WO2014091652A1 - 車載用冷却器 - Google Patents

車載用冷却器 Download PDF

Info

Publication number
WO2014091652A1
WO2014091652A1 PCT/JP2013/005849 JP2013005849W WO2014091652A1 WO 2014091652 A1 WO2014091652 A1 WO 2014091652A1 JP 2013005849 W JP2013005849 W JP 2013005849W WO 2014091652 A1 WO2014091652 A1 WO 2014091652A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling pipe
vertical
traveling
traveling direction
installation
Prior art date
Application number
PCT/JP2013/005849
Other languages
English (en)
French (fr)
Inventor
直樹 岩本
幸司 吉瀬
敏広 野田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13861907.7A priority Critical patent/EP2933166B1/en
Priority to JP2014551837A priority patent/JP5940170B2/ja
Priority to US14/649,458 priority patent/US10011154B2/en
Publication of WO2014091652A1 publication Critical patent/WO2014091652A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/005Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having bent portions or being assembled from bent tubes or being tubes having a toroidal configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium

Definitions

  • the present invention relates to an in-vehicle cooler that performs cooling by heat transfer of a traveling airflow generated by traveling of a railway vehicle and an updraft generated when the vehicle stops.
  • a transformer is installed in the lower part of the vehicle, and a cooler is installed in the horizontal direction adjacent to the transformer.
  • the in-vehicle cooler includes a cooling pipe into which a cooling medium flows and a header that fixes the cooling pipe and forms a flow path for the cooling medium therein.
  • the cooling pipe has a U-shaped or U-shaped curved shape, and both ends are fixed to the header.
  • a plurality of cooling pipes are installed on the same plane perpendicular to the traveling direction to form a cooling pipe group.
  • a plurality of cooling pipe groups are further stacked in the traveling direction.
  • the cooling pipe group and the circulation port are attached to the header by welding or the like.
  • In the header there are cooling tube mounting positions at uniform intervals in the horizontal and vertical directions.
  • the cooling medium is sent from the transformer body of the vehicle through the piping, enters the distribution port, flows from the header through the cooling pipe group, and flows into the header again. And it returns to a vehicle transformer main body again through a distribution port from a header.
  • heat exchange with the external air is performed by heat transfer between natural convection on the outer surface of the cooling pipe group and forced convection when the traveling airflow passes through the surface of the cooling pipe group.
  • the cooling medium is cooled.
  • the cooler has been installed on the side portion of the vehicle where the traveling airflow is large. When such a railway vehicle travels, a traveling air current blows in the direction opposite to the vehicle traveling direction in the vicinity of the reactor, and the winding is cooled by taking away the heat generated by the traveling air current.
  • JP 11-189153 A (2 pages 37 lines to 2 pages 40 lines)
  • the cooling tube group of a cooler attached to a conventional railway vehicle has a shape that takes into account only the airflow during travel. However, when the vehicle power supply system is operating when the vehicle is stopped, it is understood that the heat generated from the transformer located near the cooling pipe group flows as an upward air flow from the lower part to the upper part of the cooling pipe group. Yes.
  • the cooling pipe group is installed only on the vertical plane corresponding to the traveling airflow during traveling, but the ascending airflow generated when the vehicle is stopped is not taken into consideration.
  • the present invention has been made to solve the above-described problems, and can cope with both the direction of airflow during traveling and when the vehicle is stopped without expanding the installation area of the cooling pipe group.
  • the object is to increase the heat exchange amount of the cooler by arranging the cooling pipe and to enable efficient cooling.
  • the vehicle-mounted cooler of the present invention has a vertically installed cooling pipe that is fixed on both sides of the header and installed on a vertical surface orthogonal to the traveling direction, and a traveling surface that is fixed on both ends of the header and is a horizontal surface. It is characterized by comprising a traveling direction installation cooling pipe installed, and the vertical direction installation cooling pipe and the traveling direction installation cooling pipe are installed so as to overlap in a direction orthogonal to the header.
  • the surface area of the cooling pipe group can be increased without expanding the installation area of the cooling pipe group by installing the cooling pipes in the vertical direction and the traveling direction, so that the train The amount of heat exchange is increased when the vehicle is traveling and when the vehicle is stopped, and an effective cooling is achieved.
  • FIG. 1 is a projection view of the cooler showing the first embodiment of the present invention from the front side of the vehicle.
  • FIG. 2 is a front view of the cooling pipe 14 installed in the cooler showing Embodiment 1 of the present invention.
  • the airflow direction 8 during travel is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction. Since the traveling direction of a train vehicle can be bidirectional, the airflow direction 8 during traveling is bidirectional, and the same applies to other embodiments.
  • the traveling surface is a surface parallel to the ground, that is, a horizontal surface.
  • the cooler of the present invention includes a header 3, a vertically installed cooling pipe 4, and a traveling direction installed cooling pipe 6.
  • a header 3 is attached to the transformer 1 via a circulation port 2, and a plurality of cooling pipes 14 are fixed to the header 3.
  • the cooling pipe 14 is referred to as a vertical installation cooling pipe 4 when installed in the vertical direction, and is referred to as a traveling direction installation cooling pipe 6 when installed on a plane parallel to the ground.
  • the cooling pipe group 16 includes a plurality of cooling pipes 14 including a vertical installation cooling pipe 4 and a traveling direction installation cooling pipe 6.
  • the cooler of the present invention is designed by increasing / decreasing the number of columns installed in the vertical installation cooling pipes 4 according to the heat exchange amount required for the cooler.
  • FIG. 4 shows a case where the present invention is applied with reference to a cooler in which five are installed in eight rows in the running direction and three running direction installation cooling pipes 6 are installed in the running direction as described later in FIG.
  • the traveling direction installation cooling pipe 6 is a cooling pipe 14 installed on the traveling surface.
  • the traveling surface on which the traveling direction installation cooling pipe 6 is installed is orthogonal to the vertical surface on which the vertical installation cooling pipe 4 is installed.
  • the outer peripheral vertical installation cooling pipe 4a is the outermost vertical installation cooling pipe 4 on the same vertical plane
  • the inner peripheral vertical installation cooling pipe 4b is the same vertical. It is the vertical installation cooling pipe 4 which is the innermost on the surface.
  • the traveling direction installed cooling pipe 6 is installed inside the vertically installed cooling pipe 4 having the shortest overall length.
  • the vertically installed cooling pipe 4 and the traveling direction installed cooling pipe 6 are installed so as to be orthogonal to the header 3.
  • the cooling pipe 14 on the inner side has a bent portion 14a, which will be described later, closer to the header 3, and the outer cooling pipe 14 has a bent portion 14a farther from the header 3. It is.
  • a pipe (not shown) for sending a cooling medium such as oil to the upper circulation port 2 and receiving the cooling medium from the lower circulation port 2 and circulating the cooling medium in the transformer 1 is attached. Yes.
  • a pump for sending the cooling medium to the circulation port 2 is attached.
  • a partition 5 Inside the header 3 is a partition 5 that forms a flow path for the cooling medium.
  • the cooling pipe 2 is composed of a bent portion 14a and a straight portion 14b fixed to the header 3. Some of the cooling pipes 14 have a straight portion 14 c parallel to the header 3.
  • the cooling pipe 14 is made of a metal such as iron and has an outer diameter of 16 mm.
  • the cooling pipe 14 has a bent portion 14a curved in a U shape or a U shape so that both ends are fixed to the header.
  • the distance between the two straight portions 14 b of the cooling pipe 14 is required to be about five times the outer diameter of the cooling pipe 14. Since the bent portion 14a of the cooling pipe 14 has a limit, a space of at least about 80 mm is formed in the central portion of the vertically installed cooling pipe 4b on the inner peripheral side of the cooling pipe group 16.
  • the space which arises between the linear parts 14b produced by the limit of the bending part 14a of this cooling pipe 14 is called vacant space.
  • the bending limit of the bending portion 14a is formed by balance with the strength, and the bending limit of the cooling pipe 14 does not necessarily have to be bent.
  • FIG. 2B is a view showing the cooling pipe 14 installed on the inner peripheral side, and the bent portion of 14a is formed to have a bending limit curvature.
  • FIG. 2 (b) shows a center line 15 between the straight portions 14 b fixed to the header 3 for convenience.
  • the shape of the cooling pipe 14 is symmetrical with respect to the center line 15 as shown in FIGS. 2 (a) and 2 (b).
  • a space of about 80 mm is opened at the installation position (between two straight portions) of the vertically installed cooling pipe 4b on the inner peripheral side.
  • the cooling pipe 14 having an outer diameter of 16 mm, it is necessary to leave an interval of about 80 mm in order to maintain the strength.
  • At least one traveling direction installation cooling pipe 6 is installed in the empty space of the vertical installation cooling pipe 4b on the inner peripheral side.
  • the cooling medium sent from the transformer 1 through a pipe enters the circulation port 2.
  • the cooling medium flows from the upper half side circulation port 2 to the upper half side header 3, and the cooling medium in the upper half side header 3 is distributed and flows into the plurality of vertically installed cooling pipes 4 on the upper half side. . Since the partition 5 is installed between the upper half side of the header 3 and the lower half side of the header 3, the cooling medium that has entered the vertical installation cooling pipe 4 on the upper half side is always installed in the vertical direction on the lower half side. It flows to the cooling pipe 4.
  • the cooling medium in the plurality of vertically installed cooling pipes 4 on the upper half side flows into the header 3 on the lower half side via the plurality of vertically installed cooling pipes 4 on the lower half side.
  • the cooling medium flows from the header 3 on the lower half side to the flow port 2 on the lower half side and returns into the transformer 1.
  • FIG. 3 is a projection view from the vehicle side surface direction of the cooler showing the first embodiment of the present invention.
  • the vertical installation cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installation cooling pipe 6 is installed in the horizontal direction.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction
  • the airflow direction 8 at the time of traveling is the horizontal direction.
  • the airflow passes through the cooling pipe group 16 as the airflow direction 7 when the vehicle stops and the airflow direction 8 when traveling.
  • the installation cooling pipe region refers to the volume in which the cooling pipe group 16 is installed.
  • the cooling pipe 14 is installed on a traveling surface or a vertical plane, and the arrangement of the cooling pipes 14 is all symmetrical with respect to the center line 15 on the header 3. If the shape of the cooling pipe 14 is asymmetric with respect to the center line 15, the balance is deteriorated and it becomes easy to wobble due to the vibration of the vehicle. Therefore, it is desirable that the shape of the cooling pipe 14 is symmetric.
  • airflow flows in the airflow direction 8 when traveling in the direction opposite to the traveling direction.
  • ascending airflow also flows during traveling in the same manner as when the vehicle is stopped.
  • the flow velocity of the airflow in the traveling direction when a general vehicle travels is 10 m / s or more, and the flow velocity of the airflow when the vehicle is stopped is 0.25 to 0.5 m / s. Since the airflow in the traveling direction is 20 times or more faster than the airflow in the vertical direction, the ascending airflow is not considered when traveling.
  • FIG. 4 is a projection view of the cooler showing the first embodiment of the present invention from the vehicle upper surface direction.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is the horizontal direction.
  • the vertically installed cooling pipe 4 is installed on the header 3 in the vertical direction, and the traveling direction installed cooling pipe 6 is installed in the horizontal direction.
  • FIGS. 1 and 3 there are five vertically installed cooling pipes 4 on the same vertical plane.
  • the intervals between the straight portions 14b of the five vertically installed cooling pipes 4 are different.
  • These form a nested structure in which cooling pipes with a small interval are sequentially inserted at intervals inside cooling pipes with a large gap. That is, on the same vertical plane, five vertically installed cooling pipes 4 are arranged in a nested manner in the order from the longest to the shortest.
  • the five vertically installed cooling pipes 4 are installed horizontally in eight rows.
  • the space between the vertical installed cooling pipe 4 and the header 3 having the shortest overall length is the above-described empty space.
  • the traveling direction installation cooling pipe 6 is installed in this empty space.
  • the cooling pipe group 16 has three pipes inside the vertical installation cooling pipe 4 having the shortest overall length among the vertical installation cooling pipes 4 in order to increase the cooling efficiency of the cooler.
  • a running direction installation cooling pipe 6 is installed.
  • the three running direction installation cooling pipes 6 have different overall lengths, and as shown in FIGS. 1 and 3, they form a nested structure and are installed on the same running surface. Therefore, a total of three traveling direction installation cooling pipes 6 and a total of 40 vertical installation cooling pipes 4 are installed.
  • FIG. 5 is a projection view from the vehicle side surface of the cooler showing the first embodiment of the present invention, and a diagram showing an airflow flowing during traveling.
  • the position of the cooling pipe group 16 and the direction of the airflow in FIG. 5 are the same as those in FIG. 3, and the inflow air amount 10, the outflow air amount 12, and the air amount 13 reaching the downstream are illustrated.
  • the airflow with the inflow air amount 10 flows through the cooler and becomes the air amount 13 reaching the downstream, but a part of the inflow air amount 10 flows out as the outflow air amount 12 in the direction perpendicular to the traveling direction.
  • Heat exchange occurs when the low-temperature outside airflow contacts the high-temperature cooling tube group 16. The heat exchange amount increases as the surface area of the cooling tube group 16 increases.
  • the surface area of the cooling pipe group 16 is larger than that of the cooler having only the vertical installation cooling pipe 4. It is larger than a cooler having only the vertically installed cooling pipe 4.
  • the airflow flows in the horizontal direction when traveling. Since the traveling direction installation cooling pipe 6 is installed when passing through the cooling pipe group 16, it flows out in the orthogonal direction by the hot air flowing in the direction perpendicular to the traveling direction as compared with the case where there is no traveling direction installation cooling pipe 6. The outflow air amount 12 to be reduced is reduced, and the air amount 13 reaching the downstream is increased. This is because the airflow in the internal space between the vertically installed cooling pipes 4 is blocked from flowing out in the direction orthogonal to the running direction by the running direction installed cooling pipe 6.
  • the vertically installed cooling pipe 4 and the traveling direction installed cooling pipe 6 have a straight portion 14 b fixed to the header 3 or a straight portion 14 c parallel to the header 3. This is because, if the total length and the entire width of the cooling pipe 14 are the same, the surface area near the rectangular shape having a straight portion becomes larger than the shape having many curved portions, and the amount of heat exchange can be further increased.
  • the cooling pipe group 16 is formed by installing the traveling direction installation cooling pipe 6 in the empty space formed at the installation position of the vertical installation cooling pipe 4. Since it has a larger surface area than when only the vertically installed cooling pipe 4 is installed, it is possible to increase the amount of heat exchange from the cooling pipe group 16 without increasing the volume of the installed cooling pipe region. There is an effect.
  • traveling direction installation cooling pipe 6 in the same direction as the airflow direction during traveling, it is possible to suppress the outflow to the outside in the vertical direction with respect to the traveling direction airflow that has flowed into the installation cooling pipe region. It becomes possible. Therefore, there is an effect that the amount of air flowing in the front direction of the vehicle increases, and the amount of heat exchange from the cooling tube group 16 can be increased without increasing the volume of the installation cooling tube region.
  • the traveling direction installation cooling pipe 6 shown in FIG. 1 becomes further outside of the outer periphery side vertical installation cooling pipe 4a.
  • the outermost cooling pipe 14 contributes to the outflow air quantity 12 in the direction perpendicular to the traveling direction. Therefore, by setting the traveling direction installed cooling pipe 6 to be the outermost cooling pipe in the cooling pipe group 16, it is possible to further increase the amount of heat exchange during traveling.
  • FIG. 6 is a projected view of the cooler showing the second embodiment of the present invention from the front side of the vehicle.
  • the airflow direction 8 during running is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • a vertically installed cooling pipe 4a on the outer peripheral side is installed, a vertical installed cooling pipe 4b on the inner peripheral side is installed on the inner side, and the running direction installed cooling is further installed on the inner side.
  • a tube 6 is attached.
  • FIG. 7 is a projection view from the vehicle side surface direction of the cooler showing the second embodiment of the present invention.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction
  • the airflow direction 8 at the time of traveling is the horizontal direction.
  • the vertical installation cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installation cooling pipe 6 is installed in the horizontal direction.
  • FIG. 8 is a projected view of the cooler showing the second embodiment of the present invention from the vehicle upper surface direction.
  • the vertical installation cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installation cooling pipe 6 is installed in the horizontal direction.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page
  • the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipes 6 are installed in an empty space located further inside the vertical installation cooling pipes 4b on the inner peripheral side, and four are arranged in the same arrangement in the vertical direction. Further, as shown in FIGS. 6 and 7, the vertically installed cooling pipes 4a on the outer peripheral side and the four vertically installed cooling pipes 4b on the inner peripheral side are arranged on the same vertical plane, and are installed in seven rows in the traveling direction.
  • the cooler has three traveling direction installation cooling pipes 6 installed on the same traveling surface of the empty space of the vertical installation cooling pipe 4b.
  • the three traveling direction installation cooling pipes 9 on the same traveling surface are arranged in four rows in the vertical direction. Therefore, a total of 35 vertical direction installation cooling pipes 4 and a total of 12 traveling direction installation cooling pipes 6 are installed.
  • the present embodiment has the traveling direction installation cooling pipe 6, so that only the vertical direction installation cooling pipe 4 is installed. Since it has a large surface area, it has an effect that the amount of heat exchange from the cooling pipe group 16 can be increased without increasing the volume of the installation cooling pipe region.
  • the traveling direction installation cooling pipe 6 in the same direction as the airflow direction during traveling, it is possible to suppress the outflow of the airflow flowing into the installation cooling pipe region to the outside in the vertical direction with respect to the traveling direction. It becomes possible, and the air volume which distribute
  • the shape and dimensions of the cooling pipe 14 are unified into five types: three kinds of traveling direction installation cooling pipes 6, an outer peripheral side vertical installation cooling pipe 4 a, and an inner circumference vertical direction installation cooling pipe 4 b.
  • the productivity can be improved by reducing the number of types of shapes of the cooling pipes 14.
  • a plurality of traveling direction installation cooling pipes 6 having different shapes are arranged on the same traveling surface, but one traveling direction installation cooling pipe 6 is arranged, and the vertical installation cooling pipe on the outer peripheral side is arranged. 4a and one kind of traveling direction installation cooling pipe 6 may be comprised only. According to such a configuration, the number of types of the cooling pipes 14 can be further reduced, because the vertical installation cooling pipes 4a on the outer peripheral side and the one kind of traveling direction installation cooling pipe 6 are unified. Productivity can be improved.
  • FIG. 9 is a projected view of the cooler showing the third embodiment of the present invention from the front side of the vehicle.
  • the vertically installed cooling pipes 4a on the outer peripheral side are installed, and the traveling direction installed cooling pipes 6 and the vertically installed cooling pipes 4 are alternately installed inside thereof.
  • An inner peripheral vertical installation cooling pipe 4 b is installed on the innermost side of the vertical installation cooling pipe 4.
  • FIG. 10 is a projection view of the cooler showing the third embodiment of the present invention from the side of the vehicle.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction
  • the airflow direction 8 at the time of traveling is the horizontal direction.
  • the vertically installed cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installed cooling pipe 6 is installed in the horizontal direction.
  • FIG. 11 is a projection view of the cooler showing the third embodiment of the present invention from the vehicle upper surface direction.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page
  • the airflow direction 8 when traveling is the horizontal direction.
  • the vertically installed cooling pipe 4 is installed in the vertical direction on the header 3
  • the traveling direction installed cooling pipe 6 is installed in the horizontal direction. Further, in order to increase the cooling efficiency of the cooler, the vertically installed cooling pipe 4 and the traveling direction installed cooling pipe 6 are installed in a direction perpendicular to the header 3.
  • the vertically installed cooling pipes 4 are installed in a nested manner such that the total length becomes shorter as they are installed on the same vertical plane.
  • a traveling direction installation cooling pipe 6 is installed perpendicularly between the vertical installation cooling pipes 4. Therefore, as shown in FIG. 9, the vertical installation cooling pipes 4 and the running direction installation cooling pipes 6 are alternately installed as viewed from the airflow direction 8 during traveling.
  • three vertically installed cooling pipes 4 are installed in the same vertical plane, and these three vertically installed cooling pipes 4 are installed in seven rows in the horizontal direction. Further, inside the longest traveling direction installation cooling pipe 6 in the traveling direction installation cooling pipe 6 shown in FIG. 9, the traveling direction installation cooling pipe 6 having the shortest overall length and the second shortest overall length are shown in FIG. 11. Two traveling direction installation cooling pipes 6 of the traveling direction installation cooling pipe 6 are installed, and three traveling direction installation cooling pipes 6 are installed on the same traveling surface. Further, inside the traveling direction installation cooling pipe 6 having the middle length in FIG. 9, the traveling direction installation cooling pipe 6 having the shortest overall length and the traveling direction installation cooling pipe 6 having the second shortest overall length are shown in FIG.
  • Two traveling direction installation cooling pipes 6 are installed, and three traveling direction installation cooling pipes 6 are installed on the same traveling surface. Furthermore, inside the shortest traveling direction installation cooling pipe 6 of FIG. 9, two traveling direction installation cooling pipes 6 having the shortest overall length and the second shortest traveling direction installation cooling pipe 6 shown in FIG. The traveling direction installation cooling pipes 6 are installed, and three traveling direction installation cooling pipes 6 are installed on the same traveling surface. Therefore, a total of 21 vertically installed cooling pipes 4 and 15 traveling direction installed cooling pipes 6 are installed in the cooling pipe group 16 of the third embodiment.
  • the cooling direction installation cooling pipe 6 since the cooling direction installation cooling pipe 6 is provided, more cooling pipe groups than in the case where only the vertical direction installation cooling pipe 4 is installed. Since it has a surface area of 16, the amount of heat exchange can be increased.
  • the traveling direction installation cooling pipe 6 in the same direction as the traveling airflow, it is possible to suppress the outflow of the airflow flowing into the installation cooling pipe region to the outside in the vertical direction with respect to the traveling direction. It becomes possible, and the air volume which distribute
  • FIG. 12 is a projection view of the cooler showing the fourth embodiment of the present invention from the front side of the vehicle.
  • FIG. 13 is a projected view of the cooler showing the fourth embodiment of the present invention from the side surface of the vehicle.
  • FIG. 14 is a projected view of the cooler showing the fourth embodiment of the present invention from the vehicle upper surface direction.
  • the shape of the cooling pipe 14 constituting the fourth embodiment is the same as that of the first embodiment, the direction of the cooling pipe group 16 installed in the header 3 is set to 90 with respect to the traveling direction as shown in FIGS. It is different in that it is tilted.
  • the traveling direction installation cooling pipe 6 is installed on the header 3 in the horizontal direction, and the vertical installation cooling pipe 4 is installed in the vertical direction.
  • the cooler has three vertically installed cooling pipes 4 installed in an empty space in the traveling direction installed cooling pipe 6 in order to increase the cooling efficiency.
  • the airflow direction 8 during travel is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • the traveling direction installation cooling pipe 6 is installed on the header 3 in the horizontal direction, and the vertical installation cooling pipe 4 is installed in the vertical direction.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction, and the airflow direction 8 at the time of traveling is the horizontal direction.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed on the header 3 on a plane perpendicular to the airflow direction 7 at the time of stopping, and the vertical installation cooling pipe 4 is installed in the vertical direction.
  • the traveling direction installation cooling pipe 6a on the outer peripheral side is the outermost traveling direction installation cooling pipe 6 among the traveling direction installation cooling pipes 6, and the inner circumferential side traveling direction installation cooling pipe 6b is the innermost side. It is the traveling direction installation cooling pipe 6 in the.
  • the vertical installation cooling pipe 4 and the traveling direction installation cooling pipe 6 constituting the cooling pipe group 16 of Embodiment 4 will be described with reference to FIGS. 14 and 12, there are five traveling direction installation cooling pipes 6 on the same traveling surface, and these five traveling direction installation cooling pipes 6 are installed in eight rows in the vertical direction. Also, as shown in FIG. 12, three vertical installation cooling pipes 4 are arranged in the empty space of the traveling direction installation cooling pipe 6, and as shown in FIGS. 13 and 14, these three vertical installation cooling pipes are arranged. 4 are arranged on the same vertical plane.
  • the cooling pipe group 16 of the fourth embodiment is obtained by tilting the cooling pipe group 16 of the first embodiment by 90 degrees, the number of the vertical installation cooling pipes 4 and the traveling direction installation cooling pipes 6 are interchanged, so that a total of 3 There are four vertically installed cooling pipes 4 and 40 running direction installed cooling pipes 6.
  • FIG. 15 is a diagram showing an airflow flowing when the vehicle stops from the front side of the cooler according to the fourth embodiment of the present invention.
  • the airflow direction 8 during travel is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • FIG. 15 is arranged in the same direction and shape as the cooling pipe 14 of FIG.
  • the members and airflows in FIG. 15 are in the same direction as in FIG. 12, and further, the inflow air amount 10, the outflow air amount 12, and the air amount 13 reaching the downstream are illustrated.
  • an air flow with an inflow air volume of 10 flows through the cooler and becomes an air volume 13 that reaches the downstream, but a part of the inflow air volume 10 flows out as an outflow air volume 12 in a direction perpendicular to the direction in which the airflow rises. .
  • the surface area of the cooling pipe group 16 is larger than that of the cooling pipe group 16 having only the traveling direction installed cooling pipe 6, and the heat exchange amount is large. Further, by installing the vertical installation cooling pipe 4 in the same direction as the airflow direction 7 when the vehicle is stopped, it becomes possible to suppress the outflow to the outside in the vertical direction with respect to the rising airflow that has flowed into the installation cooling pipe region. . Therefore, compared with the case where there is no vertical installation cooling pipe 4, the outflow air volume 12 decreases and the air volume 13 reaching the downstream increases. In the cooling pipe group 16 including only the traveling direction installation cooling pipe 6 and the cooling pipe group 16 having the vertical installation cooling pipe 4 in addition to the traveling direction installation cooling pipe 6, the latter, in which three vertical installation cooling pipes 4 are added, About 30% heat exchange increases.
  • the surface area of the cooling pipe group 16 is increased by having the vertical installation cooling pipe 4 as compared with the case where only the traveling direction installation cooling pipe 6 is installed.
  • the heat exchange amount from the cooling pipe group 16 can be increased.
  • the cooling pipe group 16 of Embodiment 4 of this invention has the vertical installation cooling pipe 4 in the same direction as the airflow direction at the time of a stop in addition to the running direction installation cooling pipe 6, so that the installation cooling pipe It is possible to suppress the outflow to the outside in the vertical direction with respect to the rising direction of the airflow flowing into the region, and the amount of air flowing through the cooler is increased. Accordingly, it is possible to suppress the outflow in the direction perpendicular to the vertical direction with respect to the vertical airflow flowing into the installation cooling pipe region, and the amount of air flowing in the vertical direction is increased, and the volume of the installation cooling pipe region is increased. The effect is that the amount of heat exchange from the cooling tube group 16 can be increased without enlarging.
  • the vertically installed cooling pipe 4 shown in FIG. 14 may be configured to be outside the traveling direction installed cooling pipe 6a on the outer peripheral side. According to said structure, the vertical direction installation cooling pipe 4 will be located outside the running direction installation cooling pipe 6 in FIG. Since the outermost cooling pipe 14 contributes to the reduction of the outflow air volume 12, it is possible to further increase the heat exchange amount when the vehicle is stopped.
  • FIG. 16 is a projected view of the cooler showing the fifth embodiment of the present invention from the front side of the vehicle.
  • FIG. 17 is a projected view of the cooler showing the fifth embodiment of the present invention from the side of the vehicle.
  • FIG. 18 is a projection view from the vehicle upper surface side of the cooler according to the fifth embodiment of the present invention.
  • the configuration of the cooling pipe group 16 is the same as that of the second embodiment. However, as shown in FIGS. 16, 17, and 18, the cooling pipe group 16 travels in the direction of the cooling pipe group 16 installed on the header 3. The difference is that it is tilted 90 degrees with respect to the direction.
  • the outer circumferential traveling direction installation cooling pipe 6a is installed, and the inner circumferential side traveling direction installation cooling pipe 6b and the vertical installation cooling pipe 4 are attached to the inside thereof.
  • the traveling direction installation cooling pipe 6b and the vertical direction installation cooling pipe 4 on the inner peripheral side are configured to be repeated in the traveling direction.
  • the cooling pipe group 16 of the fifth embodiment has a vertical installation cooling pipe 4 installed on the inner circumference of the running direction installation cooling pipe 6 b on the inner circumference side, and is arranged in the same arrangement in the running direction. It is configured to be installed in a row.
  • the traveling direction installation cooling pipes 6a on the outer circumferential side and the four inner circumferential side traveling direction installation cooling pipes 6b are arranged on the same traveling surface, and are arranged in seven rows in the vertical direction as shown in FIG.
  • the cooling pipe group 16 has three vertically installed cooling pipes 4 installed on the same vertical plane of the empty space of the running direction installed cooling pipe 6b on the inner peripheral side in order to increase the cooling efficiency. Therefore, a total of 12 vertical installation cooling pipes 4 and a total of 35 traveling direction installation cooling pipes 6 are installed in the cooling pipe group 16 of the fifth embodiment.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • the traveling direction installation cooling pipe 6 is installed on the traveling surface on the header 3, and the vertical direction installation cooling pipe 4 is installed on the vertical plane.
  • the cooler has twelve vertically installed cooling pipes 4 installed in an empty space in the traveling direction installed cooling pipe 6 in order to increase the cooling efficiency.
  • the airflow direction 7 when the vehicle is stopped is from the lower part to the upper part, that is, the vertical direction, and the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed horizontally on the header 3, and the vertical installation cooling pipe 4 is installed vertically.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page
  • the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed on the traveling surface on the header 3, and the vertical direction installation cooling pipe 4 is installed vertically.
  • the cooling pipe group 16 has a larger surface area than when only the traveling direction installation cooling pipe 6 is installed. The amount of heat exchange from the cooling tube group 16 can be increased.
  • the shape and dimensions of the cooling pipe 14 are the same as the three types of vertical installation cooling pipes 4 installed on the same vertical plane, the outer travel direction installation cooling pipe 6a, and the inner circumference travel direction installation cooling pipe 6b.
  • the number of types of cooling pipes 14 is reduced, so that productivity can be improved.
  • the cooling tube group 16 can be configured with two types of cooling tubes 14. Since the types of the cooling pipes 14 are unified into two types, the number of types of shapes of the cooling pipes 14 can be further reduced, and productivity can be improved.
  • the fifth embodiment of the present invention has the vertical installation cooling pipe 4 in the same direction as the airflow direction when the vehicle is stopped, so that it is outward in the vertical direction with respect to the direction of the airflow flowing into the installation cooling pipe region.
  • the amount of air flowing through the cooler is increased, and the amount of heat exchange when the vehicle is stopped can be increased.
  • FIG. 19 is a projected view of the cooler showing the sixth embodiment of the present invention from the front side of the vehicle.
  • FIG. 20 is a projected view of the cooler showing the sixth embodiment of the present invention from the side of the vehicle.
  • FIG. 21 is a projection view of the cooler showing the sixth embodiment of the present invention from the vehicle upper surface direction.
  • the configuration of the cooling pipe group 16 is the same as that of the third embodiment. However, as shown in FIGS. 19 to 21, the direction of the cooling pipe group 16 installed in the header 3 is set with respect to the traveling direction. The difference is that it is tilted 90 degrees.
  • the traveling direction installation cooling pipe 6 is installed on the traveling surface on the header 3, and the vertical installation cooling pipe 4 is installed on the vertical plane.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the lower part to the upper part, that is, the vertical direction.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction, and the airflow direction 8 at the time of traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed horizontally on the header 3, and the vertical installation cooling pipe 4 is installed on the vertical plane.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is the horizontal direction.
  • the outer-circulation direction installation cooling pipes 6a are installed, and the vertical installation cooling pipes 4 and the running direction installation cooling pipes 6 are alternately installed inside thereof. ing.
  • FIG. 19 the configuration of the vertically installed cooling pipe 4 and the traveling direction installed cooling pipe 6 constituting the cooling pipe group 16 of Embodiment 6 will be shown based on FIGS. 19 to 21.
  • FIG. 21 In the traveling direction installation cooling pipes 6 installed on the same traveling surface, the traveling direction cooling pipes are installed in a nested manner such that the total length becomes shorter as the inner side is installed. Further, the vertical installation cooling pipes 4 are installed orthogonally between the traveling direction installation cooling pipes 6 which are nested. Therefore, as shown in FIG. 21, the traveling direction installation cooling pipes 6 and the vertical direction installation cooling pipes 4 are alternately installed as viewed from the airflow direction 7 when the vehicle is stopped.
  • the three traveling direction installation cooling pipes 6 shown in FIG. 21 are installed on the same traveling surface, and the three traveling direction installation cooling pipes 6 are installed in seven rows in the vertical direction. Is done. Further, inside the longest vertical installation cooling pipe 4 shown in FIG. 21, two vertical installation cooling pipes 4 having the shortest overall length and the vertical installation cooling pipe 4 having the second shortest overall length shown in FIG. The two vertically installed cooling pipes 4 are installed, and the three vertically installed cooling pipes 4 are installed on the same vertical plane. Further, inside the vertically installed cooling pipe 4 having the middle length in FIG. 21, the vertically installed cooling pipe 4 having the shortest overall length and the vertically installed cooling pipe 4 having the second shortest overall length are shown in FIG.
  • Two vertical installation cooling pipes 4 of the two vertical installation cooling pipes 4 are installed, and three vertical installation cooling pipes 4 are installed on the same vertical plane. Furthermore, two shortest vertical installation cooling pipes 4 shown in FIG. 19, that is, the shortest vertical installation cooling pipe 4 and the second shortest vertical installation cooling pipe 4, shown in FIG. Two vertically installed cooling pipes 4 of the vertically installed cooling pipe 4 are installed, and three vertically installed cooling pipes 4 are installed on the same vertical plane. Therefore, a total of 21 traveling direction installation cooling pipes 6 and 15 vertical installation cooling pipes 4 are installed in the cooling pipe group 16 of the sixth embodiment.
  • the number of installed cooling pipes is larger than that of the cooling pipe group 16 in which only the traveling direction installed cooling pipe 6 is installed by having the vertical installed cooling pipe 4.
  • the amount of heat exchange from the cooling tube group 16 can be increased.
  • the cooling pipe group 16 of the sixth embodiment of the present invention has the same shape as the cooling pipe group 16 as compared with the cooling pipe group 16 of the third embodiment, but the direction of the cooling pipe group 16 installed in the header 3 is the same. Tilt 90 degrees.
  • FIG. FIG. 22 is a projected view of the cooler showing the seventh embodiment of the present invention from the front side of the vehicle.
  • FIG. 23 is a projected view of the cooler showing the seventh embodiment of the present invention from the side surface of the vehicle.
  • FIG. 24 is a projection view of the cooler showing the seventh embodiment of the present invention from the vehicle upper surface direction.
  • the cooling pipe group 16 constituting the seventh embodiment is the same as that of the second embodiment. However, as shown in FIGS. 22 to 24, there is a point that there is no vertical installation cooling pipe 4a on the outermost side of the cooling pipe group 16. Different.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • a vertically installed cooling pipe 104b is installed, and a traveling direction installed cooling pipe 6 is installed inside thereof.
  • FIG. 23 is a projected view of the cooler showing the seventh embodiment of the present invention from the side of the vehicle.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction
  • the airflow direction 8 at the time of traveling is the horizontal direction.
  • the vertically installed cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installed cooling pipe 6 is installed on the header 3 in the horizontal direction.
  • FIG. 24 is a projection view of the cooler showing the seventh embodiment of the present invention from the vehicle upper surface direction.
  • the vertical installation cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installation cooling pipe 6 is installed in the horizontal direction.
  • the airflow direction 7 when the vehicle stops is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is horizontal.
  • the traveling direction installation cooling pipes 6 are installed in an empty space located further inside the vertical direction installation cooling pipe 104b, and are arranged in the same arrangement in the vertical direction. Furthermore, as shown in FIGS. 22 and 23, the four vertically installed cooling pipes 104b are arranged on the same vertical plane, and are arranged in seven rows in the traveling direction. Further, in order to increase the cooling efficiency of the cooler, the three traveling direction installation cooling pipes 6 are installed on the same traveling surface of the empty space of the vertical installation cooling pipe 104b. The three traveling direction installation cooling pipes 6 on the same traveling surface are arranged in four rows in the vertical direction. Therefore, a total of 28 vertically installed cooling pipes 4 and a total of 12 running direction installed cooling pipes 6 are installed.
  • the cooler has a traveling direction installation cooling pipe 6, so that it is more than the case where only the vertical installation cooling pipe 4 is installed. Therefore, the heat exchange amount from the cooling tube group 16 can be increased without increasing the volume of the installation cooling tube region.
  • the shape and dimensions of the cooling pipe 14 are unified into four types, that is, three kinds of traveling direction installation cooling pipes 6 and an outer peripheral side vertical installation cooling pipe 104b, the number of types of the cooling pipes 14 can be reduced. Productivity can be improved.
  • a plurality of traveling direction installation cooling pipes 6 having different shapes are not arranged on the same traveling surface, but an outer peripheral vertical installation cooling pipe 104b and one kind of traveling direction installation cooling pipe 6 are arranged. It may be composed of only two types. According to such a configuration, the number of types of shapes of the cooling pipes 14 can be further reduced, because the vertical installation cooling pipes 104b on the outer peripheral side and the one kind of traveling direction installation cooling pipe 6 are unified. Productivity can be improved.
  • FIG. 25 is a projection view of the cooler showing the eighth embodiment of the present invention from the front side of the vehicle.
  • FIG. 26 is a projection view of the cooler showing the eighth embodiment of the present invention from the vehicle side surface direction.
  • FIG. 27 is a projection view of the cooler showing the eighth embodiment of the present invention from the vehicle upper surface direction.
  • the configuration of the cooling pipe group 16 in the eighth embodiment is the same as that of the second embodiment. However, as shown in FIGS. 25 to 27, a plurality of running direction installation cooling pipes are arranged in the vertical direction inside the vertical installation cooling pipe. The difference is that the stage is installed.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • a vertical installation cooling pipe 4a on the outer peripheral side is installed, a vertical installation cooling pipe 4b on the inner peripheral side is installed on the inner side, and a traveling direction installation cooling is further installed on the inner side.
  • a tube 6 is attached.
  • FIG. 26 is a projected view of the cooler showing the eighth embodiment of the present invention from the side surface of the vehicle.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction
  • the airflow direction 8 at the time of traveling is the horizontal direction.
  • the vertically installed cooling pipe 4 is installed in the vertical direction 6 on the header 3, and the traveling direction installed cooling pipe 6 is installed in the horizontal direction.
  • FIG. 27 is a projection view of the cooler showing the eighth embodiment of the present invention from the vehicle upper surface direction.
  • the vertical installation cooling pipe 4 is installed on the header 3 in the vertical direction
  • the traveling direction installation cooling pipe 6 is installed in the horizontal direction.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page
  • the airflow direction 8 when traveling is the horizontal direction.
  • a traveling direction installation cooling pipe 6 is installed in an empty space located further inside the vertical installation cooling pipe 4b on the inner peripheral side, and two are installed in the same arrangement in the vertical direction. Further, as shown in FIGS. 25 and 26, the vertically installed cooling pipes 4a on the outer peripheral side and the two vertically installed cooling pipes 4b on the inner peripheral side are arranged on the same vertical plane, and are installed in seven rows in the traveling direction. The Further, in order to increase the cooling efficiency, the cooler has three traveling direction installation cooling pipes 6 installed on the same traveling surface of the empty space of the vertical installation cooling pipe 4b. The three traveling direction installation cooling pipes 9 on the same traveling surface are arranged in four rows in the vertical direction. Accordingly, a total of 21 vertically installed cooling pipes 4 and a total of 24 running direction installed cooling pipes 6 are installed.
  • the present embodiment has the traveling direction installation cooling pipe 6, so that only the vertical direction installation cooling pipe 4 is installed. Since it has a large surface area, it has an effect that the amount of heat exchange from the cooling pipe group 16 can be increased without increasing the volume of the installation cooling pipe region.
  • the cooler 4 has the traveling direction installation cooling pipe 6 in the same direction as the airflow direction during traveling, so that the airflow flowing into the installation cooling pipe region flows out to the outside in the vertical direction. It becomes possible to reduce the amount of air, and the amount of air flowing in the front direction of the vehicle increases. Therefore, there is an effect that the amount of air flowing in the front direction of the vehicle increases, and the amount of heat exchange from the cooling tube group 16 can be increased without increasing the volume of the installation cooling tube region.
  • the shape and dimensions of the cooling pipe 14 are unified into five types: three kinds of traveling direction installation cooling pipes 6, an outer peripheral side vertical installation cooling pipe 4 a, and an inner circumference vertical direction installation cooling pipe 4 b.
  • the productivity can be improved by reducing the number of types of shapes of the cooling pipes 14.
  • the vertically installed pipe since the vertically installed pipe has a straight line portion in the vertical direction, it is possible to determine the vertical interval of the traveling direction installed cooling pipe without depending on the bending limit of the pipe.
  • the vertical distance between the vertical installation pipe and the traveling direction installation cooling pipe is 40 mm, which is about 10 mm wider than the other cooling pipe interval.
  • the interval between the eight cooling pipes can be reduced by 10 mm compared to the second embodiment, and the vertical range of the cooling pipe group can be reduced by 80 mm.
  • FIG. 28 is a projection view of the cooler showing the ninth embodiment of the present invention from the front side of the vehicle.
  • FIG. 29 is a projection view of the cooler showing the ninth embodiment of the present invention from the side surface of the vehicle.
  • FIG. 30 is a projection view of the cooler showing the ninth embodiment of the present invention from the vehicle upper surface direction.
  • the cooling pipe group 16 that is configured in the fifth embodiment is the same as that of the fifth embodiment, except that it does not have the outermost traveling direction installation cooling pipe as shown in FIGS. 28, 29, and 30.
  • the outer circumferential traveling direction installation cooling pipe 6a is installed, the vertical installation cooling pipe 4 is attached inside, and the inner circumferential side traveling direction installation cooling pipe is installed. 6a and the vertically installed cooling pipe 4 are configured to be repeated in the traveling direction.
  • the vertical installation cooling pipes 4 are installed on the inner periphery of the traveling direction installation cooling pipe 6b, and are installed in four rows in the same arrangement in the traveling direction. It is configured. Further, four inner-circumferential traveling direction installation cooling pipes 106b are arranged on the same traveling surface, and are arranged in seven rows in the vertical direction as shown in FIG.
  • the cooling pipe group 16 has three vertical installation cooling pipes 4 installed on the same vertical plane of the empty space of the traveling direction installation cooling pipe 106b in order to increase the cooling efficiency. Therefore, a total of 12 vertically installed cooling pipes 4 and a total of 28 running direction installed cooling pipes 6 are installed in the cooling pipe group 16 of the fifth embodiment.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • the traveling direction installation cooling pipe 6 is installed on the traveling surface on the header 3, and the vertical direction installation cooling pipe 4 is installed on the vertical plane.
  • the cooler has twelve vertically installed cooling pipes 4 installed in an empty space in the traveling direction installed cooling pipe 6 in order to increase the cooling efficiency.
  • the airflow direction 7 when the vehicle is stopped is from the bottom to the top, that is, the vertical direction, and the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed horizontally on the header 3, and the vertical direction installation cooling pipe 4 is installed vertically.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 106b is installed on the traveling surface on the header 3, and the vertical direction installation cooling pipe 4 is installed on the vertical plane.
  • the cooling pipe group 16 has a larger surface area than the case where only the traveling direction installation cooling pipe 6 is installed by having the vertical installation cooling pipe 4. The amount of heat exchange from the cooling tube group 16 can be increased.
  • the shape and dimensions of the cooling pipe 14 are unified into four types, that is, three types of vertical installation cooling pipes 4 installed on the same vertical plane and a traveling direction installation cooling pipe 106b on the outer peripheral side.
  • Productivity can be improved by reducing the number of types of shapes.
  • the cooling tube group 16 can be configured with two types of cooling tubes 14. Since the types of the cooling pipes 14 are unified into two types, the number of types of shapes of the cooling pipes 14 can be further reduced, and productivity can be improved.
  • FIG. 31 is a projected view of the cooler showing the tenth embodiment of the present invention from the front side of the vehicle.
  • FIG. 32 is a projection view of the cooler showing the tenth embodiment of the present invention from the side surface of the vehicle.
  • FIG. 33 is a projection view of the cooler showing the tenth embodiment of the present invention from the vehicle upper surface direction.
  • the configuration of the cooling pipe group 16 is the same as that of the fifth embodiment.
  • the vertical installation cooling pipe 4 is disposed inside the traveling direction installation cooling pipe 6. The difference is that there are multiple installations in the direction of travel.
  • the outer circumferential traveling direction installation cooling pipe 6a is installed, and the inner circumferential side traveling direction installation cooling pipe 6b and the vertical installation cooling pipe 4 are attached to the inside thereof.
  • the traveling direction installation cooling pipe 6b and the vertical direction installation cooling pipe 4 on the inner peripheral side are configured to be repeated in the traveling direction.
  • the cooling pipe group 16 according to the tenth embodiment includes a vertical installation cooling pipe 4 installed on the inner circumference of the inner running side running direction installation cooling pipe 6b, and the same arrangement in the running direction. It is configured to be installed in a row. Further, the traveling direction installation cooling pipes 6a on the outer circumferential side and the four inner circumferential side traveling direction installation cooling pipes 6b are arranged on the same traveling surface, and are arranged in seven rows in the vertical direction as shown in FIG.
  • the cooling pipe group 16 has three vertically installed cooling pipes 4 installed on the same vertical plane of the empty space of the running direction installed cooling pipe 6b on the inner peripheral side in order to increase the cooling efficiency. Therefore, a total of 24 vertically installed cooling pipes 4 and a total of 21 running direction installed cooling pipes 6 are installed in the cooling pipe group 16 of the fifth embodiment.
  • the airflow direction 8 during traveling is from the front of the paper to the back of the paper or vice versa, and the airflow direction 7 when stopped is from the bottom to the top, that is, the vertical direction.
  • the running direction installation cooling pipe 6 is installed on the running surface on the header 3, and the vertical installation cooling pipe 4 is installed on the vertical plane.
  • the cooler has twelve vertically installed cooling pipes 4 installed in an empty space in the traveling direction installed cooling pipe 6 in order to increase the cooling efficiency.
  • the airflow direction 7 at the time of stopping is from the lower part to the upper part, that is, the vertical direction, and the airflow direction 8 at the time of traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed horizontally on the header 3, and the vertical direction installation cooling pipe 4 is installed vertically.
  • the airflow direction 7 when the vehicle is stopped is the direction from the back of the page to the front of the page, and the airflow direction 8 when traveling is the horizontal direction.
  • the traveling direction installation cooling pipe 6 is installed on the traveling surface on the header 3, and the vertical direction installation cooling pipe 4 is installed vertically.
  • the cooling pipe group 16 has a larger surface area than when only the traveling direction installation cooling pipe 6 is installed. The amount of heat exchange from the cooling tube group 16 can be increased.
  • the shape and dimensions of the cooling pipe 14 are the same as the three types of vertical installation cooling pipes 4 installed on the same vertical plane, the outer travel direction installation cooling pipe 6a, and the inner circumference travel direction installation cooling pipe 6b.
  • the number of types of cooling pipes 14 is reduced, so that productivity can be improved.
  • the cooling tube group 16 can be configured with two types of cooling tubes 14. Since the types of the cooling pipes 14 are unified into two types, the number of types of shapes of the cooling pipes 14 can be further reduced, and productivity can be improved.
  • the fifth embodiment of the present invention has the vertical installation cooling pipe 4 in the same direction as the airflow direction when the vehicle is stopped, so that it is outward in the vertical direction with respect to the direction of the airflow flowing into the installation cooling pipe region.
  • the amount of air flowing through the cooler is increased, and the amount of heat exchange when the vehicle is stopped can be increased.
  • the travel direction interval of the vertical installation cooling pipe can be determined without depending on the bending limit of the pipe.
  • the travel direction distance between the travel direction installation pipe and the vertical installation cooling pipe is 40 mm, which is about 10 mm wider than the other cooling pipe intervals.

Abstract

 本発明の車載用冷却器は、車両の底部裏側に取り付けられ、走行方向に対して変圧器の側面に隣接し、走行方向に沿うとともに鉛直な面を有するヘッダ(3)と、ヘッダ(3)に両端を固定され、走行方向と直交する鉛直面上に設置される鉛直方向設置冷却管(4)と、ヘッダ(3)に両端を固定され、水平な面である走行面に設置される走行方向設置冷却管(6)とを備え、鉛直方向設置冷却管(4)と走行方向設置冷却管(6)とがヘッダ(3)に直交する向きに重なり設置されることを特徴とする。

Description

車載用冷却器
 この発明は鉄道の車両の走行によって生じる走行気流と車両の停車時に生じる上昇気流の熱伝達により冷却を行う車載用冷却器に関するものである。
 従来の車載用冷却器は、走行気流を利用し車両に搭載された変圧器やリアクトル等の電気機器の冷却を行う。車両の下部には変圧器が設置され、冷却器はその変圧器に隣接した水平方向に取り付けられる。
 車載用冷却器は、冷却媒体が流入する冷却管、冷却管を固定するとともに内部に冷却媒体の流路を形成するヘッダとで構成される。冷却管はU字型もしくはコの字型の湾曲形状であり、両端がヘッダに固定される。冷却管は走行方向に対して直交する面の同一平面上に複数本設置され冷却管群を形成する。冷却管群を走行方向にさらに複数群重ねて構成されている。冷却管群と流通口はヘッダに溶接等により取り付けられている。ヘッダには横方向と縦方向それぞれに均一な間隔で冷却管の取り付け位置が存在する。
 冷却媒体は車両用変圧器本体から配管を介して送られ流通口に入り、ヘッダから冷却管群内を通り再びヘッダへ流入する。そしてヘッダから流通口を介して再び車両変圧器本体へ戻る。冷却媒体が冷却管群を流通する際に、冷却管群の外表面において自然対流と、走行気流が冷却管群の表面を通過する際の強制対流との熱伝達により外部空気と熱交換が行われるので冷却媒体は冷却される。ここで、強制対流熱伝達による冷却効果を促進するために、冷却器は走行風量の大きい車両側部に設置されていた。このような鉄道の車両が走行すると、リアクトル近傍には車両進行方向とは反対方向に走行気流が吹き、その走行気流が発生する熱を奪って巻線を冷却する。
特開平11-189153号公報(2頁37行~2頁40行)
 従来の鉄道の車両に取り付けられる冷却器の冷却管群は走行時の気流のみについて考慮した形状となっている。しかし、車両の停車時に車両の電源系統が作動している場合は、冷却管群の近傍に位置する変圧器から生じる熱が冷却管群の下部から上部へ上昇気流となって流れることがわかっている。
 したがって、従来の走行気流を利用した冷却器には、走行時の走行気流に対応した鉛直面上にのみ冷却管群が設置されているが、停車時に発生する上昇気流については考慮されていない。
 また、冷却器の熱交換量を増加する場合、冷却管群の表面積を増加する必要があるが、冷却管の本数を増加するためには冷却管群の設置領域の拡大が必要になるという問題点があった。
 この発明は、上記のような問題点を解決するためになされたものであり、冷却管群の設置領域を拡大することなく、走行時と停車時との両方の気流の向きに対応するように冷却管を配置することによって、冷却器の熱交換量を増加させ、効率的な冷却を可能とすることを目的としている。
 本発明の車載用冷却器は、ヘッダに両端を固定され、走行方向と直交する鉛直面上に設置される鉛直方向設置冷却管と、ヘッダに両端を固定され、水平な面である走行面に設置される走行方向設置冷却管とを備え、鉛直方向設置冷却管と走行方向設置冷却管とがヘッダに直交する向きに重なり設置されることを特徴とする。
 本発明の車載用冷却器によれば、冷却管を鉛直方向と走行方向とに組み合わせて設置することにより、冷却管群の設置領域を拡大することなく、冷却管群の表面積を拡大できるので列車の走行時および停車時において熱交換量が増加し、効率的な冷却が可能となるという効果を奏する。 
本発明の実施の形態1を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態1を示す冷却器の冷却管の正面方向からの図である。 本発明の実施の形態1を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態1を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態1を示す冷却器の車両側面方向からの投影図と停車時に流れる気流を示す図である。 本発明の実施の形態2を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態2を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態2を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態3を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態3を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態3を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態4を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態4を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態4を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態4を示す冷却器の車両前面方向からの投影図と停車時に流れる気流を示す図である。 本発明の実施の形態5を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態5を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態5を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態6を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態6を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態6を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態7を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態7を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態7を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態8を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態8を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態8を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態9を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態9を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態9を示す冷却器の車両上面方向からの投影図である。 本発明の実施の形態10を示す冷却器の車両前面方向からの投影図である。 本発明の実施の形態10を示す冷却器の車両側面方向からの投影図である。 本発明の実施の形態10を示す冷却器の車両上面方向からの投影図である。
実施の形態1.
 図1は本発明の実施の形態1を示す冷却器の車両前面方向からの投影図である。図2は本発明の実施の形態1を示す冷却器に設置される冷却管14の正面方向からの図である。図1においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。電車の車両は進行方向が双方向となり得るため、走行時の気流方向8は双方向となり、他の実施の形態でも同様である。本明細書中において、走行面とは地面と平行な面すなわち水平な面である。
 本発明の冷却器はヘッダ3、鉛直方向設置冷却管4、走行方向設置冷却管6から構成される。変圧器1には流通口2を介してヘッダ3が取り付けられており、ヘッダ3に複数の冷却管14が固定される。本発明の実施の形態1から6において冷却管14は、鉛直方向に設置した場合に鉛直方向設置冷却管4と称し、地面と平行な面に設置した場合に走行方向設置冷却管6と称する。冷却管群16は鉛直方向設置冷却管4と走行方向設置冷却管6を含む複数の冷却管14からなる。
 本発明の冷却器は、冷却器に要求される熱交換量に応じて、鉛直方向設置冷却管4の設置する列数を増減させて設計するが、実施の形態1では、一例として鉛直方向に5本を走行方向に8列設置され、図4において後述するとおり走行方向に3本の走行方向設置冷却管6を設置された冷却器を基準として本発明を適用した場合を記載している。
 また、走行方向設置冷却管6は走行面上に設置される冷却管14である。走行方向設置冷却管6が設置される走行面と、鉛直方向設置冷却管4が設置される鉛直面とは直交している。鉛直方向設置冷却管4のうち、外周側の鉛直方向設置冷却管4aは同一鉛直面上で最も外側にある鉛直方向設置冷却管4であり、内周側の鉛直方向設置冷却管4bは同一鉛直面上で最も内側にある鉛直方向設置冷却管4である。
 同一の鉛直面上に存在する鉛直方向設置冷却管4のうち、最も全長が短い鉛直方向設置冷却管4よりも内側に走行方向設置冷却管6を設置する。鉛直方向設置冷却管4と前記走行方向設置冷却管6とが、ヘッダ3に対して直交して重なり設置される。なお、本明細書中において、内側にある冷却管14とは、後述する曲げ部分14aがヘッダ3により近いものであり、外側にある冷却管14とは、曲げ部分14aがヘッダ3からより遠いものである。
 変圧器1内には、上側の流通口2に油などの冷却媒体を送るとともに、下側の流通口2から冷却媒体を受け変圧器1内に冷却媒体を循環させる図示しない配管が取り付けられている。また、変圧器1内には図示していないが、冷却媒体を流通口2に送出するポンプが取り付けられる。ヘッダ3の内部には冷却媒体の流路を形成する仕切り5が存在している。
 図2の冷却管14は、曲げ部分14a、ヘッダ3に固定される直線部分14bから構成される。また、冷却管14にはヘッダ3と平行な直線部分14cを有するものもある。冷却管14は鉄などの金属からなり外径は16mmなどである。冷却管14は両端がヘッダに固定されるようにU字もしくはコの字に湾曲した曲げ部分14aを有する。冷却管14の強度を保つため、冷却管14の2つの直線部分14b間の距離は、冷却管14の外径の5倍程度は必要とされる。冷却管14の曲げ部分14aには限界があるため、冷却管群16の内周側の鉛直方向設置冷却管4bの中央部に少なくとも80mm程度の空間ができる。そして、この冷却管14の曲げ部分14aの限界により生じる直線部分14b間に生じる空間を空き空間と呼ぶ。なお、曲げ部分14aの曲げ限界は強度とのバランスにより形成され、冷却管14の曲げ曲率の限度まで必ずしも曲げなくてもよい。
 図2(a)の冷却管14において、2箇所の直線部分14bの間隔はヘッダ3と平行に配置される直線部分14cがあるために広く、同一面上で入れ子状に内側に一本以上の冷却管14が設置可能である。図2(b)は内周側に設置される冷却管14を示す図であり、14aの曲げ部は曲げ限界の曲率を有して形成されている。図2(b)の冷却管14において、ヘッダ3に固定される2箇所の直線部分14bの間の間隔は狭く、同一面上で入れ子状に内側に冷却管14を設置できないが、直交する冷却管14を設置可能な空き空間が存在する。図2にはヘッダ3に固定される直線部分14bの間に便宜上中心線15を示している。冷却管14の形状は中心線15に対して図2(a)と図2(b)に示すように対称となっている。
 内周側の鉛直方向設置冷却管4bの設置位置(2つの直線部分間)には約80mm程度の空間があけられている。上記の外径16mm寸法の冷却管14の場合、強度を保つために80mm程度の間隔を空ける必要がある。この内周側の鉛直方向設置冷却管4bの空き空間に少なくとも一本の走行方向設置冷却管6を設置する。
 続いて、図1を用いて鉛直方向設置冷却管4を流れる冷却媒体の流路を示す。変圧器1から図示しない配管を介して送られてきた冷却媒体は流通口2に入る。冷却媒体は上半分側の流通口2から上半分側のヘッダ3へ流れ、上半分側のヘッダ3にある冷却媒体は、上半分側の複数の鉛直方向設置冷却管4に分布して流入する。ヘッダ3の上半分側とヘッダ3の下半分側との間に仕切り5が設置されているため、上半分側の鉛直方向設置冷却管4に入った冷却媒体は必ず下半分側の鉛直方向設置冷却管4へ流れる。上半分側の複数の鉛直方向設置冷却管4内の冷却媒体は下半分側の複数の鉛直方向設置冷却管4を介して下半分側のヘッダ3へ流入する。冷却媒体は下半分側のヘッダ3から下半分側の流通口2へ流れ、変圧器1内へ戻る。
 図3は本発明の実施の形態1を示す冷却器の車両側面方向からの投影図である。図3に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。また、停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。この図において、気流は冷却管群16内で、停車時の気流方向7や走行時の気流方向8のように通過する。以下の各実施の形態において、設置冷却管領域とは冷却管群16が設置される容積を指す。
 冷却管14は走行面もしくは鉛直面に設置され、冷却管14の配置はヘッダ3上で中心線15に対してすべて対称となっている。冷却管14の形状が中心線15に対して非対称であるとバランスが悪くなり、車両の振動の影響を受けぐらつきやすくなるため、冷却管14の形状は対称とすることが望ましい。
 続いて、図1と図3を用いて気流の流れる方向について示す。停車時には水平方向の外気の気流ではなく変圧器1から生じる上昇気流が大きく影響する。この上昇気流は温風であるために軽く、下部から上部へ上昇する。したがって停車時には変圧器1で発生した上昇気流は鉛直方向設置冷却管4の下側から上側へ7の方向に上昇する。
 車両の走行時には走行方向と逆の方向に走行時の気流方向8に気流が流れる。また、走行時にも上昇気流は停車時と同様に流れている。一般的な車両の走行時における走行方向の気流の流速は10m/s以上、停車時の気流の流速は0.25~0.5m/sである。走行方向の気流のほうが20倍以上も鉛直方向の気流よりも風速が大きいので、走行時には上昇気流は考慮しない。
 図4は本発明の実施の形態1を示す冷却器の車両上面方向からの投影図である。図4においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図4に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。
 続いて、実施の形態1の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6とを図1、3、4を用いて説明する。図1、図3に示すように、鉛直方向設置冷却管4は同一鉛直面上に5本ある。この5本の鉛直方向設置冷却管4の直線部分14b間の間隔はそれぞれ異なっている。これらは間隔が大きい冷却管の内側に間隔の小さい冷却管が間隔をあけて順に入った入れ子状の構造を形成している。すなわち、同一鉛直面上において、全長の長いものから短いものの順に内側に向かって5本の鉛直方向設置冷却管4が入れ子状に配置される。この5本の鉛直方向設置冷却管4は8列水平方向に設置される。同一の鉛直面上に存在する鉛直方向設置冷却管4のうち、最も全長が短い鉛直方向設置冷却管4とヘッダ3との間の空間が上述した空き空間である。この空き空間内に走行方向設置冷却管6を設置する。
 また、冷却管群16には図4に示すように、冷却器の冷却効率を高めるために、鉛直方向設置冷却管4のうちで最も全長が短い鉛直方向設置冷却管4の内側に3本の走行方向設置冷却管6を設置する。この3本の走行方向設置冷却管6は、3本それぞれの全長が異なり、図1、図3に示すように、入れ子状の構造を形成して同一の走行面上に設置される。したがって、合計3本の走行方向設置冷却管6と合計40本の鉛直方向設置冷却管4とが設置される。
 本発明において気流によって起きる熱交換の原理を示す。図5は本発明の実施の形態1を示す冷却器の車両側面方向からの投影図と走行時に流れる気流を示す図である。図5の冷却管群16の位置と気流の方向は、図3のものと同一であり、さらに流入風量10、流出風量12、下流まで到達する風量13を図示している。車両走行時には流入風量10の気流が冷却器内を流れ、下流まで到達する風量13となるが、流入風量10の一部は途中に走行方向と垂直の方向に流出風量12として流出する。高温の冷却管群16に低温である外気の気流が接触することで熱交換が発生する。冷却管群16の表面積が大きいほど熱交換量が大きくなる。
 図5の冷却器は走行方向設置冷却管6を有しているため、冷却管群16の表面積は鉛直方向設置冷却管4のみを有する冷却器と比べると大きいので、走行時の熱交換量は鉛直方向設置冷却管4のみを有する冷却器と比べると大きい。
 図5の冷却器では走行時に水平方向に気流が流れる。冷却管群16内を通過する際に走行方向設置冷却管6を設置したために、走行方向設置冷却管6がない場合と比べて、走行方向に対して垂直方向に流れる温風によって直交方向に流出する流出風量12が小さくなり、下流まで到達する風量13が大きくなる。これは鉛直方向設置冷却管4間の内部空間にある気流は、走行方向設置冷却管6により走行方向に対して直交方向への流出が遮られるからである。したがって、車両走行時において、設置冷却管領域内から車両前面方向に対し垂直方向に外側へと向かう流出風量の損失が、冷却管群16が鉛直方向設置冷却管4のみである場合に比べ減少する。
 鉛直方向設置冷却管4および走行方向設置冷却管6は、ヘッダ3に固定された直線部分14bもしくはヘッダ3と平行な直線部分14cを有することが望ましい。冷却管14の全長と全幅が同一であれば、直線部分を有する長方形形状に近いほうが曲線部分の多い形状よりも表面積が大きくなり、より熱交換量の増加が可能となるからである。
 本発明の実施の形態1を示す冷却器の構成によれば、鉛直方向設置冷却管4の設置位置に形成される空き空間に走行方向設置冷却管6を設置したことにより、冷却管群16は鉛直方向設置冷却管4のみを設置した場合に比べ表面積を多く有しているため、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、走行時の気流方向と同一方向に走行方向設置冷却管6を有していることで、設置冷却管領域内に流入した走行方向の気流に対し垂直方向外側への流出を少なく抑えることが可能になる。したがって、車両前面方向に流通する風量が増大し、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 さらに、図1に示す走行方向設置冷却管6が外周側の鉛直方向設置冷却管4aの更に外側となる構成としても良い。最も外側に位置する冷却管14が走行方向と垂直方向の流出風量12に寄与する。したがって、走行方向設置冷却管6が冷却管群16のうちで最も外側の冷却管となる構成とすることで、走行時において更に熱交換量の増加が可能になる。
実施の形態2.
 実施の形態2を構成する部材は実施の形態1と同様であるが、鉛直方向設置冷却管4と走行方向設置冷却管6の配置と形状が異なる。図6は本発明の実施の形態2を示す冷却器の車両前面方向からの投影図である。
 図6においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。本実施の形態では、図6に示すように外周側の鉛直方向設置冷却管4aを設置し、その内側に内周側の鉛直方向設置冷却管4bを設置し、そのさらに内側に走行方向設置冷却管6を取り付けている。
 図7は本発明の実施の形態2を示す冷却器の車両側面方向からの投影図である。図7においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図7に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。
 図8は本発明の実施の形態2を示す冷却器の車両上面方向からの投影図である。図8に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。図8においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。
 続いて、実施の形態2の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図6~図8に基づいて示す。内周側の鉛直方向設置冷却管4bの更に内側に位置する空き空間に走行方向設置冷却管6が設置され、鉛直方向に同様の配置で4つ設置される構成としている。更に図6、図7に示すように、外周側の鉛直方向設置冷却管4aと4本の内周側の鉛直方向設置冷却管4bは同一鉛直面上に配置され、走行方向に7列設置される。また、冷却器は冷却効率を高めるために、鉛直方向設置冷却管4bの空き空間の同一走行面上に3本の走行方向設置冷却管6を設置している。そして、同一走行面上にある3本の走行方向設置冷却管9は鉛直方向に4列配置されている。したがって、合計35本の鉛直方向設置冷却管4と合計12本の走行方向設置冷却管6とが設置される。
 本発明の実施の形態2を示す冷却器の構成によれば、本実施の形態では、走行方向設置冷却管6を有していることにより、鉛直方向設置冷却管4のみを設置した場合に比べ、多くの表面積を有しているために、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、走行時の気流方向と同一方向に走行方向設置冷却管6を有していることで、設置冷却管領域内に流入した気流の走行方向に対し垂直方向外側への流出を少なく抑えることが可能になり、車両前面方向に流通する風量が増大する。したがって、車両前面方向に流通する風量が増大し、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、冷却管14の形状や寸法は、3種類の走行方向設置冷却管6と外周側の鉛直方向設置冷却管4aと内周側の鉛直方向設置冷却管4bの5種類に統一されているため、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、本実施の形態では同一走行面上に形状の異なる複数の走行方向設置冷却管6を配置するのではなく1本の走行方向設置冷却管6を配置し、外周側の鉛直方向設置冷却管4aと1種類の走行方向設置冷却管6の二種類のみで構成されるものであっても良い。このような構成によれば、外周側の鉛直方向設置冷却管4aと1種類の走行方向設置冷却管6との二種類に統一されるため、冷却管14の形状の種類数を更に削減でき、生産性の向上が可能になる。
実施の形態3.
 実施の形態3を構成する部材は実施の形態1と同様であるが、鉛直方向設置冷却管4と走行方向設置冷却管6の配置と形状が異なる。図9は本発明の実施の形態3を示す冷却器の車両前面方向からの投影図である。実施の形態3では、図9に示すように外周側の鉛直方向設置冷却管4aを設置し、その内側に走行方向設置冷却管6と鉛直方向設置冷却管4とを交互に設置している。そして、鉛直方向設置冷却管4の最も内側には内周側の鉛直方向設置冷却管4bが設置されている。
 図9においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。図10は本発明の実施の形態3を示す冷却器の車両側面方向からの投影図である。図10においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図10に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。
 図11は本発明の実施の形態3を示す冷却器の車両上面方向からの投影図である。図11においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図11に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。また、冷却器は冷却効率を高めるために、鉛直方向設置冷却管4と走行方向設置冷却管6とをヘッダ3に直交する向きに重ねて設置している。
 続いて、実施の形態3の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図9~図11に基づいて示す。実施の形態3では鉛直方向設置冷却管4が同一の鉛直面上で内側に設置されるほど全長が短くなる入れ子状に設置される。また、それぞれの鉛直方向設置冷却管4間には直交して走行方向設置冷却管6が設置される。そのため、図9に示すように、走行時の気流方向8から見て鉛直方向設置冷却管4と、走行方向設置冷却管6とが交互に設置されている。
 図9、図10に示すように、鉛直方向設置冷却管4は同一鉛直面内に3本設置され、この3本の鉛直方向設置冷却管4は水平方向に7列設置される。また、図9に示す走行方向設置冷却管6の中で最長の走行方向設置冷却管6の内側には、図11に示す、全長が最も短い走行方向設置冷却管6および全長が二番目に短い走行方向設置冷却管6の2本の走行方向設置冷却管6が設置されており、同一走行面上に3本の走行方向設置冷却管6が設置される。また、図9の中位長さの走行方向設置冷却管6の内側には、図11に示す、全長が最も短い走行方向設置冷却管6および全長が二番目に短い走行方向設置冷却管6の2本の走行方向設置冷却管6が設置されており、同一走行面上に3本の走行方向設置冷却管6が設置される。さらに、図9の最短の走行方向設置冷却管6の内側には、図11に示す、全長が最も短い走行方向設置冷却管6および全長が二番目に短い走行方向設置冷却管6の2本の走行方向設置冷却管6が設置されており、同一走行面上に3本の走行方向設置冷却管6が設置される。したがって、実施の形態3の冷却管群16には合計21本の鉛直方向設置冷却管4と15本の走行方向設置冷却管6とが設置される。
 本発明の実施の形態3を示す冷却器の構成によれば、走行方向設置冷却管6を有していることにより、鉛直方向設置冷却管4のみを設置した場合に比べ、より多く冷却管群16の表面積を有するので、熱交換量の増加が可能になる。
 また、走行気流の流れる方向と同一方向に走行方向設置冷却管6を有していることで、設置冷却管領域内に流入した気流の走行方向に対し垂直方向外側への流出を少なく抑えることが可能になり、車両前面方向に流通する風量が増大する。したがって、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
実施の形態4.
 図12は本発明の実施の形態4を示す冷却器の車両前面方向からの投影図である。図13は本発明の実施の形態4を示す冷却器の車両側面方向からの投影図である。図14は本発明の実施の形態4を示す冷却器の車両上面方向からの投影図である。実施の形態4を構成する冷却管14の形状は実施の形態1と同様であるが、図12~図14に示すようにヘッダ3に設置する冷却管群16の方向を走行方向に対して90度傾けている点が異なる。
 図12に示すように、ヘッダ3上に走行方向設置冷却管6が水平方向に設置され、鉛直方向設置冷却管4は鉛直方向に設置される。また、冷却器は冷却効率を高めるために、走行方向設置冷却管6内の空き空間に3本の鉛直方向設置冷却管4を設置している。図12においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。
 図13に示すように、ヘッダ3上に走行方向設置冷却管6が水平方向に設置され、鉛直方向設置冷却管4は鉛直方向に設置される。図13においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。
 図14においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図14に示すように、ヘッダ3上に走行方向設置冷却管6が停止時の気流の方向7に対して垂直な面上に設置され、鉛直方向設置冷却管4は鉛直方向に設置される。なお、図14では走行方向設置冷却管6のうち、外周側の走行方向設置冷却管6aは最も外側にある走行方向設置冷却管6であり、内周側の走行方向設置冷却管6bは最も内側にある走行方向設置冷却管6である。
 続いて、実施の形態4の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6とを図12~14を用いて説明する。図14、図12より走行方向設置冷却管6は同一走行面上に5本あり、この5本の走行方向設置冷却管6が鉛直方向に8列設置される。また、図12に示すように走行方向設置冷却管6の空き空間に3本の鉛直方向設置冷却管4が配置され、図13、図14に示すように、この3本の鉛直方向設置冷却管4は同一鉛直面上に配置される。実施の形態4の冷却管群16は実施の形態1の冷却管群16を90度傾けたものであるので、鉛直方向設置冷却管4と走行方向設置冷却管6の本数が入れ替わり、合計で3本の鉛直方向設置冷却管4と40本の走行方向設置冷却管6を有する。
 図15は本発明の実施の形態4を示す冷却器の車両前面方向から停車時に流れる気流を示す図である。図15においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。
 図15の鉛直方向設置冷却管4と走行方向設置冷却管6は図12の冷却管14と同一の方向と形状で配置されている。図15の部材と気流は、図12のものと同一の方向であり、さらに流入風量10、流出風量12、下流まで到達する風量13を図示している。車両停車時には流入風量10の気流が冷却器内を流れ、下流まで到達する風量13となるが、流入風量10の一部は途中に気流の上昇する方向と直交する方向に流出風量12として流出する。
 停車時の気流方向7に流入風量10の気流が流れると、その気流は垂直方向に流れ、下流まで到達する風量13となる。しかし気流が流れる際に水平方向にも気流が流れ、これは流出風量12となり冷却管群16外に漏れてしまう。
 図15の冷却器は鉛直方向設置冷却管4を有しているため、走行方向設置冷却管6のみの冷却管群16と比べ冷却管群16の表面積が大きくなり熱交換量は大きい。また、停車時の気流方向7と同一方向に鉛直方向設置冷却管4を設置することで、設置冷却管領域内に流入した上昇気流に対し垂直方向外側への流出を少なく抑えることが可能になる。従って、鉛直方向設置冷却管4がない場合と比べて、流出風量12が減少し、下流まで到達する風量13が増加する。走行方向設置冷却管6のみからなる冷却管群16と、走行方向設置冷却管6に加え鉛直方向設置冷却管4を有する冷却管群16とでは鉛直方向設置冷却管4を3本追加した後者は約30%熱交換量が増加する。
 本発明の実施の形態4を示す冷却器の構成によれば、鉛直方向設置冷却管4を有することにより、走行方向設置冷却管6のみ設置した場合に比べより多くの冷却管群16の表面積を有し、冷却管群16からの熱交換量の増加が可能になる。
 また、本発明の実施の形態4の冷却管群16は走行方向設置冷却管6に加え、停車時の気流方向と同一方向に鉛直方向設置冷却管4を有していることで、設置冷却管領域内に流入した気流の上昇方向に対し垂直方向外側への流出を少なく抑えることが可能になり、冷却器に流通する風量が増大する。したがって、設置冷却管領域内に流入した鉛直方向の気流に対し鉛直方向と垂直の方向への流出を少なく抑えることが可能になり、鉛直方向に流通する風量が増大し、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 さらに図14に示す鉛直方向設置冷却管4を外周側の走行方向設置冷却管6aの外側となる構成としても良い。上記の構成によれば、図15において鉛直方向設置冷却管4が走行方向設置冷却管6よりも外側に位置することとなる。最も外側に位置する冷却管14は流出風量12の減少に寄与するため、停車時において更に熱交換量の増加が可能になる。
実施の形態5.
 図16は本発明の実施の形態5を示す冷却器の車両前面方向からの投影図である。図17は本発明の実施の形態5を示す冷却器の車両側面方向からの投影図である。図18は本発明の実施の形態5を示す冷却器の車両上面方向からの投影図である。実施の形態5では構成する冷却管群16の形状は実施の形態2と同様であるが、図16、図17、図18に示すように、ヘッダ3に設置する冷却管群16の方向を走行方向に対して90度傾けている点が異なる。
 本発明の実施の形態5では、図18に示すように外周側の走行方向設置冷却管6aを設置し、その内側に内周側の走行方向設置冷却管6bと鉛直方向設置冷却管4を取り付けて、内周側の走行方向設置冷却管6bと鉛直方向設置冷却管4が、走行方向に繰り返されるような構成としている。
 続いて、実施の形態5の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図16~図18に基づいて示す。図18に示すように、実施の形態5の冷却管群16は、内周側の走行方向設置冷却管6bの内周に鉛直方向設置冷却管4が設置され、走行方向に同様の配置で4列設置される構成としている。更に外周側の走行方向設置冷却管6aと4本の内周側の走行方向設置冷却管6bは同一走行面上に配置され、図17に示すように鉛直方向に7列設置される。また、冷却管群16は冷却効率を高めるために、内周側の走行方向設置冷却管6bの空き空間の同一鉛直面上に3本の鉛直方向設置冷却管4を設置している。したがって、実施の形態5の冷却管群16には合計12本の鉛直方向設置冷却管4と合計35本の走行方向設置冷却管6とが設置される。
 図16においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。図16に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。また、冷却器は冷却効率を高めるために、走行方向設置冷却管6内の空き空間に12本の鉛直方向設置冷却管4を設置している。
 図17においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図17に示すように、ヘッダ3上に走行方向設置冷却管6が水平に設置され、鉛直方向設置冷却管4は鉛直に設置される。
 図18においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図18に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直に設置される。
 本発明の実施の形態5に示す冷却器の構成によれば、鉛直方向設置冷却管4を有することにより、走行方向設置冷却管6のみを設置した場合に比べ、冷却管群16は多くの表面積を有しており、冷却管群16からの熱交換量増加が可能になる。
 また、冷却管14の形状や寸法は、同一鉛直面上に設置される3種類の鉛直方向設置冷却管4と外周側の走行方向設置冷却管6aと内周側の走行方向設置冷却管6bの5種類に統一されており、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、同一鉛直面上に形状の異なる複数の鉛直方向設置冷却管4を配置するのではなく1本の鉛直方向設置冷却管4を配置し、走行方向設置冷却管6も内周側の走行方向設置冷却管6bを配置せずに外周側の走行方向設置冷却管6aのみとしてもよい。このような構成にすれば、冷却管群16を二種類の冷却管14で構成できる。冷却管14の種類が二種類に統一されるため、冷却管14の形状の種類数を更に削減でき、生産性の向上が可能になる。
 また、本発明の実施の形態5は停車時の気流方向と同一方向に鉛直方向設置冷却管4を有していることで、設置冷却管領域内に流入した気流の方向に対し垂直方向外側への流出を少なく抑えることが可能になり、冷却器に流通する風量が増大し、停車時の熱交換量の増加が可能になる。
実施の形態6.
 図19は本発明の実施の形態6を示す冷却器の車両前面方向からの投影図である。図20は本発明の実施の形態6を示す冷却器の車両側面方向からの投影図である。図21は本発明の実施の形態6を示す冷却器の車両上面方向からの投影図である。実施の形態6では構成する冷却管群16の形状は実施の形態3と同様であるが、図19~図21に示すように、ヘッダ3に設置する冷却管群16の方向を走行方向に対して90度傾けている点が異なる。
 図19に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。図19においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。
 図20においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図20に示すように、ヘッダ3上に走行方向設置冷却管6が水平に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。
 図21においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。本発明の実施の形態6では、図21に示すように外周側の走行方向設置冷却管6aを設置し、その内側に鉛直方向設置冷却管4と走行方向設置冷却管6とを交互に設置している。
 続いて、実施の形態6の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図19~図21に基づいて示す。同一の走行面上に設置される走行方向設置冷却管6において、走行方向冷却管は内側に設置されるほど全長が短くなる入れ子状に設置される。また、入れ子状であるそれぞれの走行方向設置冷却管6間に、鉛直方向設置冷却管4が直交して設置される。そのため、図21に示すように、停車時の気流方向7から見て走行方向設置冷却管6と、鉛直方向設置冷却管4とが交互に設置されている。
 図21に示す3本の走行方向設置冷却管6が、図19、図20に示すように、同一走行面上に設置され、この3本の走行方向設置冷却管6は7列鉛直方向に設置される。また、図21に示す最長の鉛直方向設置冷却管4の内側には、図19に示す、全長が最も短い鉛直方向設置冷却管4および全長が二番目に短い鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4が設置されており、同一鉛直面上に3本の鉛直方向設置冷却管4が設置される。また、図21の中位長さの鉛直方向設置冷却管4の内側には、図19に示す、全長が最も短い鉛直方向設置冷却管4および全長が二番目に短い鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4が設置されており、同一鉛直面上に3本の鉛直方向設置冷却管4が設置される。さらに、図21の最短の鉛直方向設置冷却管4の内側には、図19に示す、全長が最も短い鉛直方向設置冷却管4および全長が二番目に短い鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4の2本の鉛直方向設置冷却管4が設置されており、同一鉛直面上に3本の鉛直方向設置冷却管4が設置される。したがって、実施の形態6の冷却管群16には合計21本の走行方向設置冷却管6と15本の鉛直方向設置冷却管4とが設置される。
 本発明の実施の形態6に示す冷却器の構成によれば、鉛直方向設置冷却管4を有することにより、走行方向設置冷却管6のみを設置した冷却管群16に比べより多くの設置冷却管表面積を有することによって、冷却管群16からの熱交換量の増加が可能になる。
 また、本発明の実施の形態6の冷却管群16は実施の形態3の冷却管群16と比べ冷却管群16の形状は同じであるが、ヘッダ3に設置する冷却管群16の方向を90度傾けている。この構成により、停車時の気流と同一方向となる鉛直方向設置冷却管4を有することにより、設置冷却管領域内に流入した気流の方向に対し垂直方向外側への流出を少なく抑えることが可能になり、冷却器に流通する風量が増大し、停車時の熱交換量の増加が可能になる。
実施の形態7.
 図22は本発明の実施の形態7を示す冷却器の車両前面方向からの投影図である。図23は本発明の実施の形態7を示す冷却器の車両側面方向からの投影図である。図24は本発明の実施の形態7を示す冷却器の車両上面方向からの投影図である。実施の形態7を構成する冷却管群16は実施の形態2と同様であるが、図22~図24に示すように、冷却管群16の最も外側に鉛直方向設置冷却管4aが無い点が異なる。
 図22においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向であり、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。本実施の形態では、図22に示すように鉛直方向設置冷却管104bを設置し、その内側に走行方向設置冷却管6を設置している。
 図23は本発明の実施の形態7を示す冷却器の車両側面方向からの投影図である。図23においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図23に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、ヘッダ3上に走行方向設置冷却管6は水平方向に設置される。
 図24は本発明の実施の形態7を示す冷却器の車両上面方向からの投影図である。図8に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。図24においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平となっている。
 続いて、実施の形態7の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図22~図24に基づいて示す。走行方向設置冷却管6は鉛直方向設置冷却管104bの更に内側に位置する空き空間に設置され、鉛直方向に同様の配置で4つ設置される構成としている。更に図22、図23に示すように、4本の鉛直方向設置冷却管104bは同一鉛直面上に配置され、走行方向に7列設置される。また、冷却器は冷却効率を高めるために、鉛直方向設置冷却管104bの空き空間の同一走行面上に3本の走行方向設置冷却管6を設置している。そして、同一走行面上にある3本の走行方向設置冷却管6は鉛直方向に4列配置されている。したがって、合計28本の鉛直方向設置冷却管4と合計12本の走行方向設置冷却管6とが設置される。
 本発明の実施の形態7を示す冷却器の構成によれば、冷却器は、走行方向設置冷却管6を有していることにより、鉛直方向設置冷却管4のみを設置した場合に比べ、多くの表面積を有しているために、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、冷却管14の形状や寸法は、3種類の走行方向設置冷却管6と外周側の鉛直方向設置冷却管104bの4種類に統一されているため、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、本実施の形態では同一走行面上に形状の異なる複数の走行方向設置冷却管6を配置するのではなく、外周側の鉛直方向設置冷却管104bと1種類の走行方向設置冷却管6の二種類のみで構成されるものであっても良い。このような構成によれば、外周側の鉛直方向設置冷却管104bと1種類の走行方向設置冷却管6との二種類に統一されるため、冷却管14の形状の種類数を更に削減でき、生産性の向上が可能になる。
実施の形態8.
 図25は本発明の実施の形態8を示す冷却器の車両前面方向からの投影図である。図26は本発明の実施の形態8を示す冷却器の車両側面方向からの投影図である。図27は本発明の実施の形態8を示す冷却器の車両上面方向からの投影図である。実施の形態8では構成する冷却管群16は実施の形態2と同様であるが、図25~図27に示すように、鉛直方向設置冷却管の内側に走行方向設置冷却管を鉛直方向に複数段設置している点が異なる。
 図25においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。本実施の形態では、図25に示すように外周側の鉛直方向設置冷却管4aを設置し、その内側に内周側の鉛直方向設置冷却管4bを設置し、そのさらに内側に走行方向設置冷却管6を取り付けている。
 図26は本発明の実施の形態8を示す冷却器の車両側面方向からの投影図である。図26においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図26に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方6向に設置され、走行方向設置冷却管6は水平方向に設置される。
 図27は本発明の実施の形態8を示す冷却器の車両上面方向からの投影図である。図27に示すように、ヘッダ3上に鉛直方向設置冷却管4が鉛直方向に設置され、走行方向設置冷却管6は水平方向に設置される。図27においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。
 続いて、実施の形態8の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図25~図27に基づいて示す。内周側の鉛直方向設置冷却管4bの更に内側に位置する空き空間に走行方向設置冷却管6が設置され、鉛直方向に同様の配置で2つ設置される構成としている。更に図25、図26に示すように、外周側の鉛直方向設置冷却管4aと2本の内周側の鉛直方向設置冷却管4bは同一鉛直面上に配置され、走行方向に7列設置される。また、冷却器は冷却効率を高めるために、鉛直方向設置冷却管4bの空き空間の同一走行面上に3本の走行方向設置冷却管6を設置している。そして、同一走行面上にある3本の走行方向設置冷却管9は鉛直方向に4列配置されている。したがって、合計21本の鉛直方向設置冷却管4と合計24本の走行方向設置冷却管6とが設置される。
 本発明の実施の形態8を示す冷却器の構成によれば、本実施の形態では、走行方向設置冷却管6を有していることにより、鉛直方向設置冷却管4のみを設置した場合に比べ、多くの表面積を有しているために、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、冷却器4は走行時の気流方向と同一方向に走行方向設置冷却管6を有していることで、設置冷却管領域内に流入した気流の走行方向に対し垂直方向外側への流出を少なく抑えることが可能になり、車両前面方向に流通する風量が増大する。したがって、車両前面方向に流通する風量が増大し、設置冷却管領域の容積を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
 また、冷却管14の形状や寸法は、3種類の走行方向設置冷却管6と外周側の鉛直方向設置冷却管4aと内周側の鉛直方向設置冷却管4bの5種類に統一されているため、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、本実施の形態では、鉛直方向設置配管が鉛直方向の直線部分を有するため、配管の曲げ限界に依存することなく、走行方向設置冷却管の鉛直方向間隔を決定することができる。実施の形態2では、鉛直方向設置配管と走行方向設置冷却管の鉛直方向距離が40mmで他の冷却管間隔よりも10mm程度広い。それに対し、本実施の形態では実施の形態2に比べて8箇所の冷却管間隔を10mm狭くすることが可能となり、冷却管群の鉛直方向範囲を80mm低減することができる。
 したがって、本実施の形態では高密度に配管を設置することが可能となり、80mmの空間には走行方向設置冷却管を2段程度設置可能であることから、冷却管領域の鉛直方向距離を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
実施の形態9.
 図28は本発明の実施の形態9を示す冷却器の車両前面方向からの投影図である。図29は本発明の実施の形態9を示す冷却器の車両側面方向からの投影図である。図30は本発明の実施の形態9を示す冷却器の車両上面方向からの投影図である。実施の形態5では構成する冷却管群16は実施の形態5と同様であるが、図28、図29、図30に示すように、最も外側の走行方向設置冷却管を有しない点が異なる。
 本発明の実施の形態9では、図30に示すように外周側の走行方向設置冷却管6aを設置し、その内側に鉛直方向設置冷却管4を取り付けて、内周側の走行方向設置冷却管6aと鉛直方向設置冷却管4が、走行方向に繰り返されるような構成としている。
 続いて、実施の形態9の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図28~図30に基づいて示す。図30に示すように、実施の形態5の冷却管群16は、走行方向設置冷却管6bの内周に鉛直方向設置冷却管4が設置され、走行方向に同様の配置で4列設置される構成としている。更に4本の内周側の走行方向設置冷却管106bは同一走行面上に配置され、図29に示すように鉛直方向に7列設置される。また、冷却管群16は冷却効率を高めるために、走行方向設置冷却管106bの空き空間の同一鉛直面上に3本の鉛直方向設置冷却管4を設置している。したがって、実施の形態5の冷却管群16には合計12本の鉛直方向設置冷却管4と合計28本の走行方向設置冷却管6とが設置される。
 図28においては、走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。図28に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。また、冷却器は冷却効率を高めるために、走行方向設置冷却管6内の空き空間に12本の鉛直方向設置冷却管4を設置している。
 図29においては、停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図29に示すように、ヘッダ3上に走行方向設置冷却管6が水平に設置され、鉛直方向設置冷却管4は鉛直に設置される。
 図30においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図30に示すように、ヘッダ3上に走行方向設置冷却管106bが走行面上に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。
 本発明の実施の形態9に示す冷却器の構成によれば、鉛直方向設置冷却管4を有することにより、走行方向設置冷却管6のみを設置した場合に比べ、冷却管群16は多くの表面積を有しており、冷却管群16からの熱交換量増加が可能になる。
 また、冷却管14の形状や寸法は、同一鉛直面上に設置される3種類の鉛直方向設置冷却管4と外周側の走行方向設置冷却管106bの4種類に統一されており、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、同一鉛直面上に形状の異なる複数の鉛直方向設置冷却管4を配置するのではなく1種類の鉛直方向設置冷却管4を配置してもよい。このような構成にすれば、冷却管群16を二種類の冷却管14で構成できる。冷却管14の種類が二種類に統一されるため、冷却管14の形状の種類数を更に削減でき、生産性の向上が可能になる。
実施の形態10.
 図31は本発明の実施の形態10を示す冷却器の車両前面方向からの投影図である。図32は本発明の実施の形態10を示す冷却器の車両側面方向からの投影図である。図33は本発明の実施の形態10を示す冷却器の車両上面方向からの投影図である。実施の形態10では構成する冷却管群16の形状は実施の形態5と同様であるが、図31~図33に示すように、走行方向設置冷却管6の内側に鉛直方向設置冷却管4を走行方向に複数設置している点が異なる。
 本発明の実施の形態10では、図31に示すように外周側の走行方向設置冷却管6aを設置し、その内側に内周側の走行方向設置冷却管6bと鉛直方向設置冷却管4を取り付けて、内周側の走行方向設置冷却管6bと鉛直方向設置冷却管4が、走行方向に繰り返されるような構成としている。
 続いて、実施の形態10の冷却管群16を構成する、鉛直方向設置冷却管4と走行方向設置冷却管6との構成を図31~図33に基づいて示す。図33に示すように、実施の形態10の冷却管群16は、内周側の走行方向設置冷却管6bの内周に鉛直方向設置冷却管4が設置され、走行方向に同様の配置で4列設置される構成としている。更に外周側の走行方向設置冷却管6aと4本の内周側の走行方向設置冷却管6bは同一走行面上に配置され、図33に示すように鉛直方向に7列設置される。また、冷却管群16は冷却効率を高めるために、内周側の走行方向設置冷却管6bの空き空間の同一鉛直面上に3本の鉛直方向設置冷却管4を設置している。したがって、実施の形態5の冷却管群16には合計24本の鉛直方向設置冷却管4と合計21本の走行方向設置冷却管6とが設置される。
 図31においては走行時の気流方向8が紙面手前から紙面奥またはその逆の方向、停車時の気流方向7が下部から上部、すなわち鉛直方向となっている。図31に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直面上に設置される。また、冷却器は冷却効率を高めるために、走行方向設置冷却管6内の空き空間に12本の鉛直方向設置冷却管4を設置している。
 図32においては停車時の気流方向7が下部から上部すなわち鉛直方向、走行時の気流方向8が水平方向となっている。図32に示すように、ヘッダ3上に走行方向設置冷却管6が水平に設置され、鉛直方向設置冷却管4は鉛直に設置される。
 図33においては停車時の気流方向7が紙面奥から紙面手前の方向、走行時の気流方向8が水平方向となっている。図33に示すように、ヘッダ3上に走行方向設置冷却管6が走行面上に設置され、鉛直方向設置冷却管4は鉛直に設置される。
 本発明の実施の形態10に示す冷却器の構成によれば、鉛直方向設置冷却管4を有することにより、走行方向設置冷却管6のみを設置した場合に比べ、冷却管群16は多くの表面積を有しており、冷却管群16からの熱交換量増加が可能になる。
 また、冷却管14の形状や寸法は、同一鉛直面上に設置される3種類の鉛直方向設置冷却管4と外周側の走行方向設置冷却管6aと内周側の走行方向設置冷却管6bの5種類に統一されており、冷却管14の形状の種類数削減により生産性の向上が可能になる。
 さらに、同一鉛直面上に形状の異なる複数の鉛直方向設置冷却管4を配置するのではなく1本の鉛直方向設置冷却管4を配置し、走行方向設置冷却管6も内周側の走行方向設置冷却管6bを配置せずに外周側の走行方向設置冷却管6aのみとしてもよい。このような構成にすれば、冷却管群16を二種類の冷却管14で構成できる。冷却管14の種類が二種類に統一されるため、冷却管14の形状の種類数を更に削減でき、生産性の向上が可能になる。
 また、本発明の実施の形態5は停車時の気流方向と同一方向に鉛直方向設置冷却管4を有していることで、設置冷却管領域内に流入した気流の方向に対し垂直方向外側への流出を少なく抑えることが可能になり、冷却器に流通する風量が増大し、停車時の熱交換量の増加が可能になる。
 さらに、本実施の形態では、走行方向設置配管が走行方向の直線部分14cを有するため、配管の曲げ限界に依存することなく、鉛直方向設置冷却管の走行方向間隔を決定することができる。実施の形態5では、走行方向設置配管と鉛直方向設置冷却管の走行方向距離が40mmで他の冷却管間隔よりも10mm程度広い。それに対し、本実施の形態では実施の形態5に比べて8箇所の冷却管間隔を10mm狭くすることが可能となり、冷却管群の走行方向範囲を80mm低減することができ、高密度に配管を設置することが可能となる。
 したがって、本実施の形態では、80mmの空間には鉛直方向設置冷却管を2段程度設置可能であることから、冷却管領域の走行方向距離を拡大することなく、冷却管群16からの熱交換量の増加が可能になるという効果を奏する。
1 変圧器
3 ヘッダ
4 鉛直方向設置冷却管
6 走行方向設置冷却管

Claims (9)

  1. 車両の底部裏側に取り付けられた変圧器の側面に隣接し、走行方向に沿うとともに鉛直な面を有するヘッダと、
    前記ヘッダに両端を固定され、走行方向と直交する鉛直面上に設置される鉛直方向設置冷却管と、
    前記ヘッダに両端を固定され、水平な面である走行面に設置される走行方向設置冷却管とを備え、
    前記鉛直方向設置冷却管と前記走行方向設置冷却管とが前記ヘッダに直交する向きに重なり設置されることを特徴とする車載用冷却器。
  2. 前記鉛直方向設置冷却管と前記走行方向設置冷却管とが冷却管群を形成し、
    前記冷却管群の一番外側に前記走行方向設置冷却管が設置されることを特徴とする請求項1記載の車載用冷却器。
  3. 前記鉛直方向設置冷却管と前記走行方向設置冷却管とが冷却管群を形成し、
    前記冷却管群の一番外側に前記鉛直方向設置冷却管が設置されることを特徴とする請求項1記載の車載用冷却器。
  4. 前記走行方向設置冷却管または前記鉛直方向設置冷却管のいずれか一方が複数あり、その複数ある前記走行方向設置冷却管または前記鉛直方向設置冷却管は同一の形状からなることを特徴とする請求項1記載の車載用冷却器。
  5. 前記走行方向設置冷却管または前記鉛直方向設置冷却管の少なくとも一方に直線部分を備えることを特徴とする請求項1に記載の車載用冷却器。
  6. 同一の前記走行面上に存在する前記走行方向設置冷却管のうち、
    最も全長が短い前記走行方向設置冷却管よりも内側に前記鉛直方向設置冷却管を直交する向きに1列以上設置することを特徴とする請求項1に記載の車載用冷却器。
  7. 同一の前記鉛直面上に存在する前記鉛直方向設置冷却管のうち、
    最も全長が短い前記鉛直方向設置冷却管よりも内側に前記走行方向設置冷却管を1列以上設置することを特徴とする請求項1に記載の車載用冷却器。
  8. 同一の前記走行面上に配置される前記走行方向設置冷却管は複数あり、その複数の前記走行方向冷却管は内側に設置されるほど全長が短くなる入れ子状に配置され、
    前記入れ子状であるそれぞれの前記走行方向設置冷却管間に、前記鉛直方向設置冷却管が直交して設置されることを特徴とする請求項1に記載の車載用冷却器。
  9. 同一の前記鉛直面上に配置される前記鉛直方向設置冷却管は複数あり、その複数の前記鉛直方向設置冷却管は内側に設置されるほど全長が短くなる入れ子状に配置され、
    前記入れ子状であるそれぞれの前記鉛直方向設置冷却管間に、前記走行方向設置冷却管が直交して設置されることを特徴とする請求項1に記載の車載用冷却器。
PCT/JP2013/005849 2012-12-11 2013-10-01 車載用冷却器 WO2014091652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13861907.7A EP2933166B1 (en) 2012-12-11 2013-10-01 In-vehicle cooling device
JP2014551837A JP5940170B2 (ja) 2012-12-11 2013-10-01 車載用冷却器
US14/649,458 US10011154B2 (en) 2012-12-11 2013-10-01 In-vehicle cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012270537 2012-12-11
JP2012-270537 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091652A1 true WO2014091652A1 (ja) 2014-06-19

Family

ID=50933966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005849 WO2014091652A1 (ja) 2012-12-11 2013-10-01 車載用冷却器

Country Status (4)

Country Link
US (1) US10011154B2 (ja)
EP (1) EP2933166B1 (ja)
JP (1) JP5940170B2 (ja)
WO (1) WO2014091652A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805354B1 (ja) * 2014-12-26 2015-11-04 三菱電機株式会社 車両用変圧器
WO2019092800A1 (ja) * 2017-11-08 2019-05-16 三菱電機株式会社 変圧器および電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074713A (zh) * 2016-11-16 2018-05-25 天津光信光电科技有限公司 一种方便散热的油浸式电流互感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317959A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 車両用変圧器の冷却装置
JPH11189153A (ja) 1997-12-25 1999-07-13 Mitsubishi Electric Corp 車載用冷却器
JP2000134701A (ja) * 1998-10-21 2000-05-12 Toshiba Corp 鉄道車両用電力変換装置
JP2001260877A (ja) * 2000-03-17 2001-09-26 Toshiba Transport Eng Inc 鉄道車両用電力変換装置
JP2003274671A (ja) * 2002-03-15 2003-09-26 Toshiba Corp 車両用電力変換装置
WO2010150345A1 (ja) * 2009-06-23 2010-12-29 三菱電機株式会社 変圧器
JP2011259536A (ja) * 2010-06-07 2011-12-22 Hitachi Ltd 冷却装置,電力変換装置,鉄道車両
JP2012054316A (ja) * 2010-08-31 2012-03-15 Hitachi Ltd 車載用電力変換装置の冷却装置および鉄道車両用電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050881A (en) * 1976-03-31 1977-09-27 Carrier Corporation Remote heating process
US4520867A (en) * 1984-02-06 1985-06-04 General Motors Corporation Single inlet/outlet-tank U-shaped tube heat exchanger
US4549605A (en) * 1984-08-20 1985-10-29 General Motors Corporation Single inlet/outlet-tank U-shaped tube heat exchanger
JP3463732B2 (ja) * 1997-12-16 2003-11-05 三菱電機株式会社 車載用冷却器
JP4012230B2 (ja) * 2006-03-22 2007-11-21 三菱電機株式会社 車載用冷却器
EP2040273B1 (en) * 2006-07-10 2016-07-20 Mitsubishi Electric Corporation Transformer for vehicles
DE102010040281A1 (de) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft Wärmetauscher
US20130240177A1 (en) * 2012-03-13 2013-09-19 Blissfield Manufacturing Company Nested heat exchanger
JP5948098B2 (ja) * 2012-03-16 2016-07-06 株式会社日立製作所 鉄道車両用電力変換装置、電力変換装置の冷却器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317959A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 車両用変圧器の冷却装置
JPH11189153A (ja) 1997-12-25 1999-07-13 Mitsubishi Electric Corp 車載用冷却器
JP2000134701A (ja) * 1998-10-21 2000-05-12 Toshiba Corp 鉄道車両用電力変換装置
JP2001260877A (ja) * 2000-03-17 2001-09-26 Toshiba Transport Eng Inc 鉄道車両用電力変換装置
JP2003274671A (ja) * 2002-03-15 2003-09-26 Toshiba Corp 車両用電力変換装置
WO2010150345A1 (ja) * 2009-06-23 2010-12-29 三菱電機株式会社 変圧器
JP2011259536A (ja) * 2010-06-07 2011-12-22 Hitachi Ltd 冷却装置,電力変換装置,鉄道車両
JP2012054316A (ja) * 2010-08-31 2012-03-15 Hitachi Ltd 車載用電力変換装置の冷却装置および鉄道車両用電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933166A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805354B1 (ja) * 2014-12-26 2015-11-04 三菱電機株式会社 車両用変圧器
WO2016103439A1 (ja) * 2014-12-26 2016-06-30 三菱電機株式会社 車両用変圧器
WO2019092800A1 (ja) * 2017-11-08 2019-05-16 三菱電機株式会社 変圧器および電力変換装置

Also Published As

Publication number Publication date
US20150321534A1 (en) 2015-11-12
EP2933166A1 (en) 2015-10-21
US10011154B2 (en) 2018-07-03
JP5940170B2 (ja) 2016-06-29
JPWO2014091652A1 (ja) 2017-01-05
EP2933166A4 (en) 2016-08-17
EP2933166B1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR102255779B1 (ko) 열교환기 및 그 제조 방법, 열교환 모듈, 열교환 장치, 및 열원 유닛
JP5585543B2 (ja) 車両用冷却装置
JP2017537287A (ja) 熱交換器、熱交換モジュール、熱交換装置、及び熱源ユニット
CN104956060A (zh) 流动偏转器
JP6180684B1 (ja) 車両用変圧器
JP5940170B2 (ja) 車載用冷却器
JP5946651B2 (ja) 熱交換器
EP2246655A1 (en) Heat exchanger
ES2652517B1 (es) Intercambiador para tunel de viento
JP2013174398A (ja) 熱交換器
JP6494384B2 (ja) 車両用変圧器
JP6922645B2 (ja) 熱交換器
WO2019003868A1 (ja) 熱交換器のヘッダタンク
JP2017036868A (ja) 熱交換器
WO2014010675A1 (ja) 車両用インタークーラ
JP2010209878A (ja) Egrクーラ
JP5748010B1 (ja) 複合熱交換器
JP2014019322A (ja) 車両用インタークーラ
JP2010065989A (ja) 熱交換器用チューブ及び熱交換器
JP2016023815A (ja) エバポレータ
JP2015174519A (ja) 車両下部構造
JP2016200071A (ja) Egrガスクーラ
KR102561872B1 (ko) 냉각이 개선된 변압기용 라디에이터
KR20110080899A (ko) 열교환기용 핀
KR20110072952A (ko) 유입 변압기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551837

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013861907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE