WO2016104204A1 - 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル - Google Patents

透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル Download PDF

Info

Publication number
WO2016104204A1
WO2016104204A1 PCT/JP2015/084881 JP2015084881W WO2016104204A1 WO 2016104204 A1 WO2016104204 A1 WO 2016104204A1 JP 2015084881 W JP2015084881 W JP 2015084881W WO 2016104204 A1 WO2016104204 A1 WO 2016104204A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
transparent
film
thickness
Prior art date
Application number
PCT/JP2015/084881
Other languages
English (en)
French (fr)
Inventor
直樹 津野
基希 拝師
細川 和人
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580069969.7A priority Critical patent/CN107107576B/zh
Priority to KR1020177016933A priority patent/KR102021215B1/ko
Publication of WO2016104204A1 publication Critical patent/WO2016104204A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive

Definitions

  • the present invention relates to a transparent conductive film, a transparent conductive film laminate, and a touch panel, and is a technique particularly useful for controlling the occurrence of curling.
  • Patent Document 1 proposes a transparent conductive film using a cycloolefin-based resin that is an amorphous resin as a low retardation substrate film.
  • Patent Document 2 discloses a transparent conductive film in which a transparent conductive film is formed on a polycarbonate or an amorphous polyolefin film as a ⁇ / 4 retardation film that can be used under a polarizing plate such as a liquid crystal display.
  • a polarizing plate such as a liquid crystal display.
  • a laminate in which a transparent conductive film is laminated on a glass substrate, and a liquid crystal display device in which a touch panel function is provided on the entire surface of a flexible cover glass have been proposed.
  • the transparent conductive film is crystallized or metal wiring processing for frame wiring is performed at 130 ° C. or higher. It often goes through a heating process. In such a case, since the glass substrate is thin, it is easily affected by heating, and because the thermal shrinkage rate differs between resin and glass, the laminate curls and cannot be transferred to the next process, or alignment of metal wiring Adjustment becomes difficult and metal wiring cannot be processed, making it difficult to carry out stable and continuous production.
  • an object of the present invention is to provide a transparent conductive film laminate in which a thin glass substrate is bonded to a transparent conductive film, which can suppress the occurrence of curling even after the heating process and can secure the subsequent process yield. It is providing a conductive film, a transparent conductive film laminated body, and a touch panel.
  • the present inventors curled in a concave direction when the transparent conductive film laminate had the transparent conductive film up, so the transparent conductive film of the transparent conductive film was placed below.
  • the inventors have found that the above object can be achieved by designing the transparent conductive film so as to curl in a large concave direction in advance.
  • the transparent conductive film of the present invention the first cured resin layer and the transparent conductive film are formed in this order on one surface side of the transparent resin film, and the second surface side of the transparent resin film is second.
  • the transparent resin film is formed of an amorphous resin, and the transparent conductive film is cut into 50 cm ⁇ 50 cm, with the transparent conductive film as the bottom surface and 130 ° C.
  • the transparent conductive film is characterized in that the difference (AB) between the average curl value A at the four corners and the curl value B at the center after heating for 90 minutes is 5 mm or more.
  • the various physical property values in the present invention are values measured by the methods employed in Examples and the like.
  • Amorphous resin forming a transparent resin film is generally formed through an extrusion process or a cast film formation process, and a residual stress always remains, and a shrinkage stress is generated by heating.
  • thin glass has an overwhelmingly small shrinkage stress when heated to about 130 ° C. Therefore, in a transparent conductive film laminate in which thin glass is bonded to a transparent conductive film, curling occurs in the concave direction when heated with the transparent conductive film facing up.
  • a transparent conductive film since the thermal contraction rate, the linear expansion coefficient, etc. of a transparent conductive film which is an inorganic substance and a transparent resin film which is an organic substance are different, curling due to heating occurs.
  • the transparent conductive film of the transparent conductive film when placed downward, it is designed so as to curl in a large concave direction in advance, so that in the transparent conductive film laminate bonded with thin glass, after the heating step. It was found that the occurrence of curling can be made extremely small. That is, the difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film was cut to 50 cm ⁇ 50 cm and the transparent conductive film was the bottom surface and heated at 130 ° C.
  • the curl after the heating step can be made extremely small. As a result, curling after heating due to crystallization of the transparent conductive film, metal wiring processing, or the like can be suppressed, processing and conveyance can be performed stably and continuously, and subsequent process yield can be ensured.
  • the thickness of the first cured resin layer and the thickness of the second cured resin layer are both 2 ⁇ m or less, and the thickness of the second cured resin layer is the first thickness.
  • the thickness of the cured resin layer 1 is preferably equal to or thinner than that.
  • the transparent conductive film of the present invention preferably further comprises one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the transparent conductive film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, the transparent conductive film pattern is difficult to see, and the touch panel, etc. Visibility is improved in the display device. By passing the annealing process through the film after applying the optical adjustment layer, it is transparent so that the curl amount is more likely to occur by adjusting the thermal contraction difference of the base material in the MD direction and the TD direction and reducing the shrinkage force of the base material. Conductive films can be designed.
  • the second cured resin layer in the present invention preferably contains a resin and particles.
  • the amorphous resin is a cycloolefin resin
  • the thickness is 20 to 75 ⁇ m
  • the glass transition temperature is 130 ° C. or higher
  • the transparent conductive film is 90 ° C. for 90 minutes. It is preferable that the heat shrinkage ratio after heating is less than 0.2% in the MD and TD directions. Since the thickness of the transparent resin film is in a relatively thin range, the transparent conductive film can be designed so as to be more easily affected by heating and to easily cause curling.
  • the optical adjustment layer in the present invention preferably contains a binder resin and fine particles, has a refractive index of 1.6 to 1.8, and a thickness of 40 to 150 nm.
  • the refractive index of the optical adjustment layer itself can be easily adjusted.
  • the thickness of the optical adjustment layer in the above range, it is easy to form a continuous film, and it is possible to ensure transparency and control so as not to greatly affect the occurrence of curling.
  • the transparent conductive film in the present invention is preferably made of indium-tin composite oxide (ITO) and has a thickness of 10 to 35 nm. Thereby, transparency can be secured, visibility can be improved even when used for a touch panel or the like, and the direction and amount of curling can be designed.
  • ITO indium-tin composite oxide
  • the transparent conductive film laminate of the present invention is preferably a transparent conductive film laminate in which a glass substrate is laminated via a pressure-sensitive adhesive layer on the side of the transparent conductive film opposite to the transparent conductive film. Since the transparent conductive film of the present invention is designed so as to curl in a large concave direction in advance when the transparent conductive film is on the bottom, the transparent conductive film laminated body laminated with thin glass has a curl after the heating step. Generation can be suppressed, and the subsequent process yield can be secured.
  • the difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film laminate of the present invention was cut into 210 mm ⁇ 260 mm and the transparent conductive film was the top surface and heated at 130 ° C. for 90 minutes.
  • (AB) is preferably 2.0 mm or less.
  • the touch panel of the present invention is preferably obtained using the transparent conductive film laminate.
  • the transparent conductive film laminate is used, curling after a heating step such as drying can be suppressed, so that processing and conveyance of the transparent conductive film laminate is facilitated, and work efficiency is improved.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the transparent conductive film of the present invention
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the transparent conductive film of the present invention
  • FIG. 3 is a cross-sectional view schematically showing one embodiment of the transparent conductive film laminate of the present invention.
  • the transparent conductive film 10 shown in FIGS. 1 and 2 has a first cured resin layer 2 and a transparent conductive film 3 formed in this order on one surface side of the transparent resin film 1, and the other side of the transparent resin film 1.
  • a second cured resin layer 4 is formed on the surface side. As shown in FIG.
  • one optical adjustment layer 5 can be further provided between the first cured resin layer 2 and the transparent conductive film 3, but two or more optical adjustment layers 5 are provided. You can also.
  • the 1st cured resin layer 2 and the 2nd cured resin layer 4 include what functions as an antiblocking layer or a hard-coat layer.
  • the transparent conductive film laminated body laminates the glass substrate 6 through the adhesive layer 7 on the surface side opposite to the transparent conductive film 3 of the transparent conductive film 10.
  • ⁇ Transparent conductive film> In the transparent conductive film, a first cured resin layer and a transparent conductive film are formed in this order on one surface side of the transparent resin film, and a second cured resin layer is formed on the other surface side of the transparent resin film. Is formed.
  • One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film.
  • the thermal shrinkage in the MD and TD directions when heated at 130 ° C. for 90 minutes is preferably less than 0.2%, more preferably 0.2% or less, and 0 More preferably, it is 15% or less, and particularly preferably 0.1% or less.
  • the lower limit is not particularly limited, but is preferably 0.01% or more. Thereby, it becomes a transparent conductive film excellent in processability, transparency, and the like, and the amount and direction of curling after a heating process such as drying can be controlled, so that the transparent conductive film laminate can be easily processed and conveyed.
  • the difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film was cut to 50 cm ⁇ 50 cm and the transparent conductive film was placed on the bottom surface and heated at 130 ° C. for 90 minutes (AB) Is preferably 5 mm or more, more preferably 8 mm or more, and still more preferably 10 mm or more.
  • the upper limit is not particularly limited, but is preferably 50 mm or less, more preferably 40 mm or less, and still more preferably 30 mm or less.
  • the transparent resin film is formed of an amorphous resin and has high transparency and low water absorption characteristics. By adopting the amorphous resin, the optical characteristics of the transparent conductive film can be controlled.
  • the amorphous resin is not particularly limited, but is preferably excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like.
  • the cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin).
  • the cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC).
  • the cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.
  • cyclic olefin there are a polycyclic cyclic olefin and a monocyclic cyclic olefin.
  • polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene.
  • Methyltetracyclododecene dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like.
  • monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
  • Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.
  • the polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39).
  • Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.
  • the transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film.
  • etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface
  • a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film.
  • the surface of the transparent resin film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • the thickness of the transparent resin film is preferably in the range of 20 to 75 ⁇ m, more preferably in the range of 25 to 70 ⁇ m, and still more preferably in the range of 30 to 65 ⁇ m.
  • the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength may be insufficient, and it may be difficult to continuously form a transparent conductive film by rolling the film substrate.
  • the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the dot characteristics for touch panels may not be improved.
  • the thickness is within the above range, it is more susceptible to heating, so when the transparent conductive film of the transparent conductive film is placed down, it can be designed to curl in a large concave direction in advance, and thin glass When bonded to form a transparent conductive film laminate, curling after the heating step can be suppressed.
  • the glass transition temperature (Tg) of the amorphous resin of the transparent resin film is not particularly limited, but is preferably 130 ° C or higher, more preferably 150 ° C or higher, and further preferably 160 ° C or higher.
  • the thermal shrinkage rate in the MD direction and the TD direction when heated at 130 ° C. for 90 minutes at the resin film original fabric (film before applying the heat treatment, etc. before laminating the cured resin layer) forming the transparent resin film It is preferably 0.3% or less, more preferably 0.2% or less, and further preferably 0.1% or less. Thereby, it becomes a transparent resin film excellent in workability, transparency, dimensional stability during heating, and the like. Moreover, since it can suppress generation
  • the transparent resin film can be easily a low retardation film having an in-plane retardation (R0) of 0 nm to 10 nm or a ⁇ / 4 film having an in-plane retardation of about 80 nm to 150 nm. When used together, the visibility can be improved.
  • the in-plane retardation (R0) refers to an in-plane retardation value measured at 23 ° C. with light having a wavelength of 589 nm.
  • the cured resin layer includes a first cured resin layer formed on one surface side of the transparent resin film and a second cured resin layer formed on the other surface side.
  • a transparent resin film formed of an amorphous resin is easily scratched in each process such as formation of a transparent conductive film, patterning of a transparent conductive film, or mounting on an electronic device.
  • a first cured resin layer and a second cured resin layer are formed on both sides of the substrate.
  • the cured resin layer is a layer obtained by curing a curable resin.
  • the cured resin layer preferably contains a resin and particles.
  • the resin to be used those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
  • the ultraviolet curable resin examples include polyesters, acrylics, urethanes, amides, silicones, epoxies, and the like, and ultraviolet curable monomers, oligomers, polymers, and the like are included.
  • the ultraviolet curable resin preferably used is an acrylic resin or an epoxy resin, more preferably an acrylic resin.
  • the cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.
  • inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acryl-styrene copolymer, benzoguanamine, melamine, polycarbonate, and other cross-linked or uncrosslinked polymers.
  • examples include crosslinked organic particles and silicone particles.
  • the particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable.
  • the organic particles are preferably acrylic resins from the viewpoint of refractive index.
  • the mode particle diameter of the particles can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of a flat region other than the protrusion, and is not particularly limited. From the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the mode particle diameter of the particles is preferably 0.5 to 5 ⁇ m. It is more preferably 0 to 2 ⁇ m.
  • “mode particle size” means a particle size showing the maximum value of the particle distribution, and a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex) is used. , By measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). The measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.
  • the content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, and more preferably 0.2 to More preferably, it is 0.3 parts by weight.
  • the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed.
  • the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease.
  • the cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both.
  • heat known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods.
  • active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
  • the cured resin layer can be formed by a wet coating method (coating method) or the like using the above materials.
  • a wet coating method coating method
  • the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth.
  • the cured resin layer is preferably formed by a wet coating method.
  • the thickness of the first cured resin layer and the thickness of the second cured resin layer are both preferably 2 ⁇ m or less, more preferably 0.1 ⁇ m to 1.5 ⁇ m, still more preferably 0.3 ⁇ m to 1.2 ⁇ m.
  • the thickness of the second cured resin layer is preferably the same as or thinner than the thickness of the first cured resin layer. That is, the thickness of the second cured resin layer is preferably 10 to 100%, more preferably 20 to 90%, and more preferably 30 to 80% of the thickness of the first cured resin layer. Further preferred. Thereby, damage with a transparent resin film can be prevented when it conveys by the roll to roll manufacturing method.
  • the thickness of the cured resin layer is within the above range, it is possible to prevent the visibility of a touch panel and the like from being deteriorated, and when the transparent conductive film of the transparent conductive film is placed downward, it is largely curled in advance in the concave direction. Therefore, curling after the heating step can be suppressed when thin glass is laminated to form a transparent conductive film laminate.
  • the transparent conductive film can be provided on the transparent resin film, but is preferably provided on the first cured resin layer provided on one surface side of the transparent resin film.
  • the constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium oxide
  • ATO tin oxide
  • the thickness of the transparent conductive film is not particularly limited, but in order to obtain a continuous film having good conductivity with a surface resistance of 1 ⁇ 10 3 ⁇ / ⁇ or less, the thickness is preferably 10 to 35 nm. If the film thickness becomes too thick, the transparency is lowered, and so the thickness is more preferably 15 to 35 nm, and still more preferably 20 to 30 nm. When the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. On the other hand, when the thickness of the transparent conductive film exceeds 35 nm, transparency may be lowered. Further, by forming the transparent conductive film on the first cured resin layer with the above-mentioned thickness, when the transparent conductive film of the transparent conductive film is turned down, it can be designed to curl in a large concave direction in advance.
  • the formation method of the transparent conductive film is not particularly limited, and a conventionally known method can be adopted. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness.
  • the transparent conductive film can be crystallized by performing a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced.
  • the means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
  • a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • the surface resistance value can be measured by the 4-terminal method according to JIS K7194.
  • the transparent conductive film may be patterned by etching or the like.
  • the patterning of the transparent conductive film can be performed using a conventionally known photolithography technique.
  • An acid is preferably used as the etching solution.
  • the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof.
  • the transparent conductive film is preferably patterned in a stripe shape.
  • the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.
  • optical adjustment layer One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film.
  • the optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.
  • the optical adjustment layer preferably contains a binder resin and fine particles.
  • the binder resin included in the optical adjustment layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates, and ultraviolet curable resins including acrylic resins. preferable.
  • the refractive index of the optical adjustment layer is preferably 1.6 to 1.8, more preferably 1.62 to 1.78, and still more preferably 1.65 to 1.75.
  • the optical adjustment layer may have fine particles having an average particle diameter of 1 nm to 500 nm.
  • the content of fine particles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight.
  • the average particle diameter of the fine particles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm.
  • the content of the fine particles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight.
  • inorganic oxides that form fine particles include fine particles of silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, niobium oxide, and the like.
  • fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide and niobium oxide are preferable, and zirconium oxide is more preferable. These may be used alone or in combination of two or more.
  • the optical adjustment layer can contain other inorganic substances.
  • the inorganic material NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3 ), BaF 2 (1.3), LaF 3 (1.55), CeF (1.63), etc. (the numerical values in parentheses indicate the refractive index).
  • the optical adjustment layer can be formed using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • ITO indium oxide
  • the crystallization time of the transparent conductive layer can be shortened if the surface of the resin layer that is the base layer is smooth. From this point of view, the resin layer is preferably formed by a wet coating method.
  • the thickness of the optical adjustment layer is preferably 40 nm to 150 nm, more preferably 50 nm to 130 nm, and even more preferably 70 nm to 120 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.
  • the metal wiring can be formed by etching after forming the metal layer on the transparent conductive film.
  • a photosensitive metal paste as follows. That is, after the transparent conductive film is patterned, the metal wiring is formed by applying a photosensitive conductive paste described later on the transparent resin film or the transparent conductive film, forming a photosensitive metal paste layer, and forming a photomask. The photosensitive metal paste layer is exposed through a photomask after being laminated or brought close to each other, then developed and patterned to obtain a drying process. That is, the metal wiring pattern can be formed by a known photolithography method or the like.
  • the photosensitive conductive paste preferably contains conductive particles such as metal powder and a photosensitive organic component.
  • the material of the conductive particles of the metal powder preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al, and Pt, and more preferably Ag.
  • the volume average particle diameter of the conductive particles of the metal powder is preferably 0.1 ⁇ m to 2.5 ⁇ m.
  • the conductive particles other than the metal powder may be metal-coated resin particles in which the resin particle surfaces are coated with metal.
  • the material of the resin particles the above-mentioned particles are included, but an acrylic resin is preferable.
  • the metal-coated resin particles are obtained by reacting the surface of the resin particles with a silane coupling agent and coating the surface with metal. By using the silane coupling agent, the dispersion of the resin component is stabilized, and uniform metal-coated resin particles can be formed.
  • the photosensitive conductive paste may further contain glass frit.
  • the glass frit preferably has a volume average particle size of 0.1 to 1.4 ⁇ m, a 90% particle size of 1 to 2 ⁇ m, and a top size of 4.5 ⁇ m or less.
  • the composition of the glass frit is not particularly limited, but Bi 2 O 3 is preferably blended in the range of 30 wt% to 70 wt% with respect to the whole.
  • Examples of the oxide that may be contained in addition to Bi 2 O 3 may include SiO 2 , B 2 O 3 , ZrO 2 , and Al 2 O 3 .
  • Na 2 O, K 2 O, and Li 2 O are preferably alkali-free glass frit that is substantially free of them.
  • the photosensitive organic component preferably contains a photosensitive polymer and / or a photosensitive monomer.
  • Photosensitive polymers include polymers of components selected from compounds having carbon-carbon double bonds such as methyl (meth) acrylate and ethyl (meth) acrylate, and side chains or molecules of acrylic resins comprising these copolymers. Those having a photoreactive group added to the terminal are preferably used.
  • Preferred photoreactive groups include ethylenically unsaturated groups such as vinyl, allyl, acrylic and methacrylic groups.
  • the content of the photosensitive polymer is preferably 1 to 30% by weight and 2 to 30% by weight.
  • photosensitive monomer examples include (meth) acrylate monomers such as methacryl acrylate and ethyl acrylate, ⁇ -methacryloxypropyltrimethoxysilane, and 1-vinyl-2-pyrrolidone. can do.
  • the photosensitive organic component is preferably contained in an amount of 5 to 40% by weight with respect to 100 parts by weight of the metal powder in terms of light sensitivity, and more preferably 10 to 30 parts by weight.
  • the photosensitive conductive paste of the present invention preferably uses a photopolymerization initiator, a sensitizer, a polymerization inhibitor, and an organic solvent as necessary.
  • the thickness of the metal layer is not particularly limited.
  • the thickness of the metal layer is appropriately set so that the formed pattern wiring has a desired resistance value. Therefore, the thickness of the metal layer is preferably 0.01 to 200 ⁇ m, and more preferably 0.05 to 100 ⁇ m.
  • the resistance of the pattern wiring does not become too high, and the power consumption of the device does not increase.
  • the production efficiency of the metal layer is increased, the integrated heat amount during the film formation is reduced, and the film is less likely to be thermally wrinkled.
  • the transparent conductive film is a transparent conductive film for a touch panel used in combination with a display
  • the portion corresponding to the display portion is formed by a patterned transparent conductive film, and a metal wiring made from a photosensitive conductive paste Is used for the wiring part of the non-display part (for example, the peripheral part).
  • the transparent conductive film may be used even in a non-display portion, and in that case, metal wiring may be formed on the transparent conductive film.
  • the transparent conductive film laminate is formed by laminating a glass substrate via an adhesive layer on the other side of the transparent conductive film of the transparent conductive film.
  • the transparent conductive film laminate is obtained by cutting the transparent conductive film laminate into 210 mm ⁇ 260 mm, with the transparent conductive film as the upper surface and heating at 130 ° C. for 90 minutes, and then the average curl value A at the four corners and the curl at the center.
  • the difference (A ⁇ B) from the value B is preferably 2.0 mm or less, more preferably less than 2.0 mm, and even more preferably 1.8 mm or less.
  • the lower limit is not particularly limited, but is preferably 0.5 mm or more.
  • Glass substrate A glass substrate laminates a transparent conductive film through an adhesive layer on the other surface side of the transparent conductive film of the transparent conductive film.
  • the material for forming the glass substrate is not particularly limited, but materials having excellent transparency, surface smoothness, thermal stability, moisture barrier property, isotropy, and the like are preferable, and examples include soda lime glass and borosilicate glass. . These glasses may be chemically strengthened, and an alkali elution preventing layer may be formed on the surface. Moreover, in order to raise the adhesive force with another layer, the glass surface may be processed with the silane coupling agent.
  • the thickness of the glass substrate is preferably 0.1 to 1.5 mm, and more preferably 0.3 to 1.0 mm. If the thickness is too thin, the glass tends to be damaged when the transparent conductive film laminate is heated. On the other hand, if the thickness is too thick, it is difficult to make the display thinner and the flexibility is lowered. A glass substrate having a thickness in such a range is bonded to a transparent conductive film designed to curl in a large concave direction in advance when the transparent conductive film is placed downward to produce a transparent conductive film laminate, thereby heating step Later curling can be suppressed.
  • any of the following pressure-sensitive adhesives can be used as long as it has transparency.
  • Specific examples of the pressure-sensitive adhesive include acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer, modified polyolefin, epoxy-based, fluorine-based, natural rubber, and synthetic rubber.
  • a polymer having a base polymer such as a rubber-based polymer can be appropriately selected and used.
  • an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited, and is a method in which the pressure-sensitive adhesive composition is applied to a release liner, dried and transferred to a glass substrate (transfer method), and the pressure-sensitive adhesive composition is directly applied to the glass substrate.
  • Examples include a drying method (direct copying method).
  • a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.
  • the preferable thickness of the pressure-sensitive adhesive layer is 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and more preferably 15 ⁇ m to 35 ⁇ m.
  • a transparent conductive film laminated body is suitably applicable as a transparent electrode of electronic devices, such as touch panels, such as a capacitance system and a resistive film system, for example.
  • the transparent conductive film laminated body of this invention has laminated
  • a glass substrate is one sheet. It may consist of a substrate, or may be a laminate of two or more substrates (for example, laminated via a transparent adhesive layer).
  • the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.
  • the above transparent conductive film laminate When the above transparent conductive film laminate is used to form a touch panel, the amount and direction of curling after a heating step such as drying can be suppressed, so that the transparent conductive film laminate can be easily transported during touch panel formation. Excellent handleability. Therefore, a touch panel excellent in transparency and visibility can be manufactured with high productivity. If it is other than a touch panel use, it can be used for the shield use which shields the electromagnetic waves and noise which are emitted from an electronic device.
  • the method for producing a transparent conductive film laminate of the present invention includes a step of preparing a transparent conductive film in which an amorphous transparent conductive film is formed on a transparent resin film, and the transparent conductive film of the transparent conductive film is the other
  • stacking a glass substrate on the surface side of this through an adhesive layer, and the process of heat-processing the said transparent conductive film laminated body are included.
  • a process of heat-processing a transparent conductive film laminated body the process of crystallizing a transparent conductive film, the process of drying the metal wiring formed with the photosensitive metal paste layer, etc. are mentioned, for example.
  • the transparent conductive film laminate is preferably subjected to such a heating process.
  • a transparent conductive film is designed so that it may curl greatly in a concave direction beforehand when a transparent conductive film is turned down, generation
  • production of curl can be suppressed in a transparent conductive film laminated body.
  • the transparent conductive film used in the step of preparing the transparent conductive film may form a cured resin layer on the transparent resin film and then form a transparent conductive film, or the cured resin layer may be formed on the transparent resin film.
  • the formed transparent resin laminate may be obtained, and then a transparent conductive film may be formed on the cured resin layer, or a transparent conductive film having a cured resin layer and a transparent conductive film formed on the transparent resin film. You may obtain it. Also regarding the optical adjustment layer described above, a transparent resin laminate formed in advance may be obtained and used.
  • an adhesive layer is formed on the release substrate, the adhesive layer is transferred to the glass substrate, and the transparent resin film of the second cured resin layer of the transparent conductive film is not formed.
  • a glass substrate may be laminated on the side through an adhesive layer, or an adhesive layer may be directly formed on the glass substrate.
  • an adhesive layer may be formed in the surface opposite to the transparent conductive film of a transparent conductive film, and a glass substrate may be laminated
  • the heating temperature is preferably, for example, 130 ° C. or lower, more preferably 120 ° C. or lower, and the treatment time is, for example, 15 to 180 minutes.
  • a transparent conductive film is etched and a pattern part is formed with a pattern.
  • the above-mentioned photosensitive conductive paste is applied onto the transparent resin film or the transparent conductive film, a photosensitive metal paste layer is formed, and a photomask is stacked or adjacent.
  • the drying step is preferably performed at 130 ° C. or less, and preferably 120 ° C. or less.
  • the heat treatment for crystallizing the transparent conductive film laminate, the subsequent etching process, and the metal wiring process are performed in a single-wafer process because there is alignment of patterning of the photomask, the transparent conductive film, and the metal wiring. At that time, a process of fixing to the suction plate is necessary for alignment, but the amount and direction of curling can be controlled even after drying in the above temperature range. Is possible.
  • Example 1 Preparation of curable resin composition containing spherical particles
  • Acrylic spherical particles (trade name, manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC) and a mode particle diameter of 1.9 ⁇ m.
  • a curable resin composition containing spherical particles containing 0.3 part by weight of “MX-180TA”) was prepared.
  • the prepared spherical particle-containing curable resin composition is applied to one surface of a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 35 ⁇ m and a glass transition temperature of 165 ° C. Formed.
  • the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a second cured resin layer was formed so as to have a thickness of 1.0 ⁇ m.
  • a first cured resin layer was formed on the other surface of the polycycloolefin film by the same method except that spherical particles were not added, so that the thickness was 1.0 ⁇ m.
  • a zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). was applied to form a coating layer. Then, the coating layer was irradiated with ultraviolet rays from the side where the coating layer was formed, and an optical adjustment layer was formed so that the thickness was 100 nm.
  • the polycycloolefin film on which the optical adjustment layer is formed is put into a take-up sputtering apparatus, and an amorphous indium tin oxide layer (composition: SnO) having a thickness of 27 nm is formed on the surface of the optical adjustment layer. 2 10 wt%) to form a transparent conductive film. In this way, a transparent conductive film was produced.
  • SnO amorphous indium tin oxide layer
  • An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer. After applying the acrylic pressure-sensitive adhesive obtained as described above on a thin soda glass having a thickness of 0.4 mm and cut to 210 mm ⁇ 260 mm (thickness after drying: 20 ⁇ m), the transparent conductive film is on top A transparent conductive film laminate was prepared by laminating a transparent conductive film.
  • Example 2 In Example 1, a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 50 ⁇ m was used as the transparent resin film, and the frequency of spherical particles contained in the second cured resin layer A transparent conductive film and a transparent conductive film laminate were prepared in the same manner as in Example 1, except that a particle having a particle diameter of 0.8 ⁇ m was used and the thickness of the second cured resin layer was 0.5 ⁇ m. The body was made.
  • ZEONOR registered trademark
  • Example 3 In Example 1, the transparent conductive film and the transparent film were formed in the same manner as in Example 1 except that after forming the optical adjustment layer, the film was annealed at 150 ° C. for 3 minutes by the roll-to-roll manufacturing method, and then the transparent conductive film was formed. A conductive film laminate was formed.
  • Example 4 In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycycloolefin film having a thickness of 50 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.
  • a polycycloolefin film having a thickness of 50 ⁇ m trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • Example 5 a transparent conductive film was prepared in the same manner as in Example 3 except that a polycycloolefin film having a thickness of 50 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.
  • a polycycloolefin film having a thickness of 50 ⁇ m trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • Example 1 a polycycloolefin film having a thickness of 50 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film, and the thickness of the second cured resin layer was 3.0 ⁇ m.
  • a transparent conductive film and a transparent conductive film laminate were produced in the same manner as in Example 1 except that.
  • Example 2 a transparent conductive film was prepared in the same manner as in Example 1 except that a 75 ⁇ m thick polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.
  • a 75 ⁇ m thick polycycloolefin film trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • Example 3 Example 1 except that polyester resin (PET) (trade name “Diafoil (registered trademark)” manufactured by Mitsubishi Plastics) having a thickness of 50 ⁇ m and a glass transition temperature of 70 ° C. was used as the transparent resin film in Example 1.
  • PET polyester resin
  • a transparent conductive film and a transparent conductive film laminate were produced in the same manner as described above.
  • ⁇ Evaluation> Measurement of thickness Thickness was measured with a micro gauge thickness meter (Mitutoyo Co., Ltd.) for those having a thickness of 1 ⁇ m or more. The thickness of less than 1 ⁇ m and the thickness of the optical adjustment layer (100 nm) were measured with an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.). For nano-sized thicknesses such as the thickness of ITO films, etc., a sample for cross-sectional observation was prepared with FB-2000A (manufactured by Hitachi High-Technologies Corporation), and cross-sectional TEM observation was performed with HF-2000 (manufactured by Hitachi High-Technologies Corporation). Was used to measure the film thickness. The evaluation results are shown in Table 1.
  • the thermal contraction rate in the longitudinal direction (MD direction) and the width direction (TD direction) of the transparent conductive film was calculated as follows. Specifically, the transparent conductive film is cut to a width of 100 mm and a length of 100 mm (test piece), and the four corners are scratched with a cross, and the length before heating in the MD direction and the TD direction at the four central parts of the cross scratch The thickness (mm) was measured with a CNC three-dimensional measuring machine (LEGEX 774 manufactured by Mitutoyo Corporation). Then, it put into oven and heat-processed (130 degreeC, 90 minutes).
  • Glass transition temperature (Tg) was calculated
  • the direction of curl generation was a concave direction when the transparent conductive film was down, and the curl generation amount was as large as 7 to 28 mm. Therefore, the transparent conductive film laminate Then, the direction of curling was a concave direction when the transparent conductive film was placed on top, and the amount of curling was 1.1 to 2.0 mm, and curling could be suppressed. In the transparent conductive films of Comparative Examples 1 and 2, the direction of curling was a concave direction when the transparent conductive film was down, and the amount of curling was as small as 2 to 4 mm.
  • the amount of curling was 2.5 to 4.3 mm. From the above, there is a correlation between the curl amount of the transparent conductive film and the warp after the transparent conductive film laminate, and when a curl amount of 5 mm or more is generated in the transparent conductive film, It has been found that the curl amount of can be reduced.
  • the comparative example 3 is a value which does not have a problem as a curl value, since the PET film is used for a base material and there is a high phase difference, it cannot be used as a base material under a polarizing plate.

Abstract

 透明導電性フィルムに薄型のガラス基板を貼り合せた透明導電性フィルム積層体において、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能な透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルを提供する。本発明における透明導電性フィルム10は、透明樹脂フィルム1の一方の面側に第1の硬化樹脂層2と、透明導電膜3とがこの順に形成され、透明樹脂フィルム1の他方の面側に第2の硬化樹脂層4が形成された透明導電性フィルム10であって、透明樹脂フィルム1は、非晶性樹脂からなり、透明導電性フィルム10を50cm×50cmにカットし、透明導電膜3を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、5mm以上である透明導電性フィルム10である。

Description

透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル
 本発明は、透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルに関し、特にカールの発生の制御に有用な技術である。
 従来、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、タッチパネル等の基板としては、ガラスを基板とするものが多く使われてきた。近年では、ディスプレイの薄型化に伴い、透明性、表面平滑性、耐熱性等に優れるガラス基板での薄型化が注目されている。
 一方、静電容量タイプのタッチパネル構成においては透明導電性フィルムの基材フィルムとしてポリエチレンテレフタレート(PET)が広く用いられている。しかし、PETフィルムは延伸製膜されており、高い位相差を有しているため、偏光板のもとで使用することが困難である。そのため、特許文献1では、低位相差用基材フィルムとして非晶性樹脂であるシクロオレフィン系樹脂を用いた透明導電性フィルムが提案されている。
 特許文献2では、液晶ディスプレイ等の偏光板の下で使用できるλ/4位相差フィルムとしてポリカーボネートや非晶性のポリオレフィンフィルム上に透明導電膜を形成した透明導電性フィルムが開示されており、この透明導電性フィルムをガラス基板上に積層した積層体や、全面フレキシブルカバーガラスにタッチパネル機能を付与した液晶表示装置が提案されている。
 透明導電性フィルムを薄型のガラス基板に貼り合せ透明導電性フィルム積層体とした後に、透明導電膜の結晶化を行ったり、額縁配線用の金属配線加工を行ったりする場合は、130℃以上の加熱工程を経由することが多い。かかる場合、ガラス基板が薄いため加熱時の影響を受けやすく、また樹脂とガラスとで熱収縮率等が異なるため、積層体がカールして、次の工程に搬送できなかったり、金属配線のアライメント調整が困難となり金属配線の加工ができなかったりして、安定かつ連続して生産を行うことが困難となる。
特開2013-114344号公報 特開2014-137427号公報
 そこで、本発明の目的は、透明導電性フィルムに薄型のガラス基板を貼り合せた透明導電性フィルム積層体において、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能な透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルを提供することにある。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、透明導電性フィルム積層体が透明導電膜を上にした場合大きく凹方向にカールしたため、透明導電性フィルムの透明導電膜を下にした場合に予め大きく凹方向にカールするように透明導電性フィルムを設計することで、上記目的を達成し得ることを見出し本発明にいたった。
 すなわち、本発明の透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成された透明導電性フィルムであって、前記透明樹脂フィルムは、非晶性樹脂からなり、前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、5mm以上である透明導電性フィルムであることを特徴とする。なお、本発明における各種の物性値は、特に断りのない限り、実施例等において採用する方法により測定される値である。
 透明樹脂フィルムを形成する非晶性樹脂は、一般に押出し工程やキャスト製膜工程を経て製膜され、必ず残留応力が残っており、加熱により収縮応力が発生する。一方、薄ガラスは、130℃程度の加熱では圧倒的に収縮応力が小さい。そのため、透明導電性フィルムに薄ガラスを貼り合せた透明導電性フィルム積層体において、透明導電性フィルムを上にして加熱した場合凹方向にカールが発生してしまう。また、透明導電性フィルムにおいては、無機物である透明導電膜と有機物である透明樹脂フィルム等との熱収縮率や線膨張係数等が違うため、加熱によるカールが発生する。そこで、本発明では、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計することで、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生をきわめて小さくできることを見出した。すなわち、透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、5mm以上とすることで、従来のガラス基板に積層した積層体で生じたであろう収縮力と、透明導電性フィルムに生じた収縮力とで打ち消しあうことができ、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。
 本発明の透明導電性フィルムにおいて、前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり、前記第2の硬化樹脂層の厚みは前記第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとが上記のように薄い範囲であると、硬化樹脂層に起因する収縮力の影響を小さくすることができ、透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなる。また、第2の硬化樹脂層の厚みを前記第1の硬化樹脂層の厚みと同じかそれより薄くすると、さらに透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなるように透明導電性フィルムを設計できる。
 本発明の透明導電性フィルムは、前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備えることが好ましい。光学調整層により屈折率を制御できるため、透明導電膜をパターン化した場合でも、パターン形成部とパターン開口部との反射率差を低減することができ、透明導電膜パターンが見えにくく、タッチパネル等の表示装置において視認性が良好になる。
 光学調整層塗工後にフィルムにアニール工程を通すことで、MD方向とTD方向の基材熱収縮差調整および基材の収縮力を小さくすることで、カール量がより発生しやすくなるように透明導電性フィルムを設計できる。
 本発明における第2の硬化樹脂層は、樹脂と粒子とを含むことが好ましい。これにより、ロールtoロール製法に耐えうるアンチブロッキング性をより確実に実現でき、搬送容易性を向上させることができる。
 本発明における透明樹脂フィルムにおいて、非晶性樹脂がシクロオレフィン系樹脂であり、厚みが20~75μmであり、ガラス転移温度が130℃以上であり、前記透明導電性フィルムにおいて、130℃で90分間の加熱した後の熱収縮率がMDおよびTD方向で0.2%未満であることが好ましい。透明樹脂フィルムの厚みが比較的薄い範囲にあるため、より加熱時の影響を受けやすく、カールを発生させやすいように透明導電性フィルムを設計できる。また、ガラス転移温度が高いシクロオレフィン系樹脂を用いて、熱収縮率が小さい透明導電性フィルムを用いることで、加熱工程後の過剰な熱収縮を抑制することができ、より高いレベルでカールの発生をコントロールできる。
 本発明における光学調整層は、バインダー樹脂と微粒子とを含み、屈折率が1.6~1.8であり、厚みが40~150nmであることが好ましい。光学調整層に微粒子を含むことによって光学調整層自体の屈折率の調整を容易に行うことができる。また、光学調整層の厚みを前記範囲とすることで、連続被膜となりやすく、透明性を確保できるとともに、カール発生に大きな影響を与えないように制御できる。
 本発明における透明導電膜は、インジウム・スズ複合酸化物(ITO)からなり、厚みが10~35nmであることが好ましい。これにより、透明性を確保でき、タッチパネル等に使用時も視認性を向上させることができるとともに、カール発生の向きや量を設計できる。
 本発明の透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を介してガラス基板を積層した透明導電性フィルム積層体であることが好ましい。本発明の透明導電性フィルムは、透明導電膜を下にした場合予め大きく凹方向にカールするように設計しているため、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生を抑制でき、その後の工程歩留まりを確保可能である。
 本発明の透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、2.0mm以下であることが好ましい。これにより、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能となる。
 本発明のタッチパネルは、前記透明導電性フィルム積層体を用いて得られることが好ましい。前記透明導電性フィルム積層体を用いると、乾燥等の加熱工程後のカール発生を抑制することができるため、透明導電性フィルム積層体の加工搬送が容易となり、作業効率が向上する。
本発明の一実施形態に係る透明導電性フィルムの模式的断面図である。 本発明の他の実施形態に係る透明導電性フィルムの模式的断面図である。 本発明の一実施形態に係る透明導電性フィルム積層体の模式的断面図である。
 本発明の透明導電性フィルム積層体の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。
 <透明導電性フィルム及び積層体の構造>
 図1は、本発明の透明導電性フィルムの一実施形態を模式的に示す断面図であり、図2は、本発明の透明導電性フィルムの他の実施形態を模式的に示す断面図であり、図3は、本発明の透明導電性フィルム積層体の一実施形態を模式的に示す断面図である。図1~2に示す透明導電性フィルム10は、透明樹脂フィルム1の一方の面側に第1の硬化樹脂層2と、透明導電膜3とがこの順に形成され、前記透明樹脂フィルム1の他方の面側に第2の硬化樹脂層4が形成されている。図2に示すように、前記第1の硬化樹脂層2と前記透明導電膜3との間に更に1層の光学調整層5を備えることができるが、2層以上の光学調整層5を備えることもできる。第1の硬化樹脂層2と第2の硬化樹脂層4とは、アンチブロッキング層やハードコート層として機能するものを含む。また、図3に示すように、透明導電性フィルム積層体は、透明導電性フィルム10の透明導電膜3とは反対の面側に粘着剤層7を介してガラス基板6を積層する。
 <透明導電性フィルム>
 透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成されている。第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。透明導電性フィルムにおいて、130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.2%未満であることが好ましく、0.2%以下であることがより好ましく、0.15%以下であることが更に好ましく、0.1%以下であることが特に好ましい。下限値は特に制限されないが、0.01%以上であることが好ましい。これにより、加工性、透明性等に優れた透明導電性フィルムとなり、乾燥等の加熱工程後におけるカールの発生量や向きが制御できるため、透明導電性フィルム積層体の加工搬送が容易となる。
 透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、5mm以上であることが好ましく、8mm以上であることがより好ましく、10mm以上であることが更に好ましい。上限値は特に制限されないが、50mm以下であることが好ましく、40mm以下であることがより好ましく、30mm以下であることが更に好ましい。このように透明導電性フィルムのカール量を大きく設定すると、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。
 (透明樹脂フィルム)
 透明樹脂フィルムは、非晶性樹脂により形成されており、高透明性及び低吸水性の特性を有する。非晶性樹脂の採用により透明導電性フィルムの光学特性の制御が可能となる。非晶性樹脂としては、特に限定されるものではないが、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ポリカーボネート、シクロオレフィン、ポリ塩化ビニル、ポリメチルメタクリレートなどのアクリル系樹脂、ポリスチレン、ポリメチルメタクリレートスチレン共重合体、ポリアクリロニトリル、ポリアクリロニトリルスチレン共重合体、ハイインパクトポリスチレン(HIPS)、アクリロニトルブタジエンスチレン共重合体(ABS樹脂)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンエーテル等が挙げられる。高透明性、低吸水性、耐熱性等の観点から、シクロオレフィン系樹脂やポリカーボネート系樹脂などが好ましい。
 シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されるものではない。透明樹脂フィルムに用いられるシクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。
 上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが存在している。かかる多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンなどが挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。
 シクロオレフィン系樹脂は、市販品としても入手可能であり、例えば、日本ゼオン社製「ZEONOR」、JSR社製「ARTON」、ポリプラスチック社製「TOPAS」、三井化学社製「APEL」などが挙げられる。
 ポリカーボネート系樹脂は、特に限定されないが、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。具体的には、例えば、ビスフェノール類を用いたポリカーボネート(PC)としてビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネート、発砲ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などが挙げられる。ポリカーボネート系樹脂には、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。ポリカーボネート樹脂の市販品としては、恵和社製「オプコン」、帝人社製「パンライト」、三菱ガス化学製「ユーピロン(紫外線吸収剤含有ポリカーボネート)」等が挙げられる。
 透明樹脂フィルムには、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、透明樹脂フィルム上に形成される硬化樹脂層や透明導電膜等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、透明樹脂フィルム表面を除塵、清浄化してもよい。
 透明樹脂フィルムの厚みは、20~75μmの範囲内であることが好ましく、25~70μmの範囲内であることがより好ましく、30~65μmの範囲内であることが更に好ましい。透明樹脂フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電膜の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。また、厚みが上記範囲内であると、より加熱時の影響を受けやすくなるため、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計でき、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。
 上記透明樹脂フィルムの非晶性樹脂のガラス転移温度(Tg)は、特に限定されないが、130℃以上が好ましく、150℃以上がより好ましく、160℃以上が更に好ましい。これにより、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。
 透明樹脂フィルムを形成する樹脂フィルム原反(硬化樹脂層を積層する前の、加熱処理等を施す前のフィルム)の130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.3%以下であることが好ましく、0.2%以下であることがより好ましく、0.1%以下であることが更に好ましい。これにより、加工性、透明性、加熱時の寸法安定性等に優れた透明樹脂フィルムとなる。また、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。
 上記透明樹脂フィルムは、面内方向の位相差(R0)が0nm~10nmmの低位相差のフィルムや面内方向の位相差が80nm~150nm程度のλ/4フィルムとすることが容易で、偏光板とともに使用される場合においては、視認性を良好にすることが可能となる。なお、面内位相差(R0)は、23℃において波長589nmの光で測定した位相差フィルム(層)面内の位相差値をいう。
 (硬化樹脂層)
 硬化樹脂層は、透明樹脂フィルムの一方の面側に形成された第1の硬化樹脂層と、他方の面側に形成された第2の硬化樹脂層とを含む。非晶性樹脂で形成された透明樹脂フィルムは、透明導電膜の形成や透明導電膜のパターン化または電子機器への搭載などの各工程で傷が入りやすいので、上記のように、透明樹脂フィルムの両面に第1の硬化樹脂層と第2の硬化樹脂層とを形成する。
 硬化樹脂層は、硬化型樹脂を硬化させることにより得られた層である。硬化樹脂層は、樹脂と粒子とを含むことが好ましい。用いる樹脂としては、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できるが、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられる。これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。
 紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、アクリル系樹脂やエポキシ系樹脂であり、より好ましくはアクリル系樹脂である。
 硬化樹脂層は粒子を含んでいてもよい。硬化樹脂層に粒子を配合することにより、硬化樹脂層の表面に隆起を形成することができ、透明導電性フィルムに耐ブロッキング性を好適に付与することができる。
 上記粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂が好ましい。
 粒子の最頻粒子径は、硬化樹脂層の隆起の突出度や隆起以外の平坦領域の厚みとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の最頻粒子径は、0.5~5μmであることが好ましく、1.0~2μmであることがより好ましい。なお、本明細書において、「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA-3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。
 粒子の含有量は、樹脂固形分100重量部に対して0.05~1.0重量部であることが好ましく、0.1~0.5重量部であることがより好ましく、0.2~0.3重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分な隆起が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電膜の電気特性が不均一となったりする場合がある。
 硬化樹脂層は、各硬化型樹脂と必要に応じて加える粒子、架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。
 硬化樹脂層は、上記の材料を用いて、ウェットコーティング法(塗工法)等により製膜できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である硬化樹脂層の表面が平滑であると、透明導電膜の結晶化時間を短縮することもできる。かかる観点から、硬化樹脂層はウェットコーティング法により製膜されることが好ましい。
 第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとは、いずれも2μm以下であることが好ましく、より好ましくは0.1μm~1.5μmであり、更に好ましくは0.3μm~1.2μmである。また、第2の硬化樹脂層の厚みは第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。即ち、第2の硬化樹脂層の厚みは、第1の硬化樹脂層の厚みの10~100%であることが好ましく、20~90%であることがより好ましく、30~80%であることが更に好ましい。これにより、ロールtoロール製法にて搬送した際透明樹脂フィルムの傷つきが防止できる。また、硬化樹脂層の厚みが前記範囲にあると、タッチパネル等の視認性が悪化することを防ぐことができるとともに、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できるため、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。
 (透明導電膜)
 透明導電膜は、透明樹脂フィルム上に設けることができるが、透明樹脂フィルムの一方の面側に設けられた第1の硬化樹脂層上に設けられることが好ましい。透明導電膜の構成材料は、無機物を含む限り特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば酸化スズを含有する酸化インジウム(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
 透明導電膜の厚みは、特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚みを10~35nmとするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15~35nmであることがより好ましく、更に好ましくは20~30nmの範囲内である。透明導電膜の厚みが、10nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。一方、透明導電膜の厚みが、35nmを超えると透明性の低下などをきたす場合がある。また、透明導電膜を第1の硬化樹脂層上に前記厚みで形成することで、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できる。
 透明導電膜の形成方法は、特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。
 透明導電膜は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80~150℃で30~90分間程度)を施して結晶化することができる。透明導電膜を結晶化することで、透明導電膜が低抵抗化されることに加えて、透明性及び耐久性が向上する。非晶質の透明導電膜を結晶質に転化させる手段は、特に限定されないが、空気循環式オーブンやIRヒーターなどが用いられる。
 「結晶質」の定義については、透明樹脂フィルム上に透明導電膜が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。なお、表面抵抗値の測定は、JIS K7194に準じて、4端子法により測定できる。
 また、透明導電膜は、エッチング等によりパターン化してもよい。透明導電膜のパターン化に関しては、従来公知のフォトリソグラフィの技術を用いて行うことができる。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液があげられる。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電膜がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電膜をパターン化する場合、先に透明導電膜の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電膜のアニール処理は、透明導電膜をパターン化した後に行うことが好ましい。
 (光学調整層)
 第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。光学調整層は、透明導電性フィルムの透過率の上昇や、透明導電膜がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得るために用いられる。
 光学調整層は、バインダー樹脂と微粒子とを含むことが好ましい。光学調整層に含まれるバインダー樹脂としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられ、アクリル系樹脂を含む紫外線硬化型樹脂が好ましい。
 光学調整層の屈折率は、1.6~1.8であることが好ましく、1.62~1.78であることがより好ましく、1.65~1.75であることが更に好ましい。これにより、透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得ることができる。
 光学調整層は、平均粒径が1nm~500nmの微粒子を有していてもよい。光学調整層中の微粒子の含有量は0.1重量%~90重量%であることが好ましい。光学調整層に用いられる微粒子の平均粒径は、上述のように1nm~500nmの範囲であることが好ましく、5nm~300nmであることがより好ましい。また、光学調整層中の微粒子の含有量は10重量%~80重量%であることがより好ましく、20重量%~70重量%であることがさらに好ましい。光学調整層中に微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。
 微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましく、酸化ジルコニウムがより好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 光学調整層は、その他の無機物を含有することが可能である。無機物としては、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、BaF(1.3)、LaF(1.55)、CeF(1.63)など(括弧内の数値は屈折率を示す)が挙げられる。
 光学調整層は、上記の材料を用いて、ウェットコーティング法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である樹脂層の表面が平滑であると、透明導電層の結晶化時間を短縮することもできる。かかる観点から、樹脂層はウェットコーティング法により製膜されることが好ましい。
 光学調整層の厚みは、40nm~150nmであることが好ましく、50nm~130nmであることがより好ましく、70nm~120nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、クラックが生じ易くなったりする傾向がある。
 (金属配線)
 金属配線は、金属層を透明導電膜上に形成した後、エッチングにより形成することも可能であるが、以下のように感光性金属ペーストを用いて形成するのが好ましい。即ち、金属配線は、透明導電膜がパターン化された後に、後述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させフォトマスクを介して感光性金属ペースト層に露光を行い、次いで現像を行い、パターン形成した後、乾燥工程を経て得られる。つまり、公知のフォトリソグラフィ法等により、金属配線のパターン形成が可能である。
 前記感光性導電ペーストは、金属粉末などの導電性粒子と感光性有機成分とを含むことが好ましい。金属粉末の導電性粒子の材料としては、Ag、Au、Pd、Ni、Cu、AlおよびPtの群から選択される少なくとも1種を含むものであることが好ましく、より好ましくはAgである。金属粉末の導電性粒子の体積平均粒子径は0.1μm~2.5μmであることが好ましい。
 金属粉末以外の導電性粒子としては、樹脂粒子表面を金属で被覆した金属被覆樹脂粒子でもよい。樹脂粒子の材料としては、前述のような粒子が含まれるが、アクリル系樹脂が好ましい。金属被覆樹脂粒子は樹脂粒子の表面にシランカップリング剤を反応させ、さらにその表面に金属で被覆することにより得られる。シランカップリング剤を用いることにより、樹脂成分の分散が安定化して、均一な金属被覆樹脂粒子を形成することができる。
 感光性導電ペーストはさらにガラスフリットを含んでいてもよい。ガラスフリットは、体積平均粒子径が0.1μm~1.4μmであることが好ましく、90%粒子径が1~2μmおよびトップサイズが4.5μm以下であることが好ましい。ガラスフリットの組成としては、特に限定されないが、Biが全体に対して30重量%~70重量%の範囲で配合されることが好ましい。Bi以外に含んでいてよい酸化物としては、SiO、B、ZrO、Alを含んでよい。NaO、KO、LiOは実質的に含まないアルカリフリーのガラスフリットであることが好ましい。
 感光性有機成分は、感光性ポリマーおよび/または感光性モノマーを含むことが好ましい。感光性ポリマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の炭素-炭素二重結合有する化合物から選択された成分の重合体やこれらの共重合体からなるアクリル樹脂の側鎖または分子末端に光反応性基を付加したもの等が好適に用いられる。好ましい光反応性基としてはビニル基、アリル基、アクリル基、メタクリル基などのエチレン性不飽和基が挙げられる。感光性ポリマーの含有量は、1~30重量%、2~30重量%であることが好ましい。
 感光性モノマーとしては、メタクリルアクリレート、エチルアクリレートなどの(メタ)アクリレート系モノマーや、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドンなどが挙げられ、1種または2種以上を使用することができる。
 感光性導電ペーストにおいては、感光性有機成分が金属粉末100重量部に対して、5~40重量%含むことが光の感度の点で好ましく、より好ましくは10重量部~30重量部である。また、本発明の感光性導電ペーストは必要により光重合開始剤、増感剤、重合禁止剤、有機溶媒を用いることが好ましい。
 金属層の厚みは、特に制限されない。例えば、金属層の面内の一部をエッチング等により除去してパターン配線を形成する場合は、形成後のパターン配線が所望の抵抗値を有するように金属層の厚みが適宜に設定される。そのため、金属層の厚みは、0.01~200μmであることが好ましく、0.05~100μmであることがより好ましい。金属層の厚みが上記範囲であると、パターン配線の抵抗が高くなりすぎず、デバイスの消費電力が大きくならない。また、金属層の成膜の生産効率が上がり、成膜時の積算熱量が小さくなり、フィルムに熱シワが生じにくくなる。
 透明導電性フィルムがディスプレイと組合せて使用するタッチパネル用の透明導電性フィルムである場合、表示部分に対応した部分はパターン化された透明導電膜により形成され、感光性導電ペーストから作製された金属配線は非表示部(例えば周縁部)の配線部分に用いられる。透明導電膜は非表示部でも用いられてよく、その場合は金属配線が透明導電膜上に形成されていてもよい。
 <透明導電性フィルム積層体>
 透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層して形成する。透明導電性フィルム積層体は、透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、2.0mm以下であることが好ましく、2.0mm未満であることがより好ましく、1.8mm以下であることが更に好ましい。下限値は特に制限されないが、0.5mm以上であることが好ましい。このようにカール量を抑えると、透明導電性フィルム積層体を搬送する際に、エアーで吸引が可能であり、連続して加工搬送が可能となる。
 (ガラス基板)
 ガラス基板は、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介して透明導電性フィルムを積層する。ガラス基板を形成する材料としては、特に限定されないが、透明性、表面平滑性、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ソーダライムガラス、ホウケイ酸ガラスなどが挙げられる。これらのガラスは、化学強化されていてもよく、表面にアルカリ溶出防止層が形成されていてもよい。また、他の層との接着力を上げるため、ガラス表面をシランカップリング剤で処理していてもよい。
 ガラス基板の厚みは、0.1~1.5mmであることが好ましく、0.3~1.0mmであることがより好ましい。かかる厚みが薄すぎると、透明導電性フィルム積層体を加熱したときにガラスに破損が生じやすく、一方厚すぎると、ディスプレイの薄型化が困難となり、フレキシブル性が低下する。かかる範囲の厚みのガラス基板を、透明導電膜を下にした場合予め大きく凹方向にカールするように設計した透明導電性フィルムと貼り合せて透明導電性フィルム積層体を作製することで、加熱工程後のカール発生を抑制できる。
 (粘着剤層)
 粘着剤層としては、透明性を有するものであれば特に制限なく以下の粘着剤を使用できる。粘着剤としては、具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
 粘着剤層の形成方法は特に制限されず、剥離ライナーに粘着剤組成物を塗布し、乾燥後、ガラス基板に転写する方法(転写法)、ガラス基板に、直接、粘着剤組成物を塗布、乾燥する方法(直写法)等があげられる。なお粘着剤には、必要に応じて粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を適宜に使用することもできる。
 粘着剤層の好ましい厚みは5μm~100μmであり、より好ましくは10μm~50μmであり、より好ましくは15μmから35μmである。
 <タッチパネル>
 透明導電性フィルム積層体は、例えば、静電容量方式、抵抗膜方式などのタッチパネルなどの電子機器の透明電極として好適に適用できる。また、本発明の透明導電性フィルム積層体は、ガラス基板上に積層しているため、そのままタッチパネルなどの電子機器の透明電極として好適に適用できる。
 タッチパネルの形成に際しては、前述した透明導電性フィルム積層体を使用して形成することができる。本発明では、透明導電性フィルムの透明導電膜が形成されていない側の面に透明な粘着剤層を介してガラス基板が貼り合わせられた積層体を形成するが、ガラス基板は、1枚の基板からなっていてもよく、2枚以上の基板の積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。透明導電性フィルムと基板との貼り合わせに用いられる粘着剤層としては、前述の通り、透明性を有するものであれば特に制限なく使用できる。
 上記の透明導電性フィルム積層体をタッチパネルの形成に用いた場合、乾燥等の加熱工程後におけるカールの発生量や向きが抑制できるため、透明導電性フィルム積層体の搬送が容易となり、タッチパネル形成時のハンドリング性に優れる。そのため、透明性及び視認性に優れたタッチパネルを生産性高く製造することが可能である。タッチパネル用途以外であれば、電子機器から発せられる電磁波やノイズをシールドするシールド用途に用いることができる。
 <透明導電性フィルム積層体の製造方法>
 本発明の透明導電性フィルム積層体の製造方法は、透明樹脂フィルムに非晶質の透明導電膜が形成された透明導電性フィルムを準備する工程と、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層する工程と、前記透明導電性フィルム積層体を加熱加工する工程と、を含む。透明導電性フィルム積層体を加熱加工する工程としては、例えば、透明導電膜を結晶化する工程や、感光性金属ペースト層により形成した金属配線を乾燥する工程等が挙げられる。透明導電性フィルム積層体としてから、このような加熱加工する工程を経ることが好ましい。これにより、透明導電性フィルムは透明導電膜を下にした場合予め大きく凹方向にカールするように設計されているため、透明導電性フィルム積層体においてカールの発生を抑制できる。
 透明導電性フィルムを準備する工程に用いられる透明導電性フィルムは、透明樹脂フィルム上に硬化樹脂層を形成し、次いで透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層が形成された透明樹脂積層体を入手して、次いで硬化樹脂層上に透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層および透明導電膜が形成された透明導電性フィルムを入手してもよい。上述の光学調整層に関してもあらかじめ形成された透明樹脂積層体を入手して用いてもよい。
 ガラス基板を積層する工程は、離型基材に粘着剤層を形成し、粘着剤層をガラス基板に転写し、透明導電性フィルムの第2の硬化樹脂層の透明樹脂フィルムが形成されていない側に粘着剤層を介してガラス基板を積層しても良いし、ガラス基板に直接粘着剤層を形成することも可能である。また、透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を形成しガラス基板を積層してもよい。
 透明導電膜の構成成分を結晶化させるため、熱処理した工程に投入する。この加熱温度は例えば130℃以下の温度で行うことが好ましく、より好ましくは120℃以下で、処理時間は例えば15分から180分である。その後、透明導電膜をエッチングし、パターンによりパターン部が形成する。本発明は透明導電膜がパターン化された後に、前述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させ、該フォトマスクを介して感光性金属ペースト層に露光を行い、またはスクリーン印刷等で金属配線を得る工程をさらに含むことが好ましい。前記乾燥工程は130℃以下で行うことが好ましく、120℃以下であることが好ましい。透明導電性フィルム積層体は結晶化させるための熱処理、その後のエッチング工程、金属配線工程は、フォトマスクや透明導電膜と金属配線のパターンニングの位置合わせ等があるため、枚葉工程で行う。その際、位置合わせのために吸着板に固定する工程が必要であるが、上記温度範囲で乾燥してもカールの量や向きを制御することができるため、吸着板に固定する工程を流すことが可能となる。
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 [実施例1]
 (球状粒子入り硬化性樹脂組成物の調製)
 紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29-120」)を100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製 商品名「MX-180TA」)を0.3重量部とを含む、球状粒子入り硬化性樹脂組成物を準備した。
 (硬化樹脂層の形成)
 準備した球状粒子入り硬化性樹脂組成物を厚みが35μmでガラス転移温度が165℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)の一方の面に塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが1.0μmとなる様に第2の硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、上記とは球状粒子を添加しないこと以外は同様の方法で、厚みが1.0μmとなる様に第1の硬化樹脂層を形成した。
 (光学調整層の形成)
 両面に硬化樹脂層が形成されたポリシクロオレフィンフィルムの第1の硬化樹脂層面側に光学調整層として屈折率1.62のジルコニア粒子含有紫外線硬化型組成物(JSR社製 商品名「オプスタ―Z7412」を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが100nmとなるように光学調整層を形成した。
 (透明導電性フィルムの形成)
 次に、光学調整層が形成されたポリシクロオレフィンフィルムを、巻き取り式スパッタ装置に投入し、光学調整層の表面に、厚みが27nmの非晶質のインジウム・スズ酸化物層(組成:SnO 10wt%)を形成して、透明導電膜を形成した。このようにして透明導電性フィルムを作製した。
 (透明導電性フィルム積層体の形成)
 通常の溶液重合により、ブチルアクリレート/アクリル酸=100/6(重量比)にて重量平均分子量60万のアクリル系ポリマーを得た。このアクリル系ポリマー100重量部に対し、エポキシ系架橋剤(三菱瓦斯化学製 商品名「テトラッドC(登録商標)」)6重量部を加えてアクリル系粘着剤を準備した。厚みが0.4mmで、210mm×260mmにカットされた薄いソーダガラス上に、前記のようにして得たアクリル系粘着剤を塗布(乾燥後の厚み:20μm)した後、透明導電膜が上になるように透明導電性フィルムを貼り合せて透明導電性フィルム積層体を作製した。
 [実施例2]
 実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、第2の硬化樹脂層に含まれる球状粒子の最頻粒子径が0.8μmのものを使用したこと、及び第2の硬化樹脂層の厚みを0.5μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 [実施例3]
 実施例1において、光学調整層を形成後にロールtoロール製法により150℃で3分間アニール処理を施した後に、透明導電膜を形成したこと以外は実施例1と同様にして透明導電性フィルム及び透明導電性フィルム積層体を形成した。
 [実施例4]
 実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 [実施例5]
 実施例3において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例3と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 [比較例1]
 実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、及び第2の硬化樹脂層の厚みを3.0μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 [比較例2]
 実施例1において、透明樹脂フィルムとして厚みが75μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 [比較例3]
 実施例1において、透明樹脂フィルムとして厚みが50μmでガラス転移温度が70℃のポリエステル樹脂(PET)(三菱樹脂製 商品名「ダイヤホイル(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
 <評価>
 (1)厚みの測定
  厚みは、1μm以上の厚みを有するものに関しては、マイクロゲージ式厚み計(ミツトヨ社製)にて測定を行った。また、1μm未満の厚みや光学調整層の厚み(100nm)は、瞬間マルチ測光システム(大塚電子社製 MCPD2000)で測定した。ITO膜等の厚みのようにナノサイズの厚みは、FB-2000A(株式会社日立ハイテクノロジーズ製)にて断面観察用サンプルを作製し、断面TEM観察はHF-2000(株式会社日立ハイテクノロジーズ製)を用いて膜厚を測定した。評価した結果を表1に示す。
 (2)透明導電性フィルムにおけるカール値の測定
 実施例及び比較例で得られた透明導電性フィルムを50cm×50cmサイズにカットした。ITO面が下になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が下になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A-B)をカール量として算出した。評価した結果を表1に示す。
 (3)透明導電性フィルム積層体におけるカール値の測定
 実施例及び比較例で得られた透明導電性フィルム積層体を210mm×260mm×0.4mmサイズにカットした。ITO面が上になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が上になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A-B)をカール量として算出した。評価した結果を表1に示す。
 (4)MD方向とTD方向の熱収縮率
 透明導電性フィルムの長手方向(MD方向)および幅方向(TD方向)の熱収縮率を以下のように算出した。具体的には、透明導電性フィルムを、幅100mm、長さ100mmに切り取り(試験片)、4隅部にクロスでキズを付けクロスキズの中央部4点のMD方向とTD方向の加熱前の長さ(mm)をCNC三次元測定機(株式会社ミツトヨ社製 LEGEX774)により測定した。その後、オーブンに投入し、加熱処理(130℃、90分間)を行った。室温で1時間放冷後に再度、4隅部4点のMD方向とTD方向の加熱後の長さ(mm)をCNC三次元測定機により測定し、その測定値を下記式に代入することにより、MD方向とTD方向のそれぞれの熱収縮率を求めた。評価した結果を表1に示す。熱収縮率(%)=[[加熱前の長さ(mm)-加熱後の長さ(mm)]/加熱前の長さ(mm)]×100
 (5)ガラス転移温度(Tg)の測定
 ガラス転移温度(Tg)は、JIS K7121の規定に準拠して求めた。
Figure JPOXMLDOC01-appb-T000001
 
 (結果及び考察)
 実施例1~5の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が7~28mmと大きくカールが発生したため、透明導電性フィルム積層体では、カール発生の向きは透明導電膜を上にした場合凹方向であり、カール発生量が1.1~2.0mmとカール発生を抑制できた。また、比較例1~2の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が2~4mmと小さかったため、透明導電性フィルム積層体では、透明導電膜を上にした場合凹方向でありカール発生量が2.5~4.3mmと大きくカールした。以上より、透明導電性フィルムのカール量と透明導電性フィルム積層体後の反りには相関がみられ、透明導電性フィルムで5mm以上カール量が発生していると、透明導電性フィルム積層体でのカール量を低減できることがわかった。なお、比較例3はカール値としては問題ない値であるが、基材にPETフィルムを用いており、高い位相差があるために偏光板のもとでの基材として使えない。
  1  透明樹脂フィルム
  2  第1の硬化樹脂層
  3  透明導電膜
  4  第2の硬化樹脂層
  5  光学調整層
  6  ガラス基板
  7  粘着剤層
  10  透明導電性フィルム
 

Claims (10)

  1.  透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成された透明導電性フィルムであって、
     前記透明樹脂フィルムは、非晶性樹脂からなり、
     前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、5mm以上である透明導電性フィルム。
  2.  前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり、前記第2の硬化樹脂層の厚みは前記第1の硬化樹脂層の厚みと同じかそれより薄い請求項1に記載の透明導電性フィルム。
  3.  前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備える請求項1又は2に記載の透明導電性フィルム。
  4.  前記第2の硬化樹脂層は、樹脂と粒子とを含む請求項1~3のいずれか1項に記載の透明導電性フィルム。
  5.  前記透明樹脂フィルムにおいて、非晶性樹脂がシクロオレフィン系樹脂であり、厚みが20~75μmであり、ガラス転移温度が130℃以上であり、前記透明導電性フィルムにおいて、130℃で90分間の加熱した後の熱収縮率がMDおよびTD方向で0.2%未満である請求項1~4のいずれか1項に記載の透明導電性フィルム。
  6.  前記光学調整層は、バインダー樹脂と微粒子とを含み、屈折率が1.6~1.8であり、厚みが40~150nmである請求項1~5のいずれか1項に記載の透明導電性フィルム。
  7.  前記透明導電膜は、インジウム・スズ複合酸化物からなり、厚みが10~35nmである請求項1~6のいずれか1項に記載の透明導電性フィルム。
  8.  請求項1~7のいずれか1項に記載の透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を介してガラス基板を積層した透明導電性フィルム積層体。
  9.  請求項8に記載の透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A-B)が、2.0mm以下である透明導電性フィルム積層体。
  10.  請求項8又は9に記載の透明導電性フィルム積層体を用いて得られるタッチパネル。
     
PCT/JP2015/084881 2014-12-26 2015-12-14 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル WO2016104204A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580069969.7A CN107107576B (zh) 2014-12-26 2015-12-14 透明导电性膜、透明导电性膜层叠体及触控面板
KR1020177016933A KR102021215B1 (ko) 2014-12-26 2015-12-14 투명 도전성 필름, 투명 도전성 필름 적층체 및 터치 패널

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-263894 2014-12-26
JP2014263894A JP6470040B2 (ja) 2014-12-26 2014-12-26 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル

Publications (1)

Publication Number Publication Date
WO2016104204A1 true WO2016104204A1 (ja) 2016-06-30

Family

ID=56150233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084881 WO2016104204A1 (ja) 2014-12-26 2015-12-14 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル

Country Status (5)

Country Link
JP (1) JP6470040B2 (ja)
KR (1) KR102021215B1 (ja)
CN (1) CN107107576B (ja)
TW (1) TWI713482B (ja)
WO (1) WO2016104204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255458A1 (ja) * 2019-06-20 2020-12-24 昭和電工株式会社 透明導電フィルム積層体及びその加工方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875964B2 (ja) * 2016-09-07 2021-05-26 東山フイルム株式会社 透明導電性フィルム用の長尺のハードコートフィルムの製造方法
JP6689174B2 (ja) * 2016-10-31 2020-04-28 日東電工株式会社 透明導電性フィルム及びそれを用いたタッチパネル
JP6789168B2 (ja) * 2016-10-31 2020-11-25 日東電工株式会社 透明導電性フィルム及びそれを用いたタッチパネル
CN108320838A (zh) * 2017-01-18 2018-07-24 尾池工业株式会社 透明导电性膜
KR102101475B1 (ko) * 2017-06-30 2020-04-16 주식회사 엘지화학 투명 도전성 필름
JP7270334B2 (ja) * 2017-10-27 2023-05-10 日東電工株式会社 透明導電性フィルムおよびその製造方法
WO2019130842A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 光透過性導電フィルム、その製造方法、調光フィルム、および、調光部材
JP7054651B2 (ja) * 2018-06-19 2022-04-14 日東電工株式会社 下地層付きフィルム、透明導電性フィルム、透明導電性フィルム積層体および画像表示装置
KR102134793B1 (ko) * 2018-06-29 2020-07-16 주식회사 에프이엠 플렉시블 oled 터치구동용 투명전극 필름, 이의 제조방법 및 이를 이용한 터치패널
JP7238903B2 (ja) * 2018-12-27 2023-03-14 コニカミノルタ株式会社 透明導電層の支持用の積層フィルム
JP7150628B2 (ja) * 2019-01-31 2022-10-11 日東電工株式会社 透明導電性フィルム積層体
CN111665971A (zh) * 2019-03-06 2020-09-15 南昌欧菲光科技有限公司 透明导电性薄膜、触控屏及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029261A (ja) * 1996-07-15 1998-02-03 Fujimori Kogyo Kk インナータッチパネル用透明導電性シート
JPH1069355A (ja) * 1996-08-27 1998-03-10 Fujimori Kogyo Kk インナータッチパネル用透明導電性シート
JP2004119188A (ja) * 2002-09-26 2004-04-15 Teijin Ltd カールが低減した積層フィルム
JP2008251529A (ja) * 2007-03-02 2008-10-16 Nitto Denko Corp 粘着剤層付き透明導電性フィルムおよびその製造方法
JP2014112510A (ja) * 2012-11-02 2014-06-19 Nitto Denko Corp 透明導電性フィルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264979B2 (ja) 2011-11-25 2013-08-14 日東電工株式会社 タッチパネルセンサ
JP2014137427A (ja) 2013-01-15 2014-07-28 Nissha Printing Co Ltd 偏光サングラス対応のタッチ機能付偏光板とその製造方法、液晶表示装置
JP2014164882A (ja) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd 信頼性・加工性に優れた積層体およびフィルムセンサ並びに積層体製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029261A (ja) * 1996-07-15 1998-02-03 Fujimori Kogyo Kk インナータッチパネル用透明導電性シート
JPH1069355A (ja) * 1996-08-27 1998-03-10 Fujimori Kogyo Kk インナータッチパネル用透明導電性シート
JP2004119188A (ja) * 2002-09-26 2004-04-15 Teijin Ltd カールが低減した積層フィルム
JP2008251529A (ja) * 2007-03-02 2008-10-16 Nitto Denko Corp 粘着剤層付き透明導電性フィルムおよびその製造方法
JP2014112510A (ja) * 2012-11-02 2014-06-19 Nitto Denko Corp 透明導電性フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255458A1 (ja) * 2019-06-20 2020-12-24 昭和電工株式会社 透明導電フィルム積層体及びその加工方法
CN113954479A (zh) * 2019-06-20 2022-01-21 昭和电工株式会社 透明导电膜叠层体及其加工方法
US11710581B2 (en) 2019-06-20 2023-07-25 Showa Denko K.K. Transparent conducting film laminate and processing method thereof

Also Published As

Publication number Publication date
JP2016124106A (ja) 2016-07-11
KR102021215B1 (ko) 2019-09-11
KR20170086612A (ko) 2017-07-26
TWI713482B (zh) 2020-12-21
TW201630735A (zh) 2016-09-01
CN107107576B (zh) 2019-09-06
JP6470040B2 (ja) 2019-02-13
CN107107576A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6470040B2 (ja) 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル
JP6495635B2 (ja) 透明導電性フィルム積層体及びそれを用いて得られるタッチパネル、並びに透明導電性フィルムの製造方法
WO2016088809A1 (ja) 透明導電性フィルム積層体及びその用途
US8568603B2 (en) Method of manufacturing transparent conductive film
CN107004463B (zh) 透明导电性薄膜以及使用其的触摸传感器
JP5958476B2 (ja) 透明導電体及びタッチパネル
WO2017051725A1 (ja) 透明導電性フィルム、及びそれを含むタッチパネル
JP6433707B2 (ja) 透明導電性積層体およびその製造方法、透明導電性フィルムの製造方法、ならびに透明導電性フィルム巻回体の製造方法
WO2017099125A1 (ja) 透明導電性フィルム積層体、及びそれを含むタッチパネル
WO2018109867A1 (ja) キャリアフィルム付き透明導電性フィルム及びそれを用いたタッチパネル
TWI633563B (zh) Transparent conductive film with carrier film and touch panel using the same
JP6626996B2 (ja) 透明導電性フィルム、透明導電性フィルム積層体及びタッチパネル
JP6552099B2 (ja) キャリアフィルム付き透明導電性フィルム及びそれを用いたタッチパネル
JP2017061069A (ja) 透明導電性フィルム積層体、及びそれを含むタッチパネル
JP2005183310A (ja) 透明導電性フィルム及びこれを用いたタッチパネルとこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177016933

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872773

Country of ref document: EP

Kind code of ref document: A1