WO2016104088A1 - パワー半導体モジュール及びこれを用いた電動パワーステアリング装置 - Google Patents

パワー半導体モジュール及びこれを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016104088A1
WO2016104088A1 PCT/JP2015/083895 JP2015083895W WO2016104088A1 WO 2016104088 A1 WO2016104088 A1 WO 2016104088A1 JP 2015083895 W JP2015083895 W JP 2015083895W WO 2016104088 A1 WO2016104088 A1 WO 2016104088A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
external connection
semiconductor elements
semiconductor module
package
Prior art date
Application number
PCT/JP2015/083895
Other languages
English (en)
French (fr)
Inventor
嶋川 茂
崇 須永
孝明 関根
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/535,463 priority Critical patent/US10096572B2/en
Priority to EP15872657.0A priority patent/EP3240026A4/en
Priority to JP2016564652A priority patent/JP6137421B2/ja
Priority to CN201580069664.6A priority patent/CN107112317B/zh
Publication of WO2016104088A1 publication Critical patent/WO2016104088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48141Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged on opposite sides of a substrate, e.g. mirror arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49112Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting a common bonding area on the semiconductor or solid-state body to different bonding areas outside the body, e.g. diverging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15717Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400 C and less than 950 C
    • H01L2924/15724Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power semiconductor module in which at least two or more power semiconductors mounted on a metal plate are functionally connected and housed in a single package, and an electric power steering apparatus using the power semiconductor module. .
  • an inverter circuit and a relay circuit are constituted by a plurality of power semiconductors. Therefore, if these power semiconductors can be integrated as a single module, it is possible to contribute to miniaturization of the entire electric power steering device (EPS) through further miniaturization of the control device.
  • EPS electric power steering device
  • Patent Document 1 Japanese Patent No. 4549884 (Patent Document 1) and International Publication No. 2012/127696 (Patent Document 2) are disclosed.
  • Patent Document 1 discloses a conductive heat dissipation substrate, a semiconductor element disposed directly on the heat dissipation substrate, and one end of each of which is electrically connected to the main electrode of the semiconductor element.
  • a plurality of main electrode plates, and the heat dissipation substrate, the semiconductor element, and a resin package for resin-sealing the plurality of main electrode plates, and the external dimensions of the heat dissipation substrate are the external dimensions of the resin package
  • a semiconductor device having the same size, the other end of each of the plurality of main electrode plates exposed to the outside on the upper surface side of the resin package, and the resin package being integrally molded by molding Is described.
  • the mold package on the side opposite to the surface on which the semiconductor element of the conductive heat dissipation substrate is disposed is thinly formed, and the heat generated from the conductor element passes through the heat dissipation substrate and passes through the heat dissipation substrate. It is configured to dissipate heat to a heat sink or the like attached to the outside.
  • Patent Document 2 includes a plurality of first metal plates arranged in the same plane, a power semiconductor chip mounted on the first metal plate, and a bridge girder part and legs that support the bridge girder part.
  • the leg portion has a crossover bridge-like second metal plate for appropriately soldering between the electrodes of the power semiconductor chip and between the electrodes of the power semiconductor chip and the first metal plate, and electrically insulating these members.
  • a power semiconductor module composed of a resin package sealed with resin, wherein the solder joint portion of the leg portion is formed in a flat shape by bending and provided at a position lower than the bridge girder portion. A power semiconductor module is described.
  • the semiconductor device described in Patent Document 1 has a configuration in which a plurality of main electrode plates (external connection electrode plates) and a heat dissipation substrate are joined individually by soldering or the like. It was. For this reason, a region for joining such individual elements is required separately, and the module becomes excessively large by the area required for the region, and there is a problem that hinders downsizing. Further, when configuring an inverter circuit or the like, it is necessary to provide circuit wiring on the module side substrate, and as a result, there is a problem that hinders downsizing of the module.
  • the elements or the external connection electrode plates are electrically connected by a plurality of aluminum wirings WR.
  • a structure is adopted, there are restrictions in processing, and there is a problem in terms of reliability because a large number of wirings are required.
  • the semiconductor module described in Patent Document 2 differs from that described in Patent Document 1 in that an unpackaged power semiconductor chip is mounted on a plurality of first metal plates, and this is formed as a bridge bridge shape.
  • the second metal plate is electrically connected and the whole is sealed with a resin package. Therefore, in the invention described in Patent Document 2, it is necessary to separately form and prepare the first metal plate and the second metal plate for the implementation of the invention, and the cost is high. Since it is necessary to perform a joining operation between the second metal plate and the second metal plate, there is a problem in that the problem of reliability during processing further occurs and the cost is further increased.
  • the semiconductor chip is mounted on a plurality of first metal plates as described above and can be reduced in size by being contained in one package. Since the area that can be used for heat dissipation of the first metal plate on which the semiconductor chip is directly mounted is relatively reduced compared to the number of semiconductors to be configured, there is a problem that sufficient heat dissipation cannot be achieved. .
  • the present invention aims to solve the above-mentioned problems and problems existing in the prior art, and uses a plurality of power semiconductor elements composed of general-purpose products to perform necessary internal connection between power semiconductor elements,
  • An object of the present invention is to provide a power semiconductor module that achieves downsizing, improvement of heat dissipation, reduction of internal resistance, etc., and low cost and high reliability.
  • the present invention is electrically connected to a power semiconductor bare chip connected at one electrode part to a metal plate on which at least one external connection terminal is formed, and the other electrode part of the semiconductor bare chip.
  • a power semiconductor module formed by arranging a plurality of power semiconductor elements composed of other external connection terminals and accommodating them in the same package, wherein the plurality of power semiconductor elements basically have the same outer shape.
  • the bare chip electrodes of the plurality of power semiconductor elements are interconnected between the plurality of power semiconductor elements by metal connectors or wires, and the package electrically insulates the plurality of power semiconductor elements.
  • a power semiconductor module is provided which is a resin mold package sealed with a resin.
  • the power semiconductor bare chip is a bare chip of a field effect transistor, the drain electrode of the bare chip is joined to the metal plate on which the one external connection terminal is formed, and the gate electrode and the source of the bare chip are solved.
  • An electrode is provided on a side farther from the one external connection terminal than the drain electrode, and a part of the gate electrode or source electrode is interconnected between the power semiconductor elements by the metal connector or wire.
  • the one external connection terminal and the other external connection terminal are more effectively achieved by being arranged in parallel to each other.
  • the plurality of arrays are obtained by arranging at least two or more power semiconductor elements in parallel on a plane, or the plurality of arrays include at least two or more power semiconductors.
  • the elements are arranged in parallel along a virtual curved surface, or the virtual curved surface is a side surface of a cylinder, and the external connection terminals arranged in parallel to each other are further connected to the cylinder.
  • the plurality of arrangements are arranged in parallel along each side of a prismatic column made of a virtual polygon, at least two or more of the power semiconductor elements,
  • the external connection terminals arranged in parallel with each other are more effectively achieved by being parallel to the direction of the main axis of the prism.
  • the material of the metal plate is copper or aluminum, or the metal plate has an exposed portion exposed from the inside of the package to the outside, and the exposed portion is exposed to the outside. This can be achieved more effectively by being connectable to the provided radiator.
  • the present invention provides the above-mentioned three power semiconductor elements housed in the same package for controlling each one phase when driving a three-phase brushless motor.
  • a control device using a power semiconductor module is provided.
  • the present invention provides an electric power steering device using the power semiconductor module described above.
  • a plurality of (for example, two to three) power semiconductor elements that are easily available as general-purpose products are used, and they are arranged in parallel on a plane or a curved surface.
  • the external connection terminal (lead) constituting the power semiconductor element basically uses a general-purpose product as it is, but the external connection terminal (lead) portion through which a large current flows is a semiconductor constituting the power semiconductor element.
  • a configuration is adopted in which the bare chips are partially connected by clips or wires to reduce wiring resistance and heat generation, and the plurality of power semiconductor elements are integrally molded with a resin package.
  • the semiconductor module of the present invention composed of a plurality of integrated power semiconductor elements is used for inverter control of a three-phase induction motor, for example, three FETs (usually used for controlling one phase) (The upper arm portion, the lower arm portion, and the motor relay portion) can be combined and used as one set. And by such use, low cost (use general-purpose products), miniaturization (space saving), wiring saving (effect by direct connection between power semiconductor chips), heat generation countermeasures (three FETs do not turn on simultaneously) (One is always OFF)) and the like can be obtained.
  • FIG. 1 It is the perspective view which shows the example of the power semiconductor module of this invention, (A) is the perspective view which showed the whole image, (B) is the perspective view which does not contain a package part. It is a figure which shows the example of the power semiconductor module of this invention, (A) is a front view which does not contain a package part, (B) is the circuit diagram, (C) is a front view, (D) is the back view. . It is the perspective view which shows the example of the power semiconductor module of this invention, (A) is the perspective view which showed the whole image, (B) is the perspective view which does not contain a package part. It is a perspective view which shows the example of the power semiconductor module of this invention. It is a figure which shows the example of the power semiconductor module of this invention, (A) is a perspective view which does not include a package part, (B) is the top view, (C) is a perspective view which shows the whole image. It is.
  • the electric power steering apparatus applies a steering assist force (assist force) to the vehicle steering mechanism by the rotational force of the electric motor.
  • a steering assist force assist force
  • the driving force of the motor controlled by the electric power supplied from the electric power supply unit (inverter) is transmitted to the steering shaft or the rack shaft via a speed reduction mechanism by a transmission mechanism such as a gear or a belt.
  • the steering assist force is applied to the above.
  • Such an electric power steering device (EPS) performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • Such feedback control adjusts the electric motor applied voltage so that the difference between the steering assist command value (current command value) and the electric motor current detection value is small. This is done by adjusting the duty of PWM (pulse width modulation) control.
  • PWM pulse width modulation
  • a column shaft (steering shaft, handle shaft) 2 of the handle 1 is a reduction gear of a reduction mechanism 3, universal joints 4a and 4b, a pinion rack mechanism. 5, via tie rods 6a and 6b, and further connected to steered wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the handle 1 and a steering angle sensor 14 for detecting the steering angle ⁇ , and the motor 20 for assisting the steering force of the handle 1 is provided with the speed reduction mechanism 3.
  • a reduction gear gear ratio n
  • the control unit 100 configured as described above calculates the current command value of the assist (steering assist) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12.
  • the current supplied to the electric motor 20 is controlled by a voltage control command value Vref obtained by compensating the current command value.
  • the steering angle sensor 14 is not essential and may not be provided, and the steering angle can be obtained from a rotational position sensor such as a resolver connected to the electric motor 20.
  • control unit 100 is connected to a CAN (Controller Area Network) 50 for transmitting / receiving various types of vehicle information, and the vehicle speed Vel can be received from the CAN 50.
  • the control unit 100 is also connected to a non-CAN 51 that exchanges communications other than the CAN 50, analog / digital signals, radio waves, and the like.
  • the control unit 100 is mainly composed of a CPU (including MPU, MCU, etc.).
  • FIG. 2 shows general functions executed by a program inside the CPU.
  • the control unit 100 will be described with reference to FIG. 2.
  • the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12 are a current command for calculating a current command value Iref1.
  • the value is input to the value calculation unit 101.
  • the current command value calculation unit 101 calculates a current command value Iref1, which is a control target value of the current supplied to the electric motor 20, using an assist map or the like based on the input steering torque Th and vehicle speed Vel.
  • the current command value Iref1 is input to the current limiting unit 103 via the adding unit 102A, and the current command value Irefm whose maximum current is limited is fed back to the subtracting unit 102B, and the deviation I (Irefm ⁇ Im) from the motor current value Im And the deviation I is input to the PI control unit 104 for improving the characteristics of the steering operation.
  • the voltage control command value Vref whose characteristics are improved by the PI control unit 104 is input to the PWM control unit 105, and the electric motor 20 is further PWM driven via the inverter 106.
  • the current value Im of the electric motor 20 is detected by the motor current detector 107 and fed back to the subtraction unit 102B.
  • the inverter 106 is constituted by an FET bridge circuit as a drive element.
  • a rotation sensor 21 such as a resolver is connected to the electric motor 20, a motor rotation angle ⁇ is output from the rotation sensor 21, and a motor speed ⁇ is calculated by a motor speed calculation unit 22.
  • compensation signal CM from the compensation signal generation unit 110 is added to the addition unit 102A, and the compensation of the steering system system is performed by adding the compensation signal CM, thereby improving the convergence property, the inertia property, and the like.
  • Compensation signal generation section 110 adds self-aligning torque (SAT) 113 and inertia 112 by addition section 114, and further adds convergence 111 to the addition result by addition section 115, and compensates the addition result of addition section 115.
  • SAT self-aligning torque
  • the signal CM is used.
  • the details of the PWM control unit 105 and the inverter 106 are configured as shown in FIG. 3, for example, and the PWM control unit 105 sets the voltage control command value Vref to a predetermined value.
  • the duty calculation unit 105A that calculates the PWM duty values D1 to D6 for three phases according to the equation, and the gates of the FETs as drive elements with the PWM duty values D1 to D6, and ON / OFF compensation for dead time
  • a gate driving unit 105B a gate driving unit 105B.
  • the inverter 106 is constituted by a three-phase bridge (FET1 to FET6) of FETs as semiconductor switching elements, and drives the motor 20 by being turned ON / OFF by PWM duty values D1 to D6.
  • a motor relay 23 composed of a motor release switch is connected to the power supply line between the inverter 106 and the electric motor 20 to supply or cut off (ON / OFF) the power.
  • FIG. 3 shows an example in which the power supply of two phases of the three phases is turned ON / OFF by the motor relay 23 using a semiconductor switching element (for example, FETs 7 to 9) as a motor opening switch.
  • the semiconductor module of the present invention used in the control unit 100 is configured as follows. Note that, in the following description, the same constituent elements that may take other forms are denoted by the same symbols, and overlapping descriptions and configurations may be partially omitted.
  • the present invention constitutes a power semiconductor module by functionally connecting two or more power semiconductor elements and storing them in one package.
  • the power semiconductor element will be described with reference to the drawings as appropriate.
  • FIG. 4 is a diagram showing, as an example, parts used in a TO-220 package as an example of a power semiconductor element constituting the present invention.
  • 4A shows a perspective view thereof
  • FIG. 4B shows the FET in the case where a field effect transistor (FET) is used as an example of a bare chip constituting the power semiconductor element. The perspective view of is shown.
  • FET field effect transistor
  • the power semiconductor element 400 constituting the present invention includes a metal plate 410 on which one external connection terminal 410B is formed, another external connection terminal 415, a power semiconductor bare chip 430, and a wire 450 as basic components.
  • the metal plate 410 on which one external connection terminal 410B is formed is composed of a metal flat plate portion 410A for mounting the power semiconductor bare chip 430 and the one external connection terminal 410B.
  • the metal flat plate portion 410A is formed by a rectangular flat plate made of a metal such as copper or aluminum, and the power semiconductor bare chip 430 is mounted on one side of the flat plate.
  • a hole 410C is formed to enable the metal flat plate portion 410A to be fixed to an external device such as a substrate.
  • the metal flat plate portion 410A can be fixed to a heat sink or the like provided outside through a bolt or the like through the hole 410C.
  • the one external connection terminal portion (sometimes referred to as an external connection terminal) 410B is an elongated rectangular flat plate that is integrally formed from the metal flat plate portion 410A and is smaller than the metal flat plate portion 410A.
  • the power semiconductor bare chip 430 is slightly shifted to the side where it is mounted, and is formed in parallel with the metal flat plate portion 410A. Then, after the power module of the present invention is packaged with a resin material and completed, the one external connection terminal portion 410B electrically connects an external device or device and a part of the bare chip through a substrate or the like. It functions as a connection terminal for connection.
  • the other external connection terminal 415 is connected to an electrode different from that connected to the metal plate 410 among the electrodes of the semiconductor bare chip 430, and It functions as a connection terminal for electrically connecting the external device or device through the substrate or the like.
  • a plurality of external connection terminals 415 are required according to the number of electrodes that vary depending on the type of the semiconductor bare chip 430 to be connected.
  • an FET having three electrodes is used as the semiconductor bare chip 430, and one of the three electrodes is connected to the metal flat plate portion 410A.
  • the number of external connection terminals 415 is two.
  • the form of the external connection terminal 415 is not particularly limited, but in the present embodiment, the external connection terminal 415 has a plate shape that is an elongated rectangular shape that is substantially the same shape as the external connection terminal portion 410B formed on the metal plate 410. It has a basic form, and the long rectangular portions of the elongated rectangular shape that constitute the external connection terminal portion 410B and the external connection terminal 415 are arranged so as to be parallel to each other.
  • the external connection terminal 415 is electrically insulated from the metal plate 410, the external connection terminal 415 is also separated from the structure, and is externally formed on the metal plate 410 when packaged. In order to form a line parallel to the connection terminals 410B as described above, they are arranged with a slight shift in the direction in which the power semiconductor is formed with respect to the plane on which the metal plate 410 is formed.
  • the power semiconductor bare chip 430 is formed in a rectangular shape as a whole by a semiconductor or the like as shown in the perspective view of FIG. 4B. It is mounted on one side of the plate 410.
  • the power semiconductor bare chip 430 is an FET
  • the drain electrode 435 of the FET is disposed on the lower surface of the power semiconductor bare chip 430
  • the source electrode 431 and the gate electrode 433 are The drain electrode 435 is configured to be on the upper side. Therefore, when the power semiconductor bare chip 430 is mounted on the metal plate 410 from the drain electrode 435 side, the source electrode 431 and the gate electrode 433 are arranged so as to be separated from the metal plate 410 side.
  • the source electrode 431 and the gate electrode 433 are basically electrically connected to the external connection terminal 415 and the wire 450, respectively.
  • a plurality of the power semiconductor elements 400 are provided.
  • the electrodes of the FET may be electrically connected by a metal connector (clip) 510 or a wire 450 as described later.
  • the power semiconductor element 400 constituting the present invention is configured as described above, for example, but is not limited to that used in the TO-220 package exemplified above. Therefore, any power semiconductor component used inside a single power semiconductor package can be utilized in the power semiconductor module of the present invention even if it is a general-purpose product in accordance with the spirit of the present invention. Is possible.
  • FIG. 5 and FIG. 6 show an embodiment in which three power semiconductor elements 400 as described above are collected and further functionally combined into a single package to complete the power semiconductor module of the present invention. 500 examples are shown.
  • FIG. 5A is a front view not including the package portion
  • FIG. 5B is a circuit diagram thereof
  • FIG. 5C is a front view thereof
  • FIG. 5D is a rear view thereof
  • FIG. A) is a perspective view showing the whole image
  • FIG. 6B is a perspective view not including a package portion.
  • the clip 510 is made of a metal material such as copper or aluminum.
  • the clip 510 uses one conductor wire having a cross-sectional area equivalent to or larger than that of the wire 450 used in the power semiconductor element 400, or a plurality of conductor wires as shown in FIG. As a result, the wiring resistance is reduced as compared with the case where only the wire 450 is used alone.
  • the clip 510 or the wire 450 is connected to the source electrode 431 of the power semiconductor 430 of the power semiconductor element 400 at the left end in the drawing, and the metal flat plate of the power semiconductor 400 in the center in the drawing. It is electrically connected to the gate electrode 435 of the power semiconductor 430 through the portion 410A, and the metal flat plate portion 410A of the power semiconductor 400 at the center in the drawing is the source of the power semiconductor 430 of the power semiconductor element 400 at the right end in the drawing.
  • the electrode 431 is electrically connected and is functionally integrated.
  • FIG. 5 (B) shows the connection relationship of the power semiconductor 430 by the clip 510 or the wire 450 between the power semiconductor elements 400 as described above.
  • symbols a to g in FIG. 5B correspond to the external connection terminals (410B and 415) of the power semiconductor element 400 shown in FIG. 5A.
  • the external connection terminals (410B and 415) of the power semiconductor element 400 described in FIG. 5A are provided with symbols corresponding to the right external connection terminals of the power semiconductor elements 400 at both ends in the figure.
  • this is a terminal that is out of electrical coupling due to the coupling between the power semiconductor elements 400 by the clip 510 or wire 450. Therefore, the external connection terminal may not be included in the configuration of the power semiconductor unit.
  • the power semiconductor unit of the present invention when a plurality of the power semiconductor elements 400 are collected and functionally integrated, the power semiconductor elements 400 are used in a single power semiconductor package. It is possible to further limit the use from the components, and it is also possible to reduce the cost.
  • the external connection terminals 415 that are out of the electrical coupling are packaged in one package.
  • the miniaturization and the improvement of the heat dissipation can be achieved. It has been.
  • the three power semiconductor elements 400 connected as shown in FIG. 5A are sealed with an electrically insulating resin 530 in the front view and the rear view. This is a representation of the state.
  • the electrically insulating resin 530 fixes the parts constituting the power semiconductor element 400, insulates between the constituent elements and their basic parts from the outside, and conducts heat from the parts to the outside. Is to do.
  • the electrically insulating resin 530 includes a portion of the power semiconductor element 400 where the power semiconductor bare chip 430 of the metal flat plate portion 410A is mounted, a portion connected by the clip 510 or the wire 450, and The portion where the external connection terminal 410B extends from the metal flat plate portion 410A and the portion of the external connection terminal 415 closer to the metal flat plate portion 410A are sealed with a resin mold package.
  • the external connection terminals (410B, 415) are connected to the resin mold on the opposite side of the external connection terminals to the metal plate portion 410A for electrical connection with an external device as described above. It is configured to be exposed from the package. Similarly, the side of the metal flat plate portion 410A on which the hole 410C opposite to the side closer to the external connection terminals (410B, 415) is provided is exposed from the resin mold package. It is configured.
  • the surface of the metal flat plate portion 410A opposite to the side on which the power semiconductor 430 is mounted is also configured to be exposed from the resin mold package. It is possible to improve the heat dissipation by attaching the exposed portion to a heat sink or the like provided adjacent to the power semiconductor module of the present invention.
  • the electric insulating resin 530 is not particularly limited in material, but it is desirable to use an elastomer having high electric insulation and high thermal conductivity.
  • the power semiconductor element 400 is functionally coupled and combined to reduce the size, omit internal wiring, and improve heat dissipation through these. This can be done at low cost.
  • three power semiconductors 430 made of FETs can be combined to form a single power semiconductor module, and the same applies to the embodiments 900 and 1000 described later. . Therefore, it can be used as it is for the control unit 100 of the electric power steering apparatus as described above.
  • the FET used for controlling one phase of the three phases (U, V, W phase) of the electric motor 20 can be used to control the three-phase motor by using three power semiconductor modules of the present invention.
  • a phase corresponding to the U phase of the electric motor 20 including the FET 1 of the upper arm portion, the FET 4 of the lower arm portion, and the FET 7 of the motor relay portion 23 is obtained.
  • the power semiconductor module of the present invention can be configured, and by adopting the same configuration for the other two phases (V phase, W phase), one layer of the control unit 100 of the electric power steering device is provided. It is possible to reduce the size and improve heat dissipation.
  • FIG. 7 and FIG. 8 illustrate the embodiment 700 of the present invention.
  • (A) is a front view not including a package part
  • (B) is a circuit diagram
  • (C ) Is a front view
  • FIG. 8D is a rear view thereof
  • FIG. 8A is a perspective view showing the whole image
  • FIG. 8B is a perspective view not including a package portion. .
  • the embodiment 700 of the present invention basically has the same configuration as that of the embodiment 500 except that two power semiconductor elements 400 are used.
  • the two power semiconductor elements 400 are connected to the source electrode 431 of the power semiconductor 430 of the power semiconductor element 400 on the left side of the figure and the power semiconductor element 400 on the right side of the figure.
  • the power semiconductor 430 is electrically connected to the source electrode 431 and is functionally integrated.
  • FIG. 7B shows the connection relationship of the power semiconductor 430 by the clip 510 or the wire 450 between the power semiconductor elements 400 as shown in FIG. 7A.
  • symbols a to e in FIG. 7B correspond to the external connection terminals (410B and 415) of the power semiconductor element 400 described in FIG. 7A.
  • the external connection terminals (410B and 415) of the power semiconductor element 400 shown in FIG. 7A are provided with symbols corresponding to the external connection terminal 415 at the right end of the power semiconductor element 400 on the left side of the figure.
  • this is a terminal that is disconnected from the electrical coupling due to the coupling between the power semiconductor elements 400 by the clip 510 or the wire 450.
  • the power semiconductor elements 400 are functionally coupled and combined to reduce the size and the internal wiring. It is possible to improve the heat dissipation through these and to perform this at a low cost.
  • the semiconductor module according to the embodiment 700 of the present invention configured as described above is used in the electric power steering apparatus as described above, two power semiconductors are used for control on the power source side of the electric power steering apparatus. Therefore, it is possible to make these two power semiconductors into one module and further reduce the size.
  • FIG. 9 is a perspective view showing an example of the embodiment 900 of the present invention in which three power semiconductor elements 400 as described above are arranged in parallel along a virtual curved surface.
  • the basic configuration and electrical connection relationship are as follows, except that the power semiconductor element 400 is arranged on a curved surface and formed in a three-dimensional shape and packaged accordingly. This is the same as in the above embodiment 500.
  • the virtual cylinder C is as shown by a chain line in FIG. 9, and is an elongated rectangular external connection terminal constituting the three power semiconductor elements 400.
  • the long sides of (410B, 415) are arranged along the side surface of the virtual cylinder C so that the long side is parallel to the main axis S of the cylinder C.
  • the power semiconductor element 400 has the exposed surface (heat radiating surface) of the metal flat plate 410 ⁇ / b> A from the package 530 facing the outer surface of the virtual cylinder C.
  • the method of arranging the three power semiconductor elements 400 along the side surface of the virtual cylinder C is not limited to the above. Therefore, the surface opposite to the heat dissipation surface from the package 530 of the metal flat plate 410A may be directed to the outer surface of the virtual cylinder C, or the power semiconductor is disposed inside the virtual cylinder C.
  • the element 400 may be disposed so that the heat radiation surface side from the package 530 of the metal flat plate 410A may be directed to the inner side surface of the cylinder C, or the power semiconductor element 400 may be disposed inside the virtual cylinder C.
  • a surface opposite to the heat radiating surface from the package 530 of the metal flat plate 410A may be directed to the inner surface of the cylinder C.
  • the embodiment 900 of the present invention adopts the above-described configuration, so that, for example, the casing of the control unit 100 of the electric power steering apparatus has a cylindrical shape that matches the form of the electric motor 20 or the like.
  • the power semiconductor module is arranged along the cylindrical side surface of the control unit 100 or the electric motor 20, the side surface of the control unit 100, etc. Can be used efficiently as a heat sink or the like.
  • FIG. 10 shows an example in which the three power semiconductor elements 400 as described above are arranged in parallel along the respective side surfaces of a prismatic column made of a virtual polygon.
  • FIG. 16 illustrates an example of an embodiment 1000 in the case of a triangular prism T where the virtual polygon is a triangle.
  • FIG. 10A is a perspective view showing a connection state when the power semiconductor elements 400 before packaging by the electrically insulating resin 530 are arranged in parallel in the embodiment 900.
  • 10 (B) is a top view
  • FIG. 10 (C) is a perspective view after packaging with the resin.
  • the power semiconductor element 400 is connected to the metal along the three side surfaces of the virtual triangular prism T as shown by the chain line in FIG.
  • the heat radiation surface side of the flat plate portion 410 is arranged facing the side surface.
  • the power semiconductor elements 400 are smaller than those arranged in a plane.
  • the power semiconductor element 400 is formed in a three-dimensional manner as a result of being arranged in parallel along the respective side surfaces of a prismatic shape formed of a virtual polygon, and is packaged accordingly.
  • the basic configuration and electrical connection relationship are basically the same as those of the embodiment 500 shown in FIG.
  • the three power semiconductor elements 400 are arranged in parallel on the side surface of the virtual triangular prism T, the three power semiconductor elements 400 are adjacent to each other. Become.
  • FIG. 10 (B) the power corresponding to those located at both ends of FIG. 5 (A) while maintaining the electrical connection relationship as shown in FIG. 5 (B). It is possible to directly connect the source electrodes 431 of the power semiconductor 430 provided in the semiconductor element 400 by the clip 510 or the wire 450 to reduce the wiring resistance.
  • a frame indicated by a dotted line indicates an outline when packaging is performed using the electrically insulating resin 530.
  • the power semiconductor element 400 has an exposed surface (heat radiation surface) from the package 530 of the metal flat plate 410A on the outer surface of the virtual triangular prism T. It is aimed.
  • the arrangement method of the three power semiconductor elements 400 along the side surface of the virtual triangular prism T is not limited to the above.
  • the surface opposite to the heat dissipation surface from the package 530 of the metal flat plate 410A may be directed to the outer surface of the virtual triangular prism T, or the power semiconductor is positioned inside the virtual triangular prism T.
  • the element 400 may be arranged so that the heat radiation surface from the package 530 of the metal flat plate 410A may be directed to the inner surface of the triangular prism T, or the power semiconductor element 400 may be disposed inside the virtual triangular prism T.
  • the surface opposite to the exposed surface of the metal flat plate 410A from the package 530 may be directed to the inner surface of the triangular prism T.
  • the embodiment 1000 of the present invention can further reduce the size of the power semiconductor module by adopting the above configuration.
  • a heat sink is provided so as to surround the outside of the triangular prism-shaped outer shape by providing a triangular heat sink on the outer surface, or in the case where a heat radiating surface is arranged toward the outside by the above arrangement. It is possible to dissipate 1000 power semiconductor modules.
  • the power semiconductor module of the present invention a plurality of power semiconductor elements that can be configured from general-purpose products are used, and necessary internal connection between power semiconductor elements is performed and integrated. Accordingly, it is possible to achieve a reduction in size, improvement in heat dissipation, reduction in internal resistance, etc., and to provide a power semiconductor module with low cost and high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】 複数のパワー半導体等により構成される電子回路の当該複数のパワー半導体を、低コストに、放熱等の問題を生ずること無く、小型化し、一体化すること。 【解決手段】 少なくとも1つの外部接続端子が形成された金属板に1つの電極部分で接続されたパワー半導体ベアチップと前記半導体ベアチップの他の電極部分と電気的に接続された他の外部接続端子とからなるパワー半導体要素を複数配列して同一のパッケージ内に収容して形成したパワー半導体モジュールであって、前記複数のパワー半導体要素は基本的に同一の外形を有しており、前記複数のパワー半導体要素の前記ベアチップの電極の一部は、金属製コネクタまたはワイヤにより、前記複数のパワー半導体要素間で相互接続されており、前記パッケージは前記複数のパワー半導体要素を電気絶縁性の樹脂で封止した樹脂モールドパッケージであるパワー半導体モジュールを形成した。

Description

[規則26に基づく補充 16.12.2015] パワー半導体モジュール及びこれを用いた電動パワーステアリング装置
 本発明は、金属板に実装されたパワー半導体を、少なくとも2つ以上機能的に連結して、単一のパッケージ内に収めた、パワー半導体モジュール及びこれを用いた電動パワーステアリング装置に関するものである。
 従来から、インバータ回路や電源回路のように、大電力を扱うパワー半導体等を用いた電子回路は、こうした回路を用いる機器の小型化に合わせて、更に一層の小型化が要請される場合がある。そして、このようなパワー半導体を用いた回路の一層の小型化のためには、併せて、小型化のために高密度に実装されたパワー半導体等の放熱を低コストで効率的に行うことも必要となっている。
 例えば、自動車などの車両に用いられる電動パワーステアリング装置(EPS)に使用されるモータなどの回転電気機器の制御装置では、インバータ回路やリレー回路が複数のパワー半導体などにより構成されている。そのため、これらの複数のパワー半導体を単一のモジュールとして一体化できれば、上記制御装置の一層の小型化を通じて、上記電動パワーステアリング装置(EPS)全体の小型化に貢献することが可能である。
 一方、こうした複数のパワー半導体をモジュール化したものとして、例えば、特許第4549884号公報(特許文献1)や国際公開第2012/127696号(特許文献2)のような技術が開示されている。
 そして、上記のうち、特許文献1には、導電性の放熱基板と、前記放熱基板上に直接に配設された半導体素子と、それぞれの一方端が前記半導体素子の主電極に電気的に接続された複数の主電極板と、前記放熱基板、前記半導体素子、前記複数の主電極板を樹脂封止する樹脂パッケージと、を備え、前記放熱基板の外形寸法は、前記樹脂パッケージの外形寸法と同等の大きさであって、前記複数の主電極板の、それぞれの他方端は、前記樹脂パッケージの上面側において外部に露出し、前記樹脂パッケージは、モールド成形により一体で成形されている半導体装置が記載されている。そして、上記導電性の放熱基板の半導体素子が配設された面とは反対面側部分のモールドパッケージは薄く成形されており、本導体素子からの発熱は、放熱基板を経て、上記半導体装置の外部に取付けられたヒートシンクなどに放熱される構成となっている。
 また、上記特許文献2には、同一平面状に配置された複数の第1金属板、この第1金属板に搭載されたパワー半導体チップ、及び橋桁部とこの橋桁部を支える脚部とで構成され、且つこの脚部によって、上記パワー半導体チップの電極間、パワー半導体チップの電極と上記第1金属板間を適宜ハンダ接合する跨線橋状第2金属板を有し、これらの部材を電気絶縁性樹脂で封止した樹脂パッケージで構成されたパワー半導体モジュールであって、上記脚部のハンダ接合部は、折り曲げ加工によって平面状に形成されるとともに上記橋桁部より低い位置に設けたことを特徴とするパワー半導体モジュールが記載されている。
特許第4549884号公報 国際公開第2012/127696号
 しかし、上記特許文献1に記載された半導体装置では、複数の主電極板(外部接続電極板)と放熱基板とは、それぞれ個別に用意されたものを半田付けなどで接合した構成を有していた。そのため、こうした個別の要素を接合するための領域が別途必要となり、その領域に必要とされる面積の分だけモジュールが余分に大きくなってしまい、小型化を阻害する問題があった。また、インバータ回路等を構成する際にはモジュール側基板上に回路配線を施す必要があり、結果として、モジュールの小型化を阻害する問題があった。
 さらに、上記特許文献1に記載された半導体装置では、素子乃至外部接続電極板間を複数のアルミニウム配線WRによって電気的に接続している。しかし、こうした構造を採用する場合には加工上の制約があり、また、多数の配線を行う必要があることから信頼性の面で問題があった。
 また、上記特許文献2に記載された半導体モジュールは、上記特許文献1に記載されたものとは異なり、パッケージされていないパワー半導体チップを複数の第1金属板に搭載して、これを跨線橋状第2金属板で電気的に接続し、全体を樹脂パッケージで封止したものである。そのため、上記特許文献2に記載された発明では、上記第1金属板と第2金属板とを上記発明の実施のために別途形成して準備する必要があることから高コストであり、更に上記第2金属板と第2金属板との接合作業を行う必要があるため、更に加工の際の信頼性の問題が生じると共に一層のコストアップになってしまうという課題があった。また、上記特許文献2に記載された発明では、上記のように複数の第1金属板に上記半導体チップを搭載し、一つのパッケージ内に収めることにより小型化が可能ではあるものの、半導体モジュールを構成する半導体の数と比較して、上記半導体チップが直接搭載される第一金属板の放熱に用いることの可能な面積が相対的に減少するため、十分な放熱が図れないという課題があった。
 そこで本発明は、従来技術に存在する上記問題や課題の解決を目的としたものであり、汎用品から構成されるパワー半導体要素を複数個用いて、必要なパワー半導体要素間内部接続を行い、小型化、放熱性向上、内部抵抗低減等を達成し、低コストかつ信頼性の高いパワー半導体モジュールを提供することにある。
 上記課題を解決するために本発明は、少なくとも1つの外部接続端子が形成された金属板に1つの電極部分で接続されたパワー半導体ベアチップと前記半導体ベアチップの他の電極部分と電気的に接続された他の外部接続端子とからなるパワー半導体要素を複数配列して同一のパッケージ内に収容して形成したパワー半導体モジュールであって、前記複数のパワー半導体要素は基本的に同一の外形を有しており、前記複数のパワー半導体要素の前記ベアチップの電極は、金属製コネクタまたはワイヤにより、前記複数のパワー半導体要素間で相互接続されており、前記パッケージは前記複数のパワー半導体要素を電気絶縁性の樹脂で封止した樹脂モールドパッケージであることを特徴とするパワー半導体モジュールを提供する。
 また、上記課題の解決は、前記パワー半導体ベアチップは電界効果トランジスタのベアチップであり、前記ベアチップのドレイン電極を前記1つの外部接続端子が形成された金属板に接合し、前記ベアチップのゲート電極及びソース電極は前記ドレイン電極よりも前記1つの外部接続端子から離間した側に設けられ、前記ゲート電極又はソース電極の一部は、前記パワー半導体要素間で前記金属製コネクタまたはワイヤにより相互接続されていることにより、或いは、前記1つの外部接続端子と前記他の外部接続端子とは、相互に平行に配置されていることにより、より効果的に達成される。
 また、上記課題の解決は、前記複数配列は、少なくとも2以上の前記パワー半導体要素を平面上に並列して配列したものであることにより、又は、前記複数配列は、少なくとも2以上の前記パワー半導体要素を仮想的な曲面に沿って並列して配列したものであることにより、又は、前記仮想的な曲面が円筒の側面であり、前記相互に平行に配置された外部接続端子は更に前記円筒の主軸の方向と平行であることにより、若しくは、前記複数配列は、少なくとも2以上の前記パワー半導体要素を仮想的な多角形からなる角柱の各側面に沿って並列して配列したものであり、前記相互に平行に配置された外部接続端子は更に前記角柱の主軸の方向と平行であることにより、より効果的に達成される。
 また、上記課題の解決は、前記金属板の材料が銅又はアルミニウムであることにより、或いは、前記金属板は前記パッケージ内部から外部へ露出する露出部分を有しており、前記露出部分を外部に設けた放熱器に接続可能なことにより、より効果的に達成される。
 また、上記課題を解決するために本発明は、3相ブラシレスモータを駆動する際に、各1相の制御に前記パワー半導体要素3つを同一のパッケージ内に収容して形成した上記に記載のパワー半導体モジュールを用いることを特徴とする制御装置を提供する。
 また、上記課題を解決するために本発明は、上記に記載のパワー半導体モジュールを用いることを特徴とする電動パワーステアリング装置を提供する。
 本発明では、専ら汎用品として入手が容易なパワー半導体要素を複数個(例えば、2個~3個)用いて、それらを平面上又は曲面上に相互に並行に配列する。そして、上記パワー半導体要素を構成する外部接続端子(リード)は基本的に汎用品をそのまま使用するが、大電流が流れる上記外部接続端子(リード)部分については、上記パワー半導体要素を構成する半導体ベアチップ間をクリップまたはワイヤで部分的に接続して配線抵抗と発熱を低減し、更に、上記複数のパワー半導体要素を樹脂パッケージで一体に成形するという構成を採用している。
 そのため、一体化された複数のパワー半導体要素からなる本発明の半導体モジュールを、例えば、三相誘導モータのインバータ制御に用いる場合には、通常一相分の制御に使用される3個のFET(上側アーム部、下側アーム部、モータリレー部)を1セットとして組み合わせて使用することが可能である。そして、このような使用により、低コスト(汎用品を使用)、小型化(省スペース)、省配線化(パワー半導体チップ間の直接接続による効果)、発熱対策(3個のFETが同時にONしない(1つが必ずOFFしている))等の効果を得ることが可能である。
 また、同様に、電動モータ等の電源側の制御に用いる複数のパワー半導体を1パッケージからなる半導体モジュールとして構成する事で、上記同様の効果を得ることも可能である。
電動パワーステアリング装置の一般的な構成を示した図である。 電動パワーステアリング装置のコントロールユニット(ECU)を示すブロック図である。 電動パワーステアリング装置のモータ制御部の構成例を示す線図である。 本発明のパワー半導体要素の例を示す斜視図であり、(A)はその全体像を示した斜視図、(B)はFETの構成例を示した斜視図である。 本発明のパワー半導体モジュールの例を示す図であり、(A)はパッケージ部分を含まない正面図、(B)はその回路図、(C)は正面図、(D)はその背面図である。 本発明のパワー半導体モジュールの例を示す斜視図であり、(A)はその全体像を示した斜視図、(B)はパッケージ部分を含まない斜視図である。 本発明のパワー半導体モジュールの例を示す図であり、(A)はパッケージ部分を含まない正面図、(B)はその回路図、(C)は正面図、(D)はその背面図である。 本発明のパワー半導体モジュールの例を示す斜視図であり、(A)はその全体像を示した斜視図、(B)はパッケージ部分を含まない斜視図である。 本発明のパワー半導体モジュールの例を示す斜視図である。 本発明のパワー半導体モジュールの例を示す図であり、(A)は、パッケージ部分を含まない斜視図であり、(B)は、その上面図、(C)は、その全体像を示す斜視図である。
 以下に、本発明のパワー半導体モジュールの構成例を車両の電動パワーステアリング装置などに用いられる電動モータの制御装置に用いた場合を例として、本発明の実施形態を説明する。
 ここで、上記電動パワーステアリング装置は、車両のステアリング機構に電動モータの回転力で操舵補助力(アシスト力)を付与するものである。そして、上記電動パワーステアリング装置では、電力供給部(インバータ)から供給される電力により制御されるモータの駆動力を、減速機構を介して、ギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に上記操舵補助力を付与するようになっている。そして、このような電動パワーステアリング装置(EPS)は、操舵補助力のトルクを正確に発生させるために、モータ電流のフィードバック制御を行っている。
 かかるフィードバック制御は、操舵補助指令値(電流指令値)と電動モータ電流検出値との差が小さくなるように電動モータ印加電圧を調整するものであり、電動モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティ(Duty)の調整で行っている。
 上記の電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速機構3の減速ギア、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10及び操舵角θを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速機構3の減速ギア(ギア比n)を介してコラム軸2に連結されている。
 そして、上記の電動パワーステアリング装置を制御するコントロールユニット(ECU)100には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。
 このように構成されるコントロールユニット100では、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって電動モータ20に供給する電流を制御する。なお、舵角センサ14は必須のものではなく、配設されていなくても良く、電動モータ20に連結されたレゾルバ等の回転位置センサから操舵角を取得することも可能である。
 また、上記コントロールユニット100には、車両の各種情報を授受するCAN(Controller Area Network)50が接続されており、車速VelはCAN50から受信することも可能である。また、コントロールユニット100には、CAN50以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN51も接続されている。
 また、上記コントロールユニット100は主としてCPU(MPUやMCU等も含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと図2のようになる。
 図2を参照してコントロールユニット100を説明すると、トルクセンサ10で検出された操舵トルクTh及び車速センサ12で検出された(若しくはCAN50からの)車速Velは、電流指令値Iref1を演算する電流指令値演算部101に入力される。電流指令値演算部101は、入力された操舵トルクTh及び車速Velに基づいてアシストマップ等を用いて、電動モータ20に供給する電流の制御目標値である電流指令値Iref1を演算する。電流指令値Iref1は加算部102Aを経て電流制限部103に入力され、最大電流を制限された電流指令値Irefmが減算部102Bにフィードバック入力され、モータ電流値Imとの偏差I(Irefm-Im)が演算され、その偏差Iが操舵動作の特性改善のためのPI制御部104に入力される。PI制御部104で特性改善された電圧制御指令値VrefがPWM制御部105に入力され、更にインバータ106を介して電動モータ20がPWM駆動される。電動モータ20の電流値Imはモータ電流検出器107で検出され、減算部102Bにフィードバックされる。インバータ106は駆動素子としてのFETのブリッジ回路で構成されている。
 上記電動モータ20にはレゾルバ等の回転センサ21が連結されており、回転センサ21からモータ回転角度θが出力され、更にモータ速度ωがモータ速度演算部22で演算される。
 また、加算部102Aには補償信号生成部110からの補償信号CMが加算されており、補償信号CMの加算によって操舵システム系の特性補償を行い、収れん性や慣性特性等を改善するようになっている。補償信号生成部110は、セルフアライニングトルク(SAT)113と慣性112を加算部114で加算し、その加算結果に更に収れん性111を加算部115で加算し、加算部115の加算結果を補償信号CMとしている。
 また、上記電動モータ20が3相ブラシレスモータの場合、PWM制御部105及びインバータ106の詳細は例えば図3に示すような構成となっており、PWM制御部105は、電圧制御指令値Vrefを所定式に従って3相分のPWMデューティ値D1~D6を演算するデューティ演算部105Aと、PWMデューティ値D1~D6で駆動素子としてのFETのゲートを駆動すると共に、デッドタイムの補償をしてON/OFFするゲート駆動部105Bとで構成されている。インバータ106は半導体スイッチング素子としてのFETの3相ブリッジ(FET1~FET6)で構成されており、PWMデューティ値D1~D6でON/OFFされることによってモータ20を駆動する。また、インバータ106と電動モータ20との間の電力供給線には、電力供給を行い又は遮断(ON/OFF)するための、モータ開放スイッチからなるモータリレー23が接続されている。そして、図3では、モータ開放スイッチとして、半導体スイッチング素子(例えば、FET7~9)を使用したモータリレー23により、3相のうちの2相の電力供給をON/OFFする例を示している。
 そして、上記のように構成される電動パワーステアリング装置において、上記コントロールユニット100において使用される、本発明の半導体モジュールは、次のように構成されている。なお、以下の説明では、同一の構成要素については、他の形態を採り得るものについても同一の記号を用い、重複する説明や構成については、一部省略する場合がある。
 本発明は、2以上のパワー半導体用要素を機能的に接続して一つのパッケージ内に収めて、パワー半導体モジュールを構成するものである。そこで、最初に上記パワー半導体要素について、適宜図面を参照して説明する。
 図4は、本発明を構成するパワー半導体要素の例として、TO-220パッケージに用いられるようなパーツを例として示した図である。そして、図4(A)はその斜視図を示したものであり、図4(B)は、上記パワー半導体要素を構成するベアチップの例として、電界効果トランジスタ(FET)を用いた場合の当該FETの斜視図を示したものである。
 本発明を構成するパワー半導体要素400は、1つの外部接続端子410Bが形成された金属板410と、他の外部接続端子415と、パワー半導体ベアチップ430と、ワイヤ450とを基本構成要素としている。
 上記パワー半導体要素400のうち、1つの外部接続端子410Bが形成された金属板410は、上記パワー半導体ベアチップ430を実装するための金属平板部分410Aと上記1つの外部接続端子410Bとからなっている。そして、上記金属平板部分410Aは、銅やアルミニウムなどの金属からなる長方形状の平板により形成されており、上記平板の片面側には上記パワー半導体ベアチップ430が実装されており、本実施形態の場合には、更に、上記金属平板部分410Aを基板などの外部機器等に固定可能にするための穴410Cが穿設されている。なお、上記金属平板部分410Aについては、樹脂材によりパッケージングする際に、上記金属平板部分410Aの一部を外部に露出させることにより、上記外部機器等に接続するための電極及び放熱のための放熱板として活用することも可能である。そのため、上記のように放熱板として活用する場合には、上記穴410Cにボルト等を通して上記金属平板部分410Aを外部に設けたヒートシンク等に固定することも可能である。
 また、上記1つの外部接続端子部(外部接続端子という場合もある)410Bは、上記金属平板部分410Aから一体として構成された、上記金属平板部分410Aよりも小さな細長い長方形状の平板であり、上記パワー半導体ベアチップ430が実装された側に多少シフトして、上記金属平板部分410Aとは平行に形成されている。そして、上記1つの外部接続端子部410Bは、本発明のパワーモジュールが樹脂材によりパッケージングされて完成された後には、外部機器乃至デバイス等と上記ベアチップの一部とを基板などを通じて電気的に接続するための接続端子としての機能を果たす。
 また、上記パワー半導体要素400のうち、他の外部接続端子415は、上記半導体ベアチップ430の電極のうち上記金属板410に接続されたものとは別の電極を接続して、上記別の電極と、上記外部機器乃至デバイス等とを基板などを通じて電気的に接続するための接続端子としての機能を果たすものである。
 そのため、上記外部接続端子415は、接続される上記半導体ベアチップ430の種類により変動する電極の数に応じて、複数必要となる。本実施形態の場合には、上記半導体ベアチップ430として上記電極の数が3つであるFETを用いており、上記3つの電極のうちの1つは上記金属平板部分410Aに接続されていることから、上記外部接続端子415の数は2つとなっている。また、上記外部接続端子415の形態は特に限定を設けるものではないが、本実施形態では、上記金属板410に形成されている外部接続端子部410Bとほぼ同形の細長い長方形状をした板状を基本とする形態をしており、上記外部接続端子部410Bと上記外部接続端子415とを構成する上記細長い長方形状の長辺部分が、相互に平行になるように配設されている。
 また、上記外部接続端子415は、上記金属板410とは電気的に絶縁されているため、構成上も別体になっており、パッケージングされた場合に上記金属板410に形成されている外部接続端子410Bと上記のように平行な一列になるように、上記金属板410が形成する平面よりも上記パワー半導体が形成された方向に多少シフトして配置するようになっている。
 また、上記パワー半導体要素400のうち、パワー半導体ベアチップ430は、図4(B)に斜視図で示したように、半導体等により、全体として四角形状に構成されており、上記のように、金属板410の片面側に実装されるものである。そして、本実施形態の場合には、上記パワー半導体ベアチップ430は、FETであり、上記FETのドレイン電極435が上記パワー半導体ベアチップ430の下面に配され、ソース電極431とゲート電極433とが、上記ドレイン電極435よりも上側になるように構成されている。そのため、上記パワー半導体ベアチップ430を上記金属板410に上記ドレイン電極435側から実装した場合には、上記ソース電極431とゲート電極433とは、上記金属板410側から離間するような配置となる。
 また、上記ソース電極431とゲート電極433とは、基本的には、上記外部接続端子415とワイヤ450によって電気的にそれぞれ接続されるが、本発明の半導体モジュールでは、上記パワー半導体要素400を複数集めて機能的に配置する際に、後述するように、上記FETの電極相互間を金属製コネクタ(クリップ)510またはワイヤ450により、電気的に接続する場合がある。
 本発明を構成するパワー半導体要素400は、例えば、上記のように構成されるものであるが、上記に例示したTO-220パッケージに用いられるようなものに限られるものではない。そのため、単一のパワー半導体パッケージ内部に用いられているパワー半導体の構成要素であれば、本発明の趣旨に沿って、汎用品等であっても、本発明のパワー半導体モジュールに活用することが可能である。
 次に、本発明を構成する上記パワー半導体要素を複数集めて機能的に一体化した本発明のパワー半導体モジュールについて、適宜図面を参照して説明する。
 図5及び図6は、上記のようなパワー半導体要素400を3つ集めた上で、更に機能的に結合して単一のパッケージとしてまとめ、本発明のパワー半導体モジュールとして完成させた、実施形態500の例を示したものである。
 そして、図5のうち、(A)はパッケージ部分を含まない正面図、(B)はその回路図、(C)は正面図、(D)はその背面図を示し、図6のうち、(A)はその全体像を示した斜視図、図6(B)はパッケージ部分を含まない斜視図を示している。
 本発明の上記実施形態500では、図5(A)に示したように、上述したようなパワー半導体要素400を3つ並列に平面上に配列したうえで、これを金属製コネクタ(クリップ)510またはワイヤ450により相互に結合している。ここで上記クリップ510は銅やアルミニウムなどの金属製の素材から構成されている。そして、上記クリップ510は、上記パワー半導体要素400に用いられていたワイヤ450と同等乃至それ以上の断面積を有する導体線を1本または、同図に記載したように複数本使用しており、これにより上記ワイヤ450のみを単独で使用した場合よりも、配線抵抗の低減を図っている。
 また、上記クリップ510またはワイヤ450は、上記図5(A)に示したように、図中左端のパワー半導体要素400のパワー半導体430のソース電極431を、図中中央のパワー半導体400の金属平板部分410Aを介してパワー半導体430のゲート電極435に電気的に接続させており、更に、図中中央のパワー半導体400の金属平板部分410Aを図中右端のパワー半導体要素400のパワー半導体430のソース電極431に電気的に接続させ、機能的に一体化するように構成している。
 図5(B)は、上記のようなパワー半導体要素400間における上記クリップ510またはワイヤ450によるパワー半導体430の接続関係を示したものである。上記図5(B)で、同図中a~gまでの記号は、上記図5(A)に記載したパワー半導体要素400の外部接続端子(410B及び415)に対応して示している。また、上記図5(A)に記載したパワー半導体要素400の外部接続端子(410B及び415)には、同図中両端のパワー半導体要素400の右端の外部接続端子に対応する記号が設けられていないが、これは、上記クリップ510またはワイヤ450によるパワー半導体要素400間の結合により電気的な結合から外れる端子である。そのため、上記外部接続端子は上記パワー半導体ユニットの構成に含めないことも可能である。
 したがって、本発明のパワー半導体ユニットによれば、上記パワー半導体要素400を複数集めて機能的に一体化するに際し、上記パワー半導体要素400を単一のパワー半導体パッケージ内部に用いられているパワー半導体の構成要素から更に限定して用いることが可能であり、これによりコストの低減を図ることも可能である。
 なお、上記実施形態500の場合には、上記電気的な結合から外れる外部接続端子415も含めて1つにパッケージ化しているが、この場合であっても、小型化と放熱性の向上は図られている。
 また、図5(C)、(D)に示した正面図と背面図は、上記図5(A)で示したように接続した3つのパワー半導体要素400を電気絶縁性の樹脂530で封止した状態を表したものである。
 上記電気絶縁性の樹脂530は、上記パワー半導体要素400を構成する各パーツを固定して、各構成要素間及びこれらの基幹部分を外部から絶縁すると共に、上記各パーツからの熱を外部に伝導するためのものである。
 そのため、上記電気絶縁性の樹脂530は、上記パワー半導体要素400のうち、上記金属平板部分410Aのパワー半導体ベアチップ430が実装されている部分と、クリップ510またはワイヤ450により接続されている部分、及び、上記外部接続端子410Bが上記金属平板部分410Aから延伸されている部分と、上記外部接続端子415の上記金属平板部分410A側寄りの部分とを樹脂モールドパッケージにより、封止している。
 ただし、上記外部接続端子(410B、415)は、上記のように、外部機器等との電気的接続のために、上記外部接続端子のうち、上記金属平板部分410A寄りと反対側は上記樹脂モールドパッケージからは露出するように構成されている。また、上記金属平板部分410Aのうち、上記外部接続端子(410B、415)寄りの側とは反対側の穴410Cが設けられている側も、同様に、上記樹脂モールドパッケージからは露出するように構成されている。
 また、上記実施形態500では、更に、上記金属平板部分410Aの、上記パワー半導体430が実装された側とは反対側の面も、上記樹脂モールドパッケージからは露出するように構成されており、上記露出部分を上記本発明のパワー半導体モジュールに隣接して設けたヒートシンクなどに接触させて取付け、これにより放熱性の向上を図ることが可能である。
 なお、上記電気絶縁性の樹脂530については、特に材質に限定を設けるものではないが、電気絶縁性が高く熱伝導性の高いエラストマーなどを用いることが望ましい。
 上記のように構成される本発明の実施形態500では、上記パワー半導体要素400を機能的に結合して組み合わせている事により、小型化及び内部配線の省略化並びにこれらを通じた放熱性の向上を図り、併せてこれを低コストで行うことが可能である。
 また、本発明では、上記のように、FETからなるパワー半導体430を3つまとめて、1つのパワー半導体モジュールとして形成することが可能であり、後述する実施形態900と1000の場合も同様である。そのため、上述したような電動パワーステアリング装置のコントロールユニット100にそのまま用いることも可能である。
 したがって、例えば、図3に示したコントロールユニット100のインバータ106とモータリレー23のうち、上記電動モータ20の三相(U,V,W相)のうちの一相分の制御に使用されるFETを、一つのモジュールにより構成し、あわせて3つの本発明のパワー半導体モジュールを用いることにより、上記三相モータの制御に活用することが可能である。
 そのため、例えば、上記図3に示したように、上側アーム部のFET1と下側アーム部のFET4とモータリレー部23のFET7とから構成される電動モータ20のU相に相当する一相分を上記本発明のパワー半導体モジュールにより構成することが可能であり、他の二相分(V相、W相)についても同様の構成を採用することにより、上記電動パワーステアリング装置のコントロールユニット100の一層の小型化と放熱性の向上等とを図ることが可能である。
 次に、上記のようなパワー半導体要素400を2つ集めたうえで、更に機能的に結合して単一のパッケージとしてまとめ、本発明のパワー半導体モジュールとして完成させた実施形態700の例を、図7及び図8を参照して説明する。
 ここで、上記図7及び図8は上記本発明の実施形態700を図示したものであり、図7のうち、(A)はパッケージ部分を含まない正面図、(B)は回路図、(C)は正面図、(D)はその背面図を示し、図8のうち、(A)はその全体像を示した斜視図、図8(B)はパッケージ部分を含まない斜視図を示している。
 本発明の上記実施形態700は、基本的には上記実施形態500の場合と同様の構成を有しているが、上記パワー半導体要素400を2つ使用している点が異なっている。
 そのため、上記2つのパワー半導体要素400は、上記図7(A)に示したように、図中左側のパワー半導体要素400のパワー半導体430のソース電極431を、図中右側のパワー半導体要素400のパワー半導体430のソース電極431に電気的に接続させ機能的に一体化している。
 そして、図7(B)は、上記図7(A)に示したようなパワー半導体要素400間における上記クリップ510またはワイヤ450によるパワー半導体430の接続関係を示したものである。上記図7(B)で、同図中a~eまでの記号は、上記図7(A)に記載したパワー半導体要素400の外部接続端子(410B及び415)に対応して示している。また、上記図7(A)に記載したパワー半導体要素400の外部接続端子(410B及び415)には、同図中左側のパワー半導体要素400の右端の外部接続端子415に対応する記号が設けられていないが、これは、上記クリップ510またはワイヤ450によるパワー半導体要素400間の結合により電気的な結合から外れる端子である。
 上記のように構成される本発明の実施形態700では、上記実施形態500の場合と同様に、上記パワー半導体要素400を機能的に結合して組み合わせる事により、小型化および内部配線の省略化及びこれらを通じた放熱性の向上を図り、併せてこれを低コストで行うことが可能である。
 また、上記のように構成される本発明の実施形態700の半導体モジュールを上記のような電動パワーステアリング装置に用いる場合には、上記電動パワーステアリング装置の電源側の制御にパワー半導体が2つ使用される場合があるため、こうしたパワー半導体2つを一つのモジュールとし、更に一層の小型化等を図ることも可能である。
 次に、上記のようなパワー半導体要素400を複数まとめて、上記のように平面上ではなく、仮想的な曲面形状等に沿って配列させた場合の例を説明する。
 図9は、上述したような、3つのパワー半導体要素400を仮想的な曲面に沿って並列に配列した本発明の実施形態900の例を斜視図により示したものであり、ここでは、特に、上記仮想的な曲面が、円筒Cの側面である場合の例を示している。
 なお、上記実施形態900では、上記パワー半導体要素400が曲面に配置された結果、立体的に形成され、それに応じてパッケージングされている他は、基本的な構成や電気的な接続関係は、上記実施形態500と同様である。
 本実施形態900の場合には、上記仮想的な円筒Cは、同図9に鎖線で示したようなものであり、上記3つのパワー半導体要素400を構成している細長い長方形状の外部接続端子(410B、415)の長辺が上記円筒Cの主軸Sと平行になるように、上記仮想的な円筒Cの側面に沿って配列されている。
 また、上記図9においては、上記パワー半導体要素400は、上記仮想的な円筒Cの外側面に上記金属平板410Aのパッケージ530からの露出した部分の面(放熱面)を向けている。しかし、上記仮想的な円筒Cの側面に沿った上記3つのパワー半導体要素400の配列方法は上記に限られるものではない。そのため、上記仮想的な円筒Cの外側面に上記金属平板410Aのパッケージ530からの放熱面とは反対側の面を向けても良いし、或いは、上記仮想的な円筒Cの内側に上記パワー半導体要素400を配して、上記円筒Cの内側面に上記金属平板410Aのパッケージ530からの放熱面側を向けても良く、或いは、上記仮想的な円筒Cの内側にパワー半導体要素400を配したうえで、上記円筒Cの内側面に上記金属平板410Aのパッケージ530からの放熱面とは反対側の面を向けたものであっても良い。
 本発明の上記実施形態900は、上記のような構成を採用することにより、例えば、上記の電動パワーステアリング装置のコントロールユニット100の筐体が上記電動モータ20などの形態に合わせた円筒形状等からなる曲面形状をしている場合には、上記コントロールユニット100の筐体や電動モータ20の円筒形状の側面に沿って本パワー半導体モジュールを配置することにより、上記コントロールユニット100の筐体等の側面をヒートシンク等として効率的に活用することが可能である。
 また、図10は、上述したような、3つのパワー半導体要素400を仮想的な多角形からなる角柱の各側面に沿って並列に配列した例を図示したものであり、ここでは、特に、上記仮想的な多角形が三角形である、三角柱Tの場合の実施形態1000の例を図示したものである。
 ここで、図10(A)は、上記実施形態900において、電気絶縁性の樹脂530によるパッケージ前のパワー半導体要素400を並列に配置した場合の相互の接続状態を示した斜視図であり、図10(B)はこの上面図、図10(C)は、上記樹脂によるパッケージ後の斜視図である。
 上記図10(A)に示したように、本実施形態1000では、同図に鎖線で示したような仮想的な三角柱Tの各3つの側面に沿って、上記パワー半導体要素400を、上記金属平板部分410の放熱面側を上記側面に向けて配列している。
 そのため、平面的に上記パワー半導体要素400を配列するよりも一層小型のものとなっている。
 また、上記実施形態1000では、上記パワー半導体要素400が仮想的な多角形からなる角柱の各側面に沿って並列に配置された結果、立体的に形成され、それに応じてパッケージングされている他は、基本的な構成や電気的な接続関係は、上記図5に示した実施形態500と基本的には同様である。
 ただし、本実施形態1000の場合には、仮想的な三角柱Tの側面に3つのパワー半導体要素400を並列して配列するものであるため、上記3つのパワー半導体要素400は相互に隣接する関係となる。
 そのため、上記図10(B)に示したように、上記図5(B)で示したような電気的接続関係を維持したまま、上記図5(A)の両端に位置したものに相当するパワー半導体要素400に設けられたパワー半導体430の、ソース電極431相互間をクリップ510またはワイヤ450により直接接続し、配線抵抗を低減することが可能である。なお、上記図10(B)において、点線で示した枠は、電気絶縁性の樹脂530によるパッケージを行った場合の輪郭を示している。
 また、上記図10(A)~図10(C)においては、上記パワー半導体要素400は、上記仮想的な三角柱Tの外側面に上記金属平板410Aのパッケージ530からの露出面(放熱面)を向けている。
 しかし、上記仮想的な三角柱Tの側面に沿った上記3つのパワー半導体要素400の配列方法は上記に限られるものではない。
 そのため、上記仮想的な三角柱Tの外側面に上記金属平板410Aのパッケージ530からの放熱面とは反対側の面を向けても良いし、或いは、上記仮想的な三角柱Tの内側に上記パワー半導体要素400を配して、上記三角柱Tの内側面に上記金属平板410Aのパッケージ530からの放熱面を向けても良く、或いは、上記仮想的な三角柱Tの内側にパワー半導体要素400を配したうえで、上記三角柱Tの内側面に上記金属平板410Aのパッケージ530からの露出面とは反対側の面を向けたものであっても良い。
 本発明の上記実施形態1000は、上記のような構成を採用することにより、更に一層上記パワー半導体モジュールを小型化することが可能となる。
 また、例えば、上記の電動パワーステアリング装置のコントロールユニット100の基板に上記実施形態1000のパワー半導体モジュールを取り付けて、上記配列により内側に向けて上記放熱面が配置されている場合には、その内側に三角柱状のヒートシンクを設けることにより、或いは、上記配列により外側に向けて放熱面が配置されている場合には、その三角柱状の外形の外側を囲むようにヒートシンクを設けることにより、上記実施形態1000のパワー半導体モジュールの放熱を行うことが可能である。
 以上のように、本発明のパワー半導体モジュールによれば、汎用品から構成する事が可能なパワー半導体要素を複数個用いて、必要なパワー半導体要素間内部接続を行い、これを一体化することにより、小型化、放熱性向上、内部抵抗低減等を達成し、低コストかつ信頼性の高いパワー半導体モジュールを提供することが可能である。
 なお、上記実施形態は本発明の構成の例を示したものである。そのため、本発明は、上記実施形態に示す構成に限定されるものではなく、本発明の趣旨の範囲で、種々の変形を施すことも可能である。
1     ハンドル
2     コラム軸(ステアリングシャフト、ハンドル軸)
3     減速機構
4a 4b ユニバーサルジョイント
5     ピニオンラック機構
6a 6b タイロッド
7a 7b ハブユニット
8L 8R 操向車輪
10    トルクセンサ
11    イグニションキー
12    車速センサ
13    バッテリ
14    舵角センサ
20    電動モータ
23    モータリレー
100   制御装置(コントロールユニット、ECU)
101   電流指令値演算部
104   PI制御部
105   PWM制御部
106   インバータ
110   補償信号生成部
400   パワー半導体要素
410   金属板
410A  金属平板部分
410B  外部接続端子部
410C  穴
415   外部接続端子
430   パワー半導体ベアチップ
431   ソース電極
433   ゲート電極
435   ドレイン電極
450   ワイヤ
500   700 900 1000 実施形態
510   金属製コネクタ(クリップ)
530   電気絶縁性の樹脂(パッケージ)
C     仮想的な円柱
S     仮想的な円柱の主軸
T     仮想的な三角柱

Claims (11)

  1.  少なくとも1つの外部接続端子が形成された金属板に1つの電極部分で接続されたパワー半導体ベアチップと前記半導体ベアチップの他の電極部分と電気的に接続された他の外部接続端子とからなるパワー半導体要素を複数配列して同一のパッケージ内に収容して形成したパワー半導体モジュールであって、
    前記複数のパワー半導体要素は基本的に同一の外形を有しており、
    前記複数のパワー半導体要素の前記ベアチップの電極は、金属製コネクタまたはワイヤにより、前記複数のパワー半導体要素間で相互接続されており、
    前記パッケージは前記複数のパワー半導体要素を電気絶縁性の樹脂で封止した樹脂モールドパッケージである
    ことを特徴とするパワー半導体モジュール。
  2.  前記パワー半導体ベアチップは電界効果トランジスタのベアチップであり、
    前記ベアチップのドレイン電極を前記1つの外部接続端子が形成された金属板に接合し、
    前記ベアチップのゲート電極及びソース電極は前記ドレイン電極よりも前記1つの外部接続端子から離間した側に設けられ、
    前記ゲート電極又はソース電極の一部は、前記パワー半導体要素間で前記金属製コネクタまたはワイヤにより相互接続されている請求項1に記載のパワー半導体モジュール。
  3.  前記1つの外部接続端子と前記他の外部接続端子とは、相互に平行に配置されている請求項1又は2に記載のパワー半導体モジュール。
  4.  前記複数配列は、少なくとも2以上の前記パワー半導体要素を平面上に並列して配列したものである請求項1乃至3のいずれか1項に記載のパワー半導体モジュール。
  5.  前記複数配列は、少なくとも2以上の前記パワー半導体要素を仮想的な曲面に沿って並列して配列したものである請求項1乃至3のいずれか1項に記載のパワー半導体モジュール。
  6.  前記仮想的な曲面が円筒の側面であり、前記相互に平行に配置された外部接続端子は更に前記円筒の主軸の方向と平行である請求項5に記載のパワー半導体モジュール。
  7.  前記複数配列は、少なくとも2以上の前記パワー半導体要素を仮想的な多角形からなる角柱の各側面に沿って並列して配列したものであり、前記相互に平行に配置された外部接続端子は更に前記角柱の主軸の方向と平行である請求項3に記載のパワー半導体モジュール。
  8.  前記金属板の材料が銅又はアルミニウムである請求項1乃至7のいずれか1項に記載のパワー半導体モジュール。
  9.  前記金属板は前記パッケージ内部から外部へ露出する露出部分を有しており、前記露出部分を外部に設けた放熱器に接続可能な請求項1乃至8のいずれか1項に記載のパワー半導体モジュール。
  10.  3相ブラシレスモータを駆動する際に、各1相の制御に前記パワー半導体要素3つを同一のパッケージ内に収容して形成した請求項1乃至9のいずれか1項に記載のパワー半導体モジュールを用いることを特徴とする制御装置。
  11.  請求項1乃至9のいずれか1項に記載のパワー半導体モジュールを用いることを特徴とする電動パワーステアリング装置。
     
PCT/JP2015/083895 2014-12-24 2015-12-02 パワー半導体モジュール及びこれを用いた電動パワーステアリング装置 WO2016104088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/535,463 US10096572B2 (en) 2014-12-24 2015-12-02 Power semiconductor module and electric power steering apparatus using the same
EP15872657.0A EP3240026A4 (en) 2014-12-24 2015-12-02 Power semiconductor module and electric power steering device employing same
JP2016564652A JP6137421B2 (ja) 2014-12-24 2015-12-02 パワー半導体モジュール及びこれを用いた電動パワーステアリング装置
CN201580069664.6A CN107112317B (zh) 2014-12-24 2015-12-02 功率半导体模块以及使用其的电动助力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-260666 2014-12-24
JP2014260666 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016104088A1 true WO2016104088A1 (ja) 2016-06-30

Family

ID=56150119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083895 WO2016104088A1 (ja) 2014-12-24 2015-12-02 パワー半導体モジュール及びこれを用いた電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10096572B2 (ja)
EP (1) EP3240026A4 (ja)
JP (2) JP6137421B2 (ja)
CN (1) CN107112317B (ja)
WO (1) WO2016104088A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6559728B2 (ja) * 2017-04-04 2019-08-14 株式会社豊田中央研究所 半導体装置及び電力変換装置
DE102018201206A1 (de) * 2018-01-26 2019-08-01 Siemens Aktiengesellschaft Modulare Anordnung eines Umrichters und Luftfahrzeug mit einer derartigen Anordnung
US11682606B2 (en) * 2019-02-07 2023-06-20 Ford Global Technologies, Llc Semiconductor with integrated electrically conductive cooling channels
JP7211268B2 (ja) * 2019-05-30 2023-01-24 株式会社デンソー 半導体モジュール
JP2022010604A (ja) * 2020-06-29 2022-01-17 日本電産サンキョー株式会社 電子機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236470A (ja) * 2003-01-31 2004-08-19 Yaskawa Electric Corp パワーモジュールおよびパワーモジュール一体型モータ
US20070267742A1 (en) * 2006-05-19 2007-11-22 Liang-Pin Tai Dual mosfet package
US20080251859A1 (en) * 2007-04-10 2008-10-16 Ralf Otremba Semiconductor Module
WO2012060123A1 (ja) * 2010-11-02 2012-05-10 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
US20130032855A1 (en) * 2011-08-05 2013-02-07 Infineon Technologies Ag Semiconductor Arrangement
JP2013151206A (ja) * 2012-01-25 2013-08-08 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2013187998A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd 電力変換装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151055A (ja) * 1986-12-16 1988-06-23 Matsushita Electronics Corp 複合型半導体装置
JPH0740790B2 (ja) * 1987-02-23 1995-05-01 株式会社東芝 大電力パワ−モジユ−ル
US5043859A (en) * 1989-12-21 1991-08-27 General Electric Company Half bridge device package, packaged devices and circuits
JP2708320B2 (ja) * 1992-04-17 1998-02-04 三菱電機株式会社 マルチチップ型半導体装置及びその製造方法
US5904499A (en) * 1994-12-22 1999-05-18 Pace; Benedict G Package for power semiconductor chips
JPH09163681A (ja) * 1995-12-12 1997-06-20 Hitachi Ltd 電気車用回転電機
US6465875B2 (en) * 2000-03-27 2002-10-15 International Rectifier Corporation Semiconductor device package with plural pad lead frame
JP4010792B2 (ja) * 2001-10-19 2007-11-21 株式会社ルネサステクノロジ 半導体装置
US6891256B2 (en) * 2001-10-22 2005-05-10 Fairchild Semiconductor Corporation Thin, thermally enhanced flip chip in a leaded molded package
JP3812447B2 (ja) * 2002-01-28 2006-08-23 富士電機デバイステクノロジー株式会社 樹脂封止形半導体装置
EP1528593B1 (en) * 2002-08-09 2009-07-22 Fujitsu Microelectronics Limited Semiconductor device and method for manufacturing the same
US6975023B2 (en) * 2002-09-04 2005-12-13 International Rectifier Corporation Co-packaged control circuit, transistor and inverted diode
JP4244318B2 (ja) * 2003-12-03 2009-03-25 株式会社ルネサステクノロジ 半導体装置
JP4549884B2 (ja) 2005-02-25 2010-09-22 株式会社デンソー 流体機械
US20060151868A1 (en) * 2005-01-10 2006-07-13 Zhu Tinggang Package for gallium nitride semiconductor devices
CN101449371B (zh) * 2006-05-30 2010-09-29 国产电机株式会社 树脂密封型半导体器件以及用该半导体器件的电子装置
US8349623B2 (en) * 2007-08-06 2013-01-08 Sharp Kabushiki Kaisha Method and apparatus for manufacturing thin film photoelectric conversion module
JP2009110981A (ja) * 2007-10-26 2009-05-21 Mitsubishi Electric Corp 半導体モジュール
JP2009231805A (ja) * 2008-02-29 2009-10-08 Renesas Technology Corp 半導体装置
JP5365872B2 (ja) 2009-06-24 2013-12-11 株式会社デンソー 駆動装置
JP5701377B2 (ja) 2011-03-24 2015-04-15 三菱電機株式会社 パワー半導体モジュール及びパワーユニット装置
JP2012239256A (ja) * 2011-05-10 2012-12-06 Denso Corp 電力変換装置
JP5397417B2 (ja) 2011-05-30 2014-01-22 株式会社デンソー 半導体装置、および、それを用いた駆動装置
JP5267959B2 (ja) * 2011-05-30 2013-08-21 株式会社デンソー 半導体モジュール、及び、それを用いた駆動装置
CN103987611B (zh) 2012-01-25 2017-03-08 三菱电机株式会社 电动动力转向装置
JP5477669B2 (ja) * 2012-02-28 2014-04-23 株式会社デンソー 半導体モジュール
WO2013145620A1 (ja) * 2012-03-28 2013-10-03 富士電機株式会社 半導体装置
JP5831626B2 (ja) * 2012-03-28 2015-12-09 富士電機株式会社 半導体装置及び半導体装置の製造方法
US20140210061A1 (en) * 2013-01-28 2014-07-31 Infineon Technologies Austria Ag Chip arrangement and chip package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236470A (ja) * 2003-01-31 2004-08-19 Yaskawa Electric Corp パワーモジュールおよびパワーモジュール一体型モータ
US20070267742A1 (en) * 2006-05-19 2007-11-22 Liang-Pin Tai Dual mosfet package
US20080251859A1 (en) * 2007-04-10 2008-10-16 Ralf Otremba Semiconductor Module
WO2012060123A1 (ja) * 2010-11-02 2012-05-10 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
US20130032855A1 (en) * 2011-08-05 2013-02-07 Infineon Technologies Ag Semiconductor Arrangement
JP2013151206A (ja) * 2012-01-25 2013-08-08 Mitsubishi Electric Corp 電動パワーステアリング装置
JP2013187998A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240026A4 *

Also Published As

Publication number Publication date
CN107112317B (zh) 2019-07-05
CN107112317A (zh) 2017-08-29
EP3240026A4 (en) 2018-09-05
US10096572B2 (en) 2018-10-09
JP6137421B2 (ja) 2017-05-31
JP6337986B2 (ja) 2018-06-06
EP3240026A1 (en) 2017-11-01
JPWO2016104088A1 (ja) 2017-04-27
JP2017152727A (ja) 2017-08-31
US20170338201A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP6337986B2 (ja) パワー半導体モジュール及びこれを用いた電動パワーステアリング装置。
US10211771B2 (en) Drive apparatus and electric power steering apparatus using the same
JP6680053B2 (ja) 駆動装置、および、これを用いた電動パワーステアリング装置
US20130119908A1 (en) Electronic control unit for electric power steering
US10014745B2 (en) Electric driving device and electric power steering device
JP5725055B2 (ja) 電子制御ユニット
EP3220521B1 (en) Control unit and electric power steering device using same
CN107004647B (zh) 电子部件搭载用散热基板
US8520394B2 (en) Control device
JP6658858B2 (ja) 電子部品搭載用放熱基板
JP5375874B2 (ja) モータ駆動装置
US20180131256A1 (en) Electric Drive Apparatus and Electric Power Steering Apparatus
US9184640B2 (en) Motor controller and production method of the same
WO2014068937A1 (ja) 半導体モジュール
JP6083461B2 (ja) 半導体モジュール
US20180115225A1 (en) Circuit integrated motor
US8896171B2 (en) Motor drive apparatus having a simplified assembling structure
CN110741547B (zh) 电子控制装置以及使用该电子控制装置的电动动力转向装置
JP5407244B2 (ja) モータ駆動装置
US8981605B2 (en) Motor drive apparatus with substrate fixed, member and rotation angle sensor
JP2015080383A (ja) 半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564652

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15535463

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015872657

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE