WO2016104077A1 - 潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法 - Google Patents

潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法 Download PDF

Info

Publication number
WO2016104077A1
WO2016104077A1 PCT/JP2015/083814 JP2015083814W WO2016104077A1 WO 2016104077 A1 WO2016104077 A1 WO 2016104077A1 JP 2015083814 W JP2015083814 W JP 2015083814W WO 2016104077 A1 WO2016104077 A1 WO 2016104077A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
lubricant
powder metallurgy
mixed
metallurgy
Prior art date
Application number
PCT/JP2015/083814
Other languages
English (en)
French (fr)
Inventor
義浩 伊藤
吉川 英一郎
宣明 赤城
祐司 谷口
充洋 佐藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56150109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016104077(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020177017058A priority Critical patent/KR101980987B1/ko
Priority to EP15872646.3A priority patent/EP3238862A4/en
Priority to CN201580071087.4A priority patent/CN107107189B/zh
Priority to US15/520,463 priority patent/US10500638B2/en
Publication of WO2016104077A1 publication Critical patent/WO2016104077A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/04Metals; Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/70Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • C10M2215/2225Triazines used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/14Composite materials or sliding materials in which lubricants are integrally molded
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder

Definitions

  • a powder metallurgy method is known as a method for producing a sintered body using an iron-based powder.
  • this powder metallurgy method includes a mixing step of mixing iron-base powder and auxiliary raw material powder included as an optional component, a compression step of compressing a mixed powder for powder metallurgy obtained by this mixing using a mold, Sintering the green compact obtained by the compression at a temperature not higher than the melting point of the iron-based powder.
  • the green compact obtained by compression using a mold is extracted from the mold.
  • the powder is used for the purpose of reducing the friction between the green compact and the die and increasing the fluidity of the powder mixture for powder metallurgy.
  • a lubricant is added to the metallurgical mixed powder.
  • a metal soap such as zinc stearate or an amide-based lubricant such as ethylene bis stearamide is generally used.
  • graphite or the like is often mixed with the mixed powder for powder metallurgy as an auxiliary raw material powder in order to improve strength.
  • graphite has a smaller specific gravity and particle size than the iron-based powder. Therefore, when the iron-based powder and graphite are simply mixed, the iron-based powder and graphite are largely separated and the graphite is segregated.
  • an auxiliary material powder having a specific gravity or the like different from that of the iron-based powder, such as graphite is simply mixed, there is a possibility that it cannot be uniformly mixed.
  • examples of the mixed powder for powder metallurgy containing components other than the iron-based powder include the powder described in Patent Document 1.
  • Patent Document 1 discloses iron powder, a binder that is at least partially adhered to the surface of the iron powder, an alloy component that is at least partially adhered to the binder that is adhered to the surface of the iron powder, and the iron powder.
  • An iron-base powder for powder metallurgy containing a fluidity improver that at least partially adheres to the iron powder and melamine cyanurate that is at least partially free from the iron powder is described.
  • Patent Document 1 it is disclosed that the obtained iron-base powder for powder metallurgy is excellent in pullability. It is disclosed that melamine cyanurate preferentially adheres to the mold wall surface, which is to prevent direct contact and seizure between the mold and iron powder during molding compression and extraction. Yes.
  • the present invention has been made in view of such circumstances, and can improve the fluidity of the powder mixture for powder metallurgy and can provide a powder mixture for powder metallurgy capable of producing a high-density sintered body. It is an object to provide an agent, a mixed powder for powder metallurgy containing the lubricant, and a method for producing a sintered body using the lubricant.
  • One aspect of the present invention is a lubricant blended in a powder mixture for powder metallurgy including an iron-based powder, characterized in that it includes an organic layered material having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m. Lubricant.
  • FIG. 1 is a schematic cross-sectional view of a graphite scattering rate measuring instrument used in Examples.
  • the present inventors have reached the present invention by paying attention to a lubricant containing an organic layered material such as melamine cyanurate and further paying attention to the average particle diameter of the organic layered material. It was.
  • the lubricant according to the embodiment of the present invention is a lubricant blended in a powder metallurgy mixed powder containing iron-based powder, and includes an organic layered material having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m. That is, the lubricant is blended in a powder mixture for powder metallurgy containing iron-based powder. And the said lubrication agent is mix
  • the powder mixture for powder metallurgy is compressed using a mold, and the green compact obtained by this compression is extracted from the mold. And a sintered compact is obtained by sintering the green compact extracted from this metal mold
  • the density of the green compact obtained using the powder mixture for powder metallurgy can be increased. This is considered to be due to the following. First, since the average particle diameter of the organic layered material is relatively small within the above range, the organic layered material easily enters gaps such as iron-based powder and other powders. For this reason, it can fully suppress that this organic type layered material inhibits compression of the mixed powder for powder metallurgy. Therefore, it is considered that the density of the green compact can be increased. Further, since the sintered compact is obtained by sintering the densified green compact, a densified sintered compact is obtained.
  • the lubricant is a lubricant blended in a powder mixture for powder metallurgy containing iron-based powder.
  • the mixed powder for powder metallurgy may be a mixed powder for powder metallurgy including an iron-based powder, but may include an auxiliary material powder and a binder, which will be described later, as necessary.
  • the mixed powder for powder metallurgy one containing an auxiliary raw material powder is preferable, and as the auxiliary raw material powder, one containing graphite is more preferable.
  • a mixed powder for powder metallurgy containing such auxiliary raw material powder is used, a sintered body having improved strength can be obtained.
  • the iron-based powder and the auxiliary raw material powder are likely to be scattered or segregated in the auxiliary raw material powder.
  • the inclusion of the lubricant suppresses these occurrences. can do. Accordingly, a powder for powder metallurgy from which a suitable sintered body can be obtained is obtained.
  • the lubricant contains the organic layered material as described above.
  • the organic layered material a material having no melting point and sublimation is more preferable. If it is an organic layered material having no melting point, a more suitable sintered body can be obtained. This means that the molten organic layered material does not hinder the formation of the green compact because it does not melt in the vicinity of the inner surface of the mold during compression, and is also melted during sintering. This is considered to be because the inhibition of sintering by the organic layered material can be sufficiently suppressed.
  • the organic layered material examples include a material having a layered structure composed of a compound having a triazine ring as a skeleton, and more specifically, a layered crystal structure such as melamine cyanurate and melamine polyphosphate.
  • the material which has is mentioned.
  • the organic layered material is preferably melamine cyanurate, because the crystal has a multilayer structure and can easily and reliably reduce friction between the powders when the mixed powder for powder metallurgy is compressed.
  • Melamine cyanurate (melamine cyanurate) is a substance that sublimes at 350 to 400 ° C. at normal pressure, and does not melt, that is, has no melting point.
  • the said organic type layered material may be used independently and may be used in combination of 2 or more type.
  • the organic layered material may be subjected to surface treatment such as silicone treatment or fatty acid treatment.
  • surface treatment such as silicone treatment or fatty acid treatment.
  • the organic layered material has an average particle diameter of 0.1 ⁇ m or more and less than 3 ⁇ m.
  • the lower limit of the average particle size of the organic layered material is 0.1 ⁇ m, preferably 1 ⁇ m, and more preferably 1.5 ⁇ m.
  • the average particle diameter of the organic layered material is less than 3 ⁇ m, and the upper limit thereof is preferably 2.5 ⁇ m, more preferably 2 ⁇ m. If the average particle size of the organic layered material is too small, the lubricity may not be sufficiently improved even if the organic layered material is added.
  • the powder metallurgy can improve the fluidity of the mixed powder for powder metallurgy and produce a high-density sintered body. It is considered that a lubricant that can be used as a mixed powder for use is obtained.
  • the lubricant contains the organic layered material. That is, the lubricant may be made of the organic layered material, or may contain an amide compound, metal soap, wax, or the like in addition to the organic layered material.
  • the amide compound is not particularly limited, for example, a primary amide or a secondary amide is preferable.
  • the primary amide include stearic acid amide, ethylene bis stearic acid amide, and hydroxy stearic acid amide.
  • the secondary amide include stearyl stearic acid amide, oleyl stearic acid amide, stearyl erucic acid amide, and methylol stearic acid amide.
  • the said amide compound may be used independently and may be used in combination of 2 or more type.
  • the metal soap is not particularly limited, and examples thereof include fatty acid salts having 12 or more carbon atoms. Among these, the metal soap is preferably zinc stearate. Moreover, the said metal soap may be used independently and may be used in combination of 2 or more type.
  • wax examples include polyethylene wax, ester wax, and paraffin wax. Moreover, the said wax may be used independently and may be used in combination of 2 or more type.
  • the lubricant when the lubricant contains other components in addition to the organic layered material, the amide compound is preferable. That is, the lubricant preferably contains the amide compound.
  • the lower limit of the melting point of the amide compound is preferably 60 ° C, more preferably 70 ° C, and further preferably 80 ° C.
  • the upper limit of the melting point of the amide compound is preferably 130 ° C, more preferably 120 ° C, and even more preferably 110 ° C.
  • the viscosity of the amide compound decreases as the temperature in the mold approaches the melting point during the plastic deformation of the mixed powder for powder metallurgy, and the mixing for powder metallurgy It is thought that the fluidity of the powder is improved. In addition, it is considered that the amide compound can easily and surely enter between the iron-based powder and other powders and between the powder and the mold. From these things, it is thought that the mixed powder for powder metallurgy which can improve the fluidity
  • the lower limit of the content of the amide compound is preferably 10 parts by weight, more preferably 20 parts by weight, and even more preferably 30 parts by weight with respect to 100 parts by weight of the organic layered material.
  • an upper limit of content of the said amide compound 90 mass parts is preferable with respect to 100 mass parts of said organic type layered materials, 80 mass parts is more preferable, 70 mass parts is further more preferable.
  • the content of the amide compound is too large, the compressibility of the powder mixture for powder metallurgy may be reduced. Therefore, when the content of the amide compound is within the above range, a mixed powder for powder metallurgy that can increase the fluidity of the mixed powder for powder metallurgy and can manufacture a higher-density sintered body is obtained.
  • the lower limit of the blending amount of the lubricant in the powder mixture for powder metallurgy is preferably 0.01% by mass, more preferably 0.05% by mass, and further preferably 0.1% by mass.
  • the upper limit of the blending amount of the lubricant in the powder mixture for powder metallurgy is preferably 1.5% by mass, more preferably 1% by mass, and even more preferably 0.7% by mass.
  • the blending amount of the lubricant is too large, the compressibility of the powder mixture for powder metallurgy may be reduced. Accordingly, when the blending amount of the lubricant in the mixed powder for powder metallurgy is within the above range, the powder metallurgy that can increase the fluidity of the mixed powder for powder metallurgy and produce a higher-density sintered body. A mixed powder is obtained.
  • the lubricant includes an organic layered material having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m.
  • the average particle size of the organic layered material is within the above range. It can enter into voids such as other powders relatively easily and improve the lubricity of the powder mixture for powder metallurgy. That is, by mixing the lubricant, a mixed powder for powder metallurgy having excellent fluidity can be obtained.
  • the mixed powder for powder metallurgy is compressed when a sintered body is produced using the mixed powder for powder metallurgy.
  • this powder metallurgy mixed powder can be suitably compressed to obtain a suitable green compact. Therefore, it is possible to promote the densification of the sintered body obtained by sintering the green compact, and to promote the high quality of the sintered body.
  • die can be reduced.
  • the organic layered material contained in the lubricant adheres to the inner surface of the mold when the mixed powder for powder metallurgy is filled into the mold.
  • the organic layered material does not have a melting point, it can adhere to the inner surface of the mold without melting when filling the powder metallurgy mixed powder into the mold. Can be reduced.
  • a mixed powder for powder metallurgy according to another embodiment of the present invention includes an iron-based powder and the lubricant.
  • the mixed powder for powder metallurgy may be composed of iron-based powder and the lubricant, but may contain other components. Examples of other components include auxiliary raw material powders and binders.
  • the iron-based powder is a main raw material of the mixed powder for powder metallurgy.
  • the iron-based powder is mainly composed of iron.
  • the iron-based powder include pure iron powder and iron alloy powder. That is, the iron-based powder may be either pure iron powder or iron alloy powder.
  • the iron alloy powder is not particularly limited, and may be, for example, a partial alloy powder in which an alloy powder such as copper, nickel, chromium, molybdenum or the like is diffused and adhered to the surface, or a molten iron containing an alloy component. Or the pre-alloy powder obtained from molten steel may be sufficient.
  • the method for producing the iron-based powder examples include a method for atomizing molten iron or steel, a method for producing iron ore and mill scale by reduction, and the like.
  • the “main raw material” refers to a raw material having the highest content among the raw materials, for example, a raw material having a content of 50% by mass or more.
  • the “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more.
  • the lower limit of the average particle size of the iron-based powder is preferably 40 ⁇ m, more preferably 50 ⁇ m, and even more preferably 60 ⁇ m.
  • the upper limit of the average particle size of the iron-based powder is preferably 120 ⁇ m, more preferably 100 ⁇ m, and still more preferably 80 ⁇ m. If the average particle size of the iron-based powder is too small, the handling properties of the iron-based powder may be reduced. Conversely, if the average particle size of the iron-based powder is too large, the lubricant may enter the irregularities on the surface of the iron-based powder. Therefore, when the average particle diameter of the iron-based powder is within the above range, a more suitable mixed powder for powder metallurgy can be obtained, for example, a higher-density sintered body can be produced.
  • the auxiliary raw material powder is contained in the mixed powder for powder metallurgy as an optional component depending on the physical properties desired for the final product.
  • the properties of the sintered body can be changed by the added auxiliary material powder, such as improving the strength of the sintered body obtained from the powder mixture for powder metallurgy.
  • the auxiliary raw material powder include alloy elements such as copper, nickel, chromium and molybdenum, and powders of inorganic or organic components such as phosphorus, sulfur, graphite, fluorinated graphite, manganese sulfide, talc and calcium fluoride. Can be mentioned.
  • graphite is preferable at the point which can improve the intensity
  • the upper limit of the content of the auxiliary raw material powder is preferably 10 parts by mass, more preferably 7 parts by mass, and still more preferably 5 parts by mass with respect to 100 parts by mass of the iron-based powder.
  • the lower limit of the content of the auxiliary material powder may be 0 parts by mass.
  • the lower limit of the content of the auxiliary raw material powder is preferably 0.1 parts by mass, and 0.5 parts by mass with respect to 100 parts by mass of the iron-based powder. Is more preferable, and 1 part by mass is more preferable.
  • the content of the auxiliary raw material powder is within the above range, a more suitable mixed powder for powder metallurgy can be obtained, and thus a more suitable mixed powder for powder metallurgy capable of producing a sintered body can be obtained. It is done.
  • the said binder is contained in the mixed powder for powder metallurgy as needed. When the binder is contained, scattering of the iron-based powder and the auxiliary raw material powder, segregation of the auxiliary raw material powder, and the like can be prevented.
  • the binder is not particularly limited, and examples thereof include polyolefin, acrylic resin, polystyrene, styrene butadiene rubber, ethylene glycol distearate, epoxy resin, and rosin ester.
  • polyolefin and acrylic resin are preferable as the binder.
  • said binder it is preferable that either one of polyolefin and an acrylic resin is included, and it is more preferable that both polyolefin and an acrylic resin are included.
  • Examples of the polyolefin include a butene polymer.
  • Examples of the butene polymer include a butene polymer composed only of butene, and a copolymer of butene and other alkenes.
  • Examples of the copolymer include a butene-ethylene copolymer and a butene-propylene copolymer.
  • the polyolefin may have a structure having any other monomer or polymer. For example, a butene-ethylene copolymer containing vinyl acetate has a lower melting point.
  • the lower limit of the melting point of the polyolefin is preferably 45 ° C, more preferably 50 ° C, and further preferably 55 ° C.
  • the upper limit of the melting point of the polyolefin is preferably 90 ° C, more preferably 85 ° C, and further preferably 80 ° C. If the melting point of the polyolefin is too low, the adhesiveness becomes too high when the temperature of the powder mixture for powder metallurgy rises, and the fluidity of the powder mixture for powder metallurgy may not be sufficiently high.
  • the melting point of the polyolefin becomes too high, the adhesion between the iron-based powder and the auxiliary raw material powder becomes weak, and segregation and dust generation may not be sufficiently prevented. Therefore, when the melting point of the polyolefin is within the above range, the effect of incorporating the binder can be effectively exhibited, and a more suitable mixed powder for powder metallurgy can be obtained. For example, scattering of the iron-based powder and the auxiliary raw material powder, segregation of the auxiliary raw material powder, and the like can be suitably prevented.
  • the lower limit of the heat melt fluidity (MFR) at 190 ° C. of the polyolefin is preferably 2.8 g / 10 minutes, and more preferably 3.2 g / 10 minutes.
  • the heat melting fluidity at 190 ° C. of the polyolefin is preferably 3.8 g / 10 minutes, and more preferably 3.4 g / 10 minutes. If the heat-melt flowability at 190 ° C. of the polyolefin is too low or too high, the flowability of the polyolefin is lowered, and as a result, the flowability of the powder mixture for powder metallurgy may not be sufficiently increased. Therefore, when the heat melting fluidity at 190 ° C. of the polyolefin is within the above range, the effect of containing the binder can be effectively exhibited, and a more suitable mixed powder for powder metallurgy can be obtained.
  • the polyolefin may be any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. Also, the structure of this copolymer may be either linear or branched.
  • acrylic resin examples include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polycyclohexyl cyclohexyl, polyethyl hexyl methacrylate, polylauryl methacrylate, polymethyl acrylate, and polyacrylic.
  • the acrylic resin is preferably an acrylic resin having a structural formula close to linear. That is, as the acrylic resin, among the above exemplified compounds, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethyl acrylate and polyethyl acrylate are preferable, and polymethyl methacrylate and polyethyl methacrylate are preferred. And polybutyl methacrylate are particularly preferred.
  • the upper limit of the weight average molecular weight of the acrylic resin is preferably 500,000, more preferably 400,000, and further preferably 350,000. If the weight average molecular weight of the acrylic resin is too high, segregation of the auxiliary raw material powder may not be prevented. This is considered to be because it becomes difficult to adjust the viscosity when melted or dissolved with an organic solvent, and the adhesiveness of the iron-based powder and the auxiliary raw material powder may not be improved accurately. On the other hand, when the weight average molecular weight of the acrylic resin is within the above range, it is possible to improve the uniform dispersibility of the auxiliary raw material powder in the powder mixture for powder metallurgy, and about 50 ° C. to 70 ° C.
  • the fluidity of the mixed powder for powder metallurgy at a high temperature can be improved.
  • the minimum of the weight average molecular weight of the said acrylic resin is not specifically limited from the point which improves fluidity
  • the mixed powder for powder metallurgy includes segregation and scattering of auxiliary raw material powders and the like by including a binder having a polyolefin having a melting point and heat melt flowability within the above range, or an acrylic resin having a weight average molecular weight within the above range. Can be accurately prevented. Moreover, it is preferable that the said mixed powder for powder metallurgy contains the binder containing the said polyolefin and the said acrylic resin from the point which prevents segregation and scattering of auxiliary
  • the lower limit of the content of the acrylic resin is preferably 10 parts by mass, more preferably 15 parts by mass, and further 20 parts by mass with respect to 100 parts by mass of the polyolefin. preferable.
  • the content of the acrylic resin is within the above range, segregation of the auxiliary raw material powder and the like can be more accurately prevented.
  • the upper limit of the content of the acrylic resin with respect to 100 parts by mass of the polyolefin prevents scattering of the iron-based powder and auxiliary raw material powder and segregation of the auxiliary raw material powder. From the point of doing, it is not particularly limited.
  • the upper limit of the content of the acrylic resin can be 80 parts by mass with respect to 100 parts by mass of the polyolefin. , Preferably it can be 60 mass parts.
  • the upper limit of the binder content is preferably 0.5 parts by mass and more preferably 0.2 parts by mass with respect to 100 parts by mass of the iron-based powder and the auxiliary raw material powder.
  • the binder is contained in order to prevent scattering of the iron-based powder and the auxiliary raw material powder and segregation of the auxiliary raw material powder. When the risk of scattering and segregation of these powders is low, etc. Need not be contained. Therefore, the lower limit of the binder content can be 0 parts by mass with respect to 100 parts by mass of the iron-based powder and the auxiliary raw material powder.
  • the lower limit of the binder content is preferably 0.01 parts by mass with respect to 100 parts by mass of the iron-based powder and the auxiliary raw material powder.
  • the effect of containing a binder cannot fully be exhibited. That is, there is a possibility that scattering of the iron-based powder and the auxiliary raw material powder and segregation of the auxiliary raw material powder cannot be sufficiently prevented.
  • the mixed powder for powder metallurgy includes the lubricant, the lubricity can be improved as described above, and the density of the obtained sintered body can be increased, and hence the quality can be promoted. Further, the mixed powder for powder metallurgy can reduce the punching pressure from the mold as described above.
  • the method for producing the sintered body is not particularly limited as long as it is a method for obtaining a sintered body using the mixed powder for powder metallurgy, and includes, for example, a mixing step, a compression step, and a sintering step. .
  • the method include a compression step of compressing to obtain a green compact, and a sintering step of sintering the green compact to obtain a sintered body.
  • the mixing step is not particularly limited as long as it is a step of mixing the iron-based powder and the lubricant to obtain a mixed powder for powder metallurgy including the iron-based powder and the lubricant.
  • the above-described lubricant containing an organic layered material having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m is used as the lubricant.
  • the mixing step not only the iron-based powder and the lubricant are mixed, but also the auxiliary raw material powder and the binder may be mixed as necessary. By doing so, mixed powder for powder metallurgy including not only the iron-based powder and the lubricant but also the auxiliary raw material powder and the binder can be obtained.
  • the mixing step is preferably a step of mixing the iron-based powder, the lubricant, and the auxiliary raw material powder.
  • the iron-based powder, the lubricant, the auxiliary raw material powder, and the binder are mixed in the mixing step.
  • the iron-based powder, the auxiliary raw material powder, and the binder are put into a known mixing apparatus, and after heating and mixing, cooling is performed.
  • the binder is solidified and adheres to the surface of the iron-based powder or the auxiliary material powder, whereby the iron-based powder and the auxiliary material powder are connected to each other, and as a result, segregation and scattering are prevented.
  • a mixer, a high speed mixer, a Nauta mixer, a V-type mixer, a double cone blender etc. are used, for example.
  • the lubricant is mixed with the cooled mixed powder. Thereby, the mixed powder for powder metallurgy is obtained.
  • the binder may be mixed in a molten state, or may be mixed in a powder state and melted by frictional heat such as interparticle friction during the mixing process, and heated to a predetermined temperature with an external heat source. And may be melted.
  • the binder is mixed in a molten state, the molten binder is usually not mixed as it is, but the molten binder is mixed in a volatile organic solvent such as toluene or acetone. It is preferable.
  • the mixing conditions for the components other than the lubricant are not particularly limited as long as the iron-based powder, the auxiliary raw material powder, which is a component added as necessary, and the binder can be mixed.
  • the mixing conditions are appropriately set according to various conditions such as a mixing apparatus and a production scale.
  • the rotational speed of the blade is controlled to a peripheral speed within a range of about 2 m / s to 10 m / s, and stirring is performed for about 0.5 minutes to 20 minutes. Can be done.
  • the mixing conditions of the said lubricant should just be able to mix the said lubricant, and are not specifically limited, For example, the conditions similar to the mixing conditions of components other than the said lubricant can be mentioned.
  • the mixing temperature of components other than the lubricant is not particularly limited, and can be, for example, 40 ° C. or higher and 60 ° C. or lower.
  • the mixing temperature is too low, the iron-based powder and the auxiliary raw material powder and the binder added as necessary may not be mixed appropriately.
  • the viscosity of the binder is increased, and the uniform dispersibility in the powder mixture for powder metallurgy may be reduced.
  • the mixing temperature is too high, the components of the powder mixture for powder metallurgy may be damaged or may not be mixed appropriately.
  • the cost concerning heating equipment may increase more than necessary.
  • the mixing temperature of the lubricant is not particularly limited as long as the lubricant can be mixed, and examples thereof include the same temperature as the mixing temperature of components other than the lubricant. By doing so, the said lubricant can also be mixed suitably and the suitable mixed powder for powder metallurgy can be obtained.
  • the said compression process will not be specifically limited if it is the process of compressing the said mixed powder for powder metallurgy using a metal mold
  • the compression step is performed, for example, by filling the powder mixture for powder metallurgy into a mold and applying a pressure of 490 MPa to 686 MPa, for example.
  • the compression temperature is not particularly limited because it differs depending on the type and amount of components constituting the mixed powder for powder metallurgy, the compression pressure, and the like.
  • the compression temperature can be 25 ° C. or more and 150 ° C. or less.
  • the sintering step is not particularly limited as long as it is a step of sintering the green compact to obtain a sintered body. Further, the sintering conditions are not particularly limited because they differ depending on the types of components constituting the green compact, the types of sintered bodies obtained, and the like.
  • the sintering temperature in the sintering step is not particularly limited as long as it is a temperature at which a sintered body can be obtained from the green compact, but it is preferably not higher than the melting point of the iron-based powder, and is not lower than 1000 ° C and not higher than 1300 ° C. The following is more preferable.
  • sintering is performed at a temperature of 1000 ° C. to 1300 ° C. for 5 minutes to 60 minutes in an atmosphere of N 2 , N 2 —H 2 , hydrocarbon, or the like. .
  • the method for manufacturing the sintered body uses a powder mixture for powder metallurgy containing the lubricant, a sintered body having a high density can be obtained.
  • This sintered body is a sintered body whose quality is promoted by increasing the density.
  • average particle diameter refers to a cumulative 50% average volume diameter (median diameter, 50% particle diameter, d50).
  • the d50 can be measured by a general average particle diameter measuring method, and can be measured by, for example, measurement using a laser diffraction scattering method, measurement using a general particle size meter, or the like.
  • Melting point refers to the melting point peak temperature measured by a differential scanning calorimeter (DSC).
  • Organic layered material refers to a material having a layered structure having carbon atoms as constituent atoms. Moreover, as content of the carbon atom contained in this organic type layered material, it is 20 mass% or more, for example, Preferably it is 30 mass% or more.
  • “layered” means, for example, that the ratio of the average thickness in the vertical direction of this surface to the long axis of a certain surface and the short diameter perpendicular to the long diameter is 1/200 or more and 1/5 or less. Preferably, the ratio is 1/100 or more and 1/20 or less.
  • the major axis means the maximum straight line length in the plane.
  • the minor axis is the maximum straight line length among straight lines perpendicular to the in-plane major axis.
  • “Heating melt fluidity (MFR)” means a value measured at a test temperature of 190 ° C. and a load of 2.16 kg in accordance with “Appendix A Table 1” of JIS-K7210 (1999).
  • “Weight average molecular weight” refers to a value measured by gel permeation chromatography (GPC) in accordance with JIS-K-7252 (2008).
  • One aspect of the present invention is a lubricant blended in a powder mixture for powder metallurgy including an iron-based powder, characterized in that it includes an organic layered material having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m. Lubricant.
  • the lubricant contains an organic layered material having an average particle diameter within the above range, it easily enters into the voids of iron-based powders and other powders contained in the powder mixture for powder metallurgy.
  • the lubricity of the mixed powder can be improved. That is, by mixing the lubricant, a mixed powder for powder metallurgy having excellent fluidity can be obtained.
  • the density of the green compact obtained using the powder mixture for powder metallurgy can be increased.
  • the lubricant contains an organic layered material whose average particle size is relatively small within the above range, so that the possibility of hindering the compression of the mixed powder for powder metallurgy is low. It is considered that this is because the densification of the obtained sintered body can be promoted. Therefore, the density of the green compact can be increased, and the sintered body obtained by sintering the densified green compact has been densified. That is, the lubricant can promote the quality improvement of the sintered body.
  • a lubricant capable of improving the fluidity of the powder mixture for powder metallurgy and making the powder mixture for powder metallurgy capable of producing a high-density sintered body can be obtained.
  • the organic layered material does not have a melting point.
  • a lubricant capable of obtaining a more suitable sintered body can be provided. This is probably because the molten organic layered material does not hinder the production of the green compact because it does not melt near the inner surface of the mold during compression. Further, it is considered that the inhibition of sintering by the molten organic layered material can be sufficiently suppressed during the sintering.
  • the organic layered material is preferably melamine cyanurate.
  • the organic layered material is melamine cyanurate
  • a layered structure can be easily obtained, and friction between powders during compression of the powder mixture for powder metallurgy can be easily and reliably reduced.
  • the lubricant further contains an amide compound, and the content of the amide compound is preferably 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the organic layered material.
  • the lubricity of the powder mixture for powder metallurgy can be further improved by further including an amide compound and setting the content of the amide compound in the organic layered material within the above range.
  • the organic layered material is preferably subjected to at least one surface treatment selected from the group consisting of silicone treatment and fatty acid treatment.
  • the fluidity of the mixed powder for powder metallurgy can be improved. This is because the organic layered material subjected to the surface treatment can improve the affinity with the iron-based powder and other powders, and can further improve the dispersibility of these powders. it is conceivable that.
  • the mixed powder for powder metallurgy includes an auxiliary raw material powder.
  • the said auxiliary material powder contains graphite.
  • a sintered body when a sintered body is obtained by using the powder mixture for powder metallurgy containing the auxiliary raw material powder, a sintered body that exhibits the effect of adding the auxiliary raw material powder such as strength improvement can be obtained.
  • the strength of a sintered body obtained by using a mixed powder for powder metallurgy can be improved.
  • the iron-based powder and the auxiliary raw material powder are liable to scatter and segregate the auxiliary raw material powder, but by containing the lubricant, These occurrences can be suppressed. Therefore, the lubricant which can be made into the mixed powder for powder metallurgy from which a more suitable sintered compact is obtained is obtained.
  • Another aspect of the present invention is a mixed powder for powder metallurgy containing an iron-based powder and the lubricant.
  • the mixed powder for powder metallurgy contains the lubricant, the lubricity can be improved as described above, and the density of the obtained sintered body can be increased, and hence the quality can be promoted. Further, the mixed powder for powder metallurgy can reduce the punching pressure from the mold as described above.
  • the mixed powder for powder metallurgy further includes a binder, the binder having a melting point of 45 ° C. or higher and 90 ° C. or lower, and a heat melt fluidity at 190 ° C. of 2.8 g / 10 min or more and 3.8 g / It is preferable to include at least one selected from the group consisting of polyolefins of 10 minutes or less and acrylic resins having a weight average molecular weight of 500,000 or less.
  • the binder further includes a polyolefin having a melting point and heat melt flowability within the above range, or an acrylic resin having a weight average molecular weight within the above range, thereby providing an iron-based powder or other It is possible to accurately prevent segregation and scattering of the powder.
  • the binder preferably includes both the polyolefin and the acrylic resin, and the content of the acrylic resin is preferably 10 parts by mass or more with respect to 100 parts by mass of the polyolefin.
  • the binder contains both the polyolefin and the acrylic resin, and the content of the acrylic resin with respect to the polyolefin is within the range, thereby preventing segregation and scattering of the iron-based powder or other powders.
  • the fluidity can be further increased.
  • the mixed powder for powder metallurgy preferably contains an auxiliary raw material powder.
  • the said auxiliary material powder contains graphite.
  • a mixed powder for powder metallurgy from which a more suitable sintered body can be obtained can be provided.
  • a sintered body is obtained using a mixed powder for powder metallurgy containing an auxiliary raw material powder
  • a sintered body exhibiting the effect of adding the auxiliary raw material powder such as strength improvement can be obtained.
  • graphite is contained as an auxiliary raw material powder
  • the strength of a sintered body obtained by using a mixed powder for powder metallurgy can be improved.
  • the iron-based powder and the auxiliary raw material powder are liable to scatter and segregate the auxiliary raw material powder, but by containing the lubricant, These occurrences can be suppressed. Therefore, a mixed powder for powder metallurgy that can obtain a more suitable sintered body is obtained.
  • Another aspect of the present invention is a mixing step of preparing a mixed powder for powder metallurgy containing iron-based powder and the lubricant by mixing, and compressing the mixed powder for powder metallurgy using a mold. And it is a manufacturing method of a sintered compact provided with the process of obtaining a compact, and the process of sintering the compact and obtaining a sintered compact.
  • the method for producing a sintered body since the mixed powder for powder metallurgy containing the lubricant is used, a sintered body having a high density can be produced. Therefore, it is possible to manufacture a sintered body in which high quality is promoted by this high density.
  • the mixing step mixes the iron-based powder, the lubricant, and the auxiliary raw material powder.
  • the said auxiliary material powder contains graphite.
  • a more suitable sintered body can be manufactured.
  • the lubricant, the mixed powder for powder metallurgy, and the method for producing a sintered body according to the present invention can enhance the fluidity of the mixed powder for powder metallurgy and promote the densification of the sintered body. .
  • Example 1 Pure iron powder (“Atmel 300M” manufactured by Kobe Steel, Ltd., particle size 40 to 120 ⁇ m) is prepared as an iron-based powder, and copper powder 2.0 as an auxiliary material powder with respect to 100 parts by mass of this pure iron powder. Part by mass and 0.8 part by mass of graphite were mixed with a V-type mixer. Also, 0.10 parts by mass of styrene butadiene rubber (a binder solution in which styrene butadiene rubber is dissolved in toluene so that the binder concentration is 2.5% by mass) is sprayed on the pure iron powder and the auxiliary raw material powder as a binder. In addition, a mixed powder coated with a binder was obtained by stirring and mixing.
  • styrene butadiene rubber a binder solution in which styrene butadiene rubber is dissolved in toluene so that the binder concentration is 2.5% by mass
  • melamine cyanurate (“MC-6000” manufactured by Nissan Chemical Industries, Ltd.) having an average particle diameter of 2.0 ⁇ m as an organic layered material (lubricant) is added to the mixed powder as a powder metallurgy. Used as a mixed powder.
  • melamine cyanurate (melamine cyanurate) is a substance that sublimes at 350 to 400 ° C. at normal pressure and does not melt, that is, an organic layered material having no melting point.
  • Example 2 Powder metallurgy of Example 2 in the same manner as in Example 1 except that melamine cyanurate (“MC-1N” manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 1.2 ⁇ m was used as the organic layered material. A mixed powder was obtained.
  • melamine cyanurate (“MC-1N” manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 1.2 ⁇ m
  • Example 3 Except that melamine cyanurate (“MC-20S” manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 2.7 ⁇ m and subjected to silicone treatment was used as the organic layered material in the same manner as in Example 1. The mixed powder for powder metallurgy of Example 3 was obtained.
  • Example 4 Example 1 was used except that melamine cyanurate having an average particle diameter of 1.0 ⁇ m (“MC-5F” manufactured by Sakai Chemical Industry Co., Ltd.) with a fatty acid treatment applied to the surface was used as the organic layered material. Thus, a mixed powder for powder metallurgy of Example 4 was obtained.
  • Example 5 As a lubricant, in addition to melamine cyanurate having an average particle size of 2.0 ⁇ m (“MC-6000” manufactured by Nissan Chemical Industries, Ltd.), stearic acid amide (“Amide AP-1” manufactured by Nippon Kasei Co., Ltd.) A mixed powder for powder metallurgy of Example 5 was obtained in the same manner as Example 1 except that it was added at a blending ratio (mass ratio) shown in Table 1.
  • Example 6 In the same manner as in Example 5, except that the mixing ratio of melamine cyanurate and stearic acid amide in the mixed powder for powder metallurgy in Example 5 was changed to the mixing ratio (mass ratio) shown in Table 1, Examples 6 to 8 mixed powder for powder metallurgy was obtained.
  • Example 9 Except for using a butene-propylene copolymer (“Tafmer XM5080” manufactured by Mitsui Chemicals, Inc., melting point: 85 ° C., heat melt flowability at 190 ° C. (MFR): 3.0 g / 10 min) as the binder.
  • the mixed powder for powder metallurgy of Example 9 was obtained in the same manner as Example 1.
  • Example 10 The same procedure as in Example 1 was conducted except that a butene-propylene copolymer (“Tafmer XM5070” manufactured by Mitsui Chemicals, Inc., melting point: 77 ° C., MFP: 3.0 g / 10 min) was used as the binder. The mixed powder for powder metallurgy of Example 10 was obtained.
  • a butene-propylene copolymer (“Tafmer XM5070” manufactured by Mitsui Chemicals, Inc., melting point: 77 ° C., MFP: 3.0 g / 10 min) was used as the binder.
  • the mixed powder for powder metallurgy of Example 10 was obtained.
  • Example 11 The same procedure as in Example 1 was conducted except that a butene-ethylene copolymer (“Tafmer DF740” manufactured by Mitsui Chemicals, Inc., melting point: 55 ° C., MFP: 3.6 g / 10 min) was used as the binder. The mixed powder for powder metallurgy of Example 11 was obtained.
  • a butene-ethylene copolymer (“Tafmer DF740” manufactured by Mitsui Chemicals, Inc., melting point: 55 ° C., MFP: 3.6 g / 10 min) was used as the binder.
  • the mixed powder for powder metallurgy of Example 11 was obtained.
  • Example 12 The same procedure as in Example 1 was conducted except that a butene-ethylene copolymer (“Tuffmer DF740” manufactured by Mitsui Chemicals, Inc., melting point: 50 ° C., MFP: 3.6 g / 10 min) was used as the binder. The mixed powder for powder metallurgy of Example 12 was obtained.
  • a butene-ethylene copolymer (“Tuffmer DF740” manufactured by Mitsui Chemicals, Inc., melting point: 50 ° C., MFP: 3.6 g / 10 min) was used as the binder.
  • the mixed powder for powder metallurgy of Example 12 was obtained.
  • Example 13 A mixed powder for powder metallurgy of Example 13 is obtained in the same manner as in Example 1 except that butyl methacrylate (“M-6003” manufactured by Negami Kogyo Co., Ltd., weight average molecular weight: 376500) is used as a binder. It was.
  • M-6003 manufactured by Negami Kogyo Co., Ltd., weight average molecular weight: 376500
  • Example 14 Except for using as a binder, a mixture of the butene-propylene copolymer of Example 9 and the butyl methacrylate of Example 13 in a mass ratio of 90/10, the same as in Example 1 was repeated. A mixed powder for powder metallurgy was obtained.
  • Example 15 As in Example 1, except that a mixture in which the butene-propylene copolymer of Example 10 and butyl methacrylate of Example 13 were mixed at a mass ratio of 90/10 was used as the binder, A mixed powder for powder metallurgy was obtained.
  • Comparative Example 1 A mixed powder for powder metallurgy of Comparative Example 1 was obtained in the same manner as in Example 1 except that ethylene bis stearamide ("WXDBS" manufactured by Dainichi Chemical Industry Co., Ltd.) was used as the lubricant.
  • WXDBS ethylene bis stearamide
  • Comparative Example 2 A mixed powder for powder metallurgy of Comparative Example 2 was obtained in the same manner as in Example 1 except that zinc stearate ("Die Wax Z" manufactured by Dainichi Chemical Industry Co., Ltd.) was used as the lubricant.
  • zinc stearate (“Die Wax Z" manufactured by Dainichi Chemical Industry Co., Ltd.) was used as the lubricant.
  • Comparative Example 3 The mixed powder for powder metallurgy of Comparative Example 3 was used in the same manner as in Example 1 except that melamine cyanurate having an average particle size of 14 ⁇ m (“MC-4500” manufactured by Nissan Chemical Industries, Ltd.) was used as the lubricant. Obtained.
  • Comparative Example 4 The mixed powder for powder metallurgy of Comparative Example 4 was used in the same manner as in Example 1 except that melamine cyanurate having an average particle diameter of 10 ⁇ m (“MC-4000” manufactured by Nissan Chemical Industries, Ltd.) was used as the lubricant. Obtained.
  • Comparative Example 5 The mixed powder for powder metallurgy of Comparative Example 5 was the same as Example 1 except that melamine cyanurate having an average particle size of 3.3 ⁇ m (“MC-2010N” manufactured by Sakai Chemical Industry Co., Ltd.) was used as the lubricant. Got.
  • FIG. 1 is a schematic cross-sectional view of the instrument for measuring the graphite scattering rate used in the examples.
  • the graphite scattering rate measuring device is a funnel-shaped glass tube 2 (inner diameter: 16 mm, height: 106 mm) to which a New Millipore filter 1 (stitch 12 ⁇ m) is attached.
  • Graphite scattering rate (%) [1- (amount of carbon powder metallurgical mixed powder after N 2 gas flow (mass%) / N 2 carbon content of the gas flow prior to the powder metal blend in powder (wt%) ] X 100
  • the amount of carbon in each powder metallurgy mixed powder was determined by quantitative analysis of the carbon content. Moreover, the graphite scattering property was evaluated according to the following criteria.
  • Green compact density The density of the green compact extracted from the mold was measured according to JSPM standard 1-64 (metal powder compression test method). Further, the green density was evaluated according to the following criteria.
  • the method for producing the lubricant, the powder mixture for powder metallurgy and the sintered body according to the present invention is suitable for producing a sintered body having a high density and a high quality.

Abstract

 本発明の一局面は、鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤であって、平均粒径が0.1μm以上3μm未満である有機系層状材料を含むことを特徴とする潤滑剤である。本発明の他の一局面は、鉄基粉末と前記潤滑剤とを含む粉末冶金用混合粉末である。本発明の他の一局面は、鉄基粉末と、前記潤滑剤とを含む粉末冶金用混合粉末を、混合により調製する工程と、前記粉末冶金用混合粉末を金型を用いて圧縮して、圧粉体を得る工程と、前記圧粉体を焼結して、焼結体を得る工程とを備える焼結体の製造方法である。

Description

潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法
 従来より、鉄基粉末を用いて焼結体を製造する方法として、粉末冶金法が知られている。一般に、この粉末冶金法は、鉄基粉末及び任意成分として含まれる副原料粉末等を混合する混合工程と、この混合により得られる粉末冶金用混合粉末を金型を用いて圧縮する圧縮工程と、この圧縮により得られる圧粉体を前記鉄基粉末の融点以下の温度で焼結する工程とを有する。
 前記圧縮工程では、金型を用いた圧縮により得られた圧粉体を金型から抜き出す。そして、前記混合工程では、前記圧縮工程において圧粉体を金型から抜き出す際に、圧粉体と金型との摩擦を低減すると共に前記粉末冶金用混合粉末の流動性を高める目的で、粉末冶金用混合粉末に潤滑剤が添加される。このような潤滑剤としては、一般に、ステアリン酸亜鉛等の金属石鹸やエチレンビスステアリン酸アミド等のアミド系潤滑剤が用いられている。
 一方、前記粉末冶金用混合粉末には、強度向上等のために副原料粉末として黒鉛等が混合されることが多い。しかしながら、黒鉛は、前記鉄基粉末に比べて比重及び粒径が小さい。そのため、前記鉄基粉末及び黒鉛を単に混合するだけでは、前記鉄基粉末及び黒鉛が大きく分離して黒鉛が偏析する。その結果、黒鉛等の、前記鉄基粉末とは比重等が異なる副原料粉末を単に混合させた場合、均一に混合できないおそれがある。
 また、前記粉末冶金用混合粉末にバインダーを混合することも提案されている。バインダーを混合することで、黒鉛等の副原料粉末の偏析を抑制できると考えられる。このため、黒鉛等の副原料粉末を混合させても、均一に混合でき、粉末冶金用混合粉末の均一性が高まると考えられる。しかしながら、このようなバインダーは、高い粘着性を有するため、前記粉末冶金用混合粉末の流動性を阻害し、ひいては均質な圧粉体が得にくくなるという不都合を生じるおそれがある。
 また、鉄基粉体以外の成分を含む粉末冶金用混合粉末としては、例えば、特許文献1に記載の粉末が挙げられる。
 特許文献1には、鉄粉と、前記鉄粉の表面に少なくとも一部が付着する結合剤と、前記鉄粉の表面に付着した結合剤に少なくとも一部が付着する合金成分と、前記鉄粉に対して少なくとも一部が付着する流動性改善剤と、前記鉄粉に対して少なくとも一部が遊離状態にあるメラミンシアヌレートと、を含有する粉末冶金用鉄基粉末が記載されている。
 特許文献1によれば、得られた粉末冶金用鉄基粉末は、抜出性に優れている旨が開示されている。このことは、メラミンシアヌレートが優先的に金型壁面に付着し、これが、成形圧縮時、抜出時に、金型と鉄粉との直接の接触、焼き付きを防ぐためである旨が開示されている。
特開2013-87328号公報
 本発明は、このような事情に鑑みてなされたものであり、粉末冶金用混合粉末の流動性を高めると共に、高密度な焼結体を製造可能な粉末冶金用混合粉末にすることができる潤滑剤、この潤滑剤を含む粉末冶金用混合粉末及びこの潤滑剤を用いた焼結体の製造方法の提供を目的とする。
 本発明の一局面は、鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤であって、平均粒径が0.1μm以上3μm未満である有機系層状材料を含むことを特徴とする潤滑剤である。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
図1は、実施例において用いた黒鉛飛散率測定用器具の模式的断面図である。
 本発明者らが鋭意検討したところ、特許文献1に記載されているような、メラミンシアヌレートを含有する粉末冶金用鉄基粉末を用いて焼結体を製造した場合、焼結体の密度が充分に高められず、質の高い焼結体を得るのが困難である場合があることがわかった。また、このような焼結体の密度の低下は、金型の内面に付着されない一部のメラミンシアヌレートが異物となって、鉄粉等の粉末の間に入り込み、前記粉末冶金用混合粉末の圧縮を阻害するためであることが認められた。また、特許文献1には、メラミンシアヌレートの平均粒径が、3~20μmであることが好ましい旨が記載されている。このような粒径のメラミンシアヌレートを用いると、上述したように、焼結体の密度が充分に高められず、質の高い焼結体を得るのが困難であることが発生しやすいことがわかった。
 これらのことから、本発明者らは、メラミンシアヌレートのような有機系層状材料を含む潤滑剤に着目し、さらに、有機系層状材料の平均粒径に着目することによって、本発明に到った。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 [第1実施形態]
 <潤滑剤>
 本発明の実施形態に係る潤滑剤は、鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤であって、平均粒径が0.1μm以上3μm未満である有機系層状材料を含む。すなわち、前記潤滑剤は、鉄基粉末を含む粉末冶金用混合粉末に配合される。そして、前記潤滑剤は、粉末冶金用混合粉末に配合されて、鉄基粉末やその他の粉末等の隙間に存在し、これらの粉末等の潤滑性を高める。すなわち、前記潤滑剤を配合することによって、流動性に優れた粉末冶金用混合粉末が得られる。
 また、粉末冶金用粉末を用いて焼結体を製造する際、粉末冶金用混合粉末を金型を用いて圧縮し、この圧縮により得られた圧粉体を金型から抜き出す。そして、この金型から抜き出した圧粉体を焼結することによって、焼結体が得られる。
 前記粉末冶金用混合粉末を用いることで、金型から圧粉体を抜き出す際の抜き圧を低減することができる。このことは、前記粉末冶金用混合粉末を金型に充填する際、前記粉末冶金用混合粉末に含まれる前記有機系層状材料が、金型の内面に付着することによると考えられる。
 また、前記粉末冶金用混合粉末を用いて得られた圧粉体は、その密度を高めることができる。このことは、以下のことによると考えられる。まず、前記有機系層状材料は、その平均粒径が前記範囲内と比較的小さいので、鉄基粉末やその他の粉末等の隙間に入り込みやすい。このため、この有機系層状材料が、粉末冶金用混合粉末の圧縮を阻害することを充分に抑制できる。よって、圧粉体の密度を高めることができると考えられる。さらに、この高密度化された圧粉体を焼結することによって焼結体が得られるので、高密度化された焼結体が得られる。
 また、前記潤滑剤は、鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤である。この粉末冶金用混合粉末は、鉄基粉末を含む粉末冶金用混合粉末であればよいが、必要に応じて、後述する、副原料粉末やバインダーを含んでもよい。また、粉末冶金用混合粉末としては、副原料粉末を含んでいるものが好ましく、副原料粉末として、黒鉛を含んでいるものがより好ましい。このような副原料粉末を含む粉末冶金用混合粉末を用いると、強度が好適に向上した焼結体が得られる。一方で、副原料粉末を含んでいると、前記鉄基粉末及び前記副原料粉末等の飛散や前記副原料粉末の偏析等が起こりやすいが、前記潤滑剤を含むことで、これらの発生を抑制することができる。よって、好適な焼結体が得られる粉末冶金用粉末が得られる。
 前記潤滑剤は、上述したように、前記有機系層状材料を含む。前記有機系層状材料としては、融点を有さず、昇華性を有するものがより好ましい。このような融点を有さない有機系層状材料であれば、より好適な焼結体が得られる。このことは、圧縮時に、金型の内面付近で、溶融することがないので、溶融された有機系層状材料が圧粉体の作成を阻害することがなく、さらに、焼結時にも、溶融された有機系層状材料による焼結の阻害を充分に抑制できることによると考えられる。また、前記有機系層状材料としては、例えば、トリアジン環を骨格とする化合物からなる層状構造を有する材料等が挙げられ、より具体的には、メラミンシアヌレート及びメラミンポリホスフェート等、層状の結晶構造を有する材料が挙げられる。前記有機系層状材料は、上記例示物の中でも、メラミンシアヌレートが、結晶が多層構造で、粉末冶金用混合粉末の圧縮時における粉末間の摩擦を容易かつ確実に低減することができるため、好ましい。なお、メラミンシアヌレート(シアヌル酸メラミン)は、常圧では、350~400℃で昇華する物質であり、溶融しない、すなわち、融点を有さないものである。また、前記有機系層状材料は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、前記有機系層状材料は、シリコーン処理、脂肪酸処理等の表面処理が施されたものであってもよい。このような有機系層状材料に表面処理を施すことで、粉末冶金用混合粉末の流動性を高めることができる。これは、前記有機系層状材料が、このような表面処理を施すことによって、前記鉄基粉末やその他の粉末等との親和性が向上し、これらの粉末の分散性をさらに高めることができることによると考えられる。なお、前記シリコーン処理は、例えばシランカップリング処理である。
 前記有機系層状材料は、上述したように、平均粒径が0.1μm以上3μm未満である。また、前記有機系層状材料の平均粒径の下限は、0.1μmであり、1μmが好ましく、1.5μmがより好ましい。一方、前記有機系層状材料の平均粒径は、3μm未満であり、その上限は、2.5μmが好ましく、2μmがより好ましい。前記有機系層状材料の平均粒径が小さすぎると、前記有機系層状材料を添加しても、潤滑性を充分に向上させることができないおそれがある。このことは、小さすぎる有機系層状材料は、前記鉄基粉末の表面の凹部に入り込みやすく、入り込んだ有機系層状材料は、潤滑性の向上に寄与しにくいためと考えられる。また、前記有機系層状材料の平均粒径が大きすぎると、潤滑剤を含む粉末冶金用混合粉末を、前記圧縮によって、好適な圧粉体が得られにくい傾向がある。このことは、以下のことによると考えられる。まず、大きすぎる有機系層状材料は、前記鉄基粉末やその他の粉末の間に入り込みにくくなるおそれがあると考えられる。また、大きすぎる有機系層状材料は、潤滑剤を含む粉末冶金用混合粉末の塑性変形を阻害するおそれがあると考えられる。これらのことから、平均粒径が0.1μm以上3μm未満である有機系層状材料を添加することによって、粉末冶金用混合粉末の流動性を高めると共に高密度な焼結体を製造可能な粉末冶金用混合粉末にすることができる潤滑剤が得られると考えられる。
 また、前記潤滑剤は、前記有機系層状材料を含んでいればよい。すなわち、前記潤滑剤は、前記有機系層状材料からなるものであってもよいし、前記有機系層状材料に加え、アミド化合物、金属石鹸、ワックス等を含有してもよい。
 前記アミド化合物としては、特に限定されないが、例えば、第1級アミド又は第2級アミドが好ましい。前記第1級アミドとしては、例えば、ステアリン酸アミド、エチレンビスステアリン酸アミド、及びヒドロキシステアリン酸アミド等が挙げられる。前記第2級アミドとしては、例えば、ステアリルステアリン酸アミド、オレイルステアリン酸アミド、ステアリルエルカ酸アミド、及びメチロールステアリン酸アミド等が挙げられる。また、前記アミド化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記金属石鹸としては、特に限定されず、例えば、炭素数が12以上の脂肪酸塩等が挙げられる。前記金属石鹸は、この中でも、ステアリン酸亜鉛が好ましい。また、前記金属石鹸は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記ワックスとしては、例えば、ポリエチレンワックス、エステルワックス、パラフィンワックス等が挙げられる。また、前記ワックスは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、前記潤滑剤において、前記有機系層状材料以外に他の成分を含む場合は、前記アミド化合物が好ましい。すなわち、前記潤滑剤は、前記アミド化合物を含むのが好ましい。
 また、前記アミド化合物の融点の下限としては、60℃が好ましく、70℃がより好ましく、80℃がさらに好ましい。一方、前記アミド化合物の融点の上限としては、130℃が好ましく、120℃がより好ましく、110℃がさらに好ましい。融点が低すぎると、アミド化合物の添加によって、粉末冶金用混合粉末の流動性を向上させる効果を充分に発揮できない傾向がある。また、融点が高すぎると、粉末冶金用混合粉末の圧縮時に、粉末冶金用混合粉末の流動性を向上させる効果を充分に発揮できない傾向がある。このことは、粉末冶金用混合粉末の圧縮時に、アミド化合物が溶融せず、アミド化合物の粘性を低下させることができないことによると考えられる。よって、前記アミド化合物の融点が前記範囲内であると、粉末冶金用混合粉末の流動性をより高め、より高密度な焼結体を製造することができる粉末冶金用混合粉末が得られる。このことは、以下のことによると考えられる。まず、前記アミド化合物の融点が前記範囲内であると、粉末冶金用混合粉末の塑性変形時に、金型内の温度が融点に近づくに伴って、アミド化合物の粘性が低下し、粉末冶金用混合粉末の流動性が向上すると考えられる。また、鉄基粉末やその他の粉末との間及び粉末と金型との間に、アミド化合物が容易かつ確実に入り込むことができると考えられる。これらのことから、粉末冶金用混合粉末の流動性をより高め、より高密度な焼結体を製造することができる粉末冶金用混合粉末が得られると考えられる。
 前記アミド化合物の含有量の下限としては、前記有機系層状材料100質量部に対して、10質量部が好ましく、20質量部がより好ましく、30質量部がさらに好ましい。一方、前記アミド化合物の含有量の上限としては、前記有機系層状材料100質量部に対して、90質量部が好ましく、80質量部がより好ましく、70質量部がさらに好ましい。前記アミド化合物の含有量が少なすぎると、前記アミド化合物の添加による効果が十分に発揮されないおそれがある。逆に、前記アミド化合物の含有量が多すぎると、粉末冶金用混合粉末の圧縮性が低下するおそれがある。よって、前記アミド化合物の含有量が前記範囲内であると、粉末冶金用混合粉末の流動性をより高め、より高密度な焼結体を製造することができる粉末冶金用混合粉末が得られる。
 前記粉末冶金用混合粉末における前記潤滑剤の配合量の下限としては、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましい。一方、前記粉末冶金用混合粉末における前記潤滑剤の配合量の上限としては、1.5質量%が好ましく、1質量%がより好ましく、0.7質量%がさらに好ましい。前記潤滑剤の配合量が少なすぎると、粉末冶金用混合粉末に対して、前記潤滑剤を添加した効果を充分に発揮できない傾向がある。すなわち、粉末冶金用混合粉末の潤滑性を充分に高められないおそれがある。逆に、前記潤滑剤の配合量が多すぎると、粉末冶金用混合粉末の圧縮性が低下するおそれがある。よって、前記粉末冶金用混合粉末における前記潤滑剤の配合量が前記範囲内であると、粉末冶金用混合粉末の流動性をより高め、より高密度な焼結体を製造することができる粉末冶金用混合粉末が得られる。
 <潤滑剤の利点>
 前記潤滑剤は、平均粒径が0.1μm以上3μm未満である有機系層状材料を含む。このような潤滑剤を、鉄基粉末を含む粉末冶金用混合粉末に配合すると、前記有機系層状材料の平均粒径が前記範囲内であるため、粉末冶金用混合粉末に含まれる鉄基粉末やその他の粉末等の空隙に比較的容易に入り込み、粉末冶金用混合粉末の潤滑性を高めることができる。すなわち、前記潤滑剤を配合することによって、流動性に優れた粉末冶金用混合粉末が得られる。
 また、前記潤滑剤は、含有される有機系層状材料の平均粒径が前記範囲内であるため、粉末冶金用混合粉末を用いて焼結体を製造する際の、粉末冶金用混合粉末の圧縮時に、この粉末冶金用混合粉末を好適に圧縮でき、好適な圧粉体が得られる。よって、この圧粉体を焼結して得られる焼結体の高密度化を促進することができ、ひいてはこの焼結体の高品質化を促進することができる。さらに、粉末冶金用混合粉末を金型で圧縮して得られた圧粉体を、金型から抜き出す際の抜き圧を低減することができる。このことは、前記粉末冶金用混合粉末を金型に充填する際、前記潤滑剤に含まれる前記有機系層状材料の一部が、金型の内面に付着することによると考えられる。また、前記有機系層状材料が、融点を有さないと、前記粉末冶金用混合粉末を金型に充填する際に金型の内面に溶融することなく付着することができるので、より抜き圧を低減することができる。
 [第2実施形態]
 <粉末冶金用混合粉末>
 本発明の他の実施形態に係る粉末冶金用混合粉末は、鉄基粉末と、前記潤滑剤とを含む。また、粉末冶金用混合粉末には、鉄基粉末と前記潤滑剤とからなるものであってもよいが、他の成分を含んでいてもよい。他の成分としては、例えば、副原料粉末と、バインダーとが挙げられる。
 (鉄基粉末)
 前記鉄基粉末は、前記粉末冶金用混合粉末の主原料である。また、前記鉄基粉末は、鉄を主成分とするものである。前記鉄基粉末としては、例えば、純鉄粉及び鉄合金粉等が挙げられる。すなわち、前記鉄基粉末は、純鉄粉又は鉄合金粉のいずれであってもよい。また、前記鉄合金粉としては、特に限定されず、例えば、銅、ニッケル、クロム、モリブデン等の合金粉が表面に拡散付着した部分合金粉であってもよいし、合金成分を含有する溶融鉄又は溶鋼から得られるプレアロイ粉であってもよい。前記鉄基粉末の製造方法としては、例えば、溶融した鉄又は鋼をアトマイズ処理する方法や、鉄鉱石やミルスケールを還元して製造する方法等が挙げられる。なお、「主原料」とは、原料の中で最も含有量の多い原料をいい、例えば、含有量が50質量%以上の原料をいう。また、「主成分」とは、最も含有量の多い成分をいい、例えば、含有量が50質量%以上の成分をいう。
 前記鉄基粉末の平均粒径の下限としては、40μmが好ましく、50μmがより好ましく、60μmがさらに好ましい。一方、前記鉄基粉末の平均粒径の上限としては、120μmが好ましく、100μmがより好ましく、80μmがさらに好ましい。前記鉄基粉末の平均粒径が小さすぎると、鉄基粉末のハンドリング性が低下するおそれがある。逆に、前記鉄基粉末の平均粒径が大きすぎると、鉄基粉末の表面の凹凸に前記潤滑剤が入り込むおそれがある。よって、前記鉄基粉末の平均粒径が前記範囲内であると、より高密度な焼結体を製造することができる等、より好適な粉末冶金用混合粉末が得られる。
 (副原料粉末)
 前記副原料粉末は、最終製品に望まれる物性等に応じて任意成分として粉末冶金用混合粉末に含有される。前記副原料粉末を含有させると、粉末冶金用混合粉末から得られる焼結体の強度を向上させる等、添加する副原料粉末によって、焼結体の性状を変化させることができる。前記副原料粉末としては、例えば、銅、ニッケル、クロム、モリブデン等の合金元素や、リン、硫黄、黒鉛、フッ化黒鉛、硫化マンガン、タルク、フッ化カルシウム等の無機又は有機成分の粉末等が挙げられる。また、前記副原料粉末としては、前記例示した粉末の中でも、粉末冶金用混合粉末を用いて得られた焼結体の強度を好適に向上させることができる点で、黒鉛が好ましい。
 前記副原料粉末の含有量の上限としては、前記鉄基粉末100質量部に対して、10質量部が好ましく、7質量部がより好ましく、5質量部がさらに好ましい。一方、前記副原料粉末は、必ずしも含有される必要はないため、前記副原料粉末の含有量の下限としては、0質量部であってもよい。ただし、前記副原料粉末が含有される場合には、前記副原料粉末の含有量の下限としては、前記鉄基粉末100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。前記副原料粉末の前記鉄基粉末100質量部に対する含有量が多すぎると、得られる焼結体の密度が低下して強度が低下するおそれがある。また、前記副原料粉末の含有量が少なすぎると、前記副原料粉末の添加による効果を充分に発揮できないおそれがある。例えば、焼結体の強度向上にために、前記副原料粉末を含有させても、強度向上の効果を充分に発揮できない場合がある。よって、前記副原料粉末の含有量が前記範囲内であると、より好適な粉末冶金用混合粉末が得られ、よって、より好適な焼結体を製造することができる粉末冶金用混合粉末が得られる。
 (バインダー)
 前記バインダーは、必要に応じて、粉末冶金用混合粉末に含有される。前記バインダーを含有させると、前記鉄基粉末及び前記副原料粉末等の飛散や前記副原料粉末の偏析等を防止することができる。前記バインダーとしては、特に限定されるものではなく、例えば、ポリオレフィン、アクリル樹脂、ポリスチレン、スチレンブタジエンゴム、エチレングリコールジステアレート、エポキシ樹脂、及びロジンエステル等が挙げられる。
 前記バインダーとしては、上記例示化合物の中でも、ポリオレフィン及びアクリル樹脂が好ましい。また、前記バインダーとしては、ポリオレフィン及びアクリル樹脂のいずれか一方を含むことが好ましく、ポリオレフィン及びアクリル樹脂を共に含むことがより好ましい。
 前記ポリオレフィンとしては、例えば、ブテン系重合体が挙げられる。また、前記ブテン系重合体としては、ブテンのみからなるブテン重合体、ブテン及び他のアルケンの共重合体が挙げられる。前記共重合体としては、例えば、ブテン-エチレン共重合体、ブテン-プロピレン共重合体等が挙げられる。また、前記ポリオレフィンは、任意の他のモノマー又はポリマーを有する構造であってもよく、例えば、酢酸ビニルを含むブテン-エチレン共重合体は、融点が低下する。
 前記ポリオレフィンの融点の下限としては、45℃が好ましく、50℃がより好ましく、55℃がさらに好ましい。一方、前記ポリオレフィンの融点の上限としては、90℃が好ましく、85℃がより好ましく、80℃がさらに好ましい。前記ポリオレフィンの融点が低すぎると、粉末冶金用混合粉末の温度が上昇した際に粘着性が高くなりすぎて、粉末冶金用混合粉末の流動性が充分に高くならないおそれがある。逆に、前記ポリオレフィンの融点が高くなりすぎると、前記鉄基粉末及び前記副原料粉末の間の付着力が弱くなり、偏析や発塵を充分に防止できないおそれがある。よって、前記ポリオレフィンの融点が前記範囲内であると、前記バインダーを含有させた効果を効果的に発揮でき、より好適な粉末冶金用混合粉末が得られる。例えば、前記鉄基粉末及び前記副原料粉末等の飛散や前記副原料粉末の偏析等を好適に防止することができる。
 前記ポリオレフィンの190℃での加熱溶融流動性(MFR)の下限としては、2.8g/10分が好ましく、3.2g/10分がより好ましい。一方、前記ポリオレフィンの190℃での加熱溶融流動性の前記としては、3.8g/10分が好ましく、3.4g/10分がより好ましい。前記ポリオレフィンの190℃での加熱溶融流動性が低すぎたり、高すぎると、前記ポリオレフィンの流動性が低下し、ひいては前記粉末冶金用混合粉末の流動性が充分に高くならないおそれがある。よって、前記ポリオレフィンの190℃での加熱溶融流動性が前記範囲内であると、前記バインダーを含有させた効果を効果的に発揮でき、より好適な粉末冶金用混合粉末が得られる。
 なお、前記ポリオレフィンの重量平均分子量及びその他の物性は、特に限定されるものではない。従って、前記ポリオレフィンは、ランダム共重合体、交互共重合体、ブロック共重合体及びグラフト共重合体のいずれであってもよい。また、この共重合体の構造についても、直鎖状及び分岐状のいずれであってもよい。
 前記アクリル樹脂としては、例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリメタクリル酸シクロへキシル、ポリメタクリル酸エチルへキシル、ポリメタクリル酸ラウリル、ポリアクリル酸メチル、及びポリアクリル酸エチル等が挙げられる。また、前記アクリル樹脂としては、構造式が直鎖状に近いアクリル樹脂が好ましい。すなわち、前記アクリル樹脂としては、上記例示化合物の中でも、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリアクリル酸メチル及びポリアクリル酸エチルが好ましく、ポリメタクリル酸メチル、ポリメタクリル酸エチル及びポリメタクリル酸ブチルが特に好ましい。
 前記アクリル樹脂の重量平均分子量の上限としては、50万が好ましく、40万がより好ましく、35万がさらに好ましい。前記アクリル樹脂の重量平均分子量が高すぎると、前記副原料粉末の偏析を防止できないおそれがある。このことは、溶融した際や有機溶媒で溶解した際の粘度の調整が困難になり、前記鉄基粉末及び前記副原料粉末の粘着性を的確に向上できないおそれがあることによると考えられる。これに対し、前記アクリル樹脂の重量平均分子量が前記範囲内であると、前記粉末冶金用混合粉末中における前記副原料粉末の均一分散性を向上することができると共に、50℃以上70℃以下程度の高温下における前記粉末冶金用混合粉末の流動性を向上することができる。なお、前記アクリル樹脂の重量平均分子量の下限は、流動性を向上する点からは特に限定されない。ただし、前記アクリル樹脂の重量平均分子量が低くなりすぎると、粘性が低下するおそれがあるため、例えば、前記アクリル樹脂の重量平均分子量の下限としては、15万とすることができ、好ましくは20万とすることができる。
 前記粉末冶金用混合粉末は、前記範囲内の融点及び加熱溶融流動性を有するポリオレフィン、又は前記範囲内の重量平均分子量を有するアクリル樹脂を含むバインダーを含むことによって、副原料粉末等の偏析や飛散を的確に防止することができる。また、前記粉末冶金用混合粉末は、副原料粉末等の偏析や飛散を的確に防止する点から、前記ポリオレフィン及び前記アクリル樹脂を含むバインダーを含むことが好ましい。
 前記バインダーが前記ポリオレフィン及びアクリル樹脂を共に含む場合における前記アクリル樹脂の含有量の下限としては、ポリオレフィン100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましい。前記アクリル樹脂の含有量が前記範囲内であることによって、前記副原料粉末等の偏析をさらに的確に防止することができる。なお、前記バインダーが前記ポリオレフィン及びアクリル樹脂を共に含む場合における前記アクリル樹脂のポリオレフィン100質量部に対する含有量の上限は、前記鉄基粉末及び副原料粉末等の飛散や前記副原料粉末の偏析を防止する点からは特に限定されない。ただし、前記粉末冶金用混合粉末の流動性を容易かつ確実に高めるためには、例えば、前記アクリル樹脂の含有量の上限としては、ポリオレフィン100質量部に対して、80質量部とすることができ、好ましくは60質量部とすることができる。
 前記バインダーの含有量の上限としては、前記鉄基粉末及び前記副原料粉末100質量部に対して、0.5質量部が好ましく、0.2質量部がより好ましい。前記バインダーの含有量が多すぎると、得られる焼結体の密度が充分に高くならないおそれがある。一方、前記バインダーは、前記鉄基粉末及び前記副原料粉末の飛散や前記副原料粉末の偏析を防止するために含有されるものであり、これらの粉末の飛散や偏析のおそれが低い場合等には必ずしも含有される必要はない。そのため、前記バインダーの含有量の下限としては、前記鉄基粉末及び前記副原料粉末100質量部に対して、0質量部とすることができる。ただし、前記バインダーが含有される場合、前記バインダーの含有量の下限としては、前記鉄基粉末及び前記副原料粉末100質量部に対して、0.01質量部が好ましい。前記バインダーの含有量が少なすぎると、バインダーを含有させる効果を充分に発揮できないおそれがある。すなわち、前記鉄基粉末及び前記副原料粉末の飛散や前記副原料粉末の偏析を充分に防止できないおそれがある。
 <粉末冶金用混合粉末の利点>
 前記粉末冶金用混合粉末は、前記潤滑剤を含むので、上述のように潤滑性が高められると共に、得られる焼結体の高密度化、ひいては高品質化を促進することができる。また、前記粉末冶金用混合粉末は、上述のように金型からの抜き圧を低減することができる。
 [第3実施形態]
 <焼結体の製造方法>
 次に、前記粉末冶金用混合粉末を用いた焼結体の製造方法について説明する。前記焼結体の製造方法は、前記粉末冶金用混合粉末を用いて、焼結体を得る方法であれば、特に限定されず、例えば、混合工程と、圧縮工程と、焼結工程とを備える。具体的には、前記焼結体の製造方法としては、前記鉄基粉末と、前記潤滑剤とを含む粉末冶金用混合粉末を得る混合工程と、前記粉末冶金用混合粉末を金型を用いて圧縮して、圧粉体を得る圧縮工程と、前記圧粉体を焼結して、焼結体を得る焼結工程とを備える方法等が挙げられる。
 (混合工程)
 前記混合工程は、前記鉄基粉末と、前記潤滑剤とを混合して、前記鉄基粉末と、前記潤滑剤とを含む粉末冶金用混合粉末を得る工程であれば、特に限定されない。なお、前記混合工程では、前記潤滑剤として、平均粒径が0.1μm以上3μm未満である有機系層状材料を含む上述の前記潤滑剤が用いられる。また、前記混合工程は、前記鉄基粉末と前記潤滑剤とを混合するだけではなく、これらに加えて、必要に応じて、前記副原料粉末及び前記バインダーも混合してもよい。そうすることによって、前記鉄基粉末及び前記潤滑剤だけではなく、前記副原料粉末及び前記バインダーも含む粉末冶金用混合粉末が得られる。また、前記粉末冶金用混合粉末としては、前記副原料粉末を含むものが好ましいので、前記混合工程としては、前記鉄基粉末と前記潤滑剤と前記副原料粉末とを混合する工程が好ましい。
 前記混合工程において、前記鉄基粉末と前記潤滑剤と前記副原料粉末と前記バインダーを混合する場合について説明する。まず、公知の混合装置に、前記鉄基粉末、前記副原料粉末及び前記バインダーを投入し、加熱混合した上で冷却する。これによって、前記バインダーが固化して前記鉄基粉末や前記副原料粉末の表面に付着することで、前記鉄基粉末及び前記副原料粉末が互いに結びつき、その結果、偏析や飛散が防止される。また、前記混合装置としては、例えば、ミキサー、ハイスピードミキサー、ナウターミキサー、V型混合機、及びダブルコーンブレンダー等が用いられる。
 次に、冷却された混合粉末に前記潤滑剤を混合する。これによって、前記粉末冶金用混合粉末が得られる。
 なお、前記バインダーは、例えば、溶融状態で混合されてもよく、粉末状のままで混合されて混合過程の粒子間摩擦等の摩擦熱によって溶融されてもよく、外部熱源で所定の温度まで加熱して溶融されてもよい。なお、前記バインダーが溶融状態で混合される場合、通常、溶融されたバインダーをそのまま混合するのではなく、溶融されたバインダーを、トルエンやアセトン等の揮発性有機溶媒に溶解した状態で、混合することが好ましい。
 前記潤滑剤以外の成分の混合条件は、前記鉄基粉末、必要に応じて添加される成分である前記副原料粉末及び前記バインダー等の各成分を混合できればよく、特に限定されるものではない。混合条件は、具体的には、混合装置や生産規模等の諸条件に応じて適宜設定される。前記混合は、例えば、羽根付き混合機を用いる場合、羽根の回転速度を約2m/s以上10m/s以下の範囲内の周速度に制御し、約0.5分以上20分以下撹拌することで行うことができる。また、V型混合機や二重円錐形混合機を用いる場合、概ね2rpm以上50rpm以下で1分以上60分以下混合することで行うことができる。また、前記潤滑剤の混合条件は、前記潤滑剤を混合できればよく、特に限定されるものではなく、例えば、前記潤滑剤以外の成分の混合条件と同様の条件を挙げることができる。
 前記潤滑剤以外の成分の混合温度としては、特に限定されるものではなく、例えば、40℃以上60℃以下とすることができる。前記混合温度が低すぎると、前記鉄基粉末と、必要に応じて添加される、前記副原料粉末や前記バインダーとが、好適に混合されないおそれがある。例えば、前記バインダーの粘性が高くなり、粉末冶金用混合粉末中での均一分散性が低下するおそれがある。逆に、前記混合温度が高すぎると、粉末冶金用混合粉末の成分が損傷したり、好適に混合されないおそれがある。また、加熱設備にかかるコストが必要以上に増加するおそれがある。よって、混合温度が前記範囲内であれば、前記鉄基粉末と、必要に応じて添加される成分とを好適に混合することができる。また、前記潤滑剤の混合温度は、前記潤滑剤を混合できればよく、特に限定されるものではなく、例えば、前記潤滑剤以外の成分の混合温度と同様の温度を挙げることができる。そうすることによって、前記潤滑剤も好適に混合でき、好適な粉末冶金用混合粉末を得ることできる。
 (圧縮工程)
 前記圧縮工程は、前記粉末冶金用混合粉末を金型を用いて圧縮して、圧粉体を得る工程であれば、特に限定されない。前記圧縮工程は、例えば、前記粉末冶金用混合粉末を金型に充填し、例えば、490MPa以上686MPa以下の圧力をかけることで行う。また、圧縮温度としては、前記粉末冶金用混合粉末を構成する成分の種類や添加量、圧縮圧力等によって相違するため、特に限定されないが、例えば、25℃以上150℃以下とすることができる。
 (焼結工程)
 前記焼結工程は、前記圧粉体を焼結して、焼結体を得る工程であれば、特に限定されない。また、焼結条件は、前記圧粉体を構成する成分の種類、得られる焼結体の種類等によって相違するため、特に限定されない。前記焼結工程での焼結温度は、前記圧粉体から焼結体が得られる温度であれば、特に限定されないが、前記鉄基粉末の融点以下であることが好ましく、1000℃以上1300℃以下であることがより好ましい。前記焼結工程の具体例としては、N、N-H、及び炭化水素等の雰囲気下で、1000℃以上1300℃以下の温度で5分以上60分以下焼結することで行われる。
 <焼結体の製造方法の利点>
 前記焼結体の製造方法は、前記潤滑剤を含む粉末冶金用混合粉末を用いるので、高密度化された焼結体が得られる。この焼結体は、高密度化による高品質化が促進された焼結体である。
 なお、本明細書において「平均粒径」とは、累積50%平均体積径(メディアン径、50%粒子径、d50)をいう。d50は、一般的な平均粒径の測定方法で測定することができ、例えば、レーザ回折散乱法等による測定や、一般的な粒度計等を用いた測定等によって、計測することができる。「融点」とは、示走査熱量計(DSC)により測定される融点ピーク温度をいう。「有機系層状材料」とは、炭素原子を構成原子とする層状構造を有する材料をいう。また、この有機系層状材料に含まれる炭素原子の含有量としては、例えば、20質量%以上とされ、好ましくは30質量%以上とされる。さらに、「層状」とは、例えば、ある面の長径及びこの長径に垂直な短径の長さ平均に対するこの面と垂直方向の平均厚みの比が1/200以上1/5以下であることをいい、好ましくは前記比が1/100以上1/20以下であることをいう。なお、長径とは、前記面内の最大直線長さをいう。また、短径とは、前記面内の長径に垂直な直線のうち最大直線長さをいう。「加熱溶融流動性(MFR)」とは、JIS-K7210(1999)の「附属書A表1」に準拠して試験温度190℃、荷重2.16kgで測定した値をいう。「重量平均分子量」は、JIS-K-7252(2008)に準拠して、ゲル浸透クロマトグラフィー(GPC)を用いて測定した値をいう。
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面は、鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤であって、平均粒径が0.1μm以上3μm未満である有機系層状材料を含むことを特徴とする潤滑剤である。
 前記潤滑剤は、平均粒径が前記範囲内である有機系層状材料を含むため、粉末冶金用混合粉末に含まれる鉄基粉末やその他の粉末等の空隙に比較的容易に入り込み、粉末冶金用混合粉末の潤滑性を高めることができる。すなわち、前記潤滑剤を配合することによって、流動性に優れた粉末冶金用混合粉末が得られる。
 また、前記粉末冶金用混合粉末を用いて得られた圧粉体は、その密度を高めることができる。このことは、前記潤滑剤は、平均粒径が前記範囲内と比較的小さい有機系層状材料を含むので、粉末冶金用混合粉末の圧縮時にこの粉末冶金用混合粉末の圧縮を阻害するおそれが低く、得られる焼結体の高密度化を促進することができることによると考えられる。よって、圧粉体の密度を高めることができ、この高密度化された圧粉体を焼結することによって得られた焼結体は、高密度化されたものである。すなわち、前記潤滑剤は、この焼結体の高品質化を促進することができる。
 さらに、粉末冶金用混合粉末を圧縮して得られる圧粉体の金型からの抜き圧を低減することができる。このことは、前記潤滑剤は、前記有機系層状材料の一部が、粉末冶金用混合粉末を金型に充填する際に金型の内面に付着することによると考えられる。
 以上のことから、前記構成によれば、粉末冶金用混合粉末の流動性を高めると共に高密度な焼結体を製造可能な粉末冶金用混合粉末にすることができる潤滑剤が得られる。
 また、前記潤滑剤において、前記有機系層状材料が、融点を有さないことが好ましい。
 このような構成によれば、より好適な焼結体が得られる潤滑剤を提供することができる。このことは、まず、圧縮時に、金型の内面付近で、溶融することがないので、溶融された有機系層状材料が圧粉体の作成を阻害することないことによると考えられます。また、焼結時にも、溶融された有機系層状材料による焼結の阻害を充分に抑制できることによると考えられる。
 また、前記潤滑剤において、前記有機系層状材料が、メラミンシアヌレートであることが好ましい。
 このように、前記有機系層状材料がメラミンシアヌレートであることによって、層状構造が容易に得られ、粉末冶金用混合粉末の圧縮時における粉末間の摩擦を容易かつ確実に低減することができる。
 また、前記潤滑剤において、アミド化合物をさらに含み、前記アミド化合物の含有量が、前記有機系層状材料100質量部に対して、10質量部以上90質量部以下であることが好ましい。
 このように、アミド化合物をさらに含み、このアミド化合物の前記有機系層状材料に対する含有量が前記範囲内とされることによって、粉末冶金用混合粉末の潤滑性をさらに向上することができる。
 また、前記潤滑剤において、前記有機系層状材料は、シリコーン処理及び脂肪酸処理からなる群から選ばれる少なくとも1種の表面処理が施されたものであるが好ましい。
 このような構成によれば、粉末冶金用混合粉末の流動性を高めることができる。このことは、前記表面処理が施された有機系層状材料は、前記鉄基粉末やその他の粉末等との親和性を向上させることができ、これらの粉末の分散性をさらに高めることができることによると考えられる。
 また、前記潤滑剤において、粉末冶金用混合粉末が、副原料粉末を含むことが好ましい。また、前記副原料粉末が、黒鉛を含むことが好ましい。
 このような構成によれば、副原料粉末を含む粉末冶金用混合粉末を用いて、焼結体を得ると、強度向上等の副原料粉末を添加したことによる効果を奏する焼結体が得られる。例えば、副原料粉末として、黒鉛を含むと、粉末冶金用混合粉末を用いて得られた焼結体の強度を向上させることができる。その一方で、副原料粉末を含んでいると、前記鉄基粉末及び前記副原料粉末等の飛散や前記副原料粉末の偏析等が起こりやすい傾向があるが、前記潤滑剤を含有することで、これらの発生を抑制することができる。よって、より好適な焼結体が得られる粉末冶金用混合粉末にすることができる潤滑剤が得られる。
 また、本発明の他の一局面は、鉄基粉末と、前記潤滑剤とを含む粉末冶金用混合粉末である。
 前記粉末冶金用混合粉末は、前記潤滑剤を含むので、上述のように潤滑性が高められると共に、得られる焼結体の高密度化、ひいては高品質化を促進することができる。また、前記粉末冶金用混合粉末は、上述のように金型からの抜き圧を低減することができる。
 前記粉末冶金用混合粉末において、バインダーをさらに含み、前記バインダーが、融点が45℃以上90℃以下であり、かつ、190℃での加熱溶融流動性が2.8g/10分以上3.8g/10分以下のポリオレフィン、及び重量平均分子量が50万以下のアクリル樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。
 このように、バインダーをさらに含み、このバインダーが、前記範囲内の融点及び加熱溶融流動性を有するポリオレフィン、又は前記範囲内の重量平均分子量を有するアクリル樹脂を含むことによって、鉄基粉末又はその他の粉末の偏析や飛散を的確に防止することができる。
 前記粉末冶金用混合粉末において、前記バインダーは、前記ポリオレフィン及び前記アクリル樹脂を共に含み、アクリル樹脂の含有量が、前記ポリオレフィン100質量部に対して、10質量部以上であることが好ましい。
 このように、前記バインダーが前記ポリオレフィン及びアクリル樹脂を共に含み、前記アクリル樹脂のポリオレフィンに対する含有量が前記範囲内とされることによって、鉄基粉末又はその他の粉末の偏析や飛散を防止することができると共に、流動性をさらに高めることができる。
 また、前記粉末冶金用混合粉末において、副原料粉末を含むことが好ましい。また、前記副原料粉末が、黒鉛を含むことが好ましい。
 このような構成によれば、より好適な焼結体が得られる粉末冶金用混合粉末を提供することができる。まず、副原料粉末を含む粉末冶金用混合粉末を用いて、焼結体を得ると、強度向上等の副原料粉末を添加したことによる効果を奏する焼結体が得られる。例えば、副原料粉末として、黒鉛を含むと、粉末冶金用混合粉末を用いて得られた焼結体の強度を向上させることができる。その一方で、副原料粉末を含んでいると、前記鉄基粉末及び前記副原料粉末等の飛散や前記副原料粉末の偏析等が起こりやすい傾向があるが、前記潤滑剤を含有することで、これらの発生を抑制することができる。よって、より好適な焼結体が得られる粉末冶金用混合粉末が得られる。
 また、本発明の他の一局面は、鉄基粉末と、前記潤滑剤とを含む粉末冶金用混合粉末を、混合により調製する混合工程と、前記粉末冶金用混合粉末を金型を用いて圧縮して、圧粉体を得る工程と、前記圧粉体を焼結して、焼結体を得る工程とを備える焼結体の製造方法である。
 前記焼結体の製造方法によれば、前記潤滑剤を含む粉末冶金用混合粉末を用いるので、高密度化された焼結体を製造することができる。よって、この高密度化による高品質化が促進された焼結体を製造することができる。
 また、前記焼結体の製造方法において、前記混合工程が、前記鉄基粉末と、前記潤滑剤と、前記副原料粉末とを混合することが好ましい。また、前記副原料粉末が、黒鉛を含むことが好ましい。
 このような構成によれば、より好適な焼結体を製造することができる。
 以上説明したように、本発明の潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法は、粉末冶金用混合粉末の流動性を高めると共に焼結体の高密度化を促進することができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 鉄基粉末として純鉄粉(株式会社神戸製鋼所製の「アトメル300M」、粒径40~120μm)を用意し、この純鉄粉100質量部に対し、副原料粉末として、銅粉末2.0質量部及び黒鉛0.8質量部をV型混合機によって混合した。また、バインダーとして、スチレンブタジエンゴム0.10質量部(バインダー濃度が2.5質量%となるようにトルエンにスチレンブタジエンゴムを溶解させたバインダー溶液)を前記純鉄粉及び前記副原料粉末に噴霧した上、撹拌混合してバインダーで被覆された混合粉末を得た。さらに、この混合粉末に有機系層状材料(潤滑剤)として平均粒径2.0μmのメラミンシアヌレート(日産化学工業株式会社製の「MC-6000」)を0.5質量%添加して粉末冶金用混合粉末とした。なお、メラミンシアヌレート(シアヌル酸メラミン)は、常圧では、350~400℃で昇華する物質であり、溶融しない物質であり、すなわち、融点を有さない有機系層状材料である。
 (実施例2)
 有機系層状材料として、平均粒径1.2μmのメラミンシアヌレート(堺化学工業株式会社製の「MC-1N」)を用いた以外は、実施例1と同様にして、実施例2の粉末冶金用混合粉末を得た。 
 (実施例3)
 有機系層状材料として、表面にシリコーン処理を施した平均粒径2.7μmのメラミンシアヌレート(堺化学工業株式会社製の「MC-20S」)を用いた以外は、実施例1と同様にして、実施例3の粉末冶金用混合粉末を得た。
 (実施例4)
 有機系層状材料として、表面に脂肪酸処理を施した平均粒径1.0μmのメラミンシアヌレート(堺化学工業株式会社製の「MC-5F」)を用いた以外は、実施例1と同様にして、実施例4の粉末冶金用混合粉末を得た。
 (実施例5)
 潤滑剤として、平均粒径2.0μmのメラミンシアヌレート(日産化学工業株式会社製の「MC-6000」)に加え、ステアリン酸アマイド(日本化成株式会社製の「アマイドAP-1」)を、表1に示す配合比(質量比)で添加した以外は、実施例1と同様にして、実施例5の粉末冶金用混合粉末を得た。
 (実施例6~8)
 実施例5の粉末冶金用混合粉末における、メラミンシアヌレート及びステアリン酸アマイドの配合比を、表1に示す配合比(質量比)にした以外は、実施例5と同様にして、実施例6~8の粉末冶金用混合粉末を得た。
 (実施例9)
 バインダーとして、ブテン-プロピレン共重合体(三井化学株式会社製の「タフマーXM5080」、融点:85℃、190℃での加熱溶融流動性(MFR):3.0g/10分)を用いた以外は、実施例1と同様にして、実施例9の粉末冶金用混合粉末を得た。
 (実施例10)
 バインダーとして、ブテン-プロピレン共重合体(三井化学株式会社製の「タフマーXM5070」、融点:77℃、MFP:3.0g/10分)を用いた以外は、実施例1と同様にして、実施例10の粉末冶金用混合粉末を得た。
 (実施例11)
 バインダーとして、ブテン-エチレン共重合体(三井化学株式会社製の「タフマーDF740」、融点:55℃、MFP:3.6g/10分)を用いた以外は、実施例1と同様にして、実施例11の粉末冶金用混合粉末を得た。
 (実施例12)
 バインダーとして、ブテン-エチレン共重合体(三井化学株式会社製の「タフマーDF740」、融点:50℃、MFP:3.6g/10分)を用いた以外は、実施例1と同様にして、実施例12の粉末冶金用混合粉末を得た。
 (実施例13)
 バインダーとして、メタクリル酸ブチル(根上工業株式会社製の「M-6003」、重量平均分子量:376500)を用いた以外は、実施例1と同様にして、実施例13の粉末冶金用混合粉末を得た。 
 (実施例14)
 バインダーとして、実施例9のブテン-プロピレン共重合体及び実施例13のメタクリル酸ブチルを90/10の質量割合で混合した混合物を用いた以外は、実施例1と同様にして、実施例14の粉末冶金用混合粉末を得た。
 (実施例15)
 バインダーとして、実施例10のブテン-プロピレン共重合体及び実施例13のメタクリル酸ブチルを90/10の質量割合で混合した混合物を用いた以外は、実施例1と同様にして、実施例15の粉末冶金用混合粉末を得た。
 (比較例1)
 潤滑剤として、エチレンビスステアリン酸アミド(大日化学工業株式会社製の「WXDBS」)を用いた以外は、実施例1と同様にして、比較例1の粉末冶金用混合粉末を得た。 
 (比較例2)
 潤滑剤として、ステアリン酸亜鉛(大日化学工業株式会社製の「ダイワックスZ」)を用いた以外は、実施例1と同様にして、比較例2の粉末冶金用混合粉末を得た。 
 (比較例3)
 潤滑剤として、平均粒径14μmのメラミンシアヌレート(日産化学工業株式会社製の「MC-4500」)を用いた以外は、実施例1と同様にして、比較例3の粉末冶金用混合粉末を得た。
 (比較例4)
 潤滑剤として、平均粒径10μmのメラミンシアヌレート(日産化学工業株式会社製の「MC-4000」)を用いた以外は、実施例1と同様にして、比較例4の粉末冶金用混合粉末を得た。
 (比較例5)
 潤滑剤として、平均粒径3.3μmのメラミンシアヌレート(堺化学工業株式会社製の「MC-2010N」を用いた以外は、実施例1と同様にして、比較例5の粉末冶金用混合粉末を得た。
Figure JPOXMLDOC01-appb-T000001
 [流動性]
 JIS-Z-2502(2012)(金属粉の流動度試験法)に準拠して、フロー試験を行い、粉末冶金用混合粉末の流動度を求めた。具体的には、50gの粉末冶金用混合粉末が直径2.63mmのオリフィスを流れ出るまでの時間(s)を測定し、この時間を粉末冶金用混合粉末の流動度とした。また、この得られた粒度度に基づき、以下の基準で流動性を評価した。
 (評価基準)
  A:流動度が常温(25℃)で20s/50g未満
  B:流動度が常温(25℃)で20s/50g以上25s/50g未満
  C:流動度が常温(25℃)で25s/50g以上
 [黒鉛飛散性]
 図1に示すような黒鉛飛散率測定用器具を用いて、粉末冶金用混合粉末の黒鉛飛散性を測定した。なお、図1は、実施例において用いた黒鉛飛散率測定用器具の模式的断面図である。黒鉛飛散率測定装置は、図1に示すように、ニューミリポアフィルター1(編目12μm)を取り付けた漏斗状のガラス管2(内径16mm、高さ106mm)である。この黒鉛飛散率測定装置に、粉末冶金用混合粉末Pを25g入れて、ガラス管2の下方からNガス(室温)を速度0.8L/分で20分間流した。そして、このNガスを流通させる前の粉末冶金用混合粉末中のカーボン量と、このNガスを流通させる後の粉末冶金用混合粉末中のカーボン量とを測定した。この測定した各カーボン量を用いて、下記式より、黒鉛飛散率(%)を求めた。
 黒鉛飛散率(%)=[1-(Nガス流通後の粉末冶金用混合粉末中のカーボン量(質量%)/Nガス流通前の粉末冶金用混合粉末中のカーボン量(質量%))]×100
 なお、前記各粉末冶金用混合粉末中のカーボン量は、炭素分を定量分析することによって求めた。また、黒鉛飛散性を以下の基準で評価した。
 (評価基準)
  A:黒鉛飛散率が0%
  B:黒鉛飛散率が0%超10%以下
 [抜き圧]
 圧力10t/cm、常温(25℃)の条件で、粉末冶金用混合粉末を金型を用いて、直径25mm、長さ15mmの円柱状圧粉体を作製した。この圧粉体を金型から抜き出すのに必要な荷重を測定した。そして、この荷重を、金型と圧粉体との接触面積で除することによって、抜き圧を算出した。また、抜き圧を以下の基準で評価した。
 (評価基準)
  A:抜き圧が20MPa以下
  B:抜き圧が20MPa超25MPa未満
  C:抜き圧が25MPa以上 
 [圧粉体密度]
 金型から抜き出した圧粉体の密度を、JSPM標準1-64(金属粉の圧縮試験法)に準拠して測定した。また、圧粉体密度を以下の基準で評価した。
 (評価基準)
  A:圧粉体密度が7.45g/cm以上
  B:圧粉体密度が7.40g/cm以上7.45g/cm未満
  C:圧粉体密度が7.40g/cm未満 
Figure JPOXMLDOC01-appb-T000002
 [評価結果]
 表2の結果より、実施例1~15に係る圧粉体は、比較例1~5に係る圧粉体に比べて、密度が高いことが分かった。また、バインダーとして、ポリオレフィン及び/又はアクリル樹脂を用いた実施例9~15の粉末冶金用混合粉末は、他の実施例及び比較例の粉末冶金用混合粉末に比べて流動性が高いことが分かった。さらに、潤滑剤としてアミド化合物を添加した実施例5~8の粉末冶金用混合粉末は、他の実施例及び比較例の粉末冶金用混合粉末に比べて抜き圧が低いことが分かった。
 この出願は、2014年12月26日に出願された日本国特許出願特願2014-266266を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 以上説明したように、本発明の潤滑剤、粉末冶金用混合粉末及び焼結体の製造方法は、密度が高く高品質な焼結体を製造するのに適している。 

Claims (15)

  1.  鉄基粉末を含む粉末冶金用混合粉末に配合される潤滑剤であって、
     平均粒径が0.1μm以上3μm未満である有機系層状材料を含むことを特徴とする潤滑剤。
  2.  前記有機系層状材料が、融点を有さない請求項1に記載の潤滑剤。
  3.  前記有機系層状材料が、メラミンシアヌレートである請求項1に記載の潤滑剤。
  4.  アミド化合物をさらに含み、
     前記アミド化合物の含有量が、前記有機系層状材料100質量部に対して、10質量部以上90質量部以下である請求項1に記載の潤滑剤。
  5.  前記有機系層状材料は、シリコーン処理及び脂肪酸処理からなる群から選ばれる少なくとも1種の表面処理が施されたものである請求項1に記載の潤滑剤。
  6.  前記粉末冶金用混合粉末が、副原料粉末を含む請求項1に記載の潤滑剤。
  7.  前記副原料粉末が、黒鉛を含む請求項5に記載の潤滑剤。
  8.  鉄基粉末と、請求項1~7のいずれか1項に記載の潤滑剤とを含む粉末冶金用混合粉末。
  9.  バインダーをさらに含み、
     前記バインダーは、融点が45℃以上90℃以下であり、かつ、190℃での加熱溶融流動性が2.8g/10分以上3.8g/10分以下のポリオレフィン、及び重量平均分子量が50万以下のアクリル樹脂からなる群から選ばれる少なくとも1種を含む請求項8に記載の粉末冶金用混合粉末。
  10.  前記バインダーは、前記ポリオレフィン及び前記アクリル樹脂を共に含み、
     前記アクリル樹脂の含有量が、前記ポリオレフィン100質量部に対して、10質量部以上である請求項9に記載の粉末冶金用混合粉末。
  11.  副原料粉末をさらに含む請求項8に記載の粉末冶金用混合粉末。
  12.  前記副原料粉末が、黒鉛を含む請求項11に記載の粉末冶金用混合粉末。
  13.  鉄基粉末と、請求項1~7のいずれか1項に記載の潤滑剤と含む粉末冶金用混合粉末を、混合により調製する混合工程と、
     前記粉末冶金用混合粉末を金型を用いて圧縮して、圧粉体を得る工程と、
     前記圧粉体を焼結して、焼結体を得る工程とを備える焼結体の製造方法。
  14.  前記混合工程が、前記鉄基粉末と、前記潤滑剤と、前記副原料粉末とを混合する請求項13に記載の焼結体の製造方法。
  15.  前記副原料粉末が、黒鉛を含む請求項14に記載の焼結体の製造方法。
     
PCT/JP2015/083814 2014-12-26 2015-12-01 潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法 WO2016104077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177017058A KR101980987B1 (ko) 2014-12-26 2015-12-01 윤활제, 분말 야금용 혼합 분말 및 소결체의 제조 방법
EP15872646.3A EP3238862A4 (en) 2014-12-26 2015-12-01 Lubricant, mixed powder for powder metallurgy, and method for producing sintered body
CN201580071087.4A CN107107189B (zh) 2014-12-26 2015-12-01 润滑剂、粉末冶金用混合粉末和烧结体的制造方法
US15/520,463 US10500638B2 (en) 2014-12-26 2015-12-01 Lubricant, mixed powder for powder metallurgy, and method for producing sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-266266 2014-12-26
JP2014266266A JP6437309B2 (ja) 2014-12-26 2014-12-26 粉末冶金用混合粉末及び焼結体の製造方法

Publications (1)

Publication Number Publication Date
WO2016104077A1 true WO2016104077A1 (ja) 2016-06-30

Family

ID=56150109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083814 WO2016104077A1 (ja) 2014-12-26 2015-12-01 潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法

Country Status (6)

Country Link
US (1) US10500638B2 (ja)
EP (1) EP3238862A4 (ja)
JP (1) JP6437309B2 (ja)
KR (1) KR101980987B1 (ja)
CN (1) CN107107189B (ja)
WO (1) WO2016104077A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774796A (zh) * 2022-05-11 2022-07-22 江苏川钿明椿电气机械有限公司 一种制动器磁性座用粉末冶金材料和制动器磁性座的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437309B2 (ja) 2014-12-26 2018-12-12 株式会社神戸製鋼所 粉末冶金用混合粉末及び焼結体の製造方法
JP6849460B2 (ja) * 2017-02-03 2021-03-24 株式会社神戸製鋼所 粉末冶金用混合粉末及びその製造方法
JP7400218B2 (ja) * 2018-08-31 2023-12-19 大同特殊鋼株式会社 合金粉末組成物
WO2020066927A1 (ja) * 2018-09-26 2020-04-02 Jfeスチール株式会社 粉末冶金用混合粉および粉末冶金用潤滑剤
WO2020194616A1 (ja) * 2019-03-27 2020-10-01 日立化成株式会社 潤滑剤、粉末混合物及び焼結体の製造方法
KR102248462B1 (ko) * 2020-09-08 2021-05-06 장기태 복합 윤활제 및 그 제조방법
CN116117143B (zh) * 2023-03-02 2023-10-31 得发科精密制造无锡有限公司 一种采用粉末冶金法制备微型滑块本体的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204355A (ja) * 1989-02-01 1990-08-14 Showa Denko Kk 焼結性混合物の製造方法
JPH09104901A (ja) * 1995-08-04 1997-04-22 Kawasaki Steel Corp 流動性および成形性に優れた粉末冶金用鉄基粉末混合物およびその製造方法
JPH10317001A (ja) * 1997-03-19 1998-12-02 Kawasaki Steel Corp 流動性と成形性に優れた粉末冶金用鉄基粉末混合物、その製造方法および成形体の製造方法
JP2013087328A (ja) * 2011-10-18 2013-05-13 Jfe Steel Corp 粉末冶金用鉄基粉末
JP2014118603A (ja) * 2012-12-17 2014-06-30 Diamet:Kk 粉末冶金用原料粉末
JP2014196553A (ja) * 2013-03-04 2014-10-16 株式会社神戸製鋼所 粉末冶金用バインダー、および粉末冶金用混合粉末、並びに焼結体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181268A (ja) 1984-09-28 1986-04-24 株式会社日立製作所 鉄道車両の空調設備
US5989304A (en) * 1996-08-05 1999-11-23 Kawasaki Steel Corporation Iron-based powder composition for powder metallurgy excellent in flowability and compactibility and method
JPH10219302A (ja) * 1997-02-06 1998-08-18 Kobe Steel Ltd 温間成形用潤滑剤および温間成形用混合粉末並びに該混合粉末の温間成形方法
WO1998041347A1 (fr) * 1997-03-19 1998-09-24 Kawasaki Steel Corporation Melange pulverise a base de fer destine a la metallurgie des poudres, dote d'excellentes caracteristiques de fluidite et d'aptitude au moulage, procede de production correspondant et procede de production d'article moule utilisant ledit melange pulverise a base de fer
JP2001181665A (ja) * 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd 冷間加工用潤滑剤
KR20040018376A (ko) * 2001-05-22 2004-03-03 유씨비 소시에떼아노님 열경화성 아크릴 분말 코팅
JP4527327B2 (ja) * 2001-09-28 2010-08-18 株式会社神戸製鋼所 粉末冶金用混合粉末
JP2005154511A (ja) 2003-11-21 2005-06-16 Fujikura Ltd ノンハロゲン難燃性接着剤組成物とその利用
JP2006335876A (ja) * 2005-06-02 2006-12-14 Ntn Corp 等速ジョイント用グリースおよび等速ジョイント
JP4818339B2 (ja) 2007-10-29 2011-11-16 ソニーケミカル&インフォメーションデバイス株式会社 磁性シート
JP2012102157A (ja) 2010-11-05 2012-05-31 Nok Kluber Kk 潤滑剤組成物
JP6437309B2 (ja) 2014-12-26 2018-12-12 株式会社神戸製鋼所 粉末冶金用混合粉末及び焼結体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204355A (ja) * 1989-02-01 1990-08-14 Showa Denko Kk 焼結性混合物の製造方法
JPH09104901A (ja) * 1995-08-04 1997-04-22 Kawasaki Steel Corp 流動性および成形性に優れた粉末冶金用鉄基粉末混合物およびその製造方法
JPH10317001A (ja) * 1997-03-19 1998-12-02 Kawasaki Steel Corp 流動性と成形性に優れた粉末冶金用鉄基粉末混合物、その製造方法および成形体の製造方法
JP2013087328A (ja) * 2011-10-18 2013-05-13 Jfe Steel Corp 粉末冶金用鉄基粉末
JP2014118603A (ja) * 2012-12-17 2014-06-30 Diamet:Kk 粉末冶金用原料粉末
JP2014196553A (ja) * 2013-03-04 2014-10-16 株式会社神戸製鋼所 粉末冶金用バインダー、および粉末冶金用混合粉末、並びに焼結体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3238862A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774796A (zh) * 2022-05-11 2022-07-22 江苏川钿明椿电气机械有限公司 一种制动器磁性座用粉末冶金材料和制动器磁性座的制备方法
CN114774796B (zh) * 2022-05-11 2023-06-20 江苏川钿明椿电气机械有限公司 一种制动器磁性座用粉末冶金材料和制动器磁性座的制备方法

Also Published As

Publication number Publication date
JP2016124960A (ja) 2016-07-11
EP3238862A4 (en) 2018-07-04
EP3238862A1 (en) 2017-11-01
US10500638B2 (en) 2019-12-10
CN107107189B (zh) 2020-05-12
CN107107189A (zh) 2017-08-29
KR20170091117A (ko) 2017-08-08
JP6437309B2 (ja) 2018-12-12
KR101980987B1 (ko) 2019-05-21
US20170304893A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016104077A1 (ja) 潤滑剤、粉末冶金用混合粉末、及び焼結体の製造方法
JP5552031B2 (ja) 粉末冶金用混合粉末
KR101780576B1 (ko) 분말 야금용 바인더 및 분말 야금용 혼합 분말 및 소결체
WO2009035119A1 (ja) 粉末冶金用鉄基粉末
WO2007078228A1 (en) Lubricant for powder metallurgical compositions
CN104308141B (zh) 粉末冶金用铁基混合粉末
JP4769806B2 (ja) 冶金粉末組成物及びこれから製造される部品
JP5169605B2 (ja) 粉末冶金用粉末混合物および成形体の製造方法
BRPI0620894A2 (pt) composição de pó metalúrgico e método para a produção de composição de pó metalúrgico
BRPI0620868A2 (pt) composição de pó metalúrgico
JP5750076B2 (ja) 成形用粉末およびその製造方法
TWI660053B (zh) 鐵基粉末冶金用混合粉末及使用其之燒結體的製造方法
UA95096C2 (uk) Порошкова металургійна композиція на основі заліза, композиційне мастило на її основі та спосіб його виробництва
TWI289601B (en) Powder metal mixture including micronized starch
JP2008106305A (ja) 圧粉成形用粉末、および圧粉成形用粉末の製造方法
EP2969316A1 (en) Methods for solventless bonding of metallurgical compositions
JP6877375B2 (ja) 粉末冶金用混合粉
KR20230059880A (ko) 철계 혼합분말 및 그 제조방법
JP2019002068A (ja) 粉末冶金用粉末混合物およびその製造方法
US20090028742A1 (en) Dry powder metal compositions and methods of making and using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872646

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15520463

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177017058

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE