the fact that in the method for producing fused-cast potassium fluorophlogopite, which includes preparing the mixture by mixing mica-containing and fluorine-containing components, melting the resulting mixture, pouring the melt into the mold, holding, extracting the cast from the mold and cooling, is used as mica-containing component vermiculite - May 60-90. %, as a fluorine-containing component - potassium cryolite on May 10–40. %, moreover, the charge is melted during sequential stepwise heating of the charge, and the preparation of the charge is carried out by layering components, the upper layer of the charge consists of a mixture of components, in addition, the melt is filled in a preheated form.
  • the method is complemented by private distinctive features that contribute to the achievement of a technical result.
  • Vermiculite in the form of expanded granules of 0.7-8 mm, and potassium cryolite in the form of scaly plates of 1-3 mm (or in crushed form with a particle size of not more than 1 mm) can be used to prepare the charge.
  • the charge can be heated in stages: the first stage up to 110 ° C, the second stage up to 600 ° C, the third stage 1150-1250 ° C.
  • the melt can be poured into a heated form of at least 800 ° C.
  • the mixture is melted at a temperature of 1250 ° C.
  • Patented method of stone production allows to obtain potassium fluorophlogopite material with the required material purity according to holding the main component of fluorophlogopite (KMg 3 (Si3Al) 0 1 oF 2 ) up to 99.9%.
  • the simplicity of the layout according to the feedstock and the operating temperature range make it possible to control the content of the main component of fluorophlogopite K g 3 (Si 3 Al) Oi 0 F 2 in the finished product in the range from 75 to 99% with an accuracy of 0.1%.
  • a two-component mixture is used as the initial charge for stone production, each component of the mixture is prepared separately from each other, but at the same time it is ubiquitous and economically viable.
  • Table 1 shows the content of chemical elements in the first component.
  • the first component (A) of the vermiculite mixture ((Mg +2 , Fe +2 , Fe +3 ) 3 [(AlSi) 4 O 10 ] - (OH) 2 -4H 2 O) is used in the following ratio of elements, mass. %:
  • Table 2 shows the content of chemical elements in the second component.
  • the second component (B) of the mixture is potassium cryolite (KA1F 4 ), the content of the basic substance (F + A1 + K) is at least 98-99%, the ratio of the elements is as follows, wt.%:
  • the raw material of component A is used in the form of expanded granules of a fractional composition of 0.7-8 mm.
  • the raw material of component B is used in the form of flakes - wafers with a size ranging from 1 to 5 mm or in crushed form with a particle size of not more than 1 mm.
  • the main crystalline phase of casting of this composition is potassium fluorophlogopite, which is a corrosion- and erosion-resistant material to the damaging effects of the vapor-gas phase and molten salts, and also has high thermal stability under conditions of frequent and sharp temperature changes.
  • the mixture component - (A) can be used in the range from 60 to 90%
  • the mixture component - (B) can be used in the range from 10 to 40%.
  • the combination of the components of the mixture (A) and (B) is carried out in the following ratio:
  • A vermiculite
  • B potassium cryolite
  • the ratio of components A and B in the initial charge determines the physicochemical properties of the material obtained (strength, ductility, porosity, electrical conductivity, etc.). For example, a decrease in component (B) within the claimed limits increases the chemical purity of the material according to the main component KMg 3 (Si 3 Al) 0] oF 2 and increases the melting point of the mixture, determines the chemical purity of potassium fluorophlogopite and, accordingly, chemical resistance.
  • the process of preparing the initial charge consists only in the stage of weighing the components according to the selected proportional ratio of the components and the requirements for the product operation parameters.
  • the furnace shaft is filled.
  • Laying the charge in the furnace chamber is carried out in layers: A-B-A-B-A, etc., the number of layers is determined by the volume, height of the shaft and the mass of smelting, the thickness of one layer (component A) should not exceed 12 cm, and the thickness of the layer (component B) should not exceed 6 cm.
  • the upper layer consists of a mixture of component A and B, in the ratio corresponding to the melting ratio, and the thickness of the upper layer should correspond to 1/10 of the total height of the mixture filling.
  • the implementation of the upper layer of the deposited charge from a mixture of components A and B allows for their high dissolution and interaction rates, which ensures the tightness of the mirror of the deposited charge, thereby providing thermal insulation, minimizes the evaporation of the fluoride component and limits the interaction with the environment.
  • this method it is possible to use defective products from previous swimming trunks, sprues or profits of fluorophlogopite casting. For this, they are crushed in a crusher to a fraction of 1–3 mm and the resulting product is melted together with a fresh charge, adding it as one lower layer, but not more than 10 wt.% With respect to the initial charge.
  • Layered layering of the charge components (A and B) of the claimed concentration and volume ensures a decrease in the maximum melting temperature of the process and chemical purity of the substance with respect to the initial component.
  • the component of mixture B goes into the liquid phase at a temperature of 600-700 ° C, melting the cryolite flows (flows) down between the particles of the layer of component A.
  • component A dissolves in component B with flow chemical reactions, while the melting point of the resulting compound rises, which leads to the onset of crystallization.
  • the surface of the cryolite melt is not open, which minimizes losses in the fluorine component.
  • a breakdown into charge layers increases the contact area of the components, respectively, the reaction rate and the melt uniformity.
  • Crystallization processes are minimized.
  • the melting technology is based on the stepwise heating of the mixture to remove moisture from the raw materials.
  • the speed and number of heating steps depend on the surface area of the charge charge and on the height of the bulk layer.
  • the process of melting the mixture is rational to carry out a three-stage heating mode, for example, for casting weighing 100-150 kg, the following technological regime is recommended (subject to the availability of the appropriate hardware):
  • the melt is poured into the crystallization molds corresponding to the required dimensions of the product.
  • the molds are thermally insulated along the external circuit and heated to a temperature of at least 800 ° C. Molds are filled with a continuous stream of melt, melt pouring from the mixture begins with temperature stabilization in the range of 1150 - 1250 ° ⁇ .
  • the top of the mold is thermally insulated with a material inert to the melt at a temperature of 900 ° C, for example: calcium silicate, vermiculite, thermal insulation).
  • the mold is left to complete crystallization, depending on the mass of the melt, the duration of the crystallization process is from 24 to 72 hours.
  • thermal chambers Furnaces
  • mixtures of the termite type When working with small masses of the melt, it is necessary to use thermal chambers (furnaces) or mixtures of the termite type to form a whole product during crystallization.
  • the thickness of the workpiece for machining should be laid in the form. Since the surface of the product crystallizes faster than the core, a cortical coating is formed on the surface, characterized by the presence of cavities and cavities.
  • molded molds sand-clay mixtures, high-alumina concrete, aluminosilicate concrete
  • reusable molds graphite, metallized products
  • any of the molds Prior to its direct application, any of the molds must be dried and heated to a temperature of at least 800 ° C. With the right casting and crystallization technology, a uniform structure of the material is achieved over the entire thickness of the product, but a crust 2-4 mm thick will still form on the surface of the product. If it is necessary to build up a large mass of the melt in the presence of a furnace with a small shaft, a preliminary deposition technique is used to reduce the initial volume of the mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к изготовлению искусственных плавленых слюдяных материалов, в частности к технологии каменного литья и составам исходной шихты и может быть использовано при синтезе новых видов каменного литья в области металлургической, горно-обогатительной, огнеупорной и строительной промышленности. Способ получения плавленолитого калиевого фторфлогопита, включающий подготовку шихты путем смешения слюдосодержащего и фторсодержащего компонентов, плавление полученной шихты, заливку расплава в форму, выдержку, извлечение отливки из формы и охлаждение, согласно заявленному изобретению используют в качестве слюдосодержащего компонента вермикулит - 60-90 мас. %, в качестве фторсодержащего компонента - калиевый криолит 10-40 мас. %, причем, плавление шихты проводят при последовательном ступенчатом нагреве шихты, а подготовку шихты осуществляют послойной укладкой компонентов, верхний слой шихты при этом состоит из смеси компонентов, кроме того заливку расплава осуществляют в предварительно нагретую форму. Использование данного изобретения позволяет увеличить химическую чистоту калиевого фторфлогопита, увеличить коррозионную и эрозионную стойкость материала, увеличить точность выхода продукта по химическому составу.

Description

Способ получения плавленолитого калиевого фторфлогопита
Изобретение относится к изготовлению искусственных плавленых слюдяных материалов, в частности к технологии каменного литья и составам исходной шихты и может быть использовано при синтезе новых видов ка- менного литья в области металлургической, горно-обогатительной, огне- упорной и строительной промышленности.
Минерал фторфлогопит [KMg3(AlSi3O10)F2] является синтетическим аналогом природной слюды - флогопита, в котором анионы гидроксила (ОН) - замещаются ионами фтора (F)~, имеющих с гидроксилом одинако- вый заряд. Материал фторфлогопит изготавливают с помощью каменолитей- ной технологии слюдокристаллических материалов и изделий на его основе. Технология получения фторфлогопитового каменного литья базируется на температурном синтезе из оксифторидного расплава, включающего оксиды калия, магния, кремния, алюминия и д.р., а также ионы фтора. При охлажде- нии и затвердевании оксифторидного расплава протекают процессы кристал- лизации литой структуры материала, соответствующие законам формирова- ния структуры литейных сплавов (а именно зональность строения, образова- ние усадочных раковин и пористости). Фторфлогопит обладает прочност- ными, жаростойкими, эрозионно- и коррозионно- стойким свойствами, бла- годаря чему его используют в металлургическом, теплотехническом, высоко- точном оборудовании.
В настоящее время известен ряд патентных работ по разработке шихты для расплавов каменного литья по получению слюдяных, каменных, стекло- кристаллических, силикатных материалов.
Известны патенты SU 592762 , МПК С03В1/00, опубл. 15.02.1978, RU 2058944, МПК С03В1/00, опубл. 27.04.1996, RU 2131853, МПК С03С10/06, опубл. 20.06.1999, RU 2152363, МПК С03С1/00, С03С1/02, опубл. 10.07.2000, RU 2281924, МПК СОЗСЮ/00, С03В19/06, опубл. 20.08.2006. Изобретения относятся к области разработки составов смесей и шихт, используемых для производства искусственно плавленым способом стеклянных, силикатных, керамических, фторслюдяных материалов, направленных на снижение тем- пературы плавления исходного компонента. Недостатками данных разрабо- ток является: использование дорогостоящего кремнефтористого калия и применение поташа (реакция взаимодействия которого с компонентами сме- си приводит к образованию выбросов углекислого газа).
Так же известен патент RU 2130435, МПК СОЗСЮ/00, С04В35/653, опубл. 20.05.1999. Изобретение относится к изменению технологии выливки и кристаллизации каменолитейного расплава, экономический эффект изобре- тения рассматривается в увеличении количества годного по литью. Недо- статком данного изобретения является узконаправленность экономического эффекта, так как себестоимость исходного сырья остается высокой, а исполь- зуемые при производстве технологическая цепочка и оборудование требует высоких энергозатрат.
Известно авторское свидетельство СССР 787381, МПК С03С 3/22, опубл. 15.12.1980 и авторское свидетельство СССР 992446, МПК С03С 3/22, опубл. 30.01.1983. Изобретения относятся к области каменного литья из оса- дочных горных пород и технического сырья для изготовления литого слюдо- кристалического материала. Изобретения направлены на получение матери- ала фторфлогопит с мелкокристаллическим однородным строением с повы- шенной прочностью. В качестве предлагаемого усовершенствования исполь- зуется подход изменения кристаллизационных свойств расплава путем вне- сения в состав исходной шихты добавки карбида кремния в диапазоне 3-7% мае. Недостатком данных изобретений является вероятность образования ло- кальных концентраций карбида кремния при подготовке смеси. А так же ве- роятное частичное горение центров кристаллизации при плавке и выливке расплава. Вопрос энергоемкости процесса остается открытым.
Известен патент SU 649669, МПК С03С, опубл. 28.02.1979. Изобрете- ние относится к изготовлению каменного литья, в частности к составам на основе осадочных пород и технических сырьевых материалов, и может быть использовано в камнелитейном производстве. Патент направлен на увеличе- ние коррозионной стойкости изделий из материала калиевый фторфлогопит, путем увеличения содержания фторидной составляющей.
Известен патент РФ 2462415, МПК С03С10/16, С01ВЗЗ/42, опубл. 27.09.2012. Изобретение базируется на попытке снижения себестоимости изделия и снижения выбросов углекислого газа, за счет замены компонента исходной смеси поташ на едкий калий.
Известна технология выплавки каменного литья (Сборник научных трудов и статей «Проблемы каменного литья», Малявин А.Г. Технологиче- ские режимы изготовления фасонных отливок из фторсиликатных расплавов, Киев, Наукова думка, 1975, вып.342 3).
Недостатками данных технических решений являются высокая трудо- емкость и энергоемкость стадии подготовки шихтового сырья (дробление, сушка, комкование), а так же энергоемкий процесс плавления.
Известен патент РФ 2410349, МПК С04В28/30, С04В35/66, опубл. 27.01.2011 , в котором предложено изменить фракционный состав исходной шихты и заменить один из исходных компонентов с целью увеличения тем- пературного коридора эксплуатации изделий. Способ получения плавленоли- того калиевого фторфлогопита включает подготовку шихты путем смешения слюдосодержащего и фторсодержащего компонентов, плавление получен- ной шихты, заливку расплава в форму, выдержку, извлечение отливки из формы и охлаждение.
По технической сущности, по количеству сходных существенных при- знаков известный патент выбран в качестве ближайшего аналога (прототи- па). В известном патенте, так же как в предлагаемом решении, рассматрива- ется возможность комбинирования исходной шихты. Недостатком данного изобретения является низкая коррозионно- и эрозионно -стойкость получае- мого фторфлогопита, а так же высокая себестоимость изделия.
з Задачей настоящего изобретения является снижение себестоимости производства, за счет уменьшения количества производственных стадий и энергозатрат, упрощения аппаратурного оформления, снижения рисков кри- сталлизационной стадии.
Техническим результатом изобретения является увеличение химиче- ской чистоты калиевого фторфлогопита увеличение коррозионной и эрози- онной стойкости материала, увеличение точности выхода продукта по хими- ческому составу.
Технический результат достигается тем, что в способе получения плав- ленолитого калиевого фторфлогопита, включающем подготовку шихты пу- тем смешения слюдосодержащего и фторсодержащего компонентов, плав- ление полученной шихты, заливку расплава в форму, выдержку, извлечение отливки из формы и охлаждение, используют в качестве слюдосодержащего компонента вермикулит - 60-90 мае. %, в качестве фторсодержащего компо- нента - калиевый криолит 10-40 мае. %, причем, плавление шихты проводят при последовательном ступенчатом нагреве шихты, а подготовку шихты осуществляют послойной укладкой компонентов, верхний слой шихты при этом состоит из смеси компонентов, кроме того заливку расплава осуществ- ляют в предварительно нагретую форму.
Способ дополняют частные отличительные признаки, способствующие достижению технического результата.
На подготовку шихты могут направлять вермикулит в виде вспученных гранул 0,7- 8 мм, а калиевый криолит - в виде чешуйчатых пластин 1-3 мм (или в измельченном виде с размером частиц не более 1мм).
Нагрев шихты могут проводить ступенчато: первая ступень до 110°С, вторая ступень до 600° С, третья ступень 1150-1250°С.
Расплав могут заливать в нагретую форму не менее 800°С.
Плавление шихты проводят при температуре 1250°С.
Патентуемый способ камнелитейного производства позволяет получать материал калиевый фторфлогопит с требуемой чистотой материала по со- держанию основного компонента фторфлогопит (KMg3(Si3Al)01oF2) до 99,9%. Простота компоновки по исходному сырью и рабочий диапазон температур позволяют контролировать содержание в готовом изделии основ- ного компонента фторфлогопит K g3(Si3Al)Oi0F2 в диапазоне от 75 до 99 % с точностью до 0,1% .
В качестве исходной шихты для камнелитейного производства исполь- зуется двухкомпонентная смесь, каждый компонент смеси готовится отдель- но друг от друга, но при этом является повсеместно распространенным и экономически выгодным. В табл.1 приведено содержание химических эле- ментов в первом компоненте. Первый компонент (А) смеси вермикулит ((Mg+2, Fe+2, Fe+3)3 [(AlSi)4O10]-(OH)2-4H2O) используется при следующем со- отношении элементов, масс.%:
Таблица 1
Figure imgf000007_0001
Figure imgf000007_0002
В табл.2 приведено содержание химических элементов во втором компоненте. Вторым компонентом (В) смеси является калиевый криолит (KA1F4) содержание основного вещества (F+A1+K) не менее 98-99%, соотно- шение элементов следующее, масс.%:
Таблица 2
Figure imgf000007_0003
Сырье компонента А используется в виде вспученных гранул фракци- онного состава 0,7-8 мм. Сырье компонента В используется в виде чешуйча- тых пластин размером в диапазоне от 1 до 5 мм или в измельченном виде с размером частиц не более 1мм.
Основной кристаллической фазой литья данного состава является ка- лиевый фторфлогопит, который является коррозионно- и эрозионно- стойким материалом к разрушающему воздействию парогазовой фазы и расплавов со- лей, а так же обладает высокой термической устойчивостью в условиях частой и резкой смены температур. При смешивании двухкомпонентной сме- си компонент смеси - (А) может использоваться в диапазоне от 60 до 90 %, а компонент смеси - (В) может использоваться в диапазоне от 10 до 40 %. Та- ким образом комбинирование компонентов смеси (А) и (В) осуществляется в следующем соотношении:
А _ (60 - 90)%
В ~ (10 - 40)% '
где А-вермикулит, В -калиевый криолит.
Соотношение компонентов А и В в исходной шихте определяет физи- ко-химические свойства получаемого материала (прочность, пластичность, пористость, электропроводность и д.р.). Например уменьшение компоненты (В) в заявляемых пределах, увеличивает химическую чистоту материала по основному компоненту KMg3(Si3Al)0]oF2 и увеличивает температуру плавле- ния смеси, определяет химическую чистоту калиевого фторфлогопита и со- ответственно химическую стойкость.
В заявляемом техническом решении, в отличие от прототипа предлага- ется кардинальное изменение сырьевой составляющей в компонентах ис- ходной смеси, по отношению к существующим и запатентованным техноло- гиям производства изделий из материала фторфлогопит.
Процесс подготовки исходной шихты заключается только в стадии взвешивания компонентов согласно выбранному пропорциональному соот- ношению компонентов и требованиям к параметрам эксплуатации изделия. После взвешивания компонентов шихты осуществляется затарка шахты печи. Укладку шихты в камеру печи осуществляют послойно: А-В-А-В-А и т.д., количество слоев определяется объемом, высотой шахты и массой плавки, толщина одного слоя (компонента А) не должна превышать 12 см, а толщина слоя (компонента В) не должна превышать 6см. В любом из вариантов верх- ний слой состоит из смеси компонента А и В, в соотношении соответствую- щего соотношению плавки, при этом толщина верхнего слоя должна соответ- ствовать 1/10 от общей высоты засыпки смеси. Выполнение верхнего слоя наплавляемой шихты из смеси компонентов А и В позволяет обеспечить их высокую скорость растворения и взаимодействия, что обеспечивает герме- тичность зеркала наплавляемой шихты, тем самым обеспечивается теплоизо- ляция, минимизируется испарение фторидной составляющей и ограничива- ется взаимодействие с окружающей средой. В данном способе возможно использование бракованных изделий предыдущих плавок, литников или при- были фторфлогопитового литья. Для чего их измельчают в дробилке до фракции 1- 3 мм и полученный продукт переплавляют вместе со свежей ших- той, добавляя его в качестве одного нижнего слоя, но не более 10 мас.% по отношению к исходной шихте. Послойная укладка компонентов шихты (А и В) заявляемой концентрации и объеме обеспечивает снижение максималь- ной температуры плавления процесса и химическую чистоту вещества по ис- ходному компоненту.
Компонент смеси В (калиевый криолит) переходит в жидкую фазу при температуре 600-700°С, плавясь криолит протекает (стекает) вниз между ча- стицами слоя компонента А. В ходе контакта двух фаз происходит растворе- ние компонента А в компоненте В с протеканием химических реакций, при этом температура плавления образующегося соединения повышается, что приводит к началу кристаллизации. При этом поверхность расплава криолита не открыта, что минимизирует потери по фторкомпоненту. Так же разбивка по слоям шихты увеличивает площадь контакта компонентов, соответствен- но скорость реакции и однородность расплава. В случае изначально высокой концентрации компонента В (40 мас.%) кристаллизационные процессы ми- нимизированы. В ходе наплавки шихты в каждом из слоев протекают про- цессы плавления компонента В и его взаимодействия с компонентом А, ко- торые обусловлены уменьшением объема шихты. Полное проплавление сло- ев и образование в расплаве химического соединения фторфлогопит проис- ходит при температуре 1 150 - 1250°С. Чем выше начальная концентрация компонента А тем ниже температура процесса.
Технология плавления построена на ступенчатом нагреве шихты, для удаления влаги из сырья. Скорость и количество ступеней нагрева зависят от площади поверхности засыпки шихты и от высоты насыпного слоя. Зачастую процесс плавления шихты рационально проводить по трехступенчатому ре- жиму нагрева, например для отливки массой 100-150 кг рекомендуется сле- дующий технологический режим (при условии наличия соответствующего аппаратного оформления):
1) первая ступень - нагрев со скоростью 7 °С /час до 110°С;
2) вторая ступень - нагрев со скоростью 110°С /час до 600° С;
3) третья ступень - нагрев со скоростью 250°С /час до температуры 1150- 1250°С, с последующим наплавлением расплава из шихты;
После расплавления шихты производится выливка расплава в кристал- лизационные изложницы соответствующие требуемым габаритам изделия. Перед разливкой расплава, изложницы теплоизолируют по наружному кон- туру и нагревают до температуры не менее 800°С. Заливку форм производят непрерывной струей расплава, выливку расплава из шихты начинают при стабилизации температуры в диапазоне 1150 - 1250°С. После разливки верх изложницы теплоизолируют материалом, инертным к расплаву при темпера- туре 900°С, например: силикат кальция, вермикулит, термоизол). Изложницу оставляют до полной кристаллизации, в зависимости от массы расплава дли- тельность кристаллизационного процесса составляет от 24 до 72 часов. При работе с небольшими массами расплава для формирования цельного изделия в процессе кристаллизации необходимо использовать термические камеры (печи) или смеси типа термит. При проведении расчетов формы необходимо учитывать требования к допускам по поверхности, например для гладких и без пористых поверхно- стей в форму необходимо закладывать толщину заготовки на проведения ра- бот по механической обработке. Так как поверхность изделия кристаллизует- ся быстрее сердцевины, на поверхности образуется корковое покрытие, ха- рактеризующиеся наличием впадин и каверн. При выливки солевого распла- ва из печи рекомендуется использовать формованные изложницы (песочно- глинистые смеси, высокоглиноземистый бетон, алюмосиликатный бетон) или многоразовые формы (графитовые, металлизированные изделия). Любую из изложниц до ее непосредственного применения необходимо просушить, и нагреть до температуры не менее 800°С. При правильно поставленной техно- логии выливки и кристаллизации достигается равномерная структура мате- риала по всей толщине изделия, но на поверхности изделия все равно будет образовываться корка толщиной 2-4 мм. В случае необходимости наплавки большой массы расплава при наличии печи с маленькой шахтой, использует- ся методика предварительной наплавки, для уменьшения исходного объема смеси.
Возможность многопланового производства в условиях одной производ- ственной площадки позволяет получать материал с разными физико- химическими свойствами. Возможно варьирование следующих свойств изде- лия: прочность на сжатие, термический коэффициент линейного расширения, термостойкость, температуру плавления (табл.3).
Таблица 3
Figure imgf000011_0001
Рентгено - фазовый и рентгено - спектральный анализ образцов мате- риала по толщине изделий показали химическое соответствие минеральной фазе калиевый фторфлогопит с отклонением в 0,1% от заданного параметра. Например, в табл. 4 представлен анализ РФА, а в табл.5 - анализ РСА образ- ца J\ (по чистоте 99.99%) изделий с разным соотношением компонентов А и В в исходной шихте:
Таблица 4
Figure imgf000012_0001
в зависимости от состава исходных компонентов в состав конечного про- дукта может добавляться те или иные соединения.
Таблица 5
ю
Figure imgf000013_0001
Figure imgf000013_0002
Использование заявляемого способа позволяет:
1) Полностью исключить стадию предварительной подготовки компонентов смеси к шихтовке, что исключает из процесса такие энергоемкие опера- ции как дробление, сушка, комкование, выход годного. Поскольку пред- лагаемые компоненты смеси являются распространенными в продаже и доступны на рынке в готовом, к применению, состоянии;
2) Уменьшить температуру плавки с 1450-1550°С до диапазона 1150-1250°С и тем самым:
а) упрощается аппаратурное оформление технологического процесса, а именно появляется возможность использовать для плавки дуговые, индукци- онные печи и печи сопротивления в более доступном ценовом диапазоне; б) снижаются энергозатраты на термическую стадию процесса;
в) повышается точность химической чистоты изделия, за счет:
- снижения потерь с газообразными выбросами сырья при нагре- ве и плавлении;
- равномерности распределения температур и проплавления ших- ты;
г) повышается качество изделия и увеличивается выход годного, за счет снижения температурного градиента кристаллизации;
3) Повысить химическую чистоту изделия по основному компоненту и обеспечить низкую поверхностную пористость (-0,15%), что в совокуп- ности обеспечивают высокую эррози- и коррозионную стойкость мате- риала; ) Использовать для производства сырье промышленной доступности и с низкой стоимостью;
) Снизить риски появления неоднородности, пустот в теле изделия на ста- дии кристаллизации, ввиду уменьшения величины температурного гради- ента на стадии расплав - кристаллизация.
) Достигнуть разнообразных направлений использования изделий из полу- чаемого материала, ввиду простоты перенастройки процесса на измене- ние свойств отливаемого материала.

Claims

Формула изобретения
1. Способ получения плавленолитого калиевого фторфлогопита, вклю- чающий подготовку шихты путем смешения слюдосодержащего и фторсо- держащего компонентов, плавление полученной шихты, заливку расплава в форму, выдержку, извлечение отливки из формы и охлаждение, отличаю- щийся тем, что используют в качестве слюдосодержащего компонента вер- микулит - 60-90 мае. %, в качестве фторсодержащего компонента - калиевый криолит 10-40 мае. %, причем, плавление шихты проводят при последова- тельном ступенчатом нагреве шихты, а подготовку шихты осуществляют послойной укладкой компонентов, верхний слой шихты при этом состоит из смеси компонентов, кроме того заливку расплава осуществляют в предвари- тельно нагретую форму.
2. Способ получения по п.1, отличающийся тем, что на подготовку шихты направляют вермикулит в виде вспученных гранул 0,7- 8 мм, а калие- вый криолит - в виде чешуйчатых пластин 1-3 мм или измельченных не бо- лее 1 мм.
3. Способ получения по п.1, отличающийся тем, что нагрев шихты проводят ступенчато: первая ступень до 110°С, вторая ступень до 600°С, третья ступень 1150-1250°С.
4. Способ получения по п.1, отличающийся тем, что заливку расплава осуществляют в нагретую форму не менее 800°С.
5. Способ получения по п.1, отличающийся тем, что плавление шихты проводят при температуре 1250°С.
PCT/RU2015/000715 2014-12-29 2015-10-28 Способ получения плавленолитого калиевого фторфлогопита WO2016108725A1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015372635A AU2015372635A1 (en) 2014-12-29 2015-10-28 Method for producing melt-cast potassium fluorine-phlogopite
US15/540,534 US20180002186A1 (en) 2014-12-29 2015-10-28 Method for producing melt-cast potassium fluorinephlogopite
BR112017013984A BR112017013984A2 (pt) 2014-12-29 2015-10-28 processo para produção de flúor flogopita de potássio de fusão em molde
CA2972376A CA2972376A1 (en) 2014-12-29 2015-10-28 Method for producing melt-cast potassium fluorinephlogopite
CN201580074313.4A CN107207368A (zh) 2014-12-29 2015-10-28 生产熔铸钾氟金云母的方法
EP15875778.1A EP3241816A4 (en) 2014-12-29 2015-10-28 Method for producing melt-cast potassium fluorine-phlogopite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014154031/03A RU2574642C1 (ru) 2014-12-29 2014-12-29 Способ получения плавленолитого калиевого фторфлогопита
RU2014154031 2014-12-29

Publications (1)

Publication Number Publication Date
WO2016108725A1 true WO2016108725A1 (ru) 2016-07-07

Family

ID=56284739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000715 WO2016108725A1 (ru) 2014-12-29 2015-10-28 Способ получения плавленолитого калиевого фторфлогопита

Country Status (8)

Country Link
US (1) US20180002186A1 (ru)
EP (1) EP3241816A4 (ru)
CN (1) CN107207368A (ru)
AU (1) AU2015372635A1 (ru)
BR (1) BR112017013984A2 (ru)
CA (1) CA2972376A1 (ru)
RU (1) RU2574642C1 (ru)
WO (1) WO2016108725A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550939B (zh) * 2019-09-09 2021-09-21 重庆大学 用于制作矿物绝缘电缆的绝缘材料及其制备方法
WO2022098221A1 (ru) * 2020-11-04 2022-05-12 Акционерное Общество "Усть-Каменогорский Титано-Магниевый Комбинат" Ао "Ук Тмк" Способ изготовления футеровки плавильной печи
RU2764842C1 (ru) * 2021-06-09 2022-01-21 Акционерное общество "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (АО "НИИ НПО "ЛУЧ") Способ получения слюдокристаллического материала на основе фторфлогопита

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2410349C1 (ru) * 2009-09-17 2011-01-27 Закрытое акционерное общество "Союзтеплострой" Способ получения плавленолитого материала комсилит стс для футеровки тепловых агрегатов цветной металлургии
CN102617115A (zh) * 2011-01-28 2012-08-01 吕宝林 用于冶炼氟金云母陶瓷的组合物、方法及由其制备的氟金云母陶瓷

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741877A (en) * 1952-02-23 1956-04-17 Du Pont Method of producing synthetic mica
US2675853A (en) * 1952-06-09 1954-04-20 Robert A Hatch Fabrication of synthetic fluorine-micas
US2923754A (en) * 1956-08-02 1960-02-02 Synthetic Mica Corp Method and apparatus for manufacturing synthetic mica
US3149947A (en) * 1962-03-19 1964-09-22 Corning Glass Works Method of making crystalline mica bodies and product
JPH0629153B2 (ja) * 1985-07-03 1994-04-20 三井鉱山株式会社 ガラスセラミツクス製品およびその製造方法
JPH04275214A (ja) * 1991-03-01 1992-09-30 Kanebo Ltd フッ素雲母粉体およびその製造方法
CN1253372C (zh) * 2003-09-30 2006-04-26 孙海英 人工晶体合成云母的制备方法和装置
CN101045539A (zh) * 2006-03-30 2007-10-03 长春市晟达仪表配件研究所 氟晶云母
RU2345040C2 (ru) * 2007-01-17 2009-01-27 Юлия Алексеевна Щепочкина Огнеупорная масса
CN101066841B (zh) * 2007-06-08 2010-07-28 沈阳化工学院 岫岩玉废料制备透明玻璃陶瓷的方法
CN101671034B (zh) * 2009-09-21 2011-11-23 江阴市友佳珠光云母有限公司 用煅烧滑石制备的合成云母和制备工艺以及氟金云母粉、氟金云母珠光颜料的加工方法
CN102815715B (zh) * 2011-06-10 2014-03-26 江阴市友佳珠光云母有限公司 一种人工合成电子云母的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2410349C1 (ru) * 2009-09-17 2011-01-27 Закрытое акционерное общество "Союзтеплострой" Способ получения плавленолитого материала комсилит стс для футеровки тепловых агрегатов цветной металлургии
CN102617115A (zh) * 2011-01-28 2012-08-01 吕宝林 用于冶炼氟金云母陶瓷的组合物、方法及由其制备的氟金云母陶瓷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3241816A4 *

Also Published As

Publication number Publication date
EP3241816A4 (en) 2018-08-08
BR112017013984A2 (pt) 2018-01-02
CN107207368A (zh) 2017-09-26
RU2574642C1 (ru) 2016-02-10
AU2015372635A1 (en) 2017-08-17
CA2972376A1 (en) 2016-07-07
EP3241816A1 (en) 2017-11-08
US20180002186A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
CN103276253B (zh) 一种低成本Al-Ti-B细化剂及其制备方法
CN101652337A (zh) 具有高氧化锆含量的熔铸耐火砖
RU2574642C1 (ru) Способ получения плавленолитого калиевого фторфлогопита
CN105174974B (zh) 氧化铝熔融铸造耐火物及其制造方法
CN104561619A (zh) 一种铝钛硼丝晶粒细化剂的制备方法
CN103233146A (zh) 高效清洁型Al-Ti-B细化剂及其制备方法
CN102241520B (zh) 一种α氧化铝制品的熔铸方法
CN103011852B (zh) 一种刚玉质浇注料制品的无烧结致密化方法
BR112018006182B1 (pt) Grãos fundidos de zircônia-espinélio e produto refratário obtido a partir dos referidos grãos
CN102534274A (zh) 一种铝用Al-Ti-B中间合金细化剂的制备方法
CN100453502C (zh) 电熔镁铝锆合成料生产方法
CN100582309C (zh) 一种铝电解惰性阳极预热-更换用保温包覆材料及制备方法
RU2559964C1 (ru) Слюдокристаллический материал на основе фторфлогопита и способ его производства
RU2410349C1 (ru) Способ получения плавленолитого материала комсилит стс для футеровки тепловых агрегатов цветной металлургии
CN105272276B (zh) 一种铜冶炼溜槽用浇注料
CN108220646A (zh) 一种铝钛硼合金细化剂的制备方法
Kichkailo et al. Effect of colemanite additions on sintering, properties, and microstructure of spodumene heatproof ceramic
CN105130459B (zh) 铝用阳极碳素焙烧炉火道墙免烧预制大砖
BR112015002324B1 (pt) método para processar escória de aço para produzir um ligante de mineral hidráulico e para recuperar ferro
RU2674596C1 (ru) Способ получения расходуемого электрода электрошлакового переплава для формирования многослойной отливки
CN105152664A (zh) 一种铜冶炼溜槽用浇注料的制备方法
CN104138921A (zh) 一种原位自生铝基复合材料棒材制备方法
CN105177343A (zh) 一种易切削铜合金及其制造方法
RU2525887C2 (ru) Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов
JP2019006630A (ja) アルミナ−マグネシア質キャスタブル耐火物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2972376

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15540534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015875778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015372635

Country of ref document: AU

Date of ref document: 20151028

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013984

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013984

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170628