WO2016098896A1 - 鞍乗型車両 - Google Patents

鞍乗型車両 Download PDF

Info

Publication number
WO2016098896A1
WO2016098896A1 PCT/JP2015/085551 JP2015085551W WO2016098896A1 WO 2016098896 A1 WO2016098896 A1 WO 2016098896A1 JP 2015085551 W JP2015085551 W JP 2015085551W WO 2016098896 A1 WO2016098896 A1 WO 2016098896A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
downstream
exhaust passage
upstream
exhaust
Prior art date
Application number
PCT/JP2015/085551
Other languages
English (en)
French (fr)
Inventor
大輔 高須
誠 脇村
雄二 奥
信 小林
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP15870095.5A priority Critical patent/EP3236034B1/en
Priority to TW104143040A priority patent/TWI577883B/zh
Priority to TW104143042A priority patent/TWI612213B/zh
Priority to TW104143044A priority patent/TWI637106B/zh
Priority to TW104143046A priority patent/TWI577600B/zh
Priority to TW104143043A priority patent/TWI576506B/zh
Priority to TW104143041A priority patent/TWI644018B/zh
Priority to TW104143039A priority patent/TWI573930B/zh
Publication of WO2016098896A1 publication Critical patent/WO2016098896A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/002Apparatus adapted for particular uses, e.g. for portable devices driven by machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • F01N13/143Double-walled exhaust pipes or housings with air filling the space between both walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/20Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a saddle riding type vehicle.
  • a straddle-type vehicle that includes an engine unit having a configuration in which a plurality of independent exhaust passages are connected to the engine body.
  • the exhaust gas discharged from the engine body flows into the plurality of independent exhaust passage portions.
  • the plurality of independent exhaust passage portions are connected to the catalyst portion via the collective exhaust passage portion.
  • Exhaust gases discharged from the plurality of independent exhaust passage portions are collected in the collective exhaust passage portion.
  • a catalyst for purifying exhaust gas is disposed inside the catalyst portion.
  • the catalyst part is disposed, for example, below the engine body (see, for example, Patent Documents 1 and 2).
  • the cross-sectional area of the catalyst portion is larger than the cross-sectional area of the collective exhaust passage portion.
  • the cross-sectional area is an area of a cross section orthogonal to the flow direction of the exhaust gas.
  • Patent Documents 1 and 2 adopt the following configuration.
  • two independent exhaust passage portions are connected to the collective exhaust passage portion two by two.
  • the two collective exhaust passage portions are connected to the two catalyst portions, respectively.
  • the two catalyst parts are arranged side by side in the vehicle width direction. That is, in patent document 1, the catalyst provided with respect to four independent exhaust passage parts is divided into two, and they are arranged side by side in the vehicle width direction. Thereby, the vertical length of the catalyst portion is reduced.
  • two catalysts are arranged in the catalyst portion in the exhaust gas flow direction (that is, the front-rear direction).
  • the cross-sectional shape orthogonal to the exhaust gas flow direction of each catalyst is an ellipse that is long in the horizontal direction.
  • Patent Documents 1 and 2 a device for reducing the vertical length of the catalyst portion has already been made. Therefore, in the saddle-ride type vehicle of Patent Documents 1 and 2, when the catalyst is enlarged, it is difficult to keep the vertical length of the catalyst portion small. For this reason, it is difficult to suppress an increase in the size of the vehicle in the vertical direction while securing a separation distance between the ground and the catalyst portion.
  • An object of the present invention is to provide a straddle-type vehicle in which a catalyst is disposed below an engine body, which can suppress an increase in the size of the vehicle in the vertical direction while maintaining the initial performance of exhaust purification of the vehicle for a long time. To do.
  • an increase in the size of a catalyst has been considered as a means for maintaining the initial performance of exhaust purification of vehicles for a longer period.
  • the inventor of the present application reexamined the reason why the catalyst is enlarged.
  • the degree of catalyst deterioration varies depending on the use situation of the vehicle. In other words, there is a case where the deterioration of the catalyst proceeds depending on the use state of the vehicle. Even when the deterioration of the catalyst has progressed, the catalyst purification capacity is usually provided with a margin so that the initial performance of the vehicle exhaust purification can be maintained for a longer period of time. In this way, the catalyst has become large in size by providing a margin for the purification capacity of the catalyst.
  • a straddle-type vehicle includes a vehicle body frame, an engine unit supported by the vehicle body frame, and at least one front wheel.
  • a front wheel portion disposed in front of the engine unit, and a rear wheel portion including at least one rear wheel and disposed rearward of the engine unit in the front-rear direction when viewed in the left-right direction.
  • the engine unit includes a crankcase portion including a crankshaft having a central axis along the left-right direction, and a plurality of cylinder holes, and a plurality of combustion chambers each partially defined by the plurality of cylinder holes.
  • An engine body having a plurality of exhaust ports communicating with the plurality of combustion chambers on the outer surface thereof, and an air release connected to the plurality of exhaust ports of the engine body to release exhaust gas to the atmosphere.
  • an exhaust device having an outlet.
  • the exhaust device is connected to the plurality of exhaust ports of the engine body, and is connected to a plurality of independent exhaust passage portions through which exhaust gas discharged from the engine body flows, and to downstream ends of the plurality of independent exhaust passage portions.
  • a main catalyst that most purifies the exhaust gas, the length of the exhaust gas in the flow direction is the same as the length of the main catalyst in the exhaust gas flow direction, and is connected to the downstream end of the upstream collective exhaust passage section , At least a part of the crankcase portion is disposed below the vehicle in the up-down direction, and the flow direction of the exhaust gas flowing through the crankcase portion is disposed in a horizontal direction.
  • An upstream oxygen sensor that is located above the lower end in the vertical direction and that detects an oxygen concentration in the exhaust gas in the upstream collective exhaust passage, and is provided in the downstream collective exhaust passage
  • a downstream oxygen sensor that is located above the lowermost end in the vertical direction and detects an oxygen concentration in the exhaust gas in the downstream collective exhaust passage.
  • the engine unit includes a control device that processes a signal from the upstream oxygen sensor and a signal from the downstream oxygen sensor.
  • the saddle riding type vehicle includes a body frame, an engine unit, a front wheel portion, and a rear wheel portion.
  • the left-right direction, the front-rear direction, and the up-down direction are the left-right direction of the vehicle, the front-rear direction of the vehicle, and the up-down direction of the vehicle, respectively.
  • the engine unit is supported by the body frame.
  • the front wheel portion includes at least one front wheel.
  • the front wheel portion is disposed in front of the engine unit when viewed in the left-right direction.
  • the rear wheel portion includes at least one rear wheel.
  • the rear wheel portion is disposed behind the engine unit when viewed in the left-right direction.
  • the engine unit includes an engine body and an exhaust device.
  • the engine body has a crankcase portion.
  • the crankcase portion includes a crankshaft having a central axis along the left-right direction.
  • the engine body has a plurality of cylinder holes and a plurality of combustion chambers. Part of the plurality of combustion chambers is partitioned by a plurality of cylinder holes, respectively.
  • a plurality of exhaust ports communicating with the plurality of combustion chambers are formed on the outer surface of the engine body.
  • the exhaust device is connected to a plurality of exhaust ports of the engine body.
  • the exhaust device has an atmospheric discharge port for discharging exhaust gas to the atmosphere.
  • the exhaust device includes a plurality of independent exhaust passage portions, an upstream collective exhaust passage portion, an engine lower catalyst portion, a downstream collective exhaust passage portion, an upstream oxygen sensor, and a downstream oxygen sensor.
  • the plurality of independent exhaust passage portions are respectively connected to the plurality of exhaust ports of the engine body. Exhaust gas discharged from the engine body flows through the plurality of independent exhaust passage portions.
  • the upstream collective exhaust passage portion is connected to the downstream ends of the plurality of independent exhaust passage portions.
  • the upstream collective exhaust passage unit collects exhaust gas discharged from the plurality of independent exhaust passage units.
  • the engine lower catalyst part is connected to the downstream end of the upstream collective exhaust passage part.
  • the engine lower catalyst part has a main catalyst.
  • the main catalyst most purifies the exhaust gas discharged from the plurality of combustion chambers in the plurality of exhaust paths from the plurality of combustion chambers to the atmospheric discharge ports.
  • the length in the exhaust gas flow direction of the engine lower catalyst portion is the same as the length of the main catalyst in the exhaust gas flow direction.
  • At least a part of the engine lower catalyst portion is disposed below the crankcase portion.
  • the engine lower catalyst part is arranged so that the flow direction of the exhaust gas flowing through the engine lower part becomes a direction along the horizontal direction.
  • the direction along the horizontal direction is not limited to the direction parallel to the horizontal direction. Including a direction inclined within a range of ⁇ 45 ° with respect to the horizontal direction.
  • the downstream collective exhaust passage portion is connected to the downstream end of the engine lower catalyst portion.
  • the downstream collective exhaust passage portion has an atmospheric discharge port.
  • the engine unit includes a control device. The control device processes the upstream oxygen sensor signal and the downstream oxygen sensor signal.
  • the upstream oxygen sensor is provided in the upstream collecting exhaust passage portion. That is, the upstream oxygen sensor is disposed upstream of the engine lower catalyst portion.
  • the upstream oxygen sensor detects the oxygen concentration in the exhaust gas in the upstream collecting exhaust passage.
  • the downstream oxygen sensor is provided in the downstream collective exhaust passage. That is, the downstream oxygen sensor is disposed downstream of the engine lower catalyst portion.
  • the downstream oxygen sensor detects the oxygen concentration in the exhaust gas in the downstream collective exhaust passage. Therefore, the deterioration of the main catalyst can be detected by using the signal of the downstream oxygen sensor. Accordingly, it is possible to notify the rider or the like of replacing the main catalyst by informing before the deterioration of the main catalyst reaches a predetermined level.
  • the initial performance of the vehicle exhaust purification can be maintained for a longer period using a plurality of main catalysts.
  • the upstream oxygen sensor signal can be used to detect deterioration of the main catalyst.
  • the degree of deterioration of the main catalyst can be detected more accurately. Therefore, one main catalyst can be used for a longer period of time compared to the case where the deterioration of the main catalyst is detected using only the signal of the downstream oxygen sensor. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period by using a plurality of main catalysts.
  • the actual purification capacity of the main catalyst can be detected by using the upstream oxygen sensor signal and the downstream oxygen sensor signal.
  • the accuracy of the fuel control can be improved as compared with the case where the fuel control is performed based only on the signals of the upstream oxygen sensor.
  • the fuel control includes control of the amount of fuel supplied to the combustion chamber. In this way, regardless of how the downstream oxygen sensor is used, the initial performance of the vehicle exhaust purification can be maintained for a longer period without increasing the size of the main catalyst. Therefore, despite the fact that at least a part of the engine lower catalyst part is arranged below the crankcase part, the vehicle is prevented from being enlarged in the vertical direction while maintaining the initial performance of exhaust purification of the vehicle for a long time. it can.
  • the upstream oxygen sensor is located above the lowermost end of the engine lower catalyst part.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the downstream end of the upstream collective exhaust passage section is defined as a cross-sectional area AU.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the engine lower catalyst part is defined as a cross sectional area AC.
  • the cross-sectional area AU is smaller than the cross-sectional area AC. Therefore, it is easy to secure a space around the vicinity of the downstream end of the upstream collective exhaust passage portion. An upstream oxygen sensor can be arranged using this space.
  • the engine lower catalyst part is arranged so that the flow direction of the exhaust gas flowing through the engine lower part becomes a direction along the horizontal direction.
  • the upstream oxygen sensor can be disposed above the lowermost end of the engine lower catalyst portion. Accordingly, it is possible to suppress an increase in the size of the vehicle in the vertical direction while disposing the oxygen sensor upstream of the engine lower catalyst portion.
  • the downstream oxygen sensor is located above the lowermost end of the engine lower catalyst part.
  • An area of a cross section perpendicular to the flow direction of the exhaust gas in the vicinity of the upstream end of the downstream collective exhaust passage section is defined as a cross sectional area AD.
  • the cross-sectional area AD is smaller than the cross-sectional area AC. Therefore, it is easy to secure a space around the vicinity of the upstream end of the downstream collective exhaust passage portion.
  • a downstream oxygen sensor can be arranged using this space.
  • the engine lower catalyst part is arranged so that the flow direction of the exhaust gas flowing through the engine lower part becomes a direction along the horizontal direction. Therefore, by arranging the downstream oxygen sensor using this space, the downstream oxygen sensor can be disposed above the lowermost end of the engine lower catalyst portion. Therefore, it is possible to suppress an increase in the size of the vehicle in the vertical direction while disposing the oxygen sensor downstream of the engine lower catalyst portion.
  • the catalyst portion is provided downstream of the upstream collective exhaust passage portion to which a plurality of independent exhaust passage portions are connected. Therefore, the number of main catalysts can be reduced as compared with the case where a main catalyst is provided for each independent exhaust passage portion. Thereby, the upsizing of the vehicle in the vertical direction can be suppressed.
  • the upstream oxygen sensor is provided in the upstream collective exhaust passage. Therefore, the number of upstream oxygen sensors can be reduced as compared with the case where an upstream oxygen sensor is provided for each independent exhaust passage. Thereby, the upsizing of the vehicle in the vertical direction can be suppressed.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the control device determines a purification capacity of the main catalyst based on a signal from the downstream oxygen sensor.
  • the straddle-type vehicle includes notifying means for notifying when the control device determines that the purification capacity of the main catalyst has decreased to a predetermined level.
  • the control device determines the purification capacity of the main catalyst based on the signal from the downstream oxygen sensor.
  • the notification means notifies. Accordingly, it is possible to prompt the rider to replace the main catalyst before the deterioration of the main catalyst reaches a predetermined level.
  • the initial performance of the vehicle exhaust purification can be maintained for a longer period using a plurality of main catalysts.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the engine unit includes a plurality of fuel supply devices that respectively supply fuel to the plurality of combustion chambers.
  • the control device controls a fuel supply amount of the plurality of fuel supply devices based on a signal from the upstream oxygen sensor and a signal from the downstream oxygen sensor.
  • the control device controls the fuel supply amounts of the plurality of fuel supply devices based on the signal from the upstream oxygen sensor and the signal from the downstream oxygen sensor.
  • the actual purification capacity of the main catalyst can be detected by using the upstream oxygen sensor signal and the downstream oxygen sensor signal. Therefore, by performing the combustion control based on the signals of the two oxygen sensors, the accuracy of the fuel control can be improved compared to the case where the fuel control is performed based only on the signals of the upstream oxygen sensor. Thereby, the progress of deterioration of the main catalyst can be delayed. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the straddle-type vehicle of the present invention preferably has the following configuration. When viewed in the flow direction of the exhaust gas passing through the engine lower catalyst part, at least a part of the downstream oxygen sensor overlaps with the engine lower catalyst part.
  • the sectional area AD is smaller than the sectional area AC. Therefore, it is easy to secure a space around the vicinity of the upstream end of the downstream collective exhaust passage portion.
  • the downstream oxygen sensor overlaps with the engine lower catalyst part. That is, the downstream oxygen sensor is arranged using the space around the vicinity of the upstream end of the downstream collecting exhaust passage portion. Therefore, the vertical size increase of the vehicle can be suppressed while the downstream oxygen sensor is arranged downstream of the engine lower catalyst portion. Further, when viewed in the flow direction of the exhaust gas passing through the engine lower catalyst part, at least a part of the downstream oxygen sensor overlaps with the engine lower catalyst part.
  • the downstream oxygen sensor is arranged at a position close to the engine lower catalyst part.
  • the oxygen concentration detected by the downstream oxygen sensor is close to the oxygen concentration of the exhaust gas at the time of passing through the downstream end of the main catalyst. Therefore, the accuracy of control using the downstream oxygen sensor can be further improved. That is, when detecting deterioration of the main catalyst based on the signal from the downstream oxygen sensor, the detection accuracy of deterioration can be improved. Therefore, one main catalyst can be used for a longer period. As a result, the initial performance of vehicle exhaust purification can be maintained for a longer period of time using a plurality of main catalysts. Moreover, when performing fuel control based on the signals of the upstream oxygen sensor and the downstream oxygen sensor, the accuracy of fuel control can be further improved. As a result, the progress of deterioration of the main catalyst can be further delayed. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the straddle-type vehicle of the present invention preferably has the following configuration. When viewed in the flow direction of the exhaust gas passing through the engine lower catalyst part, at least a part of the upstream oxygen sensor overlaps with the engine lower catalyst part.
  • the cross-sectional area AU is smaller than the cross-sectional area AC. Therefore, it is easy to secure a space around the vicinity of the downstream end of the upstream collective exhaust passage portion.
  • the upstream oxygen sensor overlaps with the engine lower catalyst part. That is, the upstream oxygen sensor is arranged using a space around the downstream end of the upstream collecting exhaust passage. Therefore, it is possible to suppress an increase in the size of the vehicle in the vertical direction while arranging the upstream oxygen sensor upstream of the engine lower catalyst portion. Further, when viewed in the flow direction of the exhaust gas passing through the engine lower catalyst part, at least a part of the upstream oxygen sensor overlaps with the engine lower catalyst part.
  • the upstream oxygen sensor is arranged at a position close to the engine lower catalyst part.
  • the oxygen concentration detected by the upstream oxygen sensor is close to the oxygen concentration of the exhaust gas at the time of passing through the upstream end of the main catalyst. Therefore, the accuracy of control using the upstream oxygen sensor can be further improved. That is, the accuracy of fuel control based on at least the signal of the upstream oxygen sensor can be further improved. As a result, the progress of deterioration of the main catalyst can be further delayed. Therefore, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the downstream collective exhaust passage portion has a downstream exhaust passage portion whose upstream end is connected to the downstream end of the engine lower catalyst portion and the atmospheric discharge port, and is connected to the downstream end of the downstream exhaust passage portion. And a muffler portion for reducing sound generated by the exhaust gas.
  • the downstream oxygen sensor is provided in the downstream exhaust passage portion.
  • the downstream collective exhaust passage portion has a downstream exhaust passage portion and a muffler portion.
  • the upstream end of the downstream exhaust passage portion is connected to the downstream end of the engine lower catalyst portion.
  • the muffler portion is connected to the downstream end of the downstream exhaust passage portion.
  • the muffler part has an atmospheric discharge port.
  • the muffler part reduces the sound generated by the exhaust gas.
  • the downstream oxygen sensor is provided in the downstream exhaust passage portion. Therefore, the path length from the combustion chamber to the engine lower catalyst portion is shorter than when the downstream oxygen sensor is provided in the muffler portion. Therefore, the temperature of the exhaust gas flowing into the main catalyst becomes high. This shortens the time until the main catalyst is activated from the inactive state when the engine unit is cold started. As a result, the exhaust purification performance by the main catalyst can be improved.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the downstream oxygen sensor is disposed below the crankcase portion of the engine body in the vertical direction.
  • At least a part of the downstream oxygen sensor is disposed below the crankcase portion.
  • a downstream oxygen sensor is arrange
  • the saddle riding type vehicle of the present invention preferably has the following configuration.
  • the crankcase portion has an oil pan at a lower portion thereof. At least a part of the downstream oxygen sensor is located below the oil pan in the vertical direction.
  • the crankcase part has an oil pan at its lower part. At least a part of the downstream oxygen sensor is disposed below the oil pan. Therefore, at least a part of the engine lower catalyst part is disposed below the crankcase part, and is disposed in front of the rear end of the oil pan as viewed in the left-right direction. Therefore, the path length from the combustion chamber to the engine lower catalyst portion is shorter than when a part of the engine lower catalyst portion is disposed behind the rear end of the oil pan. Therefore, the temperature of the exhaust gas flowing into the main catalyst becomes higher. Thereby, when the engine unit is cold started, the time until the main catalyst is activated from the inactive state is further shortened. As a result, the exhaust purification performance of the main catalyst can be further improved.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the upstream oxygen sensor is arranged in front of the oil pan in the front-rear direction.
  • the upstream oxygen sensor is disposed in front of the oil pan.
  • the upstream oxygen sensor is disposed upstream of the engine lower catalyst portion. Therefore, the engine lower catalyst portion can be disposed further forward than when a part of the upstream oxygen sensor is disposed behind the oil pan. Therefore, the path length from the combustion chamber to the engine lower catalyst portion is shortened. Therefore, the temperature of the exhaust gas flowing into the main catalyst becomes higher. Thereby, when the engine unit is cold started, the time until the main catalyst is activated from the inactive state is further shortened. As a result, the exhaust purification performance of the main catalyst can be further improved.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the engine body is arranged such that the plurality of cylinder holes are adjacent to each other along the left-right direction, and the central axes of the plurality of cylinder holes are along the vertical direction.
  • the engine body is arranged such that the plurality of cylinder holes are adjacent along the left-right direction.
  • variation in the path length of a some independent exhaust passage part can be reduced.
  • the exhaust gas at the time of discharge from the combustion chamber contains gaseous unburned fuel and oxygen.
  • the exhaust gas moves while continuing to oxidize the unburned fuel in the exhaust path.
  • the oxygen concentration in the exhaust gas decreases.
  • the engine body is arranged such that the central axes of the plurality of cylinder holes are along the vertical direction. Note that the fact that the central axis is along the vertical direction is not limited to the case where the central axis is parallel to the vertical direction. This includes the case where the central axis is inclined within a range of ⁇ 45 ° with respect to the vertical direction. Since the center axis of the cylinder hole is along the vertical direction, the path length from the combustion chamber to the engine lower catalyst portion can be appropriately ensured.
  • the path length from the combustion chamber to the engine lower catalyst part is too short, the temperature of the exhaust gas flowing into the main catalyst may become too high. As a result, the main catalyst may be deteriorated due to overheating.
  • By appropriately securing the path length from the combustion chamber to the engine lower catalyst part it is possible to prevent deterioration of the main catalyst due to overheating. As a result, the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the straddle-type vehicle of the present invention preferably has the following configuration. At least a part of the engine lower catalyst part is disposed in front of the front-rear direction with respect to the center axis of the crankshaft, and when viewed in the left-right direction, at least a part of the engine lower catalyst part is formed in the cylinder hole. A straight line that is orthogonal to the central axis and passes through the central axis of the crankshaft is disposed behind the front-rear direction.
  • the engine lower catalyst portion is disposed in front of the center axis of the crankshaft. Therefore, the engine lower catalyst portion can be disposed further forward than the case where the engine lower catalyst portion is disposed rearward of the center axis of the crankshaft. Therefore, the path length from the combustion chamber to the engine lower catalyst portion is shortened. Therefore, the temperature of the exhaust gas flowing into the main catalyst becomes higher. Thereby, when the engine unit is cold started, the time until the main catalyst is activated from the inactive state is further shortened. As a result, the exhaust purification performance of the main catalyst can be further improved.
  • a straight line L that is perpendicular to the center axis of the cylinder hole and passes through the center axis of the crankshaft when viewed in the left-right direction is defined as a straight line L.
  • the flow direction of the exhaust gas is a direction along the horizontal direction. If such an engine lower catalyst portion is arranged in front of the straight line L and an attempt is made to secure a distance in the front-rear direction between the engine lower catalyst portion and the front wheel portion, the vehicle becomes larger in the front-rear direction. Therefore, when at least a part of the engine lower catalyst portion is disposed behind the straight line L when viewed in the left-right direction, the increase in the size of the vehicle in the front-rear direction can be suppressed.
  • the straddle-type vehicle of the present invention may have the following configuration.
  • the engine body is disposed such that the plurality of cylinder holes are adjacent to each other in the left-right direction, and the central axes of the plurality of cylinder holes are along the front-rear direction.
  • the engine body is arranged such that the plurality of cylinder holes are adjacent along the left-right direction.
  • variation in the path length of a some independent exhaust passage part can be reduced.
  • the exhaust gas at the time of discharge from the combustion chamber contains gaseous unburned fuel and oxygen.
  • the exhaust gas moves while continuing to oxidize the unburned fuel in the exhaust path.
  • the oxygen concentration in the exhaust gas decreases.
  • the engine body is arranged so that the central axes of the plurality of cylinder holes are along the front-rear direction.
  • the central axis is along the front-rear direction is not limited to the case where the central axis is parallel to the front-rear direction. This includes the case where the central axis is inclined within a range of ⁇ 45 ° with respect to the front-rear direction.
  • the vertical length of the engine body is short because the center axis of the cylinder hole is along the front-rear direction. Therefore, the enlargement of the vehicle in the vertical direction can be further suppressed.
  • the straddle-type vehicle of the present invention may have the following configuration. At least a part of the engine lower catalyst portion is disposed behind the center axis of the crankshaft in the front-rear direction.
  • the engine body is arranged so that the center axis of the cylinder hole is along the front-rear direction.
  • the path length from the combustion chamber to the engine lower catalyst part may be too short. is there. If the path length from the combustion chamber to the engine lower catalyst part is too short, the temperature of the exhaust gas flowing into the main catalyst may become too high. As a result, the main catalyst may be deteriorated due to overheating.
  • the straddle-type vehicle of the present invention may have the following configuration.
  • the engine unit includes a power transmission device that transmits a rotational force of the crankshaft to the rear wheel portion.
  • the power transmission device includes a drive rotator that rotates in response to a rotational force of the crankshaft, a driven rotator that is disposed behind the crankshaft and the drive rotator in the front-rear direction, and the drive rotator. And a winding member that is wound around the driven rotator and transmits the rotational force of the drive rotator to the driven rotator.
  • At least a part of the engine lower catalyst portion is disposed in front of the front-rear direction with respect to the central axis of the driven rotor.
  • the engine unit includes a power transmission device that transmits the rotational force of the crankshaft to the rear wheel portion.
  • the power transmission device includes a drive rotator, a driven rotator, and a winding member.
  • the drive rotator rotates upon receiving the rotational force of the crankshaft.
  • the driven rotator is disposed behind the crankshaft and the drive rotator.
  • the winding member is wound around the drive rotator and the driven rotator, and transmits the rotational force of the drive rotator to the driven rotator.
  • At least a part of the engine lower catalyst portion is disposed in front of the central axis of the driven rotor.
  • the path length from the combustion chamber to the engine lower catalyst portion is shorter than when the engine lower catalyst portion is disposed behind the center axis of the driven rotor. Therefore, the temperature of the exhaust gas flowing into the main catalyst becomes higher. Thereby, when the engine unit is cold started, the time until the main catalyst is activated from the inactive state is further shortened. As a result, the exhaust purification performance of the main catalyst can be further improved.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the engine body includes a plurality of internal exhaust passage portions that connect the plurality of combustion chambers and upstream ends of the plurality of independent exhaust passage portions, respectively.
  • the engine unit is disposed in at least one of the plurality of internal exhaust passage portions, the plurality of independent exhaust passage portions, the upstream collective exhaust passage portion, and the downstream collective exhaust passage portion. At least one sub-catalyst.
  • the engine body has a plurality of internal exhaust passage portions.
  • the internal exhaust passage connects the combustion chamber and the upstream end of the independent exhaust passage.
  • the engine unit includes at least one sub-catalyst that purifies the exhaust gas.
  • the at least one sub-catalyst is disposed in at least one of the plurality of internal exhaust passage portions, the plurality of independent exhaust passage portions, the upstream collective exhaust passage portion, and the downstream collective exhaust passage portion.
  • the straddle-type vehicle of the present invention preferably has the following configuration. At least a part of at least one of the independent exhaust passage portion and the upstream collective exhaust passage portion is configured by a multiple tube including an inner tube and at least one outer tube covering the inner tube.
  • At least a part of at least one of the independent exhaust passage portion and the upstream collective exhaust passage portion is constituted by a multiple pipe.
  • the multiple tube includes an inner tube and at least one outer tube covering the inner tube.
  • the straddle-type vehicle of the present invention preferably has the following configuration.
  • the engine lower catalyst portion accommodates the main catalyst, and is connected to the downstream end of the upstream collective exhaust passage portion and the upstream end of the downstream collective exhaust passage portion, and at least a part of the outer surface of the cylindrical portion And a catalyst protector portion covering the same.
  • the engine lower catalyst part has a main catalyst, a cylinder part, and a catalyst protector part.
  • the cylinder portion accommodates the main catalyst.
  • the cylinder portion is connected to the downstream end of the upstream collecting exhaust passage portion and the upstream end of the downstream collecting exhaust passage portion.
  • the catalyst protector portion covers at least a part of the outer surface of the cylindrical portion.
  • the saddle riding type vehicle of the present invention preferably has the following configuration.
  • the engine body has an oil filter at a front portion thereof.
  • the exhaust device and the oil filter are configured such that at least a part of the oil filter is exposed when the exhaust device and the oil filter are viewed from the front in the front-rear direction.
  • an oil filter is provided at the front of the engine body.
  • the exhaust device and the oil filter are viewed from the front, at least a part of the oil filter is exposed. Therefore, it is easy to remove the oil filter from the engine body.
  • FIG. 1 is a right side view of a motorcycle according to a first embodiment. It is the II-II sectional view taken on the line of FIG. It is a right view of a part of an engine unit. It is a front view of a part of an engine unit. It is a partial schematic diagram of an engine unit. It is a partial schematic diagram of an engine unit. It is a control block diagram of an engine unit. It is sectional drawing of a muffler part. It is a top view of an exhaust apparatus.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3. It is CC sectional view taken on the line of FIG. FIG.
  • FIG. 10 is a right side view of a part of an engine unit of a first modification.
  • FIG. 10 is a right side view of a part of an engine unit of a second modification.
  • FIG. 9 is a cross-sectional view of a turbocharger of Modification 2.
  • FIG. 10 is a side view of a turbocharger of a second modification.
  • FIG. 6 is a right side view of a motorcycle according to a second embodiment. It is a bottom view of an engine unit. It is a right view of a part of an engine unit. It is a bottom view of an engine body.
  • It is a partial schematic diagram of an engine unit.
  • It is a partial schematic diagram of an engine unit.
  • It is the DD sectional view taken on the line of FIG. 17 and FIG.
  • It is a schematic diagram of the exhaust apparatus of a modification.
  • It is a right view of a part of a modified engine unit. It is sectional drawing of the upstream exhaust passage part of a modification.
  • the front-rear direction is the front-rear direction of the vehicle as viewed from a rider seated on a seat 9 (described later) of the motorcycle 1.
  • the left-right direction is the left-right direction of the vehicle when viewed from the rider seated on the seat 9.
  • the vehicle left-right direction is the same as the vehicle width direction.
  • the arrow F direction and the arrow B direction of each drawing represent the front and the rear
  • the arrow L direction and the arrow R direction represent the left side and the right side
  • the arrow U direction and the arrow D direction are Represents the top and bottom.
  • the motorcycle 1 includes a front wheel portion 2, a rear wheel portion 3, and a vehicle body frame 4.
  • the vehicle body frame 4 has a head pipe 4a at the front thereof.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 4a.
  • the upper end portion of the steering shaft is connected to the handle unit 5.
  • An upper end portion of a pair of front forks 6 is fixed to the handle unit 5.
  • a lower end portion of the front fork 6 supports the front wheel portion 2.
  • the front fork 6 is configured to absorb an impact in the vertical direction.
  • the front wheel portion 2 is composed of one front wheel.
  • the upper part of the front wheel part 2 is covered with a fender. This fender is not included in the front wheel portion 2.
  • the handle unit 5 has one handle bar 12 extending in the left-right direction.
  • Grips 13 ⁇ / b> L and 13 ⁇ / b> R are provided at the left and right ends of the handle bar 12.
  • the right grip 13R is an accelerator grip that adjusts the output of the engine.
  • a display device 14 is attached to the handle bar 12. Although illustration is omitted, the display device 14 displays the vehicle speed, the engine speed, and the like.
  • the display device 14 is provided with a warning lamp.
  • Various switches are provided on the handle bar 12.
  • a pair of swing arms 7 are swingably supported on the body frame 4.
  • the rear end portion of the swing arm 7 supports the rear wheel portion 3.
  • the rear wheel portion 3 is composed of one rear wheel.
  • One end of the rear suspension 8 is attached to a position behind the swing center of each swing arm 7.
  • the other end of the rear suspension 8 is attached to the vehicle body frame 4.
  • the rear suspension 8 is configured to absorb an impact in the vertical direction. 1 and 2 and FIG. 3 to be described later show a state in which the front fork 6 and the rear suspension 8 have the longest vertical lengths. That is, a state in which the vehicle body frame 4 is at the uppermost position with respect to the front wheel portion 2 and the rear wheel portion 3 is displayed.
  • the vehicle body frame 4 supports the seat 9 and the fuel tank 10.
  • the fuel tank 10 is disposed in front of the seat 9.
  • the vehicle body frame 4 supports the engine unit 11.
  • the engine unit 11 may be directly connected to the vehicle body frame 4 or indirectly connected thereto.
  • the engine unit 11 is disposed below the fuel tank 10.
  • the engine unit 11 is disposed below the upper end of the seat 9.
  • the front wheel portion 2 is disposed in front of the engine unit 11.
  • the rear wheel portion 3 is disposed behind the engine unit 11 when viewed in the left-right direction.
  • the lateral width of the engine unit 11 is larger than the lateral width of the front wheel portion 2.
  • the lateral width of the engine unit 11 is larger than the lateral width of the rear wheel portion 3.
  • the width in the left-right direction is the maximum length in the left-right direction.
  • the vehicle body frame 4 supports a battery (not shown).
  • the battery supplies power to an electronic device such as an ECU 90 (see FIG. 7) that controls the engine unit 11 and various sensors.
  • the engine unit 11 includes an engine body 20, a water cooling device 40, and an exhaust device 60. Furthermore, as shown in FIG. 5, the engine unit 11 has an intake device 50. The engine body 20 is connected to the water cooling device 40, the intake device 50, and the exhaust device 60, respectively.
  • the engine unit 11 is a three-cylinder engine having three cylinders.
  • the engine unit 11 is a 4-stroke engine.
  • a 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke. The timing of the combustion stroke in the three cylinders is different.
  • FIG. 5 shows only one of the three cylinders of the engine body 20 and omits the remaining two cylinders.
  • the engine unit 11 is a water-cooled engine.
  • the engine body 20 is configured to be cooled with cooling water.
  • High-temperature cooling water that has absorbed the heat of the engine body 20 is supplied from the engine body 20 to the water cooling device 40.
  • the water cooling device 40 lowers the temperature of the cooling water supplied from the engine body 20 and returns it to the engine body 20.
  • the water cooling device 40 includes a radiator 41, a radiator fan (not shown), and a reservoir tank 42.
  • the radiator 41 is disposed in front of the upper portion of the engine body 20.
  • the radiator fan is disposed between the engine body 20 and the radiator 41.
  • the reservoir tank 42 is disposed in front of the lower part of the engine body 20.
  • the reservoir tank 42 is disposed in front of the right part of the engine body 20.
  • the reservoir tank 42 may not be disposed in front of the right part of the engine body 20.
  • the engine unit 11 has a water pump (not shown) for circulating cooling water.
  • the water pump is provided inside the engine body
  • the engine body 20 has a crankcase portion 20a and a cylinder portion 20b.
  • the crankcase portion 20 a is provided at the lower part of the engine body 20.
  • the cylinder part 20 b is provided on the upper part of the engine body 20.
  • the cylinder part 20b is connected to the upper end part of the crankcase part 20a.
  • the crankcase portion 20a has a crankcase 21 and an oil pan 26.
  • the crankcase portion 20 a has a crankshaft 27 that is accommodated in the crankcase 21.
  • the crankcase portion 20a includes a transmission, a clutch, a starter motor, and a generator. These are also accommodated in the crankcase 21.
  • a central axis Cr of the crankshaft 27 is referred to as a crank axis Cr.
  • the crank axis Cr is along the left-right direction. More specifically, the crank axis Cr is parallel to the left-right direction.
  • the oil pan 26 is provided below the crankcase portion 20a.
  • the oil pan 26 is connected to the lower end of the crankcase 21.
  • the boundary between the oil pan 26 and the crankcase 21 is substantially straight.
  • an extension of the boundary line between the crankcase 21 and the oil pan 26 is defined as a straight line Lp.
  • the straight line Lp is along the front-rear direction.
  • the straight line Lp is inclined so as to go downward as it goes forward.
  • the straight line Lp may be orthogonal to a cylinder axis Cy described later.
  • the right part of the oil pan 26 is recessed with respect to the left part of the oil pan 26.
  • the right part of the oil pan 26 is located above the left part of the oil pan 26.
  • a part of the exhaust device 60 is disposed inside the recess of the oil pan 26.
  • Lubricating oil is stored in the oil pan 26.
  • the crankcase part 20 a has an oil pump (not shown) that sucks up the lubricating oil stored in the oil pan 26.
  • an oil filter 45 and an oil cooler 46 are provided at the front of the crankcase portion 20a.
  • the oil cooler 46 is disposed substantially at the center in the left-right direction of the crankcase portion 20a.
  • the oil filter 45 is disposed on the left side of the oil cooler 46.
  • a plane passing through the center in the left-right direction of the front wheel portion 2 and the rear wheel portion 3 is defined as C0.
  • the center in the left-right direction of the front wheel portion 2 and the rear wheel portion 3 is also the center in the left-right direction of the motorcycle 1.
  • the center in the left-right direction of the motorcycle 1 is referred to as the center C0 in the left-right direction of the motorcycle 1.
  • the oil cooler 46 is disposed at a position overlapping the center C0 in the left-right direction of the motorcycle 1.
  • the oil filter 45 is disposed to the left of the center C0 in the left-right direction of the motorcycle 1. As shown in FIG. 3, the oil cooler 46 projects forward from the front surface of the crankcase 21. Similar to the oil cooler 46, the oil filter 45 also projects forward from the front surface of the crankcase 21.
  • the oil filter 45 has a built-in filter main body (not shown). The filter body removes foreign substances contained in the lubricating oil.
  • the oil filter 45 is detachably attached to the crankcase 21 so that the filter body can be replaced.
  • the cylinder portion 20 b includes a cylinder body 22, a cylinder head 23, and a head cover 24.
  • the cylinder body 22 is connected to the upper end portion of the crankcase 21.
  • the cylinder head 23 is connected to the upper end portion of the cylinder body 22.
  • the head cover 24 is connected to the upper end portion of the cylinder head 23.
  • the cylinder body 22 is formed with a cylinder hole 22a.
  • Three cylinder holes 22 a are formed in the cylinder body 22.
  • the three cylinder holes 22a are adjacent to each other in the left-right direction.
  • a piston 28 is slidably accommodated in each cylinder hole 22a.
  • the three pistons 28 are connected to one crankshaft 27 via three connecting rods 29.
  • a cooling passage 22b through which cooling water flows is formed.
  • the central axis Cy of the cylinder hole 22a is referred to as a cylinder axis Cy.
  • the three cylinder axes Cy are parallel. When viewed in the left-right direction, the three cylinder axes Cy coincide. As shown in FIG. 3, the cylinder axis Cy does not intersect with the crank axis Cr. Note that the cylinder axis Cy may intersect the crank axis Cr.
  • the cylinder axis Cy is along the vertical direction. When viewed in the left-right direction, the cylinder axis Cy is inclined in the front-rear direction with respect to the up-down direction.
  • the cylinder axis Cy is inclined such that the cylinder portion 20b is inclined forward. That is, the cylinder axis Cy is inclined so as to go forward as it goes upward.
  • the tilt angle of the cylinder axis Cy relative to the vertical direction is defined as a tilt angle ⁇ cy.
  • the inclination angle ⁇ cy is not limited to the angle shown in FIG.
  • the inclination angle ⁇ cy is not less than 0 degrees and not more than 45 degrees.
  • a combustion chamber 30 is formed in the cylinder portion 20b.
  • Three combustion chambers 30 are formed in the cylinder portion 20b.
  • the three combustion chambers 30 are adjacent to each other in the left-right direction.
  • Each combustion chamber 30 is formed by the lower surface of the cylinder head 23, the cylinder hole 22 a, and the upper surface of the piston 28. That is, a part of the combustion chamber 30 is partitioned by the inner surface of the cylinder hole 22a.
  • a straight line passing through the crank axis Cr and parallel to the vertical direction as seen in the left-right direction is defined as a straight line La1.
  • the three combustion chambers 30 are disposed in front of the straight line La1. That is, when viewed in the left-right direction, the three combustion chambers 30 are disposed in front of the crank axis Cr.
  • the tip of the spark plug 31 is disposed in the combustion chamber 30.
  • the tip of the spark plug 31 generates a spark discharge.
  • the air-fuel mixture in the combustion chamber 30 is ignited.
  • the air-fuel mixture is an air-fuel mixture.
  • the spark plug 31 is connected to the ignition coil 32.
  • the ignition coil 32 stores electric power for causing spark discharge of the spark plug 31.
  • the ignition plug 31 and the ignition coil 32 constitute an ignition device.
  • an internal intake passage portion 33 and an internal exhaust passage portion 34 are formed.
  • path part means the structure which forms a path
  • the path means a space through which gas or the like passes.
  • the internal intake passage portion 33 is connected to the combustion chamber 30.
  • the internal intake passage portion 33 is provided for each combustion chamber 30.
  • the internal exhaust passage portion 34 is connected to the combustion chamber 30.
  • the internal exhaust passage portion 34 is provided for each combustion chamber 30.
  • the internal intake passage portion 33 is provided for introducing air into the combustion chamber 30.
  • the internal exhaust passage portion 34 is provided to exhaust the exhaust gas generated in the combustion chamber 30 from the combustion chamber 30.
  • the combustion chamber intake port 33a and the combustion chamber exhaust port 34a are formed on the surface defining the combustion chamber 30 of the cylinder head 23.
  • the combustion chamber intake port 33 a is formed at the downstream end of the internal intake passage portion 33.
  • the combustion chamber exhaust port 34 a is formed at the upstream end of the internal exhaust passage portion 34.
  • An intake port 33 b and an exhaust port 34 b are formed on the outer surface of the cylinder head 23.
  • the intake port 33 b is formed at the upstream end of the internal intake passage portion 33.
  • the exhaust port 34 b is formed at the downstream end of the internal exhaust passage portion 34.
  • the number of combustion chamber intake ports 33a provided for one combustion chamber 30 may be one or two or more. For each combustion chamber 30, only one intake port 33b is provided.
  • the internal intake passage portion 33 is formed in a bifurcated shape.
  • the number of combustion chamber exhaust ports 34 a provided for one combustion chamber 30 may be one or two or more.
  • only one exhaust port 34b is provided.
  • the air inlet 33 b is formed on the front surface of the cylinder head 23.
  • the exhaust port 34 b is formed on the front surface of the cylinder head 23.
  • the three exhaust ports 34b are adjacent along the left-right direction.
  • an intake valve 37 that opens and closes the combustion chamber intake port 33 a is disposed in the internal intake passage portion 33.
  • One intake valve 37 is provided for each combustion chamber intake port 33a.
  • An exhaust valve 38 that opens and closes the combustion chamber exhaust port 34 a is disposed in the internal exhaust passage portion 34.
  • One exhaust valve 38 is provided for each combustion chamber exhaust port 34a.
  • the intake valve 37 and the exhaust valve 38 are driven by a valve gear (not shown) housed in the cylinder head 23.
  • the valve gear operates in conjunction with the crankshaft 27.
  • the valve operating mechanism may have a variable valve timing device.
  • a known variable valve timing device is applied.
  • the variable valve timing device is configured to change the opening / closing timing of the intake valve and / or the exhaust valve.
  • the engine main body 20 has an injector 54.
  • the injector 54 is a fuel supply device that supplies fuel to the combustion chamber 30.
  • One injector 54 is provided for each combustion chamber 30.
  • the injector 54 is arranged so as to inject fuel in the internal intake passage portion 33.
  • the injector 54 is connected to the fuel tank 10.
  • a fuel pump 93 (see FIG. 7) is disposed inside the fuel tank 10.
  • the fuel pump 93 pumps the fuel in the fuel tank 10 toward the injector 54.
  • the injector 54 may be arranged to inject fuel in the combustion chamber 30.
  • the injector 54 may be arranged so as to inject fuel in a branch intake passage portion 51 described later of the intake device 50.
  • the engine body 20 may include a carburetor instead of the injector 54 as a fuel supply device.
  • the carburetor supplies fuel into the combustion chamber 30 using the negative pressure of the combustion chamber 30.
  • the engine body 20 has an engine rotation speed sensor 71 and an engine temperature sensor 72.
  • the engine rotation speed sensor 71 detects the rotation speed of the crankshaft 27, that is, the engine rotation speed.
  • the engine temperature sensor 72 detects the temperature of the engine body 20. In the present embodiment, the engine temperature sensor 72 indirectly detects the temperature of the cylinder body 22 by detecting the temperature of the cooling water in the cooling passage 22b. The engine temperature sensor 72 may directly detect the temperature of the cylinder body 22.
  • the intake device 50 has one intake passage portion 52 and three branched intake passage portions 51.
  • the intake passage 52 has an air inlet 52a facing the atmosphere.
  • the air inlet 52 a is formed at the upstream end of the intake passage portion 52.
  • the intake passage 52 is provided with an air cleaner 53 for purifying air.
  • the downstream end of the intake passage portion 52 is connected to the upstream ends of the three branched intake passage portions 51.
  • the downstream ends of the three branch intake passage portions 51 are respectively connected to three intake ports 33 b formed on the rear surface of the cylinder head 23.
  • the air inlet 52a sucks air from the atmosphere.
  • the air flowing into the intake passage portion 52 from the air intake port 52 a is supplied to the engine body 20 through the three branched intake passage portions 51.
  • a throttle valve 55 is disposed in the branch intake passage portion 51.
  • One throttle valve 55 is provided for each combustion chamber 30.
  • the opening degree of the throttle valve 55 is changed by the rider turning the accelerator grip 13R.
  • the branch intake passage section 51 is provided with a throttle opening sensor (throttle position sensor) 73, an intake pressure sensor 74, and an intake air temperature sensor 75.
  • the throttle opening sensor 73 outputs a signal representing the throttle opening by detecting the position of the throttle valve 55.
  • the throttle opening is the opening of the throttle valve 55.
  • the intake pressure sensor 74 detects the internal pressure of the branch intake passage portion 51.
  • the intake air temperature sensor 75 detects the temperature of the air in the branch intake passage portion 51.
  • the exhaust device 60 includes an upstream exhaust passage portion 61, a catalyst portion 62, and a downstream collective exhaust passage portion 63.
  • upstream and downstream in the exhaust gas flow direction in the exhaust device 60 and the internal exhaust passage portion 34 are simply referred to as upstream and downstream.
  • the upstream exhaust passage portion 61 includes three independent exhaust passage portions 64 and an upstream collective exhaust passage portion 65.
  • One independent exhaust passage portion 64 is provided for each combustion chamber 30.
  • the downstream collective exhaust passage portion 63 includes a downstream exhaust passage portion 66 and a muffler portion 67.
  • the upstream ends of the three independent exhaust passage portions 64 are respectively connected to three exhaust ports 34 b formed on the front surface of the cylinder head 23.
  • the downstream ends of the three independent exhaust passage portions 64 are connected to the upstream ends of the upstream collective exhaust passage portion 65.
  • the upstream collective exhaust passage portion 65 collects (combines) the exhaust gas discharged from the three independent exhaust passage portions 64.
  • the downstream end of the upstream collective exhaust passage portion 65 is connected to the upstream end of the catalyst portion 62.
  • the catalyst unit 62 includes a main catalyst 62a that purifies exhaust gas.
  • the downstream end of the catalyst portion 62 is connected to the upstream end of the downstream exhaust passage portion 66.
  • the downstream end of the downstream exhaust passage portion 66 is connected to the upstream end of the muffler portion 67.
  • the muffler part 67 has an atmospheric discharge port 67a facing the atmosphere.
  • the exhaust gas discharged from the three exhaust ports 34 b of the engine body 20 passes through the upstream exhaust passage portion 61 and flows into the catalyst portion 62.
  • the exhaust gas is purified by passing through the main catalyst 62a and then discharged from the atmospheric discharge port 67a through the downstream collective exhaust passage portion 63.
  • the independent exhaust passage portion 64 corresponds to the independent exhaust passage portion in the present invention.
  • the passage portion that combines the internal exhaust passage portion 34 and the independent exhaust passage portion 64 is referred to as an independent exhaust passage portion 68.
  • One independent exhaust passage 68 is provided for each combustion chamber 30.
  • a path from the combustion chamber 30 to the atmospheric discharge port 67a is referred to as an exhaust path 69.
  • the engine unit 11 has three exhaust paths 69.
  • the exhaust path 69 is a space through which exhaust gas discharged from one combustion chamber 30 passes.
  • the exhaust passage 69 is formed by the independent exhaust passage portion 68, the upstream collective exhaust passage portion 65, the catalyst portion 62, and the downstream collective exhaust passage portion 63.
  • the exhaust passage 69 is formed by the internal exhaust passage portion 34, the upstream exhaust passage portion 61, the catalyst portion 62, and the downstream collective exhaust passage portion 63.
  • the exhaust device 60 includes first to third exhaust pipes 56A, 56B, 56C, a collective member 57, a collective exhaust pipe 58, and a muffler portion 67.
  • the first to third exhaust pipes 56A, 56B, and 56C are arranged in this order from right to left.
  • the upstream ends of the first to third exhaust pipes 56A, 56B, and 56C are connected to the three exhaust ports 34b of the engine body 20, respectively.
  • the first to third exhaust pipes 56A, 56B, and 56C are circular pipes.
  • Mounting flange portions 56Af, 56Bf, and 56Cf are provided in the vicinity of the upstream ends of the first to third exhaust pipes 56A, 56B, and 56C.
  • the mounting flange portions 56Af, 56Bf, and 56Cf are formed in a plate shape.
  • Bolt holes into which bolts are inserted are formed in the mounting flange portions 56Af, 56Bf, and 56Cf.
  • a portion of the first exhaust pipe 56 ⁇ / b> A upstream from the mounting flange portion 56 ⁇ / b> Af is inserted inside the internal exhaust passage portion 34. The same applies to the second exhaust pipe 56B and the third exhaust pipe 56C.
  • the mounting flange portions 56Af, 56Bf, and 56Cf are in contact with the outer surface of the engine body 20.
  • the mounting flange portions 56Af, 56Bf, and 56Cf are fixed to the outer surface of the engine body 20 by bolts.
  • the downstream ends of the first to third exhaust pipes 56A, 56B, and 56C are connected to the collective member 57.
  • the interior of the assembly member 57 is divided into three spaces 57 ⁇ / b> A, 57 ⁇ / b> B, and 57 ⁇ / b> C in a cross section orthogonal to the flow direction of the exhaust gas above the assembly member 57.
  • the end portions of the first to third exhaust pipes 56A, 56B, and 56C are fitted into the three spaces 57A, 57B, and 57C, respectively.
  • the downstream ends of the three spaces 57A, 57B, 57C are downstream from the downstream ends of the first to third exhaust pipes 56A, 56B, 56C. Further, as shown in FIG.
  • the interior of the assembly member 57 has one space 57 ⁇ / b> D in a cross section orthogonal to the flow direction of the exhaust gas below the assembly member 57.
  • the total volume of the internal space of the assembly member 57 decreases toward the downstream.
  • those indicated by solid lines indicate directions parallel to the paper surface, and those indicated by broken lines indicate directions not parallel to the paper surface. The same applies to FIG. 12 described later.
  • the assembly member 57 includes a wall portion that forms a space 57A, a wall portion that forms a space 57B, a wall portion that forms a space 57C, and a wall portion that forms a space 57D.
  • An independent exhaust passage portion 64A (see FIG. 4) is formed by the first exhaust pipe 56A and the wall portion forming the space 57A of the collective member 57. However, the independent exhaust passage portion 64A does not include a portion upstream from the mounting flange portion 56Af of the first exhaust pipe 56A.
  • An independent exhaust passage portion 64B (see FIG. 4) is formed by the second exhaust pipe 56B and the wall portion forming the space 57B of the collective member 57.
  • the independent exhaust passage portion 64B does not include a portion upstream of the mounting flange portion 56Bf of the second exhaust pipe 56B.
  • An independent exhaust passage portion 64C (see FIG. 4) is formed by the third exhaust pipe 56C and the wall portion forming the space 57C of the collective member 57.
  • the independent exhaust passage portion 64C does not include a portion upstream from the mounting flange portion 56Cf of the third exhaust pipe 56C.
  • the independent exhaust passage portion 64 is a general term for the independent exhaust passage portions 64A, 64B, and 64C.
  • the downstream end of the collecting member 57 is connected to the collecting exhaust pipe 58.
  • the collective exhaust pipe 58 is a pipe having a substantially circular cross section. As shown in FIG. 9, the collective exhaust pipe 58 is formed by welding two left and right parts.
  • a main catalyst 62 a is disposed inside the collective exhaust pipe 58.
  • a portion of the collective exhaust pipe 58 where the main catalyst 62a is disposed is referred to as a cylindrical portion 62b.
  • the catalyst part 62 includes a cylindrical part 62b and a main catalyst 62a.
  • the upstream collective exhaust passage portion 65 is formed by a part forming the space 57D of the collective member 57 and a part upstream of the main catalyst 62a of the collective exhaust pipe 58.
  • the downstream end of the collective exhaust pipe 58 is connected to the muffler part 67. Specifically, the downstream end of the collective exhaust pipe 58 is disposed in the muffler portion 67.
  • the downstream exhaust passage portion 66 is formed by a portion downstream of the main catalyst 62 a of the collective exhaust pipe 58. However, the downstream exhaust passage portion 66 does not include a portion of the collective exhaust pipe 58 that is disposed inside the muffler portion 67.
  • the three independent exhaust passage parts 64 each have a plurality of bent parts.
  • the three independent exhaust passage portions 64 have a bent portion so that a difference in path length between the three independent exhaust passage portions 64 is reduced. At least one bent portion of one independent exhaust passage portion 64 is bent when viewed in the left-right direction. At least one bent portion included in one independent exhaust passage portion 64 is bent when viewed in the front-rear direction.
  • the flow direction of the exhaust gas at the upstream ends of the three independent exhaust passage portions 64 is parallel.
  • the flow direction of the exhaust gas at the upstream ends of the three independent exhaust passage portions 64 is a front obliquely downward direction.
  • An axis passing through the center of the upstream end of the independent exhaust passage portion 64A including a part of the first exhaust pipe 56A when viewed in the left-right direction is defined as a center axis C1.
  • the direction of the central axis C1 is the flow direction of the exhaust gas at the upstream end of the independent exhaust passage portion 64A.
  • the inclination angle of the central axis C1 with respect to the front-rear direction is defined as an inclination angle ⁇ 1 .
  • the inclination angle ⁇ 1 is not limited to the angle shown in FIG.
  • the inclination angle ⁇ 1 is not less than 0 degrees and not more than 45 degrees. Therefore, the central axis C1 is along the front-rear direction. That is, when viewed in the left-right direction, the flow direction of the exhaust gas at the upstream ends of the three independent exhaust passage portions 64 is a direction along the front-rear direction. Further, when viewed in the front-rear direction, the flow direction of the exhaust gas at the upstream ends of the three independent exhaust passage portions 64 is substantially parallel to the vertical direction. Therefore, the flow direction of the exhaust gas at the upstream ends of the three independent exhaust passage portions 64 is a direction along the front-rear direction.
  • the flow direction of the exhaust gas at the downstream ends of the three independent exhaust passage portions 64 is a rear obliquely downward direction.
  • An axis passing through the center of the downstream end of the independent exhaust passage portion 64A including a part of the first exhaust pipe 56A when viewed in the left-right direction is defined as a center axis C2.
  • the inclination angle ⁇ 2 is not limited to the angle shown in FIG.
  • the inclination angle ⁇ 2 is not less than 0 degrees and not more than 45 degrees. Therefore, the central axis C2 is along the vertical direction.
  • the flow direction of the exhaust gas at the downstream ends of the three independent exhaust passage portions 64 is a direction along the vertical direction. Further, when viewed in the front-rear direction, the flow direction of the exhaust gas at the downstream ends of the three independent exhaust passage portions 64 is substantially parallel to the vertical direction. Therefore, the flow direction of the exhaust gas at the downstream ends of the three independent exhaust passage portions 64 is a direction along the vertical direction.
  • the upstream collecting exhaust passage portion 65 has a bent portion 65a.
  • the bent portion 65a When viewed in the left-right direction, the bent portion 65a is bent.
  • the bent portion 65 a is formed in the collective exhaust pipe 58.
  • the bent portion 65 a is formed in the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • the flow direction of the exhaust gas in the portion upstream of the bent portion 65a of the upstream collective exhaust passage portion 65 is substantially parallel to the central axis C2.
  • the flow direction of the exhaust gas in a portion upstream of the bent portion 65a of the upstream collective exhaust passage portion 65 is substantially parallel to the vertical direction. Therefore, the flow direction of the exhaust gas in the portion upstream of the bent portion 65a of the upstream collective exhaust passage portion 65 is along the vertical direction.
  • the central axis of the catalyst part 62 is defined as a central axis C3.
  • the axis passing through the center of the portion downstream of the bent portion 65a of the upstream exhaust passage portion 61 is coaxial with the center axis C3.
  • the central axis C3 is along the front-rear direction.
  • the tilt angle ⁇ 3 (not shown) is the tilt angle of the central axis C3 with respect to the front-rear direction when viewed in the left-right direction.
  • the inclination angle ⁇ 3 is approximately 0 degrees. That is, when viewed in the left-right direction, the central axis C3 is substantially parallel to the front-rear direction.
  • the tilt angle ⁇ 3 may be greater than 0 degrees.
  • the inclination angle ⁇ 3 is preferably 0 degree or greater and 45 degrees or less.
  • the central axis C3 is substantially parallel to the front-rear direction when viewed in the vertical direction. Therefore, the central axis C3 is along the front-rear direction. That is, the flow direction of the exhaust gas in the portion downstream of the bent portion 65a of the upstream collective exhaust passage portion 65 is a direction along the front-rear direction.
  • the bent portion 65a changes the flow direction of the exhaust gas flowing through the bent portion 65a from the direction along the vertical direction to the direction along the front-rear direction. More specifically, the bent portion 65a changes the flow direction of the exhaust gas flowing through the bent portion 65a from the direction along the lower direction to the direction along the rear direction.
  • the central axis C3 of the catalyst portion 62 is along the front-rear direction. That is, the flow direction of the exhaust gas flowing inside the catalyst unit 62 is a direction along the front-rear direction. More specifically, the flow direction of the exhaust gas flowing inside the catalyst unit 62 is a direction along the rear direction.
  • An axis passing through the center of the downstream exhaust passage portion 66 is coaxial with the center axis C3. Therefore, the flow direction of the exhaust gas flowing inside the downstream exhaust passage portion 66 is a direction along the front-rear direction. More specifically, the flow direction of the exhaust gas flowing inside the downstream exhaust passage portion 66 is a direction along the rear direction.
  • the vicinity of the downstream end of the upstream collective exhaust passage portion 65 is formed in a tapered shape so that its diameter increases toward the downstream. This taper part is formed in the bending part 65a.
  • a concave portion 65 b is formed in the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • a part of the recess 65b is formed in the bent portion 65a.
  • a part of the recess 65b is formed upstream of the bent portion 65a.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the downstream end of the upstream collective exhaust passage section 65 is defined as a cross-sectional area A1 (not shown).
  • a cross section orthogonal to the flow direction of the exhaust gas in the catalyst portion 62 is defined as a cross sectional area A2 (not shown).
  • the cross-sectional area A1 is smaller than the cross-sectional area A2.
  • the downstream exhaust passage portion 66 is formed in a tapered shape so that its diameter decreases toward the downstream.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the upstream end of the downstream exhaust passage section 66 is defined as a cross sectional area A3 (not shown).
  • the cross-sectional area A3 is smaller than the cross-sectional area A2.
  • the lower end portions of the three independent exhaust passage portions 64 overlap with the oil cooler 46.
  • the three independent exhaust passage portions 64 do not overlap the oil filter 45.
  • the lower ends of the three independent exhaust passage portions 64 are arranged to the right of the oil filter 45.
  • the exhaust device 60 and the oil filter 45 are viewed from the front, the oil filter 45 is exposed. Therefore, the oil filter 45 can be easily removed from the engine body 20. Therefore, the oil filter 45 can be easily replaced. Note that a part of the exhaust device 60 may overlap the oil filter 45 when viewed in the front-rear direction.
  • a part of the upstream collective exhaust passage portion 65 is disposed in front of the engine body 20.
  • a part of the upstream collecting exhaust passage portion 65 overlaps with the engine body 20 when viewed in the front-rear direction. That is, a part of the upstream collective exhaust passage portion 65 is disposed in front of the engine body 20. More specifically, a part of the upstream collective exhaust passage portion 65 is disposed in front of the crankcase portion 20a.
  • the upstream collective exhaust passage 65 is disposed below the crank axis Cr.
  • the muffler unit 67 is a device that reduces noise caused by exhaust gas. As shown in FIG. 9, a bracket 67 b is provided on the upper surface of the muffler portion 67. The bracket 67b is attached to the vehicle body frame 4. That is, the muffler part 67 is supported by the vehicle body frame 4.
  • the muffler portion 67 includes an outer cylinder 80 and a tail pipe 85.
  • the outer cylinder 80 is formed by welding two left and right parts.
  • the muffler portion 67 has four pipes 81 to 84 accommodated in the outer cylinder 80.
  • the inside of the outer cylinder 80 is partitioned into three expansion chambers 80a, 80b, and 80c by two separators 86 and 87.
  • the first pipe 81 is connected to the downstream end of the collective exhaust pipe 58.
  • a portion of the collective exhaust pipe 58 inside the outer cylinder 80 is included in the muffler portion 67.
  • the first pipe 81 connects the collective exhaust pipe 58 and the central first expansion chamber 80a among the three expansion chambers.
  • the second pipe 82 communicates the first expansion chamber 80a with the second expansion chamber 80b behind the first expansion chamber 80a.
  • the third pipe 83 communicates the second expansion chamber 80b and the third expansion chamber 80c in front of the first expansion chamber 80a.
  • the fourth pipe 84 communicates the third expansion chamber 80c and the tail pipe 85 (see FIG. 9).
  • the fourth pipe 84 is bent in the second expansion chamber 80b.
  • the tail pipe 85 penetrates the right wall of the second expansion chamber 80b.
  • the tail pipe 85 is connected to the fourth pipe 84 in the second expansion chamber 80b.
  • the opening at the downstream end of the tail pipe 85 is an atmospheric discharge port 67a.
  • the exhaust gas discharged from the collective exhaust pipe 58 includes the first pipe 81, the first expansion chamber 80a, the second pipe 82, the second expansion chamber 80b, the third pipe 83, the third expansion chamber 80c, the fourth pipe 84, and the tail.
  • a sound absorbing material such as glass wool may be disposed, but it may not be disposed.
  • the internal structure of the muffler part 67 is not limited to the structure shown in FIG.
  • the catalyst part 62 has a main catalyst 62a and a cylinder part 62b.
  • the cylindrical portion 62 b is connected to the downstream end of the upstream collective exhaust passage portion 65 and the upstream end of the downstream exhaust passage portion 66.
  • the cylindrical portion 62b may be integrally formed with a part of the upstream collective exhaust passage portion 65.
  • the cylindrical portion 62b may be integrally formed with a part of the downstream exhaust passage portion 66.
  • the exhaust device 60 has no catalyst other than the main catalyst 62a.
  • the main catalyst 62a most purifies the exhaust gas in the plurality of exhaust paths 69 (see FIG. 5).
  • the main catalyst 62a is formed in a cylindrical shape.
  • the main catalyst 62a has a porous structure.
  • the porous structure means a structure in which a plurality of holes penetrating in the exhaust gas flow direction are formed.
  • the main catalyst 62a is a three-way catalyst.
  • the three-way catalyst is removed by oxidizing or reducing three substances of hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide (NOx) in the exhaust gas.
  • the three-way catalyst is one type of redox catalyst.
  • the main catalyst 62a may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide.
  • the main catalyst 62a may not be a redox catalyst.
  • the main catalyst may be an oxidation catalyst that removes harmful substances only by oxidation.
  • the main catalyst may be a reduction catalyst that removes harmful substances only by reduction.
  • the main catalyst 62a has a base material and a catalytic material attached to the surface of the base material.
  • the catalytic material has a support and a noble metal.
  • the carrier has a function of attaching a noble metal to the substrate.
  • the noble metal has a function of purifying exhaust gas. Examples of the noble metal include platinum, palladium, and rhodium that remove hydrocarbons, carbon monoxide, and nitrogen oxides, respectively.
  • the main catalyst 62a may be a metal base catalyst or a ceramic base catalyst.
  • the metal base catalyst is a catalyst whose base is made of metal.
  • the ceramic base catalyst is a catalyst whose base is made of ceramic.
  • the base material of the metal base catalyst is formed, for example, by alternately stacking and winding metal corrugated plates and metal flat plates.
  • the base material of the ceramic base catalyst is, for example, a honeycomb structure.
  • the central axis C3 of the catalyst part 62 is coaxial with the central axis of the main catalyst 62a.
  • the central axis C3 of the catalyst part 62 is the central axis of the cylinder part 62b.
  • the length of the catalyst portion 62 in the exhaust gas flow direction is the same as the length of the main catalyst 62a in the exhaust gas flow direction.
  • the center of the upstream end of the main catalyst 62a and the center of the upstream end of the catalyst unit 62 are at the same position.
  • the center of the downstream end of the main catalyst 62a and the center of the downstream end of the catalyst portion 62 are at the same position.
  • the length of the catalyst portion 62 in the exhaust gas flow direction is defined as a length Dc1 (not shown).
  • the maximum length in the direction orthogonal to the flow direction of the exhaust gas in the catalyst unit 62 is defined as a length Dc2 (not shown).
  • the length Dc1 is longer than the length Dc2.
  • a plane passing through the foremost end of the crankcase portion 20a and orthogonal to the front-rear direction is defined as a plane Se1.
  • a plane passing through the rearmost end of the crankcase portion 20a and orthogonal to the front-rear direction is defined as a plane Se2.
  • the catalyst unit 62 is disposed between the plane Se1 and the plane Se2.
  • a part of the catalyst portion 62 is disposed below the crankcase portion 20a when viewed in the left-right direction. Note that the entire catalyst portion 62 may be disposed below the crankcase portion 20a when viewed in the left-right direction.
  • a plane that passes through the leftmost end of the engine body 20 and is orthogonal to the left-right direction is defined as a plane Se3.
  • the plane Se3 passes through the leftmost end of the crankcase portion 20a.
  • a plane passing through the rightmost end of the engine body 20 and orthogonal to the left-right direction is defined as a plane Se4.
  • the plane Se4 passes through the rightmost end of the crankcase portion 20a.
  • the catalyst unit 62 is disposed between the plane Se3 and the plane Se4. Although not shown, the catalyst part 62 entirely overlaps the crankcase part 20a when viewed in the vertical direction.
  • the catalyst part 62 is disposed below the crankcase part 20a.
  • a part of the catalyst unit 62 is disposed below a part of the oil pan 26. Only a part of the catalyst part 62 may be disposed below the crankcase part 20a. It is preferable that at least a part of the catalyst portion 62 is disposed below the crankcase portion 20a.
  • a part of the catalyst portion 62 is disposed in front of the straight line La1. That is, a part of the catalyst unit 62 is disposed in front of the crank axis Cr.
  • the whole catalyst part 62 may be arrange
  • the catalyst unit 62 When viewed in the left-right direction, the catalyst unit 62 is disposed in front of the cylinder axis Cy. Note that only a part of the catalyst unit 62 may be disposed in front of the cylinder axis Cy. It is preferable that at least a part of the catalyst unit 62 is disposed in front of the cylinder axis Cy.
  • a straight line La2 is a straight line perpendicular to the cylinder axis Cy and passing through the crank axis Cr when viewed in the left-right direction.
  • the entire catalyst unit 62 When viewed in the left-right direction, the entire catalyst unit 62 is disposed behind (below) the straight line La2. Note that only a part of the catalyst portion 62 may be disposed behind the straight line La2 when viewed in the left-right direction. As viewed in the left-right direction, it is preferable that at least a part of the catalyst portion 62 is disposed behind the straight line La2.
  • the entire catalyst portion 62 When viewed in the left-right direction, the entire catalyst portion 62 is disposed below (behind) the straight line Lp.
  • the straight line Lp is an extension of the boundary line between the crankcase 21 and the oil pan 26 when the engine unit 11 is viewed in the left-right direction. Only a part of the catalyst unit 62 may be disposed below the straight line Lp. It is preferable that at least a part of the catalyst portion 62 is disposed below the straight line Lp.
  • the line segment Lw ⁇ b> 1 that is arranged at the lowest position among the line segments connecting the point on the contour line of the engine body 20 and the point on the contour line of the front wheel portion 2 when viewed in the left-right direction
  • the line segment Lw1 is a line segment that connects the lowermost end of the engine body 20 and the vicinity of the lowermost end of the front wheel portion 2.
  • a part of the catalyst portion 62 is disposed above the line segment Lw1 and its extension line.
  • the line segment arranged at the uppermost position among the line segments connecting the points on the contour line of the engine body 20 and the points on the contour line of the front wheel portion 2 when viewed in the left-right direction is defined as a line segment Lw2.
  • the line segment Lw2 is a line segment that connects the uppermost end of the engine body 20 and the uppermost end of the front wheel portion 2 or the vicinity thereof.
  • a part of the catalyst unit 62 is disposed in a rectangular area having two lines Lw1 and Lw2.
  • the quadrangle having the line segment Lw1 and the line segment Lw2 as two sides is a quadrangle having vertices at both ends of the line segment Lw1 and both ends of the line segment Lw2.
  • a part of the catalyst unit 62 is disposed within the above-described rectangular region and does not overlap the engine body 20.
  • the relative position of the engine unit 11 with respect to the front wheel portion 2 changes.
  • the catalyst portion 62 When at least a part of the catalyst portion 62 is disposed between the engine body 20 and the front wheel portion 2 when viewed in the left-right direction, it is disposed regardless of the position of the engine unit 11 with respect to the front wheel portion 2. It does not mean that When at least a part of the catalyst portion 62 is disposed between the engine body 20 and the front wheel portion 2 when viewed in the left-right direction, it is disposed when the engine unit 11 is in any position with respect to the front wheel portion 2. It should be.
  • a horizontal plane passing through the center of the front wheel portion 2 is defined as a horizontal plane Sh.
  • the catalyst unit 62 is disposed below the horizontal plane Sh.
  • the catalyst portion 62 is disposed below the horizontal plane Sh as long as the engine unit 11 is located at any position with respect to the front wheel portion 2.
  • the catalyst unit 62 is disposed on the right side of the motorcycle 1.
  • the center of the upstream end and the center of the downstream end of the catalyst unit 62 are not arranged on the center C0 in the left-right direction of the motorcycle 1.
  • the center of the upstream end and the center of the downstream end of the catalyst unit 62 are located to the right of the center C0 in the left-right direction of the motorcycle 1.
  • the catalyst unit 62 is disposed to the right of the center C0 in the left-right direction of the motorcycle 1.
  • a part of the catalyst unit 62 is disposed on the right side of the center C0 in the left-right direction of the motorcycle 1, and the remaining part of the catalyst unit 62 is on the left side of the center C0 in the left-right direction of the motorcycle 1. It may be arranged.
  • the average value of the path length from the combustion chamber 30 to the upstream end of the catalyst unit 62 in the three exhaust paths 69 is defined as a path length Da1.
  • a path length from the downstream end of the catalyst unit 62 to the atmospheric discharge port 67a is defined as a path length Db1.
  • the path length Da1 is shorter than the path length Db1.
  • the average value of the path length from the exhaust port 34b to the upstream end of the catalyst unit 62 in the three exhaust paths 69 is defined as a path length Da2.
  • a path length from the downstream end of the catalyst unit 62 to the upstream end of the muffler unit 67 is defined as a path length Db2.
  • the path length Da1 is longer than the path length Db2.
  • the path length Da2 is longer than the path length Db2.
  • the path length Da2 may be shorter than the path length Db2.
  • the path length Da1 may be shorter than the path length Db2.
  • the path length in the expansion chamber of the muffler part 67 is defined as follows.
  • the path length in the first expansion chamber 80a from the downstream end of the first pipe 81 to the upstream end of the second pipe 82 is taken as an example.
  • This path length is the length of the path that connects the center of the downstream end of the first pipe 81 to the center of the upstream end of the second pipe 82 in the shortest distance. That is, the path length in the expansion chamber of the muffler portion 67 is the length of the path that connects the center of the inflow port of the expansion chamber to the center of the outflow port of the expansion chamber in the shortest distance.
  • the exhaust device 60 includes an upstream oxygen sensor 76 and a downstream oxygen sensor 77.
  • the upstream oxygen sensor 76 is provided in the upstream exhaust passage portion 61. That is, the upstream oxygen sensor 76 is provided upstream of the catalyst unit 62.
  • the upstream oxygen sensor 76 is provided in the upstream collecting exhaust passage portion 65.
  • the upstream oxygen sensor 76 may be provided in at least one of the three independent exhaust passage portions 64. Further, the upstream oxygen sensor 76 may be provided in at least one of the three internal exhaust passage portions 34.
  • the upstream oxygen sensor 76 is provided upstream from the bent portion 65a.
  • the upstream oxygen sensor 76 may be provided downstream from the bent portion 65a.
  • the upstream oxygen sensor 76 detects the oxygen concentration in the exhaust gas in the upstream exhaust passage 61.
  • the upstream oxygen sensor 76 outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas.
  • the upstream oxygen sensor 76 outputs a signal having a high voltage value when the air-fuel ratio of the air-fuel mixture is rich, and outputs a signal having a low voltage value when the air-fuel ratio is lean.
  • the rich state refers to a state where fuel is excessive with respect to the target air-fuel ratio.
  • the lean state is a state where air is excessive with respect to the target air-fuel ratio. That is, the upstream oxygen sensor 76 detects whether the air-fuel ratio of the air-fuel mixture is in a rich state or a lean state.
  • the upstream oxygen sensor 76 may be a linear A / F sensor.
  • the linear A / F sensor outputs a linear detection signal corresponding to the oxygen concentration of the exhaust gas. In other words, the linear A / F sensor continuously detects a change in oxygen concentration in the exhaust gas.
  • the upstream oxygen sensor 76 has a sensor element portion made of a solid electrolyte body mainly composed of zirconia.
  • the upstream oxygen sensor 76 can detect the oxygen concentration when the sensor element unit is heated to a high temperature and is activated.
  • the upstream oxygen sensor 76 may incorporate a heater. When the engine unit 11 is cold started, the sensor element portion is heated by the heater. Thereby, the time until the sensor element unit is activated from the inactive state can be shortened.
  • the cold start of the engine unit 11 is to start the engine unit 11 in a state where the temperature of the engine main body 20 is outside air temperature or lower.
  • the upstream oxygen sensor 76 is provided on the right side of the upstream collecting exhaust passage portion 65. As shown in FIG. 12, the upstream oxygen sensor 76 is provided in the recess 65 b of the upstream collecting exhaust passage portion 65. The distal end portion of the upstream oxygen sensor 76 is disposed in the upstream collecting exhaust passage portion 65. By providing the upstream oxygen sensor 76 in the recess 65 b, the tip of the upstream oxygen sensor 76 can be brought closer to the central axis of the upstream collecting exhaust passage portion 65. Thereby, the upstream oxygen sensor 76 can detect the exhaust gas discharged from the three independent exhaust passage portions 64 without any deviation. As shown in FIG.
  • the upstream oxygen sensor 76 overlaps with the catalyst unit 62 when viewed in the flow direction of the exhaust gas passing through the catalyst unit 62.
  • the upstream oxygen sensor 76 is disposed above the lowermost end of the catalyst unit 62.
  • the upstream oxygen sensor 76 is disposed in front of the engine body 20 when viewed in the left-right direction.
  • the upstream oxygen sensor 76 is disposed in front of the crankcase portion 20a.
  • the upstream oxygen sensor 76 is disposed below the engine body 20.
  • the upstream oxygen sensor 76 is disposed below the crankcase portion 20a.
  • the upstream oxygen sensor 76 When viewed in the left-right direction, the upstream oxygen sensor 76 is disposed between the plane Se1 and the plane Se2. The upstream oxygen sensor 76 is disposed in front of the oil pan 26. A part of the upstream oxygen sensor 76 overlaps the oil pan 26 when viewed in the front-rear direction. A part of the upstream oxygen sensor 76 is disposed in front of the oil pan 26.
  • the average value of the path length from the exhaust port 34b to the upstream oxygen sensor 76 in the three exhaust paths 69 is defined as a path length Da3.
  • a path length from the upstream oxygen sensor 76 to the upstream end of the catalyst unit 62 is defined as a path length Da4.
  • the path length Da3 is longer than the path length Da4.
  • the path length Da3 may be shorter than the path length Da4.
  • the downstream oxygen sensor 77 is provided in the downstream collecting exhaust passage 63. That is, the downstream oxygen sensor 77 is provided downstream of the catalyst unit 62. The downstream oxygen sensor 77 is provided in the downstream exhaust passage portion 66. The downstream oxygen sensor 77 may be provided in the muffler portion 67. The downstream oxygen sensor 77 detects the oxygen concentration in the exhaust gas in the downstream exhaust passage portion 66. The specific configuration of the downstream oxygen sensor 77 is the same as that of the upstream oxygen sensor 76.
  • the downstream oxygen sensor 77 may be a linear A / F sensor.
  • the downstream oxygen sensor 77 may incorporate a heater.
  • the downstream oxygen sensor 77 is provided on the right side of the downstream exhaust passage portion 66.
  • the distal end portion of the downstream oxygen sensor 77 is disposed in the downstream exhaust passage portion 66.
  • a part of the downstream oxygen sensor 77 overlaps with the catalyst unit 62 when viewed in the flow direction of the exhaust gas passing through the catalyst unit 62.
  • the downstream oxygen sensor 77 is disposed above the lowermost end of the catalyst unit 62.
  • the downstream oxygen sensor 77 is disposed below the engine body 20 when viewed in the left-right direction. When viewed in the left-right direction, the downstream oxygen sensor 77 is disposed below the crankcase portion 20a.
  • the downstream oxygen sensor 77 When viewed in the left-right direction, the downstream oxygen sensor 77 is disposed between the plane Se1 and the plane Se2. Although not shown, at least a part of the downstream oxygen sensor 77 overlaps with the crankcase portion 20a when viewed in the vertical direction. At least a part of the downstream oxygen sensor 77 is disposed below the crankcase portion 20a. At least a part of the downstream oxygen sensor 77 is disposed below the oil pan 26.
  • the path length from the downstream end of the catalyst unit 62 to the downstream oxygen sensor 77 is defined as a path length Db3.
  • a path length from the downstream oxygen sensor 77 to the atmospheric discharge port 67a is defined as a path length Db4.
  • the path length Db3 is shorter than the path length Db4.
  • the path length Db3 may be longer than the path length Db4.
  • the engine unit 11 includes an ECU 90 (Electronic Control Unit) as a control device that controls the operation of the engine unit 11.
  • the ECU 90 is connected to various sensors 71-77.
  • the ECU 90 is connected to the ignition coil 32, the injector 54, the fuel pump 93, a starter motor (not shown), the display device 14, and the like.
  • the ECU 90 controls the operation of the fuel pump 93 and the injector 54 based on signals from the sensors 71 to 76 and the like. Thereby, the ECU 90 controls the fuel injection amount and the fuel injection timing.
  • the ECU 90 may or may not use the signal from the downstream oxygen sensor 77 for controlling the fuel injection amount and the fuel injection timing.
  • the ECU 90 controls energization to the ignition coil 32 based on signals from the sensors 71 to 76 and the like. Thereby, the ignition timing is controlled.
  • the ignition timing is the discharge timing of the spark plug 31.
  • the ECU 90 may or may not use the signal of the downstream oxygen sensor 77 for controlling the ignition timing. Further, the ECU 90 controls energization to a starter motor (not shown), thereby controlling the start of the engine unit 11.
  • the ECU90 may be comprised with one apparatus, and may be comprised with the several apparatus arrange
  • the ECU 90 includes a CPU, ROM, RAM, and the like.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM. Thereby, each function of a plurality of function processing parts is realized in ECU90.
  • the ECU 90 includes a fuel injection amount control unit 91, a catalyst deterioration determination unit 92, and the like as function processing units.
  • the fuel injection amount control unit 91 controls the fuel injection amount of the injector 54. More specifically, the fuel injection amount control unit 91 controls the fuel injection time by the injector 54.
  • the fuel injection amount is also referred to as a fuel supply amount.
  • the air-fuel ratio of the air-fuel mixture is preferably the stoichiometric air-fuel ratio (stoichiometry).
  • the fuel injection amount control unit 91 increases or decreases the fuel injection amount as necessary.
  • the fuel injection amount control unit 91 first calculates a basic fuel injection amount based on signals from the engine rotation speed sensor 71, the intake pressure sensor 74, the throttle opening sensor 73, and the engine temperature sensor 72. Specifically, the intake air amount is calculated using the following two maps.
  • the first map is a map in which the intake air amount is associated with the throttle opening and the engine speed.
  • the second map is a map in which the intake air amount is associated with the intake pressure and the engine speed.
  • the basic fuel injection amount that can achieve the target air-fuel ratio is determined.
  • the throttle opening is small, a map in which the intake air amount is associated with the intake pressure and the engine speed is used.
  • the throttle opening is large, a map in which the intake air amount is associated with the throttle opening and the engine speed is used.
  • the fuel injection amount control unit 91 calculates a feedback correction value for correcting the basic fuel injection amount based on the signal from the upstream oxygen sensor 76. Specifically, first, based on the signal from the upstream oxygen sensor 76, it is determined whether the air-fuel mixture is in a lean state or a rich state. When determining that the air-fuel mixture is in the lean state, the fuel injection amount control unit 91 calculates a feedback correction value so that the next fuel injection amount increases. On the other hand, when determining that the air-fuel mixture is in the rich state, the fuel injection amount control unit 91 obtains a feedback correction value so that the next fuel injection amount is reduced.
  • the fuel injection amount control unit 91 calculates a correction value for correcting the basic fuel injection amount based on the engine temperature, the outside air temperature, the outside air pressure, and the like. Further, the fuel injection amount control unit 91 calculates a correction value according to the transient characteristics during acceleration / deceleration. The fuel injection amount control unit 91 calculates the fuel injection amount based on the basic fuel injection amount and a correction value such as a feedback correction value. Based on the fuel injection amount thus obtained, the fuel pump and injector 54 are driven, and fuel is injected from the injector 54.
  • the fuel injection amount control unit 91 may control the fuel injection amount based on the signal from the upstream oxygen sensor 76 and the signal from the downstream oxygen sensor 77. Specifically, the fuel injection amount control unit 91 may correct the basic fuel injection amount based on the signal from the upstream oxygen sensor 76 and the signal from the downstream oxygen sensor 77. More specifically, first, the basic fuel injection amount is corrected based on the signal from the upstream oxygen sensor 76 as in the above embodiment. The fuel is injected from the injector 54 with the calculated fuel injection amount. The downstream oxygen sensor 77 detects the exhaust gas generated by the combustion of the fuel. Then, the basic fuel injection amount is corrected based on the signal from the downstream oxygen sensor 77. Thereby, the deviation of the air-fuel ratio of the air-fuel mixture with respect to the target air-fuel ratio can be further reduced.
  • the catalyst deterioration determination unit 92 determines the purification ability of the main catalyst 62a based on the signal from the downstream oxygen sensor 77. Specifically, for example, the fuel injection amount control unit 91 controls the fuel injection amount so that the air-fuel mixture repeats a rich state and a lean state for a certain period (for example, several seconds). Then, the catalyst deterioration determination unit 92 determines the purification ability of the main catalyst 62a based on the degree of delay in the change in the signal of the downstream oxygen sensor 77 with respect to the change in the fuel injection amount. When the delay of this change is large, the catalyst deterioration determination unit 92 determines that the purification capacity of the main catalyst 62a has decreased from a predetermined level.
  • the catalyst deterioration determination unit 92 detects deterioration of the main catalyst 62a
  • a signal is sent from the ECU 90 to the display device 14.
  • a warning lamp (not shown) of the display device 14 is turned on.
  • the rider can be urged to replace the main catalyst 62a.
  • the notification means for notifying the rider of the deterioration of the main catalyst 62a is not limited to a warning light. Characters for prompting replacement may be displayed on the liquid crystal screen of the display device 14. Further, the rider may be notified by a device that generates sound and vibration.
  • the catalyst deterioration determination unit 92 may determine the purification capacity of the main catalyst 62a based on the signal from the upstream oxygen sensor 76 and the signal from the downstream oxygen sensor 77. For example, the catalyst deterioration determination unit 92 may determine the purification capability of the main catalyst 62a by comparing the change in the signal from the upstream oxygen sensor 76 with the change in the signal from the downstream oxygen sensor 77. By using the signals of the two oxygen sensors 76 and 77, the degree of deterioration of the main catalyst 62a can be detected with higher accuracy.
  • the ECU 90 may perform only one of the following two processes or both.
  • the first processing is control of the fuel injection amount based on signals from the upstream oxygen sensor 76 and the downstream oxygen sensor 77.
  • the second process is determination of the purification capability of the main catalyst 62a based on at least the signal from the downstream oxygen sensor 77.
  • the fuel injection amount control unit 91 controls the fuel injection amount based on the signals from the upstream oxygen sensor 76 and the downstream oxygen sensor 77, the ECU 90 does not have to include the catalyst deterioration determination unit 92.
  • the motorcycle 1 of the present embodiment described above has the following characteristics.
  • the ECU 90 determines the purification capacity of the main catalyst 62a based on the signal from the downstream oxygen sensor 77.
  • the display device 14 gives a notification. Accordingly, it is possible to prompt the rider to replace the main catalyst 62a before the deterioration of the main catalyst 62a reaches a predetermined level.
  • the initial performance of the exhaust purification of the motorcycle 1 can be maintained for a longer period by using the plurality of main catalysts 62a.
  • the signal from the upstream oxygen sensor 76 can be used to detect the deterioration of the main catalyst 62a.
  • the degree of deterioration of the main catalyst 62a can be detected with higher accuracy. Therefore, one main catalyst 62a can be used for a longer period of time compared to the case where the deterioration of the main catalyst 62a is detected using only the signal of the downstream oxygen sensor 77. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period by using the plurality of main catalysts 62a.
  • the ECU 90 controls the fuel supply amounts of the plurality of injectors 54 based on the signal from the upstream oxygen sensor 76 and the signal from the downstream oxygen sensor 77.
  • the actual purification capacity of the main catalyst 62a can be detected. Therefore, by performing the combustion control based on the signals from the two oxygen sensors 76 and 77, the accuracy of the fuel control can be improved as compared with the case where the fuel control is performed based only on the signal from the upstream oxygen sensor 76. Thereby, the progress of the deterioration of the main catalyst 62a can be delayed. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • the initial performance of the exhaust purification of the motorcycle 1 can be maintained for a longer period without increasing the size of the main catalyst 62a. Therefore, despite the fact that at least a part of the catalyst portion 62 is disposed below the crankcase portion 20a, the initial performance of the motorcycle 1 for exhaust gas purification is maintained for a long time, while the motorcycle 1 is in the vertical direction. Increase in size can be suppressed.
  • the upstream oxygen sensor 76 is located above the lowermost end of the catalyst unit 62.
  • the cross-sectional area A1 is an area of a cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • the cross-sectional area A2 is an area of a cross section orthogonal to the flow direction of the exhaust gas in the catalyst unit 62.
  • the cross-sectional area A1 is smaller than the cross-sectional area A2. Therefore, it is easy to secure a space around the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • the upstream oxygen sensor 76 can be arranged using this space.
  • the catalyst unit 62 is disposed so that the flow direction of the exhaust gas flowing through the catalyst unit 62 is aligned with the horizontal direction. Therefore, by arranging the upstream oxygen sensor 76 using this space, the upstream oxygen sensor 76 can be arranged to be positioned above the lowermost end of the catalyst unit 62. Therefore, upsizing of the motorcycle 1 in the vertical direction can be suppressed while the upstream oxygen sensor 76 is disposed upstream of the catalyst unit 62.
  • the downstream oxygen sensor 77 is located above the lowermost end of the catalyst unit 62.
  • the cross-sectional area A1 is an area of a cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • the cross-sectional area A3 is an area of a cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the upstream end of the downstream collective exhaust passage portion 63.
  • the cross-sectional area A3 is smaller than the cross-sectional area A2. Therefore, it is easy to secure a space around the vicinity of the upstream end of the downstream collecting exhaust passage portion 63.
  • the downstream oxygen sensor 77 can be arranged using this space.
  • the catalyst unit 62 is disposed so that the flow direction of the exhaust gas flowing through the catalyst unit 62 is aligned with the horizontal direction. Therefore, by arranging the downstream oxygen sensor 77 using this space, the downstream oxygen sensor 77 can be disposed above the lowermost end of the catalyst unit 62. Therefore, it is possible to suppress an increase in the size of the motorcycle 1 in the vertical direction while disposing the downstream oxygen sensor 77 downstream of the catalyst unit 62.
  • the catalyst portion 62 is provided downstream of the upstream collective exhaust passage portion 65 to which a plurality of independent exhaust passage portions 64 are connected. Therefore, the number of main catalysts 62a can be reduced as compared with the case where the main catalyst 62a is provided for each independent exhaust passage portion 64. Thereby, the upsizing of the motorcycle 1 in the vertical direction can be suppressed.
  • the upstream oxygen sensor 76 is provided in the upstream collecting exhaust passage portion 65. Therefore, the number of upstream oxygen sensors 76 can be reduced as compared with the case where the upstream oxygen sensors 76 are provided for each independent exhaust passage portion 64. Thereby, the upsizing of the motorcycle 1 in the vertical direction can be suppressed.
  • the cross-sectional area A3 is smaller than the cross-sectional area A2. Therefore, it is easy to secure a space around the vicinity of the upstream end of the downstream collecting exhaust passage portion 63.
  • the downstream oxygen sensor 77 overlaps with the catalyst unit 62. That is, the downstream oxygen sensor 77 is arranged using the space around the vicinity of the upstream end of the downstream collecting exhaust passage portion 63. Therefore, the vertical size increase of the motorcycle 1 can be suppressed while the downstream oxygen sensor 77 is disposed downstream of the catalyst unit 62.
  • the downstream oxygen sensor 77 When viewed in the flow direction of the exhaust gas passing through the catalyst unit 62, at least a part of the downstream oxygen sensor 77 overlaps with the catalyst unit 62. Therefore, the downstream oxygen sensor 77 is disposed at a position close to the catalyst unit 62. Thereby, the oxygen concentration detected by the downstream oxygen sensor 77 is close to the oxygen concentration of the exhaust gas at the time of passing through the downstream end of the main catalyst 62a. Therefore, the accuracy of control using the downstream oxygen sensor 77 can be further improved. That is, when detecting deterioration of the main catalyst 62a based on the signal of the downstream oxygen sensor 77, the detection accuracy of deterioration can be improved. Therefore, one main catalyst 62a can be used for a longer period.
  • the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period by using the plurality of main catalysts 62a. Further, when the fuel control is performed based on the signals of the upstream oxygen sensor 76 and the downstream oxygen sensor 77, the accuracy of the fuel control can be further improved. As a result, the progress of the deterioration of the main catalyst 62a can be further delayed. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • the cross-sectional area A1 is smaller than the cross-sectional area A2. Therefore, it is easy to secure a space around the vicinity of the downstream end of the upstream collective exhaust passage portion 65.
  • the upstream oxygen sensor 76 overlaps with the catalyst unit 62. That is, the upstream oxygen sensor 76 is disposed using the space around the vicinity of the downstream end of the upstream collecting exhaust passage portion 65. Therefore, the upsizing of the motorcycle 1 can be suppressed while the upstream oxygen sensor 76 is disposed upstream of the catalyst unit 62.
  • the upstream oxygen sensor 76 When viewed in the flow direction of the exhaust gas passing through the catalyst unit 62, at least a part of the upstream oxygen sensor 76 overlaps the catalyst unit 62. Therefore, the upstream oxygen sensor 76 is disposed at a position close to the catalyst unit 62. Thereby, the oxygen concentration detected by the upstream oxygen sensor 76 is close to the oxygen concentration of the exhaust gas at the time of passing through the upstream end of the main catalyst 62a. Therefore, the accuracy of control using the upstream oxygen sensor 76 can be further improved. That is, the accuracy of fuel control based on at least the signal from the upstream oxygen sensor 76 can be further improved. As a result, the progress of the deterioration of the main catalyst 62a can be further delayed. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • the downstream oxygen sensor 77 is provided in the downstream exhaust passage portion 66. Therefore, compared to the case where the downstream oxygen sensor 77 is provided in the muffler portion 67, the path length Da1 from the combustion chamber 30 to the catalyst portion 62 is shortened. Therefore, the temperature of the exhaust gas flowing into the main catalyst 62a becomes high. Thereby, when the engine unit 11 is cold started, the time until the main catalyst 62a is activated from the inactive state is shortened. As a result, the exhaust purification performance by the main catalyst 62a can be improved.
  • At least a part of the downstream oxygen sensor 77 is disposed below the crankcase portion 20a.
  • the downstream oxygen sensor 77 is disposed downstream from the catalyst unit 62. Therefore, at least a part of the catalyst part 62 is disposed below the crankcase part 20a, and the whole is arranged in front of the rear end of the crankcase part 20a. Therefore, the path length Da1 from the combustion chamber 30 to the catalyst part 62 is shorter than when a part of the catalyst part 62 is arranged behind the rear end of the crankcase part 20a. Therefore, the temperature of the exhaust gas flowing into the main catalyst 62a becomes higher. Thereby, when the engine unit 11 is cold started, the time until the main catalyst 62a is activated from the inactive state is shortened. As a result, the exhaust purification performance by the main catalyst 62a can be improved.
  • the crankcase part 20a has an oil pan 26 at the lower part thereof. At least a part of the downstream oxygen sensor 77 is disposed below the oil pan 26. Therefore, at least a part of the catalyst part 62 is disposed below the crankcase part 20a and forward of the rear end of the oil pan 26 as viewed in the left-right direction. Therefore, the path length Da1 from the combustion chamber 30 to the catalyst unit 62 is shorter than when a part of the catalyst unit 62 is disposed behind the rear end of the oil pan 26. Therefore, the temperature of the exhaust gas flowing into the main catalyst 62a becomes higher. Thereby, when the engine unit 11 is cold started, the time until the main catalyst 62a is activated from the inactive state is further shortened. As a result, the exhaust purification performance by the main catalyst 62a can be further improved.
  • the upstream oxygen sensor 76 is disposed in front of the oil pan 26.
  • the upstream oxygen sensor 76 is disposed upstream of the catalyst unit 62. Therefore, the catalyst unit 62 can be disposed further forward than when a part of the upstream oxygen sensor 76 is disposed behind the oil pan 26. Therefore, the path length Da1 from the combustion chamber 30 to the catalyst unit 62 is shortened. Therefore, the temperature of the exhaust gas flowing into the main catalyst 62a becomes higher. Thereby, when the engine unit 11 is cold started, the time until the main catalyst 62a is activated from the inactive state is further shortened. As a result, the exhaust purification performance by the main catalyst 62a can be further improved.
  • the engine body 20 is arranged such that a plurality of cylinder holes 22a are adjacent to each other in the left-right direction. Thereby, the dispersion
  • the exhaust gas at the time of discharge from the combustion chamber 30 includes gaseous unburned fuel and oxygen. The exhaust gas moves while continuing to oxidize the unburned fuel in the exhaust path. As the oxidation proceeds, the oxygen concentration in the exhaust gas decreases.
  • the variation in the oxygen concentration of the exhaust gas discharged from the plurality of independent exhaust passage portions 64 can be reduced. Therefore, it is possible to prevent the oxygen concentration detected by the upstream oxygen sensor 76 from becoming unstable.
  • the accuracy of fuel control based on the upstream oxygen sensor 76 can be increased.
  • the progress of the deterioration of the main catalyst 62a can be further delayed. Therefore, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • the engine body 20 is arranged such that the central axis Cy of the plurality of cylinder holes 22a is along the vertical direction. Thereby, the path length Da1 from the combustion chamber 30 to the catalyst part 62 can be ensured appropriately. If the path length Da1 from the combustion chamber 30 to the catalyst unit 62 is too short, the temperature of the exhaust gas flowing into the main catalyst 62a may become too high. As a result, the main catalyst 62a may be deteriorated due to overheating. By appropriately securing the path length from the combustion chamber 30 to the catalyst unit 62, it is possible to prevent deterioration due to overheating of the main catalyst 62a. As a result, the initial performance of exhaust purification of the motorcycle 1 can be maintained for a longer period.
  • At least a part of the catalyst unit 62 is disposed in front of the crank axis Cr. Therefore, the catalyst part 62 can be arranged further forward than the case where the catalyst part 62 is arranged behind the crank axis Cr. Therefore, the path length Da1 from the combustion chamber 30 to the catalyst unit 62 is shortened. Therefore, the temperature of the exhaust gas flowing into the main catalyst 62a becomes higher. Thereby, when the engine unit 11 is cold started, the time until the main catalyst 62a is activated from the inactive state is further shortened. As a result, the exhaust purification performance by the main catalyst 62a can be further improved.
  • the flow direction of the exhaust gas is a direction along the horizontal direction. If such a catalyst portion 62 is arranged in front of the straight line La2 and the separation distance in the front-rear direction between the catalyst portion 62 and the front wheel portion 2 is to be secured, the motorcycle 1 increases in size in the front-rear direction. Therefore, when viewed in the left-right direction, at least a part of the catalyst portion 62 is disposed behind the straight line La2, thereby preventing the motorcycle 1 from increasing in size in the front-rear direction.
  • FIG. 13 is a right side view of a part of the engine unit of Modification 1 of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the engine unit of Modification 1 has a downstream sub-catalyst 47D and an upstream sub-catalyst 47U.
  • the upstream sub-catalyst 47U and the downstream sub-catalyst 47D may be collectively referred to as a sub-catalyst 47 (not shown).
  • the upstream sub-catalyst 47U is disposed upstream of the catalyst unit 62.
  • the upstream sub catalyst 47U is disposed in the upstream exhaust passage portion 61.
  • the upstream sub-catalyst 47U is disposed in at least one of the plurality of independent exhaust passage portions 64.
  • the upstream sub-catalyst 47U may be disposed in the upstream collective exhaust passage portion 65. Further, the upstream sub-catalyst 47U may be disposed in at least one of the plurality of internal exhaust passage portions 34.
  • the upstream sub catalyst 47U is disposed upstream of the upstream oxygen sensor 76.
  • the upstream sub catalyst 47U is disposed upstream of the bent portion 65a.
  • the downstream sub-catalyst 47D is disposed downstream of the catalyst unit 62.
  • the downstream sub-catalyst 47D is disposed in the downstream collective exhaust passage portion 63.
  • the downstream sub-catalyst 47 ⁇ / b> D is disposed in the muffler portion 67.
  • the downstream sub-catalyst 47D may be disposed in the downstream exhaust passage portion 66.
  • the downstream sub-catalyst 47 ⁇ / b> D is disposed downstream of the downstream oxygen sensor 77.
  • the sub catalyst 47 purifies the exhaust gas.
  • the sub catalyst 47 has the same catalyst material as the main catalyst 62a.
  • the sub catalyst 47 may have a porous structure like the main catalyst 62a.
  • the sub catalyst 47 may not have a porous structure.
  • An example of the subcatalyst 47 having no porous structure will be given.
  • the sub-catalyst 47 is composed of only the catalyst material attached to the inner surface of the downstream collecting exhaust passage portion 63. In this case, the base material to which the catalyst material of the sub catalyst 47 is attached is the downstream collective exhaust passage portion 63. Another example of the sub-catalyst 47 having no porous structure will be given.
  • the sub-catalyst 47 has a configuration in which a catalytic substance is attached to a plate-like base material.
  • the cross-sectional shape orthogonal to the flow direction of the exhaust gas of the plate-like substrate is, for example, a circular shape, a C shape, or an S shape.
  • the main catalyst 62a purifies the exhaust gas most in the plurality of exhaust passages 69. That is, the main catalyst 62 a purifies the exhaust gas discharged from the combustion chamber 30 in the plurality of exhaust passages 69 rather than the sub catalyst 47. In other words, the sub catalyst 47 has a lower contribution to purify the exhaust gas than the main catalyst 62a.
  • the respective purification contributions of the main catalyst 62a, the upstream sub-catalyst 47U, and the downstream sub-catalyst 47D can be measured by the following method.
  • the engine unit of the first modification is operated, and the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 67a in the warm-up state is measured.
  • the warm-up state refers to a state where the temperature of the engine body 20 is sufficiently warmed.
  • the exhaust gas measurement method shall be in accordance with European regulations.
  • the downstream sub-catalyst 47D is removed from the engine unit of the first modification, and only the base material of the downstream sub-catalyst 47D is disposed instead.
  • the engine unit in this state is referred to as a measurement engine unit A.
  • the measurement engine unit A is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 67a in the warm-up state.
  • the downstream sub-catalyst 47D may have a configuration in which a catalytic substance is directly attached to the inner surface of the downstream collecting exhaust passage portion 63.
  • “disposing only the base material of the downstream sub-catalyst 47 ⁇ / b> D” means that the catalytic material is not attached to the inner surface of the downstream collecting exhaust passage portion 63.
  • the main catalyst 62a is removed from the measurement engine unit A, and only the base material of the main catalyst 62a is disposed instead.
  • the engine unit in this state is referred to as a measurement engine unit B.
  • the measurement engine unit B is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 67a in the warm-up state.
  • the upstream sub-catalyst 47U is removed from the measurement engine unit B, and instead, only the base material of the upstream sub-catalyst 47U is disposed.
  • the engine unit in this state is referred to as a measurement engine unit C.
  • the measurement engine unit C is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 67a in the warm-up state.
  • the engine unit C for measurement does not have the main catalyst 62a and the sub catalyst 47.
  • the measurement engine unit B includes an upstream sub-catalyst 47U and does not include the main catalyst 62a and the downstream sub-catalyst 47D.
  • the measurement engine unit A has a main catalyst 62a and an upstream sub catalyst 47U, and does not have a downstream sub catalyst 47D. Therefore, the degree of contribution of the purification of the downstream sub-catalyst 47D is calculated from the difference between the measurement result of the engine unit of Modification 1 and the measurement result of the measurement engine unit A. Further, from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B, the contribution of purification of the main catalyst 62a is calculated. Further, from the difference between the measurement result of the measurement engine unit B and the measurement result of the measurement engine unit C, the contribution of the purification of the upstream sub-catalyst 47U is calculated.
  • the main catalyst 62a most purifies the exhaust gas in the plurality of exhaust passages 69. If this condition is satisfied, the purification capacity of the sub catalyst 47 may be smaller or larger than the purification capacity of the main catalyst 62a. Note that the purification capability of the sub-catalyst 47 is smaller than the purification capability of the main catalyst 62a means the following state. That is, the exhaust gas discharged from the atmospheric discharge port 67a when only the sub-catalyst is provided is more purified than the exhaust gas discharged from the atmospheric discharge port 67a when only the main catalyst 62a is provided.
  • the upstream catalyst deteriorates faster than the downstream catalyst. For this reason, when the usage time becomes longer, the magnitude relationship between the contributions of the purification of the main catalyst 62a and the downstream sub-catalyst 47D may be reversed. Therefore, the main catalyst 62a has a higher contribution of purification than the downstream sub-catalyst 47D in the following state. That is, when the travel distance has not reached a predetermined distance (for example, 1000 km), the main catalyst 62a is in a state where the contribution of purification is higher than that of the downstream sub-catalyst 47D.
  • a predetermined distance for example, 1000 km
  • the volume of the main catalyst 62a is preferably larger than the volume of the sub catalyst 47.
  • the surface area of the main catalyst 62 a is preferably larger than the surface area of the sub catalyst 47.
  • the amount of the noble metal of the main catalyst 62a is preferably larger than the amount of the noble metal of the sub catalyst.
  • the engine unit may include only one of the upstream sub-catalyst 47U and the downstream sub-catalyst 47D.
  • the contribution degree of purification can be calculated by a method applying the above-described method.
  • the initial performance of the vehicle exhaust purification can be maintained for a longer period.
  • the main catalyst 62a can be made small while maintaining the exhaust purification performance as compared with the case where the sub catalyst 47 is not provided. Therefore, it is possible to further suppress the vertical size increase of the vehicle while maintaining the initial performance of the vehicle exhaust purification for a longer period.
  • FIG. 14 is a right side view of a part of the engine unit of Modification 2 of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the engine unit of Modification 2 has a turbocharger 230.
  • the turbocharger 230 includes a turbine wheel 230a, a compressor wheel 230b, and a connecting shaft 230c.
  • the turbine wheel 230a is connected to the compressor wheel 230b via a connecting shaft 230c.
  • the turbine wheel 230a is disposed in the upstream collective exhaust passage portion 265.
  • the upstream collective exhaust passage portion 265 is connected to the downstream ends of the three independent exhaust passage portions 264.
  • the upstream collective exhaust passage portion 265 and the independent exhaust passage portion 264 are provided in place of the upstream collective exhaust passage portion 65 and the independent exhaust passage portion 64 of the first embodiment.
  • the compressor wheel 230 b is disposed in the intake passage portion 252.
  • the intake passage portion 252 is provided in place of the intake passage portion 52 of the first embodiment.
  • the connecting shaft 230 c is accommodated in the center housing part 231.
  • the center housing portion 231 is connected to the upstream collective exhaust passage portion 265 and the intake passage portion 252.
  • the connecting shaft 230c is rotatably supported by the center housing portion 231.
  • the upstream collective exhaust passage portion 265 has a scroll exhaust passage portion 265s.
  • the scroll exhaust passage portion 265s is formed so as to surround the outer periphery of the turbine wheel 230a.
  • the intake passage portion 252 has a scroll intake passage portion 252s.
  • the scroll intake passage portion 252s is formed so as to surround the outer periphery of the compressor wheel 230b.
  • the exhaust gas in the scroll exhaust passage portion 265s is blown to the outer peripheral portion of the turbine wheel 230a.
  • the turbine wheel 230a rotates.
  • the exhaust gas blown to the outer peripheral portion of the turbine wheel 230a is discharged from the turbine wheel 230a in the direction of the central axis of the connecting shaft 230c.
  • the compressor wheel 230b rotates with the rotation of the turbine wheel 230a.
  • the compressor wheel 230b sucks air in the direction of the central axis of the connecting shaft 230c.
  • the sucked air is compressed by the compressor wheel 230b.
  • the compressed air is discharged from the outer peripheral portion of the compressor wheel 230b to the scroll intake passage portion 252s.
  • the turbocharger 230 by providing the turbocharger 230, compressed air is supplied to the combustion chamber 30. Thereby, the intake efficiency is improved. As a result, the engine output can be improved. Further, since the compressed air is supplied to the combustion chamber 30, the displacement of the engine body 20 can be reduced. Thereby, fuel consumption can be improved. Moreover, the engine main body 20 can be reduced in size. Therefore, the upsizing of the vehicle can be further suppressed.
  • the scroll exhaust passage portion 265s shown in FIG. 15 is a single scroll type having only one exhaust gas inlet.
  • the scroll exhaust passage portion may be a twin scroll type having two exhaust gas inlets.
  • the case where the number of the combustion chambers 30 is two will be described as an example.
  • the twin scroll type scroll exhaust passage portion includes a first scroll passage portion and a second scroll passage portion.
  • the first scroll passage portion and the second scroll passage portion are formed in two independent exhaust passage portions 264, respectively.
  • the turbine wheel 230a is disposed in the upstream collective exhaust passage portion 265.
  • the first scroll passage portion and the second scroll passage portion are adjacent to each other in the direction of the central axis of the connecting shaft 230c.
  • the exhaust gas in the first scroll passage and the exhaust gas in the second scroll passage are sprayed on the outer peripheral portion of the turbine wheel 230a.
  • the exhaust gases discharged from the two scroll passages gather (merge) when passing through the turbine wheel 230a.
  • the path length of the independent exhaust passage portion 264 becomes longer. Therefore, the exhaust gas discharged from one combustion chamber 30 can be prevented from being disturbed by the pressure of the exhaust gas discharged from one combustion chamber 30. That is, the flow rate and pressure of exhaust gas can be prevented from decreasing. Therefore, a reduction in engine output can be prevented.
  • the fall of the rotational speed of the turbine wheel 230a can be prevented by preventing the fall of the flow volume and pressure of exhaust gas. Therefore, it is possible to prevent a reduction in intake efficiency. By preventing a reduction in intake efficiency, it is possible to prevent a decrease in fuel consumption and a decrease in engine output.
  • the exhaust gas discharged from the two or more combustion chambers 30 flows in at least one of the first scroll passage portion and the second scroll passage portion.
  • the number of the combustion chambers 30 is four, only the exhaust gas discharged from the two combustion chambers 30 flows through each scroll passage portion. In this case, exhaust gas discharged from the two combustion chambers 30 is gathered between the two combustion chambers 30 and the first scroll passage portion. Similarly, exhaust gas discharged from the two combustion chambers 30 is collected between the remaining two combustion chambers 30 and the second scroll passage portion.
  • the upstream end of the exhaust passage part that collects the exhaust gas discharged from the two combustion chambers 30 may be inside the engine body 20 or outside the engine body 20.
  • the motorcycle 101 includes a front wheel portion 102, a rear wheel portion 103, and a vehicle body frame 104.
  • the vehicle body frame 104 has a head pipe 104a at the front thereof.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 104a.
  • the upper end portion of the steering shaft is connected to the handle unit 105.
  • An upper end portion of a pair of front forks 106 is fixed to the handle unit 105.
  • the lower end portion of the front fork 106 supports the front wheel portion 102.
  • the front wheel portion 102 is composed of one front wheel.
  • the upper part of the front wheel part 102 is covered with a fender. This fender is not included in the front wheel portion 102.
  • the handle unit 105 has a right grip 113R and a left grip (not shown).
  • the right grip 113R is an accelerator grip that adjusts the output of the engine.
  • the handle unit 105 is provided with various switches.
  • a display device (not shown) is disposed in front of the handle unit 105.
  • the vehicle body frame 104 supports the seat 109 and the fuel tank 110.
  • the fuel tank 110 is disposed inside the seat 109. A part of the fuel tank 110 is disposed below the seat 109.
  • the vehicle body frame 104 supports the engine unit 111.
  • the engine unit 111 is directly connected to the vehicle body frame 104.
  • the engine unit 111 may be indirectly connected to the vehicle body frame 104.
  • the engine unit 111 is disposed below the fuel tank 110.
  • the engine unit 111 is disposed below the upper end of the seat 109.
  • the front wheel portion 102 is disposed in front of the engine unit 111.
  • the rear wheel portion 103 is disposed behind the engine unit 111. As shown in FIG.
  • the lateral width of the engine unit 111 is larger than the lateral width of the front wheel portion 102.
  • the lateral width of the engine unit 111 is larger than the lateral width of the rear wheel portion 103.
  • the vehicle body frame 104 supports a battery (not shown). The battery supplies power to electronic devices such as an ECU (not shown) that controls the engine unit 111 and various sensors.
  • the front end portions of the pair of left and right swing arms 107 are swingably supported by the body frame 104.
  • the right swing arm 107R and the left swing arm 107L are asymmetrical. Note that the front end portions of the pair of swing arms 107 may be swingably supported at the rear portion of the engine unit 111.
  • the rear end portion of the swing arm 107 supports the rear wheel portion 103.
  • the rear wheel portion 103 is composed of one rear wheel.
  • a rear suspension is disposed between the swing arm 107 and the vehicle body frame 104.
  • FIG. 17 and FIG. 19 to be described later show the state in which the front fork 106 and the rear suspension 108 have the longest vertical lengths. That is, a state in which the body frame 104 is at the uppermost position with respect to the front wheel portion 102 and the rear wheel portion 103 is displayed.
  • the motorcycle 101 has a vehicle body cover 115 that covers the vehicle body frame 104 and the like.
  • the vehicle body cover 115 is composed of a plurality of cover parts. Most of the engine unit 111 is covered with a vehicle body cover 115.
  • the motorcycle 101 has a footrest 116.
  • the footrest 116 is provided below the seat 109 and ahead of the seat 109.
  • the body cover 115 is disposed both above the footrest 116 and below the footrest 116.
  • the engine unit 111 includes an engine body 120, a water cooling device 140, and an exhaust device 160. Furthermore, as shown in FIG. 21, the engine unit 111 has an intake device 150. Engine body 120 is connected to water cooling device 140, intake device 150, and exhaust device 160, respectively.
  • the engine unit 111 is a two-cylinder engine having two cylinders.
  • the engine unit 111 is a four-stroke engine. The timing of the combustion stroke in the two cylinders is different.
  • FIG. 21 shows only one of the two cylinders of the engine body 120 and omits the other cylinder.
  • the engine unit 111 is a water-cooled engine.
  • the engine body 120 is configured to be cooled with cooling water.
  • High-temperature cooling water that has absorbed the heat of the engine body 120 is supplied from the engine body 120 to the water cooling device 140.
  • the water cooling device 140 reduces the temperature of the cooling water supplied from the engine body 120 and returns it to the engine body 120.
  • the water cooling device 140 includes a radiator 141, a radiator fan 143, and a reservoir tank (not shown).
  • the radiator 141 is disposed in front of the engine main body 120.
  • the radiator fan 143 is disposed behind the radiator 141.
  • the engine unit 111 has a water pump (not shown) for circulating cooling water.
  • the engine main body 120 has a crankcase portion 120a and a cylinder portion 120b.
  • the crankcase part 120 a is provided at the rear part of the engine body 120.
  • the cylinder part 120b is provided at the front part of the engine body 120.
  • the cylinder part 120b is connected to the front end part of the crankcase part 120a.
  • the crankcase portion 120a has a crankcase 121.
  • the crankcase 121 includes three parts 121a, 121b, and 121c that are adjacent along the left-right direction.
  • the left part 121 a forms the left surface of the crankcase 121.
  • the left surface of the crankcase portion 120a is the left surface of the crankcase 121.
  • the right part 121c forms the right surface of the crankcase 121.
  • a transmission case 125 is disposed on the right side of the right surface of the crankcase 121.
  • the right side of the crankcase portion 120a is the right side of the transmission case 125.
  • the crankcase part 120a has a crankshaft 127.
  • a central axis Cr2 of the crankshaft 127 is referred to as a crank axis Cr2.
  • the crank axis Cr2 is along the left-right direction. More specifically, the crank axis Cr2 is parallel to the left-right direction.
  • Most of the crankshaft 127 is accommodated in the crankcase 121.
  • the right end portion of the crankshaft 127 protrudes from the right surface of the crankcase 121.
  • the right end portion of the crankshaft 127 is accommodated in the transmission case 125.
  • a generator 144 is provided at the left end of the crankshaft 127.
  • the crankcase 121 houses a starter motor (not shown). The starter motor and the generator 144 may be integrated.
  • the crankcase portion 120a has a continuously variable transmission 145.
  • the continuously variable transmission 145 is provided at the right end of the crankshaft 127.
  • the continuously variable transmission 145 is accommodated in the transmission case 125.
  • the continuously variable transmission 145 includes a driving pulley 145P1, a driven pulley 145P2, and a V belt 145B.
  • the driving pulley 145P1 is attached to the right end portion of the crankshaft 127.
  • the drive pulley 145P1 receives the rotational force of the crankshaft 127 and rotates.
  • the driven pulley 145P2 is disposed behind the driving pulley 145P1.
  • the driven pulley 145P2 is attached to the right end portion of the driven shaft 146.
  • the center axis Ct of the driven shaft 146 is parallel to the center axis Cr2 of the crankshaft 127.
  • the V belt 145B is wound around the driving pulley 145P1 and the driven pulley 145P2.
  • the V belt 145B transmits the rotational force of the driving pulley 145P1 to the driven pulley 145P2.
  • a centrifugal clutch 147 is provided at the left end of the driven shaft 146.
  • the centrifugal clutch 147 has a cylindrical output member 147a. A part of the driven shaft 146 is disposed inside the output member 147a.
  • the centrifugal clutch 147 switches between a state where the rotational force of the driven shaft 146 is transmitted to the output member 147a and a state where it is not transmitted, according to the rotational speed of the driven shaft 146.
  • the output member 147a is connected to the power transmission mechanism 148.
  • the power transmission mechanism 148 is a shaft drive type power transmission mechanism using a bevel gear (bevel gear).
  • the power transmission mechanism 148 is connected to a secondary power transmission mechanism (not shown).
  • the secondary power transmission mechanism is disposed in the left swing arm 107L.
  • the secondary power transmission mechanism is also a shaft drive type power transmission mechanism.
  • the power transmission mechanism 148 and the secondary power transmission mechanism may not be a shaft drive type.
  • the power transmission mechanism 148 may have a configuration including a plurality of shaft members parallel to the left-right direction and a plurality of gears.
  • the secondary power transmission mechanism may have a configuration including a plurality of shaft members parallel to the left-right direction, a plurality of pulleys, and a belt.
  • the secondary power transmission mechanism may include a plurality of shaft members parallel to the left-right direction, a plurality of sprockets, and a chain.
  • the continuously variable transmission 145, the centrifugal clutch 147, and the power transmission mechanism 148 are included in the power transmission device 149.
  • the power transmission device 149 transmits the rotational force of the crankshaft 127 to the rear wheel portion 103.
  • the driving pulley 145P1 corresponds to the driving rotating body in the present invention.
  • the driven pulley 145P2 corresponds to the driven rotor in the present invention.
  • the V belt 145B corresponds to the winding member in the present invention.
  • the continuously variable transmission 145 may have a sprocket instead of the pulleys 145P1 and 145P2. In this case, the continuously variable transmission 145 has a chain instead of the V-belt 145B.
  • an oil reservoir 126 is formed at the lower part of the crankcase 121.
  • FIG. 23 is a cross-sectional view taken along the line DD of FIGS.
  • the oil reservoir 126 is formed on the left part of the crankcase 121. Therefore, the lower end of the left part of the crankcase part 120a is located above the lower end of the right end of the crankcase part 120a.
  • a part of the exhaust device 160 is disposed below the right portion of the crankcase portion 120a. Lubricating oil is stored in the oil storage unit 126.
  • the cylinder portion 120 b includes a cylinder body 122, a cylinder head 123, and a head cover 124.
  • the cylinder body 122 is connected to the front end portion of the crankcase 121.
  • the cylinder head 123 is connected to the front end portion of the cylinder body 122.
  • the head cover 124 is connected to the front end portion of the cylinder head 123.
  • the cylinder body 122 is formed with a cylinder hole 122a.
  • Two cylinder holes 122 a are formed in the cylinder body 122.
  • the two cylinder holes 122a are adjacent to each other in the left-right direction.
  • a piston 128 is slidably accommodated in each cylinder hole 122a.
  • the two pistons 128 are connected to one crankshaft 127 through two connecting rods 129.
  • a cooling passage 122b through which cooling water flows is formed around the two cylinder holes 122a.
  • the central axis Cy2 of the cylinder hole 122a is referred to as a cylinder axis Cy2.
  • the two cylinder axes Cy2 are parallel. When viewed in the left-right direction, the two cylinder axes Cy2 overlap. As shown in FIG. 19, the cylinder axis Cy2 does not intersect with the crank axis Cr2. The cylinder axis Cy2 may intersect with the crank axis Cr2.
  • the cylinder axis Cy2 is along the front-rear direction. When viewed in the left-right direction, the cylinder axis Cy2 is inclined in the up-down direction with respect to the front-rear direction. The cylinder axis Cy2 is inclined so as to go upward as it goes forward.
  • the tilt angle of the cylinder axis Cy2 with respect to the front-rear direction is defined as a tilt angle ⁇ cy2.
  • the inclination angle ⁇ cy2 is not limited to the angle shown in FIG.
  • the inclination angle ⁇ cy2 is not less than 0 degrees and less than 45 degrees.
  • a combustion chamber 130 is formed in the cylinder portion 120b.
  • Two combustion chambers 130 are formed in the cylinder portion 120b.
  • the two combustion chambers 130 are adjacent to each other in the left-right direction.
  • Each combustion chamber 130 is formed by the lower surface of the cylinder head 123, the cylinder hole 122 a, and the upper surface of the piston 128. That is, a part of the combustion chamber 130 is partitioned by the inner surface of the cylinder hole 122a.
  • a straight line passing through the crank axis Cr2 and parallel to the vertical direction when viewed in the left-right direction is defined as a straight line La3.
  • the two combustion chambers 130 are disposed in front of the straight line La3.
  • the two combustion chambers 130 are disposed in front of the crank axis Cr2.
  • the tip of the spark plug 131 is disposed in the combustion chamber 130.
  • the spark plug 131 is connected to the ignition coil 132.
  • an internal intake passage portion 133 and an internal exhaust passage portion 134 are formed in the cylinder head 123.
  • the internal intake passage portion 133 is connected to the combustion chamber 130.
  • the internal intake passage portion 133 is provided for each combustion chamber 130.
  • the internal exhaust passage portion 134 is connected to the combustion chamber 130.
  • the internal exhaust passage portion 134 is provided for each combustion chamber 130.
  • the internal intake passage portion 133 is provided for introducing air into the combustion chamber 130.
  • the internal exhaust passage portion 134 is provided to exhaust the exhaust gas generated in the combustion chamber 130 from the combustion chamber 130.
  • the combustion chamber intake port 133a and the combustion chamber exhaust port 134a are formed on the surface defining the combustion chamber 130 of the cylinder head 123.
  • the combustion chamber intake port 133 a is formed at the downstream end of the internal intake passage portion 133.
  • the combustion chamber exhaust port 134 a is formed at the upstream end of the internal exhaust passage portion 134.
  • An intake port 133 b and an exhaust port 134 b are formed on the outer surface of the cylinder head 123.
  • the intake port 133 b is formed at the upstream end of the internal intake passage portion 133.
  • the exhaust port 134 b is formed at the downstream end of the internal exhaust passage portion 134.
  • the number of combustion chamber intake ports 133a provided for one combustion chamber 130 may be one or two or more.
  • the number of combustion chamber exhaust ports 134a provided for one combustion chamber 130 may be one or two or more.
  • only one exhaust port 134b is provided.
  • the intake port 133 b is formed on the upper surface of the cylinder head 123.
  • the exhaust port 134 b is formed on the lower surface of the cylinder head 123.
  • the two exhaust ports 134b are adjacent to each other in the left-right direction.
  • an intake valve 137 for opening and closing the combustion chamber intake port 133a is disposed in the internal intake passage portion 133.
  • One intake valve 137 is provided for each combustion chamber intake port 133a.
  • An exhaust valve 138 that opens and closes the combustion chamber exhaust port 134 a is disposed in the internal exhaust passage portion 134.
  • One exhaust valve 138 is provided for each combustion chamber exhaust port 134a.
  • the intake valve 137 and the exhaust valve 138 are driven by a valve gear (not shown) housed in the cylinder head 123. The valve gear operates in conjunction with the crankshaft 127.
  • the engine main body 120 has an injector 154.
  • the injector 154 is a fuel supply device that supplies fuel to the combustion chamber 130.
  • One injector 154 is provided for each combustion chamber 130.
  • the injector 154 is arranged so as to inject fuel in the internal intake passage portion 133.
  • the injector 154 is connected to the fuel tank 110.
  • a fuel pump (not shown) is arranged inside the fuel tank 110. The fuel pump pumps the fuel in the fuel tank 110 toward the injector 154.
  • the injector 154 may be arranged to inject fuel in the combustion chamber 130. Further, the injector 154 may be arranged so as to inject fuel in a branch intake passage portion 151 described later of the intake device 150. Further, the engine main body 120 may include a carburetor instead of the injector 154 as a fuel supply device.
  • the engine main body 120 has an engine rotation speed sensor 171 and an engine temperature sensor 172.
  • the engine rotation speed sensor 171 detects the rotation speed of the crankshaft 127, that is, the engine rotation speed.
  • Engine temperature sensor 172 detects the temperature of engine body 120.
  • the engine temperature sensor 172 indirectly detects the temperature of the cylinder body 122 by detecting the temperature of the cooling water in the cooling passage 122b.
  • the engine temperature sensor 172 may directly detect the temperature of the cylinder body 122.
  • the intake device 150 has one intake passage portion 152 and two branched intake passage portions 151.
  • the intake passage portion 152 has an air intake port 152a facing the atmosphere.
  • the air intake port 152 a is formed at the upstream end of the intake passage portion 152.
  • the intake passage 152 is provided with an air cleaner 153 for purifying air.
  • the downstream end of the intake passage portion 152 is connected to the upstream ends of the two branched intake passage portions 151.
  • the downstream ends of the two branch intake passage portions 151 are respectively connected to two intake ports 133 b formed on the upper surface of the cylinder head 123.
  • the air inlet 152a sucks air from the atmosphere.
  • the air flowing into the intake passage portion 152 from the air intake port 152a is supplied to the engine body 120 through the two branched intake passage portions 151.
  • a throttle valve 155 is disposed in the branch intake passage portion 151.
  • One throttle valve 155 is provided for each combustion chamber 130.
  • the opening degree of the throttle valve 155 is changed by the rider turning the accelerator grip 113R.
  • the branch intake passage 151 is provided with a throttle opening sensor (throttle position sensor) 173, an intake pressure sensor 174, and an intake air temperature sensor 175.
  • the throttle opening sensor 173 detects the throttle opening.
  • the intake pressure sensor 174 detects the internal pressure of the branch intake passage portion 151.
  • the intake air temperature sensor 175 detects the temperature of air in the branch intake passage portion 151.
  • the exhaust device 160 includes an upstream exhaust passage portion 161, a catalyst portion 162, and a downstream collective exhaust passage portion 163.
  • upstream and downstream in the exhaust gas flow direction in the exhaust device 160 and the internal exhaust passage portion 134 are simply referred to as upstream and downstream.
  • the upstream exhaust passage portion 161 has two independent exhaust passage portions 164 and an upstream collective exhaust passage portion 165.
  • One independent exhaust passage portion 164 is provided for each combustion chamber 130.
  • the downstream collective exhaust passage portion 163 includes a downstream exhaust passage portion 166 and a muffler portion 167.
  • the upstream ends of the two independent exhaust passage portions 164 are respectively connected to two exhaust ports 134 b formed on the lower surface of the cylinder head 123.
  • the downstream ends of the two independent exhaust passage portions 164 are connected to the upstream ends of the upstream collective exhaust passage portions 165.
  • the upstream collective exhaust passage portion 165 collects (combines) the exhaust gases discharged from the two independent exhaust passage portions 164.
  • the downstream end of the upstream collective exhaust passage portion 165 is connected to the upstream end of the catalyst portion 162.
  • the catalyst unit 162 includes a main catalyst 162a that purifies the exhaust gas.
  • the downstream end of the catalyst portion 162 is connected to the upstream end of the downstream exhaust passage portion 166.
  • the downstream end of the downstream exhaust passage portion 166 is connected to the upstream end of the muffler portion 167.
  • the muffler part 167 has an atmospheric discharge port 167a facing the atmosphere.
  • the exhaust gas discharged from the two exhaust ports 134 b of the engine body 120 passes through the upstream exhaust passage portion 161 and flows into the catalyst portion 162.
  • the exhaust gas is purified by passing through the main catalyst 162a, and then exhausted from the atmospheric discharge port 167a through the downstream collective exhaust passage portion 163.
  • the passage portion that combines the internal exhaust passage portion 134 and the independent exhaust passage portion 164 is referred to as an independent exhaust passage portion 168.
  • One independent exhaust passage portion 168 is provided for each combustion chamber 130.
  • a path from the combustion chamber 130 to the atmospheric discharge port 167a is referred to as an exhaust path 169.
  • the engine unit 111 has two exhaust paths 169.
  • the exhaust path 169 is a space through which exhaust gas discharged from one combustion chamber 130 passes.
  • the exhaust passage 169 is formed by the independent exhaust passage portion 168, the upstream collective exhaust passage portion 165, the catalyst portion 162, and the downstream collective exhaust passage portion 163.
  • the exhaust passage 169 is formed by the internal exhaust passage portion 134, the upstream exhaust passage portion 161, the catalyst portion 162, and the downstream collective exhaust passage portion 163.
  • the independent exhaust passage portion 164 is a general term for the independent exhaust passage portions 164A and 164B. At least a part of the independent exhaust passage portion 164B is disposed on the left side of the independent exhaust passage portion 168A.
  • the independent exhaust passage portion 164A has a plurality of bent portions.
  • the independent exhaust passage portion 164B has at least one bent portion.
  • the two independent exhaust passage portions 164 have a bent portion so that the difference between the path lengths becomes small. At least one bent portion included in one independent exhaust passage portion 164 is bent when viewed in the left-right direction. At least one bent portion included in one independent exhaust passage portion 164 is bent when viewed in the vertical direction.
  • the flow direction of the exhaust gas at the upstream ends of the two independent exhaust passage portions 164 is parallel.
  • the flow direction of the exhaust gas at the upstream ends of the two independent exhaust passage portions 164 is a direction along the downward direction. More specifically, the flow direction of the exhaust gas at the upstream ends of the two independent exhaust passage portions 164 is substantially parallel to the downward direction.
  • the flow direction of the exhaust gas at the downstream ends of the two independent exhaust passage portions 164 is a direction along the front-rear direction. More specifically, when viewed in the left-right direction, the flow direction of exhaust gas at the downstream ends of the two independent exhaust passage portions 164 is substantially parallel to the rear direction.
  • the flow direction of the exhaust gas flowing through the upstream collecting exhaust passage portion 165 is a direction along the front-rear direction. Further, as shown in FIG. 18, when viewed in the vertical direction, the flow direction of the exhaust gas flowing through the upstream collective exhaust passage portion 165 is a direction along the front-rear direction. Therefore, the flow direction of the exhaust gas flowing through the upstream collective exhaust passage portion 165 is a direction along the front-rear direction.
  • the central axis of the catalyst portion 162 is defined as a central axis C4.
  • the central axis C4 When viewed in the left-right direction, the central axis C4 is along the front-rear direction.
  • the tilt angle with respect to the front-rear direction of the central axis C4 is defined as a tilt angle ⁇ 4 (not shown).
  • the inclination angle ⁇ 4 is approximately 0 degrees. That is, when viewed in the left-right direction, the central axis C4 is substantially parallel to the front-rear direction.
  • the inclination angle ⁇ 4 may be greater than 0 degrees.
  • the inclination angle ⁇ 4 is preferably 0 degree or greater and 45 degrees or less.
  • the flow direction of the exhaust gas flowing inside the catalyst portion 162 is preferably a direction along the front-rear direction.
  • the central axis C4 is substantially parallel to the front-rear direction when viewed in the vertical direction. Therefore, the flow direction of the exhaust gas flowing inside the catalyst unit 162 is a direction along the front-rear direction.
  • the flow direction of the exhaust gas flowing inside the catalyst portion 162 when viewed in the vertical direction may be a direction along the left-right direction.
  • the flow direction of the exhaust gas flowing inside the downstream exhaust passage portion 166 is a direction along the front-rear direction.
  • the vicinity of the downstream end of the upstream collecting exhaust passage portion 165 is formed in a tapered shape so that its diameter increases toward the downstream.
  • the area of the cross section perpendicular to the flow direction of the exhaust gas in the vicinity of the downstream end of the upstream collective exhaust passage section 165 is defined as a cross-sectional area B1 (not shown).
  • a cross section perpendicular to the flow direction of the exhaust gas in the catalyst portion 162 is defined as a cross sectional area B2 (not shown).
  • the cross-sectional area B1 is smaller than the cross-sectional area B2.
  • the vicinity of the upstream end of the downstream exhaust passage portion 166 is formed in a tapered shape so that the diameter decreases toward the downstream.
  • the area of the cross section orthogonal to the flow direction of the exhaust gas in the vicinity of the upstream end of the downstream exhaust passage section 166 is defined as a cross-sectional area B3 (not shown).
  • the cross-sectional area B3 is smaller than the cross-sectional area B2.
  • the upstream collecting exhaust passage portion 165 is disposed below the crankcase portion 120a.
  • an extension of the boundary line between the crankcase portion 120a and the cylinder portion 120b is defined as a straight line Lc.
  • the upstream collective exhaust passage portion 165 is disposed behind the straight line Lc. A part of the upstream collective exhaust passage portion 165 may be disposed in front of the straight line Lc.
  • the muffler unit 167 is a device that reduces noise caused by exhaust gas.
  • the internal structure of the muffler part 167 is the same as that of the conventional muffler.
  • the internal structure of the muffler part 167 may be the same as or different from the internal structure of the muffler part 67 of the first embodiment.
  • the catalyst part 162 includes a main catalyst 162a and a cylindrical part 162b.
  • the cylindrical portion 162 b is connected to the downstream end of the upstream collective exhaust passage portion 165 and the upstream end of the downstream exhaust passage portion 166.
  • the cylindrical portion 162b may be integrally formed with a part of the upstream collective exhaust passage portion 165. Further, the cylindrical portion 162b may be integrally formed with a part of the downstream exhaust passage portion 166.
  • the exhaust device 160 has no catalyst other than the main catalyst 162a.
  • the main catalyst 162a purifies the exhaust gas most in the plurality of exhaust paths 169 (see FIG. 21).
  • the material and structure of the main catalyst 162a are the same as those of the main catalyst 62a of the first embodiment.
  • the central axis C4 of the catalyst portion 162 is coaxial with the central axis of the main catalyst 162a.
  • the central axis C4 of the catalyst portion 162 is the central axis of the cylindrical portion 162b.
  • the length of the catalyst portion 162 in the exhaust gas flow direction is the same as the length of the main catalyst 162a in the exhaust gas flow direction.
  • the center of the upstream end of the main catalyst 162a and the center of the upstream end of the catalyst portion 162 are at the same position.
  • the center of the downstream end of the main catalyst 162a and the center of the downstream end of the catalyst portion 162 are at the same position.
  • the length of the catalyst part 162 in the exhaust gas flow direction is defined as a length Dc3 (not shown).
  • the maximum length of the catalyst portion 162 in the direction orthogonal to the flow direction of the exhaust gas is defined as a length Dc4 (not shown).
  • the length Dc3 is longer than the length Dc4.
  • a plane passing through the foremost end of the crankcase portion 120a and orthogonal to the front-rear direction is defined as a plane Se5.
  • a plane passing through the rearmost end of the crankcase portion 120a and orthogonal to the front-rear direction is defined as a plane Se6.
  • the catalyst unit 162 is disposed between the plane Se5 and the plane Se6.
  • a part of the catalyst part 162 is disposed below the crankcase part 120a when viewed in the left-right direction. Note that the entire catalyst portion 162 may be disposed below the crankcase portion 120a when viewed in the left-right direction.
  • the catalyst part 162 entirely overlaps with the crankcase part 120a when viewed in the vertical direction.
  • the catalyst portion 162 is disposed below the crankcase portion 120a.
  • the catalyst unit 162 is disposed adjacent to the oil storage unit 126 in the left-right direction. Note that only a part of the catalyst portion 162 may be disposed below the crankcase portion 120a. It is preferable that at least a part of the catalyst portion 162 is disposed below the crankcase portion 120a.
  • the catalyst portion 162 When viewed in the left-right direction, the catalyst portion 162 is disposed behind the straight line La3. That is, the catalyst part 162 is arranged behind the crank axis Cr2. Note that only a part of the catalyst portion 162 may be disposed behind the crank axis Cr2. It is preferable that at least a part of the catalyst portion 162 is disposed behind the crank axis Cr2. Further, the catalyst portion 162 is disposed below the crank axis Cr2. When viewed in the left-right direction, the catalyst portion 162 is disposed below the cylinder axis Cy2.
  • a straight line La4 is a straight line perpendicular to the cylinder axis Cy2 and passing through the crank axis Cr2 when viewed in the left-right direction.
  • the catalyst portion 162 When viewed in the left-right direction, the catalyst portion 162 is disposed behind the straight line La4. Note that only a part of the catalyst portion 162 may be disposed behind the straight line La4 when viewed in the left-right direction. When viewed in the left-right direction, it is preferable that at least a part of the catalyst portion 162 is disposed behind the straight line La4.
  • a straight line La5 is defined as a straight line passing through the central axis Ct of the driven shaft 146 of the continuously variable transmission 145 and parallel to the vertical direction when viewed in the left-right direction.
  • the catalyst portion 162 is disposed in front of the straight line La5.
  • the catalyst portion 162 is disposed in front of the central axis Ct of the driven shaft 146.
  • the catalyst unit 162 is disposed on the right side of the motorcycle 101.
  • the center of the upstream end and the center of the downstream end of the catalyst portion 162 are not arranged on the center C0 in the left-right direction of the motorcycle 101.
  • the center of the upstream end and the center of the downstream end of the catalyst portion 162 are located to the right of the center C0 in the left-right direction of the motorcycle 101.
  • the catalyst portion 162 is disposed to the right of the center C0 in the left-right direction of the motorcycle 101.
  • a part of the catalyst unit 162 is disposed on the right side of the center C0 in the left-right direction of the motorcycle 101, and the remaining part of the catalyst unit 62 is on the left side of the center C0 in the left-right direction of the motorcycle 101. It may be arranged.
  • the average value of the path length from the combustion chamber 130 to the upstream end of the catalyst unit 162 in the two exhaust paths 169 is defined as a path length Dd1.
  • a path length from the downstream end of the catalyst portion 162 to the atmospheric discharge port 167a is defined as a path length De1.
  • the path length Dd1 is shorter than the path length De1.
  • the average value of the path length from the exhaust port 134b to the upstream end of the catalyst unit 162 in the two exhaust paths 169 is defined as a path length Dd2.
  • a path length from the downstream end of the catalyst part 162 to the upstream end of the muffler part 167 is defined as a path length De2.
  • the path length Dd1 is longer than the path length De2.
  • the path length Dd2 is longer than the path length De2.
  • the path length Dd2 may be shorter than the path length De2. Further, the path length Dd1 may be shorter than the path length De2.
  • the exhaust device 160 includes an upstream oxygen sensor 176 and a downstream oxygen sensor 177.
  • the specific configuration of the oxygen sensors 176 and 177 is the same as that of the oxygen sensors 76 and 77 of the first embodiment.
  • the upstream oxygen sensor 176 is provided in the upstream exhaust passage portion 161. That is, the upstream oxygen sensor 176 is provided upstream of the catalyst unit 162.
  • the upstream oxygen sensor 176 is provided in the upstream collective exhaust passage portion 165.
  • the upstream oxygen sensor 176 may be provided in at least one of the two independent exhaust passage portions 164. Further, the upstream oxygen sensor 176 may be provided in at least one of the two internal exhaust passage portions 134.
  • the upstream oxygen sensor 176 is provided on the right side of the upstream collecting exhaust passage portion 165.
  • the distal end portion of the upstream oxygen sensor 176 is disposed in the upstream collecting exhaust passage portion 165.
  • a part of the upstream oxygen sensor 176 overlaps the catalyst unit 162 when viewed in the flow direction of the exhaust gas passing through the catalyst unit 162.
  • the upstream oxygen sensor 176 is disposed above the lowermost end of the catalyst unit 162.
  • the upstream oxygen sensor 176 is disposed below the engine body 120.
  • the upstream oxygen sensor 176 is disposed below the crankcase portion 120a.
  • the upstream oxygen sensor 176 overlaps the crankcase portion 120a. Therefore, the upstream oxygen sensor 176 is disposed below the crankcase portion 120a. That is, the upstream oxygen sensor 176 is disposed below the engine body 120.
  • the upstream oxygen sensor 176 When viewed in the left-right direction, the upstream oxygen sensor 176 is disposed behind the straight line La4. Note that at least a part of the upstream oxygen sensor 176 may be disposed in front of the straight line La4 when viewed in the left-right direction. It is preferable that at least a part of the upstream oxygen sensor 176 is disposed behind the straight line La4 when viewed in the left-right direction. Further, the upstream oxygen sensor 176 is disposed behind the crank axis Cr2. Note that at least a part of the upstream oxygen sensor 176 may be disposed in front of the crank axis Cr2. It is preferable that at least a part of the upstream oxygen sensor 176 is disposed behind the crank axis Cr2 when viewed in the left-right direction. The upstream oxygen sensor 176 is disposed in front of the central axis Ct of the driven shaft 146.
  • the average value of the path length from the exhaust port 134b to the upstream oxygen sensor 176 in the two exhaust paths 169 is defined as a path length Dd3.
  • a path length from the upstream oxygen sensor 176 to the upstream end of the catalyst portion 162 is defined as a path length Dd4.
  • the path length Dd3 is longer than the path length Dd4.
  • the path length Dd3 may be shorter than the path length Dd4.
  • the downstream oxygen sensor 177 is provided in the downstream collecting exhaust passage portion 163. That is, the downstream oxygen sensor 177 is provided downstream of the catalyst unit 162.
  • the downstream oxygen sensor 177 is provided in the downstream exhaust passage portion 166.
  • the downstream oxygen sensor 177 may be provided in the muffler unit 167.
  • the downstream oxygen sensor 177 detects the oxygen concentration in the exhaust gas in the downstream exhaust passage portion 166.
  • the downstream oxygen sensor 177 is provided on the right side of the downstream exhaust passage portion 166.
  • the distal end portion of the downstream oxygen sensor 177 is disposed in the downstream exhaust passage portion 166.
  • a part of the downstream oxygen sensor 177 overlaps with the catalyst unit 162 when viewed in the flow direction of the exhaust gas passing through the catalyst unit 162.
  • the downstream oxygen sensor 177 is disposed above the lowermost end of the catalyst unit 162.
  • the downstream oxygen sensor 177 is disposed below the engine body 120.
  • the downstream oxygen sensor 177 is disposed below the crankcase portion 120a.
  • the downstream oxygen sensor 177 overlaps the crankcase portion 120a. Therefore, the downstream oxygen sensor 177 is disposed below the crankcase portion 120a. That is, the downstream oxygen sensor 177 is disposed below the engine body 120.
  • the downstream oxygen sensor 177 When viewed in the left-right direction, the downstream oxygen sensor 177 is disposed behind the straight line La4. Further, the downstream oxygen sensor 177 is disposed behind the crank axis Cr2. The downstream oxygen sensor 177 is disposed in front of the central axis Ct of the driven shaft 146. The downstream oxygen sensor 177 may be disposed behind the central axis Ct of the driven shaft 146. Note that at least a part of the downstream oxygen sensor 177 is preferably disposed in front of the central axis Ct of the driven shaft 146.
  • the path length from the downstream end of the catalyst unit 162 to the downstream oxygen sensor 177 is defined as a path length De3.
  • a path length from the downstream oxygen sensor 177 to the atmospheric discharge port 167a is defined as a path length De4.
  • the path length De3 is shorter than the path length De4.
  • the path length De3 may be longer than the path length De4.
  • the engine unit 111 has an ECU (not shown) that controls the operation of the engine unit 111.
  • the configuration and operation of the ECU are the same as those of the ECU 90 of the first embodiment.
  • the engine unit 111 of the present embodiment may have an upstream sub-catalyst 47U as in Modification 1 of the first embodiment. Further, the engine unit 111 of the present embodiment may have a downstream sub-catalyst 47D as in Modification 1 of the first embodiment.
  • the engine unit 111 of the present embodiment may have a turbocharger 230 as in Modification 2 of the first embodiment.
  • the motorcycle 101 of the present embodiment has the same effects as those described in the first embodiment with respect to the same configuration as in the first embodiment. Furthermore, the motorcycle 101 of the present embodiment has the following characteristics.
  • the engine main body 120 is arranged such that the central axis Cy2 of the plurality of cylinder holes 122a is along the front-rear direction. Therefore, the vertical length of the engine body 120 is short. Therefore, the upsizing of the motorcycle 101 in the vertical direction can be further suppressed.
  • the engine body 120 is arranged so that the central axis Cy2 of the cylinder hole 122a is along the front-rear direction.
  • the path length Dd1 from the combustion chamber 130 to the catalyst part 162 may be too short.
  • the temperature of the exhaust gas flowing into the main catalyst 162a may become too high. As a result, the main catalyst 162a may be deteriorated due to overheating.
  • At least a part of the catalyst portion 162 is disposed in front of the central axis Ct of the driven pulley 145P2. Therefore, the path length Dd1 from the combustion chamber 130 to the catalyst unit 162 is shorter than when the catalyst unit 162 is disposed behind the central axis Ct of the driven pulley 145P2. Therefore, the temperature of the exhaust gas flowing into the main catalyst 162a becomes higher. Thereby, when the engine unit 111 is cold started, the time until the main catalyst 162a is activated from the inactive state is further shortened. As a result, the exhaust purification performance by the main catalyst 162a can be further improved.
  • the crankcases 21 and 121 and the cylinder bodies 22 and 122 are separate bodies. However, the crankcase and the cylinder body may be integrally formed.
  • the cylinder bodies 22 and 122, the cylinder heads 23 and 123, and the head covers 24 and 124 are separate bodies. However, any two or three of the cylinder body, the cylinder head, and the head cover may be integrally formed.
  • the crankcase 21 and the oil pan 26 are separate bodies. However, the crankcase and the oil pan may be integrally formed.
  • the oil reservoir 126 is formed in the crankcase 121. However, the oil reservoir may be formed separately from the crankcase. That is, the crankcase portion 120a may be configured to include an oil pan and a crankcase.
  • the upstream oxygen sensor 76 is disposed downstream of the upstream sub catalyst 47U.
  • the upstream oxygen sensor 76 may be disposed upstream of the upstream sub-catalyst 47U.
  • two upstream oxygen sensors 76A and 76B may be arranged upstream and downstream of the upstream sub catalyst 47U, respectively.
  • the downstream oxygen sensor 77 is disposed upstream of the downstream sub-catalyst 47D.
  • the downstream oxygen sensor 77 may be disposed downstream of the downstream sub-catalyst 47D.
  • two downstream oxygen sensors 77A and 77B may be arranged upstream and downstream of the downstream sub-catalyst 47D, respectively.
  • the shape of the cross section orthogonal to the flow direction of the exhaust gas of the main catalyst 62a is a circle.
  • the cross-sectional shape of the main catalyst 62a is not limited to a circle.
  • the cross-sectional shape of the main catalyst 62a may be an oval shape that is long in the left-right direction. That is, it may be flat.
  • the cross-sectional shape of the catalyst portion 62 is preferably similar to the cross-sectional shape of the main catalyst 62a.
  • This modification may be applied to the sub-catalyst 47 when the sub-catalyst 47 has a porous structure. Further, this modification may be applied to the main catalyst 162a of the second embodiment.
  • the length Dc1 of the catalyst part 62 is longer than the length Dc2 of the catalyst part 62.
  • the length Dc1 of the catalyst part 62 may be shorter than the length Dc2 of the catalyst part 62.
  • the length Dc1 is the length of the catalyst portion 62 in the exhaust gas flow direction.
  • the length Dc2 is the maximum length in the direction orthogonal to the flow direction of the exhaust gas in the catalyst unit 62. This modification may be applied to the catalyst unit 162 of the second embodiment.
  • the main catalyst 62a may have a configuration in which a plurality of pieces of catalyst are arranged close to each other. Each piece has a substrate and a catalytic material. The fact that a plurality of pieces are arranged close to each other means the following state. That is, the distance between the pieces is shorter than the length of each piece in the flow direction of the exhaust gas.
  • the composition of the multi-piece substrate may be the same or different.
  • the noble metals of the catalyst material of the multi-piece catalyst may be the same or different. This modification may be applied to the sub catalyst 47. Further, this modification may be applied to the main catalyst 162a of the second embodiment.
  • the exhaust device 60 is configured such that the catalyst unit 62 is disposed on the right side of the motorcycle 1.
  • the exhaust device 60 may be configured such that the catalyst unit 62 is disposed on the left side of the motorcycle 1.
  • the muffler part 67 is also arranged at the left part of the motorcycle 1.
  • the exhaust device 60 may be configured such that the central axis C3 of the catalyst unit 62 is disposed at the center C0 in the left-right direction of the motorcycle 1.
  • the exhaust device 60 may be configured such that the center of the upstream end and the center of the downstream end of the catalyst unit 62 are arranged on both sides of the center C0 in the left-right direction of the motorcycle 1.
  • the catalyst unit 62 is disposed so that the flow direction of the exhaust gas flowing through the inside is a direction along the front-rear direction.
  • the catalyst unit 62 may be arranged such that the flow direction of the exhaust gas flowing through the inside is in a direction along the left-right direction. This modification may be applied to the catalyst unit 162 of the second embodiment.
  • At least a part of the outer surface of the cylindrical portion 62 b may be covered with the catalyst protector 330.
  • the part which covers the outer surface of the cylinder part 62b among the catalyst protectors 330 is set as the catalyst protector part 362c.
  • the catalyst protector part 362c is included in the catalyst part 362.
  • a part of the catalyst protector 330 may be included in the upstream collecting exhaust passage portion 65.
  • a part of the catalyst protector 330 may be included in the downstream exhaust passage portion 66.
  • the catalyst protector portion 362c may be cylindrical, but may not be cylindrical.
  • the time until the main catalyst 62a is activated from the inactive state can be further shortened. Therefore, the exhaust purification performance by the main catalyst 62a can be further improved.
  • the cylindrical part 62b and the main catalyst 62a can be protected by providing the catalyst protector part 362c. Furthermore, the appearance can be improved by providing the catalyst protector portion 362c. This modification may be applied to the catalyst unit 162 of the second embodiment.
  • At least a part of the upstream exhaust passage portion 61 may be composed of multiple tubes.
  • the multiple tube is composed of an inner tube and at least one outer tube covering the inner tube.
  • the multiple tube may be a double tube 430.
  • the double tube 430 has an inner tube 430a and an outer tube 430b. Both ends of the inner tube 430a are in contact with both ends of the outer tube 430b.
  • the inner tube 430a and the outer tube 430b may contact at places other than both ends.
  • the inner tube 430a and the outer tube 430b may be in contact with each other at the bent portion.
  • the exhaust device 60 may have two muffler parts 67 for one catalyst part 62. That is, the exhaust device 60 may have two atmospheric discharge ports 67 a for one catalyst unit 62. In this case, the downstream exhaust passage 66 is formed in a bifurcated shape. The two muffler parts 67 are arranged adjacent to each other in the vertical direction. Alternatively, the two muffler parts 67 are respectively arranged on the right part and the left part of the motorcycle 1. This modification may be applied to the exhaust device 160 of the second embodiment.
  • the number of exhaust ports 34b formed in the engine body 20 and the number of combustion chambers 30 are the same. However, when a plurality of combustion chamber exhaust ports 34 a are provided for one combustion chamber 30, the number of exhaust ports 34 b may be larger than the number of combustion chambers 30. This modification may be applied to the engine main body 120 of the second embodiment.
  • the number of exhaust ports 34 b may be smaller than the number of combustion chambers 30. There may be at least one exhaust port 34b.
  • the exhaust gas discharged from the plurality of combustion chambers 30 gathers inside the engine body 20.
  • the engine body 20 has a plurality of internal independent exhaust passage portions and internal collective exhaust passage portions.
  • the plurality of internal independent exhaust passage portions are connected to the plurality of combustion chambers 30, respectively.
  • the internal collective exhaust passage portion is connected to the downstream ends of the plurality of internal independent exhaust passage portions.
  • the internal collective exhaust passage unit collects exhaust gases discharged from the plurality of internal independent exhaust passage units.
  • the exhaust port 34b is formed at the downstream end of the internal collective exhaust passage portion.
  • the internal collective exhaust passage portion is connected to the upstream end of the upstream collective exhaust passage portion 65.
  • the plurality of independent exhaust passage portions 64 are not provided. According to this modification, the path length of the passage portion through which only the exhaust gas discharged from one combustion chamber 30 passes can be shortened. Therefore, the surface area of the inner surface of the passage part from the plurality of combustion chambers 30 to the catalyst part 62 can be reduced. That is, the heat capacity of the passage portion from the plurality of combustion chambers 30 to the catalyst portion 62 can be reduced. Therefore, the temperature of the exhaust gas flowing into the catalyst unit 62 increases. Thereby, when the engine unit 11 is cold-started, the time until the main catalyst 62a is activated from the inactive state can be shortened. Therefore, the exhaust purification performance by the main catalyst 62a can be improved.
  • This modification may be applied to the engine unit 111 of the second embodiment.
  • the engine unit 11 may be configured such that the exhaust gas is cooled with cooling water between the combustion chamber 30 and the catalyst unit 62. That is, the engine unit 11 may have an exhaust gas cooling passage portion through which cooling water for cooling the exhaust gas flows. At least a part of the exhaust gas cooling passage part may be formed on an outer peripheral part of at least a part of the upstream collecting exhaust passage part 65. Further, at least a part of the exhaust gas cooling passage part may be formed on at least a part of the outer peripheral part of each of the plurality of independent exhaust passage parts 64. Further, at least a part of the exhaust gas cooling passage part may be formed on at least a part of the outer peripheral part of each of the plurality of internal exhaust passage parts 34.
  • the cooling water flowing through the exhaust gas cooling passage may be the same as or different from the cooling water that cools the engine body 20.
  • the exhaust gas may be cooled by using a cooling medium other than water instead of the cooling water.
  • the predetermined timing is determined based on, for example, the elapsed time, the total number of rotations of the crankshaft 27, or the temperature of the exhaust gas. According to this modification, since the exhaust gas is cooled by the cooling water, it is possible to prevent the temperature of the exhaust gas flowing into the catalyst unit 62 from becoming too high.
  • the exhaust purification performance by the main catalyst 62a can be further improved.
  • the exhaust gas cooling passage part is formed on at least a part of the outer peripheral part of the upstream collecting exhaust passage part 65, the following effects are obtained. Compared with the case where the exhaust gas cooling passage portion is not provided in the upstream collective exhaust passage portion 65 but is provided in each outer peripheral portion of the plurality of independent exhaust passage portions 68, the exhaust gas cooling passage portion can be reduced in size. Therefore, it is possible to suppress an increase in size of the vehicle in the vertical direction and the front-rear direction. This modification may be applied to the engine unit 111 of the second embodiment.
  • the combustion chamber 30 may have a configuration including a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • a combination of the main combustion chamber and the sub-combustion chamber corresponds to the “combustion chamber” in the present invention. This modification may be applied to the combustion chamber 130 of the second embodiment.
  • the plurality of combustion chambers 30 are adjacent in the left-right direction. However, the plurality of combustion chambers 30 may be adjacent to each other along the front-rear direction. In this case, the exhaust port 34b is formed on the left side or the right side of the engine body.
  • the plurality of combustion chambers 130 are adjacent in the left-right direction. However, the plurality of combustion chambers 130 may be adjacent along the vertical direction. In this case, the exhaust port 134b is formed on the left side or the right side of the engine body.
  • the exhaust port 34b is formed on the front surface of the engine body 20. However, the exhaust port 34 b may be formed on the rear surface of the engine body 20. In the second embodiment, the exhaust port 134 b is formed on the lower surface of the engine body 120. However, the exhaust port 134 b may be formed on the upper surface of the engine body 120.
  • the engine main body 20 of the first embodiment has three combustion chambers 30. However, the number of the combustion chambers 30 included in the engine body 20 may be two or four or more. Further, the engine body 120 of the second embodiment has two combustion chambers 130. However, the number of combustion chambers 130 included in the engine body 120 may be three or more.
  • the exhaust device 60 includes a plurality of independent exhaust passage portions, two upstream collective exhaust passage portions, two catalyst portions, and two downstream collective exhaust passage portions.
  • the first upstream collective exhaust passage unit collects the exhaust gas discharged from the two combustion chambers 30 on the right side.
  • the second upstream collective exhaust passage unit collects the exhaust gas discharged from the two left combustion chambers 30.
  • the first catalyst portion is connected to the downstream end of the first upstream collective exhaust passage portion and the upstream end of the first downstream collective exhaust passage portion.
  • the first catalyst portion is connected to the downstream end of the second upstream collective exhaust passage portion and the upstream end of the second downstream collective exhaust passage portion.
  • the first downstream collective exhaust passage portion and the second downstream collective exhaust passage portion each have an atmospheric discharge port.
  • the first upstream collecting exhaust passage portion, the first catalyst portion, and the first downstream collecting exhaust passage portion respectively correspond to the upstream collecting exhaust passage portion, the catalyst portion, and the downstream collecting exhaust passage portion in the present invention.
  • the second upstream collective exhaust passage portion, the second catalyst portion, and the second downstream collective exhaust passage portion correspond to the upstream collective exhaust passage portion, the catalyst portion, and the downstream collective exhaust passage portion in the present invention, respectively.
  • This modification may be applied to the exhaust device 160 of the second embodiment.
  • the engine body 20 may be a so-called V-type engine.
  • a V-type four-cylinder engine has four combustion chambers arranged two at the front and the rear.
  • the combustion chamber provided in the front part of the V-type engine is referred to as a front combustion chamber.
  • the plurality of front combustion chambers are adjacent to each other in the left-right direction.
  • a combustion chamber provided at the rear of the V-type engine is referred to as a post-combustion chamber.
  • the plurality of rear combustion chambers are adjacent to each other in the left-right direction. Let the cylinder hole which divides a part of front combustion chamber be a front cylinder hole.
  • the direction of the central axis of the front cylinder hole is the same as the direction of the cylinder axis Cy.
  • the front combustion chamber communicates with the internal exhaust passage portion 34, the upstream exhaust passage portion 61, the catalyst portion 62, and the downstream collective exhaust passage portion 63.
  • the pre-combustion chamber is included in the “plurality of combustion chambers” in the present invention.
  • the exhaust gas discharged from the rear combustion chamber may join with the exhaust gas discharged from the front combustion chamber.
  • the downstream end of the exhaust passage portion communicating with the rear combustion chamber may be connected to the upstream collective exhaust passage portion 65.
  • the exhaust gas discharged from the post-combustion chamber is purified by the main catalyst 62a.
  • the post-combustion chamber may or may not be included in the “plurality of combustion chambers” in the present invention.
  • the downstream end of the exhaust passage portion communicating with the post-combustion chamber may be connected to the downstream exhaust passage portion 66.
  • a catalyst for purifying the exhaust gas discharged from the post-combustion chamber is provided separately from the main catalyst 62a.
  • the post-combustion chamber is not included in the “plurality of combustion chambers” in the present invention.
  • the exhaust gas discharged from the rear combustion chamber does not have to merge with the exhaust gas discharged from the front combustion chamber.
  • a catalyst for purifying the exhaust gas discharged from the post-combustion chamber is provided separately from the main catalyst 62a.
  • the post-combustion chamber is not included in the “plurality of combustion chambers” in the present invention.
  • the cylinder axis Cy is inclined so as to go forward as it goes upward.
  • the cylinder axis Cy may be inclined so as to go backward as it goes upward. That is, the cylinder part 20b may be inclined backward.
  • the positions of the downstream ends of the plurality of independent exhaust passage portions 64 are substantially the same with respect to the flow direction of the exhaust gas in the upstream collective exhaust passage portion 65.
  • the downstream end of the independent exhaust passage portion 64 may be located downstream of the downstream end of another independent exhaust passage portion 64 in the exhaust gas flow direction of the upstream collective exhaust passage portion 65.
  • the upstream oxygen sensor 76 is preferably disposed downstream of the downstream ends of all the independent exhaust passage portions 64.
  • the engine unit 11 may include a secondary air supply mechanism that supplies air to the exhaust path 69.
  • a known configuration is adopted as a specific configuration of the secondary air supply mechanism.
  • the secondary air supply mechanism may be configured to forcibly supply air to the exhaust path 69 by an air pump. Further, the secondary air supply mechanism may be configured to draw air into the exhaust path 69 by the negative pressure of the exhaust path 69. In the latter case, the secondary air supply mechanism includes a reed valve that opens and closes according to a change in pressure in the exhaust passage 69.
  • the upstream oxygen sensor 76 may be provided either upstream or downstream of the location where air is supplied. This modification may be applied to the engine unit 111 of the second embodiment.
  • the engine unit of the saddle riding type vehicle to which the present invention is applied may be an air-cooled engine.
  • the engine unit of the saddle riding type vehicle to which the present invention is applied may be a natural air cooling type or a forced air cooling type.
  • the application target of the present invention is not limited to motorcycles.
  • the present invention may be applied to lean vehicles other than motorcycles.
  • a lean vehicle is a vehicle having a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left.
  • the present invention may be applied to a straddle-type vehicle other than a motorcycle.
  • the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle to which the present invention is applied includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle) and the like.
  • the front wheel portion in the present invention may include a plurality of front wheels.
  • the rear wheel portion in the present invention may include a plurality of rear wheels.
  • Japanese Patent Application No. 2014-256983 which is one of the basic applications of the present application
  • basic application 1 Japanese Patent Application No. 2014-256985, which is one of the basic applications of the present application
  • a basic application 2 Japanese Patent Application No. 2014-256985, which is one of the basic applications of the present application
  • the water cooling device 40 of the present specification corresponds to the water cooling unit 40 of the basic applications 1 and 2.
  • the intake device 50 of the present specification corresponds to the intake unit 50 of the basic applications 1 and 2.
  • the exhaust device 60 of the present specification corresponds to the exhaust unit 60 of the basic applications 1 and 2.
  • the crankcase 21 in this specification corresponds to the crankcase body 25 of the basic applications 1 and 2.
  • the internal intake passage portion 33 in this specification corresponds to a structure that forms the intake passage 33 of the basic applications 1 and 2.
  • the internal exhaust passage portion 34 of the present specification corresponds to a structure that forms the exhaust passage 34 of the basic applications 1 and 2.
  • the branch intake passage portion 51 of the present specification corresponds to a structure that forms the branch intake passage 51 of the basic applications 1 and 2.
  • the main catalyst 62a in the present specification corresponds to the engine lower catalyst 65 of the basic applications 1 and 2.
  • the catalyst portion 62 in this specification corresponds to the engine lower catalyst unit 68 of the basic applications 1 and 2.
  • the first to third exhaust pipes 56A, 56B, and 56C in this specification correspond to the independent exhaust pipes 61A, 61B, and 61C of the basic applications 1 and 2, respectively.
  • the independent exhaust passage portion 64 in this specification corresponds to a structure that forms the independent exhaust passage 66 of the basic applications 1 and 2.
  • the upstream collective exhaust passage portion 65 of the present specification corresponds to a structure that forms the upstream collective exhaust passage 67 of the basic applications 1 and 2.
  • the downstream collective exhaust passage portion 63 of the present specification corresponds to a structure that forms the downstream collective exhaust passage 69 of the basic applications 1 and 2.
  • the upstream oxygen sensor 76 in this specification corresponds to the front oxygen sensor 76 of the basic applications 1 and 2.
  • the downstream oxygen sensor 77 in this specification corresponds to the rear oxygen sensor 77 of the basic applications 1 and 2.
  • those corresponding to the terms described in the basic applications 1 and 2 are not limited to the above.
  • the upstream collective exhaust passage portion 65 collects the exhaust gas discharged from the three independent exhaust passage portions 64, it is possible to collect the exhaust gas discharged from the three independent exhaust passage portions 64.
  • the exhaust gases discharged from the three independent exhaust passage portions 64 do not necessarily have to be mixed. As described above, the timings of the combustion strokes in the three combustion chambers 30 are different. Therefore, the exhaust gases discharged from the three combustion chambers 30 may not be mixed. This definition also applies to the second embodiment.
  • the “end” of a part represents the tip of the part or a part that forms the outline of the part when viewed from a certain direction.
  • the “end part” of a part refers to the part of the “end” of the part and the vicinity thereof.
  • the passage portion means a wall body that surrounds the route to form the route, and the route means a space through which the object passes.
  • the exhaust passage portion means a wall body that surrounds the exhaust path and forms the exhaust path.
  • the exhaust path means a space through which exhaust passes.
  • the path length of an arbitrary part of the exhaust path 69 refers to the length of a line passing through the center of the exhaust path.
  • the path length in the expansion chamber of the muffler portion 67 is the length of the path that connects the center of the expansion chamber inlet and the center of the expansion chamber outlet in the shortest distance. This definition also applies to the second embodiment.
  • the inclination angle of the straight line A with respect to the B direction means the smaller angle of the angles formed by the straight line A and the straight line in the B direction.
  • the direction along the A direction is not limited to the direction parallel to the A direction.
  • the direction along the A direction includes a direction inclined with respect to the A direction in a range of ⁇ 45 °. This definition also applies when a straight line is along the A direction.
  • the A direction does not indicate a specific direction.
  • the A direction can be replaced with a horizontal direction or a front-rear direction.
  • the parts A and B are adjacent to each other along the X direction indicates the following state.
  • the parts A and B are arranged side by side on an arbitrary straight line along the X direction.
  • the parts A and B may or may not be arranged so that one straight line parallel to the X direction passes through.
  • the part A being arranged in front of the part B indicates the following state.
  • the component A is disposed in front of a plane that passes through the foremost end of the component B and is orthogonal to the front-rear direction.
  • the part A and the part B may or may not be arranged so that one straight line parallel to the front-rear direction passes through.
  • This definition also applies to directions other than the front-rear direction. This definition applies not only to parts but also to parts of parts, straight lines and planes.
  • the part A being arranged in front of the part B means a state in which the whole part A is arranged in front of a part of the front surface of the part B facing the part A.
  • the parts A and B are arranged so that one straight line parallel to the front-rear direction passes through.
  • the component B has at least a portion that overlaps the entire component A when viewed in the front-rear direction.
  • the part facing the part A on the front surface of the part B is the front end of the part B
  • the part A is arranged in front of the part B.
  • the portion of the front surface of the component B that faces the component A is not the foremost end of the component B, the component A may or may not be disposed in front of the component B.
  • the front surface of the component B is a surface that can be seen when the component B is viewed from the front.
  • the front surface of the component B may be composed of a plurality of surfaces instead of a single continuous surface.
  • the component A when the component A is disposed in front of the component B when viewed in the left-right direction, it refers to a state where the entire component A is disposed in front of the front surface of the component B when viewed in the left-right direction.
  • the parts A and B when viewed in the left-right direction, are arranged so that one straight line parallel to the front-rear direction passes through.
  • the part A and the part B may or may not be arranged so that one straight line parallel to the front-rear direction passes through.
  • This definition also applies to directions other than the front-rear direction. This definition applies not only to parts but also to parts of parts, straight lines and planes.
  • the component A when the component A is arranged between the component B and the component C when viewed in the left-right direction, it indicates the following state.
  • the line segment arranged at the uppermost position among the line segments connecting the points on the contour of the part B and the points on the contour of the part C when viewed in the left-right direction is defined as a line segment LU.
  • the line segment arranged at the lowest position among the line segments connecting the points on the contour of the part B and the points on the contour of the part C when viewed in the left-right direction is defined as a line segment LD.
  • the state is a state where the component A does not overlap the component B and the component C in a rectangular area having two sides of the line segment LU and the line segment LD when viewed in the left-right direction.
  • the line segment arranged on the leftmost side among the line segments connecting the point on the contour of the part B and the point on the contour of the part C when viewed in the left-right direction is defined as a line segment LL.
  • the line segment LR is the line segment arranged on the rightmost side among the line segments connecting the point on the contour of the component B and the point on the contour of the component C when viewed in the left-right direction.
  • the state is a state in which the component A does not overlap the component B and the component C in the rectangular area having the line segment LL and the line segment LR as two sides when viewed in the left-right direction.
  • This definition can also be applied when viewed from a direction other than the left-right direction. This definition applies not only to parts but also to parts of parts, straight lines and planes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Transportation (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

 車両の排気浄化についての初期性能を長時間維持しながら、車両の上下方向の大型化を抑制できる、エンジン本体の下方に触媒を配置した鞍乗型車両を提供する。触媒部(62)の少なくとも一部はクランクケース部(20a)の下方に配置される。触媒部(62)の内部を流れる排ガスの流れ方向は水平方向に沿った方向である。上流酸素センサ(76)は、触媒部(62)の上流端に接続される上流集合排気通路部(65)に設けられる。上流酸素センサ(76)は、触媒部(62)の最下端よりも上方に位置する。下流酸素センサ(77)は、触媒部(62)の下流端に接続される下流集合排気通路部(63)に設けられる。下流酸素センサ(77)は、触媒部(62)の最下端よりも上方に位置する。

Description

鞍乗型車両
 本発明は、鞍乗型車両に関する。
 鞍乗型車両として、エンジン本体に複数の独立排気通路部が接続された構成のエンジンユニットを備えたものが知られている。エンジン本体から排出された排ガスは、この複数の独立排気通路部に流れ込む。通常、複数の独立排気通路部は集合排気通路部を介して触媒部に接続される。複数の独立排気通路部から排出された排ガスは、集合排気通路部において集合する。触媒部の内部には、排ガスを浄化するための触媒が配置される。
 触媒部は、例えば、エンジン本体の下方に配置される(例えば特許文献1、2参照)。触媒部の断面積は、集合排気通路部の断面積よりも大きい。ここでの断面積とは、排ガスの流れ方向に直交する断面の面積である。エンジン本体の下方に、排ガスの流れ方向が前後方向となるように触媒部を配置した場合、触媒部の上下方向の長さが大きくなる。そのため、地面と触媒部との離間距離を確保しようとすると、シート等の高さが高くなり、鞍乗型車両が上下方向に大型化してしまう。
 この問題に対して、特許文献1、2は、以下の構成を採用している。
 特許文献1では、4つの独立排気通路部が2つずつ集合排気通路部に接続されている。そして、2つの集合排気通路部は2つの触媒部にそれぞれ接続されている。2つの触媒部は、車幅方向に並んで配置されている。つまり、特許文献1では、4つの独立排気通路部に対して設ける触媒を2つに分けてそれらを車幅方向に並べて配置している。それにより、触媒部の上下方向長さを小さくしている。
 また、特許文献2では、触媒部内に2つの触媒を排ガスの流れ方向(即ち、前後方向)に並べて配置している。それに加えて、各触媒の排ガスの流れ方向に直交する断面の形状を、横方向に長い長円状としている。それにより、触媒部の上下方向長さを小さくしている。
 このように、特許文献1、2では、触媒のレイアウトや形状を工夫することで、地面と触媒部との離間距離を確保しつつ車両の上下方向の大型化を抑制している。
特開2007-51571号公報 特開2010-269725号公報
 近年、鞍乗型車両は、できるだけ長い期間、初期の性能を維持することが求められている。例えば、鞍乗型車両の排気浄化についての初期性能を維持することが求められている。そのため、触媒の劣化を想定して、触媒が大型化される傾向にある。
 上述した特許文献1、2では、触媒部の上下方向の長さを小さくする工夫がすでになされている。そのため、特許文献1、2の鞍乗型車両において、触媒を大型化した場合、触媒部の上下方向長さを小さいままで維持することは困難である。そのため、地面と触媒部との離間距離を確保しつつ、車両の上下方向の大型化を抑制することは困難である。
 本発明は、車両の排気浄化についての初期性能を長時間維持しながら、車両の上下方向の大型化を抑制できる、エンジン本体の下方に触媒を配置した鞍乗型車両を提供することを目的とする。
課題を解決するための手段及び発明の効果
 従来、車両の排気浄化についての初期性能をより長い期間維持させる手段として、触媒の大型化が考えられていた。本願発明者は、触媒が大型化される理由について改めて検討した。車両の使用状況によって触媒の劣化の程度にはばらつきがある。つまり、車両の使用状況によって触媒の劣化が進むケースがある。触媒の劣化が進んだ場合であっても、より長い期間、車両の排気浄化についての初期性能を維持できるように、通常は、触媒の浄化能力に余裕を持たせている。このように触媒の浄化能力に余裕を持たせたことで、触媒が大型化している。
 ところが、本願発明者が研究した結果、触媒の劣化が進むケースの発生頻度は少ないことがわかった。そこで、本願発明者は、頻度の少ない触媒の劣化が進むケースを想定して触媒の浄化能力に余裕をもたせることを取り止めた。その代わりに、以下のような異なる2つの技術思想で、車両の排気浄化についての初期性能をより長期間維持させることを考えた。1つは、触媒の劣化が進むケースの発生頻度を減らすために、触媒の劣化の進行を遅らせるように、エンジンを制御する技術思想である。もう1つは、触媒の劣化が所定のレベルに達する前に、触媒の交換をライダー等に促すことを可能にする技術思想である。この2つの技術思想の少なくとも一方により、触媒の大きさを維持しつつ、車両の排気浄化についての初期性能をより長期間維持させることができると考えた。この2つの技術思想の少なくとも一方を達成するための工夫として、エンジン本体の下方に配置した触媒部の上流と下流にそれぞれ酸素センサを配置し、この2つの酸素センサの信号を処理する制御装置を採用することを思い付いた。
 (1)本発明の鞍乗型車両は、車体フレームと、前記車体フレームに支持されるエンジンユニットと、少なくとも1つの前輪を含み、車両の左右方向に見て、前記エンジンユニットの車両の前後方向の前方に配置される前輪部と、少なくとも1つの後輪を含み、前記左右方向に見て、前記エンジンユニットの前記前後方向の後方に配置される後輪部と、を備える。前記エンジンユニットは、前記左右方向に沿った中心軸線を有するクランク軸を含むクランクケース部を有すると共に、複数のシリンダ孔、および、前記複数のシリンダ孔によってそれぞれ一部が区画される複数の燃焼室を有し、その外面に前記複数の燃焼室とそれぞれ連通する複数の排気口が形成されるエンジン本体と、前記エンジン本体の前記複数の排気口に接続されて、大気に排ガスを放出する大気放出口を有する排気装置と、を備える。前記排気装置は、前記エンジン本体の前記複数の排気口にそれぞれ接続されて、前記エンジン本体から排出された排ガスが流れる複数の独立排気通路部と、前記複数の独立排気通路部の下流端に接続されて、前記複数の独立排気通路部から排出された排ガスを集合させる上流集合排気通路部と、前記複数の燃焼室から前記大気放出口に至る複数の排気経路において、前記複数の燃焼室から排出された排ガスを最も浄化するメイン触媒を有し、排ガスの流れ方向の長さが前記メイン触媒の排ガスの流れ方向の長さと同じであって、前記上流集合排気通路部の下流端に接続されて、少なくとも一部が前記クランクケース部の車両の上下方向の下方に配置されて、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置されたエンジン下方触媒部と、前記大気放出口を有し、前記エンジン下方触媒部の下流端に接続される下流集合排気通路部と、前記上流集合排気通路部に設けられ、前記エンジン下方触媒部の最下端よりも前記上下方向の上方に位置しており、前記上流集合排気通路部内の排ガス中の酸素濃度を検出する上流酸素センサと、前記下流集合排気通路部に設けられ、前記エンジン下方触媒部の最下端よりも前記上下方向の上方に位置しており、前記下流集合排気通路部内の排ガス中の酸素濃度を検出する下流酸素センサと、を備える。前記エンジンユニットは、前記上流酸素センサの信号と前記下流酸素センサの信号を処理する制御装置を備える。
 この構成によると、鞍乗型車両は、車体フレームと、エンジンユニットと、前輪部と、後輪部とを備える。以下の説明において、左右方向、前後方向、および、上下方向は、それぞれ、車両の左右方向、車両の前後方向、および車両の上下方向のことである。エンジンユニットは、車体フレームに支持される。前輪部は、少なくとも1つの前輪を含む。前輪部は、左右方向に見て、エンジンユニットの前方に配置される。後輪部は、少なくとも1つの後輪を含む。後輪部は、左右方向に見て、エンジンユニットの後方に配置される。エンジンユニットは、エンジン本体と、排気装置とを備える。エンジン本体は、クランクケース部を有する。クランクケース部は、左右方向に沿った中心軸線を有するクランク軸を含む。エンジン本体は、複数のシリンダ孔および複数の燃焼室を有する。複数の燃焼室の一部は、複数のシリンダ孔によってそれぞれ区画される。エンジン本体の外面には、複数の燃焼室とそれぞれ連通する複数の排気口が形成される。排気装置は、エンジン本体の複数の排気口に接続される。排気装置は、大気に排ガスを放出する大気放出口を有する。排気装置は、複数の独立排気通路部と、上流集合排気通路部と、エンジン下方触媒部と、下流集合排気通路部と、上流酸素センサと、下流酸素センサとを備える。複数の独立排気通路部は、エンジン本体の複数の排気口にそれぞれ接続される。複数の独立排気通路部は、エンジン本体から排出された排ガスが流れる。上流集合排気通路部は、複数の独立排気通路部の下流端に接続される。上流集合排気通路部は、複数の独立排気通路部から排出された排ガスを集合させる。エンジン下方触媒部は、上流集合排気通路部の下流端に接続される。エンジン下方触媒部は、メイン触媒を有する。メイン触媒は、複数の燃焼室から大気放出口に至る複数の排気経路において、複数の燃焼室から排出された排ガスを最も浄化する。エンジン下方触媒部の排ガスの流れ方向の長さは、メイン触媒の排ガスの流れ方向の長さと同じである。エンジン下方触媒部の少なくとも一部は、クランクケース部の下方に配置される。エンジン下方触媒部は、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置される。なお、水平方向に沿った方向とは、水平方向に平行な方向に限らない。水平方向に対して±45°の範囲で傾斜している方向を含む。下流集合排気通路部は、エンジン下方触媒部の下流端に接続される。下流集合排気通路部は、大気放出口を有する。エンジンユニットは、制御装置を備える。制御装置は、上流酸素センサの信号と下流酸素センサの信号を処理する。
 このような構成を有する鞍乗型車両において、上流酸素センサは、上流集合排気通路部に設けられる。つまり、上流酸素センサは、エンジン下方触媒部よりも上流に配置される。上流酸素センサは、上流集合排気通路部内の排ガス中の酸素濃度を検出する。また、下流酸素センサは、下流集合排気通路部に設けられる。つまり、下流酸素センサは、エンジン下方触媒部よりも下流に配置される。下流酸素センサは、下流集合排気通路部内の排ガス中の酸素濃度を検出する。したがって、下流酸素センサの信号を使うことで、メイン触媒の劣化を検出できる。それにより、メイン触媒の劣化が所定のレベルに達する前に報知して、メイン触媒の交換をライダー等に促すことができる。メイン触媒を交換することで、複数のメイン触媒を使って、車両の排気浄化についての初期性能をより長期間維持できる。
 また、下流酸素センサの信号に加えて、上流酸素センサの信号を使って、メイン触媒の劣化を検出することもできる。2つの酸素センサの信号を使うことで、メイン触媒の劣化の程度をより精度よく検出できる。そのため、下流酸素センサの信号だけを使ってメイン触媒の劣化を検出する場合に比べて、1つのメイン触媒をより長期間使用できる。よって、複数のメイン触媒を使って、車両の排気浄化についての初期性能をより長期間維持できる。
 また、上流酸素センサの信号と、下流酸素センサの信号を使うことで、メイン触媒の実際の浄化能力を検出できる。そのため、2つの酸素センサの信号に基づいて燃料制御を行った場合には、上流酸素センサの信号だけに基づいて燃料制御を行った場合に比べて、燃料制御の精度を向上できる。それにより、メイン触媒の劣化の進行を遅らせることができる。したがって、車両の排気浄化についての初期性能をより長期間維持できる。なお、燃料制御とは、燃焼室に供給する燃料の量の制御を含む。
 このように、下流酸素センサの使い方に関わらず、メイン触媒を大型化することなく、車両の排気浄化についての初期性能をより長期間維持できる。よって、クランクケース部の下方にエンジン下方触媒部の少なくとも一部を配置しているにもかかわらず、車両の排気浄化についての初期性能を長時間維持しながら、車両の上下方向の大型化を抑制できる。
 上流酸素センサは、エンジン下方触媒部の最下端よりも上方に位置する。上流集合排気通路部の下流端の近傍部の排ガスの流れ方向に直交する断面の面積を、断面積AUとする。エンジン下方触媒部の排ガスの流れ方向に直交する断面の面積を、断面積ACとする。断面積AUは、断面積ACよりも小さい。そのため、上流集合排気通路部の下流端の近傍部の周囲は、スペースを確保しやすい。このスペースを利用して上流酸素センサを配置できる。エンジン下方触媒部は、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置される。そのため、このスペースを利用して上流酸素センサを配置することで、上流酸素センサを、エンジン下方触媒部の最下端よりも上方に位置するように配置することができる。したがって、エンジン下方触媒部の上流に酸素センサを配置しながら、車両の上下方向の大型化を抑制できる。
 下流酸素センサは、エンジン下方触媒部の最下端よりも上方に位置する。下流集合排気通路部の上流端の近傍部の排ガスの流れ方向に直交する断面の面積を、断面積ADとする。断面積ADは、断面積ACよりも小さい。そのため、下流集合排気通路部の上流端の近傍部の周囲は、スペースを確保しやすい。このスペースを利用して下流酸素センサを配置できる。エンジン下方触媒部は、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置される。そのため、このスペースを利用して下流酸素センサを配置することで、下流酸素センサを、エンジン下方触媒部の最下端よりも上方に位置するように配置することができる。したがって、エンジン下方触媒部の下流に酸素センサを配置しながら、車両の上下方向の大型化を抑制できる。
 触媒部は、複数の独立排気通路部が接続される上流集合排気通路部よりも下流に設けられる。そのため、独立排気通路部ごとにメイン触媒を設ける場合に比べて、メイン触媒の数を低減できる。それにより、車両の上下方向の大型化を抑制できる。また、上流酸素センサは、上流集合排気通路部に設けられる。そのため、独立排気通路部ごとに上流酸素センサを設ける場合に比べて、上流酸素センサの数を低減できる。それにより、車両の上下方向の大型化を抑制できる。
 (2)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記制御装置は、前記下流酸素センサの信号に基づいて前記メイン触媒の浄化能力を判定する。鞍乗型車両は、前記メイン触媒の浄化能力が所定のレベルまで低下したと前記制御装置によって判定されたときに報知を行う報知手段を備える。
 この構成によると、制御装置は、下流酸素センサの信号に基づいて、メイン触媒の浄化能力を判定する。そして、制御装置によって、メイン触媒の浄化能力が所定のレベルまで低下したと判定された場合には、報知手段が報知する。これにより、メイン触媒の劣化が所定のレベルに達する前に、メイン触媒の交換をライダー等に促すことができる。メイン触媒を交換することで、複数のメイン触媒を使って、車両の排気浄化についての初期性能をより長期間維持できる。
 (3)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジンユニットは、前記複数の燃焼室に燃料をそれぞれ供給する複数の燃料供給装置を備える。前記制御装置は、前記上流酸素センサの信号と前記下流酸素センサの信号に基づいて、前記複数の燃料供給装置の燃料供給量を制御する。
 この構成によると、制御装置は、上流酸素センサの信号と、下流酸素センサの信号に基づいて、複数の燃料供給装置の燃料供給量を制御する。上流酸素センサの信号と、下流酸素センサの信号を使うことで、メイン触媒の実際の浄化能力を検出できる。そのため、2つの酸素センサの信号に基づいて燃焼制御を行うことにより、上流酸素センサの信号だけに基づいて燃料制御を行った場合に比べて、燃料制御の精度を向上できる。それにより、メイン触媒の劣化の進行を遅らせることができる。したがって、車両の排気浄化についての初期性能をより長期間維持できる。
 (4)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン下方触媒部を通過する排ガスの流れ方向に見て、前記下流酸素センサの少なくとも一部は、前記エンジン下方触媒部と重なる。
 上述したように、断面積ADは、断面積ACよりも小さい。そのため、下流集合排気通路部の上流端の近傍部の周囲は、スペースを確保しやすい。エンジン下方触媒部を通過する排ガスの流れ方向に見て、下流酸素センサの少なくとも一部は、エンジン下方触媒部と重なる。つまり、下流酸素センサは、下流集合排気通路部の上流端の近傍部の周囲のスペースを利用して配置される。よって、エンジン下方触媒部の下流に下流酸素センサを配置しながら、車両の上下方向の大型化を抑制できる。
 また、エンジン下方触媒部を通過する排ガスの流れ方向に見て、下流酸素センサの少なくとも一部は、エンジン下方触媒部と重なる。そのため、下流酸素センサは、エンジン下方触媒部に近い位置に配置される。それにより、下流酸素センサで検出される酸素濃度は、メイン触媒の下流端を通過する時点の排ガスの酸素濃度に近い。よって、下流酸素センサを使った制御の精度をより向上できる。つまり、下流酸素センサの信号に基づいてメイン触媒の劣化を検出する場合には、劣化の検出精度を向上できる。そのため、1つのメイン触媒をより長期間使用できる。その結果、複数のメイン触媒を使って、車両の排気浄化についての初期性能をより長期間維持できる。また、上流酸素センサと下流酸素センサの信号に基づいて燃料制御を行う場合には、燃料制御の精度をより向上できる。その結果、メイン触媒の劣化の進行をより遅らせることができる。よって、車両の排気浄化についての初期性能をより長期間維持できる。
 (5)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン下方触媒部を通過する排ガスの流れ方向に見て、前記上流酸素センサの少なくとも一部は、前記エンジン下方触媒部と重なる。
 上述したように、断面積AUは、断面積ACよりも小さい。そのため、上流集合排気通路部の下流端の近傍部の周囲は、スペースを確保しやすい。エンジン下方触媒部を通過する排ガスの流れ方向に見て、上流酸素センサの少なくとも一部は、エンジン下方触媒部と重なる。つまり、上流酸素センサは、上流集合排気通路部の下流端の近傍部の周囲のスペースを利用して配置される。よって、エンジン下方触媒部の上流に上流酸素センサを配置しながら、車両の上下方向の大型化を抑制できる。
 また、エンジン下方触媒部を通過する排ガスの流れ方向に見て、上流酸素センサの少なくとも一部は、エンジン下方触媒部と重なる。そのため、上流酸素センサは、エンジン下方触媒部に近い位置に配置される。それにより、上流酸素センサで検出される酸素濃度は、メイン触媒の上流端を通過する時点の排ガスの酸素濃度に近い。よって、上流酸素センサを使った制御の精度をより向上できる。つまり、少なくとも上流酸素センサの信号に基づいた燃料制御の精度をより向上できる。その結果、メイン触媒の劣化の進行をより遅らせることができる。よって、車両の排気浄化についての初期性能をより長期間維持できる。
 (6)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記下流集合排気通路部は、その上流端が前記エンジン下方触媒部の下流端に接続される下流排気通路部と、前記大気放出口を有し、前記下流排気通路部の下流端に接続されて、前記排ガスにより生じる音を低減するマフラー部と、を有する。前記下流酸素センサは、前記下流排気通路部に設けられる。
 この構成によると、下流集合排気通路部は、下流排気通路部と、マフラー部とを有する。下流排気通路部の上流端は、エンジン下方触媒部の下流端に接続される。マフラー部は、下流排気通路部の下流端に接続される。マフラー部は、大気放出口を有する。マフラー部は、排ガスにより生じる音を低減する。下流酸素センサは、下流排気通路部に設けられる。したがって、下流酸素センサがマフラー部に設けられる場合に比べて、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度が高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒による排気浄化性能を向上できる。
 (7)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記下流酸素センサは、前記エンジン本体の前記クランクケース部の前記上下方向の下方に配置される。
 この構成によると、下流酸素センサの少なくとも一部が、クランクケース部の下方に配置される。下流酸素センサは、エンジン下方触媒部より下流に配置される。よって、エンジン下方触媒部は、少なくとも一部がクランクケース部の下方で、且つ、全体がクランクケース部の後端よりも前方に配置される。したがって、エンジン下方触媒部の一部が、クランクケース部の後端よりも後方に配置される場合に比べて、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度がより高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒による排気浄化性能を向上できる。
 (8)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記クランクケース部は、その下部にオイルパンを有する。前記下流酸素センサの少なくとも一部は、前記オイルパンの前記上下方向の下方に位置する。
 この構成によると、クランクケース部は、その下部にオイルパンを有している。下流酸素センサの少なくとも一部は、オイルパンの下方に配置される。よって、エンジン下方触媒部は、少なくとも一部がクランクケース部の下方で、且つ、全体が左右方向に見てオイルパンの後端よりも前方に配置される。したがって、エンジン下方触媒部の一部が、オイルパンの後端よりも後方に配置される場合に比べて、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度がより高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒による排気浄化性能をより向上できる。
 (9)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記上流酸素センサは、前記オイルパンよりも前記前後方向の前方に配置される。
 この構成によると、上流酸素センサは、オイルパンよりも前方に配置される。上流酸素センサは、エンジン下方触媒部よりも上流に配置される。そのため、上流酸素センサの一部が、オイルパンより後方に配置される場合に比べて、エンジン下方触媒部をより前方に配置することができる。したがって、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度がより高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒による排気浄化性能をより向上できる。
 (10)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン本体は、前記複数のシリンダ孔が前記左右方向に沿って隣り合い、且つ、前記複数のシリンダ孔の中心軸線が前記上下方向に沿うように配置される。
 この構成によると、エンジン本体は、複数のシリンダ孔が左右方向に沿って隣り合うように配置される。これにより、複数の独立排気通路部の経路長のばらつきを低減できる。燃焼室から排出された時点の排ガスは、気体の未燃燃料と酸素を含む。排ガスは、排気経路中で未燃燃料の酸化を続けながら移動する。酸化が進むに従って、排ガス中の酸素濃度が減少する。複数の独立排気通路部の経路長のばらつきを低減することで、複数の独立排気通路部から排出された排ガスの酸素濃度のばらつきを低減できる。よって、上流酸素センサで検出される酸素濃度が不安定になるのを防止できる。したがって、上流酸素センサに基づく燃料制御の精度を高めることができる。その結果、エンジン下方触媒部による排気浄化性能をより高めることができる。
 また、エンジン本体は、複数のシリンダ孔の中心軸線が上下方向に沿うように配置される。なお、中心軸線が上下方向に沿うとは、中心軸線が上下方向に平行な場合に限らない。中心軸線が上下方向に対して±45°の範囲で傾斜している場合を含む。シリンダ孔の中心軸線が上下方向に沿っていることで、燃焼室からエンジン下方触媒部までの経路長を適切に確保することができる。燃焼室からエンジン下方触媒部までの経路長が短すぎると、メイン触媒に流入する排ガスの温度が高くなりすぎる場合がある。その結果、メイン触媒が過熱により劣化する恐れがある。燃焼室からエンジン下方触媒部までの経路長を適切に確保することで、メイン触媒の過熱による劣化を防止できる。その結果、車両の排気浄化についての初期性能をより長期間維持できる。
 (11)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン下方触媒部の少なくとも一部は、前記クランク軸の中心軸線よりも前記前後方向の前方に配置され、前記左右方向に見て、前記エンジン下方触媒部の少なくとも一部は、前記シリンダ孔の中心軸線に直交し且つ前記クランク軸の中心軸線を通る直線の前記前後方向の後方に配置される。
 この構成によると、エンジン下方触媒部の少なくとも一部は、クランク軸の中心軸線よりも前方に配置される。したがって、エンジン下方触媒部が、クランク軸の中心軸線よりも後方に配置される場合に比べて、エンジン下方触媒部をより前方に配置することができる。よって、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度がより高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒による排気浄化性能をより向上できる。
 左右方向に見て、シリンダ孔の中心軸線に直交し且つクランク軸の中心軸線を通る直線を直線Lとする。左右方向に見て、エンジン下方触媒部の少なくとも一部は、この直線Lの後方に配置される。エンジン下方触媒部は、排ガスの流れ方向が、水平方向に沿った方向である。仮に、このようなエンジン下方触媒部を直線Lの前方に配置しつつ、エンジン下方触媒部と前輪部との前後方向の離間距離を確保しようとすると、車両が前後方向に大型化する。よって、左右方向に見て、エンジン下方触媒部の少なくとも一部が直線Lの後方に配置されることにより、車両の前後方向の大型化を抑制できる。
 (12)本発明の鞍乗型車両は、以下の構成を有していてもよい。前記エンジン本体は、前記複数のシリンダ孔が前記左右方向に沿って隣り合い、且つ、前記複数のシリンダ孔の中心軸線が前記前後方向に沿うように配置される。
 この構成によると、エンジン本体は、複数のシリンダ孔が左右方向に沿って隣り合うように配置される。これにより、複数の独立排気通路部の経路長のばらつきを低減できる。燃焼室から排出された時点の排ガスは、気体の未燃燃料と酸素を含む。排ガスは、排気経路中で未燃燃料の酸化を続けながら移動する。酸化が進むに従って、排ガス中の酸素濃度が減少する。複数の独立排気通路部の経路長のばらつきを低減することで、複数の独立排気通路部から排出された排ガスの酸素濃度のばらつきを低減できる。よって、上流酸素センサで検出される酸素濃度が不安定になるのを防止できる。したがって、上流酸素センサに基づく燃料制御の精度を高めることができる。その結果、メイン触媒の劣化の進行をより遅らせることができる。よって、車両の排気浄化についての初期性能をより長期間維持できる。
 また、エンジン本体は、複数のシリンダ孔の中心軸線が前後方向に沿うように配置される。なお、中心軸線が前後方向に沿うとは、中心軸線が前後方向に平行な場合に限らない。中心軸線が前後方向に対して±45°の範囲で傾斜している場合を含む。シリンダ孔の中心軸線が前後方向に沿っていることで、エンジン本体の上下方向長さは短い。よって、車両の上下方向の大型化をより抑制できる。
 (13)本発明の鞍乗型車両は、以下の構成を有していてもよい。前記エンジン下方触媒部の少なくとも一部は、前記クランク軸の中心軸線よりも前記前後方向の後方に配置される。
 エンジン本体は、シリンダ孔の中心軸線が前後方向に沿うように配置される。このようにエンジン本体が配置されている場合に、エンジン下方触媒部が、クランク軸の中心軸線よりも前方に配置されると、燃焼室からエンジン下方触媒部までの経路長が短くなりすぎる場合がある。燃焼室からエンジン下方触媒部までの経路長が短すぎると、メイン触媒に流入する排ガスの温度が高くなりすぎる場合がある。その結果、メイン触媒が過熱により劣化する恐れがある。よって、左右方向に見て、エンジン下方触媒部の少なくとも一部がクランク軸の中心軸線よりも後方に配置されることで、メイン触媒の過熱による劣化を防止できる。その結果、車両の排気浄化についての初期性能をより長期間維持できる。
 (14)本発明の鞍乗型車両は、以下の構成を有していてもよい。前記エンジンユニットは、前記クランク軸の回転力を前記後輪部に伝達する動力伝達装置を備える。前記動力伝達装置は、前記クランク軸の回転力を受けて回転する駆動回転体と、前記クランク軸および前記駆動回転体よりも前記前後方向の後方に配置される従動回転体と、前記駆動回転体と前記従動回転体に巻き掛けられて、前記駆動回転体の回転力を前記従動回転体に伝達する巻き掛け部材と、を有する。前記エンジン下方触媒部の少なくとも一部は、前記従動回転体の中心軸線よりも前記前後方向の前方に配置される。
 この構成によると、エンジンユニットは、クランク軸の回転力を後輪部に伝達する動力伝達装置を備える。動力伝達装置は、駆動回転体と、従動回転体と、巻き掛け部材とを有する。駆動回転体は、クランク軸の回転力を受けて回転する。従動回転体は、クランク軸および駆動回転体よりも後方に配置される。巻き掛け部材は、駆動回転体と従動回転体に巻き掛けられて、駆動回転体の回転力を従動回転体に伝達する。エンジン下方触媒部の少なくとも一部は、従動回転体の中心軸線よりも前方に配置される。したがって、エンジン下方触媒部が、従動回転体の中心軸線よりも後方に配置される場合に比べて、燃焼室からエンジン下方触媒部までの経路長が短くなる。そのため、メイン触媒に流入する排ガスの温度がより高くなる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒による排気浄化性能をより向上できる。
 (15)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン本体は、前記複数の燃焼室と前記複数の独立排気通路部の上流端とをそれぞれつなぐ複数の内部排気通路部を有する。前記エンジンユニットは、前記複数の内部排気通路部、前記複数の独立排気通路部、前記上流集合排気通路部、および、前記下流集合排気通路部のうちの少なくとも1つの通路部に配置されて、排ガスを浄化する少なくとも1つのサブ触媒を備える。
 この構成によると、エンジン本体は、複数の内部排気通路部を有する。内部排気通路部は、燃焼室と独立排気通路部の上流端とをつなぐ。エンジンユニットは、排ガスを浄化する少なくとも1つのサブ触媒を備える。少なくとも1つのサブ触媒は、複数の内部排気通路部、複数の独立排気通路部、上流集合排気通路部、および、下流集合排気通路部のうちの少なくとも1つの通路部に配置される。サブ触媒を設けたことにより、サブ触媒を設けない場合に比べて、車両の排気浄化についての初期性能をより長期間維持できる。また、サブ触媒を設けない場合に比べて、排気浄化性能を維持しつつ、メイン触媒を小さくできる。したがって、車両の排気浄化についての初期性能をより長期間維持しつつ、車両の上下方向の大型化をより抑制できる。
 (16)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記独立排気通路部および前記上流集合排気通路部の少なくとも一方の少なくとも一部は、内管と前記内管を覆う少なくとも1つの外管を備えた多重管で構成される。
 この構成によると、独立排気通路部および上流集合排気通路部の少なくとも一方の少なくとも一部は、多重管で構成される。多重管は、内管と内管を覆う少なくとも1つの外管を備える。上述の通路部が多重管で構成されることで、通路部内において排ガスの温度が低下するのを抑制できる。それにより、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒による排気浄化性能をより向上できる。
 (17)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン下方触媒部は、前記メイン触媒を収容し、前記上流集合排気通路部の下流端と前記下流集合排気通路部の上流端に接続される筒部と、前記筒部の外面の少なくとも一部を覆う触媒プロテクター部と、を有する。
 この構成によると、エンジン下方触媒部は、メイン触媒と、筒部と、触媒プロテクター部とを有する。筒部は、メイン触媒を収容する。筒部は、上流集合排気通路部の下流端と下流集合排気通路部の上流端に接続される。触媒プロテクター部は、筒部の外面の少なくとも一部を覆う。触媒プロテクター部を設けることで、メイン触媒の保温効果を高めることができる。したがって、エンジンユニットの冷間始動時に、メイン触媒が非活性状態から活性化するまでの時間をより短縮できる。よって、メイン触媒による排気浄化性能をより向上できる。
 (18)本発明の鞍乗型車両は、以下の構成を有することが好ましい。前記エンジン本体は、その前部にオイルフィルタを有する。前記排気装置および前記オイルフィルタは、前記前後方向の前方から前記排気装置および前記オイルフィルタを見たとき、前記オイルフィルタの少なくとも一部が露出するように構成される。
 この構成によると、エンジン本体の前部には、オイルフィルタが設けられる。前方から排気装置およびオイルフィルタを見たとき、オイルフィルタの少なくとも一部は露出する。そのため、オイルフィルタをエンジン本体から取り外しやすい。
第1実施形態に係る自動二輪車の右側面図である。 図1のII―II線断面図である。 エンジンユニットの一部の右側面図である。 エンジンユニットの一部の正面図である。 エンジンユニットの一部の模式図である。 エンジンユニットの一部の模式図である。 エンジンユニットの制御ブロック図である。 マフラー部の断面図である。 排気装置の平面図である。 図3のA―A線断面図である。 図3のB―B線断面図である。 図3のC―C線断面図である。 変形例1のエンジンユニットの一部の右側面図である。 変形例2のエンジンユニットの一部の右側面図である。 変形例2のターボチャージャーの断面図である。 変形例2のターボチャージャーの側面図である。 第2実施形態に係る自動二輪車の右側面図である。 エンジンユニットの底面図である。 エンジンユニットの一部の右側面図である。 エンジン本体の底面図である。 エンジンユニットの一部の模式図である。 エンジンユニットの一部の模式図である。 図17および図18のD―D線断面図である。 変形例の排気装置の模式図である。 変形例のエンジンユニットの一部の右側面図である。 変形例の上流排気通路部の断面図である。
 (第1実施形態)
 以下、本発明の第1の実施の形態について説明する。本実施形態は、スポーツタイプの自動二輪車に本発明の鞍乗型車両を適用した一例である。なお、以下の説明において、前後方向とは、自動二輪車1の後述するシート9に着座したライダーから見た車両前後方向のことである。左右方向とは、シート9に着座したライダーから見たときの車両左右方向のことである。車両左右方向は、車幅方向と同じである。また、各図面の矢印F方向と矢印B方向は、前方と後方を表しており、矢印L方向と矢印R方向は、左方と右方を表しており、矢印U方向と矢印D方向は、上方と下方を表している。また、本実施形態の説明は、本明細書の末尾に記載した用語の定義に基づいて記載されている。後述する実施形態および変形例についても同様である。
 [自動二輪車の全体構成]
 図1に示すように、自動二輪車1は、前輪部2と、後輪部3と、車体フレーム4とを備えている。車体フレーム4は、その前部にヘッドパイプ4aを有する。ヘッドパイプ4aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット5に連結されている。ハンドルユニット5には、一対のフロントフォーク6の上端部が固定されている。フロントフォーク6の下端部は、前輪部2を支持している。フロントフォーク6は、上下方向の衝撃を吸収するように構成される。前輪部2は1つの前輪で構成される。前輪部2の上部はフェンダーで覆われる。このフェンダーは前輪部2に含まれない。
 図2に示すように、ハンドルユニット5は、左右方向に延びる1本のハンドルバー12を有する。ハンドルバー12の左右両端には、グリップ13L、13Rが設けられている。右側のグリップ13Rは、エンジンの出力を調整するアクセルグリップである。ハンドルバー12には、表示装置14が取り付けられている。図示は省略するが、表示装置14には、車速や、エンジン回転速度などが表示される。また、表示装置14には、警告灯が設けられている。ハンドルバー12には、各種スイッチが設けられている。
 図1に示すように、車体フレーム4には、一対のスイングアーム7が揺動可能に支持されている。スイングアーム7の後端部は、後輪部3を支持している。後輪部3は1つの後輪で構成される。各スイングアーム7の揺動中心よりも後方の位置には、リアサスペンション8の一端部が取り付けられている。リアサスペンション8の他端部は、車体フレーム4に取り付けられている。リアサスペンション8は、上下方向の衝撃を吸収するように構成される。図1、図2および後述する図3は、フロントフォーク6およびリアサスペンション8の上下方向長さがそれぞれ最長の状態を表示している。つまり、前輪部2および後輪部3に対して、車体フレーム4が最も上方にある状態を表示している。
 車体フレーム4は、シート9と燃料タンク10を支持する。燃料タンク10は、シート9の前方に配置される。車体フレーム4は、エンジンユニット11を支持する。エンジンユニット11は、車体フレーム4に直接連結されていても、間接的に連結されていてもよい。エンジンユニット11は、燃料タンク10の下方に配置される。エンジンユニット11は、シート9の上端より下方に配置される。左右方向に見て、前輪部2は、エンジンユニット11の前方に配置される。左右方向に見て、後輪部3は、エンジンユニット11の後方に配置される。図2に示すように、エンジンユニット11の左右方向幅は、前輪部2の左右方向幅よりも大きい。エンジンユニット11の左右方向幅は、後輪部3の左右方向幅よりも大きい。なお、本明細書において、左右方向幅とは、左右方向の最大長さのことである。車体フレーム4は、バッテリ(図示せず)を支持する。バッテリは、エンジンユニット11を制御するECU90(図7参照)や各種センサなどの電子機器に電力を供給する。
 [エンジンユニットの構成]
 図1に示すように、エンジンユニット11は、エンジン本体20と、水冷却装置40と、排気装置60とを有する。さらに、図5に示すように、エンジンユニット11は、吸気装置50を有する。エンジン本体20は、水冷却装置40、吸気装置50、および排気装置60にそれぞれ接続される。エンジンユニット11は、3気筒を有する3気筒エンジンである。エンジンユニット11は、4ストローク式のエンジンである。4ストローク式のエンジンとは、吸気行程、圧縮行程、燃焼行程(膨張行程)、及び排気行程を繰り返すエンジンである。3気筒における燃焼行程のタイミングは異なっている。図5は、エンジン本体20の3気筒のうちの1気筒のみを表示し、残りの2気筒の表示を省略している。
 エンジンユニット11は、水冷式エンジンである。エンジン本体20は、冷却水で冷却されるように構成される。水冷却装置40には、エンジン本体20の熱を吸熱した高温の冷却水がエンジン本体20から供給される。水冷却装置40は、エンジン本体20から供給された冷却水の温度を低下させて、エンジン本体20に戻す。水冷却装置40は、ラジエータ41と、ラジエータファン(図示せず)と、リザーバタンク42を有する。ラジエータ41は、エンジン本体20の上部の前方に配置される。ラジエータファンは、エンジン本体20とラジエータ41との間に配置される。リザーバタンク42は、エンジン本体20の下部の前方に配置される。リザーバタンク42は、エンジン本体20の右部の前方に配置される。なお、リザーバタンク42は、エンジン本体20の右部の前方に配置されていなくてもよい。エンジンユニット11は、冷却水を循環させるためのウォーターポンプ(図示せず)を有する。ウォーターポンプは、エンジン本体20の内部に設けられる。
 [エンジン本体の構成]
 図3に示すように、エンジン本体20は、クランクケース部20aと、シリンダ部20bとを有する。クランクケース部20aは、エンジン本体20の下部に設けられる。シリンダ部20bは、エンジン本体20の上部に設けられる。シリンダ部20bは、クランクケース部20aの上端部に接続される。
 クランクケース部20aは、クランクケース21と、オイルパン26を有する。また、クランクケース部20aは、クランクケース21に収容されるクランク軸27を有する。図示は省略するが、クランクケース部20aは、変速機、クラッチ、スターターモーター、および発電機を有する。これらもクランクケース21に収容される。クランク軸27の中心軸線Crを、クランク軸線Crと称する。クランク軸線Crは、左右方向に沿っている。より詳細には、クランク軸線Crは、左右方向と平行である。
 オイルパン26は、クランクケース部20aの下部に設けられる。オイルパン26は、クランクケース21の下端に接続される。左右方向に見て、オイルパン26とクランクケース21との境界は、ほぼ一直線状である。左右方向に見て、クランクケース21とオイルパン26との境界線の延長線を、直線Lpとする。直線Lpは、前後方向に沿っている。直線Lpは、前方に向かうほど下方に向かうように傾斜している。直線Lpは、後述するシリンダ軸線Cyと直交していてもよい。図4に示すように、オイルパン26の右部は、オイルパン26の左部に対して窪んでいる。言い換えると、オイルパン26の右部は、オイルパン26の左部よりも上方に位置している。オイルパン26の窪みの内側に排気装置60の一部が配置される。オイルパン26には、潤滑オイルが貯留される。クランクケース部20aは、オイルパン26に貯留された潤滑オイルを吸い上げるオイルポンプ(図示せず)を有する。
 図4に示すように、クランクケース部20aの前部には、オイルフィルタ45およびオイルクーラー46が設けられる。オイルクーラー46は、クランクケース部20aの左右方向の略中央に配置される。オイルフィルタ45は、オイルクーラー46の左方に配置される。ここで、前輪部2および後輪部3の左右方向中央を通る平面をC0とする。前輪部2および後輪部3の左右方向中央は、自動二輪車1の左右方向中央でもある。以下の説明において、自動二輪車1の左右方向中央を、自動二輪車1の左右方向中央C0という。オイルクーラー46は、自動二輪車1の左右方向中央C0と重なる位置に配置される。オイルフィルタ45は、自動二輪車1の左右方向中央C0の左方に配置される。図3に示すように、オイルクーラー46は、クランクケース21の前面から前方に突出している。オイルクーラー46と同様に、オイルフィルタ45も、クランクケース21の前面から前方に突出している。オイルフィルタ45は、フィルタ本体(図示せず)を内蔵している。フィルタ本体は、潤滑オイルに含まれる異物を除去する。フィルタ本体を交換できるように、オイルフィルタ45はクランクケース21に着脱可能に取り付けられている。
 図3に示すように、シリンダ部20bは、シリンダボディ22と、シリンダヘッド23と、ヘッドカバー24とを有する。シリンダボディ22は、クランクケース21の上端部に接続される。シリンダヘッド23は、シリンダボディ22の上端部に接続される。ヘッドカバー24は、シリンダヘッド23の上端部に接続される。
 図3および図5に示すように、シリンダボディ22には、シリンダ孔22aが形成される。シリンダボディ22には、3つのシリンダ孔22aが形成される。3つのシリンダ孔22aは、左右方向に沿って隣り合っている。各シリンダ孔22aの内部にはピストン28が摺動自在に収容される。3つのピストン28は、3つのコネクティングロッド29を介して1つのクランク軸27に連結される。3つのシリンダ孔22aの周囲には、冷却水が流れる冷却通路22bが形成されている。
 シリンダ孔22aの中心軸線Cyを、シリンダ軸線Cyと称する。3つのシリンダ軸線Cyは、平行である。左右方向に見て、3つのシリンダ軸線Cyは一致する。図3に示すように、シリンダ軸線Cyは、クランク軸線Crと交差しない。なお、シリンダ軸線Cyは、クランク軸線Crと交差してもよい。シリンダ軸線Cyは、上下方向に沿っている。左右方向に見て、シリンダ軸線Cyは、上下方向に対して前後方向に傾斜している。シリンダ軸線Cyは、シリンダ部20bが前傾するように傾斜している。つまり、シリンダ軸線Cyは、上方に向かうほど前方に向かうように傾斜している。左右方向に見て、シリンダ軸線Cyの上下方向に対する傾斜角度を傾斜角度θcyとする。傾斜角度θcyは図3に示す角度に限定されない。傾斜角度θcyは0度以上45度以下である。
 図3および図5に示すように、シリンダ部20bには、燃焼室30が形成される。シリンダ部20bには、3つの燃焼室30が形成される。3つの燃焼室30は、左右方向に沿って隣り合っている。各燃焼室30は、シリンダヘッド23の下面と、シリンダ孔22aと、ピストン28の上面によって形成される。つまり、燃焼室30の一部は、シリンダ孔22aの内面によって区画される。ここで、図3に示すように、左右方向に見て、クランク軸線Crを通り、上下方向と平行な直線を、直線La1とする。左右方向に見て、3つの燃焼室30は、直線La1の前方に配置される。つまり、左右方向に見て、3つの燃焼室30は、クランク軸線Crよりも前方に配置される。
 図5に示すように、燃焼室30には、点火プラグ31の先端部が配置される。点火プラグ31の先端部は、火花放電を発生させる。この火花放電によって、燃焼室30内の混合気は点火される。なお、本明細書において、混合気とは、空気と燃料との混合気のことである。点火プラグ31は、点火コイル32に接続される。点火コイル32は、点火プラグ31の火花放電を生じさせるための電力を蓄える。点火プラグ31と点火コイル32によって、点火装置が構成される。
 シリンダヘッド23には、内部吸気通路部33および内部排気通路部34が形成される。なお、本明細書において、通路部とは、経路を形成する構造物を意味する。経路とは、ガスなどが通過する空間を意味する。内部吸気通路部33は、燃焼室30に接続される。内部吸気通路部33は、燃焼室30毎に設けられる。内部排気通路部34は、燃焼室30に接続される。内部排気通路部34は、燃焼室30毎に設けられる。内部吸気通路部33は、燃焼室30に空気を導入するために設けられる。内部排気通路部34は、燃焼室30で発生した排ガスを燃焼室30から排出するために設けられる。
 シリンダヘッド23の燃焼室30を画定する面には、燃焼室吸気口33aおよび燃焼室排気口34aが形成される。燃焼室吸気口33aは、内部吸気通路部33の下流端に形成される。燃焼室排気口34aは、内部排気通路部34の上流端に形成される。シリンダヘッド23の外面には、吸気口33bおよび排気口34bが形成される。吸気口33bは、内部吸気通路部33の上流端に形成される。排気口34bは、内部排気通路部34の下流端に形成される。1つの燃焼室30に対して設けられる燃焼室吸気口33aの数は、1つであっても2つ以上であってもよい。1つの燃焼室30に対して、吸気口33bは1つだけ設けられる。例えば、1つの燃焼室30に対して2つの燃焼室吸気口33aが設けられる場合、内部吸気通路部33は二股状に形成される。1つの燃焼室30に対して設けられる燃焼室排気口34aの数は、1つであっても2つ以上であってもよい。1つの燃焼室30に対して、排気口34bは、1つだけ設けられる。図3に示すように、吸気口33bは、シリンダヘッド23の前面に形成される。排気口34bは、シリンダヘッド23の前面に形成される。図4に示すように、3つの排気口34bは、左右方向に沿って隣り合う。
 図5に示すように、内部吸気通路部33には、燃焼室吸気口33aを開閉する吸気バルブ37が配置される。吸気バルブ37は、燃焼室吸気口33aごと1つずつに設けられる。内部排気通路部34には、燃焼室排気口34aを開閉する排気バルブ38が配置される。排気バルブ38は、燃焼室排気口34aごと1つずつに設けられる。吸気バルブ37および排気バルブ38は、シリンダヘッド23に収容された動弁装置(図示せず)によって駆動される。動弁装置は、クランク軸27と連動して作動する。動弁機構は、可変バルブタイミング装置を有していてもよい。可変バルブタイミング装置は、公知のものが適用される。可変バルブタイミング装置は、吸気バルブまたは/および排気バルブの開閉タイミングを変化させるように構成される。
 エンジン本体20は、インジェクタ54を有する。インジェクタ54は、燃焼室30に燃料を供給する燃料供給装置である。インジェクタ54は、燃焼室30ごとに1つずつ設けられる。インジェクタ54は、内部吸気通路部33内で燃料を噴射するように配置されている。インジェクタ54は、燃料タンク10に接続される。燃料タンク10の内部には、燃料ポンプ93(図7参照)が配置される。燃料ポンプ93は、燃料タンク10内の燃料をインジェクタ54に向けて圧送する。なお、インジェクタ54は、燃焼室30内で燃料を噴射するように配置されていてもよい。また、インジェクタ54は、吸気装置50の後述する分岐吸気通路部51内で燃料を噴射するように配置されていてもよい。また、エンジン本体20は、燃料供給装置として、インジェクタ54の代わりに、キャブレターを備えていてもよい。キャブレターは、燃焼室30の負圧を利用して、燃焼室30内に燃料を供給する。
 エンジン本体20は、エンジン回転速度センサ71と、エンジン温度センサ72を有する。エンジン回転速度センサ71は、クランク軸27の回転速度、即ち、エンジン回転速度を検出する。エンジン温度センサ72は、エンジン本体20の温度を検出する。本実施形態では、エンジン温度センサ72は、冷却通路22b内の冷却水の温度を検出することで、シリンダボディ22の温度を間接的に検出する。エンジン温度センサ72は、シリンダボディ22の温度を直接検出してもよい。
 [吸気装置の構成]
 吸気装置50は、1つの吸気通路部52と、3つの分岐吸気通路部51とを有する。吸気通路部52は、大気に面した大気吸入口52aを有する。大気吸入口52aは、吸気通路部52の上流端に形成される。吸気通路部52には、空気を浄化するエアクリーナ53が設けられる。吸気通路部52の下流端は、3つの分岐吸気通路部51の上流端に接続される。3つの分岐吸気通路部51の下流端は、シリンダヘッド23の後面に形成された3つの吸気口33bにそれぞれ接続される。大気吸入口52aは大気から空気を吸入する。大気吸入口52aから吸気通路部52に流入した空気は、3つの分岐吸気通路部51を通って、エンジン本体20に供給される。
 分岐吸気通路部51内には、スロットル弁55が配置される。スロットル弁55は、燃焼室30ごとに1つずつ設けられる。スロットル弁55の開度は、ライダーがアクセルグリップ13Rを回動操作することによって変更される。
 分岐吸気通路部51には、スロットル開度センサ(スロットルポジションセンサ)73と、吸気圧センサ74と、吸気温センサ75が設けられる。スロットル開度センサ73は、スロットル弁55の位置を検出することにより、スロットル開度を表す信号を出力する。スロットル開度とは、スロットル弁55の開度である。吸気圧センサ74は、分岐吸気通路部51の内部圧力を検出する。吸気温センサ75は、分岐吸気通路部51内の空気の温度を検出する。
 [排気装置の構成]
 図5に示すように、排気装置60は、上流排気通路部61と、触媒部62と、下流集合排気通路部63とを有する。以下の説明において、排気装置60および内部排気通路部34における排ガスの流れ方向の上流および下流を、単に上流および下流という。上流排気通路部61は、3つの独立排気通路部64と、上流集合排気通路部65とを有する。独立排気通路部64は、燃焼室30ごとに1つずつ設けられる。下流集合排気通路部63は、下流排気通路部66と、マフラー部67とを有する。3つの独立排気通路部64の上流端は、シリンダヘッド23の前面に形成された3つの排気口34bにそれぞれ接続される。3つの独立排気通路部64の下流端は、上流集合排気通路部65の上流端に接続される。上流集合排気通路部65は、3つの独立排気通路部64から排出された排ガスを集合(合流)させる。上流集合排気通路部65の下流端は、触媒部62の上流端に接続される。触媒部62は、排ガスを浄化するメイン触媒62aを有する。触媒部62の下流端は、下流排気通路部66の上流端に接続される。下流排気通路部66の下流端は、マフラー部67の上流端に接続される。マフラー部67は、大気に面する大気放出口67aを有する。エンジン本体20の3つの排気口34bから排出された排ガスは、上流排気通路部61を通過して、触媒部62内に流入する。排ガスは、メイン触媒62aを通過することで浄化された後、下流集合排気通路部63を通って大気放出口67aから排出される。独立排気通路部64は、本発明における独立排気通路部に相当する。
 内部排気通路部34と独立排気通路部64とを合わせた通路部を、独立排気通路部68と称する。独立排気通路部68は、燃焼室30ごとに1つずつ設けられる。また、燃焼室30から大気放出口67aに至る経路を、排気経路69と称する。エンジンユニット11は、3つの排気経路69を有する。排気経路69は、1つの燃焼室30から排出された排ガスが通る空間である。排気経路69は、独立排気通路部68と上流集合排気通路部65と触媒部62と下流集合排気通路部63とよって形成される。言い換えると、排気経路69は、内部排気通路部34と上流排気通路部61と触媒部62と下流集合排気通路部63とよって形成される。
 以下、排気装置60についてより詳細に説明する。図3、図4および図9に示すように、排気装置60は、第1~第3排気管56A、56B、56Cと、集合部材57と、集合排気管58と、マフラー部67とを有する。第1~第3排気管56A、56B、56Cは、右から左にこの順で並んでいる。第1~第3排気管56A、56B、56Cの上流端は、エンジン本体20の3つの排気口34bにそれぞれ接続される。
 第1~第3排気管56A、56B、56Cは、円管である。第1~第3排気管56A、56B、56Cの上流端の近傍には、取付フランジ部56Af、56Bf、56Cfが設けられている。取付フランジ部56Af、56Bf、56Cfは、板状に形成されている。取付フランジ部56Af、56Bf、56Cfには、ボルトが挿通されるボルト孔が形成されている。第1排気管56Aの取付フランジ部56Afより上流の部分は、内部排気通路部34の内側に挿入される。第2排気管56Bおよび第3排気管56Cについても同様である。取付フランジ部56Af、56Bf、56Cfは、エンジン本体20の外面に接する。取付フランジ部56Af、56Bf、56Cfは、ボルトによってエンジン本体20の外面に固定される。
 第1~第3排気管56A、56B、56Cの下流端は、集合部材57に接続される。図10に示すように、集合部材57の上部の排ガスの流れ方向に直交する断面において、集合部材57の内部は3つの空間57A、57B、57Cに区切られている。この3つの空間57A、57B、57Cに、第1~第3排気管56A、56B、56Cの端部がそれぞれ嵌め込まれる。3つの空間57A、57B、57Cの下流端は、第1~第3排気管56A、56B、56Cの下流端よりも下流である。また、図11に示すように、集合部材57の下部の排ガスの流れ方向に直交する断面において、集合部材57の内部は1つの空間57Dを有する。集合部材57の内部空間の容積の合計は、下流に向かって小さくなっている。なお、図10および図11において、方向を示す矢印のうち実線で表示したものは、紙面と平行な方向を示しており、破線で表示したものは、紙面と平行ではない方向を示している。後述する図12も同様である。
 集合部材57は、空間57Aを形成する壁部と、空間57Bを形成する壁部と、空間57Cを形成する壁部と、空間57Dを形成する壁部と、を含む。第1排気管56Aと、集合部材57の空間57Aを形成する壁部とによって、独立排気通路部64A(図4参照)が形成される。但し、独立排気通路部64Aは、第1排気管56Aの取付フランジ部56Afより上流の部分を含まない。第2排気管56Bと、集合部材57の空間57Bを形成する壁部とによって、独立排気通路部64B(図4参照)が形成される。但し、独立排気通路部64Bは、第2排気管56Bの取付フランジ部56Bfより上流の部分を含まない。第3排気管56Cと、集合部材57の空間57Cを形成する壁部とによって、独立排気通路部64C(図4参照)が形成される。但し、独立排気通路部64Cは、第3排気管56Cの取付フランジ部56Cfより上流の部分を含まない。独立排気通路部64は、独立排気通路部64A、64B、64Cの総称である。
 集合部材57の下流端は、集合排気管58に接続される。集合排気管58は、断面が略円形の管である。図9に示すように、集合排気管58は、左右2つの部品を溶接することで形成されている。集合排気管58の内側には、メイン触媒62aが配置される。集合排気管58のメイン触媒62aが配置される部分を、筒部62bと称する。触媒部62は、筒部62bとメイン触媒62aで構成される。上流集合排気通路部65は、集合部材57の空間57Dを形成する部分と、集合排気管58のメイン触媒62aよりも上流の部分とによって形成される。
 集合排気管58の下流端は、マフラー部67に接続される。詳細には、集合排気管58の下流端は、マフラー部67内に配置される。下流排気通路部66は、集合排気管58のメイン触媒62aよりも下流の部分によって形成される。但し、下流排気通路部66は、集合排気管58のうちマフラー部67の内側に配置される部分を含まない。
 3つの独立排気通路部64は、複数の曲がり部をそれぞれ有する。3つの独立排気通路部64は、3つの独立排気通路部64の経路長の差が小さくなるように、曲がり部を有する。1つの独立排気通路部64が有する少なくとも1つの曲がり部は、左右方向に見て曲がっている。1つの独立排気通路部64が有する少なくとも1つの曲がり部は、前後方向に見て曲がっている。3つの独立排気通路部64の上流端における排ガスの流れ方向は、平行である。
 図3に示すように、左右方向に見て、3つの独立排気通路部64の上流端における排ガスの流れ方向は、前斜め下方向である。左右方向に見て、第1排気管56Aの一部を含む独立排気通路部64Aの上流端の中心を通る軸線を、中心軸線C1とする。中心軸線C1の方向は、独立排気通路部64Aの上流端における排ガスの流れ方向である。中心軸線C1の前後方向に対する傾斜角度を、傾斜角度θ1とする。傾斜角度θ1は、図3に示す角度に限定されない。傾斜角度θ1は、0度以上45度以下である。よって、中心軸線C1は、前後方向に沿っている。つまり、左右方向に見て、3つの独立排気通路部64の上流端における排ガスの流れ方向は、前後方向に沿った方向である。また、前後方向に見て、3つの独立排気通路部64の上流端における排ガスの流れ方向は、上下方向とほぼ平行である。よって、3つの独立排気通路部64の上流端における排ガスの流れ方向は、前後方向に沿った方向である。
 左右方向に見て、3つの独立排気通路部64の下流端における排ガスの流れ方向は、後斜め下方向である。左右方向に見て、第1排気管56Aの一部を含む独立排気通路部64Aの下流端の中心を通る軸線を、中心軸線C2とする。中心軸線C2の上下方向に対する傾斜角度を傾斜角度θ2とする。傾斜角度θ2は、図3に示す角度に限定されない。傾斜角度θ2は、0度以上45度以下である。よって、中心軸線C2は、上下方向に沿っている。つまり、左右方向に見て、3つの独立排気通路部64の下流端における排ガスの流れ方向は、上下方向に沿った方向である。また、前後方向に見て、3つの独立排気通路部64の下流端における排ガスの流れ方向は、上下方向とほぼ平行である。よって、3つの独立排気通路部64の下流端における排ガスの流れ方向は、上下方向に沿った方向である。
 上流集合排気通路部65は、曲がり部65aを有する。左右方向に見て、曲がり部65aは曲がっている。曲がり部65aは、集合排気管58に形成される。曲がり部65aは、上流集合排気通路部65の下流端の近傍に形成される。左右方向に見て、上流集合排気通路部65の曲がり部65aよりも上流の部分における排ガスの流れ方向は、中心軸線C2とほぼ平行である。また、前後方向に見て、上流集合排気通路部65の曲がり部65aよりも上流の部分における排ガスの流れ方向は、上下方向とほぼ平行である。よって、上流集合排気通路部65の曲がり部65aよりも上流の部分における排ガスの流れ方向は、上下方向に沿っている。
 触媒部62の中心軸線を、中心軸線C3とする。左右方向に見て、上流排気通路部61の曲がり部65aよりも下流の部分の中心を通る軸線は、中心軸線C3と同軸である。左右方向に見て、中心軸線C3は、前後方向に沿っている。左右方向に見て、中心軸線C3の前後方向に対する傾斜角度を、傾斜角度θ3(不図示)とする。傾斜角度θ3は、ほぼ0度である。つまり、左右方向に見て、中心軸線C3は、前後方向とほぼ平行である。なお、傾斜角度θ3は、0度より大きくてもよい。傾斜角度θ3は、0度以上45度以下が好ましい。図示は省略するが、上下方向に見て、中心軸線C3は、前後方向とほぼ平行である。よって、中心軸線C3は、前後方向に沿っている。つまり、上流集合排気通路部65の曲がり部65aよりも下流の部分における排ガスの流れ方向は、前後方向に沿った方向である。曲がり部65aは、その内部を流れる排ガスの流れ方向を、上下方向に沿った方向から前後方向に沿った方向に変える。より詳細には、曲がり部65aは、その内部を流れる排ガスの流れ方向を、下方向に沿った方向から後方向に沿った方向に変える。
 上述したように、触媒部62の中心軸線C3は、前後方向に沿っている。つまり、触媒部62の内部を流れる排ガスの流れ方向は、前後方向に沿った方向である。より詳細には、触媒部62の内部を流れる排ガスの流れ方向は、後方向に沿った方向である。下流排気通路部66の中心を通る軸線は、中心軸線C3と同軸である。よって、下流排気通路部66の内部を流れる排ガスの流れ方向は、前後方向に沿った方向である。より詳細には、下流排気通路部66の内部を流れる排ガスの流れ方向は、後方向に沿った方向である。
 上流集合排気通路部65の下流端の近傍部は、下流に向かって径が大きくなるようにテーパー状に形成される。このテーパー部は、曲がり部65aに形成される。上流集合排気通路部65の下流端の近傍部には、凹部65bが形成されている。凹部65bの一部は、曲がり部65aに形成されている。凹部65bの一部は、曲がり部65aより上流に形成される。上流集合排気通路部65の下流端の近傍部の排ガスの流れ方向に直交する断面の面積を断面積A1(図示せず)とする。触媒部62の排ガスの流れ方向に直交する断面を断面積A2(図示せず)とする。断面積A1は断面積A2よりも小さい。下流排気通路部66は、下流に向かって径が小さくなるようにテーパー状に形成される。下流排気通路部66の上流端の近傍部の排ガスの流れ方向に直交する断面の面積を断面積A3(図示せず)とする。断面積A3は断面積A2よりも小さい。
 前後方向に見て、3つの独立排気通路部64の下端部は、オイルクーラー46と重なる。前後方向に見て、3つの独立排気通路部64は、オイルフィルタ45と重ならない。前後方向に見て、3つの独立排気通路部64の下端部は、オイルフィルタ45の右方に配置される。排気装置60およびオイルフィルタ45を前方から見たとき、オイルフィルタ45は、露出する。そのため、オイルフィルタ45をエンジン本体20から容易に取り外すことができる。よって、オイルフィルタ45の交換作業を容易に行うことができる。なお、前後方向に見て、排気装置60の一部が、オイルフィルタ45と重なってもよい。この場合であっても、オイルフィルタ45全体が排気装置60で隠れている場合に比べて、オイルフィルタ45を取り外しやすい。前方から排気装置60およびオイルフィルタ45を見たとき、オイルフィルタ45の少なくとも一部は露出していることが好ましい。
 左右方向に見て、上流集合排気通路部65の一部は、エンジン本体20の前方に配置される。前後方向に見て、上流集合排気通路部65の一部は、エンジン本体20と重なる。つまり、上流集合排気通路部65の一部は、エンジン本体20の前方に配置される。より詳細には、上流集合排気通路部65の一部は、クランクケース部20aの前方に配置される。上流集合排気通路部65は、クランク軸線Crよりも下方に配置される。
 マフラー部67は、排ガスによる騒音を低減する装置である。図9に示すように、マフラー部67の上面には、ブラケット67bが設けられている。ブラケット67bは、車体フレーム4に取り付けられる。つまり、マフラー部67は、車体フレーム4に支持される。マフラー部67は、外筒80と、テールパイプ85を有する。外筒80は、左右2つの部品を溶接することで形成されている。
 図8に示すように、マフラー部67は、外筒80に収容された4つのパイプ81~84を有する。外筒80の内部は、2つのセパレータ86、87によって3つの膨張室80a、80b、80cに仕切られている。第1パイプ81は、集合排気管58の下流端に接続される。集合排気管58のうち、外筒80の内側の部分は、マフラー部67に含まれる。第1パイプ81は、集合排気管58と、3つの膨張室のうち中央の第1膨張室80aとを連通させる。第2パイプ82は、第1膨張室80aと、第1膨張室80aの後方の第2膨張室80bとを連通させる。第3パイプ83は、第2膨張室80bと、第1膨張室80aの前方の第3膨張室80cとを連通させる。第4パイプ84は、第3膨張室80cと、テールパイプ85(図9参照)とを連通させる。第4パイプ84は、第2膨張室80b内において曲がっている。テールパイプ85は、第2膨張室80bの右壁を貫通している。第2膨張室80b内において、テールパイプ85は第4パイプ84に接続される。テールパイプ85の下流端の開口が、大気放出口67aである。集合排気管58から排出された排ガスは、第1パイプ81、第1膨張室80a、第2パイプ82、第2膨張室80b、第3パイプ83、第3膨張室80c、第4パイプ84、テールパイプ85の順で通過する。そして、排ガスは大気放出口67aから大気に放出される。外筒80の内面と4つのパイプ81~84の外面の間には、例えばグラスウール等の吸音材が配置されていてもよいが、配置されていなくてもよい。なお、マフラー部67の内部構造は、図8に示す構造に限定されない。
 次に、触媒部62についてより詳細に説明する。図3、図4および図9に示すように、触媒部62は、メイン触媒62aと、筒部62bとを有する。筒部62bは、上流集合排気通路部65の下流端と下流排気通路部66の上流端に接続される。筒部62bは、上流集合排気通路部65の一部と一体成形されていてもよい。また、筒部62bは、下流排気通路部66の一部と一体成形されていてもよい。排気装置60は、メイン触媒62a以外の触媒を有しない。メイン触媒62aは、複数の排気経路69(図5参照)において排ガスを最も浄化する。
 メイン触媒62aは円柱状に形成されている。メイン触媒62aは、多孔構造である。多孔構造とは、排ガスの流れ方向に貫通する複数の孔が形成された構造をいう。メイン触媒62aは、三元触媒である。三元触媒は、排ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)の3物質を酸化または還元することで除去する。三元触媒は、酸化還元触媒の1種である。なお、メイン触媒62aは、炭化水素、一酸化炭素、および窒素酸化物のいずれか1つまたは2つを除去する触媒であってもよい。メイン触媒62aは、酸化還元触媒でなくてもよい。メイン触媒は、酸化だけで有害物質を除去する酸化触媒であってもよい。メイン触媒は、還元だけで有害物質を除去する還元触媒であってもよい。メイン触媒62aは、基材と、この基材の表面に付着された触媒物質とを有する。触媒物質は、担体と貴金属を有する。担体は、貴金属を基材に付着させる機能を有する。貴金属は、排ガスを浄化する機能を有する。貴金属としては、例えば、炭化水素、一酸化炭素、および窒素酸化物をそれぞれ除去する、プラチナ、パラジウム、ロジウムなどが挙げられる。メイン触媒62aの温度が所定の温度よりも低い場合、メイン触媒62aは非活性状態であって浄化性能を発揮しない。メイン触媒62aの温度が所定の温度以上の場合に、メイン触媒62aは活性状態となって浄化性能を発揮する。メイン触媒62aは、メタル基材触媒であっても、セラミック基材触媒であってもよい。メタル基材触媒とは、基材が金属製の触媒である。セラミック基材触媒とは、基材がセラミック製の触媒である。メタル基材触媒の基材は、例えば、金属製の波板と金属製の平板を交互に重ねて巻回することで形成される。セラミック基材触媒の基材は、例えば、ハニカム構造体である。
 触媒部62の中心軸線C3は、メイン触媒62aの中心軸線と同軸である。触媒部62の中心軸線C3とは、筒部62bの中心軸線のことである。触媒部62の排ガスの流れ方向の長さは、メイン触媒62aの排ガスの流れ方向の長さと同じである。メイン触媒62aの上流端の中心と、触媒部62の上流端の中心は同じ位置である。メイン触媒62aの下流端の中心と、触媒部62の下流端の中心は同じ位置である。触媒部62の排ガスの流れ方向の長さを、長さDc1(図示せず)とする。また、触媒部62の排ガスの流れ方向に直交する方向の最大長さを、長さDc2(図示せず)とする。長さDc1は、長さDc2よりも長い。
 図3に示すように、クランクケース部20aの最前端を通り前後方向に直交する平面を平面Se1とする。クランクケース部20aの最後端を通り前後方向に直交する平面を平面Se2とする。触媒部62は、平面Se1と平面Se2との間に配置される。左右方向に見て、触媒部62の一部は、クランクケース部20aの下方に配置される。なお、左右方向に見て、触媒部62全体が、クランクケース部20aの下方に配置されてもよい。図4に示すように、エンジン本体20の最左端を通り左右方向に直交する平面を平面Se3とする。平面Se3は、クランクケース部20aの最左端を通る。エンジン本体20の最右端を通り左右方向に直交する平面を平面Se4とする。平面Se4は、クランクケース部20aの最右端を通る。触媒部62は、平面Se3と平面Se4との間に配置される。図示は省略するが、上下方向に見て、触媒部62は、全体がクランクケース部20aと重なる。触媒部62は、クランクケース部20aの下方に配置される。触媒部62の一部は、オイルパン26の一部の下方に配置される。なお、触媒部62の一部だけが、クランクケース部20aの下方に配置されてもよい。触媒部62の少なくとも一部は、クランクケース部20aの下方に配置されることが好ましい。
 左右方向に見て、触媒部62の一部は、直線La1の前方に配置される。つまり、触媒部62の一部は、クランク軸線Crよりも前方に配置される。なお、触媒部62全体が、クランク軸線Crよりも前方に配置されてもよい。触媒部62の少なくとも一部は、クランク軸線Crよりも前方に配置されることが好ましい。また、触媒部62全体が、クランク軸線Crよりも後方に配置されてもよい。触媒部62の少なくとも一部は、クランク軸線Crよりも後方に配置されることが好ましい。また、触媒部62は、クランク軸線Crよりも下方に配置される。左右方向に見て、触媒部62は、シリンダ軸線Cyの前方に配置される。なお、触媒部62の一部だけが、シリンダ軸線Cyの前方に配置されてもよい。触媒部62の少なくとも一部は、シリンダ軸線Cyの前方に配置されることが好ましい。左右方向に見て、シリンダ軸線Cyに直交し、且つ、クランク軸線Crを通る直線を、直線La2とする。左右方向に見て、触媒部62全体は、直線La2の後方(下方)に配置される。なお、左右方向に見て、触媒部62の一部だけが、直線La2の後方に配置されてもよい。左右方向に見て、触媒部62の少なくとも一部は、直線La2の後方に配置されることが好ましい。
 左右方向に見て、触媒部62全体は、直線Lpの下方(後方)に配置される。直線Lpは、エンジンユニット11を左右方向に見たときの、クランクケース21とオイルパン26との境界線の延長線である。なお、触媒部62の一部だけが、直線Lpの下方に配置されてもよい。触媒部62の少なくとも一部は、直線Lpの下方に配置されることが好ましい。
 図3に示すように、左右方向に見て、エンジン本体20の輪郭線上の点と前輪部2の輪郭線上の点とを結ぶ線分のうち最も下方に配置される線分を、線分Lw1とする。線分Lw1は、エンジン本体20の最下端と前輪部2の最下端の近傍とを結ぶ線分である。左右方向に見て、触媒部62の一部は、線分Lw1およびその延長線の上方に配置される。左右方向に見て、エンジン本体20の輪郭線上の点と前輪部2の輪郭線上の点とを結ぶ線分のうち最も上方に配置される線分を、線分Lw2とする。線分Lw2は、エンジン本体20の最上端と前輪部2の最上端またはその近傍とを結ぶ線分である。左右方向に見て、触媒部62の一部は、線分Lw1と線分Lw2を2辺とする四角形の領域内に配置される。線分Lw1と線分Lw2を2辺とする四角形とは、言い換えると、線分Lw1の両端と線分Lw2の両端を頂点とする四角形である。左右方向に見て、触媒部62の一部は、上述の四角形の領域内に配置されて、且つ、エンジン本体20と重ならない。つまり、左右方向に見て、触媒部62の一部は、エンジン本体20と前輪部2との間に配置される。なお、左右方向に見て、触媒部62全体が、エンジン本体20と前輪部2との間に配置されてもよい。左右方向に見て、触媒部62の少なくとも一部は、エンジン本体20と前輪部2との間に配置されることが好ましい。また、左右方向に見て、触媒部62全体が、線分Lw1およびその延長線の上方に配置されてもよい。フロントフォーク6および/またはリアサスペンション8が伸縮することで、前輪部2に対する車体フレーム4の相対位置は変化する。したがって、前輪部2に対するエンジンユニット11の相対位置は変化する。左右方向に見て触媒部62の少なくとも一部がエンジン本体20と前輪部2との間に配置されるとは、前輪部2に対してエンジンユニット11がどの位置にあるときにでも、配置されているという意味ではない。左右方向に見て触媒部62の少なくとも一部がエンジン本体20と前輪部2との間に配置されるとは、前輪部2に対してエンジンユニット11がいずれかの位置のときに、配置されていればよいものとする。
 図3に示すように、前輪部2の中心を通る水平面を、水平面Shとする。触媒部62は、水平面Shより下方に配置される。触媒部62が水平面Shより下方に配置されるとは、前輪部2に対してエンジンユニット11がいずれかの位置のときに、配置されていればよいものとする。
 図4に示すように、触媒部62は、自動二輪車1の右部に配置される。触媒部62の上流端の中心および下流端の中心は、自動二輪車1の左右方向中央C0上に配置されていない。触媒部62の上流端の中心および下流端の中心は、自動二輪車1の左右方向中央C0の右方に位置する。前後方向に見て、触媒部62は、自動二輪車1の左右方向中央C0の右方に配置される。なお、前後方向に見て、触媒部62の一部が、自動二輪車1の左右方向中央C0の右側に配置され、触媒部62の残りの部分が、自動二輪車1の左右方向中央C0の左側に配置されてもよい。
 図6に示すように、3つの排気経路69における燃焼室30から触媒部62の上流端までの経路長の平均値を、経路長Da1とする。触媒部62の下流端から大気放出口67aまでの経路長を、経路長Db1とする。経路長Da1は、経路長Db1よりも短い。3つの排気経路69における排気口34bから触媒部62の上流端までの経路長の平均値を、経路長Da2とする。触媒部62の下流端からマフラー部67の上流端までの経路長を、経路長Db2とする。経路長Da1は、経路長Db2よりも長い。経路長Da2は、経路長Db2よりも長い。なお、経路長Da2は、経路長Db2より短くてもよい。また、経路長Da1は、経路長Db2より短くてもよい。マフラー部67の膨張室内の経路長は、以下のように定義される。第1パイプ81の下流端から第2パイプ82の上流端までの第1膨張室80a内の経路長を例に挙げる。この経路長は、第1パイプ81の下流端の中心から第2パイプ82の上流端の中心までを最短で結んだ経路の長さである。つまり、マフラー部67の膨張室内の経路長は、膨張室の流入口の中心から膨張室の流出口の中心を最短で結んだ経路の長さである。
 図3および図4に示すように、排気装置60は、上流酸素センサ76と下流酸素センサ77とを有する。上流酸素センサ76は、上流排気通路部61に設けられる。つまり、上流酸素センサ76は、触媒部62よりも上流に設けられる。上流酸素センサ76は、上流集合排気通路部65に設けられる。なお、上流酸素センサ76は、3つの独立排気通路部64の少なくとも1つに設けられてもよい。また、上流酸素センサ76は、3つの内部排気通路部34の少なくとも1つに設けられてもよい。上流酸素センサ76は、曲がり部65aより上流に設けられる。なお、上流酸素センサ76は、曲がり部65aより下流に設けられてもよい。
 上流酸素センサ76は、上流排気通路部61内の排ガス中の酸素濃度を検出する。上流酸素センサ76は、排ガス中の酸素濃度に応じた電圧信号を出力する。上流酸素センサ76は、混合気の空燃比がリッチ状態のときは電圧値の高い信号を出力し、空燃比がリーン状態のときは電圧値の低い信号を出力する。リッチ状態とは、目標空燃比に対して燃料が過剰な状態をいう。リーン状態とは、目標空燃比に対して空気が過剰な状態をいう。つまり、上流酸素センサ76は、混合気の空燃比がリッチ状態とリーン状態のどちらで有るかを検出する。なお、上流酸素センサ76は、リニアA/Fセンサであってもよい。リニアA/Fセンサは、排ガスの酸素濃度に応じたリニアな検出信号を出力する。言い換えると、リニアA/Fセンサは、排ガス中の酸素濃度の変化を連続的に検出する。上流酸素センサ76は、ジルコニアを主体とした固体電解質体からなるセンサ素子部を有する。このセンサ素子部が、高温に加熱されて活性化状態となったときに、上流酸素センサ76は酸素濃度を検出できる。上流酸素センサ76は、ヒータを内蔵していてもよい。エンジンユニット11の冷間始動時に、ヒータによりセンサ素子部を加熱する。それにより、センサ素子部を非活性状態から活性化するまでの時間を短縮できる。なお、エンジンユニット11の冷間始動とは、エンジン本体20の温度が外気温かそれよりも低い状態で、エンジンユニット11を始動することである。
 上流酸素センサ76は、上流集合排気通路部65の右部に設けられる。図12に示すように、上流酸素センサ76は、上流集合排気通路部65の凹部65bに設けられる。上流酸素センサ76の先端部は、上流集合排気通路部65内に配置される。上流酸素センサ76を凹部65bに設けたことで、上流酸素センサ76の先端部を、上流集合排気通路部65の中心軸線により近づけることができる。これにより、上流酸素センサ76は、3つの独立排気通路部64から排出された排ガスを偏りなく検出できる。図4に示すように、触媒部62を通過する排ガスの流れ方向に見て、上流酸素センサ76の一部は、触媒部62と重なる。上流酸素センサ76は、触媒部62の最下端よりも上方に配置される。図3に示すように、左右方向に見て、上流酸素センサ76は、エンジン本体20の前方に配置される。左右方向に見て、上流酸素センサ76は、クランクケース部20aの前方に配置される。左右方向に見て、上流酸素センサ76は、エンジン本体20の下方に配置される。左右方向に見て、上流酸素センサ76は、クランクケース部20aの下方に配置される。左右方向に見て、上流酸素センサ76は平面Se1と平面Se2との間に配置される。上流酸素センサ76は、オイルパン26よりも前方に配置される。前後方向に見て、上流酸素センサ76の一部は、オイルパン26と重なる。上流酸素センサ76の一部は、オイルパン26の前方に配置される。
 図6に示すように、3つの排気経路69における排気口34bから上流酸素センサ76までの経路長の平均値を、経路長Da3とする。上流酸素センサ76から触媒部62の上流端までの経路長を、経路長Da4とする。経路長Da3は、経路長Da4よりも長い。なお、経路長Da3は、経路長Da4よりも短くてもよい。
 図3および図4に示すように、下流酸素センサ77は、下流集合排気通路部63に設けられる。つまり、下流酸素センサ77は、触媒部62よりも下流に設けられる。下流酸素センサ77は、下流排気通路部66に設けられる。なお、下流酸素センサ77は、マフラー部67に設けられてもよい。下流酸素センサ77は、下流排気通路部66内の排ガス中の酸素濃度を検出する。下流酸素センサ77の具体的な構成は、上流酸素センサ76と同様である。下流酸素センサ77は、リニアA/Fセンサであってもよい。下流酸素センサ77は、ヒータを内蔵していてもよい。
 図4等に示すように、下流酸素センサ77は、下流排気通路部66の右部に設けられる。下流酸素センサ77の先端部は、下流排気通路部66内に配置される。触媒部62を通過する排ガスの流れ方向に見て、下流酸素センサ77の一部は、触媒部62と重なる。下流酸素センサ77は、触媒部62の最下端よりも上方に配置される。図3に示すように、左右方向に見て、下流酸素センサ77は、エンジン本体20の下方に配置される。左右方向に見て、下流酸素センサ77は、クランクケース部20aの下方に配置される。左右方向に見て、下流酸素センサ77は平面Se1と平面Se2との間に配置される。図示は省略するが、上下方向に見て、下流酸素センサ77の少なくとも一部は、クランクケース部20aと重なる。下流酸素センサ77の少なくとも一部は、クランクケース部20aの下方に配置される。下流酸素センサ77の少なくとも一部は、オイルパン26の下方に配置される。
 図6に示すように、触媒部62の下流端から下流酸素センサ77までの経路長を、経路長Db3とする。下流酸素センサ77から大気放出口67aまでの経路長を、経路長Db4とする。経路長Db3は、経路長Db4よりも短い。なお、経路長Db3は、経路長Db4よりも長くてもよい。
 [ECUの構成]
 図7に示すように、エンジンユニット11は、エンジンユニット11の動作を制御する制御装置として、ECU90(Electronic Control Unit)を有する。ECU90は、各種センサ71~77と接続される。また、ECU90は、点火コイル32、インジェクタ54、燃料ポンプ93、スターターモーター(図示せず)、表示装置14等と接続される。ECU90は、センサ71~76等の信号に基づいて、燃料ポンプ93およびインジェクタ54の動作を制御する。それによって、ECU90は、燃料噴射量および燃料噴射タイミングを制御する。ECU90は、燃料噴射量および燃料噴射タイミングの制御に、下流酸素センサ77の信号を使っても使わなくてもよい。ECU90は、センサ71~76等の信号に基づいて点火コイル32への通電を制御する。それによって、点火時期を制御する。なお、点火時期とは、点火プラグ31の放電タイミングのことである。ECU90は、点火時期の制御に、下流酸素センサ77の信号を使っても使わなくてもよい。さらに、ECU90は、スターターモーター(図示せず)への通電を制御し、それによって、エンジンユニット11の始動を制御する。
 ECU90は、1つの装置で構成されていてもよく、離れた位置に配置された複数の装置で構成されていてもよい。ECU90は、CPU、ROM、RAMなどで構成される。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。これにより、ECU90には複数の機能処理部の各機能が実現される。ECU90は、機能処理部として、燃料噴射量制御部91、触媒劣化判定部92などを有する。
 燃料噴射量制御部91は、インジェクタ54の燃料噴射量を制御する。より具体的には、燃料噴射量制御部91は、インジェクタ54による燃料噴射時間を制御する。燃料噴射量は、燃料供給量とも言い換えられる。燃料噴射量燃焼効率と、メイン触媒62aの浄化効率を高めるには、混合気の空燃比は理論空燃比(ストイキオメトリ)であることが好ましい。燃料噴射量制御部91は、必要に応じて、燃料噴射量を増減させる。
 以下、燃料噴射量制御部91による燃料噴射量の制御の一例について説明する。燃料噴射量制御部91が、上流酸素センサ76の信号を使って下流酸素センサ77の信号を使わずに燃料噴射量を制御する場合について説明する。燃料噴射量制御部91は、まず、エンジン回転速度センサ71、吸気圧センサ74、スロットル開度センサ73、エンジン温度センサ72の信号に基づいて、基本燃料噴射量を算出する。具体的には、以下の2つのマップを用いて、吸入空気量を算出する。1つ目のマップは、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップである。2つ目のマップは、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップである。そして、マップから求められた吸入空気量に基づいて、目標空燃比を達成できる基本燃料噴射量を決定する。スロットル開度が小さい場合には、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。一方、スロットル開度が大きい場合には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。
 燃料噴射量制御部91は、上流酸素センサ76の信号に基づいて、基本燃料噴射量を補正するためのフィードバック補正値を算出する。具体的には、まず、上流酸素センサ76の信号に基づいて、混合気がリーン状態であるかリッチ状態であるかを判定する。燃料噴射量制御部91は、混合気がリーン状態であると判定すると、次回の燃料噴射量が増えるようにフィードバック補正値を算出する。一方、燃料噴射量制御部91は、混合気がリッチ状態であると判定すると、次回の燃料噴射量が減るようにフィードバック補正値を求める。
 燃料噴射量制御部91は、エンジン温度、外気温度、外気圧等に基づいて、基本燃料噴射量を補正するための補正値を算出する。さらに、燃料噴射量制御部91は、加減速時の過渡特性に応じた補正値を算出する。燃料噴射量制御部91は、基本燃料噴射量と、フィードバック補正値などの補正値に基づいて、燃料噴射量を算出する。こうして求められた燃料噴射量に基づいて、燃料ポンプおよびインジェクタ54が駆動されて、インジェクタ54から燃料が噴射される。
 なお、燃料噴射量制御部91は、上流酸素センサ76の信号と下流酸素センサ77の信号に基づいて、燃料噴射量を制御してもよい。具体的には、燃料噴射量制御部91は、上流酸素センサ76の信号と下流酸素センサ77の信号に基づいて、基本燃料噴射量を補正してもよい。より具体的に説明すると、まず、上記実施形態と同様に、上流酸素センサ76の信号に基づいて基本燃料噴射量を補正する。算出された燃料噴射量でインジェクタ54から燃料を噴射させる。この燃料の燃焼によって発生する排ガスを下流酸素センサ77で検出する。そして、下流酸素センサ77の信号に基づいて基本燃料噴射量を補正する。これにより、目標空燃比に対する混合気の空燃比のずれをより低減できる。
 触媒劣化判定部92は、下流酸素センサ77の信号に基づいて、メイン触媒62aの浄化能力を判定する。具体的には、例えば、燃料噴射量制御部91が、一定期間(例えば数秒間)、混合気がリッチ状態とリーン状態を繰り返すように燃料噴射量を制御する。そして、触媒劣化判定部92は、燃料噴射量の変化に対する下流酸素センサ77の信号の変化の遅れの程度に基づいて、メイン触媒62aの浄化能力を判定する。触媒劣化判定部92は、この変化の遅れが大きい場合には、メイン触媒62aの浄化能力が所定のレベルより低下したと判定する。つまり、メイン触媒62aが劣化したと判定する。触媒劣化判定部92がメイン触媒62aの劣化を検出した場合には、ECU90から表示装置14に信号が送られる。そして、表示装置14の警告灯(図示せず)が点灯される。これにより、ライダーにメイン触媒62aの交換をライダー等に促すことができる。なお、ライダーにメイン触媒62aの劣化を報知するための報知手段は、警告灯に限らない。表示装置14の液晶画面に、交換を促すための文字を表示してもよい。また、音や振動を発生させる装置によって、ライダーに報知してもよい。
 なお、触媒劣化判定部92は、上流酸素センサ76の信号と下流酸素センサ77の信号に基づいて、メイン触媒62aの浄化能力を判定してもよい。例えば、触媒劣化判定部92は、上流酸素センサ76の信号の変化と下流酸素センサ77の信号の変化を比較して、メイン触媒62aの浄化能力を判定してもよい。2つの酸素センサ76、77の信号を使うことで、メイン触媒62aの劣化の程度をより精度よく検出できる。
 ECU90は、以下の2つの処理のいずれか一方だけを行ってもよく、両方を行ってもよい。1つの目の処理は、上流酸素センサ76と下流酸素センサ77の信号に基づいて燃料噴射量の制御である。2つ目の処理は、少なくとも下流酸素センサ77の信号に基づいたメイン触媒62aの浄化能力の判定である。また、燃料噴射量制御部91が上流酸素センサ76と下流酸素センサ77の信号に基づいて燃料噴射量を制御する場合には、ECU90は触媒劣化判定部92を有していなくてもよい。
 以上説明した本実施形態の自動二輪車1は、以下の特徴を有する。
 ECU90は、下流酸素センサ77の信号に基づいて、メイン触媒62aの浄化能力を判定する。そして、ECU90によって、メイン触媒62aの浄化能力が所定のレベルまで低下したと判定された場合には、表示装置14が報知する。これにより、メイン触媒62aの劣化が所定のレベルに達する前に、メイン触媒62aの交換をライダー等に促すことができる。メイン触媒62aを交換することで、複数のメイン触媒62aを使って、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 また、下流酸素センサ77の信号に加えて、上流酸素センサ76の信号を使って、メイン触媒62aの劣化を検出することもできる。2つの酸素センサ76、77の信号を使うことで、メイン触媒62aの劣化の程度をより精度よく検出できる。そのため、下流酸素センサ77の信号だけを使ってメイン触媒62aの劣化を検出する場合に比べて、1つのメイン触媒62aをより長期間使用できる。よって、複数のメイン触媒62aを使って、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 また、ECU90は、上流酸素センサ76の信号と、下流酸素センサ77の信号に基づいて、複数のインジェクタ54の燃料供給量を制御する。上流酸素センサ76の信号と、下流酸素センサ77の信号を用いることで、メイン触媒62aの実際の浄化能力を検出できる。そのため、2つの酸素センサ76、77の信号に基づいて燃焼制御を行うことにより、上流酸素センサ76の信号だけに基づいて燃料制御を行った場合に比べて、燃料制御の精度を向上できる。それにより、メイン触媒62aの劣化の進行を遅らせることができる。したがって、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 このように、下流酸素センサ77の使い方に関わらず、メイン触媒62aを大型化することなく、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。よって、クランクケース部20aの下方に触媒部62の少なくとも一部を配置しているにもかかわらず、自動二輪車1の排気浄化についての初期性能を長時間維持しながら、自動二輪車1の上下方向の大型化を抑制できる。
 上流酸素センサ76は、触媒部62の最下端よりも上方に位置する。断面積A1は、上流集合排気通路部65の下流端の近傍部の排ガスの流れ方向に直交する断面の面積である。断面積A2は、触媒部62の排ガスの流れ方向に直交する断面の面積である。断面積A1は、断面積A2よりも小さい。そのため、上流集合排気通路部65の下流端の近傍部の周囲は、スペースを確保しやすい。このスペースを利用して上流酸素センサ76を配置できる。触媒部62は、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置される。よって、このスペースを利用して上流酸素センサ76を配置することで、上流酸素センサ76を、触媒部62の最下端よりも上方に位置するように配置することができる。したがって、触媒部62の上流に上流酸素センサ76を配置しながら、自動二輪車1の上下方向の大型化を抑制できる。
 下流酸素センサ77は、触媒部62の最下端よりも上方に位置する。断面積A1は、上流集合排気通路部65の下流端の近傍部の排ガスの流れ方向に直交する断面の面積である。断面積A3は、下流集合排気通路部63の上流端の近傍部の排ガスの流れ方向に直交する断面の面積である。断面積A3は、断面積A2よりも小さい。そのため、下流集合排気通路部63の上流端の近傍部の周囲は、スペースを確保しやすい。このスペースを利用して下流酸素センサ77を配置できる。触媒部62は、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置される。よって、このスペースを利用して下流酸素センサ77を配置することで、下流酸素センサ77を、触媒部62の最下端よりも上方に位置するように配置することができる。したがって、触媒部62の下流に下流酸素センサ77を配置しながら、自動二輪車1の上下方向の大型化を抑制できる。
 触媒部62は、複数の独立排気通路部64が接続される上流集合排気通路部65よりも下流に設けられる。そのため、独立排気通路部64ごとにメイン触媒62aを設ける場合に比べて、メイン触媒62aの数を低減できる。それにより、自動二輪車1の上下方向の大型化を抑制できる。また、上流酸素センサ76は、上流集合排気通路部65に設けられる。そのため、独立排気通路部64ごとに上流酸素センサ76を設ける場合に比べて、上流酸素センサ76の数を低減できる。それにより、自動二輪車1の上下方向の大型化を抑制できる。
 上述したように、断面積A3は断面積A2よりも小さい。そのため、下流集合排気通路部63の上流端の近傍部の周囲は、スペースを確保しやすい。触媒部62を通過する排ガスの流れ方向に見て、下流酸素センサ77の少なくとも一部は、触媒部62と重なる。つまり、下流酸素センサ77は、下流集合排気通路部63の上流端の近傍部の周囲のスペースを利用して配置される。よって、触媒部62の下流に下流酸素センサ77を配置しながら、自動二輪車1の上下方向の大型化を抑制できる。
 触媒部62を通過する排ガスの流れ方向に見て、下流酸素センサ77の少なくとも一部は、触媒部62と重なる。そのため、下流酸素センサ77は、触媒部62に近い位置に配置される。それにより、下流酸素センサ77で検出される酸素濃度は、メイン触媒62aの下流端を通過する時点の排ガスの酸素濃度に近い。よって、下流酸素センサ77を使った制御の精度をより向上できる。つまり、下流酸素センサ77の信号に基づいてメイン触媒62aの劣化を検出する場合には、劣化の検出精度を向上できる。そのため、1つのメイン触媒62aをより長期間使用できる。その結果、複数のメイン触媒62aを使って、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。また、上流酸素センサ76と下流酸素センサ77の信号に基づいて燃料制御を行う場合には、燃料制御の精度をより向上できる。その結果、メイン触媒62aの劣化の進行をより遅らせることができる。よって、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 上述したように、断面積A1は、断面積A2よりも小さい。そのため、上流集合排気通路部65の下流端の近傍部の周囲は、スペースを確保しやすい。触媒部62を通過する排ガスの流れ方向に見て、上流酸素センサ76の少なくとも一部は、触媒部62と重なる。つまり、上流酸素センサ76は、上流集合排気通路部65の下流端の近傍部の周囲のスペースを利用して配置される。よって、触媒部62の上流に上流酸素センサ76を配置しながら、自動二輪車1の上下方向の大型化を抑制できる。
 触媒部62を通過する排ガスの流れ方向に見て、上流酸素センサ76の少なくとも一部は、触媒部62と重なる。そのため、上流酸素センサ76は、触媒部62に近い位置に配置される。それにより、上流酸素センサ76で検出される酸素濃度は、メイン触媒62aの上流端を通過する時点の排ガスの酸素濃度に近い。よって、上流酸素センサ76を使った制御の精度をより向上できる。つまり、少なくとも上流酸素センサ76の信号に基づいた燃料制御の精度をより向上できる。その結果、メイン触媒62aの劣化の進行をより遅らせることができる。よって、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 下流酸素センサ77は、下流排気通路部66に設けられる。したがって、下流酸素センサ77がマフラー部67に設けられる場合に比べて、燃焼室30から触媒部62までの経路長Da1が短くなる。そのため、メイン触媒62aに流入する排ガスの温度が高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒62aによる排気浄化性能を向上できる。
 下流酸素センサ77の少なくとも一部が、クランクケース部20aの下方に配置される。下流酸素センサ77は、触媒部62より下流に配置される。よって、触媒部62は、少なくとも一部がクランクケース部20aの下方で、且つ、全体がクランクケース部20aの後端よりも前方に配置される。したがって、触媒部62の一部が、クランクケース部20aの後端よりも後方に配置される場合に比べて、燃焼室30から触媒部62までの経路長Da1が短くなる。そのため、メイン触媒62aに流入する排ガスの温度がより高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒62aによる排気浄化性能を向上できる。
 クランクケース部20aは、その下部にオイルパン26を有している。下流酸素センサ77の少なくとも一部は、オイルパン26の下方に配置される。よって、触媒部62は、少なくとも一部がクランクケース部20aの下方で、且つ、全体が左右方向に見てオイルパン26の後端よりも前方に配置される。したがって、触媒部62の一部が、オイルパン26の後端よりも後方に配置される場合に比べて、燃焼室30から触媒部62までの経路長Da1が短くなる。そのため、メイン触媒62aに流入する排ガスの温度がより高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒62aによる排気浄化性能をより向上できる。
 上流酸素センサ76は、オイルパン26よりも前方に配置される。上流酸素センサ76は、触媒部62よりも上流に配置される。そのため、上流酸素センサ76の一部が、オイルパン26より後方に配置される場合に比べて、触媒部62をより前方に配置することができる。したがって、燃焼室30から触媒部62までの経路長Da1が短くなる。そのため、メイン触媒62aに流入する排ガスの温度がより高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒62aによる排気浄化性能をより向上できる。
 エンジン本体20は、複数のシリンダ孔22aが左右方向に沿って隣り合うように配置される。これにより、複数の独立排気通路部64の経路長のばらつきを低減できる。燃焼室30から排出された時点の排ガスは、気体の未燃燃料と酸素を含む。排ガスは、排気経路中で未燃燃料の酸化を続けながら移動する。酸化が進むに従って、排ガス中の酸素濃度が減少する。複数の独立排気通路部64の経路長のばらつきを低減することで、複数の独立排気通路部64から排出された排ガスの酸素濃度のばらつきを低減できる。よって、上流酸素センサ76で検出される酸素濃度が不安定になるのを防止できる。したがって、上流酸素センサ76に基づく燃料制御の精度を高めることができる。その結果、メイン触媒62aの劣化の進行をより遅らせることができる。よって、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 エンジン本体20は、複数のシリンダ孔22aの中心軸線Cyが上下方向に沿うように配置される。それにより、燃焼室30から触媒部62までの経路長Da1を適切に確保することができる。燃焼室30から触媒部62までの経路長Da1が短すぎると、メイン触媒62aに流入する排ガスの温度が高くなりすぎる場合がある。その結果、メイン触媒62aが過熱により劣化する恐れがある。燃焼室30から触媒部62までの経路長を適切に確保することで、メイン触媒62aの過熱による劣化を防止できる。その結果、自動二輪車1の排気浄化についての初期性能をより長期間維持できる。
 触媒部62の少なくとも一部は、クランク軸線Crよりも前方に配置される。したがって、触媒部62が、クランク軸線Crよりも後方に配置される場合に比べて、触媒部62をより前方に配置することができる。よって、燃焼室30から触媒部62までの経路長Da1が短くなる。そのため、メイン触媒62aに流入する排ガスの温度がより高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒62aによる排気浄化性能をより向上できる。
 左右方向に見て、触媒部62の少なくとも一部は、直線La2の後方に配置される。触媒部62は、排ガスの流れ方向が、水平方向に沿った方向である。仮に、このような触媒部62を直線La2の前方に配置しつつ、触媒部62と前輪部2との前後方向の離間距離を確保しようとすると、自動二輪車1が前後方向に大型化する。よって、左右方向に見て、触媒部62の少なくとも一部が直線La2の後方に配置されることにより、自動二輪車1の前後方向の大型化を抑制できる。
 (変形例1)
 図13は、上記第1実施形態の変形例1のエンジンユニットの一部の右側面図である。変形例1において、上記第1実施形態と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図13に示すように、変形例1のエンジンユニットは、下流サブ触媒47Dと上流サブ触媒47Uを有する。以下の説明において、上流サブ触媒47Uと下流サブ触媒47Dを、サブ触媒47(不図示)と総称する場合がある。
 上流サブ触媒47Uは、触媒部62の上流に配置される。上流サブ触媒47Uは、上流排気通路部61に配置される。上流サブ触媒47Uは、複数の独立排気通路部64の少なくとも1つに配置される。なお、上流サブ触媒47Uは、上流集合排気通路部65に配置されてもよい。また、上流サブ触媒47Uは、複数の内部排気通路部34の少なくとも1つに配置されてもよい。上流サブ触媒47Uは、上流酸素センサ76の上流に配置される。上流サブ触媒47Uは、曲がり部65aの上流に配置される。
 下流サブ触媒47Dは、触媒部62の下流に配置される。下流サブ触媒47Dは、下流集合排気通路部63に配置される。下流サブ触媒47Dは、マフラー部67に配置される。なお、下流サブ触媒47Dは、下流排気通路部66に配置されてもよい。下流サブ触媒47Dは、下流酸素センサ77の下流に配置される。
 サブ触媒47は、排ガスを浄化する。サブ触媒47は、メイン触媒62aと同様の触媒物質を有する。サブ触媒47は、メイン触媒62aと同様に多孔構造であってもよい。サブ触媒47は、多孔構造でなくてもよい。多孔構造でないサブ触媒47の一例を挙げる。例えば、サブ触媒47は、下流集合排気通路部63の内面に付着された触媒物質だけで構成される。この場合、サブ触媒47の触媒物質が付着される基材は、下流集合排気通路部63である。多孔構造でないサブ触媒47の他の一例を挙げる。例えば、サブ触媒47は、板状の基材に触媒物質を付着させた構成である。この板状の基材の排ガスの流れ方向に直交する断面の形状は、例えば、円形状、C字状、S字状である。
 変形例1において、メイン触媒62aは、複数の排気経路69において排ガスを最も浄化する。つまり、メイン触媒62aは、複数の排気経路69において、燃焼室30から排出された排ガスを、サブ触媒47よりも浄化する。言い換えると、サブ触媒47は、メイン触媒62aに比べて、排ガスを浄化する寄与度が低い。メイン触媒62aと上流サブ触媒47Uと下流サブ触媒47Dのそれぞれの浄化の寄与度は、以下の方法で測定できる。
 変形例1のエンジンユニットを運転して、暖機状態のときに大気放出口67aから排出された排ガスに含まれる有害物質の濃度を測定する。なお、暖機状態とは、エンジン本体20の温度が十分に温まった状態を指す。排ガスの測定方法は、欧州規制に従った測定方法とする。エンジンユニットが暖機状態のとき、メイン触媒62aとサブ触媒47は、高温であって活性化されている。そのため、メイン触媒62aとサブ触媒47は、暖機状態のときに、浄化性能を十分に発揮できる。
 次に、変形例1のエンジンユニットから、下流サブ触媒47Dを取り外して、その代わりに下流サブ触媒47Dの基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットAとする。そして、測定用エンジンユニットAを運転して、暖機状態のときに大気放出口67aから排出された排ガスに含まれる有害物質の濃度を測定する。
 なお、下流サブ触媒47Dは、下流集合排気通路部63の内面に触媒物質を直接付着させた構成の場合がある。この場合には、「下流サブ触媒47Dの基材のみを配置する」とは、下流集合排気通路部63の内面に触媒物質を付着させないことを意味する。
 次に、測定用エンジンユニットAから、メイン触媒62aを取り外して、その代わりにメイン触媒62aの基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットBとする。そして、測定用エンジンユニットBを運転して、暖機状態のときに大気放出口67aから排出された排ガスに含まれる有害物質の濃度を測定する。
 その後、測定用エンジンユニットBから、上流サブ触媒47Uを取り外して、その代わりに上流サブ触媒47Uの基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットCとする。そして、測定用エンジンユニットCを運転して、暖機状態のときに大気放出口67aから排出された排ガスに含まれる有害物質の濃度を測定する。
 測定用エンジンユニットCは、メイン触媒62aとサブ触媒47を有しない。測定用エンジンユニットBは、上流サブ触媒47Uを有し、メイン触媒62aと下流サブ触媒47Dを有しない。測定用エンジンユニットAは、メイン触媒62aと上流サブ触媒47Uを有し、下流サブ触媒47Dを有しない。そのため、変形例1のエンジンユニットの測定結果と、測定用エンジンユニットAの測定結果の差から、下流サブ触媒47Dの浄化の寄与度が算出される。また、測定用エンジンユニットAの測定結果と、測定用エンジンユニットBの測定結果の差から、メイン触媒62aの浄化の寄与度が算出される。また、測定用エンジンユニットBの測定結果と、測定用エンジンユニットCの測定結果の差から、上流サブ触媒47Uの浄化の寄与度が算出される。
 メイン触媒62aは、複数の排気経路69において排ガスを最も浄化する。この条件を満たせば、サブ触媒47の浄化能力は、メイン触媒62aの浄化能力より小さくても大きくてもよい。なお、サブ触媒47の浄化能力が、メイン触媒62aの浄化能力より小さいとは、以下の状態をいう。即ち、サブ触媒だけを設けた場合に大気放出口67aから排出される排ガスが、メイン触媒62aだけを設けた場合に大気放出口67aから排出される排ガスよりも浄化されている状態である。
 上流の触媒は下流の触媒より早く劣化する。そのため、使用時間が長くなると、メイン触媒62aと下流サブ触媒47Dの浄化の寄与度の大小関係が逆転する場合がある。そこで、メイン触媒62aが下流サブ触媒47Dよりも浄化の寄与度が高いとは、以下の状態とする。即ち、走行距離が所定距離(例えば1000km)に到達していないときに、メイン触媒62aが下流サブ触媒47Dよりも浄化の寄与度が高い状態とする。
 メイン触媒62aの体積は、サブ触媒47の体積より大きいことが好ましい。メイン触媒62aの表面積は、サブ触媒47の表面積より大きいことが好ましい。メイン触媒62aの貴金属の量は、サブ触媒の貴金属の量より多いことが好ましい。
 なお、エンジンユニットは、上流サブ触媒47Uおよび下流サブ触媒47Dの一方のみを備えてもよい。この場合、浄化の寄与度は、上述した方法を応用した方法で算出できる。
 この変形例1によると、サブ触媒47を設けない場合に比べて、車両の排気浄化についての初期性能をより長期間維持できる。また、サブ触媒47を設けない場合に比べて、排気浄化性能を維持しつつ、メイン触媒62aを小さくできる。したがって、車両の排気浄化についての初期性能をより長期間維持しつつ、車両の上下方向の大型化をより抑制できる。
 (変形例2)
 図14は、上記第1実施形態の変形例2のエンジンユニットの一部の右側面図である。変形例2において、上記第1実施形態と同一の構成要素については、同一符号を付して、詳細な説明を省略する。
 図14に示すように、変形例2のエンジンユニットは、ターボチャージャー230を有する。図15に示すように、ターボチャージャー230は、タービンホイール230a、コンプレッサホイール230b、連結軸230cを有する。タービンホイール230aは、連結軸230cを介してコンプレッサホイール230bに連結される。タービンホイール230aは、上流集合排気通路部265内に配置される。上流集合排気通路部265は、3つの独立排気通路部264の下流端に接続される。上流集合排気通路部265および独立排気通路部264は、上記第1実施形態の上流集合排気通路部65および独立排気通路部64に代えて設けられる。コンプレッサホイール230bは、吸気通路部252内に配置される。吸気通路部252は、上記第1実施形態の吸気通路部52に代えて設けられる。連結軸230cは、センターハウジング部231に収容される。センターハウジング部231は、上流集合排気通路部265と吸気通路部252に接続される。連結軸230cは、回転可能にセンターハウジング部231に支持される。上流集合排気通路部265は、スクロール排気通路部265sを有する。図16に示すように、スクロール排気通路部265sは、タービンホイール230aの外周を囲むように形成される。吸気通路部252は、スクロール吸気通路部252sを有する。スクロール吸気通路部252sは、コンプレッサホイール230bの外周を囲むように形成される。スクロール排気通路部265s内の排ガスは、タービンホイール230aの外周部に吹き付けられる。それにより、タービンホイール230aが回転する。タービンホイール230aの外周部に吹き付けられた排ガスは、タービンホイール230aから連結軸230cの中心軸線の方向に排出される。また、タービンホイール230aの回転に伴って、コンプレッサホイール230bが回転する。それにより、コンプレッサホイール230bは、連結軸230cの中心軸線の方向に空気を吸い込む。吸い込まれた空気はコンプレッサホイール230bによって圧縮される。圧縮された空気は、コンプレッサホイール230bの外周部から、スクロール吸気通路部252sに排出される。
 この変形例2によると、ターボチャージャー230を設けたことで、圧縮された空気が、燃焼室30に供給される。それにより、吸気効率が向上する。その結果、エンジンの出力を向上できる。また、圧縮された空気が燃焼室30に供給されるため、エンジン本体20の排気量を下げることができる。それにより、燃費を向上できる。また、エンジン本体20を小型化できる。よって、車両の上下方向の大型化をより抑制できる。
 なお、図15に示すスクロール排気通路部265sは、排ガスの導入口を1つだけ有するシングルスクロール式である。しかし、スクロール排気通路部は、排ガスの導入口を2つ有するツインスクロール式であってもよい。燃焼室30の数が2つの場合を例に挙げて説明する。ツインスクロール式のスクロール排気通路部は、第1スクロール通路部と第2スクロール通路部とを有する。第1スクロール通路部および第2スクロール通路部は、2つの独立排気通路部264にそれぞれ形成される。タービンホイール230aは、上流集合排気通路部265内に配置される。第1スクロール通路部と第2スクロール通路部は、連結軸230cの中心軸線の方向に隣り合う。第1スクロール通路部内の排ガスと、第2スクロール通路部内の排ガスは、タービンホイール230aの外周部に吹き付けられる。2つのスクロール通路部から排出された排ガスは、タービンホイール230aを通過する際に集合(合流)する。ツインスクロール式のスクロール排気通路部を設けることにより、独立排気通路部264の経路長が長くなる。よって、1つの燃焼室30から排出された排ガスの圧力によって、別の燃焼室30からの排ガスの排出が邪魔されるのを防止できる。つまり、排ガスの流量および圧力の低下を防止できる。よって、エンジンの出力の低下を防止できる。また、排ガスの流量および圧力の低下を防止することで、タービンホイール230aの回転速度の低下を防止できる。よって、吸気効率の低下を防止できる。吸気効率の低下を防止することで、燃費の低下を防止できると共に、エンジンの出力の低下を防止できる。
 また、燃焼室30の数が3つ以上の場合、第1スクロール通路部および第2スクロール通路部の少なくとも一方には、2つ以上の燃焼室30から排出された排ガスが流れる。例えば、燃焼室30の数が4つの場合、各スクロール通路部には、2つの燃焼室30から排出された排ガスのみが流れる。この場合、2つの燃焼室30から第1スクロール通路部までの間に、2つの燃焼室30から排出された排ガスを集合させる。同様に、残りの2つの燃焼室30から第2スクロール通路部までの間に、2つの燃焼室30から排出された排ガスを集合させる。2つの燃焼室30から排出された排ガスを集合させる排気通路部の上流端は、エンジン本体20の内部であっても、エンジン本体20の外であってもよい。
 (第2実施形態)
 次に、本発明の第2の実施の形態について説明する。本実施形態は、スクータータイプの自動二輪車に本発明の鞍乗型車両を適用した一例である。前後方向、上下方向、および左右方向の定義は、第1実施形態と同じである。
 [自動二輪車の全体構成]
 図17に示すように、自動二輪車101は、前輪部102と、後輪部103と、車体フレーム104とを備えている。車体フレーム104は、その前部にヘッドパイプ104aを有する。ヘッドパイプ104aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット105に連結されている。ハンドルユニット105には、一対のフロントフォーク106の上端部が固定されている。フロントフォーク106の下端部は、前輪部102を支持している。前輪部102は1つの前輪で構成される。前輪部102の上部はフェンダーで覆われる。このフェンダーは前輪部102に含まれない。
 ハンドルユニット105は、右グリップ113Rと、左グリップ(図示せず)を有する。右グリップ113Rは、エンジンの出力を調整するアクセルグリップである。ハンドルユニット105には、各種スイッチが設けられている。ハンドルユニット105の前方には、表示装置(図示せず)が配置されている。
 車体フレーム104は、シート109と燃料タンク110を支持する。燃料タンク110は、シート109の内側に配置される。燃料タンク110の一部は、シート109の下方に配置される。車体フレーム104は、エンジンユニット111を支持する。エンジンユニット111は、車体フレーム104に直接連結されている。エンジンユニット111は、車体フレーム104に間接的に連結されていてもよい。エンジンユニット111は、燃料タンク110の下方に配置される。エンジンユニット111は、シート109の上端より下方に配置される。左右方向に見て、前輪部102は、エンジンユニット111の前方に配置される。左右方向に見て、後輪部103は、エンジンユニット111の後方に配置される。図18に示すように、エンジンユニット111の左右方向幅は、前輪部102の左右方向幅よりも大きい。エンジンユニット111の左右方向幅は、後輪部103の左右方向幅よりも大きい。また、車体フレーム104は、バッテリ(図示せず)を支持する。バッテリは、エンジンユニット111を制御するECU(図示せず)や各種センサなどの電子機器に電力を供給する。
 左右一対のスイングアーム107の前端部は、車体フレーム104に揺動可能に支持されている。右のスイングアーム107Rと、左のスイングアーム107L(図18参照)とは、左右非対称である。なお、一対のスイングアーム107の前端部は、エンジンユニット111の後部に揺動可能に支持されていてもよい。スイングアーム107の後端部は、後輪部103を支持している。後輪部103は1つの後輪で構成される。図示は省略するが、スイングアーム107と車体フレーム104との間には、リアサスペンションが配置されている。図17および後述する図19は、フロントフォーク106およびリアサスペンション108の上下方向長さがそれぞれ最長の状態を表示している。つまり、前輪部102および後輪部103に対して、車体フレーム104が最も上方にある状態を表示している。
 自動二輪車101は、車体フレーム104等を覆う車体カバー115を有する。車体カバー115は、複数のカバー部品で構成される。エンジンユニット111の大部分は、車体カバー115で覆われている。また、自動二輪車101は、足載せ台116を有する。足載せ台116は、シート109より下方で且つシート109より前方に設けられる。車体カバー115は、足載せ台116より上方と、足載せ台116より下方の両方に配置される。
 [エンジンユニットの構成]
 図17に示すように、エンジンユニット111は、エンジン本体120と、水冷却装置140と、排気装置160を有する。さらに、図21に示すように、エンジンユニット111は、吸気装置150を有する。エンジン本体120は、水冷却装置140、吸気装置150、および排気装置160にそれぞれ接続される。エンジンユニット111は、2気筒を有する2気筒エンジンである。エンジンユニット111は、4ストローク式のエンジンである。2気筒における燃焼行程のタイミングは異なっている。図21は、エンジン本体120の2気筒のうちの一方のみを表示し、他方の気筒の表示を省略している。
 エンジンユニット111は、水冷式エンジンである。エンジン本体120は、冷却水で冷却されるように構成される。水冷却装置140には、エンジン本体120の熱を吸熱した高温の冷却水がエンジン本体120から供給される。水冷却装置140は、エンジン本体120から供給された冷却水の温度を低下させて、エンジン本体120に戻す。水冷却装置140は、ラジエータ141と、ラジエータファン143と、リザーバタンク(図示せず)を有する。ラジエータ141は、エンジン本体120の前方に配置される。ラジエータファン143は、ラジエータ141の後方に配置される。エンジンユニット111は、冷却水を循環させるためのウォーターポンプ(図示せず)を有する。
 [エンジン本体の構成]
 図18、図19および図20に示すように、エンジン本体120は、クランクケース部120aと、シリンダ部120bとを有する。クランクケース部120aは、エンジン本体120の後部に設けられる。シリンダ部120bは、エンジン本体120の前部に設けられる。シリンダ部120bは、クランクケース部120aの前端部に接続される。
 クランクケース部120aは、クランクケース121を有する。図20に示すように、クランクケース121は、左右方向に沿って隣り合う3つのパーツ121a、121b、121cを有する。左側のパーツ121aは、クランクケース121の左面を形成する。クランクケース部120aの左面は、クランクケース121の左面である。右側のパーツ121cは、クランクケース121の右面を形成する。クランクケース121の右面の右方には、変速機ケース125が配置される。クランクケース部120aの右面は、変速機ケース125の右面である。
 クランクケース部120aは、クランク軸127を有する。クランク軸127の中心軸線Cr2を、クランク軸線Cr2と称する。クランク軸線Cr2は、左右方向に沿っている。より詳細には、クランク軸線Cr2は、左右方向と平行である。クランク軸127の大部分は、クランクケース121に収容される。クランク軸127の右端部は、クランクケース121の右面から突出している。クランク軸127の右端部は、変速機ケース125に収容される。クランク軸127の左端部には、発電機144が設けられる。また、クランクケース121には、スターターモーター(図示せず)が収容される。スターターモーターと発電機144は一体化されていてもよい。
 クランクケース部120aは、無段変速機145を有する。無段変速機145は、クランク軸127の右端部に設けられる。無段変速機145は、変速機ケース125に収容される。無段変速機145は、駆動プーリ145P1と、従動プーリ145P2と、Vベルト145Bとを有する。駆動プーリ145P1は、クランク軸127の右端部に装着される。駆動プーリ145P1は、クランク軸127の回転力を受けて回転する。従動プーリ145P2は、駆動プーリ145P1の後方に配置される。従動プーリ145P2は、従動軸146の右端部に装着される。従動軸146の中心軸線Ctは、クランク軸127の中心軸線Cr2と平行である。Vベルト145Bは、駆動プーリ145P1と従動プーリ145P2に巻き掛けられる。Vベルト145Bは、駆動プーリ145P1の回転力を従動プーリ145P2に伝達する。
 従動軸146の左端部には、遠心クラッチ147が設けられる。遠心クラッチ147は、筒状の出力部材147aを有する。従動軸146の一部は、出力部材147aの内側に配置される。遠心クラッチ147は、従動軸146の回転速度に応じて、従動軸146の回転力を、出力部材147aに伝達する状態と伝達しない状態とを切り換える。出力部材147aは、動力伝達機構148に接続される。動力伝達機構148は、傘歯車(べベルギア)を用いたシャフトドライブ式の動力伝達機構である。動力伝達機構148は、二次動力伝達機構(図示せず)に接続される。二次動力伝達機構は、左のスイングアーム107L内に配置される。二次動力伝達機構の一部は、後輪部103の車軸に設けられる。動力伝達機構148と同様に、二次動力伝達機構も、シャフトドライブ式の動力伝達機構である。なお、動力伝達機構148および二次動力伝達機構は、シャフトドライブ式でなくてもよい。例えば、動力伝達機構148は、左右方向に平行な複数の軸部材と、複数の歯車とを有する構成であってもよい。この場合、二次動力伝達機構は、左右方向に平行な複数の軸部材と、複数のプーリと、ベルトとを有する構成であってもよい。また、二次動力伝達機構は、左右方向に平行な複数の軸部材と、複数のスプロケットと、チェーンとを有する構成であってもよい。
 無段変速機145、遠心クラッチ147、動力伝達機構148は、動力伝達装置149に含まれる。動力伝達装置149は、クランク軸127の回転力を後輪部103に伝達する。駆動プーリ145P1は、本発明における駆動回転体に相当する。従動プーリ145P2は、本発明における従動回転体に相当する。Vベルト145Bは、本発明における巻き掛け部材に相当する。なお、無段変速機145は、プーリ145P1、145P2の代わりに、スプロケットを有してもよい。無段変速機145は、この場合、Vベルト145Bの代わりに、チェーンを有する。
 図23に示すように、クランクケース121の下部には、オイル貯留部126が形成される。なお、図23は、図17および図18のD-D線断面である。但し、図23は、エンジン本体20の断面に表れる内部構造の一部の表示を省略している。オイル貯留部126は、クランクケース121の左部に形成される。よって、クランクケース部120aの左部の下端は、クランクケース部120aの右端の下端よりも上方に位置する。クランクケース部120aの右部の下方には、排気装置160の一部が配置される。オイル貯留部126には、潤滑オイルが貯留される。
 図18に示すように、シリンダ部120bは、シリンダボディ122と、シリンダヘッド123と、ヘッドカバー124とを有する。シリンダボディ122は、クランクケース121の前端部に接続される。シリンダヘッド123は、シリンダボディ122の前端部に接続される。ヘッドカバー124は、シリンダヘッド123の前端部に接続される。
 図19および図21に示すように、シリンダボディ122には、シリンダ孔122aが形成される。シリンダボディ122には、2つのシリンダ孔122aが形成される。2つのシリンダ孔122aは、左右方向に沿って隣り合っている。各シリンダ孔122aの内部にはピストン128が摺動自在に収容される。2つのピストン128は、2つのコネクティングロッド129を介して1つのクランク軸127に連結される。2つのシリンダ孔122aの周囲には、冷却水が流れる冷却通路122bが形成されている。
 シリンダ孔122aの中心軸線Cy2を、シリンダ軸線Cy2と称する。2つのシリンダ軸線Cy2は、平行である。左右方向に見て、2つのシリンダ軸線Cy2は重なる。図19に示すように、シリンダ軸線Cy2は、クランク軸線Cr2と交差しない。なお、シリンダ軸線Cy2は、クランク軸線Cr2と交差してもよい。シリンダ軸線Cy2は、前後方向に沿っている。左右方向に見て、シリンダ軸線Cy2は、前後方向に対して上下方向に傾斜している。シリンダ軸線Cy2は、前方に向かうほど上方に向かうように傾斜している。左右方向に見て、シリンダ軸線Cy2の前後方向に対する傾斜角度を傾斜角度θcy2とする。傾斜角度θcy2は図19に示す角度に限定されない。傾斜角度θcy2は0度以上45度未満である。
 図19に示すように、シリンダ部120bには、燃焼室130が形成される。シリンダ部120bには、2つの燃焼室130が形成される。2つの燃焼室130は、左右方向に沿って隣り合っている。各燃焼室130は、シリンダヘッド123の下面と、シリンダ孔122aと、ピストン128の上面によって形成される。つまり、燃焼室130の一部は、シリンダ孔122aの内面によって区画される。ここで、左右方向に見て、クランク軸線Cr2を通り、上下方向と平行な直線を、直線La3とする。左右方向に見て、2つの燃焼室130は、直線La3の前方に配置される。つまり、左右方向に見て、2つの燃焼室130は、クランク軸線Cr2よりも前方に配置される。図21に示すように、燃焼室130には、点火プラグ131の先端部が配置される。点火プラグ131は、点火コイル132に接続される。
 シリンダヘッド123には、内部吸気通路部133および内部排気通路部134が形成される。内部吸気通路部133は、燃焼室130に接続される。内部吸気通路部133は、燃焼室130毎に設けられる。内部排気通路部134は、燃焼室130に接続される。内部排気通路部134は、燃焼室130毎に設けられる。内部吸気通路部133は、燃焼室130に空気を導入するために設けられる。内部排気通路部134は、燃焼室130で発生した排ガスを燃焼室130から排出するために設けられる。
 シリンダヘッド123の燃焼室130を画定する面には、燃焼室吸気口133aおよび燃焼室排気口134aが形成される。燃焼室吸気口133aは、内部吸気通路部133の下流端に形成される。燃焼室排気口134aは、内部排気通路部134の上流端に形成される。シリンダヘッド123の外面には、吸気口133bおよび排気口134bが形成される。吸気口133bは、内部吸気通路部133の上流端に形成される。排気口134bは、内部排気通路部134の下流端に形成される。1つの燃焼室130に対して設けられる燃焼室吸気口133aの数は、1つであっても2つ以上であってもよい。1つの燃焼室130に対して、吸気口133bは1つだけ設けられる。1つの燃焼室130に対して設けられる燃焼室排気口134aの数は、1つであっても2つ以上であってもよい。1つの燃焼室130に対して、排気口134bは、1つだけ設けられる。図19に示すように、吸気口133bは、シリンダヘッド123の上面に形成される。排気口134bは、シリンダヘッド123の下面に形成される。図20に示すように、2つの排気口134bは、左右方向に沿って隣り合う。
 図21に示すように、内部吸気通路部133には、燃焼室吸気口133aを開閉する吸気バルブ137が配置される。吸気バルブ137は、燃焼室吸気口133aごと1つずつに設けられる。内部排気通路部134には、燃焼室排気口134aを開閉する排気バルブ138が配置される。排気バルブ138は、燃焼室排気口134aごと1つずつに設けられる。吸気バルブ137および排気バルブ138は、シリンダヘッド123に収容された動弁装置(図示せず)によって駆動される。動弁装置は、クランク軸127と連動して作動する。
 エンジン本体120は、インジェクタ154を有する。インジェクタ154は、燃焼室130に燃料を供給する燃料供給装置である。インジェクタ154は、燃焼室130ごとに1つずつ設けられる。インジェクタ154は、内部吸気通路部133内で燃料を噴射するように配置されている。インジェクタ154は、燃料タンク110に接続される。燃料タンク110の内部には、燃料ポンプ(図示せず)が配置される。燃料ポンプは、燃料タンク110内の燃料をインジェクタ154に向けて圧送する。なお、インジェクタ154は、燃焼室130内で燃料を噴射するように配置されていてもよい。また、インジェクタ154は、吸気装置150の後述する分岐吸気通路部151内で燃料を噴射するように配置されていてもよい。また、エンジン本体120は、燃料供給装置として、インジェクタ154の代わりに、キャブレターを備えていてもよい。
 エンジン本体120は、エンジン回転速度センサ171と、エンジン温度センサ172を有する。エンジン回転速度センサ171は、クランク軸127の回転速度、即ち、エンジン回転速度を検出する。エンジン温度センサ172は、エンジン本体120の温度を検出する。本実施形態では、エンジン温度センサ172は、冷却通路122b内の冷却水の温度を検出することで、シリンダボディ122の温度を間接的に検出する。エンジン温度センサ172は、シリンダボディ122の温度を直接検出してもよい。
 [吸気装置の構成]
 吸気装置150は、1つの吸気通路部152と、2つの分岐吸気通路部151とを有する。吸気通路部152は、大気に面した大気吸入口152aを有する。大気吸入口152aは、吸気通路部152の上流端に形成される。吸気通路部152には、空気を浄化するエアクリーナ153が設けられる。吸気通路部152の下流端は、2つの分岐吸気通路部151の上流端に接続される。2つの分岐吸気通路部151の下流端は、シリンダヘッド123の上面に形成された2つの吸気口133bにそれぞれ接続される。大気吸入口152aは大気から空気を吸入する。大気吸入口152aから吸気通路部152に流入した空気は、2つの分岐吸気通路部151を通って、エンジン本体120に供給される。
 分岐吸気通路部151内には、スロットル弁155が配置される。スロットル弁155は、燃焼室130ごとに1つずつ設けられる。スロットル弁155の開度は、ライダーがアクセルグリップ113Rを回動操作することによって変更される。
 分岐吸気通路部151には、スロットル開度センサ(スロットルポジションセンサ)173と、吸気圧センサ174と、吸気温センサ175が設けられる。スロットル開度センサ173は、スロットル開度を検出する。吸気圧センサ174は、分岐吸気通路部151の内部圧力を検出する。吸気温センサ175は、分岐吸気通路部151内の空気の温度を検出する。
 [排気装置の構成]
 図21に示すように、排気装置160は、上流排気通路部161と、触媒部162と、下流集合排気通路部163とを有する。以下の説明において、排気装置160および内部排気通路部134における排ガスの流れ方向の上流および下流を、単に上流および下流という。上流排気通路部161は、2つの独立排気通路部164と、上流集合排気通路部165とを有する。独立排気通路部164は、燃焼室130ごとに1つずつ設けられる。下流集合排気通路部163は、下流排気通路部166と、マフラー部167とを有する。2つの独立排気通路部164の上流端は、シリンダヘッド123の下面に形成された2つの排気口134bにそれぞれ接続される。2つの独立排気通路部164の下流端は、上流集合排気通路部165の上流端に接続される。上流集合排気通路部165は、2つの独立排気通路部164から排出された排ガスを集合(合流)させる。上流集合排気通路部165の下流端は、触媒部162の上流端に接続される。触媒部162は、排ガスを浄化するメイン触媒162aを有する。触媒部162の下流端は、下流排気通路部166の上流端に接続される。下流排気通路部166の下流端は、マフラー部167の上流端に接続される。マフラー部167は、大気に面する大気放出口167aを有する。エンジン本体120の2つの排気口134bから排出された排ガスは、上流排気通路部161を通過して、触媒部162内に流入する。排ガスは、メイン触媒162aを通過することで浄化された後、下流集合排気通路部163を通って大気放出口167aから排出される。
 内部排気通路部134と独立排気通路部164とを合わせた通路部を、独立排気通路部168と称する。独立排気通路部168は、燃焼室130ごとに1つずつ設けられる。また、燃焼室130から大気放出口167aに至る経路を、排気経路169と称する。エンジンユニット111は、2つの排気経路169を有する。排気経路169は、1つの燃焼室130から排出された排ガスが通る空間である。排気経路169は、独立排気通路部168と上流集合排気通路部165と触媒部162と下流集合排気通路部163とよって形成される。言い換えると、排気経路169は、内部排気通路部134と上流排気通路部161と触媒部162と下流集合排気通路部163とよって形成される。
 以下、排気装置160について、図18および図19に基づいて、より詳細に説明する。図18に示すように、2つの独立排気通路部164A、164Bは、左右方向に隣り合っている。独立排気通路部164は、独立排気通路部164A、164Bの総称である。独立排気通路部164Bの少なくとも一部は、独立排気通路部168Aの左方に配置される。独立排気通路部164Aは、複数の曲がり部を有する。独立排気通路部164Bは、少なくとも1つの曲がり部を有する。2つの独立排気通路部164は、互いの経路長の差が小さくなるように、曲がり部を有する。1つの独立排気通路部164が有する少なくとも1つの曲がり部は、左右方向に見て曲がっている。1つの独立排気通路部164が有する少なくとも1つの曲がり部は、上下方向に見て曲がっている。
 2つの独立排気通路部164の上流端における排ガスの流れ方向は、平行である。2つの独立排気通路部164の上流端における排ガスの流れ方向は、下方向に沿った方向である。より詳細には、2つの独立排気通路部164の上流端における排ガスの流れ方向は、下方向とほぼ平行である。
 左右方向に見て、2つの独立排気通路部164の下流端における排ガスの流れ方向は、前後方向に沿った方向である。より詳細には、左右方向に見て、2つの独立排気通路部164の下流端における排ガスの流れ方向は、後方向とほぼ平行である。
 左右方向に見て、上流集合排気通路部165を流れる排ガスの流れ方向は、前後方向に沿った方向である。また、図18に示すように、上下方向に見て、上流集合排気通路部165を流れる排ガスの流れ方向は、前後方向に沿った方向である。よって、上流集合排気通路部165を流れる排ガスの流れ方向は、前後方向に沿った方向である。
 図19に示すように、触媒部162の中心軸線を、中心軸線C4とする。左右方向に見て、中心軸線C4は、前後方向に沿っている。左右方向に見て、中心軸線C4の前後方向に対する傾斜角度を、傾斜角度θ4(不図示)とする。傾斜角度θ4は、ほぼ0度である。つまり、左右方向に見て、中心軸線C4は、前後方向とほぼ平行である。なお、傾斜角度θ4は、0度より大きくてもよい。傾斜角度θ4は、0度以上45度以下が好ましい。つまり、左右方向に見て、触媒部162の内部を流れる排ガスの流れ方向は、前後方向に沿った方向であることが好ましい。また、図18に示すように、上下方向に見て、中心軸線C4は、前後方向とほぼ平行である。したがって、触媒部162の内部を流れる排ガスの流れ方向は、前後方向に沿った方向である。なお、上下方向に見て、触媒部162の内部を流れる排ガスの流れ方向は、左右方向に沿った方向であってもよい。左右方向に見て、下流排気通路部166の内部を流れる排ガスの流れ方向は、前後方向に沿った方向である。
 上流集合排気通路部165の下流端の近傍部は、下流に向かって径が大きくなるようにテーパー状に形成される。上流集合排気通路部165の下流端の近傍部の排ガスの流れ方向に直交する断面の面積を断面積B1(図示せず)とする。触媒部162の排ガスの流れ方向に直交する断面を断面積B2(図示せず)とする。断面積B1は断面積B2よりも小さい。下流排気通路部166の上流端の近傍部は、下流に向かって径が小さくなるようにテーパー状に形成される。下流排気通路部166の上流端の近傍部の排ガスの流れ方向に直交する断面の面積を断面積B3(図示せず)とする。断面積B3は断面積B2よりも小さい。
 上流集合排気通路部165は、クランクケース部120aの下方に配置される。左右方向に見て、クランクケース部120aとシリンダ部120bとの境界線の延長線を、直線Lcとする。左右方向に見て、上流集合排気通路部165は、直線Lcの後方に配置される。なお、上流集合排気通路部165の一部が、直線Lcの前方に配置されてもよい。
 マフラー部167は、排ガスによる騒音を低減する装置である。マフラー部167の内部構造は、従来のマフラーと同様である。マフラー部167の内部構造は、上記第1実施形態のマフラー部67の内部構造と同様であっても異なっていてもよい。
 次に、触媒部162について、図18および図19に基づいて、より詳細に説明する。触媒部162は、メイン触媒162aと、筒部162bとを有する。筒部162bは、上流集合排気通路部165の下流端と下流排気通路部166の上流端に接続される。筒部162bは、上流集合排気通路部165の一部と一体成形されていてもよい。また、筒部162bは、下流排気通路部166の一部と一体成形されていてもよい。排気装置160は、メイン触媒162a以外の触媒を有しない。メイン触媒162aは、複数の排気経路169(図21参照)において排ガスを最も浄化する。メイン触媒162aの材質および構造は、第1実施形態のメイン触媒62aと同様である。
 触媒部162の中心軸線C4は、メイン触媒162aの中心軸線と同軸である。触媒部162の中心軸線C4とは、筒部162bの中心軸線のことである。触媒部162の排ガスの流れ方向の長さは、メイン触媒162aの排ガスの流れ方向の長さと同じである。メイン触媒162aの上流端の中心と、触媒部162の上流端の中心は同じ位置である。メイン触媒162aの下流端の中心と、触媒部162の下流端の中心は同じ位置である。触媒部162の排ガスの流れ方向の長さを、長さDc3(図示せず)とする。また、触媒部162の排ガスの流れ方向に直交する方向の最大長さを、長さDc4(図示せず)とする。長さDc3は、長さDc4よりも長い。
 図19に示すように、クランクケース部120aの最前端を通り前後方向に直交する平面を平面Se5とする。クランクケース部120aの最後端を通り前後方向に直交する平面を平面Se6とする。触媒部162は、平面Se5と平面Se6との間に配置される。左右方向に見て、触媒部162の一部は、クランクケース部120aの下方に配置される。なお、左右方向に見て、触媒部162全体が、クランクケース部120aの下方に配置されてもよい。また、図18に示すように、上下方向に見て、触媒部162は、全体がクランクケース部120aと重なる。触媒部162は、クランクケース部120aの下方に配置される。触媒部162は、オイル貯留部126と左右方向に隣り合って配置される。なお、触媒部162の一部だけが、クランクケース部120aの下方に配置されてもよい。触媒部162の少なくとも一部は、クランクケース部120aの下方に配置されることが好ましい。
 左右方向に見て、触媒部162は、直線La3の後方に配置される。つまり、触媒部162は、クランク軸線Cr2よりも後方に配置される。なお、触媒部162の一部だけが、クランク軸線Cr2よりも後方に配置されてもよい。触媒部162の少なくとも一部は、クランク軸線Cr2よりも後方に配置されることが好ましい。また、触媒部162は、クランク軸線Cr2よりも下方に配置される。左右方向に見て、触媒部162は、シリンダ軸線Cy2の下方に配置される。左右方向に見て、シリンダ軸線Cy2に直交し、且つ、クランク軸線Cr2を通る直線を、直線La4とする。左右方向に見て、触媒部162は、直線La4の後方に配置される。なお、左右方向に見て、触媒部162の一部だけが、直線La4の後方に配置されてもよい。左右方向に見て、触媒部162の少なくとも一部は、直線La4の後方に配置されることが好ましい。
 左右方向に見て、無段変速機145の従動軸146の中心軸線Ctを通り、上下方向と平行な直線を、直線La5とする。左右方向に見て、触媒部162は、直線La5の前方に配置される。触媒部162は、従動軸146の中心軸線Ctよりも前方に配置される。
 図18および図23に示すように、触媒部162は、自動二輪車101の右部に配置される。触媒部162の上流端の中心および下流端の中心は、自動二輪車101の左右方向中央C0上に配置されていない。触媒部162の上流端の中心および下流端の中心は、自動二輪車101の左右方向中央C0の右方に位置する。上下方向に見て、触媒部162は、自動二輪車101の左右方向中央C0の右方に配置される。なお、上下方向に見て、触媒部162の一部が、自動二輪車101の左右方向中央C0の右側に配置され、触媒部62の残りの部分が、自動二輪車101の左右方向中央C0の左側に配置されてもよい。
 図22に示すように、2つの排気経路169における燃焼室130から触媒部162の上流端までの経路長の平均値を、経路長Dd1とする。触媒部162の下流端から大気放出口167aまでの経路長を、経路長De1とする。経路長Dd1は、経路長De1よりも短い。2つの排気経路169における排気口134bから触媒部162の上流端までの経路長の平均値を、経路長Dd2とする。触媒部162の下流端からマフラー部167の上流端までの経路長を、経路長De2とする。経路長Dd1は、経路長De2よりも長い。経路長Dd2は、経路長De2よりも長い。なお、経路長Dd2は、経路長De2より短くてもよい。また、経路長Dd1は、経路長De2より短くてもよい。
 図21に示すように、排気装置160は、上流酸素センサ176と下流酸素センサ177とを有する。酸素センサ176、177の具体的な構成は、第1実施形態の酸素センサ76、77と同様である。上流酸素センサ176は、上流排気通路部161に設けられる。つまり、上流酸素センサ176は、触媒部162よりも上流に設けられる。上流酸素センサ176は、上流集合排気通路部165に設けられる。なお、上流酸素センサ176は、2つの独立排気通路部164の少なくとも1つに設けられてもよい。また、上流酸素センサ176は、2つの内部排気通路部134の少なくとも1つに設けられてもよい。
 図17、図18および図19に示すように、上流酸素センサ176は、上流集合排気通路部165の右部に設けられる。上流酸素センサ176の先端部は、上流集合排気通路部165内に配置される。触媒部162を通過する排ガスの流れ方向に見て、上流酸素センサ176の一部は、触媒部162と重なる。上流酸素センサ176は、触媒部162の最下端よりも上方に配置される。左右方向に見て、上流酸素センサ176は、エンジン本体120の下方に配置される。左右方向に見て、上流酸素センサ176は、クランクケース部120aの下方に配置される。上下方向に見て、上流酸素センサ176はクランクケース部120aと重なる。したがって、上流酸素センサ176は、クランクケース部120aの下方に配置される。つまり、上流酸素センサ176は、エンジン本体120の下方に配置される。
 左右方向に見て、上流酸素センサ176は、直線La4の後方に配置される。なお、左右方向に見て、上流酸素センサ176の少なくとも一部が、直線La4の前方に配置されてもよい。左右方向に見て、上流酸素センサ176の少なくとも一部は、直線La4の後方に配置されることが好ましい。また、上流酸素センサ176は、クランク軸線Cr2よりも後方に配置される。なお、上流酸素センサ176の少なくとも一部が、クランク軸線Cr2よりも前方に配置されてもよい。左右方向に見て、上流酸素センサ176の少なくとも一部は、クランク軸線Cr2よりも後方に配置されることが好ましい。上流酸素センサ176は、従動軸146の中心軸線Ctよりも前方に配置される。
 図22に示すように、2つの排気経路169における排気口134bから上流酸素センサ176までの経路長の平均値を、経路長Dd3とする。上流酸素センサ176から触媒部162の上流端までの経路長を、経路長Dd4とする。経路長Dd3は、経路長Dd4よりも長い。なお、経路長Dd3は、経路長Dd4よりも短くてもよい。
 図21に示すように、下流酸素センサ177は、下流集合排気通路部163に設けられる。つまり、下流酸素センサ177は、触媒部162よりも下流に設けられる。下流酸素センサ177は、下流排気通路部166に設けられる。なお、下流酸素センサ177は、マフラー部167に設けられてもよい。下流酸素センサ177は、下流排気通路部166内の排ガス中の酸素濃度を検出する。
 図17等に示すように、下流酸素センサ177は、下流排気通路部166の右部に設けられる。下流酸素センサ177の先端部は、下流排気通路部166内に配置される。触媒部162を通過する排ガスの流れ方向に見て、下流酸素センサ177の一部は、触媒部162と重なる。下流酸素センサ177は、触媒部162の最下端よりも上方に配置される。左右方向に見て、下流酸素センサ177は、エンジン本体120の下方に配置される。左右方向に見て、下流酸素センサ177は、クランクケース部120aの下方に配置される。上下方向に見て、下流酸素センサ177はクランクケース部120aと重なる。したがって、下流酸素センサ177は、クランクケース部120aの下方に配置される。つまり、下流酸素センサ177は、エンジン本体120の下方に配置される。
 左右方向に見て、下流酸素センサ177は、直線La4の後方に配置される。また、下流酸素センサ177は、クランク軸線Cr2よりも後方に配置される。下流酸素センサ177は、従動軸146の中心軸線Ctよりも前方に配置される。なお、下流酸素センサ177は、従動軸146の中心軸線Ctよりも後方に配置されてもよい。なお、下流酸素センサ177の少なくとも一部は、従動軸146の中心軸線Ctよりも前方に配置されることが好ましい。
 図22に示すように、触媒部162の下流端から下流酸素センサ177までの経路長を、経路長De3とする。下流酸素センサ177から大気放出口167aまでの経路長を、経路長De4とする。経路長De3は、経路長De4よりも短い。なお、経路長De3は、経路長De4よりも長くてもよい。
 エンジンユニット111は、エンジンユニット111の動作を制御するECU(図示せず)を有する。ECUの構成および動作は、第1実施形態のECU90と同様である。
 また、本実施形態のエンジンユニット111は、第1実施形態の変形例1のように、上流サブ触媒47Uを有していてもよい。また、本実施形態のエンジンユニット111は、第1実施形態の変形例1のように、下流サブ触媒47Dを有していてもよい。
 また、本実施形態のエンジンユニット111は、第1実施形態の変形例2のように、ターボチャージャー230を有していてもよい。
 本実施形態の自動二輪車101は、第1実施形態と同様の構成について、第1実施形態で述べた効果と同様の効果を奏する。さらに、本実施形態の自動二輪車101は、以下の特徴を有する。
 エンジン本体120は、複数のシリンダ孔122aの中心軸線Cy2が前後方向に沿うように配置される。そのため、エンジン本体120の上下方向長さが短い。よって、自動二輪車101の上下方向の大型化をより抑制できる。
 エンジン本体120は、シリンダ孔122aの中心軸線Cy2が前後方向に沿うように配置される。このようにエンジン本体120が配置されている場合に、触媒部162が、クランク軸線Cr2よりも前方に配置されると、燃焼室130から触媒部162までの経路長Dd1が短くなりすぎる場合がある。燃焼室130から触媒部162までの経路長Dd1が短すぎると、メイン触媒162aに流入する排ガスの温度が高くなりすぎる場合がある。その結果、メイン触媒162aが過熱により劣化する恐れがある。よって、左右方向に見て、触媒部162の少なくとも一部がクランク軸線Cr2よりも後方に配置されることで、メイン触媒162aの過熱による劣化を防止できる。その結果、自動二輪車101の排気浄化についての初期性能をより長期間維持できる。
 触媒部162の少なくとも一部は、従動プーリ145P2の中心軸線Ctよりも前方に配置される。したがって、触媒部162が、従動プーリ145P2の中心軸線Ctよりも後方に配置される場合に比べて、燃焼室130から触媒部162までの経路長Dd1が短くなる。そのため、メイン触媒162aに流入する排ガスの温度がより高くなる。それにより、エンジンユニット111の冷間始動時に、メイン触媒162aが非活性状態から活性化するまでの時間がより短縮される。その結果、メイン触媒162aによる排気浄化性能をより向上できる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態および上記変形例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変形例は、適宜組み合わせて実施することができる。なお、本明細書において「好ましい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。
 上記第1および第2実施形態において、クランクケース21、121とシリンダボディ22、122は、別体である。しかし、クランクケースとシリンダボディは、一体成形されてもよい。また、上記第1および第2実施形態において、シリンダボディ22、122とシリンダヘッド23、123と、ヘッドカバー24、124とは、別体である。しかし、シリンダボディとシリンダヘッドとヘッドカバーのいずれか2つまたは3つが一体成形されてもよい。また、上記第1実施形態において、クランクケース21とオイルパン26は、別体である。しかし、クランクケースとオイルパンは、一体成形されてもよい。上記第2実施形態において、オイル貯留部126は、クランクケース121に形成されている。しかし、オイル貯留部が、クランクケースと別体に形成されてもよい。つまり、クランクケース部120aは、オイルパンとクランクケースとを有する構成であってもよい。
 上記変形例1において、上流酸素センサ76は、上流サブ触媒47Uの下流に配置される。しかし、図24(a)に示すように、上流酸素センサ76は、上流サブ触媒47Uの上流に配置されてもよい。また、図24(b)に示すように、2つの上流酸素センサ76A、76Bが、上流サブ触媒47Uの上流と下流にそれぞれ配置されてもよい。
 上記変形例1において、下流酸素センサ77は、下流サブ触媒47Dの上流に配置される。しかし、図24(c)に示すように、下流酸素センサ77は、下流サブ触媒47Dの下流に配置されてもよい。また、図24(d)に示すように、2つの下流酸素センサ77A、77Bが、下流サブ触媒47Dの上流と下流にそれぞれ配置されてもよい。
 上記第1実施形態において、メイン触媒62aの排ガスの流れ方向に直交する断面の形状は、円形である。しかし、メイン触媒62aの断面形状は、円形に限定されない。例えば、メイン触媒62aの断面形状は、左右方向に長い長円状としてもよい。つまり、偏平状としてもよい。触媒部62の断面形状は、メイン触媒62aの断面形状と相似であることが好ましい。
 サブ触媒47が多孔構造の場合、この変形例はサブ触媒47に適用してもよい。また、この変形例は、上記第2実施形態のメイン触媒162aに適用してもよい。
 上記第1実施形態において、触媒部62の長さDc1は、触媒部62の長さDc2よりも長い。しかし、触媒部62の長さDc1は、触媒部62の長さDc2よりも短くてもよい。なお、長さDc1は、触媒部62の排ガスの流れ方向の長さである。長さDc2は、触媒部62の排ガスの流れ方向に直交する方向の最大長さである。
 この変形例は、上記第2実施形態の触媒部162に適用してもよい。
 メイン触媒62aは、複数ピースの触媒が近接して配置された構成であってもよい。各ピースは、基材と触媒物質を有する。複数のピースが近接して配置されるとは、以下の状態のことを指す。それは、各ピースの排ガスの流れ方向の長さよりも、ピース同士の離間距離が短い状態である。複数ピースの基材の組成は、同じであっても、異なっていてもよい。複数ピースの触媒の触媒物質の貴金属は、同じであっても、異なっていてもよい。
 この変形例は、サブ触媒47に適用してもよい。また、この変形例は、上記第2実施形態のメイン触媒162aに適用してもよい。
 上記第1実施形態において、排気装置60は、触媒部62が自動二輪車1の右部に配置されるように構成されている。しかし、排気装置60は、触媒部62が自動二輪車1の左部に配置されるように構成されてもよい。この場合、マフラー部67も、自動二輪車1の左部に配置されることが好ましい。また、排気装置60は、触媒部62の中心軸線C3が、自動二輪車1の左右方向中央C0に配置されるように構成されてもよい。また、排気装置60は、触媒部62の上流端の中心と下流端の中心が、自動二輪車1の左右方向中央C0の両側に配置されるように構成されてもよい。
 これらの変形例は、上記第2実施形態の排気装置160に適用してもよい。
 上記第1実施形態において、触媒部62は、内部を流れる排ガスの流れ方向が前後方向に沿った方向となるように配置されている。しかし、触媒部62は、内部を流れる排ガスの流れ方向が左右方向に沿った方向となるように配置されてもよい。
 この変形例は、上記第2実施形態の触媒部162に適用してもよい。
 図25に示すように、筒部62bの外面の少なくとも一部が、触媒プロテクター330で覆われていてもよい。触媒プロテクター330のうち、筒部62bの外面を覆う部分を、触媒プロテクター部362cとする。触媒プロテクター部362cは、触媒部362に含まれる。触媒プロテクター330の一部は、上流集合排気通路部65に含まれてもよい。触媒プロテクター330の一部は、下流排気通路部66に含まれてもよい。触媒プロテクター部362cは、円筒状であってもよいが、円筒状でなくてもよい。触媒プロテクター部362cを設けることで、メイン触媒62aの保温効果を高めることができる。したがって、エンジンユニットの冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間をより短縮できる。よって、メイン触媒62aによる排気浄化性能をより向上できる。また、触媒プロテクター部362cを設けることで、筒部62bとメイン触媒62aを保護できる。さらに、触媒プロテクター部362cを設けることで、外観性を向上できる。
 この変形例は、上記第2実施形態の触媒部162に適用してもよい。
 上流排気通路部61の少なくとも一部は、多重管で構成されてもよい。多重管は、内管と内管を覆う少なくとも1つの外管で構成される。図26に示すように、多重管は、二重管430であってもよい。二重管430は、内管430aと、外管430bとを有する。内管430aの両端部は、外管430bの両端部と接触する。内管430aと外管430bは、両端部以外の箇所で接触してもよい。例えば、曲がり部において、内管430aと外管430bは接触してもよい。多重管430を設けることで、上流排気通路部61において排ガスの温度が低下するのを抑制できる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aを非活性状態から活性化するまでの時間が短縮される。その結果、メイン触媒62aによる排気浄化性能をより向上できる。
 この変形例は、上記第2実施形態の上流排気通路部161に適用してもよい。
 排気装置60は、1つの触媒部62に対して、2つのマフラー部67を有していてもよい。つまり、排気装置60は、1つの触媒部62に対して、2つの大気放出口67aを有していてもよい。この場合、下流排気通路部66は二股状に形成される。2つのマフラー部67は、上下方向に隣り合って配置される。もしくは、2つのマフラー部67は、自動二輪車1の右部と左部にそれぞれ配置される。
 この変形例は、上記第2実施形態の排気装置160に適用してもよい。
 上記第1実施形態において、エンジン本体20に形成される排気口34bの数と、燃焼室30の数は同じである。しかし、1つの燃焼室30に対して複数の燃焼室排気口34aが設けられる場合、排気口34bの数は、燃焼室30の数よりも多くてもよい。
 この変形例は、上記第2実施形態のエンジン本体120に適用してもよい。
 また、排気口34bの数は、燃焼室30の数よりも少なくてもよい。排気口34bは、少なくとも1つあればよい。この場合、複数の燃焼室30から排出された排ガスは、エンジン本体20の内部において集合する。具体的には、エンジン本体20は、複数の内部独立排気通路部と、内部集合排気通路部とを有する。複数の内部独立排気通路部は、複数の燃焼室30にそれぞれ接続される。内部集合排気通路部は、複数の内部独立排気通路部の下流端に接続される。内部集合排気通路部は、複数の内部独立排気通路部から排出された排ガスを集合させる。排気口34bは、内部集合排気通路部の下流端に形成される。内部集合排気通路部は、上流集合排気通路部65の上流端に接続される。複数の独立排気通路部64は設けられない。この変形例によると、1つの燃焼室30から排出された排ガスだけが通過する通路部の経路長を短くできる。よって、複数の燃焼室30から触媒部62までの通路部の内面の表面積を小さくできる。つまり、複数の燃焼室30から触媒部62までの通路部の熱容量を低減できる。よって、触媒部62に流入する排ガスの温度が高くなる。それにより、エンジンユニット11の冷間始動時に、メイン触媒62aが非活性状態から活性化するまでの時間を短くできる。よって、メイン触媒62aによる排気浄化性能を向上できる。
 この変形例は、上記第2実施形態のエンジンユニット111に適用してもよい。
 エンジンユニット11は、燃焼室30から触媒部62までの間に、排ガスが冷却水で冷却されるように構成されていてもよい。つまり、エンジンユニット11は、排ガスを冷却する冷却水が流れる排ガス冷却通路部を有していてもよい。排ガス冷却通路部の少なくとも一部は、上流集合排気通路部65の少なくとも一部の外周部に形成されてもよい。また、排ガス冷却通路部の少なくとも一部は、複数の独立排気通路部64のそれぞれの少なくとも一部の外周部に形成されてもよい。また、排ガス冷却通路部の少なくとも一部は、複数の内部排気通路部34のそれぞれの少なくとも一部の外周部に形成されてもよい。排ガス冷却通路部を流れる冷却水は、エンジン本体20を冷却する冷却水と共通であってもよく、異なっていてもよい。また、排ガスの冷却は、冷却水の代わりに、水以外の冷却媒体を用いてもよい。また、エンジンユニット11の冷間始動時から所定のタイミングまでは、排ガス冷却通路部の冷却水は循環させないことが好ましい。つまり、この期間は、排ガスを冷却水で冷却しないことが好ましい。所定のタイミングは、例えば、経過時間、クランク軸27の回転数の合計、または、排ガスの温度に基づいて決定する。この変形例によると、排ガスを冷却水で冷却するため、触媒部62に流入する排ガスの温度が高くなり過ぎるのを防止できる。それにより、メイン触媒62aの過熱による劣化を防止できる。その結果、メイン触媒62aによる排気浄化性能をより向上できる。さらに、排ガス冷却通路部の少なくとも一部が、上流集合排気通路部65の少なくとも一部の外周部に形成される場合には、以下の効果が得られる。排ガス冷却通路部が、上流集合排気通路部65に設けられず、複数の独立排気通路部68のそれぞれの外周部に設けられる場合に比べて、排ガス冷却通路部を小型化できる。よって、車両の上下方向および前後方向の大型化を抑制できる。
 この変形例は、上記第2実施形態のエンジンユニット111に適用してもよい。
 燃焼室30は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。この場合、主燃焼室と副燃焼室とを合わせたものが、本発明における「燃焼室」に相当する。
 この変形例は、上記第2実施形態の燃焼室130に適用してもよい。
 上記第1実施形態において、複数の燃焼室30は左右方向に隣り合っている。しかし、複数の燃焼室30は、前後方向に沿って隣り合っていてもよい。この場合、排気口34bは、エンジン本体の左面または右面に形成される。
 また、上記第2実施形態において、複数の燃焼室130は左右方向に隣り合っている。しかし、複数の燃焼室130は、上下方向に沿って隣り合っていてもよい。この場合、排気口134bは、エンジン本体の左面または右面に形成される。
 上記第1実施形態において、排気口34bは、エンジン本体20の前面に形成されている。しかし、排気口34bは、エンジン本体20の後面に形成されてもよい。また、上記第2実施形態において、排気口134bは、エンジン本体120の下面に形成されている。しかし、排気口134bは、エンジン本体120の上面に形成されてもよい。
 上記第1実施形態のエンジン本体20は、3つの燃焼室30を有する。しかし、エンジン本体20が有する燃焼室30の数は、2つであっても、4つ以上であってもよい。また、上記第2実施形態のエンジン本体120は、2つの燃焼室130を有する。しかし、エンジン本体120が有する燃焼室130の数は、3つ以上であってもよい。
 燃焼室30の数が4つ以上の場合、触媒部62が複数設けられてもよい。そして、複数の燃焼室30のうちの一部の燃焼室30から排出された排ガスだけが、1つの触媒部62を通過してもよい。例えば、燃焼室30の数が4つの場合を例に挙げて説明する。排気装置60は、複数の独立排気通路部と、2つの上流集合排気通路部と、2つの触媒部と、2つの下流集合排気通路部を有する。第1上流集合排気通路部は、右側の2つの燃焼室30から排出された排ガスを集合させる。第2上流集合排気通路部は、左側の2つの燃焼室30から排出された排ガスを集合させる。第1触媒部は、第1上流集合排気通路部の下流端と第1下流集合排気通路部の上流端に接続される。第1触媒部は、第2上流集合排気通路部の下流端と第2下流集合排気通路部の上流端に接続される。第1下流集合排気通路部および第2下流集合排気通路部は、大気放出口をそれぞれ有する。この場合、第1上流集合排気通路部と第1触媒部と第1下流集合排気通路部は、本発明における上流集合排気通路部と触媒部と下流集合排気通路部にそれぞれ相当する。また、第2上流集合排気通路部と第2触媒部と第2下流集合排気通路部は、本発明における上流集合排気通路部と触媒部と下流集合排気通路部にそれぞれ相当する。
 この変形例は、上記第2実施形態の排気装置160に適用してもよい。
 燃焼室30の数が4つ以上の場合、エンジン本体20は、いわゆる、V型エンジンであってもよい。例えば、V型4気筒エンジンは、前後に2つずつ配置された4つの燃焼室を有する。V型エンジンの前部に設けられる燃焼室を、前燃焼室と称する。複数の前燃焼室は、左右方向に隣り合っている。V型エンジンの後部に設けられる燃焼室を、後燃焼室と称する。複数の後燃焼室は、左右方向に隣り合っている。前燃焼室の一部を区画するシリンダ孔を、前シリンダ孔とする。前シリンダ孔の中心軸線の方向は、シリンダ軸線Cyの方向と同様である。前燃焼室は、内部排気通路部34、上流排気通路部61、触媒部62、および下流集合排気通路部63と連通する。前燃焼室は、本発明における「複数の燃焼室」に含まれる。
 エンジン本体20がV型エンジンの場合、後燃焼室から排出された排ガスは、前燃焼室から排出された排ガスと合流してもよい。例えば、後燃焼室に連通する排気通路部の下流端が、上流集合排気通路部65に接続されてもよい。この場合、後燃焼室から排出された排ガスは、メイン触媒62aで浄化される。この場合、後燃焼室は、本発明における「複数の燃焼室」に含まれても含まれなくてもよい。また、例えば、後燃焼室に連通する排気通路部の下流端が、下流排気通路部66に接続されてもよい。この場合、メイン触媒62aとは別に、後燃焼室から排出された排ガスを浄化する触媒が設けられる。この場合、後燃焼室は、本発明における「複数の燃焼室」に含まれない。
 エンジン本体20がV型エンジンの場合、後燃焼室から排出された排ガスは、前燃焼室から排出された排ガスと合流しなくてもよい。この場合、メイン触媒62aとは別に、後燃焼室から排出された排ガスを浄化する触媒が設けられる。この場合、後燃焼室は、本発明における「複数の燃焼室」に含まれない。
 上記第1実施形態において、シリンダ軸線Cyは、上方に向かうほど前方に向かうように傾斜している。しかし、シリンダ軸線Cyは、上方に向かうほど後方に向かうように傾斜していてもよい。つまり、シリンダ部20bは、後傾していてもよい。
 上記第1実施形態において、上流集合排気通路部65の排ガスの流れ方向について、複数の独立排気通路部64の下流端の位置はほぼ同じである。しかし、上流集合排気通路部65の排ガスの流れ方向において、独立排気通路部64の下流端が、別の独立排気通路部64の下流端よりも下流に位置していてもよい。この場合、上流酸素センサ76は、全ての独立排気通路部64の下流端よりも下流に配置されることが好ましい。
 上記第1実施形態において、エンジンユニット11の運転時、排気経路69を流れるガスは、燃焼室30から排出された排ガスだけである。しかし、エンジンユニット11は、排気経路69に空気を供給する二次空気供給機構を備えていてもよい。二次空気供給機構の具体的な構成は、公知の構成が採用される。二次空気供給機構は、エアポンプによって強制的に排気経路69に空気を供給する構成であってもよい。また、二次空気供給機構は、排気経路69の負圧によって空気を排気経路69に引き込む構成であってもよい。後者の場合、二次空気供給機構は、排気経路69の圧力の変化に応じて開閉するリード弁を備える。二次空気供給機構を設ける場合、上流酸素センサ76は、空気が供給される箇所の上流と下流のどちらに設けてもよい。
 この変形例は、上記第2実施形態のエンジンユニット111に適用してもよい。
 本発明が適用される鞍乗型車両のエンジンユニットは、空冷式エンジンであってもよい。本発明が適用される鞍乗型車両のエンジンユニットは、自然空冷式であっても、強制空冷式であってもよい。
 本発明の適用対象は、自動二輪車に限らない。本発明は、自動二輪車以外のリーン車両に適用してもよい。リーン車両とは、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有する車両である。また、本発明は、自動二輪車以外の鞍乗型車両に適用してもよい。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指している。本発明が適用される鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))等が含まれる。本発明における前輪部は、複数の前輪を含んでいてもよい。本発明における後輪部は、複数の後輪を含んでいてもよい。
 本願の基礎出願の1つである特願2014-256983を、基礎出願1と称する。本願の基礎出願の1つである特願2014-256985を、基礎出願2と称する。本明細書の水冷却装置40は、基礎出願1、2の水冷ユニット40に相当する。本明細書の吸気装置50は、基礎出願1、2の吸気ユニット50に相当する。本明細書の排気装置60は、基礎出願1、2の排気ユニット60に相当する。本明細書のクランクケース21は、基礎出願1、2のクランクケース本体25に相当する。本明細書の内部吸気通路部33は、基礎出願1、2の吸気通路33を形成する構造体に相当する。本明細書の内部排気通路部34は、基礎出願1、2の排気通路34を形成する構造体に相当する。本明細書の分岐吸気通路部51は、基礎出願1、2の分岐吸気通路51を形成する構造体に相当する。本明細書のメイン触媒62aは、基礎出願1、2のエンジン下方触媒65に相当する。本明細書の触媒部62は、基礎出願1、2のエンジン下方触媒ユニット68に相当する。本明細書の第1~第3排気管56A、56B、56Cは、基礎出願1、2の独立排気管61A、61B、61Cに相当する。本明細書の独立排気通路部64は、基礎出願1、2の独立排気通路66を形成する構造体に相当する。本明細書の上流集合排気通路部65は、基礎出願1、2の上流集合排気通路67を形成する構造体に相当する。本明細書の下流集合排気通路部63は、基礎出願1、2の下流集合排気通路69を形成する構造体に相当する。本明細書の上流酸素センサ76は、基礎出願1、2のフロント酸素センサ76に相当する。本明細書の下流酸素センサ77は、基礎出願1、2のリア酸素センサ77に相当する。なお、本明細書に記載された用語のうち、基礎出願1、2に記載された用語と対応するものは、上記に限らない。
 本明細書において、上流集合排気通路部65が、3つの独立排気通路部64から排出された排ガスを集合させるとは、3つの独立排気通路部64から排出された排ガスを集合させることが可能な状態をいう。必ずしも、3つの独立排気通路部64から排出された排ガスが混ざらなくてもよい。上述したように、3つの燃焼室30における燃焼行程のタイミングは異なる。したがって、3つの燃焼室30から排出された排ガス同士が、混ざらない場合がある。
 この定義は、上記第2実施形態にも適用される。
 本明細書において、ある部品の「端」とは、部品の先端、もしくは、ある方向から見たときの部品の輪郭を形成する部分を表す。一方、ある部品の「端部」とは、部品の「端」とその近傍部とを合わせた部分を指す。
 本明細書において、通路部とは、経路を囲んで経路を形成する壁体等を意味し、経路とは対象が通過する空間を意味する。排気通路部とは、排気経路を囲んで排気経路を形成する壁体等を意味する。なお、排気経路とは、排気が通過する空間を意味する。
 本明細書において、排気経路69の任意の部分の経路長とは、排気経路の中心を通るラインの長さを言う。また、マフラー部67の膨張室内の経路長は、膨張室の流入口の中心から膨張室の流出口の中心を最短で結んだ経路の長さである。
 この定義は、上記第2実施形態にも適用される。
 本明細書において、直線AのB方向に対する傾斜角度とは、直線AとB方向の直線とがなす角度のうち、小さい方の角度を意味する。
 本明細書において、A方向に沿った方向とは、A方向と平行な方向に限らない。A方向に沿った方向とは、A方向に対して±45°の範囲で傾斜している方向を含む。ある直線がA方向に沿うという場合にも、この定義は適用される。なお、A方向は、特定の方向を指すものではない。A方向を、水平方向や前後方向に置き換えることができる。
 本明細書において、部品Aと部品Bが、X方向に沿って隣り合っているとは、以下の状態を示す。部品Aと部品Bが、X方向に沿った任意の直線上に並んで配置されている。部品Aと部品Bは、X方向に平行な1つの直線が通過するように配置されてもよく、されなくてもよい。
 本明細書において、部品Aが部品Bより前方に配置されるとは、以下の状態を指す。部品Aは、部品Bの最前端を通り前後方向に直交する平面の前方に配置される。この場合、部品Aと部品Bは、前後方向に平行な1つの直線が通過するように配置されてもよく、されなくてもよい。この定義は、前後方向以外の方向も適用される。また、この定義は、部品だけでなく、部品の一部分や直線や平面にも適用される。
 本明細書において、部品Aが部品Bの前方に配置されるとは、部品A全体が、部品Bの前面のうち部品Aと対向する部分の前方に配置される状態を指す。この場合、部品Aと部品Bは、前後方向に平行な1つの直線が通過するように配置される。また、部品Bは、前後方向に見て、少なくとも部品A全体と重なる部分を有する。この定義において、部品Bの前面のうち部品Aと対向する部分が、部品Bの最前端の場合には、部品Aは部品Bよりも前方に配置される。この定義において、部品Bの前面のうち部品Aと対向する部分が、部品Bの最前端ではない場合には、部品Aは部品Bよりも前方に配置されてもよく、されなくてもよい。この定義は、前後方向以外の方向も適用される。また、この定義は、部品だけでなく、部品の一部分や直線や平面にも適用される。なお、部品Bの前面とは、部品Bを前方から見た時に見える面のことである。部品Bの形状によっては、部品Bの前面とは、連続した1つの面ではなく、複数の面で構成される場合がある。
 本明細書において、左右方向に見て、部品Aが部品Bの前方に配置されるとは、左右方向に見て、部品A全体が部品Bの前面の前方に配置される状態を指す。この場合、左右方向に見て、部品Aと部品Bは、前後方向に平行な1つの直線が通過するように配置される。3次元的には、部品Aと部品Bは、前後方向に平行な1つの直線が通過するように配置されてもよく、されなくてもよい。この定義は、前後方向以外の方向も適用される。また、この定義は、部品だけでなく、部品の一部分や直線や平面にも適用される。
 本明細書において、左右方向に見て、部品Aが、部品Bと部品Cとの間に配置されるとは、以下の状態を指す。まず、左右方向に見て、部品Bと部品Cが前後方向に隣り合っている場合について説明する。左右方向に見て、部品Bの輪郭上の点と部品Cの輪郭上の点とを結ぶ線分のうち最も上方に配置される線分を、線分LUとする。また、左右方向に見て、部品Bの輪郭上の点と部品Cの輪郭上の点を結ぶ線分のうち最も下方に配置される線分を、線分LDとする。その状態とは、左右方向に見て、部品Aが、線分LUと線分LDを2辺とする四角形の領域内で、且つ、部品Bおよび部品Cに重ならない状態である。次に、左右方向に見て、部品Bと部品Cが上下方向に隣り合っている場合について説明する。左右方向に見て、部品Bの輪郭上の点と部品Cの輪郭上の点とを結ぶ線分のうち最も左方に配置される線分を、線分LLとする。また、左右方向に見て、部品Bの輪郭上の点と部品Cの輪郭上の点とを結ぶ線分のうち最も右方に配置される線分を、線分LRとする。その状態とは、左右方向に見て、部品Aが、線分LLと線分LRを2辺とする四角形の領域内で、且つ、部品Bおよび部品Cに重ならない状態である。この定義は、左右方向以外の方向から見た場合にも適用できる。また、この定義は、部品だけでなく、部品の一部分や直線や平面にも適用される。
 1、101 自動二輪車(鞍乗型車両)
 2、102 前輪部
 3、103 後輪部
 4、104 車体フレーム
 11、111 エンジンユニット
 14 表示装置(報知手段)
 20、120 エンジン本体
 20a、120a クランクケース部
 20b、120b シリンダ部
 21、121 クランクケース
 22a、122a シリンダ孔
 26 オイルパン
 27、127 クランク軸
 30、130 燃焼室
 34、134 内部排気通路部
 34b、134b 排気口
 45 オイルフィルタ
 47U(47) 上流サブ触媒
 47D(47) 下流サブ触媒
 54、154 インジェクタ(燃料供給装置)
 60、160 排気装置
 61、161 上流排気通路部
 62、162、362 触媒部(エンジン下方触媒部)
 62a、162a メイン触媒
 62b、162b 筒部
 63、163 下流集合排気通路部
 64、64A、64B、164、164A、164B、264 独立排気通路部
 65、165、265 上流集合排気通路部
 66、166 下流排気通路部
 67、167 マフラー部
 67a、167a 大気放出口
 68、168 独立排気通路部
 69、169 排気経路
 76、176 上流酸素センサ
 77、177 下流酸素センサ
 90 ECU(制御装置)
 145 無段変速機
 145P1 駆動プーリ(駆動回転体)
 145P2 従動プーリ(従動回転体)
 145B Vベルト(巻き掛け部材)
 149 動力伝達装置
 362c 触媒プロテクター部
 430 二重管(多重管)
 430a 内管
 430b 外管

Claims (15)

  1.  車体フレームと、
     前記車体フレームに支持されるエンジンユニットと、
     少なくとも1つの前輪を含み、車両の左右方向に見て、前記エンジンユニットの車両の前後方向の前方に配置される前輪部と、
     少なくとも1つの後輪を含み、前記左右方向に見て、前記エンジンユニットの前記前後方向の後方に配置される後輪部と、を備える鞍乗型車両であって、
     前記エンジンユニットは、
     前記左右方向に沿った中心軸線を有するクランク軸を含むクランクケース部を有すると共に、複数のシリンダ孔、および、前記複数のシリンダ孔によってそれぞれ一部が区画される複数の燃焼室を有し、その外面に前記複数の燃焼室とそれぞれ連通する複数の排気口が形成されるエンジン本体と、
     前記エンジン本体の前記複数の排気口に接続されて、大気に排ガスを放出する大気放出口を有する排気装置と、を備え、
     前記排気装置は、
     前記エンジン本体の前記複数の排気口にそれぞれ接続されて、前記エンジン本体から排出された排ガスが流れる複数の独立排気通路部と、
     前記複数の独立排気通路部の下流端に接続されて、前記複数の独立排気通路部から排出された排ガスを集合させる上流集合排気通路部と、
     前記複数の燃焼室から前記大気放出口に至る複数の排気経路において、前記複数の燃焼室から排出された排ガスを最も浄化するメイン触媒を有し、排ガスの流れ方向の長さが前記メイン触媒の排ガスの流れ方向の長さと同じであって、前記上流集合排気通路部の下流端に接続されて、少なくとも一部が前記クランクケース部の車両の上下方向の下方に配置されて、その内部を流れる排ガスの流れ方向が水平方向に沿った方向となるように配置されたエンジン下方触媒部と、
     前記大気放出口を有し、前記エンジン下方触媒部の下流端に接続される下流集合排気通路部と、
     前記上流集合排気通路部に設けられ、前記エンジン下方触媒部の最下端よりも前記上下方向の上方に位置しており、前記上流集合排気通路部内の排ガス中の酸素濃度を検出する上流酸素センサと、
     前記下流集合排気通路部に設けられ、前記エンジン下方触媒部の最下端よりも前記上下方向の上方に位置しており、前記下流集合排気通路部内の排ガス中の酸素濃度を検出する下流酸素センサと、を備え、
     前記エンジンユニットは、
     前記上流酸素センサの信号と前記下流酸素センサの信号を処理する制御装置を備えることを特徴とする鞍乗型車両。
  2.  前記制御装置は、前記下流酸素センサの信号に基づいて前記メイン触媒の浄化能力を判定し、
     前記メイン触媒の浄化能力が所定のレベルまで低下したと前記制御装置によって判定されたときに報知を行う報知手段を備えることを特徴とする請求項1に記載の鞍乗型車両。
  3.  前記エンジンユニットは、前記複数の燃焼室に燃料をそれぞれ供給する複数の燃料供給装置を備え、
     前記制御装置は、
     前記上流酸素センサの信号と前記下流酸素センサの信号に基づいて、前記複数の燃料供給装置の燃料供給量を制御することを特徴とする請求項1または2に記載の鞍乗型車両。
  4.  前記エンジン下方触媒部を通過する排ガスの流れ方向に見て、前記下流酸素センサの少なくとも一部は、前記エンジン下方触媒部と重なることを特徴とする請求項1~3のいずれかに記載の鞍乗型車両。
  5.  前記エンジン下方触媒部を通過する排ガスの流れ方向に見て、前記上流酸素センサの少なくとも一部は、前記エンジン下方触媒部と重なることを特徴とする請求項1~4のいずれかに記載の鞍乗型車両。
  6.  前記下流集合排気通路部は、
     その上流端が前記エンジン下方触媒部の下流端に接続される下流排気通路部と、
     前記大気放出口を有し、前記下流排気通路部の下流端に接続されて、前記排ガスにより生じる音を低減するマフラー部と、を有し、
     前記下流酸素センサは、前記下流排気通路部に設けられることを特徴とする請求項1~5のいずれかに記載の鞍乗型車両。
  7.  前記下流酸素センサの少なくとも一部は、前記エンジン本体の前記クランクケース部の前記上下方向の下方に配置されることを特徴とする請求項6に記載の鞍乗型車両。
  8.  前記クランクケース部は、その下部にオイルパンを有しており、
     前記下流酸素センサの少なくとも一部は、前記オイルパンの前記上下方向の下方に位置することを特徴とする請求項7に記載の鞍乗型車両。
  9.  前記上流酸素センサは、前記オイルパンよりも前記前後方向の前方に配置されることを特徴とする請求項8に記載の鞍乗型車両。
  10.  前記エンジン本体は、前記複数のシリンダ孔が前記左右方向に沿って隣り合い、且つ、前記複数のシリンダ孔の中心軸線が前記上下方向に沿うように配置されることを特徴とする請求項1~9のいずれかに記載の鞍乗型車両。
  11.  前記エンジン下方触媒部の少なくとも一部は、前記クランク軸の中心軸線よりも前記前後方向の前方に配置され、
     前記左右方向に見て、前記エンジン下方触媒部の少なくとも一部は、前記シリンダ孔の中心軸線に直交し且つ前記クランク軸の中心軸線を通る直線の前記前後方向の後方に配置されることを特徴とする請求項10に記載の鞍乗型車両。
  12.  前記エンジン本体は、前記複数のシリンダ孔が前記左右方向に沿って隣り合い、且つ、前記複数のシリンダ孔の中心軸線が前記前後方向に沿うように配置されることを特徴とする請求項1~9のいずれかに記載の鞍乗型車両。
  13.  前記エンジン下方触媒部の少なくとも一部は、前記クランク軸の中心軸線よりも前記前後方向の後方に配置されることを特徴とする請求項12に記載の鞍乗型車両。
  14.  前記エンジンユニットは、前記クランク軸の回転力を前記後輪部に伝達する動力伝達装置を備えており、
     前記動力伝達装置は、
     前記クランク軸の回転力を受けて回転する駆動回転体と、
     前記クランク軸および前記駆動回転体よりも前記前後方向の後方に配置される従動回転体と、
     前記駆動回転体と前記従動回転体に巻き掛けられて、前記駆動回転体の回転力を前記従動回転体に伝達する巻き掛け部材と、を有しており、
     前記エンジン下方触媒部の少なくとも一部は、前記従動回転体の中心軸線よりも前記前後方向の前方に配置されることを特徴とする請求項12または13に記載の鞍乗型車両。
  15.  前記エンジン本体は、前記複数の燃焼室と前記複数の独立排気通路部の上流端とをそれぞれつなぐ複数の内部排気通路部を有し、
     前記エンジンユニットは、前記複数の内部排気通路部、前記複数の独立排気通路部、前記上流集合排気通路部、および、前記下流集合排気通路部のうちの少なくとも1つの通路部に配置されて、排ガスを浄化する少なくとも1つのサブ触媒を備えることを特徴とする請求項1~14のいずれかに記載の鞍乗型車両。
PCT/JP2015/085551 2014-12-19 2015-12-18 鞍乗型車両 WO2016098896A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15870095.5A EP3236034B1 (en) 2014-12-19 2015-12-18 Straddled vehicle
TW104143040A TWI577883B (zh) 2014-12-19 2015-12-21 Straddle type vehicle
TW104143042A TWI612213B (zh) 2014-12-19 2015-12-21 跨坐型車輛
TW104143044A TWI637106B (zh) 2014-12-19 2015-12-21 Straddle type vehicle
TW104143046A TWI577600B (zh) 2014-12-19 2015-12-21 Straddle type vehicle
TW104143043A TWI576506B (zh) 2014-12-19 2015-12-21 Straddle type vehicle
TW104143041A TWI644018B (zh) 2014-12-19 2015-12-21 Straddle type vehicle
TW104143039A TWI573930B (zh) 2014-12-19 2015-12-21 Straddle type vehicle

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014-256984 2014-12-19
JP2014256983 2014-12-19
JP2014-256983 2014-12-19
JP2014-256985 2014-12-19
JP2014256985 2014-12-19
JP2014256984 2014-12-19
JP2015-077744 2015-04-06
JP2015077744 2015-04-06
JP2015-157520 2015-08-07
JP2015157520 2015-08-07

Publications (1)

Publication Number Publication Date
WO2016098896A1 true WO2016098896A1 (ja) 2016-06-23

Family

ID=56126775

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/JP2015/085584 WO2016098902A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085551 WO2016098896A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085589 WO2016098903A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085576 WO2016098901A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085593 WO2016098906A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085570 WO2016098900A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085597 WO2016098907A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085584 WO2016098902A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/JP2015/085589 WO2016098903A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085576 WO2016098901A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085593 WO2016098906A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085570 WO2016098900A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両
PCT/JP2015/085597 WO2016098907A1 (ja) 2014-12-19 2015-12-18 鞍乗型車両

Country Status (4)

Country Link
EP (10) EP3236037A4 (ja)
ES (2) ES2960945T3 (ja)
TW (7) TWI577600B (ja)
WO (7) WO2016098902A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215388A1 (ja) * 2020-04-22 2021-10-28 ヤマハ発動機株式会社 ストラドルドビークル
EP4026991A1 (en) * 2021-01-08 2022-07-13 Suzuki Motor Corporation Exhaust device
WO2022168792A1 (ja) * 2021-02-05 2022-08-11 ヤマハ発動機株式会社 ストラドルドビークル
DE102020117311B4 (de) 2019-07-25 2024-04-25 Kawasaki Motors, Ltd. Auspuffanlage für einen Motor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429597B (zh) * 2015-03-24 2019-07-12 本田技研工业株式会社 机动二轮车的排气装置
JP6597438B2 (ja) * 2016-03-24 2019-10-30 株式会社豊田自動織機 排気浄化装置取付構造
EP3473828A4 (en) * 2016-06-16 2019-06-26 Yamaha Hatsudoki Kabushiki Kaisha SADDLE VEHICLE WITH A FRONT WHEEL
JP2018086887A (ja) * 2016-11-28 2018-06-07 ヤマハ発動機株式会社 鞍乗型車両
JP6687651B2 (ja) * 2018-02-09 2020-04-28 本田技研工業株式会社 鞍乗型車両
JP6639536B2 (ja) * 2018-02-09 2020-02-05 本田技研工業株式会社 鞍乗型車両
JP2019156314A (ja) * 2018-03-16 2019-09-19 ヤマハ発動機株式会社 鞍乗型車両
JP2019190355A (ja) * 2018-04-24 2019-10-31 ヤマハ発動機株式会社 鞍乗型車両
JP7102914B2 (ja) * 2018-05-01 2022-07-20 スズキ株式会社 触媒装置の配置構造
JP7206661B2 (ja) * 2018-07-18 2023-01-18 スズキ株式会社 自動二輪車の排気装置、エンジン排気系統及び自動二輪車
JP6750649B2 (ja) * 2018-08-08 2020-09-02 スズキ株式会社 自動二輪車
JP6658820B2 (ja) * 2018-08-08 2020-03-04 スズキ株式会社 自動二輪車
JP7119734B2 (ja) * 2018-08-08 2022-08-17 スズキ株式会社 自動二輪車
BR112021001721B1 (pt) * 2018-08-15 2023-12-05 Honda Motor Co., Ltd Estrutura de arranjo do sensor de o2 da motocicleta de duas rodas
FR3086336B1 (fr) * 2018-09-24 2020-09-04 Continental Automotive France Procede de commande d'un moteur a combustion interne refroidi par air
WO2020162002A1 (ja) 2019-02-04 2020-08-13 ヤマハ発動機株式会社 鞍乗型車両
JP7314525B2 (ja) 2019-02-19 2023-07-26 スズキ株式会社 自動二輪車
WO2020217658A1 (ja) 2019-04-24 2020-10-29 ヤマハ発動機株式会社 鞍乗型車両
ES2968534T3 (es) 2019-04-24 2024-05-10 Yamaha Motor Co Ltd Vehículo para montar a horcajadas
EP3950477B1 (en) * 2019-04-24 2024-01-24 Yamaha Hatsudoki Kabushiki Kaisha Straddled vehicle
EP3741967B1 (en) * 2019-05-21 2024-01-17 TVS Motor Company Limited Exhaust device for a two wheeled vehicle
CN111022168B (zh) * 2019-12-27 2020-12-25 东风汽车集团有限公司 一种氧传感器隔热保护装置
JP7157110B2 (ja) 2020-09-24 2022-10-19 本田技研工業株式会社 鞍乗型車両の排気構造
JP7563185B2 (ja) 2021-01-08 2024-10-08 スズキ株式会社 排気装置
JP7506787B2 (ja) * 2021-10-26 2024-06-26 ヤンマーパワーテクノロジー株式会社 エンジン

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070549A (ja) * 2000-08-25 2002-03-08 Calsonic Kansei Corp エンジンの排気マニホールド
JP2007023802A (ja) * 2005-07-12 2007-02-01 Yamaha Motor Co Ltd 鞍乗型車両
JP2007045291A (ja) * 2005-08-09 2007-02-22 Kawasaki Heavy Ind Ltd 自動二輪車
JP2007051571A (ja) * 2005-08-17 2007-03-01 Kawasaki Heavy Ind Ltd 車輌用排気装置
JP2007187004A (ja) * 2006-01-11 2007-07-26 Honda Motor Co Ltd 内燃機関
JP2010269725A (ja) * 2009-05-22 2010-12-02 Honda Motor Co Ltd 自動二輪車
JP2012026306A (ja) * 2010-07-21 2012-02-09 Daihatsu Motor Co Ltd 内燃機関のダイアグノーシス制御方法
JP2014227843A (ja) * 2013-05-20 2014-12-08 川崎重工業株式会社 内燃機関における理論空燃比推定装置およびその方法、触媒の酸素吸蔵量推定方法、内燃機関装置、及び内燃機関装置を搭載した自動二輪車

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646026Y2 (ja) * 1977-12-16 1981-10-28
DE3168247D1 (en) * 1980-04-15 1985-02-28 Honda Motor Co Ltd Motorised two-wheeled vehicles with supercharger apparatus
JPS58185931A (ja) * 1982-04-23 1983-10-29 Yamaha Motor Co Ltd ターボ過給機付き自動二輪車
JPH0267415A (ja) * 1988-08-31 1990-03-07 Mitsubishi Motors Corp 排気ガス温度制御方法
JP2576909B2 (ja) * 1990-04-03 1997-01-29 本田技研工業株式会社 2サイクルエンジンの排気浄化装置
JPH05302518A (ja) * 1992-04-24 1993-11-16 Suzuki Motor Corp 車両用排気マフラの温度制御装置
JP3257906B2 (ja) * 1994-09-05 2002-02-18 本田技研工業株式会社 エンジンの排気浄化装置
US5788547A (en) * 1995-08-02 1998-08-04 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe cooling system for watercraft
JP3504388B2 (ja) * 1995-08-02 2004-03-08 ヤマハ発動機株式会社 船舶用エンジンの冷却装置
JP2005225383A (ja) * 2004-02-13 2005-08-25 Suzuki Motor Corp 自動二輪車の車体下部構造
DE112005001100A5 (de) * 2004-05-17 2007-05-24 Avl List Gmbh Motorrad
JP4392315B2 (ja) * 2004-09-30 2009-12-24 本田技研工業株式会社 自動二輪車における空燃比センサの配置構造
JP2007008442A (ja) * 2005-03-11 2007-01-18 Yamaha Motor Co Ltd 自動二輪車の排気装置
JP4546310B2 (ja) * 2005-03-31 2010-09-15 川崎重工業株式会社 自動二輪車用エンジンの排気システム
US7334402B2 (en) * 2005-06-17 2008-02-26 Kawasaki Jukogyo Kabushiki Kaisha Exhaust system with catalytic converter and motorcycle using the same
JP4754276B2 (ja) * 2005-06-17 2011-08-24 川崎重工業株式会社 自動二輪車
JP2007040250A (ja) * 2005-08-04 2007-02-15 Yamaha Motor Co Ltd 排気ガス浄化機能を有する鞍乗型車両
JP2007046463A (ja) * 2005-08-05 2007-02-22 Yamaha Motor Co Ltd 排気システムならびにそれを備えるエンジン装置および車両
US7874149B2 (en) * 2005-08-17 2011-01-25 Kawasaki Jukogyo Kabushiki Kaisha Exhaust apparatus for vehicle, and motorcycle having the same
JP4871107B2 (ja) * 2006-12-06 2012-02-08 ヤマハ発動機株式会社 鞍乗り型車両
JP5046674B2 (ja) * 2007-02-07 2012-10-10 本田技研工業株式会社 自動二輪車の触媒配置構造
US7895832B2 (en) * 2007-06-28 2011-03-01 Harley-Davidson Motor Company Group, Inc. Performance exhaust system
US20090000862A1 (en) * 2007-06-28 2009-01-01 Buell Motorcycle Company Motorcycle exhaust system
JP2009035108A (ja) * 2007-08-01 2009-02-19 Yamato Giken Kk バイク用カウリングの保護装置
JP2009156249A (ja) * 2007-08-31 2009-07-16 Yamaha Motor Co Ltd エンジン及び鞍乗型車両
EP2031200B1 (en) * 2007-09-03 2009-11-11 Yamaha Motor Research & Development Europe s.r.l. An exhaust gas purifying apparatus for a motorcycle, a motorcycle comprising an exhaust gas purifying apparatus
JP5426134B2 (ja) * 2007-12-26 2014-02-26 ヤマハ発動機株式会社 鞍乗型車両
JP5146777B2 (ja) * 2009-03-11 2013-02-20 本田技研工業株式会社 触媒保持構造
JP5232752B2 (ja) * 2009-09-30 2013-07-10 本田技研工業株式会社 鞍乗り型車両の蒸発燃料処理装置の配置構造
JP5568351B2 (ja) * 2010-03-26 2014-08-06 本田技研工業株式会社 小型車両用パワーユニット
JP5362694B2 (ja) * 2010-12-07 2013-12-11 本田技研工業株式会社 鞍乗型車両
JP5801066B2 (ja) * 2011-03-07 2015-10-28 本田技研工業株式会社 エンジンの排気浄化装置
JP5915104B2 (ja) * 2011-11-14 2016-05-11 マツダ株式会社 多気筒エンジンの排気装置
US8973354B2 (en) * 2012-03-28 2015-03-10 Honda Motor Co., Ltd. Exhaust system for variable cylinder engine
JP6012483B2 (ja) * 2013-01-16 2016-10-25 本田技研工業株式会社 鞍乗型車両の排気装置
IN2014DE02450A (ja) 2013-09-25 2015-06-26 Suzuki Motor Corp
JP6375482B2 (ja) 2014-02-21 2018-08-22 Joyson Safety Systems Japan株式会社 ガス発生器
CN106661981B (zh) * 2014-07-04 2020-11-06 雅马哈发动机株式会社 车辆和单缸四冲程发动机单元
JP2017150311A (ja) * 2014-07-04 2017-08-31 ヤマハ発動機株式会社 エンジンユニット及び鞍乗型車両
EP3276137B1 (en) * 2015-03-24 2019-11-27 Honda Motor Co., Ltd Saddle-riding-type vehicle exhaust device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070549A (ja) * 2000-08-25 2002-03-08 Calsonic Kansei Corp エンジンの排気マニホールド
JP2007023802A (ja) * 2005-07-12 2007-02-01 Yamaha Motor Co Ltd 鞍乗型車両
JP2007045291A (ja) * 2005-08-09 2007-02-22 Kawasaki Heavy Ind Ltd 自動二輪車
JP2007051571A (ja) * 2005-08-17 2007-03-01 Kawasaki Heavy Ind Ltd 車輌用排気装置
JP2007187004A (ja) * 2006-01-11 2007-07-26 Honda Motor Co Ltd 内燃機関
JP2010269725A (ja) * 2009-05-22 2010-12-02 Honda Motor Co Ltd 自動二輪車
JP2012026306A (ja) * 2010-07-21 2012-02-09 Daihatsu Motor Co Ltd 内燃機関のダイアグノーシス制御方法
JP2014227843A (ja) * 2013-05-20 2014-12-08 川崎重工業株式会社 内燃機関における理論空燃比推定装置およびその方法、触媒の酸素吸蔵量推定方法、内燃機関装置、及び内燃機関装置を搭載した自動二輪車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236034A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117311B4 (de) 2019-07-25 2024-04-25 Kawasaki Motors, Ltd. Auspuffanlage für einen Motor
WO2021215388A1 (ja) * 2020-04-22 2021-10-28 ヤマハ発動機株式会社 ストラドルドビークル
EP4026991A1 (en) * 2021-01-08 2022-07-13 Suzuki Motor Corporation Exhaust device
CN114753913A (zh) * 2021-01-08 2022-07-15 铃木株式会社 排气装置
US11555438B2 (en) 2021-01-08 2023-01-17 Suzuki Motor Corporation Exhaust device
WO2022168792A1 (ja) * 2021-02-05 2022-08-11 ヤマハ発動機株式会社 ストラドルドビークル

Also Published As

Publication number Publication date
EP3236035A1 (en) 2017-10-25
EP3239485B1 (en) 2021-07-21
ES2960945T3 (es) 2024-03-07
EP3825529A1 (en) 2021-05-26
EP3236036A1 (en) 2017-10-25
EP3236034A1 (en) 2017-10-25
WO2016098903A1 (ja) 2016-06-23
TWI577883B (zh) 2017-04-11
EP3235715A4 (en) 2018-03-28
EP3236034B1 (en) 2019-06-12
EP3805534B1 (en) 2023-08-09
EP3825529B1 (en) 2023-04-05
WO2016098902A1 (ja) 2016-06-23
TWI577600B (zh) 2017-04-11
TWI576506B (zh) 2017-04-01
TW201632713A (zh) 2016-09-16
EP3235714A4 (en) 2018-03-07
TW201636499A (zh) 2016-10-16
EP3236037A4 (en) 2018-03-28
TW201627569A (zh) 2016-08-01
EP3235714B1 (en) 2019-05-15
EP4056822A1 (en) 2022-09-14
TWI612213B (zh) 2018-01-21
EP3239485A4 (en) 2018-03-28
EP3236035B1 (en) 2020-07-01
TW201632714A (zh) 2016-09-16
EP3235715A1 (en) 2017-10-25
WO2016098906A1 (ja) 2016-06-23
WO2016098901A1 (ja) 2016-06-23
EP3239485A1 (en) 2017-11-01
TW201627571A (zh) 2016-08-01
TW201636500A (zh) 2016-10-16
EP3236036A4 (en) 2018-03-28
TWI637106B (zh) 2018-10-01
ES2946345T3 (es) 2023-07-17
WO2016098907A1 (ja) 2016-06-23
EP3235714A1 (en) 2017-10-25
WO2016098900A1 (ja) 2016-06-23
EP3236034A4 (en) 2018-03-28
EP3805534A1 (en) 2021-04-14
TW201630781A (zh) 2016-09-01
TWI644018B (zh) 2018-12-11
TWI573930B (zh) 2017-03-11
EP3236037A1 (en) 2017-10-25
EP3236035A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016098896A1 (ja) 鞍乗型車両
US10677151B2 (en) Straddled vehicle
WO2016002952A1 (ja) 鞍乗型車両および単気筒4ストロークエンジンユニット
WO2016002959A1 (ja) 鞍乗型車両および単気筒4ストロークエンジンユニット
EP3415731A1 (en) Saddle-type vehicle
JP2018155218A (ja) 鞍乗型車両
WO2016002957A1 (ja) 鞍乗型車両、及び、単気筒4ストロークエンジンユニット
WO2016002953A1 (ja) 鞍乗型車両
WO2016002954A1 (ja) 鞍乗型車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015870095

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP