RU2525887C2 - Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов - Google Patents

Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов Download PDF

Info

Publication number
RU2525887C2
RU2525887C2 RU2012156331/03A RU2012156331A RU2525887C2 RU 2525887 C2 RU2525887 C2 RU 2525887C2 RU 2012156331/03 A RU2012156331/03 A RU 2012156331/03A RU 2012156331 A RU2012156331 A RU 2012156331A RU 2525887 C2 RU2525887 C2 RU 2525887C2
Authority
RU
Russia
Prior art keywords
crucible
slag
lining
crucibles
hours
Prior art date
Application number
RU2012156331/03A
Other languages
English (en)
Other versions
RU2012156331A (ru
Inventor
Александр Юрьевич Райков
Александр Павлович Алешин
Александр Николаевич Рылов
Андрей Владимирович Зелянский
Сергей Петрович Пятыров
Сергей Анатольевич Вохменцев
Михаил Владимирович Трубачев
Иван Дмитриевич Кащеев
Кирилл Геннадьевич Земляной
Original Assignee
Открытое акционерное общество "Уралредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Уралредмет" filed Critical Открытое акционерное общество "Уралредмет"
Priority to RU2012156331/03A priority Critical patent/RU2525887C2/ru
Publication of RU2012156331A publication Critical patent/RU2012156331A/ru
Application granted granted Critical
Publication of RU2525887C2 publication Critical patent/RU2525887C2/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для выплавки лигатур, содержащих ванадий и/или молибден. Технический результат изобретения - создание тиглей с гарантированной стойкостью футеровки при эксплуатации. Способ включает формирование тигля из огнеупорной массы, которую готовят смешиванием 5-15%-ного водного раствора соды кальцинированной со шлаком - побочным продуктом алюмотермического производства выплавляемых лигатур, из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг шлака, выдержку, сушку и охлаждение тигля. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°С в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°С и выдерживают в течение 9,5-11 часов. Изготовленный тигель имеет открытую пористость футеровки порядка 38-40%, водопоглощение порядка 13-18%, механическую прочность порядка 3-10 МПа.

Description

Изобретение относится к металлургии цветных металлов, в частности к производству лигатур для легирования конструкционных титановых сплавов, и может быть использовано для изготовления футерованных керамикой тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден.
Для производства лигатур широко используют дорогостоящие медные тигли (GB 1394449, опубл. 14.05.1975 г. [1], US 4062677, опубл. 13.12.1977 г.) [2]. Однако дешевле и энергетически выгоднее использовать керамические тигли, как, например, в (US 4684506, опубл. 04.08.1987 г.) [3]. Опубликован способ изготовления огнеупорных керамических тиглей для перемещения или обработки металла (WO 2007/131749, опубл. 27.06.2010 г.) [4]. Согласно этому способу изготавливают тигель, содержащий матрицу из плавленого кварца, имеющую сердечник. Внутреннюю поверхность этого тигля пропитывают материалом из группы, в которую входят металлоорганические соединения или полимеры, содержащие атом подходящего металла, суспензии металлических частиц кремния, алюминия, магния или их оксидов, или нитридов бора или кремния, а также сиалон. Пропитанную поверхность сушат и обжигают при температуре от 500 до 800°C. Известный способ изготовления керамических огнеупорных тиглей предполагает формирование структуры тигля с использованием сердечника. Полученный таким образом тигель представляет собой печь для индукционного нагрева. Обжиг внутренней поверхности тигля при температуре от 500 до 800°C свидетельствует о высокой энергоемкости этого способа изготовления тигля. Кроме того, следует иметь ввиду, что тигель, представляющий собой печь для индукционного нагрева, не может быть применим для алюмотермической выплавки лигатур.
В качестве прототипа заявленному способу принят способ изготовления набивных футеровок агрегатов для плавки цветных металлов, известный из SU 876606, опубл. 30.01.1981 г. [4]. В этом способе используют шлак алюмотермического производства металлического хрома, а также корунд, содержащий хром в виде твердого раствора, уменьшающего смачиваемость футеровки расплавом цветных металлов, а в качестве связки - глину. Футеровку обжигают при температуре 1400°C. Глина, применяемая в качестве связки многокомпонентного шлака, при взаимодействии с ним образует жидкую фазу. Поэтому в описании к SU 876606 фигурирует температура обжига футеровки 1400°C, которая необходима для спекания футеровки тигля с целью получения необходимой прочности. В процессе эксплуатации тигля из смеси глины с многокомпонентным, следовательно, не очень чистым шлаком, в результате воздействия более высокой температуры, появится большое количество жидкой фазы, что неизбежно приведет к усадке тигля, появлению внутренних напряжений и трещин, то есть к деформации футеровки и, как следствие, к аварийной ситуации. Это явление хорошо известно и описано в литературе по технологии огнеупоров (См., например, Кащеев И.Д. Свойства и применение огнеупоров. Справочник, М., Теплотехник, 2004 г., 352 стр.) [5]. Кроме того, огнеупорность материала тигля по SU 876606 не превышает 1710°C, в то время как тигли, изготавливаемые заявляемым способом, предназначены для реализации процессов, где рабочий интервал температур составляет 1800-1950°C. Поэтому материал по SU 876606 не может обеспечивать гарантированную стойкость футеровки.
Задача настоящего изобретения заключается в создании способа изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден, с гарантированной стойкостью футеровки.
Для решения этой задачи предложен способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден, включающий формование тигля из огнеупороной смеси шлака алюмотермического производства со связкой, при этом тигель изготавливают из смеси шлака - побочного продукта алюмотермического процесса выплавки лигатур, содержащих ванадий и/или молибден, осуществляемого в этих тиглях, с 5-15%-ным водным раствором соды кальцинированной из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг. шлака, сушку тигля осуществляют выдержкой при температуре от 100 до 150°C в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°C и выдерживают в течение 9,5-11,0 часов.
Известны шлаки алюмотермического производства металлов и сплавов, как высокоглиноземистое сырье [6]. Эти шлаки являются многокомпонентными и получены восстановлением природных сырьевых материалов металлическим алюминием. Такие шлаки непригодны для получения лигатур, которые, как правило, содержат 99,0-99,6% основных легирующих компонентов. Алюмотермические шлаки, используемые в заявленном способе для изготовления тиглей, являются побочным продуктом процесса выплавки лигатур, осуществляемого в этих самых тиглях. Химический состав шлаков: Al2O3 не менее 85%, CaO - от 5 до 12%, остальные примеси - Fe, V, Mo, Si, Ti, Cr суммарно до 3-х массовых процентов в пересчете на оксиды. При получении вышеуказанных лигатур одним из компонентов шихты является алюминий. Примеси находятся в составе шлаков в тонко распыленном состоянии в мелких порах и трещинах отдельных зерен и кристаллов. Низкое содержание примесей обеспечивает высокую чистоту лигатуры.
Водный раствор кальцинированной соды, который используют в качестве связки такого алюмотермического шлака, позволяет избежать опасности образования жидкой фазы в процессе эксплуатации тигля, полученного заявленным способом, а появляющийся при этом оксид натрия взаимодействует с оксидом алюминия с образованием твердого раствора оксида натрия в корунде (β-Al2O3, Na2O·11Al2O3) с температурой плавления 2000°C. Это исключает деформацию футеровки в рабочем интервале температур 1800-1950°C. Отсутствие жидкой фазы обеспечивает термостабильность и постоянство объема футеровки при эксплуатации, и, как следствие, надежность и эксплуатационную устойчивость тигля для выплавки лигатур.
При концентрации раствора соды менее 5% в систему вводится недостаточное количество щелочи, что не обеспечивает необходимый уровень прочности футеровки. При концентрации раствора соды более 15% вводится избыточное количество щелочи, которое не усваивается в β-корунд, что приводит к резкому снижению температуры плавления системы и повышению риска аварийности тигля.
Первый этап термообработки футерованного тигля происходит при температуре от 100 до 150°C в течение 1,0-1,5 часа для полного удаления физически связанной воды. При температуре менее 100°C или выдержке менее 1,0 часа невозможно полностью удалить из футеровки свободную влагу, что может привести к разрыву сплошности футеровки при последующем нагреве. При повышении температуры сушки более 150°C появляется риск неравномерности прогрева футеровки по толщине, что может привести к накапливанию свободной влаги между футеровкой и металлическим корпусом ″тигля″ и последующего нарушения сплошности футеровки или металлического корпуса в процессе дальнейшего нагрева и эксплуатации. Повышение времени сушки более 1,5 часов приводит к неоправданному повышению энергозатрат на технологический процесс.
Несоблюдение совокупности температурного интервала и времени на стадии предварительной сушки может привести к тому, что влага не удалится или к тому, что начнется процесс интенсивного испарения, который может привести к появлению трещин.
Второй этап термообработки футерованного тигля проводится при температуре 600-800°C с выдержкой в течение 9,5-11,0 часов для образования β-корунда и достижения оптимальной прочности футеровки. Процесс взаимодействия соды с тонкомолотым Al2O3 (шлаком) начинается с температуры 600-620°C и проходит стадии образования геля Na2O·Al2O3 и его кристаллизации в β-корунд Na2O·11Al2O3. Термообработка при более низких температурах и времени термообработки менее 9,5 часов не приводит к полному взаимодействию соды и тонкомолотого шлака и не обеспечивает прочность футеровки. Повышение температуры более 800°C приводит к слишком быстрой реакции между содой и оксидом алюминия, образованию малого количества геля Na2O·Al2O3 и быстрой его кристаллизации, что снижает прочность футеровки. Повышение времени термообработки более 11,0 часов приводит к неоправданному повышению энергозатрат на процесс.
Таким образом, для изготовления огнеупорной массы, используемой в заявленном способе, используют шлаки, являющиеся побочным продуктом алюмотермического производства выплавляемых в этих тиглях ванадиймолибденовых лигатур. Фазовый состав шлаков представлен α- и β-корундом Al2O3, гексаалюминатом кальция CaO*6Al2O3, диалюминатом кальция CaO*2Al2O3.
Новый технический результат, достигаемый заявленным изобретением, заключается в исключении образования жидкой фазы в футеровке тигля в процессе его эксплуатации.
По заявленному способу изготавливают тигли для выплавки марок лигатур, которые могут быть как ванадийсодержащие (V-Al с содержанием ванадия от 50 до 85%, V-Al-Fe, V-Al-N, Al-V-Ti-C), молибденосодержащие (Al-Mo, Al-Mo-Ti) и содержащие ванадий и молибден (Al-Mo-Zr, Al-Cr-Mo-Si, Al-Mo-V-Ti, Al-Mo-V-Ti-C, V-Cr-Mo-Al, Al-Mo-V-Cr-Ti, Al-Mo-V-Cr-Fe) всего порядка 35 марок. Для этого используют шлаки, являющиеся побочным продуктом алюмотермического производства именно этих самых лигатур, выплавляемых предприятием ОАО «Уралредмет». Состав шлаков: Al2O3 не менее 85%, CaO - от 5 до 12%, остальные примеси - Fe, V, Mo, Si, Ti, Cr суммарно до 3-х процентов в пересчете на оксиды.
При этом процесс изготовления собственно тиглей для выплавки этих лигатур включает подготовку шлака, сборку формы для футеровки тигля, приготовление водного раствора связующего - соды кальцинированной, приготовление огнеупорной смеси, футеровку, сушку и охлаждение тигля. В процессе подготовки шлак сортируют, дробят и измельчают до фракции менее 10 мм. Форму для тигля собирают из половинок обечайки, между фланцами половинок вставляют прокладку из асбестового шнура на всю высоту обечайки, посредством крепежных стержней соединяют половинки обечайки, окружность дна формы также прокладывают асбестовым шнуром. Дно собранной формы выстилают одним слоем стеклоткани. Для приготовления футеровочной огнеупорной смеси 5-15%-ный водный раствор соды кальцинированной смешивают с дробленым шлаком из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг шлака в течение 4-5 минут до получения однородной массы консистенции густого бетона. Футеровку тигля осуществляют следующим образом. На дно собранной формы загружают порцию огнеупорной массы в объеме, необходимом для формирования дна тигля, и уплотняют методом вибрации. Далее в зазор между шаблоном и стенкой формы загружают огнеупорную смесь в объеме, необходимом для формирования всего тигля, и уплотняют вибрацией. После выдержки тигля в течение 3-6 часов шаблон извлекают, а тигель подвергают сушке для удаления избыточной влаги и спекания футеровки. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°C в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°C и выдерживают в течение 9,5-11,0 часов, включая время нагрева камеры сушки до заданной температуры.
По окончании сушки ведут охлаждение тигля до комнатной температуры. Изготовленный тигель имеет открытую пористость футеровки порядка 38-40%, водопоглощение порядка 13-18%, механическую прочность порядка 3-10 МПа, теплопроводность от 0,4 до 1,2 Вт/(м·К).
Таким образом, заявленный способ позволяет изготавливать керамические тигли для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден, из шлаков алюмотермического производства - побочного продукта производства выплавляемых в этих тиглях лигатур с гарантированной стойкостью футеровки.

Claims (1)

  1. Способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден, включающий формование тигля из огнеупорной смеси шлака алюмотермического производства со связкой, отличающийся тем, что тигель изготавливают из смеси шлака - побочного продукта алюмотермического процесса выплавки лигатур, содержащих ванадий и/или молибден, осуществляемого в этих тиглях, с 5-15%-ным водным раствором соды кальцинированной из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг шлака, сушку тигля осуществляют выдержкой при температуре от 100 до 150°C в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°C и выдерживают в течение 9,5-11,0 часов.
RU2012156331/03A 2012-12-24 2012-12-24 Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов RU2525887C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012156331/03A RU2525887C2 (ru) 2012-12-24 2012-12-24 Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012156331/03A RU2525887C2 (ru) 2012-12-24 2012-12-24 Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов

Publications (2)

Publication Number Publication Date
RU2012156331A RU2012156331A (ru) 2014-06-27
RU2525887C2 true RU2525887C2 (ru) 2014-08-20

Family

ID=51216122

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012156331/03A RU2525887C2 (ru) 2012-12-24 2012-12-24 Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов

Country Status (1)

Country Link
RU (1) RU2525887C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718479C1 (ru) * 2019-04-23 2020-04-08 Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук Способ получения огнеупорных изделий

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU779336A1 (ru) * 1978-12-11 1980-11-15 Производственное объединение "Уралэнергоцветмет" Огнеупорна набивна масса
SU876608A1 (ru) * 1977-11-02 1981-10-30 Производственное объединение "Уралэнергоцветмет" Шихта дл изготовлени набивных футеровок тепловых агрегатов
DD210931A1 (de) * 1981-04-06 1984-06-27 Univ Halle Wittenberg Hochfeuerfesterzeugnisse mit hoher korrosionsbestaendigkeit gegen metallschmelzen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU876608A1 (ru) * 1977-11-02 1981-10-30 Производственное объединение "Уралэнергоцветмет" Шихта дл изготовлени набивных футеровок тепловых агрегатов
SU779336A1 (ru) * 1978-12-11 1980-11-15 Производственное объединение "Уралэнергоцветмет" Огнеупорна набивна масса
DD210931A1 (de) * 1981-04-06 1984-06-27 Univ Halle Wittenberg Hochfeuerfesterzeugnisse mit hoher korrosionsbestaendigkeit gegen metallschmelzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718479C1 (ru) * 2019-04-23 2020-04-08 Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук Способ получения огнеупорных изделий

Also Published As

Publication number Publication date
RU2012156331A (ru) 2014-06-27

Similar Documents

Publication Publication Date Title
JP7218300B2 (ja) 多孔質耐火材、その使用及び製造
CA2635276C (en) Refractory composition for glass melting furnaces
CN102617169A (zh) 一种刚玉尖晶石浇注料及其制备方法
RU2380136C1 (ru) Коррозионно-стойкий пенокерамический фильтр с низким коэффициентом расширения для фильтрации расплавленного алюминия
US8980775B2 (en) Powder for glass-ceramic dry refractory material
US8901022B2 (en) Powder for dry refractory material
EP1692083B1 (en) Method for suppressing reaction of molten metals with refractory materials
EA011910B1 (ru) Способ изготовления проппанта из стеклянных сфер
CN100381400C (zh) 制备熔铸氧化铝耐火材料用镁质型砂
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
CN101374784B (zh) 用于制备耐火衬里的模制浆料
CN110451991A (zh) 一种以废弃莫来石匣钵为原料的浇注料及其生产方法
BR112020015497A2 (pt) Composição refratária, camada refratária, método de produção de um revestimento, revestimento de trabalho e recipiente metalúrgico e método
RU2525887C2 (ru) Способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов
BR112018067830B1 (pt) Dispositivo de desfosforação e processo para a fabricação de um revestimento de um dispositivo
CN101367663B (zh) 熔融再结合复合氧化铝耐火材料
JP2001302364A (ja) ジルコニウム酸化物含有アルミナ−マグネシア質キャスタブル耐火物及び金属精錬用溶融金属容器
CN103360088A (zh) 一种铜冶炼炉用稀氧燃烧器烧嘴砖及制作方法
Buchilin et al. Ceramic filters for aluminum melt
CN106431429A (zh) 一种抗铝液渗透浇注料及其制备方法
JP4353627B2 (ja) フィルター
JPS6090867A (ja) 改善された耐アルカリ性耐火組成物
WO2004080915A1 (en) Refractory cement castables
RU2525890C1 (ru) Способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден
WO2024126858A1 (fr) Dvc pour revêtement d'un four de fonderie

Legal Events

Date Code Title Description
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20140507

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161225