WO2016103439A1 - 車両用変圧器 - Google Patents

車両用変圧器 Download PDF

Info

Publication number
WO2016103439A1
WO2016103439A1 PCT/JP2014/084471 JP2014084471W WO2016103439A1 WO 2016103439 A1 WO2016103439 A1 WO 2016103439A1 JP 2014084471 W JP2014084471 W JP 2014084471W WO 2016103439 A1 WO2016103439 A1 WO 2016103439A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
vehicle
pipe
refrigerant
piping
Prior art date
Application number
PCT/JP2014/084471
Other languages
English (en)
French (fr)
Inventor
敏広 野田
貴幸 今津
孝基 新庄
賜基 速水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14909046.6A priority Critical patent/EP3239996B1/en
Priority to JP2015525344A priority patent/JP5805354B1/ja
Priority to PCT/JP2014/084471 priority patent/WO2016103439A1/ja
Publication of WO2016103439A1 publication Critical patent/WO2016103439A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling

Definitions

  • the present invention relates to a vehicular transformer, and more particularly to a vehicular transformer installed on a roof of a railway vehicle.
  • Patent Document 1 JP-A-2004-363253 is a prior document disclosing the configuration of a vehicular transformer installed under the floor of a vehicle.
  • four coolers are distributed and arranged on both sides of the transformer main body installed under the vehicle floor.
  • Each cooler is connected to each other by piping, and the refrigerant is cooled by running wind accompanying traveling of the vehicle through the heat radiating pipe of each cooler.
  • Patent Document 2 JP-A-2003-79164 (Patent Document 2) is a prior document disclosing a power conversion device installed on the roof of a railway vehicle.
  • the power conversion device described in Patent Document 2 includes a housing that houses a semiconductor stack unit that converts power and is mounted on a roof of a railway vehicle, and a semiconductor stack unit that is defined inside the housing.
  • the wind tunnel has a wind tunnel cover that is detachably attached facing the outside.
  • an inflow port is formed on the side surface and the bottom surface of the protective cover that houses the vehicular transformer, and traveling wind is introduced from the inflow port, and the introduced traveling wind is used. Cooled by each cooler.
  • the outflow inlet described in Patent Document 1 is provided on the side surface and bottom surface of the protective cover along the traveling direction of the vehicle.
  • the opening hole described in Patent Document 2 is provided in a wind tunnel cover arranged along the traveling direction of the vehicle. As described above, when the traveling wind is taken in and cooled from the holes provided in the member along the traveling direction of the vehicle, the utilization efficiency of the traveling wind is low.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicular transformer that can cool a refrigerant by efficiently using traveling wind.
  • the transformer for vehicles based on this invention is the state which immersed in the refrigerant
  • a transformer main body having a tank to be stored, at least one cooler that is connected to a pipe and cools the refrigerant by heat exchange with outside air, and a pump that is connected to the pipe and forcibly circulates the refrigerant.
  • the transformer main body and the cooler are arranged side by side along the traveling direction of the vehicle on the roof of the vehicle. At least a part of the piping protrudes from the surface of the transformer body along the traveling direction of the vehicle.
  • the traveling wind is efficiently used by ensuring the contact between the traveling wind and the piping. Can cool the refrigerant.
  • FIG. 1 is a front view showing the configuration of the vehicle transformer according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the vehicle transformer of FIG. 1 viewed from the direction of arrow II.
  • FIG. 3 is a plan view of the vehicle transformer of FIG. 2 as viewed from the direction of arrow III.
  • a vehicle transformer 100 includes a pipe 140 that forms a refrigerant circulation path, and a winding connected to the pipe 140 and wound around an iron core and an iron core.
  • a transformer body 120 having a tank for storing the wire and the iron core and windings immersed in the refrigerant, and one cooler 130 connected to the pipe 140 for cooling the refrigerant by heat exchange with the outside air,
  • a pump 150 connected to the pipe 140 and forcibly circulating the refrigerant is provided.
  • the transformer main body 120 and the cooler 130 are arranged side by side along the traveling direction 1 of the vehicle 110 on the roof of the vehicle 110.
  • the traveling direction 1 of the vehicle 110 is a direction along the rail 10 on which the vehicle 110 travels.
  • the vehicle transformer 100 according to the present embodiment includes only one cooler 130, the number of the coolers 130 included in the vehicle transformer 100 is not limited to one and may be plural. .
  • the tank of the transformer body 120 has a substantially rectangular parallelepiped outer shape. Each of the ceiling and the side wall of the tank is located along the traveling direction 1 of the vehicle 110. The outer surface of the tank constitutes the surface of the transformer main body 120.
  • the transformer main body 120 and the cooler 130 are connected to each other, the first pipe 141 and the transformer main body 120 protruding from the ceiling of the transformer main body 120 and A pipe 140 serving as a refrigerant circulation path is constituted by the second pipe 142 connecting the cooler 130.
  • the refrigerant is insulating oil.
  • Each of the first piping 141 and the second piping 142 is located along the traveling direction 1 of the vehicle 110 in plan view.
  • the present invention is not limited to this, and at least one of the first pipe 141 and the second pipe 142 may be positioned so as to intersect the traveling direction 1 of the vehicle 110 in plan view.
  • the pump 150 is connected to the first pipe 141.
  • the refrigerant circulates in the order of the first pipe 141, the cooler 130, the second pipe 142, and the transformer main body 120 as indicated by a dotted line 2 in FIG. 2.
  • the second pipe 142 protrudes from the ceiling of the transformer main body 120, so that the outer peripheral surface of the second pipe 142 and the traveling wind can be brought into contact with each other.
  • the refrigerant flowing inside the second pipe 142 can be cooled by heat exchange with the traveling wind. it can.
  • the vehicle transformer 100 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • the pipe 140 protrudes from the surface of the transformer main body 120 along the traveling direction 1 of the vehicle 110, contact between the traveling wind and the piping 140 is ensured, and the traveling wind is made efficient. It can be used well to cool the refrigerant.
  • the second pipe 142 protrudes from the ceiling of the transformer body 120, thereby ensuring contact between the natural wind and the second pipe 142 regardless of the wind direction. Can do. Therefore, the refrigerant flowing inside the second pipe 142 can be cooled by heat exchange with natural wind.
  • FIG. 4 is a front view showing the configuration of the vehicular transformer according to the first modification of the first embodiment of the present invention.
  • FIG. 5 is a plan view of the vehicle transformer of FIG.
  • a pipe 140 is configured by two first pipes 141 and two second pipes 142. ing.
  • a pump 150 is connected to each of the two first pipes 141.
  • the two first pipes 141 are arranged in parallel at intervals.
  • the two second pipes 142 are arranged in parallel at intervals.
  • FIG. 6 is a plan view showing a configuration of a vehicle transformer according to a second modification of the first embodiment of the present invention.
  • a pipe 140 is configured by one first pipe 141 and two second pipes 142. .
  • the two first pipes 141 are arranged in parallel at intervals.
  • Embodiment 2 of the present invention a vehicle transformer according to Embodiment 2 of the present invention will be described. Note that the vehicular transformer 200 according to the present embodiment is different from the vehicular transformer 100 according to the first embodiment only in the configuration of the piping, and therefore the description of the other configurations will not be repeated.
  • FIG. 7 is a front view showing the configuration of the vehicle transformer according to the second embodiment of the present invention.
  • FIG. 8 is a side view of the vehicle transformer of FIG. 7 as viewed from the direction of arrow VIII.
  • FIG. 9 is a plan view of the vehicle transformer of FIG. 8 as viewed from the direction of the arrow IX.
  • the vehicle transformer 200 according to the second embodiment of the present invention includes a pipe 240 that forms a refrigerant circulation path.
  • the first pipe 241 that protrudes from one side wall of the transformer body 120 and connects the transformer body 120 and the cooler 130 and the other side wall of the transformer body 120.
  • a pipe 240 serving as a refrigerant circulation path is configured from the second pipe 242 that protrudes and connects the transformer main body 120 and the cooler 130.
  • Each of the first piping 241 and the second piping 242 is located along the traveling direction 1 of the vehicle 110 in a side view.
  • the present invention is not limited to this, and at least one of the first pipe 241 and the second pipe 242 may be positioned so as to intersect the traveling direction 1 of the vehicle 110 in a side view.
  • the pump 150 is connected to the first pipe 241.
  • the refrigerant circulates in the order of the first pipe 241, the cooler 130, the second pipe 242, and the transformer main body 120, as indicated by a dotted line 3 in FIG.
  • each of the first pipe 241 and the second pipe 242 protrudes from the side wall of the transformer main body 120, the outer peripheral surface of each of the first pipe 241 and the second pipe 242 can be brought into contact with the traveling wind.
  • the refrigerant can be cooled by heat exchange with the traveling wind.
  • the vehicle transformer 200 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • the pipe 240 protrudes from the surface of the transformer body 120 along the traveling direction 1 of the vehicle 110, contact between the running wind and the pipe 240 is ensured, and the running wind is made efficient. It can be used well to cool the refrigerant.
  • FIG. 10 is a front view showing a configuration of a vehicle transformer according to a modification of the second embodiment of the present invention.
  • FIG. 11 is a side view of the vehicle transformer of FIG. 10 viewed from the direction of arrow XI.
  • a pipe 240 is constituted by two first pipes 241 and two second pipes 242. .
  • a pump 150 is connected to each of the two first pipes 241.
  • the two first pipes 241 are arranged in parallel at intervals.
  • the two second pipes 242 are arranged in parallel at intervals.
  • the surface area capable of heat exchange between the traveling wind and the refrigerant can be increased.
  • the coolant can be cooled by efficiently using the traveling wind.
  • the vehicular transformer 300 according to the present embodiment is different from the vehicular transformer 100 according to the first embodiment only in the configuration of the cooler and the piping, and therefore the description of the other configurations will not be repeated.
  • FIG. 12 is a front view showing the configuration of the vehicle transformer according to the third embodiment of the present invention.
  • FIG. 13 is a side view of the vehicle transformer of FIG. 12 as viewed from the direction of arrow XIII.
  • FIG. 14 is a plan view of the vehicle transformer of FIG. 13 viewed from the direction of arrow XIV.
  • a vehicle transformer 300 As shown in FIGS. 12 to 14, a vehicle transformer 300 according to Embodiment 3 of the present invention is connected to a pipe 340 that forms a refrigerant circulation path and to the pipe 340, and cools the refrigerant by heat exchange with outside air.
  • Two coolers 330 Two coolers 330.
  • the transformer main body 120 and the two coolers 330 are arranged side by side along the traveling direction 1 of the vehicle 110 on the roof of the vehicle 110.
  • the transformer main body 120 is disposed between the two coolers 330.
  • two first pipes 341 that connect the opposing portions of the transformer main body 120 and the two coolers 330 to each other, and the ceiling of the transformer main body 120 protrude.
  • a pipe 340 serving as a refrigerant circulation path is configured.
  • Each of the two first pipes 341 and the second pipe 342 is located along the traveling direction 1 of the vehicle 110 in plan view.
  • the present invention is not limited to this, and at least one of the first pipe 341 and the second pipe 342 may be positioned so as to intersect the traveling direction 1 of the vehicle 110 in plan view.
  • the pump 150 is connected in the vicinity of the connection part with the transformer main body 120 of the 2nd piping 342.
  • the pump 150 is driven, as indicated by dotted lines 4 and 5 in FIG. 13, the refrigerant passes through the two coolers 330 in the order of the second pipe 342, the cooler 330, the first pipe 341, and the transformer main body 120. It circulates separately to pass each.
  • the second pipe 342 protrudes from the ceiling of the transformer main body 120, whereby the outer peripheral surface of the second pipe 342 and the traveling wind can be brought into contact with each other.
  • the refrigerant flowing in the second pipe 342 can be cooled by heat exchange with the traveling wind. it can.
  • the vehicle transformer 300 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • the vehicular transformer 400 according to the present embodiment is different from the vehicular transformer 300 according to the third embodiment only in the configuration of the piping, and therefore the description of the other configurations will not be repeated.
  • FIG. 15 is a front view showing the configuration of the vehicle transformer according to the fourth embodiment of the present invention.
  • 16 is a side view of the vehicular transformer of FIG. 15 viewed from the direction of the arrow XVI.
  • FIG. 17 is a plan view of the vehicle transformer of FIG. 16 as viewed from the direction of the arrow XVII.
  • the vehicle transformer 400 according to the fourth embodiment of the present invention includes a pipe 440 that forms a refrigerant circulation path.
  • a first pipe 441 that protrudes from one side wall of the transformer body 120 and connects the transformer body 120 and the two coolers 330, and the other of the transformer body 120.
  • a pipe 440 serving as a refrigerant circulation path is constituted by the second pipe 442 protruding from the side wall and connecting the transformer main body 120 and the two coolers 330.
  • Each of the first piping 441 and the second piping 442 is located along the traveling direction 1 of the vehicle 110 in a side view.
  • the present invention is not limited to this, and at least one of the first pipe 441 and the second pipe 442 may be positioned so as to intersect the traveling direction 1 of the vehicle 110 in a side view.
  • the pump 150 is connected in the vicinity of the connection part with the transformer main body 120 of the 1st piping 441.
  • FIG. 17 When the pump 150 is driven, as indicated by dotted lines 6 and 7 in FIG. 17, the refrigerant passes through the two coolers 330 in the order of the first pipe 441, the cooler 330, the second pipe 442, and the transformer main body 120. It circulates separately to pass each.
  • each of the first pipe 441 and the second pipe 442 protrudes from the side wall of the transformer main body 120, the outer peripheral surface of each of the first pipe 441 and the second pipe 442 can be brought into contact with the traveling wind. In this way, by ensuring the contact between the traveling wind generated when the vehicle 110 travels and each of the first piping 441 and the second piping 442, the air flows inside each of the first piping 441 and the second piping 442.
  • the refrigerant can be cooled by heat exchange with the traveling wind.
  • the vehicle transformer 400 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • the vehicular transformer 500 according to the present embodiment is different from the vehicular transformer 100 according to the first embodiment only in the configuration of the piping, and therefore the description of the other configurations will not be repeated.
  • FIG. 18 is a front view showing the configuration of the vehicle transformer according to the fifth embodiment of the present invention.
  • FIG. 19 is a side view of the vehicle transformer of FIG. 18 as viewed from the direction of arrow XIX.
  • FIG. 20 is a plan view of the vehicle transformer of FIG. 19 viewed from the direction of the arrow XX.
  • a vehicle transformer 500 according to Embodiment 5 of the present invention includes a pipe 540 forming a refrigerant circulation path.
  • the first pipe 541 that protrudes from one side wall of the transformer body 120 and connects the transformer body 120 and the cooler 130 and the other side wall of the transformer body 120.
  • a pipe 540 serving as a refrigerant circulation path is configured from the second pipe 542 that protrudes and connects the transformer main body 120 and the cooler 130.
  • Each of the first pipe 541 and the second pipe 542 is located in a zigzag shape that is intermittently extended along the traveling direction 1 of the vehicle 110 in a side view and alternately bent at the plurality of intermittent portions. ing.
  • Each of the first pipe 541 and the second pipe 542 is located in a U shape in plan view.
  • the pump 150 is connected to the first pipe 541.
  • the refrigerant circulates in the order of the first pipe 541, the cooler 130, the second pipe 542, and the transformer main body 120 as indicated by a dotted line 8 in FIG. 20.
  • each of the first pipe 541 and the second pipe 542 protrudes from the side wall of the transformer main body 120, the outer peripheral surface of each of the first pipe 541 and the second pipe 542 can be brought into contact with the traveling wind.
  • the refrigerant can be cooled by heat exchange with the traveling wind.
  • the vehicle transformer 500 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • each of the first pipe 541 and the second pipe 542 is located in a zigzag shape, thereby increasing the surface area with which the traveling wind and the refrigerant can exchange heat. Can do. As a result, the coolant can be cooled by efficiently using the traveling wind.
  • the vehicular transformer 600 according to the present embodiment is different from the vehicular transformer 100 according to the first embodiment only in the configuration of the piping, and therefore the description of the other configurations will not be repeated.
  • FIG. 21 is a front view showing the configuration of the vehicle transformer according to the sixth embodiment of the present invention.
  • FIG. 22 is a side view of the vehicle transformer of FIG. 21 as viewed from the direction of arrow XXII.
  • FIG. 23 is a plan view of the vehicle transformer of FIG. 22 viewed from the direction of arrow XXIII.
  • a vehicle transformer 600 according to Embodiment 6 of the present invention includes a pipe 640 that forms a refrigerant circulation path.
  • the first pipe 641 that protrudes from one side wall of the transformer body 120 and connects the transformer body 120 and the cooler 130, and the other side wall of the transformer body 120.
  • a pipe 640 serving as a refrigerant circulation path is configured from the second pipe 642 that protrudes and connects the transformer main body 120 and the cooler 130.
  • Each of the first pipe 641 and the second pipe 642 is positioned in a zigzag shape that extends intermittently along the traveling direction 1 of the vehicle 110 in a side view and is alternately bent at the plurality of intermittent portions. ing.
  • Each of the first pipe 641 and the second pipe 642 extends intermittently along the traveling direction 1 of the vehicle 110 in plan view, and alternately intersects with the traveling direction 1 of the vehicle 110 alternately at the plurality of intermittent portions. It is located in a zigzag shape that is bent in a circle. That is, each of the first pipe 641 and the second pipe 642 has a spiral shape.
  • the pump 150 is connected to the first pipe 641.
  • the refrigerant circulates in the order of the first pipe 641, the cooler 130, the second pipe 642, and the transformer main body 120 as indicated by a dotted line 9 in FIG. 23.
  • each of the first pipe 641 and the second pipe 642 protrudes from the side wall of the transformer body 120, the outer peripheral surface of each of the first pipe 641 and the second pipe 642 and the traveling wind can be brought into contact with each other.
  • the refrigerant can be cooled by heat exchange with the traveling wind.
  • the vehicular transformer 600 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • each of the first pipe 641 and the second pipe 642 is spirally arranged, thereby increasing the surface area with which the traveling wind and the refrigerant can exchange heat.
  • the vehicular transformer 700 according to the present embodiment is different from the vehicular transformer 200 according to the second embodiment only in that a conservator is provided, and thus the description of the other configurations will not be repeated.
  • FIG. 24 is a front view showing a state in which the conservator is extended in the vehicle transformer according to the seventh embodiment of the present invention.
  • FIG. 25 is a side view of the vehicle transformer of FIG. 24 viewed from the direction of the arrow XXV.
  • FIG. 26 is a front view showing a state in which the conservator is contracted in the vehicle transformer according to the seventh embodiment of the present invention.
  • FIG. 27 is a side view of the vehicle transformer of FIG. 26 viewed from the direction of arrow XXVII.
  • the vehicle transformer 700 according to the seventh embodiment of the present invention further includes a conservator 710 filled with a refrigerant.
  • the conservator 710 is connected to the ceiling of the transformer main body 120. That is, the conservator 710 protrudes from the ceiling of the transformer main body 120.
  • the conservator 710 is connected to an opening provided in the ceiling of the tank of the transformer main body 120, and the inside of the conservator 710 communicates with the inside of the tank.
  • the conservator 710 has a bellows-like peripheral wall and is provided to be extendable and contractible.
  • the bellows-like peripheral wall of the conservator 710 is exposed and is in contact with the outside air.
  • the conservator 710 protrudes from the ceiling of the transformer main body 120, the outer peripheral surface of the conservator 710 and the traveling wind can be brought into contact with each other.
  • the refrigerant filled in the conservator 710 can be cooled by heat exchange with the traveling wind. it can.
  • the vehicle transformer 100 according to the present embodiment can cool the refrigerant by efficiently using the traveling wind.
  • the surface area where the bellows-shaped peripheral wall contacts the traveling wind is larger than that in the state where the conservator 710 contracts. Therefore, it is possible to cool the high-temperature refrigerant more effectively.
  • the vehicular transformer 800 according to the present embodiment is different from the vehicular transformer 200 according to the second embodiment only in that a tank reinforcing plate is provided, and therefore, the description of other configurations will not be repeated.
  • FIG. 28 is a front view showing the configuration of the vehicle transformer according to the eighth embodiment of the present invention.
  • FIG. 29 is a side view of the vehicle transformer of FIG. 28 as viewed from the direction of the arrow XXIX.
  • the transformer main body 120 includes a plurality of reinforcing plates 810 that reinforce the tank.
  • a plurality of first reinforcing plates 811 protruding from the ceiling of the transformer main body 120 and positioned along the traveling direction 1 of the vehicle 110, and the side walls of the transformer main body 120.
  • a plurality of second reinforcing plates 812 projecting from the vehicle 110 and positioned along the traveling direction 1 of the vehicle 110 constitutes a reinforcing plate 810.
  • Each of the 1st reinforcement board 811 and the 2nd reinforcement board 812 is comprised with the metal plate which has a rectangular external shape.
  • the first reinforcing plate 811 is joined to the ceiling of the tank by welding.
  • the second reinforcing plate 812 is joined to the side wall of the tank by welding.
  • a second reinforcing plate 812 is joined to both side walls of the tank.
  • the reinforcing plate 810 only needs to be configured by at least one of the first reinforcing plate 811 and the second reinforcing plate 812. Further, the number of reinforcing plates 810 may be at least one. Furthermore, at least one of the first reinforcing plate 811 and the second reinforcing plate 812 may be positioned so as to intersect the traveling direction 1 of the vehicle 110.
  • the reinforcing plate 810 also functions as a heat sink for the tank. By providing the reinforcing plate 810, the refrigerant in the tank can be cooled. Since at least a part of the reinforcing plate 810 protrudes from the surface of the transformer body 120 along the traveling direction 1 of the vehicle 110, contact between the traveling wind and the reinforcing plate 810 is ensured, and traveling wind is used efficiently. Can cool the refrigerant.
  • Vehicle traveling direction 10 rails, 100, 100a, 100b, 200, 200a, 300, 400, 500, 600, 700, 800 Transformer for vehicle, 110 vehicle, 120 transformer body, 130, 330 cooler, 140 , 240, 340, 440, 540, 640 piping, 141, 241, 341, 441, 541, 641 first piping, 142, 242, 342, 442, 542, 642 second piping, 150 pump, 710 conservator, 810 Reinforcing plate, 811 first reinforcing plate, 812 second reinforcing plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Transformer Cooling (AREA)

Abstract

 冷媒の循環路を形成する配管(140)と、配管(140)に接続され、鉄心、鉄心に巻き回された巻線、および、鉄心と巻線とを冷媒に浸漬した状態で収納するタンクを有する変圧器本体(120)と、配管(140)に接続され、外気との熱交換によって冷媒を冷却する少なくとも1つの冷却器(130)と、配管(140)に接続され、冷媒を強制循環させるポンプ(150)とを備える。変圧器本体(120)および冷却器(130)は、車両(110)の屋根上において車両(110)の進行方向(1)に沿って並んで配置されている。配管(140)の少なくとも一部は、変圧器本体(120)における車両(110)の進行方向(1)に沿う表面から突出している。

Description

車両用変圧器
 本発明は、車両用変圧器に関し、特に、鉄道車両の屋根上に設置される車両用変圧器に関する。
 車両の床下に設置される車両用変圧器の構成を開示した先行文献として、特開2004-363253号公報(特許文献1)がある。特許文献1に記載された車両用変圧器においては、車両床下に設置した変圧器本体の両側に4台の冷却器を分散して配置している。各冷却器をそれぞれ配管により接続し、各冷却器の放熱パイプを車両の走行に伴う走行風によって冷媒を冷却している。
 鉄道車両の屋根上に設置された電力変換装置を開示した先行文献として、特開2003-79164号公報(特許文献2)がある。特許文献2に記載された電力変換装置は、電力を変換する半導体スタックユニットを収容して鉄道車両の屋根の上に取り付けられる筐体と、この筐体の内部に画成された半導体スタックユニットの半導体素子を収容する密閉室および半導体素子を冷却する冷却器の放熱部が設けられた風洞とを備えている。風洞は、外部に面して着脱可能に取り付けられた風洞カバーを有する。
特開2004-363253号公報 特開2003-79164号公報
 特許文献1に記載された車両用変圧器においては、車両用変圧器を収納する保護カバーの側面および底面に流入口を形成し、流入口から走行風を導入し、導入した走行風を利用して各冷却器にて冷却している。
 特許文献2に記載された電力変換装置においては、風洞カバーに多数の開口穴が設けられており、風洞内と外気とがこの開口穴により連通している。電力変換装置は、この開口穴を使った自然冷却能力を有している。
 特許文献1に記載の流出入口は、車両の進行方向に沿った保護カバーの側面および底面に設けられている。特許文献2に記載の開口穴は、車両の進行方向に沿って配置された風洞カバーに設けられている。これらのように、車両の進行方向に沿った部材に設けられた孔部から走行風を取り入れて冷却する場合、走行風の利用効率が低い。
 本発明は上記の問題点に鑑みてなされたものであって、走行風を効率良く利用して冷媒を冷却できる車両用変圧器を提供することを目的とする。
 本発明に基づく車両用変圧器は、冷媒の循環路を形成する配管と、配管に接続され、鉄心、鉄心に巻き回された巻線、および、鉄心と巻線とを冷媒に浸漬した状態で収納するタンクを有する変圧器本体と、配管に接続され、外気との熱交換によって冷媒を冷却する少なくとも1つの冷却器と、配管に接続され、冷媒を強制循環させるポンプとを備える。変圧器本体および冷却器は、車両の屋根上において車両の進行方向に沿って並んで配置されている。配管の少なくとも一部は、変圧器本体における車両の進行方向に沿う表面から突出している。
 本発明によれば、配管の少なくとも一部が、変圧器本体における車両の進行方向に沿う表面から突出しているため、走行風と配管との接触を確保することにより、走行風を効率良く利用して冷媒を冷却できる。
本発明の実施形態1に係る車両用変圧器の構成を示す正面図である。 図1の車両用変圧器を矢印II方向から見た側面図である。 図2の車両用変圧器を矢印III方向から見た平面図である。 本発明の実施形態1の第1変形例に係る車両用変圧器の構成を示す正面図である。 図4の車両用変圧器を矢印V方向から見た平面図である。 本発明の実施形態1の第2変形例に係る車両用変圧器の構成を示す平面図である。 本発明の実施形態2に係る車両用変圧器の構成を示す正面図である。 図7の車両用変圧器を矢印VIII方向から見た側面図である。 図8の車両用変圧器を矢印IX方向から見た平面図である。 本発明の実施形態2の変形例に係る車両用変圧器の構成を示す正面図である。 図10の車両用変圧器を矢印XI方向から見た側面図である。 本発明の実施形態3に係る車両用変圧器の構成を示す正面図である。 図12の車両用変圧器を矢印XIII方向から見た側面図である。 図13の車両用変圧器を矢印XIV方向から見た平面図である。 本発明の実施形態4に係る車両用変圧器の構成を示す正面図である。 図15の車両用変圧器を矢印XVI方向から見た側面図である。 図16の車両用変圧器を矢印XVII方向から見た平面図である。 本発明の実施形態5に係る車両用変圧器の構成を示す正面図である。 図18の車両用変圧器を矢印XIX方向から見た側面図である。 図19の車両用変圧器を矢印XX方向から見た平面図である。 本発明の実施形態6に係る車両用変圧器の構成を示す正面図である。 図21の車両用変圧器を矢印XXII方向から見た側面図である。 図22の車両用変圧器を矢印XXIII方向から見た平面図である。 本発明の実施形態7に係る車両用変圧器にてコンサベータが伸びた状態を示す正面図である。 図24の車両用変圧器を矢印XXV方向から見た側面図である。 本発明の実施形態7に係る車両用変圧器にてコンサベータが縮んだ状態を示す正面図である。 図26の車両用変圧器を矢印XXVII方向から見た側面図である。 本発明の実施形態8に係る車両用変圧器の構成を示す正面図である。 図28の車両用変圧器を矢印XXIX方向から見た側面図である。
 以下、本発明の各実施形態に係る車両用変圧器について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る車両用変圧器の構成を示す正面図である。図2は、図1の車両用変圧器を矢印II方向から見た側面図である。図3は、図2の車両用変圧器を矢印III方向から見た平面図である。
 図1~3に示すように、本発明の実施形態1に係る車両用変圧器100は、冷媒の循環路を形成する配管140と、配管140に接続され、鉄心、鉄心に巻き回された巻線、および、鉄心と巻線とを冷媒に浸漬した状態で収納するタンクを有する変圧器本体120と、配管140に接続され、外気との熱交換によって冷媒を冷却する1つの冷却器130と、配管140に接続され、冷媒を強制循環させるポンプ150とを備える。
 変圧器本体120および冷却器130は、車両110の屋根上において車両110の進行方向1に沿って並んで配置されている。車両110の進行方向1は、車両110が走行するレール10に沿った方向である。本実施形態に係る車両用変圧器100は、冷却器130を1つのみ備えているが、車両用変圧器100が備える冷却器130の数は、1つに限られず、複数であってもよい。
 変圧器本体120のタンクは、略直方体状の外形を有している。タンクの天井および側壁の各々は、車両110の進行方向1に沿って位置している。タンクの外表面が、変圧器本体120の表面を構成している。
 本実施形態に係る車両用変圧器100においては、変圧器本体120および冷却器130の互いの対向部同士を接続する第1配管141と、変圧器本体120の天井から突出して変圧器本体120および冷却器130を接続する第2配管142とから、冷媒の循環路となる配管140が構成されている。本実施形態においては、冷媒は絶縁油である。
 第1配管141および第2配管142の各々は、平面視にて車両110の進行方向1に沿って位置している。ただし、これに限られず、第1配管141および第2配管142の少なくとも一方が、平面視にて車両110の進行方向1に交差するように位置していてもよい。
 第1配管141にポンプ150が接続されている。ポンプ150が駆動することによって、図2中の点線2で示すように、第1配管141、冷却器130、第2配管142、変圧器本体120の順に、冷媒が循環する。
 第2配管142が変圧器本体120の天井から突出していることにより、第2配管142の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第2配管142との接触を確保することにより、第2配管142の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器100は、走行風を効率良く利用して冷媒を冷却できる。
 上記のように、配管140の少なくとも一部が、変圧器本体120における車両110の進行方向1に沿う表面から突出していることにより、走行風と配管140との接触を確保し、走行風を効率良く利用して冷媒を冷却できる。
 本実施形態に係る車両用変圧器100においては、第2配管142が変圧器本体120の天井から突出していることにより、風向きに関わらず自然の風と第2配管142との接触を確保することができる。よって、第2配管142の内部を流れる冷媒を、自然の風との熱交換によっても冷却することができる。
 以下、本実施形態の第1変形例に係る車両用変圧器について説明する。図4は、本発明の実施形態1の第1変形例に係る車両用変圧器の構成を示す正面図である。図5は、図4の車両用変圧器を矢印V方向から見た平面図である。
 図4,5に示すように、本発明の実施形態1の第1変形例に係る車両用変圧器100aにおいては、2つの第1配管141と2つの第2配管142とから配管140が構成されている。2つの第1配管141の各々に、ポンプ150が接続されている。2つの第1配管141は、互いに間隔を置いて平行に並んでいる。2つの第2配管142は、互いに間隔を置いて平行に並んでいる。
 このように、複数の第2配管142を配置することにより、走行風と冷媒とが熱交換可能な表面積を増加させることができる。その結果、走行風を効率良く利用して冷媒を冷却できる。
 以下、本実施形態の第2変形例に係る車両用変圧器について説明する。図6は、本発明の実施形態1の第2変形例に係る車両用変圧器の構成を示す平面図である。図6に示すように、本発明の実施形態1の第2変形例に係る車両用変圧器100bにおいては、1つの第1配管141と2つの第2配管142とから配管140が構成されている。2つの第1配管141は、互いに間隔を置いて平行に並んでいる。
 本変形例においても、複数の第2配管142を配置することにより、走行風と冷媒とが熱交換可能な表面積を増加させることができる。その結果、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態2に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器200は、配管の構成のみ実施形態1に係る車両用変圧器100と異なるため、他の構成については説明を繰り返さない。
 (実施形態2)
 図7は、本発明の実施形態2に係る車両用変圧器の構成を示す正面図である。図8は、図7の車両用変圧器を矢印VIII方向から見た側面図である。図9は、図8の車両用変圧器を矢印IX方向から見た平面図である。
 図7~9に示すように、本発明の実施形態2に係る車両用変圧器200は、冷媒の循環路を形成する配管240を備える。本実施形態に係る車両用変圧器200においては、変圧器本体120の一方の側壁から突出して変圧器本体120および冷却器130を接続する第1配管241と、変圧器本体120の他方の側壁から突出して変圧器本体120および冷却器130を接続する第2配管242とから、冷媒の循環路となる配管240が構成されている。
 第1配管241および第2配管242の各々は、側面視にて車両110の進行方向1に沿って位置している。ただし、これに限られず、第1配管241および第2配管242の少なくとも一方が、側面視にて車両110の進行方向1に交差するように位置していてもよい。
 第1配管241にポンプ150が接続されている。ポンプ150が駆動することによって、図9中の点線3で示すように、第1配管241、冷却器130、第2配管242、変圧器本体120の順に、冷媒が循環する。
 第1配管241および第2配管242の各々が変圧器本体120の側壁から突出していることにより、第1配管241および第2配管242の各々の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第1配管241および第2配管242の各々との接触を確保することにより、第1配管241および第2配管242の各々の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器200は、走行風を効率良く利用して冷媒を冷却できる。
 上記のように、配管240の少なくとも一部が、変圧器本体120における車両110の進行方向1に沿う表面から突出していることにより、走行風と配管240との接触を確保し、走行風を効率良く利用して冷媒を冷却できる。
 以下、本実施形態の変形例に係る車両用変圧器について説明する。図10は、本発明の実施形態2の変形例に係る車両用変圧器の構成を示す正面図である。図11は、図10の車両用変圧器を矢印XI方向から見た側面図である。
 図10,11に示すように、本発明の実施形態2の変形例に係る車両用変圧器200aにおいては、2つの第1配管241と2つの第2配管242とから配管240が構成されている。2つの第1配管241の各々に、ポンプ150が接続されている。2つの第1配管241は、互いに間隔を置いて平行に並んでいる。2つの第2配管242は、互いに間隔を置いて平行に並んでいる。
 このように、複数の第1配管241および複数の第2配管242を配置することにより、走行風と冷媒とが熱交換可能な表面積を増加させることができる。その結果、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態3に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器300は、冷却器および配管の構成のみ実施形態1に係る車両用変圧器100と異なるため、他の構成については説明を繰り返さない。
 (実施形態3)
 図12は、本発明の実施形態3に係る車両用変圧器の構成を示す正面図である。図13は、図12の車両用変圧器を矢印XIII方向から見た側面図である。図14は、図13の車両用変圧器を矢印XIV方向から見た平面図である。
 図12~14に示すように、本発明の実施形態3に係る車両用変圧器300は、冷媒の循環路を形成する配管340と、配管340に接続され、外気との熱交換によって冷媒を冷却する2つの冷却器330とを備える。
 変圧器本体120および2つの冷却器330は、車両110の屋根上において車両110の進行方向1に沿って並んで配置されている。2つの冷却器330の間に、変圧器本体120が配置されている。
 本実施形態に係る車両用変圧器300においては、変圧器本体120および2つの冷却器330の互いの対向部同士をそれぞれ接続する2つの第1配管341と、変圧器本体120の天井から突出して変圧器本体120および2つの冷却器330を接続する第2配管342とから、冷媒の循環路となる配管340が構成されている。
 2つの第1配管341および第2配管342の各々は、平面視にて車両110の進行方向1に沿って位置している。ただし、これに限られず、第1配管341および第2配管342の少なくとも一方が、平面視にて車両110の進行方向1に交差するように位置していてもよい。
 第2配管342の変圧器本体120との接続部の近傍にポンプ150が接続されている。ポンプ150が駆動することによって、図13中の点線4,5で示すように、第2配管342、冷却器330、第1配管341、変圧器本体120の順に、冷媒が2つの冷却器330をそれぞれ通過するように分かれて循環する。
 第2配管342が変圧器本体120の天井から突出していることにより、第2配管342の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第2配管342との接触を確保することにより、第2配管342の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器300は、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態4に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器400は、配管の構成のみ実施形態3に係る車両用変圧器300と異なるため、他の構成については説明を繰り返さない。
 (実施形態4)
 図15は、本発明の実施形態4に係る車両用変圧器の構成を示す正面図である。図16は、図15の車両用変圧器を矢印XVI方向から見た側面図である。図17は、図16の車両用変圧器を矢印XVII方向から見た平面図である。
 図15~17に示すように、本発明の実施形態4に係る車両用変圧器400は、冷媒の循環路を形成する配管440を備える。本実施形態に係る車両用変圧器400においては、変圧器本体120の一方の側壁から突出して変圧器本体120および2つの冷却器330を接続する第1配管441と、変圧器本体120の他方の側壁から突出して変圧器本体120および2つの冷却器330を接続する第2配管442とから、冷媒の循環路となる配管440が構成されている。
 第1配管441および第2配管442の各々は、側面視にて車両110の進行方向1に沿って位置している。ただし、これに限られず、第1配管441および第2配管442の少なくとも一方が、側面視にて車両110の進行方向1に交差するように位置していてもよい。
 第1配管441の変圧器本体120との接続部の近傍にポンプ150が接続されている。ポンプ150が駆動することによって、図17中の点線6,7で示すように、第1配管441、冷却器330、第2配管442、変圧器本体120の順に、冷媒が2つの冷却器330をそれぞれ通過するように分かれて循環する。
 第1配管441および第2配管442の各々が変圧器本体120の側壁から突出していることにより、第1配管441および第2配管442の各々の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第1配管441および第2配管442の各々との接触を確保することにより、第1配管441および第2配管442の各々の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器400は、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態5に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器500は、配管の構成のみ実施形態1に係る車両用変圧器100と異なるため、他の構成については説明を繰り返さない。
 (実施形態5)
 図18は、本発明の実施形態5に係る車両用変圧器の構成を示す正面図である。図19は、図18の車両用変圧器を矢印XIX方向から見た側面図である。図20は、図19の車両用変圧器を矢印XX方向から見た平面図である。
 図18~20に示すように、本発明の実施形態5に係る車両用変圧器500は、冷媒の循環路を形成する配管540を備える。本実施形態に係る車両用変圧器500においては、変圧器本体120の一方の側壁から突出して変圧器本体120および冷却器130を接続する第1配管541と、変圧器本体120の他方の側壁から突出して変圧器本体120および冷却器130を接続する第2配管542とから、冷媒の循環路となる配管540が構成されている。
 第1配管541および第2配管542の各々は、側面視にて車両110の進行方向1に沿って間欠的に延びつつその複数の間欠部にて交互に上下方向に折れ曲がったジグザグ状に位置している。第1配管541および第2配管542の各々は、平面視にてU字状に位置している。
 第1配管541にポンプ150が接続されている。ポンプ150が駆動することによって、図20中の点線8で示すように、第1配管541、冷却器130、第2配管542、変圧器本体120の順に、冷媒が循環する。
 第1配管541および第2配管542の各々が変圧器本体120の側壁から突出していることにより、第1配管541および第2配管542の各々の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第1配管541および第2配管542の各々との接触を確保することにより、第1配管541および第2配管542の各々の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器500は、走行風を効率良く利用して冷媒を冷却できる。
 本実施形態に係る車両用変圧器500においては、第1配管541および第2配管542の各々がジグザグ状に位置していることにより、走行風と冷媒とが熱交換可能な表面積を増加させることができる。その結果、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態6に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器600は、配管の構成のみ実施形態1に係る車両用変圧器100と異なるため、他の構成については説明を繰り返さない。
 (実施形態6)
 図21は、本発明の実施形態6に係る車両用変圧器の構成を示す正面図である。図22は、図21の車両用変圧器を矢印XXII方向から見た側面図である。図23は、図22の車両用変圧器を矢印XXIII方向から見た平面図である。
 図21~23に示すように、本発明の実施形態6に係る車両用変圧器600は、冷媒の循環路を形成する配管640を備える。本実施形態に係る車両用変圧器600においては、変圧器本体120の一方の側壁から突出して変圧器本体120および冷却器130を接続する第1配管641と、変圧器本体120の他方の側壁から突出して変圧器本体120および冷却器130を接続する第2配管642とから、冷媒の循環路となる配管640が構成されている。
 第1配管641および第2配管642の各々は、側面視にて車両110の進行方向1に沿って間欠的に延びつつその複数の間欠部にて交互に上下方向に折れ曲がったジグザグ状に位置している。第1配管641および第2配管642の各々は、平面視にて車両110の進行方向1に沿って間欠的に延びつつその複数の間欠部にて交互に車両110の進行方向1に直交する方向に折れ曲がったジグザグ状に位置している。すなわち、第1配管641および第2配管642の各々は、螺旋形状を有している。
 第1配管641にポンプ150が接続されている。ポンプ150が駆動することによって、図23中の点線9で示すように、第1配管641、冷却器130、第2配管642、変圧器本体120の順に、冷媒が循環する。
 第1配管641および第2配管642の各々が変圧器本体120の側壁から突出していることにより、第1配管641および第2配管642の各々の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風と第1配管641および第2配管642の各々との接触を確保することにより、第1配管641および第2配管642の各々の内部を流れる冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器600は、走行風を効率良く利用して冷媒を冷却できる。
 本実施形態に係る車両用変圧器600においては、第1配管641および第2配管642の各々が螺旋状に位置していることにより、走行風と冷媒とが熱交換可能な表面積を増加させるとともに、第1配管641および第2配管642の各々が形成する螺旋形状内を走行風が通るように導風することができる。その結果、走行風を効率良く利用して冷媒を冷却できる。
 以下、本発明の実施形態7に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器700は、コンサベータを備える点のみ実施形態2に係る車両用変圧器200と異なるため、他の構成については説明を繰り返さない。
 (実施形態7)
 図24は、本発明の実施形態7に係る車両用変圧器にてコンサベータが伸びた状態を示す正面図である。図25は、図24の車両用変圧器を矢印XXV方向から見た側面図である。図26は、本発明の実施形態7に係る車両用変圧器にてコンサベータが縮んだ状態を示す正面図である。図27は、図26の車両用変圧器を矢印XXVII方向から見た側面図である。
 図24~27に示すように、本発明の実施形態7に係る車両用変圧器700は、内部に冷媒が充填されたコンサベータ710をさらに備える。コンサベータ710は、変圧器本体120の天井に接続されている。すなわち、コンサベータ710は、変圧器本体120の天井から突出している。具体的には、コンサベータ710は、変圧器本体120のタンクの天井に設けられた開口に接続され、コンサベータ710の内部とタンクの内部とが連通している。
 コンサベータ710は、蛇腹状の周壁を有し、伸縮可能に設けられている。コンサベータ710の蛇腹状の周壁は、露出して外気と接している。タンク内の冷媒の温度が上昇して冷媒が膨張した際には、コンサベータ710の内部に冷媒が流入し、コンサベータ710が伸びる。一方、タンク内の冷媒の温度が下降して冷媒が収縮した際には、コンサベータ710の内部から冷媒が流出し、コンサベータ710が縮む。
 コンサベータ710が変圧器本体120の天井から突出していることにより、コンサベータ710の外周面と走行風とを接触させることができる。このように、車両110が走行した際に生ずる走行風とコンサベータ710との接触を確保することにより、コンサベータ710の内部に充填された冷媒を、走行風との熱交換によって冷却することができる。その結果、本実施形態に係る車両用変圧器100は、走行風を効率良く利用して冷媒を冷却できる。
 特に、高温の冷媒がコンサベータ710に流入してコンサベータ710が伸びた状態においては、蛇腹状の周壁と走行風とが接触する表面積が、コンサベータ710が縮んだ状態に比較して大きくなるため、より効果的に高温の冷媒を冷却することができる。
 以下、本発明の実施形態8に係る車両用変圧器について説明する。なお、本実施形態に係る車両用変圧器800は、タンクの補強板を備える点のみ実施形態2に係る車両用変圧器200と異なるため、他の構成については説明を繰り返さない。
 (実施形態8)
 図28は、本発明の実施形態8に係る車両用変圧器の構成を示す正面図である。図29は、図28の車両用変圧器を矢印XXIX方向から見た側面図である。
 図28,29に示すように、本発明の実施形態8に係る車両用変圧器800は、変圧器本体120が、タンクを補強する複数の補強板810を含む。
 本実施形態に係る車両用変圧器800においては、変圧器本体120の天井から突出して車両110の進行方向1に沿って位置している複数の第1補強板811と、変圧器本体120の側壁から突出して車両110の進行方向1に沿って位置している複数の第2補強板812とから、補強板810が構成されている。
 第1補強板811および第2補強板812の各々は、矩形状の外形を有する金属板で構成されている。第1補強板811は、タンクの天井に溶接により接合されている。第2補強板812は、タンクの側壁に溶接により接合されている。タンクの両方の側壁に、第2補強板812が接合されている。
 なお、補強板810は、第1補強板811および第2補強板812の少なくとも一方で構成されていればよい。また、補強板810の数は、少なくとも1つあればよい。さらに、第1補強板811および第2補強板812の少なくとも一方が、車両110の進行方向1に交差するように位置していてもよい。
 補強板810は、タンクの放熱板としても機能する。補強板810を設けることにより、タンク内の冷媒を冷却することができる。補強板810の少なくとも一部が、変圧器本体120における車両110の進行方向1に沿う表面から突出していることにより、走行風と補強板810との接触を確保し、走行風を効率良く利用して冷媒を冷却できる。
 なお、今回開示した上記実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1 車両の進行方向、10 レール、100,100a,100b,200,200a,300,400,500,600,700,800 車両用変圧器、110 車両、120 変圧器本体、130,330 冷却器、140,240,340,440,540,640 配管、141,241,341,441,541,641 第1配管、142,242,342,442,542,642 第2配管、150 ポンプ、710 コンサベータ、810 補強板、811 第1補強板、812 第2補強板。

Claims (5)

  1.  冷媒の循環路を形成する配管と、
     前記配管に接続され、鉄心、該鉄心に巻き回された巻線、および、前記鉄心と前記巻線とを前記冷媒に浸漬した状態で収納するタンクを有する変圧器本体と、
     前記配管に接続され、外気との熱交換によって前記冷媒を冷却する少なくとも1つの冷却器と、
     前記配管に接続され、前記冷媒を強制循環させるポンプとを備え、
     前記変圧器本体および前記冷却器は、車両の屋根上において該車両の進行方向に沿って並んで配置され、
     前記配管の少なくとも一部は、前記変圧器本体における前記車両の進行方向に沿う表面から突出している、車両用変圧器。
  2.  前記配管の少なくとも一部が、前記変圧器本体の天井から突出している、請求項1に記載の車両用変圧器。
  3.  前記配管の少なくとも一部が、前記変圧器本体の側壁から突出している、請求項1に記載の車両用変圧器。
  4.  前記変圧器本体の天井に接続され、内部に前記冷媒が充填されたコンサベータをさらに備え、
     前記コンサベータは、蛇腹状の周壁が露出して外気と接している、請求項1から3のいずれか1項に記載の車両用変圧器。
  5.  前記変圧器本体が、前記タンクを補強する少なくとも1つの補強板を含み、
     前記補強板の少なくとも一部は、前記変圧器本体における前記車両の進行方向に沿う表面から突出している、請求項1から4のいずれか1項に記載の車両用変圧器。
PCT/JP2014/084471 2014-12-26 2014-12-26 車両用変圧器 WO2016103439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14909046.6A EP3239996B1 (en) 2014-12-26 2014-12-26 Transformer for vehicle
JP2015525344A JP5805354B1 (ja) 2014-12-26 2014-12-26 車両用変圧器
PCT/JP2014/084471 WO2016103439A1 (ja) 2014-12-26 2014-12-26 車両用変圧器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084471 WO2016103439A1 (ja) 2014-12-26 2014-12-26 車両用変圧器

Publications (1)

Publication Number Publication Date
WO2016103439A1 true WO2016103439A1 (ja) 2016-06-30

Family

ID=54544796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084471 WO2016103439A1 (ja) 2014-12-26 2014-12-26 車両用変圧器

Country Status (3)

Country Link
EP (1) EP3239996B1 (ja)
JP (1) JP5805354B1 (ja)
WO (1) WO2016103439A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086441A1 (en) * 2017-10-30 2019-05-09 Abb Schweiz Ag Cooling system for an electric power conversion device of a railroad vehicle
WO2020100247A1 (ja) * 2018-11-15 2020-05-22 三菱電機株式会社 車両用変圧器
JP7455771B2 (ja) 2021-02-25 2024-03-26 株式会社日立産機システム 油入変圧器のタンク、および油入変圧器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494384B2 (ja) * 2015-04-09 2019-04-03 三菱電機株式会社 車両用変圧器
WO2018047327A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 車両用変圧器
JP6180684B1 (ja) * 2016-09-13 2017-08-16 三菱電機株式会社 車両用変圧器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53156011U (ja) * 1977-05-13 1978-12-07
JPS61244662A (ja) * 1985-04-20 1986-10-30 株式会社日立製作所 車両用半導体装置
JP2006245363A (ja) * 2005-03-04 2006-09-14 Toko Electric Corp モールド形計器用変圧器の製造方法及びモールド形計器用変圧器
JP2007273777A (ja) * 2006-03-31 2007-10-18 Toshiba Corp 車両用変圧器の冷却装置
JP2009106116A (ja) * 2007-10-24 2009-05-14 Fuji Electric Systems Co Ltd 電力変換装置の日照熱冷却方法
WO2014091652A1 (ja) * 2012-12-11 2014-06-19 三菱電機株式会社 車載用冷却器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818275Y2 (ja) * 1978-03-20 1983-04-13 株式会社東芝 車両用変圧器
JP2006050742A (ja) * 2004-08-03 2006-02-16 Toshiba Corp 強制風冷式電力変換装置および電気車
WO2011068044A1 (ja) * 2009-12-04 2011-06-09 三菱電機株式会社 変圧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53156011U (ja) * 1977-05-13 1978-12-07
JPS61244662A (ja) * 1985-04-20 1986-10-30 株式会社日立製作所 車両用半導体装置
JP2006245363A (ja) * 2005-03-04 2006-09-14 Toko Electric Corp モールド形計器用変圧器の製造方法及びモールド形計器用変圧器
JP2007273777A (ja) * 2006-03-31 2007-10-18 Toshiba Corp 車両用変圧器の冷却装置
JP2009106116A (ja) * 2007-10-24 2009-05-14 Fuji Electric Systems Co Ltd 電力変換装置の日照熱冷却方法
WO2014091652A1 (ja) * 2012-12-11 2014-06-19 三菱電機株式会社 車載用冷却器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086441A1 (en) * 2017-10-30 2019-05-09 Abb Schweiz Ag Cooling system for an electric power conversion device of a railroad vehicle
CN111278709A (zh) * 2017-10-30 2020-06-12 Abb瑞士股份有限公司 用于铁路车辆的电功率转换装置的冷却系统
CN111278709B (zh) * 2017-10-30 2022-05-24 日立能源瑞士股份公司 铁路车辆及用于使铁路车辆的电功率转换装置冷却的方法
WO2020100247A1 (ja) * 2018-11-15 2020-05-22 三菱電機株式会社 車両用変圧器
JP7455771B2 (ja) 2021-02-25 2024-03-26 株式会社日立産機システム 油入変圧器のタンク、および油入変圧器

Also Published As

Publication number Publication date
EP3239996B1 (en) 2021-08-11
EP3239996A1 (en) 2017-11-01
JPWO2016103439A1 (ja) 2017-04-27
JP5805354B1 (ja) 2015-11-04
EP3239996A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5805354B1 (ja) 車両用変圧器
US9596791B2 (en) Cooling device and power converter having cooling device
JP6045340B2 (ja) Dc−dcコンバータ装置
JP5823020B2 (ja) 電力変換装置
US9894814B2 (en) Electric power convertor
JP6060266B2 (ja) 電子機器の冷却用筐体および電子機器並びに建設機械
KR20180109699A (ko) 연료 전지 유닛
JP6136760B2 (ja) 電力変換装置
WO2017006845A1 (ja) 電力変換装置
JP6493263B2 (ja) リアクトルユニット
JP6089964B2 (ja) 電力変換装置
JP2013051848A (ja) 電気自動車用の電力変換装置および電気自動車
TWI401705B (zh) 變壓器
US20140284028A1 (en) Cooler
JP2009218417A (ja) リアクトル冷却装置
JP6494384B2 (ja) 車両用変圧器
JP2015201564A (ja) 車載電子機器
JP5730448B1 (ja) 車載変圧器
JP2014230417A (ja) 電力変換装置
JP5640497B2 (ja) リアクトル装置
JP6350330B2 (ja) 電力変換器
KR100769739B1 (ko) 변압기
JP5999028B2 (ja) 電力変換装置
KR20140071029A (ko) 냉각 장치
KR20130096589A (ko) 하이브리드 자동차용 일체형 열교환기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525344

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909046

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014909046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE