WO2016098821A1 - ポリアミド系フィルム及びその製造方法 - Google Patents

ポリアミド系フィルム及びその製造方法 Download PDF

Info

Publication number
WO2016098821A1
WO2016098821A1 PCT/JP2015/085257 JP2015085257W WO2016098821A1 WO 2016098821 A1 WO2016098821 A1 WO 2016098821A1 JP 2015085257 W JP2015085257 W JP 2015085257W WO 2016098821 A1 WO2016098821 A1 WO 2016098821A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyamide
stretching
degrees
stretched
Prior art date
Application number
PCT/JP2015/085257
Other languages
English (en)
French (fr)
Inventor
真実 松本
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN201580027475.2A priority Critical patent/CN106414567B/zh
Priority to KR1020167027240A priority patent/KR101776590B1/ko
Priority to EP15870023.7A priority patent/EP3235859B1/en
Priority to US15/535,448 priority patent/US20180264711A1/en
Priority to JP2016512130A priority patent/JP5981073B1/ja
Publication of WO2016098821A1 publication Critical patent/WO2016098821A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/802Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a novel polyamide film and a method for producing the same. Furthermore, this invention relates to the laminated body and container containing the said polyamide-type film.
  • a vinyl chloride film is used for a package (press-through pack) such as a medicine (tablet).
  • a polypropylene film is used in the case of packaging contents that require moisture resistance.
  • laminates obtained by laminating metal foils on resin films have been used for the purpose of imparting better gas barrier properties or moisture resistance from the viewpoint of maintaining the quality of contents.
  • a laminate composed of a base material layer (resin film) / metal foil layer (aluminum foil) / sealant layer is known.
  • a metal can type has been the mainstream of the exterior material of a lithium ion battery, but there have been pointed out disadvantages such as a low degree of freedom in shape and difficulty in weight reduction. For this reason, it has been proposed to use a laminate composed of a base material layer / metal foil layer / sealant layer or a laminate composed of a base material layer / base material layer / metal foil layer / sealant layer as an exterior body.
  • a laminated body is widely used because it is flexible and has a high degree of freedom in shape as compared to a metal can, and can be reduced in weight by thinning and can be easily reduced in size. ing.
  • the moldability in this case is the moldability particularly when the film is cold-molded (cold processing). That is, when a product is produced by molding a film, the molding conditions are as follows: a) hot molding in which the resin is melted under heating and b) cold molding in which the resin is molded without melting. Although there is inter-molding, in the above-mentioned applications, moldability in cold molding (particularly drawing and overhanging) is required. Cold molding is a molding method that is more advantageous than hot molding in that it is superior in terms of production speed and cost because it does not have a heating step, and can draw out the original characteristics of the resin. For this reason, the development of a film suitable for cold forming is being promoted as a polyamide film.
  • a stretched polyamide film As such a polyamide film, a stretched polyamide film is known (for example, Patent Documents 1 and 2).
  • these polyamide-based films are produced by stretching by a tubular method. That is, not only is the productivity low, but the stretched film obtained is not sufficiently satisfactory in terms of thickness uniformity, dimensional stability, and the like.
  • a fatal defect such as a breakage of the metal foil or a pinhole may occur.
  • Patent Documents 3 to 10 polyamide films stretched by the tenter method have also been proposed (for example, Patent Documents 3 to 10).
  • the tenter method is advantageous in terms of productivity, dimensional stability and the like as compared with the tubular method.
  • the polyamide film 14 is manufactured by a process as shown in FIG.
  • the melt-kneaded material 12 is prepared by melting the raw material 11 in the melt-kneading step 11a.
  • the melt-kneaded material 12 is shape
  • the polyamide-based film 14 is obtained by biaxially stretching the unstretched sheet 13 in the stretching step 13a. Further, this stretched polyamide film 14 is laminated in the cold forming step 15a as a secondary process after the laminated body 17 is produced through a laminating step 14a in which, for example, the metal foil layer 15 and the sealant film 16 are sequentially bonded.
  • Various products 18 (for example, containers) are formed by processing the body 17 into a predetermined shape.
  • a stretched polyamide-based film 14 it is desirable to reduce variations in physical properties in each direction on the plane, but at least four directions at every 90 degrees (with any direction as a reference (0 degree)) In contrast, it is preferable to reduce variations in physical properties in the clockwise direction (a total of four directions of 45 degrees, 90 degrees, and 135 degrees).
  • a biaxially stretched polyamide-based film as shown in FIG. 4, if an MD (film flow direction) at the time of biaxial stretching is a reference direction (0 degree direction), centering on an arbitrary point A.
  • A Reference direction (0 degree direction), (b) 45 degree direction clockwise with respect to MD (hereinafter referred to as “45 degree direction”), (c) 90 degree direction clockwise with respect to MD Direction (TD: direction perpendicular to the film flow direction) (hereinafter referred to as “90-degree direction”) and (d) 135 degrees in the clockwise direction with respect to MD (hereinafter referred to as “135-degree direction”). It is desirable to eliminate variations in physical properties in four directions.
  • the thickness of the film is one of the physical properties that affect the moldability during cold forming.
  • a laminated body including a polyamide-based film having a variation in film thickness is cold-molded, there is a high possibility that a relatively thin portion is broken to cause a pinhole or cause delamination. For this reason, it is indispensable to uniformly control the thickness of the polyamide film used for cold forming throughout the film.
  • the thickness accuracy of the polyamide-based film obtained by Patent Documents 3 to 10 above is better when stretched by the tenter method than by the tubular method. Is not fully satisfactory. That is, as described above, it is necessary to uniformly extend in four directions that are vertically and horizontally oblique at the time of cold forming, and therefore, it is necessary to have a sufficient thickness uniformity enough to withstand cold forming. In particular, as the film thickness becomes thinner (especially, a thickness of 15 ⁇ m or less), the influence of thickness uniformity on moldability becomes more prominent.
  • the uniformity of the thickness of the film is easier to ensure as the thickness increases, so it may be possible to design the film to be relatively thick in order to ensure the uniformity of the thickness.
  • polyamide-based films and laminates used for cold forming have come to be widely used mainly for lithium-ion battery exterior materials, which further increases the output and size of batteries. With the demand for cost reduction, etc., it is required to make the polyamide film thinner. However, if the thickness is reduced, it is difficult to ensure the uniformity of the thickness.
  • a main object of the present invention is to provide a polyamide film having excellent thickness uniformity and effectively suppressing variations in physical properties in the four directions, and a method for producing the same.
  • the present inventor can achieve the above object based on the knowledge that a polyamide-based film having specific physical properties can be obtained by adopting a specific production method.
  • the headline and the present invention were completed.
  • this invention relates to the following polyamide-type film and its manufacturing method.
  • a polyamide film (1) Each stress at 5% elongation by a uniaxial tensile test in four directions of 45 degrees, 90 degrees, and 135 degrees clockwise with respect to a specific direction from an arbitrary point on the film. The difference between the maximum value and the minimum value is 35 MPa or less, and (2) In the four directions, the difference between the maximum value and the minimum value of each stress at 15% elongation by uniaxial tensile test is 40 MPa or less.
  • a polyamide-based film characterized by that. 2.
  • Item 2 The polyamide film according to Item 1, wherein the standard deviation value is 0.200 or less. 3.
  • Item 2. The polyamide film according to Item 1, wherein the average thickness is 15 ⁇ m or less. 4). Boiling water shrinkage is MD: 2.0-5.0% and TD: 2.5-5.5%, elastic modulus is MD: 1.5-3.0% and TD: 1.5-2.5% The polyamide film according to Item 1, wherein 5.
  • Item 2. The polyamide film according to Item 1, wherein the relative viscosity is 2.9 to 3.1. 6).
  • Item 2 The polyamide film according to Item 1, which has a primer layer on at least one surface of the film surface. 7).
  • a laminate comprising the polyamide-based film according to item 1 and a metal foil laminated on the film. 8).
  • Item 7. A laminate comprising the polyamide film according to Item 6 and a metal foil laminated on a primer layer on the film. 9.
  • Item 9. A container comprising the laminate according to Item 7 or 8. 10.
  • a method for producing a polyamide film comprising: (1) A sheet forming step of obtaining an unstretched sheet by forming a melt-kneaded product containing a polyamide resin into a sheet shape, (2) including a stretching step of obtaining a stretched film by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD, and (3) the following formulas a) and b); a) 0.85 ⁇ X / Y ⁇ 0.95 b) 8.5 ⁇ X ⁇ Y ⁇ 9.5 (However, X represents the draw ratio of MD and Y represents the draw ratio of TD.) Satisfy both A method for producing a polyamide-based film. 11.
  • the stretching process is sequential biaxial stretching, (2-1) a first stretching step for obtaining a first stretched film by stretching the unstretched sheet into MD at a temperature of 50 to 120 ° C. and (2-2) the first stretch step at a temperature of 70 to 150 ° C.
  • item 10 including the 2nd extending process which obtains a 2nd stretched film by extending
  • the polyamide-based film of the present invention is excellent in thickness uniformity and has a stress balance when stretched in four directions consisting of 0 degree direction, 45 degree direction, 90 degree direction, and 135 degree direction clockwise with respect to an arbitrary direction. Is excellent. For this reason, for example, in a laminate obtained by laminating the film of the present invention and a metal foil, the metal foil has good spreadability, and when performing cold drawing (particularly deep drawing or stretch forming). In addition, breakage, delamination, pinholes and the like of the metal foil are effectively suppressed or prevented, and a highly reliable high quality product (molded product) can be obtained.
  • the polyamide-based film of the present invention is a very thin film having a thickness of, for example, 15 ⁇ m or less, it has excellent thickness uniformity and excellent balance of stress during elongation in the four directions.
  • stacked this film and metal foil can obtain the product reduced in size with high output by cold forming, and becomes advantageous also in cost.
  • a polyamide-based film having the above excellent characteristics can be produced efficiently and reliably.
  • a very thin film having a thickness of 15 ⁇ m or less can provide a film having excellent thickness uniformity.
  • stretching at comparatively low temperature as a result of maintaining the original characteristic of resin more effectively, the film and laminated body more suitable by cold forming can be provided.
  • FIG. 1 It is a schematic diagram which shows the outline
  • the polyamide film of the present invention is a polyamide film, (1) Each stress at 5% elongation by a uniaxial tensile test in four directions of 45 degrees, 90 degrees, and 135 degrees clockwise with respect to a specific direction from an arbitrary point on the film. The difference between the maximum value and the minimum value (A value) is 35 MPa or less, and (2) In the four directions, the difference (B value) between the maximum value and the minimum value of each stress at the time of 15% elongation by a uniaxial tensile test is 40 MPa or less. It is characterized by that. (A) Material and composition of the film of the present invention
  • the film of the present invention is a film mainly composed of polyamide resin.
  • the polyamide resin is a polymer formed by amide bonding of a plurality of monomers. Representative examples thereof include 6-nylon, 6,6-nylon, 6,10-nylon, 11-nylon, 12-nylon, poly (metaxylene adipamide), and the like.
  • 6-nylon / 6,6-nylon, 6-nylon / 6,10-nylon, 6-nylon / 11-nylon, 6-nylon / 12-nylon, etc. Combined may be used. Moreover, these may be mixed.
  • a) 6-nylon homopolymer, b) copolymer containing 6-nylon, or c) a mixture thereof is preferable.
  • the number average molecular weight of the polyamide resin is not particularly limited and can be changed according to the kind of the polyamide resin to be used. However, it is usually preferably about 10,000 to 40,000, particularly 15,000 to 25,000. By using a polyamide resin within such a range, it becomes easy to stretch even at a relatively low temperature. As a result, crystallization that may occur when stretching at a relatively high temperature, resulting in a decrease in cold formability, etc. It can be avoided reliably.
  • the content of the polyamide resin in the film of the present invention is usually 90 to 100% by mass, preferably 95 to 100% by mass, and more preferably 98 to 100% by mass. That is, a component other than the polyamide resin may be included as necessary within a range not impeding the effects of the present invention.
  • various additives such as pigments, antioxidants, ultraviolet absorbers, preservatives, antistatic agents, inorganic fine particles, as well as bending resistance pinhole improvers such as polyolefins, polyamide elastomers, polyester elastomers, etc. You may add 1 type, or 2 or more types.
  • a lubricant for imparting slip properties at least one of various inorganic lubricants and organic lubricants may be contained.
  • Examples of the method of adding these lubricants (particles) include a method of adding particles in a polyamide resin as a raw material, a method of adding them directly to an extruder, and the like. May be employed, or two or more methods may be used in combination.
  • the film of the present invention preferably has a biaxially oriented molecular orientation.
  • Such a film can be basically obtained by biaxial stretching.
  • a biaxially stretched film using a roll and a tenter is suitable.
  • the film of the present invention must satisfy the A value and the B value at the same time as an index indicating that the stress balance during elongation during secondary processing is very excellent.
  • the A value and the B value exceed the above ranges, the stress balance in all directions of the polyamide film is poor, and it becomes difficult to obtain uniform moldability.
  • uniform moldability cannot be obtained, for example, when cold-molding a laminate in which the film of the present invention and a metal foil are laminated, sufficient spreadability is not imparted to the metal foil (that is, the polyamide film is a metal foil). Therefore, the metal foil is likely to break, or problems such as delamination and pinholes are likely to occur.
  • the A value is usually 35 MPa or less, particularly 30 MPa or less, more preferably 25 MPa or less, and most preferably 20 MPa or less.
  • the lower limit value of the A value is not limited, but is usually about 15 MPa.
  • the B value is usually 40 MPa or less, particularly 38 MPa or less, more preferably 34 MPa or less, and most preferably 30 MPa or less.
  • the lower limit of the B value is not limited, but is usually about 20 MPa.
  • the stress in the four directions at the time of 5% elongation is not particularly limited, but in terms of the cold formability of the laminate, any of them is preferably in the range of 35 to 130 MPa, and in the range of 40 to 90 MPa. More preferably, it is most preferably in the range of 45 to 75 MPa.
  • the stress in the four directions at the time of 15% elongation is not particularly limited, but in terms of the cold formability of the laminate, any of them is preferably in the range of 55 to 145 MPa, and in the range of 60 to 130 MPa. More preferably, it is most preferably in the range of 65 to 115 MPa.
  • the stress in the four directions in the film of the present invention is measured as follows. First, after adjusting the humidity of the polyamide film at 23 ° C. ⁇ 50% RH for 2 hours, as shown in FIG. 5, the arbitrary point A on the film is the center point, and the reference direction (0 degree direction) of the film is arbitrary.
  • the measurement direction is 45 degrees (b), 90 degrees (c), and 135 degrees (d) clockwise from the reference direction (a), and from the center point A to each measurement direction.
  • a sample that is cut into a strip shape of 100 mm and 15 mm in a direction perpendicular to the measurement direction is used. For example, as shown in FIG.
  • the sample 41 is cut out in the range of 30 mm to 130 mm from the center point A (vertical 100 mm ⁇ horizontal 15 mm). Cut the sample in the same way for the other directions.
  • a tensile tester AG-1S manufactured by Shimadzu Corporation
  • the stress at 5% and 15% elongation was obtained at a tensile speed of 100 mm / min. Measure each.
  • said reference direction is not specifically limited, For example, MD in the extending process at the time of film manufacture can be made into a reference direction.
  • the polyamide film of the present invention satisfying the above characteristic values is obtained by a biaxial stretching method including a step in which at least one of the longitudinal direction and the transverse direction is stretched by a tenter.
  • a biaxial stretching method a simultaneous biaxial stretching method in which a longitudinal direction and a transverse direction are simultaneously performed, and a sequential biaxial stretching in which a longitudinal direction is performed and then a transverse direction is performed.
  • the vertical direction is exemplified as the previous step, but in the present invention, either the vertical direction or the horizontal direction may be the first step.
  • the film of the present invention is preferably obtained by a sequential biaxial stretching method from the standpoint of flexibility in setting stretching conditions. Accordingly, the film of the present invention is preferably obtained by sequential biaxial stretching including a step in which at least one of the longitudinal direction and the transverse direction is stretched by a tenter. In particular, the film of the present invention is desirably manufactured by the manufacturing method of the present invention described later.
  • the standard deviation value with respect to the average thickness in the eight directions shown below is usually used. It is preferably 0.200 or less, particularly preferably 0.180 or less, and further preferably 0.160 or less. When the standard deviation indicating the thickness accuracy is 0.200 or less, the variation in the thickness of the film surface is very small. For example, even when the thickness of the film is 15 ⁇ m or less, the film is bonded to the metal foil. When the laminated body is subjected to deep-drawing cold forming, defects such as delamination and pinholes do not occur, and good moldability can be obtained.
  • the thickness accuracy is low, and particularly when the film thickness is small, sufficient extensibility cannot be imparted to the metal foil when bonded to the metal foil, resulting in delamination. Or generation
  • the thickness accuracy evaluation method is performed as follows. After adjusting the humidity of the polyamide film at 23 ° C. ⁇ 50% RH for 2 hours, as shown in FIG. 6, after specifying the reference direction (0 degree direction) around the arbitrary point A on the film, the center point Reference direction (a) from A, 45 degree direction (b), 90 degree direction (c), 135 degree direction (d), 180 degree direction (e), 225 degree direction (f) clockwise relative to the reference direction A total of eight straight lines L1 to L8 each having a length of 100 mm are drawn in eight directions of 270 degrees (g) and 315 degrees (h).
  • FIG. 6 shows a state in which measurement points (10 points) when measuring L2 in the 45 degree direction are taken as an example. And the average value of the measured value of the data total 80 points
  • said reference direction is not specifically limited, For example, MD in the extending process at the time of film manufacture can be made into a reference direction.
  • the average thickness and standard deviation may be based on any one point of the polyamide film (point A), but in the polyamide film wound around the obtained film roll, It is more desirable that the average thickness and the standard deviation are within the above ranges at any of the following three points.
  • the three points are a) a position near the center of the winding width and half the winding amount, b) a position near the right end of the winding width and half the winding amount, and c) the winding width. It is a position near the left end of and near the end of the winding.
  • the average thickness of the film of the present invention is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, further preferably 15 ⁇ m or less, and most preferably 12 ⁇ m or less.
  • the film of the present invention is preferably a laminate to be bonded to a metal foil, and is preferably used for cold forming applications.
  • Biaxial stretching using a tenter as described below is performed under specific conditions. By performing under the satisfying stretching conditions, a biaxially stretched film having excellent thickness accuracy (thickness uniformity, etc.) and excellent stress balance at the time of stretching in the four directions can be obtained even for a thin film. be able to.
  • the lower limit of the thickness of the film is not particularly limited, but if the average thickness is less than 2 ⁇ m, impartability to the metal foil when bonded to the metal foil tends to be insufficient, and the moldability is poor. Usually, it may be about 2 ⁇ m.
  • the polyamide-based film of the present invention is a laminate that is bonded to a metal foil and is preferably used for cold forming applications.
  • the metal foil Sufficient spreadability can be imparted. Due to this effect, the moldability during cold forming (among other things, such as drawing (particularly deep drawing)) can be improved, the metal foil can be prevented from being broken, and defects such as delamination and pinholes can also occur. It can be suppressed or prevented.
  • the thickness of the polyamide film decreases, it becomes difficult to impart sufficient spreadability to the metal foil.
  • the stress at the time of stretching varies, and the thickness accuracy is low, so that the polyamide film or the metal foil is significantly broken by the pressing force at the time of cold forming.
  • the thinner the film the greater the variation in stress when stretched, and the greater the variation in thickness, and thus a higher degree of control is required.
  • the thickness is 15 ⁇ m or less, and the variation in stress at the time of elongation is small. It is difficult to manufacture a product with high accuracy.
  • Patent Documents 1 to 10 only a minimum of 15 ⁇ m thickness of polyamide-based film described as a specific example is disclosed.
  • the present invention by adopting a specific manufacturing method as described later, even if the thickness is particularly 15 ⁇ m or less, the stress balance at the time of elongation in the four directions is excellent, and the thickness It has succeeded in providing the polyamide-type film with high uniformity of.
  • a special polyamide-based film when a laminate laminated with a metal foil is used, for example, for an exterior body of a battery (for example, a lithium ion battery), for example, the number of electrodes, the capacity of an electrolyte, etc. can be increased. In addition, the battery itself can be reduced in size and cost.
  • the film of the present invention preferably has a boiling water shrinkage of MD: 2.0 to 5.0% and TD: 2.5 to 5.5%. : 2.0 to 4.0% and TD: 2.5 to 4.5% are more preferable.
  • the elastic modulus is preferably MD: 1.5 to 3.0% and TD: 1.5 to 2.5%. Among them, MD: 1.8 to 2.7% and TD: 1. It is more preferably 8 to 2.2%.
  • the film of the present invention In order to attach the film of the present invention to a metal foil and impart sufficient spreadability to the metal foil, it is preferable to have the boiling water shrinkage and the elastic modulus as described above. That is, when having the boiling water shrinkage and elastic modulus as described above, a high flexibility is imparted by the polyamide-based film, and when it is bonded to the metal foil, the metal foil is more effectively imparted with extensibility. be able to.
  • the boiling water shrinkage is less than 2.0%, the polyamide-based film is difficult to be deformed and lacks flexibility, so that breakage, delamination and the like are likely to occur during cold forming. Further, if the boiling water shrinkage rate exceeds 5.5%, the flexibility becomes too high, so that sufficient stretchability cannot be imparted, which may reduce the moldability.
  • the elastic modulus is less than 1.5%, the flexibility becomes too high, and the moldability may be deteriorated because sufficient extensibility cannot be imparted. Further, if the elastic modulus exceeds 3.0%, the flexibility becomes poor, so that there is a possibility that breakage, delamination, etc. may occur during cold forming.
  • the measurement of the elastic modulus in the present invention is performed as follows. After the humidity of the polyamide film was adjusted at 23 ° C. ⁇ 50% RH for 2 hours, the MD of the film was specified, the direction perpendicular to the MD was TD, and 300 mm in the measurement direction from any point (distance between marked lines 250 mm) Using a tensile tester (AG-IS manufactured by Shimadzu Corp.) with a 1 kN measurement load cell and a sample chuck attached to the film, cut into a 15 mm strip in the direction perpendicular to the measurement direction The measurement is performed at 25 mm / min, and the elastic modulus is calculated from the gradient of the load-elongation curve.
  • AG-IS manufactured by Shimadzu Corp.
  • the film of the present invention preferably has a relative viscosity (25 ° C.) of 2.9 to 3.1, more preferably 2.95 to 3.05.
  • a relative viscosity within this range, flexibility and strength can be more effectively imparted to the polyamide-based film, and sufficient extensibility can be imparted to the metal foil when bonded to the metal foil. it can.
  • the relative viscosity When the relative viscosity is less than 2.9, the strength of the film becomes poor, and it becomes difficult to impart sufficient extensibility to the metal foil when bonded to the metal foil. It may be difficult to form a film. On the other hand, if the relative viscosity exceeds 3.1, the flexibility of the film is reduced, and the film is easily broken during cold forming (when bonded to a metal foil). The pressure loss at the time increases and production costs may increase due to the need for extra extrusion energy.
  • the measurement of the relative viscosity in the present invention indicates a value obtained using an Ubbelohde viscometer for a sample solution obtained by dissolving 0.5 g of a stretched polyamide film in 50 ml of 96% sulfuric acid at 25 ° C.
  • Laminate containing the film of the present invention The film of the present invention can be used for various applications in the same manner as known or commercially available polyamide-based films.
  • the film of the present invention can be used as it is or after being surface-treated, and can also be used in the form of a laminate formed by laminating other layers.
  • the laminated body (laminated body of this invention) containing this invention film and the metal foil laminated
  • this invention film and metal foil may be laminated
  • an adhesive layer may or may not be interposed between the respective layers.
  • the film of the present invention can be used as it is, but it is particularly preferable to have a primer layer (anchor coat layer: AC layer) on at least one part of the film surface.
  • a primer layer anchor coat layer: AC layer
  • the adhesiveness between the polyamide film and the metal foil can be further improved by applying an adhesive to the film surface having the primer layer and bonding the metal foil together. Thereby, sufficient spreadability can be provided with metal foil. For this reason, in addition to the polyamide-based film or the metal foil becoming difficult to break, the occurrence of delamination, pinholes, and the like can be more effectively prevented.
  • a film including such a primer layer is also included in the polyamide-based film of the present invention. The details of the primer layer will be described in the following ⁇ Primer layer embodiment>.
  • the metal foil examples include metal foils (including alloy foils) containing various metal elements (aluminum, iron, copper, nickel, etc.), and pure aluminum foils or aluminum alloy foils are particularly preferably used.
  • the aluminum alloy foil preferably contains iron (aluminum-iron-based alloy, etc.), and other components are publicly known as defined by JIS, etc. as long as the moldability of the laminate is not impaired. Any component may be included as long as the content is within the range.
  • the thickness of the metal foil is not particularly limited, but is preferably 15 to 80 ⁇ m, more preferably 20 to 60 ⁇ m from the viewpoint of moldability and the like.
  • the sealant film constituting the laminate of the present invention it is preferable to employ a thermoplastic resin having heat sealing properties such as polyethylene, polypropylene, olefin copolymer, polyvinyl chloride and the like.
  • the thickness of the sealant film is not limited, but is usually preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • one or more other layers are laminated on the exterior side of the film of the present invention constituting the laminate (a surface different from the surface to be bonded to the metal foil) depending on the purpose of use. May be.
  • a polyester film is preferable. By laminating the polyester film, heat resistance, voltage resistance, chemical resistance and the like can be improved, and peel strength can also be increased.
  • Polyester is not particularly limited, and for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2, 6-naphthalate and the like are preferable. Among these, it is preferable to use PET from the viewpoint of cost and effect.
  • an adhesive layer can be interposed between the layers.
  • an adhesive layer such as a urethane adhesive layer or an acrylic adhesive layer between the polyamide film / metal foil and between the metal foil / sealant film.
  • the polyamide film of the present invention has a primer layer on at least one surface of the film surface
  • a metal foil is laminated on the primer layer surface. More specifically, it is preferable that a metal foil is laminated on the primer layer surface through an adhesive layer such as a urethane adhesive layer or an acrylic adhesive layer.
  • the laminate of the present invention includes the film of the present invention, it can be suitably used for cold forming (particularly deep drawing or stretch forming).
  • the draw molding is basically a method of molding a bottomed container having a shape such as a cylinder, a rectangular tube, or a cone from a single laminate. Such containers are generally characterized by no seams.
  • the container containing the laminated body of this invention also includes the container containing the laminated body of this invention.
  • molded using the laminated body of this invention is also included by this invention.
  • it is preferable that it is a container obtained by cold forming.
  • a container manufactured by drawing (drawing) or bulging (extension) as cold forming is preferable, and a container manufactured by pultrusion is particularly preferable.
  • the container according to the present invention is a method for producing a container from the laminate of the present invention, and preferably comprises a method for producing a container comprising a step of cold forming the laminate. Can do. Therefore, for example, a seamless container can be produced from the laminate of the present invention.
  • the cold forming method itself in this case is not limited, and can be performed according to a known method.
  • a method of molding the solid as it is without melting the resin contained in the laminate may be employed.
  • the molding temperature may be room temperature, but is preferably 50 ° C. or less, particularly 20 to 30 ° C.
  • drawing such as cylindrical drawing, rectangular drawing, irregular drawing, conical drawing, pyramid drawing, ball head drawing, etc.
  • the drawing process is classified into a shallow drawing process and a deep drawing process, but the laminate of the present invention can be applied particularly to a deep drawing process.
  • drawing processes can be carried out using a normal mold.
  • a press machine including a punch, a die, and a blank holder, a) a step of placing the laminate of the present invention between the die and a blank holder, and b) deformation into a container shape by pushing the punch into the laminate.
  • the drawing process can be performed by a method including a step of causing the drawing process.
  • the container obtained in this way can be highly reliable because defects such as metal foil breakage, delamination, and pinholes are effectively suppressed. For this reason, the container which concerns on this invention can be used for various uses including the packaging material of various industrial products.
  • a molded body by deep drawing is suitably used for an exterior body of a lithium ion battery, and a molded body by overhang molding is suitably used for a press-through pack or the like.
  • the primer layer in the polyamide-based film of the present invention preferably takes the following embodiment.
  • the thickness of the primer layer is not limited, it is usually preferably 0.01 to 0.10 ⁇ m, more preferably 0.02 to 0.09 ⁇ m.
  • the thickness of the primer layer is less than 0.01 ⁇ m, it becomes difficult to form a primer layer having a uniform thickness on the film. As a result, the effect of improving the adhesion between the polyamide film and the metal foil as described above is poor.
  • the thickness of the primer layer exceeds 0.10 ⁇ m, the effect of improving the adhesion between the polyamide film and the metal foil is saturated, which is disadvantageous in cost.
  • the primer layer for example, a layer containing various synthetic resins such as polyurethane resin and acrylic resin can be adopted.
  • a primer layer containing a polyurethane resin is preferable.
  • a polyurethane resin for example, an anionic water-dispersible polyurethane resin is preferably contained.
  • the primer layer containing this resin can be formed by applying an aqueous coating material containing the resin to the surface of the polyamide film.
  • the polyurethane resin is a polymer obtained, for example, by a reaction between a polyfunctional isocyanate and a hydroxyl group-containing compound. More specifically, polyfunctional isocyanates such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate, polymethylene polyphenylene polyisocyanate, or aliphatic polyisocyanates such as hexamethylene diisocyanate, xylene isocyanate, and polyether polyols, The urethane resin obtained by reaction with hydroxyl-containing compounds, such as polyester polyol, polyacrylate polyol, and polycarbonate polyol, can be illustrated.
  • polyfunctional isocyanates such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate, polymethylene polyphenylene polyisocyanate, or aliphatic polyisocyanates such as hexamethylene diisocyanate, xy
  • the anionic water-dispersible polyurethane resin used in the present invention is obtained by introducing an anionic functional group into a polyurethane resin.
  • the method for introducing an anionic functional group into the polyurethane resin is not particularly limited. For example, a) a method using a diol having an anionic functional group as a polyol component, and b) an anionic functional group as a chain extender. Examples include a method using a diol.
  • diol having an anionic functional group examples include glyceric acid, dioxymaleic acid, dioxyfumaric acid, tartaric acid, dimethylolpropionic acid, dimethylolbutanoic acid, 2,2-dimethylolvaleric acid, and 2,2-dimethylolpentanoic acid.
  • aliphatic carboxylic acids such as 4,4-di (hydroxyphenyl) valeric acid and 4,4-di (hydroxyphenyl) butyric acid
  • aromatic carboxylic acids such as 2,6-dioxybenzoic acid and the like can be mentioned.
  • a volatile base When dispersing an anionic polyurethane resin in water, it is generally preferable to use a volatile base.
  • the volatile base is not particularly limited, and a known volatile base can be used. More specifically, ammonia, methylamine, ethylamine, dimethylamine, diethylamine, triethylamine, morpholine, ethanolamine and the like are exemplified. Among these, triethylamine is more preferable in that the liquid stability of the water-dispersible polyurethane resin is good and the residual amount in the primer layer is small because the boiling point is relatively low.
  • a commercially available anionic water-dispersible polyurethane resin can be preferably used for forming the primer layer.
  • examples of such commercially available anionic water-dispersible polyurethane resins include “Hydran ADS-110”, “Hydran ADS-120”, “Hydran KU-400SF”, “Hydran HW-311”, and “Hydran” manufactured by DIC.
  • the polyamide film of the present invention it is preferable to contain a melamine resin in the primer layer for the purpose of improving the water resistance and heat resistance of the primer layer.
  • the content of the melamine resin is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the anionic water-dispersible polyurethane resin.
  • a typical example of a melamine resin is tri (alkoxymethyl) melamine.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Various melamine resins can be used alone or in combination of two or more.
  • the solid content concentration of the anionic water-dispersible polyurethane resin in the aqueous coating can be appropriately changed depending on the specifications of the coating device, drying / heating device, etc., but in the case of a too dilute solution, the drying process takes a long time. It is easy to cause problem. On the other hand, if the solid content concentration is too high, it is difficult to obtain a uniform coating agent, and this tends to cause problems in coating properties. From such a viewpoint, the solid content concentration of the anionic water-dispersible polyurethane resin in the aqueous coating material is preferably in the range of 3 to 30% by mass.
  • the water-based coating material includes, for example, an antifoaming agent, a surfactant and the like in order to improve the coating property when the aqueous coating material is applied to the film.
  • Additives may be added.
  • the surfactant is not particularly limited, but anionic surfactants such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, etc.
  • anionic surfactants such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, etc.
  • nonionic surfactants such as acetylene glycol can be mentioned.
  • the surfactant is preferably contained in the aqueous coating agent in an amount of 0.01 to 1% by mass. Moreover, it is preferable that it volatilizes by the heat processing in the manufacturing process of a polyamide-type film.
  • additives such as an antistatic agent and a slip agent can be added to the water-based coating material as necessary, as long as the adhesiveness is not affected.
  • the production method of the present invention is a method of producing a biaxially oriented polyamide film, (1) A sheet forming step of obtaining an unstretched sheet by forming a melt-kneaded product containing a polyamide resin into a sheet shape, (2) including a stretching step of obtaining a stretched film by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD, and (3) the following formulas a) and b); a) 0.85 ⁇ X / Y ⁇ 0.95 b) 8.5 ⁇ X ⁇ Y ⁇ 9.5 (However, X represents the draw ratio of MD and Y represents the draw ratio of TD.) Satisfy both It is characterized by that.
  • Sheet forming step an unstretched sheet is obtained by forming a melt-kneaded product containing a polyamide resin into a sheet.
  • polyamide resin various materials as described above can be used.
  • additives can also be contained in the melt-kneaded product.
  • the preparation of the melt-kneaded product itself may be performed according to a known method. For example, by feeding a raw material containing polyamide resin into an extruder equipped with a heating device and melting it by heating to a predetermined temperature, the molten kneaded product is extruded by a T-die and cooled and solidified by a casting drum or the like. An unstretched sheet that is a sheet-like molded body can be obtained.
  • the average thickness of the unstretched sheet is not particularly limited, but is generally about 15 to 250 ⁇ m, and preferably 50 to 235 ⁇ m. By setting within such a range, the stretching step can be carried out more efficiently.
  • a stretched film is obtained by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD.
  • At least one direction of MD and TD is obtained by sequential biaxial stretching including a step of stretching by a tenter. Thereby, a more uniform film thickness can be obtained.
  • the tenter itself is a device conventionally used for stretching a film, and is a device that widens in the longitudinal direction and / or the lateral direction while gripping both ends of an unstretched sheet. Even when a tenter is used, there are two methods of simultaneous biaxial stretching and sequential biaxial stretching. Simultaneous biaxial stretching using a tenter is a method in which MD and TD are biaxially stretched simultaneously by a tenter by stretching to MD while holding both ends of an unstretched film.
  • sequential biaxial stretching using a tenter is: 1) a method of stretching an MD by passing an unstretched sheet through a plurality of rolls having different rotational speeds, and then stretching the stretched film to TD by a tenter; ) There is a method of stretching an MD of an unstretched sheet with a tenter, and then stretching the stretched film to TD with a tenter.
  • the method of 1) above is particularly preferable in terms of physical properties and productivity of the resulting film. preferable.
  • the unstretched film is sequentially biaxially stretched by the steps as shown in FIG.
  • the unstretched sheet 13 is stretched in the MD (longitudinal direction) by passing through a plurality of rolls 21. Since these plural rolls have different rotational speeds, the unstretched sheet 13 is stretched in the MD due to the speed difference. That is, the unstretched sheet is stretched by passing it from the low-speed roll group to the high-speed roll group.
  • the number of rolls is five, but actually, other numbers may be used.
  • rolls having different functions can be installed in the form of a preheating roll, a stretching roll, and a cooling roll in order.
  • the number of rolls having these functions can also be set as appropriate.
  • the first stretched film 13 ′ that has passed the roll 21 is stretched to TD by being introduced into the tenter 22. More specifically, as shown in FIG. 3, the first stretched film 13 ′ introduced into the tenter 22 is held by a clip connected to a link device 34 that is fixed to the guide rail at both ends near the entrance. It passes through the preheating zone 31, the stretching zone 32, and the relaxation heat treatment zone 33 in the order of the flow direction. The first stretched film 13 ′ is heated to a certain temperature in the preheating zone 31 and then stretched to TD in the stretching zone 32. Thereafter, relaxation treatment is performed at a constant temperature in the relaxation heat treatment zone 33. In this way, the second stretched film 14 (present film) is obtained. Thereafter, the link device 34 fixed to the guide rail is removed from the second stretched film 14 near the exit of the tenter 22 and returned to the vicinity of the entrance of the tenter 22.
  • sequential biaxial stretching using a tenter is advantageous in terms of productivity, equipment and the like since MD is stretched by a roll, and is advantageous in controlling film thickness and the like because TD is stretched by a tenter.
  • the resulting polyamide film has a poor balance of stress in the four directions, making it difficult to obtain the film of the present invention.
  • the temperature condition in the stretching step for example, when performing the above-mentioned simultaneous biaxial stretching, it is preferable to stretch in a temperature range of 180 ° C. to 220 ° C.
  • MD stretching may be performed in a temperature range of 50 to 120 ° C. (especially 50 to 80 ° C., more preferably 50 to 70 ° C., and further 50 to 65 ° C.).
  • the TD stretching is preferably performed in a temperature range of 70 to 150 ° C. (especially 70 to 130 ° C., more preferably 70 to 120 ° C., and further 70 to 110 ° C.).
  • the film of the present invention can be produced more reliably.
  • These temperatures can be set and controlled while preheating, for example, in the roll 21 (preheating roll) shown in FIG. 2, the preheating zone 31 of the tenter shown in FIG.
  • the relaxation heat treatment is preferably performed at a relaxation rate of 2 to 5% in the temperature range of 180 to 230 ° C. These temperatures can be set and controlled in the relaxation heat treatment zone of the tenter shown in FIG.
  • Examples of means for setting the temperature range during stretching as described above include 1) a method of blowing hot air on the film surface, 2) a method of using a far infrared or near infrared heater, and 3) a method of combining them.
  • the heating method of the present invention preferably includes a method of blowing hot air.
  • a sequential biaxial stretching step in which MD is stretched by a roll and TD is stretched by a tenter can be suitably employed.
  • the film of the present invention having an average thickness of 15 ⁇ m or less can be obtained more reliably and efficiently.
  • the MD stretching temperature is preferably 50 to 70 ° C., more preferably 50 to 65 ° C., using a roll.
  • MD stretching is preferably performed in two or more stages.
  • the first stage draw ratio is 1.1 to 1.2
  • the second stage stretch ratio is 2.3 to 2.6. It can be appropriately set within the range of .53 to 3.12.
  • the temperature gradient in MD stretching is preferable to provide a temperature gradient in MD stretching.
  • the temperature difference from T2 is usually preferably 2 ° C. or higher, and more preferably 3 ° C. or higher.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film is preferably usually 1 to 5 seconds, more preferably 2 to 4 seconds. preferable.
  • TD Stretching TD stretching is performed by a tenter in which each zone is formed as shown in FIG.
  • the temperature of the preheating zone is preferably 60 to 70 ° C.
  • the temperature of the stretching zone is preferably in the temperature range of 70 to 130 ° C., more preferably in the temperature range of 75 to 120 ° C., and most preferably in the temperature range of 80 to 110 ° C. .
  • the temperature gradient (temperature T1 at the beginning (inlet) in the running direction of the film and the end (outlet)
  • the temperature difference from the temperature T2) is usually preferably 5 ° C. or higher, more preferably 8 ° C. or higher.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film in the stretching zone is usually preferably 1 to 5 seconds, particularly 2 to 4 seconds. It is more preferable.
  • the heat treatment temperature is preferably in the range of 180 to 230 ° C., more preferably in the range of 180 to 220 ° C., and most preferably in the range of 180 to 210 ° C.
  • the relaxation rate is usually preferably about 2 to 5%.
  • the polyamide-based film of the present invention having a primer layer on at least one surface of the film surface, it is preferable to carry out the same stretching method and stretching conditions as described above.
  • the coating amount of the aqueous coating agent is preferably adjusted so that the primer layer formed on the stretched film surface has a thickness of 0.01 to 0.10 ⁇ m.
  • a stretching method other than the above is not adopted as the stretching step from the viewpoint of maintaining the uniformity of thickness.
  • the unstretched sheet was manufactured by discharging in a sheet form, winding it around a metal drum whose temperature was adjusted to 20 ° C., cooling and winding up. At this time, the supply amount of the polyamide resin and the like were adjusted so that the thickness of the polyamide-based film obtained after stretching was 12 ⁇ m.
  • the obtained unstretched sheet was subjected to a stretching process by sequential biaxial stretching. More specifically, MD was stretched using a roll, and TD was stretched using a tenter.
  • the MD was stretched by passing the sheet through a plurality of rolls so that the total stretching ratio was 2.85 times.
  • the heating conditions were stretched along the film take-off direction by providing a temperature gradient such that the beginning (T1) of the running direction was 54 ° C. and the end (T2) was 57 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film was about 3 seconds.
  • TD stretching was performed using a tenter as shown in FIG.
  • the preheating zone preheating part
  • the stretching zone stretching portion
  • a temperature gradient was provided along the film take-up direction so that the beginning (T1) of the running direction was 74 ° C. and the end (T2) was 96 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film in the stretching zone was about 3 seconds.
  • the film that passed through the stretching zone was subjected to relaxation heat treatment at a temperature of 202 ° C. and a relaxation rate of 3% in a relaxation heat treatment zone (heat treatment section).
  • a biaxially stretched polyamide film (rolling amount 2000 m) was obtained by continuously producing 1000 m or more.
  • the obtained film was wound up into a roll.
  • Example 2 to 28 Comparative Examples 1 to 16
  • a polyamide film was obtained in the same manner as in Example 1, except that the production conditions and the target thickness of the stretched polyamide film were changed to those shown in Tables 1 to 3.
  • Using the obtained polyamide film a laminate was produced in the same manner as in Example 1. However, about Example 7 and Example 17, it changed as follows more specifically.
  • Example 7 In the laminate obtained in Example 1, a two-component polyurethane adhesive (TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.) was applied to the surface of the polyamide-based film on which the aluminum foil was not laminated. ⁇ 10 L) was applied so that the applied amount was 5 g / m 2, and then dried at 80 ° C. for 10 seconds. A PET film (Embret PET-12 thickness 12 ⁇ m manufactured by Unitika Co., Ltd.) was bonded to the adhesive-coated surface to produce a laminate (PET film / polyamide film / aluminum foil / sealant film).
  • TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.
  • each draw ratio is a ratio (times) based on 1.
  • the unit of each heat treatment temperature is “° C.”
  • the unit of relaxation rate is “%”
  • the target thickness is “ ⁇ m”.
  • Test example 1 The properties of the polyamide films and laminates obtained in Examples 1 to 28 and Comparative Examples 1 to 16 were evaluated. The evaluation results are shown in Tables 4 to 9. In addition, the measurement method and evaluation method of various physical properties were performed as follows.
  • Boiling water shrinkage rate, elastic modulus, and relative viscosity of the polyamide film The boiling water shrinkage rate, elastic modulus, and relative viscosity of the polyamide film were measured by the methods described above.
  • a sample film used for the measurement in the polyamide-based film wound around the obtained film roll, a sample collected at a position near the center of the winding width and half of the winding amount was used. .
  • the obtained laminate was used at high temperature and high pressure cooking sterilizer RCS-60SPXTG (manufactured by Nisaka Manufacturing Co., Ltd.) at 120 ° C for 30 minutes. After the treatment at 1.8 kg / cm 2 , the same Erichsen test as in 1) was performed. At this time, in the examples, the steel ball punch was pressed to a position where the Erichsen value was 8 mm, and in the comparative example, the steel ball punch was pressed to a position where the Eriksen value was 5 mm. At this time, the state of occurrence of delamination and the state of occurrence of breakage of the polyamide film or metal foil constituting the laminate were visually confirmed.
  • the unit of average thickness is “ ⁇ m”
  • the unit of primer layer thickness is “ ⁇ m”
  • the unit of stress is “MPa”
  • the unit of boiling water shrinkage is “%”
  • the modulus of elasticity is The unit is “%”
  • the drawing depth unit is “mm”.
  • the obtained unstretched sheet was subjected to a stretching process by sequential biaxial stretching. More specifically, after the MD of the sheet was stretched using a roll, the TD was stretched by a method of stretching using a tenter.
  • the MD was stretched by passing the sheet through a plurality of stretching rolls so that the total stretching ratio was 2.85 times.
  • the heating conditions were stretched along a film take-off direction by providing a temperature gradient such that the beginning (T1) of the running direction was 58 ° C. and the end (T2) was 61 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film was about 3 seconds.
  • a polyurethane water dispersion was coated on one side with a gravure coater so that the coat thickness after stretching was 0.03 to 0.08 ⁇ m. Thereafter, TD was stretched.
  • TD stretching was performed using a tenter as shown in FIG.
  • a preheating zone (preheating portion) temperature 70 ° C.
  • the film was stretched 3.2 times to TD in the stretching zone.
  • a temperature gradient was provided along the film take-up direction so that the beginning (T1) of the running direction was 78 ° C. and the end (T2) was 100 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film in the stretching zone was about 3 seconds.
  • the film that passed through the stretching zone was subjected to relaxation heat treatment in a relaxation heat treatment zone (heat treatment part) at a temperature of 202 ° C. and a relaxation rate of 3%.
  • a relaxation heat treatment zone heat treatment part
  • surface was obtained by manufacturing continuously 1000 m or more.
  • the obtained film was wound up into a roll.
  • Laminate Example 1 (2) Production of Laminate Example 1 except that the biaxially stretched polyamide film obtained in (1) above was used to laminate an aluminum foil on the primer layer surface using a two-component polyurethane adhesive. In the same manner, a laminate (polyamide film / aluminum foil / sealant film) was produced.
  • Example 30 to 59, Comparative Examples 17 to 36 A polyamide film was obtained in the same manner as in Example 29 except that the production conditions and the target thickness of the polyamide film after stretching were changed to those shown in Tables 10 to 12. Using the obtained polyamide film, a laminate was produced in the same manner as in Example 29. However, about Example 35, Example 43, and Example 51, it changed as follows more specifically.
  • Example 35 In the laminate obtained in Example 29, a two-component polyurethane adhesive (TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.) was applied to the surface of the polyamide film on which the aluminum foil was not laminated. ⁇ 10 L) was applied so that the applied amount was 5 g / m 2, and then dried at 80 ° C. for 10 seconds. A PET film (Embret PET-12 thickness 12 ⁇ m manufactured by Unitika Co., Ltd.) was bonded to the adhesive-coated surface to prepare a laminate (PET film / polyamide film / aluminum foil / sealant film).
  • TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.
  • Example 43 In the laminate obtained in Example 36, the two-component polyurethane adhesive (TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.) was applied to the surface of the polyamide-based film on which the aluminum foil was not laminated. ⁇ 10 L) was applied so that the applied amount was 5 g / m 2, and then dried at 80 ° C. for 10 seconds. A PET film (Embret PET-12 thickness 12 ⁇ m manufactured by Unitika Co., Ltd.) was bonded to the adhesive-coated surface to prepare a laminate (PET film / polyamide film / aluminum foil / sealant film).
  • TM-K55 / CAT manufactured by Toyo Morton Co., Ltd.
  • each draw ratio indicates a ratio (times) based on 1.
  • the unit of each heat treatment temperature is “° C.”
  • the unit of relaxation rate is “%”
  • the target thickness is “ ⁇ m”.
  • Test example 2 The properties of the polyamide films and laminates obtained in Examples 29 to 59 and Comparative Examples 17 to 36 were evaluated. The evaluation results are shown in Tables 13 to 18. Various physical properties were measured and evaluated in the same manner as in Test Example 1.
  • the average thickness unit is “ ⁇ m”
  • the primer layer thickness unit is “ ⁇ m”
  • the stress unit is “MPa”
  • the boiling water shrinkage unit is “%”
  • the modulus of elasticity is The unit is “%”
  • the unit of the drawing depth is “mm”.
  • the obtained polyamide-based film is oriented in the 0 degree direction, 45 degree direction, 90 degree direction, and 135 degree direction in the uniaxial tensile test.
  • the difference between the maximum value and the minimum value of the stress at 5% elongation was 35 MPa or less, and the difference between the maximum value and the minimum value at 15% elongation was 40 MPa or less.
  • the laminated body obtained using these polyamide-type films had a high Erichsen value, and has a uniform extensibility to all directions when cold-molding. That is, it can be seen that the polyamide-based films of these examples have excellent moldability without causing the aluminum foil to break, delamination, pinholes, or the like.
  • polyamide-based films obtained in Examples 29 to 59 have a primer layer containing an anionic water-dispersible polyurethane resin on one side, laminates using these polyamide-based films are: It turns out that it is excellent also in heat-and-moisture resistance.
  • Comparative Examples 17 to 36 since the draw ratio of the polyamide film did not particularly satisfy the predetermined range, the A in the four directions including the 0 degree direction, the 45 degree direction, the 90 degree direction, and the 135 degree direction was used. The values and B values do not satisfy the requirements of the present invention. For this reason, the laminates obtained using the polyamide-based films of these comparative examples have low Erichsen values, and cannot be uniformly stretched in all directions when cold-molded. It turns out that it is inferior to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

【課題】厚みの均一性に優れるとともに、0度方向、45度方向、90度方向及び135度方向からなる4方向における物性のバラツキが比較的小さなポリアミド系フィルム及びその製造方法を提供する。 【解決手段】ポリアミド系フィルムであって、(1)前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であり、かつ、(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下である、ことを特徴とするポリアミド系フィルムに係る。

Description

ポリアミド系フィルム及びその製造方法
 本発明は、新規なポリアミド系フィルム及びその製造方法に関する。さらに、本発明は、前記ポリアミド系フィルムを含む積層体及び容器に関する。
 各種の樹脂フィルムは、さまざまな加工を施すことによって包装体等の各種の製品とされている。例えば、薬剤(錠剤)等の包装体(プレススルーパック)には塩化ビニルフィルムが使用されている。また例えば、防湿性が要求される内容物を包装する場合にはポリプロピレンフィルムが使用されている。近年では、内容物の品質保持の観点からより優れたガスバリア性又は防湿性を付与することを目的として、樹脂フィルムに金属箔を積層してなる積層体が使用されている。例えば、基材層(樹脂フィルム)/金属箔層(アルミニウム箔)/シーラント層から構成される積層体が知られている。
 工業分野においては、リチウムイオン電池の外装材は、従来より金属缶タイプが主流であるが、形状の自由度の低さ、軽量化の困難さ等の欠点が指摘されている。このため、基材層/金属箔層/シーラント層からなる積層体、あるいは基材層/基材層/金属箔層/シーラント層からなる積層体を外装体として用いることが提案されている。このような積層体は、金属缶と比較して柔軟で形状の自由度が高く、さらに薄膜化による軽量化が可能であり、かつ、小型化が容易であることから、広く用いられるようになっている。
 上記用途で使用される積層体にはさまざまな性能が要求されており、特に防湿性は非常に重要な要素となる。ところが、防湿性を付与するアルミニウム箔等の金属箔は単体では延展性に乏しく、成型性に劣る。このため、基材層を構成する樹脂フィルムとしてポリアミド系フィルムを用いることにより延展性を付与し、成型性を高めている。
 この場合の成型性とは、特にフィルムを冷間成型(冷間加工)する際の成型性である。すなわち、フィルムを成型することにより製品を製造する際、その成型条件として、a)樹脂を加熱下で溶融させて成型する熱間成型及びb)樹脂を溶融させることなく、固体のまま成型する冷間成型があるが、上記用途では冷間成型(特に絞り加工、張り出し加工)における成型性が求められる。冷間成型は、加熱工程がないので生産速度・コスト面で優れることに加え、樹脂本来の特徴を引き出せるという点で熱間成型よりも有利な成型方法である。このため、ポリアミド系フィルムとしても、冷間成型に適したフィルムの開発が進められている。
 このようなポリアミド系フィルムとしては、延伸加工されたポリアミド系フィルムが知られている(例えば特許文献1~2)。しかし、これらのポリアミド系フィルムは、チューブラー法で延伸することにより製造されたものである。すなわち、生産性が低いだけでなく、得られる延伸フィルムは厚みの均一性、寸法安定性等の点でいずれも十分に満足できるものではない。特に、フィルムの厚みにムラがある場合、そのフィルムと金属箔との積層体を冷間成型により加工しようとすると、金属箔の破断、ピンホール等の致命的な欠陥が生じるおそれがある。
 これに対し、テンター法で延伸されたポリアミド系フィルムも提案されている(例えば特許文献3~10)。テンター法は、チューブラー法に比べて生産性、寸法安定性等という点で有利である。
特許第5487485号 特許第5226942号 特許第5467387号 特開2011-162702号 特開2011-255931号 特開2013-189614号 特許第5226941号 特開2013-22773号 国際公開WO2014/084248号 特許第3671978号
 しかしながら、テンター法により延伸されたポリアミド系フィルムにおいても、フィルムの各方向において物性のバラツキ(異方性)がなお存在する。このため、冷間成型(特に深絞り成型)を行う際の成型性においては十分に満足できる性能を有しているとはいえない。
 ポリアミド系フィルム14は、図1に示すような工程で製造される。まず、原料11が溶融混練工程11aで溶融されることにより溶融混練物12が調製される。溶融混練物12を成形工程12aによりシート状に成形して未延伸シート13が得られる。次いで、未延伸シート13を延伸工程13aで二軸延伸されることによってポリアミド系フィルム14が得られる。さらに、この延伸されたポリアミド系フィルム14は、例えば金属箔層15とシーラントフィルム16とを順に貼り合わせる積層工程14aを経て積層体17を作製した後、二次加工として冷間成型工程15aにおいて積層体17が所定の形状に加工されることにより各種の製品18(例えば容器等)となる。
 このような延伸されたポリアミド系フィルム14において、その平面における各方向における物性のバラツキを軽減することが望ましいが、少なくとも90度ごとの4方向(任意の方向を基準(0度)として、その方向に対して時計回りで45度、90度及び135度の合計4方向)における物性のバラツキを減らすことが好ましい。例えば、二軸延伸されたポリアミド系フィルムでは、図4に示すように、任意の点Aを中心とし、二軸延伸時におけるMD(フィルムの流れ方向)を基準方向(0度方向)とすれば、(a)基準方向(0度方向)、(b)MDに対して時計回りに45度の方向(以下「45度方向」という。)、(c)MDに対して時計回りに90度の方向(TD:フィルムの流れ方向に対して直角方向)(以下「90度方向」という。)及び(d)MDに対して時計回りに135度の方向(以下「135度方向」という。)の4方向の物性のバラツキをなくすことが望ましい。
 延伸されたポリアミド系フィルム14を含む積層体17を冷間成型工程15aに供する場合、ポリアミド系フィルム14が全方向へ引き伸ばされるため、ポリアミド系フィルム14における前記4方向の物性にバラツキがある場合、冷間成型時に全方向へ均一に伸ばすことが困難となる。すなわち、伸びやすい方向と伸びにくい方向とが存在することで、金属箔が破断したり、デラミネーション又はピンホールが発生する。このような問題が起こると、包装体等としての機能が果たせなくなり、被包装体(内容物)の損傷等につながるおそれがある。このため、各方向における物性のバラツキをできるだけ低減することが必要である。
 この場合、冷間成型時の成型性に影響を与える物性の1つとしてフィルムの厚みがある。フィルムの厚みにバラツキがあるポリアミド系フィルムを含む積層体を冷間成型する場合は、相対的に薄い部分が破れてピンホールが生じたり、デラミネーションを引き起こすおそれが高くなる。このため、冷間成型に用いられるポリアミド系フィルムは、フィルム全体にわたって厚みを均一に制御することも必要不可欠である。
 ここに、ポリアミド系フィルムの厚みの均一性については、チューブラー法よりもテンター法で延伸された場合の方がほうが優れるものの、上記の特許文献3~10により得られたポリアミド系フィルムの厚み精度は十分に満足できるものではない。つまり、冷間成型時には上記したように縦横斜めの4方向に均一に伸ばすことが必要であるため、冷間成型に耐えられるだけの十分な厚みの均一性が必要である。とりわけ、フィルム厚みが薄くなればなるほど(特に厚み15μm以下、)、厚みの均一性が成型性へ与える影響はより顕著になる。
 一般に、フィルムの厚みの均一性はその厚みが厚いほど確保しやすいので、厚みの均一性を確保するために比較的厚めに設計するということも考えられる。ところが、近年において、冷間成型用に使用されるポリアミド系フィルム及びその積層体は、リチウムイオン電池の外装材を中心に広く使用されるようになっており、電池のさらなる高出力化、小型化、コスト削減の要請等に伴い、ポリアミド系フィルムの厚みをより薄くすることが求められている。しかし、厚みを薄くすれば、それだけ厚みの均一性を確保することが困難となる。
 このように、より薄くても、厚みの均一性に優れるとともに、前記4方向における物性のバラツキが比較的小さなポリアミド系フィルムの開発が切望されているものの、このようなフィルムは未だ開発されるに至っていないのが現状である。
 従って、本発明の主な目的は、厚みの均一性に優れるとともに、前記4方向における物性のバラツキが効果的に抑えられたポリアミド系フィルム及びその製造方法を提供することにある。
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の製法を採用することによって特異な物性を有するポリアミド系フィルムが得られるという知見に基づいて上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記のポリアミド系フィルム及びその製造方法に係る。
1. ポリアミド系フィルムであって、
(1)前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であり、かつ、
(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下である、
ことを特徴とするポリアミド系フィルム。
2. 前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度、135度、180度、225度、270度及び315度の8方向の平均厚みに対する標準偏差値が0.200以下である、前記項1に記載のポリアミド系フィルム。
3. 平均厚みが15μm以下である、前記項1に記載のポリアミド系フィルム。
4. 沸水収縮率がMD:2.0~5.0%及びTD:2.5~5.5%、弾性率がMD:1.5~3.0%及びTD:1.5~2.5%である、前記項1に記載のポリアミド系フィルム。
5. 相対粘度が2.9~3.1である、前記項1に記載のポリアミド系フィルム。
6. フィルム表面の少なくとも片面にプライマー層を有する、前記項1に記載のポリアミド系フィルム。
7. 前記項1に記載のポリアミド系フィルム及びそのフィルム上に積層された金属箔を含む積層体。
8. 前記項6に記載のポリアミド系フィルム及びそのフィルム上のプライマー層上に積層された金属箔を含む積層体。
9. 前記項7又は8に記載の積層体を含む容器。
10. ポリアミド系フィルムを製造する方法であって、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
(2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る延伸工程
を含み、かつ、
(3)下記式a)及びb);
   a)0.85≦X/Y≦0.95
   b)8.5≦X×Y≦9.5
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
  の両方を満たす、
ことを特徴とするポリアミド系フィルムの製造方法。
11. 延伸工程が逐次二軸延伸であり、
(2-1)50~120℃の温度下で前記未延伸シートをMDに延伸することによって第1延伸フィルムを得る第1延伸工程及び
(2-2)70~150℃の温度下で前記第1延伸フィルムをTDに延伸することによって第2延伸フィルムを得る第2延伸工程
を含む、前記項10に記載の製造方法。
12. 第1延伸工程がロールを用いる延伸であり、かつ、第2延伸工程がテンターを用いる延伸である、前記項11に記載の製造方法。
13. 第2延伸フィルムをさらに180~230℃の温度下で弛緩熱処理を行う、前記項11に記載の製造方法。
13. 前記項10に記載の製造方法によって得られるポリアミド系フィルム。
14. 冷間成型のために用いられる、前記項1に記載のポリアミド系フィルム。
15. 冷間成型が深絞り加工を含む、前記項14に記載のポリアミド系フィルム。
16. 前記項7又は8に記載の積層体を冷間成型することによって得られる容器。
17. 前記項7又は8に記載の積層体から容器を製造する方法であって、前記積層体を冷間成型する工程を含むことを特徴とする容器の製造方法。
 本発明のポリアミド系フィルムは、厚みの均一性に優れるとともに、任意の方向を基準として時計回りに0度方向、45度方向、90度方向及び135度方向からなる4方向における伸長時の応力バランスに優れている。このため、例えば本発明のフィルムと金属箔とを積層した積層体は、金属箔が良好な延展性を有するものとなり、冷間成型にて絞り成型(特に深絞り成型又は張り出し成型)を行う際に、金属箔の破断、デラミネーション、ピンホール等が効果的に抑制ないしは防止されており、信頼性の高い高品質の製品(成形体)を得ることが可能となる。
 特に、本発明のポリアミド系フィルムは、例えば厚みが15μm以下という極めて薄いものであっても、厚みの均一性に優れ、前記4方向における伸長時応力のバランスに優れている。これにより、このフィルムと金属箔と積層した積層体は、冷間成型にてより高出力で小型化した製品を得ることが可能となり、コスト的にも有利になる。
 また、本発明の製造方法によれば、上記のような優れた特性を有するポリアミド系フィルムを効率的にかつ確実に製造することができる。特に、厚みが15μm以下という極めて薄いフィルムであっても、厚みの均一性に優れたフィルムを提供することができる。しかも、比較的低い温度で延伸する場合には、樹脂本来の特性をより効果的に維持できる結果、冷間成型によりいっそう適したフィルム及び積層体を提供することができる。
本発明のポリアミド系フィルムの製造工程及び冷間加工工程の概要を示す模式図である。 本発明の製造方法に係る逐次二軸延伸により未延伸シートが延伸される工程を示す模式図である。 テンターによる延伸工程を図2のa方向からみた状態を示す図である。 フィルムにおける応力を測定する方向を示す図である。 フィルムにおける応力を測定するための試料を示す図である。 フィルムにおける平均厚みを測定する方法を示す図である。
1.ポリアミド系フィルム
 本発明のポリアミド系フィルム(本発明フィルム)は、ポリアミド系フィルムであって、
(1)前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差(A値)が35MPa以下であり、かつ、
(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差(B値)が40MPa以下である、
ことを特徴とする。
(A)本発明フィルムの材質・組成 
 本発明フィルムは、ポリアミド樹脂を主成分とするフィルムである。ポリアミド樹脂は、複数のモノマーがアミド結合して形成されたポリマーである。その代表的なものとしては、例えば6-ナイロン、6,6-ナイロン、6,10-ナイロン、11-ナイロン、12-ナイロン、ポリ(メタキシレンアジパミド)等が挙げられる。また、その他にも、例えば6-ナイロン/6,6-ナイロン、6-ナイロン/6,10-ナイロン、6-ナイロン/11-ナイロン、6-ナイロン/12-ナイロン等の2元以上の共重合体でも良い。また、これらが混合されたものであっても良い。上記の中でも、冷間成型性、強度、コスト等の観点から、a)6-ナイロンのホモポリマー、b)6-ナイロンを含むコポリマー又はc)これらの混合物が好ましい。
 ポリアミド樹脂の数平均分子量は、特に限定されず、用いるポリアミド樹脂の種類等に応じて変更できるが、通常10000~40000程度、特に15000~25000とすることが望ましい。このような範囲内のポリアミド樹脂を用いることにより、比較的低温下でも延伸しやすくなる結果、比較的高い温度下で延伸する場合に生じ得る結晶化及びそれによる冷間成型性の低下等をより確実に回避することができる。
 本発明フィルム中におけるポリアミド樹脂の含有量は、通常は90~100質量%であり、好ましくは95~100質量%であり、より好ましくは98~100質量%である。すなわち、本発明の効果を妨げない範囲内で、必要に応じてポリアミド樹脂以外の成分が含まれていても良い。例えば、ポリオレフィン類、ポリアミドエラストマー類、ポリエステルエラストマー類等の耐屈曲ピンホール性改良剤のほか、顔料、酸化防止剤、紫外線吸収剤、防腐剤、帯電防止剤、無機微粒子等の各種の添加剤を1種あるいは2種以上を添加しても良い。また、スリップ性を付与するための滑剤として、各種の無機系滑剤及び有機系滑剤の少なくとも1種が含まれていても良い。これら滑剤(粒子)を添加する方法としては、原料とするポリアミド樹脂中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれかの一方の方法を採用しても良く、2つ以上の方法を併用しても良い。
(B)本発明フィルムの物性
 本発明フィルムは、好ましくは分子配向が二軸配向したものである。このようなフィルムは、基本的には二軸延伸によって得ることができる。特に、ロール及びテンターを用いて二軸延伸されたフィルムが好適である。
(B-1)応力特性
 本発明フィルムは、二次加工時における伸長時の応力バランスが非常に優れていることを示す指標として、前記A値及びB値を同時に満足することを必須とする。前記A値及びB値が上記範囲を超えるものとなると、ポリアミド系フィルムの全方向での応力バランスが悪く、均一な成型性を得ることが困難となる。均一な成型性が得られない場合、例えば本発明フィルムと金属箔とを積層した積層体を冷間成型する場合において、金属箔に十分な延展性が付与されない(すなわち、ポリアミド系フィルムが金属箔に追従しにくくなる)ため、金属箔の破断が発生したり、あるいはデラミネーション、ピンホール等の不具合が発生しやすくなる。
 前記A値は、通常は35MPa以下であるが、特に30MPa以下、さらには25MPa以下であることが好ましく、20MPa以下であることが最も好ましい。なお、前記A値の下限値は限定的ではないが、通常は15MPa程度である。
 前記B値は、通常は40MPa以下であるが、特に38MPa以下、さらには34MPa以下であることが好ましく、30MPa以下であることが最も好ましい。なお、前記B値の下限値は限定的ではないが、通常は20MPa程度である。
 また、5%伸長時における前記4方向の応力は、特に限定されないが、積層体の冷間成型性という点において、いずれも35~130MPaの範囲内であることが好ましく、40~90MPaの範囲内であることがより好ましく、中でも45~75MPaの範囲内であることが最も好ましい。
 15%伸長時における前記4方向の応力は、特に限定されないが、積層体の冷間成型性という点において、いずれも55~145MPaの範囲内であることが好ましく、60~130MPaの範囲内であることがより好ましく、中でも65~115MPaの範囲内であることが最も好ましい。
 本発明フィルムにおいて、5%および15%伸長時における前記4方向の応力が上記範囲を満たさない場合、十分な冷間成型性が得られないことがある。
 本発明フィルムにおける前記4方向の応力は、次のように測定する。まず、ポリアミド系フィルムを23℃×50%RHで2時間調湿した後、図5に示すように、フィルム上の任意の点Aを中心点とし、フィルムの基準方向(0度方向)を任意で特定し、その基準方向(a)から時計回りに45度方向(b)、90度方向(c)及び135度方向(d)の各方向を測定方向とし、中心点Aから各測定方向に100mm、かつ、測定方向に対して垂直方向に15mmの短冊状に裁断したものを試料とする。例えば、図5に示すように、0度方向では中心点Aから30mm~130mmの範囲で試料41(縦100mm×横15mm)のように切り取る。他の方向についても同様に試料を切り取る。これらの試料について、50N測定用のロードセルとサンプルチャックとを取り付けた引張試験機(島津製作所社製AG-1S)を用い、引張速度100mm/minにて、5%及び15%伸長時の応力をそれぞれ測定する。なお、上記の基準方向は、特に限定的でなく、例えばフィルム製造時の延伸工程におけるMDを基準方向とすることができる。
 上記のような特性値を満足する本発明のポリアミド系フィルムは、縦方向及び横方向の少なくとも一方向がテンターにより延伸する工程を含む二軸延伸方法より得られるものであることが好ましい。
 一般に、二軸延伸方法としては、縦方向と横方向の延伸工程を同時に実施する同時二軸延伸方法と、縦方向の延伸工程を実施した後、横方向の延伸工程を実施する逐次二軸延伸方法がある。なお、前記の説明では、縦方向が先の工程として例示されているが、本発明では縦方向及び横方向のいずれが先であっても良い。
 本発明フィルムは、延伸条件設定の自由度等の見地より、逐次二軸延伸方法により得られるものであることが好ましい。従って、本発明フィルムは、縦方向及び横方向の少なくとも一方向がテンターにより延伸される工程を含む逐次二軸延伸により得られるものが好ましい。特に、本発明フィルムは、後記に示す本発明の製造方法によって製造されることが望ましい。
(B-2)平均厚み及び厚み精度
 本発明フィルムは、厚み精度(厚みの均一性)が非常に高いものであることを示す指標として、後記に示す8方向の平均厚みに対する標準偏差値が通常0.200以下であり、特に0.180以下であることが好ましく、さらには0.160以下であることがより好ましい。上記の厚み精度を示す標準偏差が0.200以下である場合、フィルム表面の厚みのバラツキが非常に小さいものとなり、例えばフィルムの厚みが15μm以下の場合であっても、金属箔と貼り合わせた積層体とし、深絞り冷間成型を行った際にデラミネーション、ピンホール等の不具合が発生せず、良好な成型性を得ることができる。標準偏差が0.200を超える場合、厚み精度が低いため、特にフィルムの厚みが小さい場合、金属箔と貼り合わせた際に、金属箔に十分な延展性を付与することができず、デラミネーション又はピンホールの発生が顕著となり、良好な成型性が得られないことがある。
 上記厚み精度の評価方法は、次のようにして行う。ポリアミド系フィルムを23℃×50%RHで2時間調湿した後、図6に示すように、フィルム上の任意の点Aを中心とし、基準方向(0度方向)を特定した後、中心点Aから基準方向(a)、基準方向に対して時計回りに45度方向(b)、90度方向(c)、135度方向(d)、180度方向(e)、225度方向(f)、270度方向(g)及び315度方向(h)の8方向へそれぞれ100mmの直線L1~L8の合計8本引く。それぞれの直線上において、中心点から10mm間隔で厚みを長さゲージ 「HEIDENHAIN-METRO MT1287」(ハイデンハイン社製)により測定する(10点測定する)。図6では、一例として、45度方向のL2を測定する場合の測定点(10点)をとった状態を示す。そして、全部の直線において測定して得られたデータ合計80点の測定値の平均値を算出し、これを平均厚みとし、平均厚みに対する標準偏差値を算出するものである。なお、上記の基準方向は、特に限定的でなく、例えばフィルム製造時の延伸工程におけるMDを基準方向とすることができる。
 本発明において、平均厚み及び標準偏差は、ポリアミド系フィルムのいずれかの一箇所の点(点A)を基準とすれば良いが、特に得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、下記の3点のいずれにおいても上記範囲内の平均厚み及び標準偏差であることがより望ましい。3点としては、a)巻幅の中心付近であって、かつ、巻量の半分にあたる位置、b)巻幅の右端付近であって、かつ、巻量の半分にあたる位置、及びc)巻幅の左端付近であって、かつ、巻終わり付近の位置である。
 また、本発明フィルムの平均厚みは、30μm以下であることが好ましく、中でも25μm以下であることが好ましく、さらには15μm以下であることが好ましく、12μm以下であることが最も好ましい。
 本発明フィルムは、金属箔と貼り合せる積層体とすることが好適であり、冷間成型用途に用いることが好適なものであるが、後述するようなテンターを用いる二軸延伸を特定の条件を満足する延伸条件で行うことにより、厚みの小さいフィルムであっても、厚み精度(厚みの均一性等)に優れ、かつ、前記4方向における伸長時の応力バランスに優れた二軸延伸フィルムを得ることができる。
 フィルムの平均厚みが30μmを超える場合は、ポリアミド系フィルム自身の成型性が低下し、小型の電池外装材に用いることが困難な場合があり、またコスト面でも不利となるおそれがある。一方、フィルムの厚みの下限は特に限定するものではないが、平均厚みが2μm未満では、金属箔と貼り合わせた際における金属箔への延展性付与が不十分となりやすく、成型性に劣るものとなるおそれがあるため、通常は2μm程度とすれば良い。
 本発明のポリアミド系フィルムは、金属箔と貼り合わせた積層体とし、冷間成型用途に用いることが好適なものであるが、上記特性を満足する本発明のポリアミド系フィルムを用いると、金属箔に十分な延展性を付与することができる。この効果により、冷間成型時(この中でも絞り成型(特に深絞り成型)時等における成型性が向上し、金属箔の破断を防止することができ、デラミネーション、ピンホール等の不具合の発生も抑制ないしは防止することができる。
 ポリアミド系フィルムの厚みは、小さくなるほど金属箔に十分な延展性を付与することが困難となる。特に、20μm以下の極めて薄いフィルムでは、伸長時の応力にバラツキがあったり、厚み精度が低いので、冷間成型時の押し込み力によってポリアミド系フィルム又は金属箔の破断が顕著となる。つまり、薄いフィルムほど伸長時の応力のバラツキが大きくなり、厚みのバラツキも大きくなる傾向にあることから、より高度な制御が要求される。
 この場合において、ポリアミド系フィルムを製造する一般的な方法であるチューブラー法あるいはテンター法を用いる従来の製造方法では、15μm以下の厚みであって、なおかつ、伸長時の応力のバラツキが小さく、厚み精度が高いものを製造することは困難である。このことは、例えば特許文献1~10のいずれにおいても、具体的な実施例として記載されているポリアミド系フィルムは、最少で15μmの厚みのものしか開示されていないことからも明らかである。
 これに対し、本発明では、後記に示すような特定の製造方法を採用することにより、特に厚みが15μm以下のものであっても、上記4方向における伸長時の応力バランスに優れ、かつ、厚みの均一性が高いポリアミド系フィルムを提供することに成功したものである。このような特殊なポリアミド系フィルムが提供できる結果、金属箔と積層した積層体を例えば電池(例えばリチウムイオン電池)の外装体等に用いる場合には例えば電極数、電解液等の容量を増やせるほか、電池自体の小型化、低コスト化等にも寄与することができる。
(B-3)沸点収縮率及び弾性率
 本発明フィルムは、沸水収縮率がMD:2.0~5.0%及びTD:2.5~5.5%であることが好ましく、その中でもMD:2.0~4.0%及びTD:2.5~4.5%であることがより好ましい。
 また、弾性率は、MD:1.5~3.0%及びTD:1.5~2.5%であることが好ましく、その中でもMD:1.8~2.7%及びTD:1.8~2.2%であることがより好ましい。
 本発明フィルムを金属箔と貼り合わせて、金属箔に十分な延展性を付与するには、上記のような沸水収縮率と弾性率を有することが好ましい。すなわち、上記のような沸水収縮率と弾性率を有する場合には、ポリアミド系フィルムにより高い柔軟性が付与され、金属箔と貼り合わせた際に、より効果的に金属箔に延展性を付与することができる。
 これに対し、沸水収縮率が2.0%未満である場合は、ポリアミド系フィルムが変形しにくく、柔軟性に乏しくなるため、冷間成型時に破断、デラミネーション等が発生しやすくなる。また、沸水収縮率が5.5%を超えると柔軟性が高くなりすぎるため、十分な延展性が付与できなくなることで成型性が低下するおそれがある。
 弾性率が1.5%未満であると、柔軟性が高くなりすぎるため、十分な延展性が付与できなくなることで成型性が低下する場合がある。また、弾性率が3.0%を超えると柔軟性に乏しくなるため、冷間成型時に破断、デラミネーション等が発生するおそれがある。
 本発明における沸水収縮率の測定は、以下のようにして行う。ポリアミド系フィルムを23℃×50%RHで2時間調湿した後、フィルムのMDを特定し、MD方向とその方向に対して直角方向をTDとし、任意の点から測定方向に150mm(標線間距離100mm)、かつ、測定方向に対して垂直方向に15mmの短冊状にフィルムを裁断し、標線間距離(A)を測定した後、ガーゼに試験片を包み込み100℃×5分の熱水処理を実施する。処理後、すぐに流水にて冷却、水を切り、23℃×50%RHで2時間調湿した後、標線間距離(B)を測定し、下記式にて収縮率を算出した。  
収縮率=[(A-B)/A]×100
 また、本発明における弾性率の測定は、以下のようにして行う。ポリアミド系フィルムを23℃×50%RHで2時間調湿した後、フィルムのMDを特定し、MDに対して直角方向をTDとし、任意の点から測定方向に300mm(標線間距離250mm)、かつ、測定方向に対して垂直方向に15mmの短冊状にフィルムを裁断し、1kN測定用のロードセルとサンプルチャックとを取り付けた引張試験機(島津製作所社製AG-IS)を用い、試験速度25mm/minにて、測定を実施し、荷重―伸び曲線の勾配から弾性率を算出する。
(B-4)相対粘度
 本発明フィルムは、相対粘度(25℃)が2.9~3.1であることが好ましく、特に2.95~3.05がより好ましい。相対粘度がこの範囲内のものであることにより、ポリアミド系フィルムに柔軟性及び強度がより効果的に付与され、金属箔と貼り合わせた際に、金属箔に十分な延展性を付与することができる。
 相対粘度が2.9未満である場合、フィルムの強度が乏しくなり、金属箔と貼り合わせた際に、金属箔に十分な延展性を付与することが困難となることに加え、シート状に製膜することが困難となるおそれがある。一方、相対粘度が3.1を超えると、フィルムの柔軟性が低下となり、冷間成型時に(金属箔との貼り合わせ時に)フィルムの破断が生じやすくなることに加え、押出時に通過する濾過フィルターでの圧力損失が大きくなり、余分な押出エネルギーが必要となるため、生産コストが上昇することがある。
 本発明における相対粘度の測定は、延伸後のポリアミド系フィルム0.5gを25℃の50mlの96%硫酸に溶解させた試料溶液について、ウベローデ型粘度計を用いて得られる値を示す。
(C)本発明フィルムを含む積層体
 本発明フィルムは、公知又は市販のポリアミド系フィルムと同様にして各種の用途に用いることができる。この場合、本発明フィルムをそのままの状態又は表面処理した状態で使用できるほか、他の層を積層してなる積層体の形態で使用することもできる。
 積層体の形態をとる場合、その代表例として本発明フィルム及びそのフィルム上に積層された金属箔を含む積層体(本発明の積層体)が挙げられる。この場合、本発明フィルムと金属箔とは直接に接するように積層されていても良いし、他の層を介在させた状態で積層されていても良い。特に、本発明では、本発明フィルム/金属箔/シーラントフィルムの順に積層した積層体であることが好ましい。この場合、各層間には接着剤層を介在させても良いし、介在させなくても良い。
 本発明フィルムは、そのまま使用することができるが、特にフィルム表面の少なくとも片面の全面又は一部にプライマー層(アンカーコート層:AC層)を有することが好ましい。このようなプライマー層を形成する場合には、プライマー層を有するフィルム表面に接着剤を塗布して金属箔を貼り合わせると、ポリアミド系フィルムと金属箔との接着性をより高めることができる。これにより、金属箔により十分な延展性を付与することができる。このため、ポリアミド系フィルム又は金属箔が破断しにくくなることに加えて、デラミネーション、ピンホール等の発生をより効果的に防止することができる。このようなプライマー層を含むフィルムも、本発明のポリアミド系フィルムに包含される。プライマー層の詳細については、下記<プライマー層の実施形態>で説明する。
 金属箔としては、各種の金属元素(アルミニウム、鉄、銅、ニッケル等)を含む金属箔(合金箔を含む。)が挙げられるが、特に純アルミニウム箔又はアルミニウム合金箔が好適に用いられる。アルミニウム合金箔については、鉄を含有していること(アルミニウム-鉄系合金等)が好ましく、他の成分については前記積層体の成型性を損なわない範囲で、JIS等に規定されている公知の含有量の範囲であればいずれの成分を含んでいても良い。
 金属箔の厚みは、特に限定されないが、成型性等の観点より15~80μmであることが好ましく、特に20~60μmとすることがより好ましい。
 本発明の積層体を構成するシーラントフィルムは、例えばポリエチレン、ポリプロピレン、オレフィン系共重合体、ポリ塩化ビニル等のヒートシール性を有する熱可塑性樹脂を採用することが好ましい。シーラントフィルムの厚みは、限定的ではないが、通常20~80μmであることが好ましく、特に30~60μmであることがより好ましい。
 また、本発明の積層体は、積層体を構成する本発明フィルムの外装側(金属箔と貼り合わせる面とは異なる面)に、使用目的等に応じて他の層が1層以上積層されていても良い。他の層としては、特に制限されないが、例えばポリエステルフィルムが好ましい。ポリエステルフィルムを積層することにより、耐熱性、耐電圧、耐薬品性等が高められるほか、剥離強力も高めることができる。
 ポリエステルとしては、特に限定されず、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2、6-ナフタレート等が好ましい。これらの中でも、コストと効果の観点からPETを用いることが好ましい。
 本発明の積層体は、各層の層間に接着剤層を介在させることができる。例えば、ポリアミド系フィルム/金属箔の間、金属箔/シーラントフィルムの層間等にはウレタン系接着剤層、アクリル系接着剤層等の接着剤層を用いて各層が積層されることが望ましい。
 この場合、本発明のポリアミド系フィルムがフィルム表面の少なくとも片面にプライマー層を有する場合、プライマー層面上に金属箔が積層されることが好ましい。より具体的には、プライマー層面上にウレタン系接着剤層、アクリル系接着剤層等の接着剤層を介して金属箔が積層されていることが好ましい。
 本発明の積層体は、特に本発明フィルムを含むものであることから、冷間成型である絞り成型(特に深絞り成型又は張り出し成型)に好適に用いることができる。ここに、絞り成型は、基本的には1枚の積層体から円筒、角筒、円錐等の形状を有する底付き容器を成型する方法である。このような容器は、一般に継ぎ目がないという特徴を有する。
(D)本発明の積層体を含む容器
 本発明は、本発明の積層体を含む容器も包含する。例えば、本発明の積層体を用いて成型された容器も、本発明に包含される。この中でも冷間成型することにより得られる容器であることが好ましい。特に、冷間成型として絞り成型(絞り加工)又は張り出し成型(張り出し加工)により製造される容器であることが好ましく、特に絞り成型により製造される容器が好ましい。
 すなわち、本発明に係る容器は、本発明の積層体から容器を製造する方法であって、前記積層体を冷間成型する工程を含むことを特徴とする容器の製造方法により好適に製造することができる。従って、例えば本発明の積層体から継ぎ目のない容器等を製造することができる。
 この場合の冷間成型方法自体は、限定的でなく、公知の方法に従って実施することができる。例えば、積層体に含まれる樹脂を溶融させることなく、固体のまま成型する方法を採用すれば良い。成型時の温度は、常温でも良いが、好ましくは50℃以下、特に20~30℃とすれば良い。
 より具体的な成型方法(加工方法)としては、例えば円筒絞り加工、角筒絞り加工、異形絞り加工、円錐絞り加工、角錐絞り加工、球頭絞り加工等の絞り加工を好ましく採用することができる。また、絞り加工としては、浅絞り加工と深絞り加工に分類されるが、本発明の積層体は、特に深絞り加工にも適用することができる。
 これらの絞り加工は、通常の金型を用いて実施することができる。例えば、パンチ、ダイス及びブランクホルダーを含むプレス機械を用い、a)前記ダイスとブランクホルダー間に本発明の積層体を配置する工程及びb)前記パンチを前記積層体に押し込むことにより容器状に変形させる工程を含む方法により絞り加工を実施することができる。
 このようにして得られる容器は、金属箔の破断、デラミネーション、ピンホール等の不具合が効果的に抑制されているので、高い信頼性を得ることができる。このため、本発明に係る容器は、各種の工業製品の包装材料をはじめとして、様々な用途に使用できる。特に、深絞り成型による成型体はリチウムイオン電池の外装体、張り出し成型による成型体はプレススルーパック等に好適に用いられる。
<プライマー層の実施形態>
 本発明のポリアミド系フィルムにおけるプライマー層としては、以下のような実施形態をとることが好ましい。
 プライマー層の厚みは限定的ではないが、通常は0.01~0.10μmであることが好ましく、特に0.02~0.09μmであることがより好ましい。プライマー層の厚みが0.01μm未満であると、フィルム上に均一な膜厚のプライマー層を形成することが困難となる。その結果、上記したようなポリアミド系フィルムと金属箔の接着性の向上効果が乏しいものとなる。一方、プライマー層の厚みが0.10μmを超えると、ポリアミド系フィルムと金属箔の接着性が良好となる効果は飽和し、コスト的に不利になる。
 プライマー層は、例えばポリウレタン樹脂、アクリル樹脂等の各種の合成樹脂を含む層を採用することができる。特に、ポリウレタン樹脂を含むプライマー層が好ましい。このようなポリウレタン樹脂としては、例えばアニオン型水分散性ポリウレタン樹脂を含有することが好ましい。この樹脂を含有するプライマー層は、ポリアミド系フィルムの表面に前記樹脂を含む水性塗剤を塗布することにより形成することができる。
 ポリウレタン樹脂は、例えば多官能イソシアネートと水酸基含有化合物との反応により得られるポリマーである。より詳細には、トリレンジイソイアネート、ジフェニルメタンイソシアネート、ポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート、又はヘキサメチレンジイソシアネート、キシレンイソシアネート等の脂肪族ポリイソシアネート等の多官能イソシアネートと、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリレートポリオール、ポリカーボネートポリオール等の水酸基含有化合物との反応により得られるウレタン樹脂を例示することができる。
 本発明において用いられるアニオン型水分散性ポリウレタン樹脂は、ポリウレタン樹脂中にアニオン性官能基が導入されたものである。ポリウレタン樹脂中にアニオン性官能基を導入する方法としては、特に限定されず、例えばa)ポリオール成分としてアニオン性官能基を有するジオール等を用いる方法、b)鎖伸張剤としてアニオン性官能基を有するジオール等を用いる方法等が挙げられる。
 アニオン性官能基を有するジオールとしては、例えばグリセリン酸、ジオキシマレイン酸、ジオキシフマル酸、酒石酸、ジメチロールプロピオン酸、ジメチロールブタン酸、2,2-ジメチロール吉草酸、2,2-ジメチロールペンタン酸、4,4-ジ(ヒドロキシフェニル)吉草酸、4,4-ジ(ヒドロキシフェニル)酪酸等の脂肪族カルボン酸のほか、2,6-ジオキシ安息香酸等の芳香族カルボン酸等が挙げられる。
 アニオン型のポリウレタン樹脂を水中に分散させる際には、一般的に揮発性塩基が用いることが好ましい。揮発性塩基は、特に限定的でなく、公知のものを使用することができる。より具体的には、アンモニア、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、モルホリン、エタノールアミン等が例示される。この中でも、トリエチルアミンは、水分散性ポリウレタン樹脂の液安定性が良好であり、さらに沸点が比較的低温であることからプライマー層への残留量が少ないという点でより好ましい。
 本発明においては、プライマー層の形成のために、市販のアニオン型水分散性ポリウレタン樹脂を好ましく使用することができる。そのような市販のアニオン型水分散性ポリウレタン樹脂としては、例えばDIC社製の「ハイドランADS-110」、「ハイドランADS-120」、「ハイドランKU-400SF」、「ハイドランHW-311」、「ハイドランHW-312B」、「ハイドランHW-333」、「ハイドランAP-20」、「ハイドランAPX-101H」、「ハイドランAP-60LM」、第一工業製薬社製の「スーパーフレックス107M」、「スーパーフレックス150」、「スーパーフレックス150HS」、「スーパーフレックス410」、「スーパーフレックス420NS」、「スーパーフレックス460」、「スーパーフレックス460S」、「スーパーフレックス700」、「スーパーフレックス750」、「スーパーフレックス840」、三井化学ポリウレタン社製の「タケラックW-6010」、「タケラックW-6020」、「タケラックW-511」、「タケラックWS-6021」、「タケラックWS-5000」、DSM社製の「NeoRez R9679」、「NeoRez R9637」、「NeoRez R966」、「NeoRez R972」等が挙げられる。
 本発明のポリアミド系フィルムにおいて、プライマー層の耐水性、耐熱性等の向上を目的として、プライマー層にメラミン樹脂を含有させることが好ましい。メラミン樹脂の含有量は、アニオン型水分散性ポリウレタン樹脂100質量部に対して1~10質量部とすることが好ましい。
 メラミン樹脂の代表的なものとして、トリ(アルコキシメチル)メラミンが挙げられる。そのアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。各種のメラミン樹脂は、それぞれ単独で、又は二種類以上を同時に、使用することができる。
 水性塗剤におけるアニオン型水分散性ポリウレタン樹脂の固形分濃度は、塗工装置、乾燥・加熱装置等の仕様によって適宜変更され得るものであるが、希薄すぎる溶液では、乾燥工程において長時間を要するという問題を生じやすい。他方、固形分濃度が高すぎると、均一な塗剤を得にくく、このため塗工性に問題を生じ易い。このような観点から、水性塗剤におけるアニオン型水分散性ポリウレタン樹脂の固形分濃度は3~30質量%の範囲であることが好ましい。
 水性塗剤には、主成分であるアニオン型水分散性ポリウレタン樹脂のほかに、水性塗剤をフィルムに塗布する際の塗工性を向上させるために、例えば消泡剤、界面活性剤等の添加剤を添加しても良い。
 特に、界面活性剤を添加することにより、特に基材フィルムへの水性塗剤の濡れを促進することができる。界面活性剤は、特に限定されないが、例えばポリエチレンアルキルフェニルエーテル、ポリオキシエチレン-脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸金属石鹸、アルキル硫酸塩、アルキルスルホン酸塩、アルキルスルホコハク酸塩等のアニオン型界面活性剤のほか、アセチレングリコール等のノニオン型界面活性剤を挙げることができる。界面活性剤は、水性塗剤中に0.01~1質量%含まれていることが好ましい。また、ポリアミド系フィルムの製造工程における熱処理で揮発するものであることが好ましい。
 さらには、水性塗剤には、必要に応じて、接着性に影響を与えない範囲で、帯電防止剤、スリップ剤等の各種の添加剤を加えることができる。
2.本発明フィルムの製造方法
 本発明の製造方法は、二軸配向したポリアミド系フィルムを製造する方法であって、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
(2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る延伸工程
を含み、かつ、
(3)下記式a)及びb);
   a)0.85≦X/Y≦0.95
   b)8.5≦X×Y≦9.5
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
  の両方を満たす、
ことを特徴とする。
 シート成形工程
 シート成形工程では、ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得る。
 ポリアミド樹脂としては、前記で述べたような各種の材料を用いることができる。また、各種の添加剤も溶融混練物中に含有させることができる。
 溶融混練物の調製自体は、公知の方法に従って実施すれば良い。例えば、加熱装置を備えた押出機にポリアミド樹脂を含む原料を投入し、所定温度に加熱することによって溶融させた後、その溶融混練物をTダイにより押し出し、キャスティングドラム等により冷却固化させることによってシート状の成形体である未延伸シートを得ることができる。
 この場合の未延伸シートの平均厚みは特に限定されないが、一般的には15~250μm程度とし、特に50~235μmとすることが好ましい。このような範囲内に設定することによって、より効率的に延伸工程を実施することができる。
 延伸工程
 延伸工程では、前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る。
 前記のとおり、MD及びTDの少なくとも一方向がテンターにより延伸される工程を含む逐次二軸延伸により得られるものであることが好ましい。これにより、より均一なフィルム厚みを得ることが可能となる。
 テンター自体は、従来よりフィルムの延伸のために使用されている装置であり、未延伸シートの両端を把持しながら縦方向及び/又は横方向に拡幅させる装置である。テンターを用いる場合においても、同時二軸延伸及び逐次二軸延伸の2つの方法がある。テンターを用いる同時二軸延伸は、未延伸フィルムの両端を把持しながらMDへ延伸すると同時にTDへも延伸することにより、MD及びTDの二軸延伸をテンターにより同時に行う方法である。一方、テンターを用いる逐次二軸延伸は、1)回転速度が異なる複数のロールに未延伸シートを通過させることによりMDを延伸した後、その延伸されたフィルムをテンターによりTDへ延伸する方法、2)未延伸シートをテンターによりMDを延伸した後、その延伸されたフィルムをテンターによりTDへ延伸する方法等があるが、得られるフィルムの物性、生産性等の点で前記1)の方法が特に好ましい。前記1)の方法については、図2に示すような工程により未延伸フィルムの逐次二軸延伸が行われる。
 まず、図2に示すように、未延伸シート13が複数のロール21を通過することによりMD(縦方向)に延伸される。これら複数のロールは回転速度が異なるため、その速度差により未延伸シート13がMDに延伸される。すなわち、未延伸シートを低速ロール群から高速ロール群へ通過させることで延伸するものである。
 なお、図2では、ロール数は5個であるが、実際はそれ以外の個数であっても良い。また、ロールは、例えば順に予熱用ロール、延伸用ロール及び冷却用ロールというかたちで互いに機能が異なるロールを設置することもできる。これらの各機能を有するロールの個数も適宜設定することができる。また、延伸用ロールを複数設ける場合、多段階で延伸できるような設定としても良い。例えば、1段目を延伸倍率E1とし、2段目を延伸倍率E2という2段階の延伸によりMDの延伸倍率を(E1×E2)の範囲内で適宜設定することが可能となる。このようにして第1延伸フィルム13’が得られる。
 次に、ロール21を通過した第1延伸フィルム13’は、テンター22に導入されることによりTDに延伸される。より具体的には、図3に示すように、テンター22に導入された第1延伸フィルム13’は、入口付近においてその両端をガイドレールに固定されたリンク装置34に接続されたクリップに把持され、流れ方向の順に予熱ゾーン31、延伸ゾーン32及び弛緩熱処理ゾーン33を通過する。予熱ゾーン31で第1延伸フィルム13’は一定の温度に加熱された後、延伸ゾーン32でTDに延伸される。その後、弛緩熱処理ゾーン33において、一定の温度で弛緩処理が行われる。このようにして第2延伸フィルム14(本発明フィルム)が得られる。その後、ガイドレールに固定されたリンク装置34は、テンター22の出口付近で第2延伸フィルム14から外され、テンター22の入口付近に戻される。
 このように、テンターを用いる逐次二軸延伸は、MDをロールによって延伸することから生産性、設備面等において有利であり、TDをテンターによって延伸することからフィルム厚みの制御等において有利となる。
 本発明の製造方法では、延伸工程において、下記式a)及びb);
   a)0.85≦X/Y≦0.95(好ましくは0.89≦X/Y≦0.93)
   b)8.5≦X×Y≦9.5(好ましくは8.7≦X×Y≦9.1)
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
 の両方を満たすことが必須である。
 上記a)及びb)の条件のいずれか一方でも満足しない場合は、得られるポリアミド系フィルムは4方向の応力のバランスが悪いものとなり、本発明フィルムを得ることが困難となる。
 延伸工程における温度条件は、例えば、前記の同時二軸延伸を行う際には180℃~220℃の温度範囲で延伸することが好ましい。また例えば、前記の逐次二軸延伸を行う際には、MDの延伸を50~120℃(特に50~80℃、さらに50~70℃、またさらに50~65℃)の温度範囲で行うことが好ましく、TDの延伸を70~150℃(特に70~130℃、さらに70~120℃、またさらに70~110℃)の温度範囲で行うことが好ましい。このような温度範囲に制御することによって、より確実に本発明フィルムを製造することが可能となる。これらの温度は、例えば図2に示すロール21(予熱用ロール)、図3に示すテンターの予熱ゾーン31等にて予熱しながら設定・制御することができる。
 また、テンターを用いる同時二軸延伸及び逐次二軸延伸ともに、延伸後は弛緩熱処理を行うことが好ましい。弛緩熱処理は、温度180~230℃の範囲で弛緩率2~5%とすることが好ましい。これらの温度は、図3に示すテンターの弛緩熱処理ゾーンにて設定・制御することができる。
 延伸時の温度範囲を上記のようなものとするための手段としては、例えば1)フィルム表面に熱風を吹き付ける方法、2)遠赤外線又は近赤外線ヒーターを用いる方法、3)それらを組み合わせる方法等があるが、本発明の加熱方法としては、熱風を吹き付ける方法を含むことが好ましい。
<延伸工程における実施の形態>
 本発明における延伸工程としては、MDをロールによって延伸し、TDをテンターによって延伸する逐次二軸延伸工程を好適に採用することができる。この方法を採用し、かつ下記に示す温度条件を満足することにより、厚みの均一性に優れるとともに、前記4方向の伸長時の応力バランスをより優れたものとすることが可能となるため、特に平均厚み15μm以下の本発明フィルムをより確実かつ効率的に得ることができる。
 MDの延伸
 まず、MDの延伸における温度は、ロールを用いて50~70℃の温度範囲で延伸することが好ましく、中でも50~65℃とすることがより好ましい。
 MDの延伸は、2段階以上の多段延伸を行うことが好ましい。この場合、延伸倍率を段階的に上げていくことが好ましい。すなわち、n段目の延伸橋率よりも(n+1)段目の延伸倍率の方が高くなるように制御することが好ましい。これによって全体をよりいっそう均一に延伸することができる。例えば、2段階で延伸する場合、1段目を延伸倍率1.1~1.2とし、2段目を延伸倍率2.3~2.6という2段階の延伸により縦方向の延伸倍率を2.53~3.12の範囲内で適宜設定することができる。
 さらには、MDの延伸において、温度勾配を設けることが好ましい。特に、フィルムの引き取り方向に沿って、順次温度を上げていくことが好ましく、MDの延伸部全体において、その温度勾配(フィルムの走行方向のはじめ(入口)の温度T1とおわり(出口)の温度T2との温度差)は、通常2℃以上であることが好ましく、3℃以上であることがより好ましい。このとき、フィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は、通常1~5秒間であることが好ましく、特に2~4秒間であることがより好ましい。
 TDの延伸
 TDの延伸は、図3に示すような各ゾーンが形成されるテンターにより延伸を行う。このとき、予熱ゾーンの温度は60~70℃とすることが好ましい。そして、延伸ゾーンの温度を70~130℃の温度範囲とすることが好ましく、特に75~120℃の温度範囲とすることがより好ましく、さらには80~110℃の温度範囲とすることが最も好ましい。
 また、延伸ゾーンにおいてもフィルムの引き取り方向に沿って、順次温度を上げていくことが好ましく、延伸ゾーン全体において、その温度勾配(フィルムの走行方向のはじめ(入口)の温度T1とおわり(出口)の温度T2との温度差)は、通常5℃以上であることが好ましく、8℃以上であることがより好ましい。このとき、延伸ゾーンにおけるフィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は、通常1~5秒間であることが好ましく、特に2~4秒間であることがより好ましい。
 弛緩熱処理ゾーンにおいては、弛緩熱処理を行うことが望ましい。その熱処理温度は180~230℃の範囲とすることが好ましく、中でも180~220℃の範囲とすることがより好ましく、さらには180~210℃とすることが最も好ましい。また、弛緩率は、通常2~5%程度とすることが好ましい。
 また、フィルム表面の少なくとも片面にプライマー層を有する本発明のポリアミド系フィルムを得る際にも、上記と同様の延伸方法及び延伸条件で行うことが好ましい。なお、フィルム表面にプライマー層を形成するためには、上記のような製造方法において、MDに延伸した後のポリアミド系フィルムに水性塗剤を塗布することが好ましい。そして、続いてそのフィルムを、水性塗剤とともに、上記と同様の延伸条件でTDに延伸すること(インラインコーティング)が好ましい。水性塗剤の塗布量は、延伸後のフィルム表面に形成されるプライマー層の厚みが0.01~0.10μmとなるように調整することが好ましい。
 なお、本発明の製造方法では、延伸工程として、厚みの均一性の保持等の観点より、上記以外の延伸方法は採用されないことが望ましい。例えば、チューブラー法(インフレーション法)による延伸工程を含まないことが望ましい。
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。
 実施例1
(1)ポリアミド系フィルムの製造
ユニチカ社製ポリアミド6樹脂(A1030BRF、相対粘度3.1、モノマー含有量1.0%以下)及びシリカ6質量%含有ナイロン6樹脂(A1030QW、相対粘度2.7、モノマー含有量1.0%以下)を原料として用い、A1030BRF/シリカ含有ナイロン樹脂=98.7/1.3(質量比)の組成比率にて押出機内で溶融混練し、Tダイへ供給してシート状に吐出し、20℃に温度調整した金属ドラムに巻き付け、冷却して巻き取ることによって未延伸シートを製造した。このとき、延伸後に得られるポリアミド系フィルムの厚みが12μmとなるように、ポリアミド樹脂の供給量等を調整した。
 次いで、得られた未延伸シートを逐次二軸延伸により延伸工程を実施した。より具体的には、MDについてはロールを用いて延伸した後、TDについてはテンターを用いて延伸する方法により実施した。
 まず、MDの延伸は、前記シートを複数個のロールに通過させることにより、MDへ全延伸倍率2.85倍となるように延伸した。このとき、2段階で延伸を行い、1段目の延伸倍率を1.1とし、2段目の延伸倍率を2.59とし、全延伸倍率(MD1×MD2)1.1×2.59=2.85倍とした。加熱条件は、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が54℃、おわり(T2)が57℃となるように温度勾配を設けて延伸を行った。このとき、フィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 次に、TDの延伸は、図3に示すようなテンターを用いて実施した。まず予熱ゾーン(予熱部)の温度を65℃として予熱を行いながら、延伸ゾーンにおいてTDへ3.2倍延伸した。このとき、延伸ゾーン(延伸部)では、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が74℃、おわり(T2)が96℃となるように温度勾配を設けた。このとき、延伸ゾーンにおけるフィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 延伸ゾーンを通過したフィルムは、弛緩熱処理ゾーン(熱処理部)において、温度202℃及び弛緩率3%の条件で弛緩熱処理された。このようにして1000m以上連続製造して二軸延伸ポリアミド系フィルム(巻量2000m)を得た。得られたフィルムはロール状に巻き取られた。
(2)積層体の作製
 前記(1)で得られた二軸延伸ポリアミド系フィルムに二液型ポリウレタン系接着剤(東洋モートン株式会社製「TM‐K55/CAT-10L」)を塗布量が5g/mとなるように塗布した後、80℃で10秒間乾燥した。その接着剤塗布面に金属箔(厚み50μmのアルミニウム箔)を貼り合せた。次に、ポリアミド系フィルムとアルミニウム箔の積層体のアルミニウム箔側に上記接着剤を同様の条件で塗布した後、その塗布面にシーラントフィルム(未延伸ポリプロピレンフィルム(三井化学東セロ株式会社製 GHC 厚み50μm))を貼り合わせ、40℃の雰囲気下で72時間エージング処理を施し、積層体(/ポリアミド系フィルム/アルミニウム箔/シーラントフィルム)を作製した。
 実施例2~28、比較例1~16
 製造条件と延伸後のポリアミド系フィルムの目標厚みを表1~表3に示したものに変更した以外は、実施例1と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて、実施例1と同様にして積層体を作製した。但し、実施例7及び実施例17については、より具体的には以下のように変更した。
(1)実施例7について
 実施例1で得られた積層体において、ポリアミド系フィルムのアルミニウム箔を積層していない面に、二液型ポリウレタン系接着剤(東洋モートン株式会社製TM‐K55/CAT-10L)を塗布量が5g/mとなるように塗布した後、80℃で10秒間乾燥した。その接着剤塗布面にPETフィルム(ユニチカ社製のエンブレットPET-12 厚み12μm)を貼り合せて、積層体(PETフィルム/ポリアミド系フィルム/アルミニウム箔/シーラントフィルム)を作製した。
(2)実施例17について
 実施例1に示したポリアミド系フィルムの製造において、ユニチカ社製ポリアミド6樹脂(A1030BRF)、ユニチカ社製ポリアミド66樹脂(A226)及びシリカ6質量%含有ナイロン6樹脂の組成比がA1030BRF/A226/シリカ含有ナイロン樹脂=89.0/9.7/1.3(質量比)である組成物を原料とした用いたほかは、実施例1と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて実施例1と同様にして積層体を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表1~表3において、各延伸倍率は1を基準とした倍率(倍)を示す。また、各熱処理温度の単位は「℃」、弛緩率の単位は「%」、目標厚みは「μm」を示す。 
 試験例1
 実施例1~28及び比較例1~16で得られたポリアミド系フィルム及び積層体の物性について評価した。その評価結果を表4~表9に示す。なお、各種の物性の測定方法及び評価方法は、以下のとおりに行った。
(1)ポリアミド系フィルムの5%伸長時及び15%伸長時の4方向の応力
 ポリアミド系フィルムの5%伸長時及び15%伸長時の4方向の応力は、基準方向(0度方向)をMDとしたうえで、前記で説明した方法で測定し、算出した。
 なお、測定に用いたサンプルフィルムとしては、得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを用いた。
(2)ポリアミド系フィルムの平均厚みと標準偏差
 ポリアミド系フィルムの平均厚みと標準偏差は、前記の方法でそれぞれ測定し、算出した。なお、測定に用いたサンプルフィルムは、次の3種類であった。
 得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、a)巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを「A」と表記し、b)巻幅の右端付近であって、かつ、巻量の半分にあたる位置で採取したものを「B」と表記し、c)巻幅の左端付近であって、かつ、巻終わり付近の位置で採取したものを「C」と表記した。
(3)ポリアミド系フィルムの沸水収縮率、弾性率及び相対粘度
 ポリアミド系フィルムの沸水収縮率、弾性率及び相対粘度は、前記で示した方法により測定した。なお、測定に用いたサンプルフィルムとしては、得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを用いた。
(4)プライマー層(アンカーコート層:AC層)の厚み
 得られたポリアミド系フィルムをエポキシ樹脂中に包埋し、凍結ウルトラミクロトームで厚み100nmの切片を採取した。切削温度は-120℃、切削速度は0.4mm/分とした。採取した切片をRuO溶液で1時間気相染色し、JEM-1230 TEM(日本電子社製)を用いて、透過測定にて加速電圧100kVでプライマー層厚みを測定した。このとき、プライマー層の厚みを測定する箇所を任意の5点選択し、5点の測定値の平均値を厚みとした。
 なお、測定に用いたサンプルフィルムとしては、得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを用いた。
(5)積層体の成型性及び耐湿熱性
 1)絞り深さ(エリクセン試験)
 JISZ2247に基づいて、エリクセン試験機(安田精機製作所社製No.5755)を用い、得られた積層体に鋼球ポンチを所定の押し込み深さで押し付け、エリクセン値を求めた。エリクセン値は0.5mmごとに測定した。エリクセン値が5mm以上である場合が好適であり、特に8mm以上である場合を深絞り成型により好適であると判断した。
 2)耐湿熱性
 恒温高湿条件での成型安定性を評価するため、得られた積層体を、高温高圧調理殺菌装置RCS-60SPXTG、日阪製作所社製)を使用し、120℃、30分、1.8kg/cmで処理した後、前記1)と同様のエリクセン試験を行った。このとき、実施例においては、エリクセン値が8mmとなる位置まで鋼球ポンチを押し付け、また比較例においては、エリクセン値が5mmとなる位置まで鋼球ポンチを押し付けた。このとき、デラミネーションの発生状況と、積層体を構成するポリアミド系フィルム又は金属箔の破れの発生状況を目視にて確認した。
 デラミネーション、ポリアミド系フィルム又は金属箔の破れが全く発生しなかった場合を「○」、デラミネーションが一部発生したが、ポリアミド系フィルム又は金属箔の破れが生じなかった場合を「△」、デラミネーションが発生したり、ポリアミド系フィルム又は金属箔の破れが生じた場合を「×」と表記した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 なお、表4~表9において、平均厚みの単位は「μm」、プライマー層の厚みの単位は「μm」、応力の単位は「MPa」、沸水収縮率の単位は「%」、弾性率の単位は「%」、絞り深さの単位は「mm」をそれぞれ示す。
 これらの結果からも明らかなように、実施例1~28では、特にポリアミド系フィルムの延伸倍率が所定の範囲であったため、得られたポリアミド系フィルムは、一軸引張試験において0度方向(MD)、45度方向、90度方向(TD)及び135度方向へ5%伸長時の応力の最大値と最小値の差が35MPa以下であり、かつ、15%伸長時の応力の最大値と最小値の差が40MPa以下を満たしたものとなった。そして、これらのポリアミド系フィルムを用いて得られた積層体は、エリクセン値が高く、冷間成型したときに全方向へ均一な延展性を有するものであった。つまり、各実施例のポリアミド系フィルムは、アルミニウム箔が破断したり、デラミネーション、ピンホール等が発生することなく、優れた成型性を有していた。
 一方、比較例1~16では、特にポリアミド系フィルムの延伸倍率が所定の範囲を満足するものではなかったため、得られたポリアミド系フィルムは、一軸引張試験において0度方向(MD)、45度方向、90度(TD)方向及び135度方向へ5%伸長時の応力の最大値と最小値の差が35MPa以下であり、かつ、15%伸長時の応力の最大値と最小値の差が40MPa以下を満たさないものとなった。このため、これら比較例のポリアミド系フィルムを用いて得られた積層体は、エリクセン値が低く、冷間成型したときに全方向へ均一な延展性を有するものとすることができず、成型性に劣るものであった。
 実施例29
(1)ポリアミド系フィルムの製造
 ユニチカ社製ポリアミド6樹脂(A1030BRF、相対粘度3.1、モノマー含有量1.0%以下) 及びシリカ6質量%含有ナイロン6樹脂(A1030QW、相対粘度2.7、モノマー含有量1.0%以下)を原料として用い、A1030BRF/シリカ含有ナイロン樹脂=98.7/1.3(質量比)の組成比率にて押出機内で溶融混練し、Tダイへ供給してシート状に吐出した。20℃に温度調節した金属ドラムに前記シートを巻き付け、冷却して巻き取ることにより未延伸シートを製造した。このとき、延伸後に得られるポリアミド系フィルムの厚みが15μmとなるように、ポリアミド樹脂の供給量等を調整した。
 次いで、得られた未延伸シートを逐次二軸延伸により延伸工程を実施した。より具体的には、前記シートのMDについてはロールを用いて延伸した後、TDについてはテンターを用いて延伸する方法により延伸を行った。
 まず、MDの延伸は、前記シートを複数個の延伸用ロールに通過させることにより、MDへ全延伸倍率2.85倍となるように延伸した。このとき、2段階で延伸を行い、1段目の延伸倍率を1.1とし、2段目の延伸倍率を2.59とし、全延伸倍率(MD1×MD2)1.1×2.59=2.85倍とした。加熱条件は、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が58℃、おわり(T2)が61℃となるように温度勾配を設けて延伸を行った。このとき、フィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 MDの延伸後、プライマー層の形成のため、グラビアコーターでポリウレタン水分散体を延伸後のコート厚みが0.03~0.08μmになるように片面にコーティングした。その後、TDの延伸を行った。上記水分散体としては、アニオン型水分散性ポリウレタン樹脂(DIC社製「ハイドランKU400SF」,Tmf=約0℃、Tsf=80℃)100質量部に対して、トリ(メトキシメチル)メラミン樹脂(DIC社製「ベッカミンAPM」,Tts=150℃)7質量部を混合して得られる水性塗剤を用いた。
 次に、TDの延伸は、図3に示すようなテンターを用いて実施した。まず予熱ゾーン(予熱部)の温度を70℃として予熱を行いながら、延伸ゾーンにおいてTDへ3.2倍延伸した。このとき、延伸ゾーン(延伸部)では、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が78℃、おわり(T2)が100℃となるように温度勾配を設けた。このとき、延伸ゾーンにおけるフィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 延伸ゾーンを通過したフィルムは、弛緩熱処理ゾーン(熱処理部)において温度202℃及び弛緩率3%の条件で弛緩熱処理された。このようにして1000m以上連続製造することにより、片面にプライマー層が形成された二軸延伸ポリアミド系フィルム(巻量2000m)を得た。得られたフィルムはロール状に巻き取られた。
(2)積層体の作製
 上記(1)で得られた二軸延伸ポリアミド系フィルムを用い、プライマー層表面に二液型ポリウレタン系接着剤を用いてアルミニウム箔を積層したほかは、実施例1と同様にして積層体(ポリアミド系フィルム/アルミニウム箔/シーラントフィルム)を作製した。
 実施例30~59、比較例17~36
 製造条件及び延伸後のポリアミド系フィルムの目標厚みを表10~表12に示したものに変更した以外は、実施例29と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて、実施例29と同様にして積層体を作製した。但し、実施例35、実施例43及び実施例51については、より具体的には以下のように変更した。
(1)実施例35について
 実施例29で得られた積層体において、ポリアミド系フィルムのアルミニウム箔を積層していない面に、二液型ポリウレタン系接着剤(東洋モートン株式会社製TM‐K55/CAT-10L)を塗布量が5g/mとなるように塗布した後、80℃で10秒間乾燥した。その接着剤塗布面にPETフィルム(ユニチカ社製のエンブレットPET-12 厚み12μm)を貼り合せ、積層体(PETフィルム/ポリアミド系フィルム/アルミニウム箔/シーラントフィルム)を作製した。
(2)実施例43について
 実施例36で得られた積層体において、ポリアミド系フィルムのアルミニウム箔を積層していない面に、二液型ポリウレタン系接着剤(東洋モートン株式会社製TM‐K55/CAT-10L)を塗布量が5g/mとなるように塗布した後、80℃で10秒間乾燥した。その接着剤塗布面にPETフィルム(ユニチカ社製のエンブレットPET-12 厚み12μm)を貼り合せ、積層体(PETフィルム/ポリアミド系フィルム/アルミニウム箔/シーラントフィルム)を作製した。
(3)実施例51について
 実施例29に示したポリアミド系フィルムの製造において、ユニチカ社製ポリアミド6樹脂(A1030BRF)、ユニチカ社製ポリアミド66樹脂(A226)及びシリカ6質量%含有ナイロン6樹脂の組成比がA1030BRF/A226/シリカ含有ナイロン樹脂=89.0/9.7/1.3(質量比)である組成物を原料とした用いたほかは、実施例29と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて実施例29と同様にして積層体を作製した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 なお、表10~表12において、各延伸倍率は1を基準とした倍率(倍)を示す。また、各熱処理温度の単位は「℃」、弛緩率の単位は「%」、目標厚みは「μm」を示す。 
 試験例2
 実施例29~59及び比較例17~36で得られたポリアミド系フィルム及び積層体の物性について評価した。その評価結果を表13~表18に示す。なお、各種の物性の測定方法及び評価方法は、試験例1と同様にして実施した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 なお、表13~表18において、平均厚みの単位は「μm」、プライマー層の厚みの単位は「μm」、応力の単位は「MPa」、沸水収縮率の単位は「%」、弾性率の単位は「%」、絞り深さの単位は「mm」を示す。
 実施例29~59では、特にポリアミド系フィルムの延伸倍率が所定の範囲であるので、得られたポリアミド系フィルムは、一軸引張試験において0度方向、45度方向、90度方向及び135度方向へ5%伸長時の応力の最大値と最小値の差が35MPa以下であり、かつ、15%伸長時の応力の最大値と最小値の差が40MPa以下を満たしたものとなった。そして、これらのポリアミド系フィルムを用いて得られた積層体は、エリクセン値が高く、冷間成型したときに全方向へ均一な延展性を有するものであった。つまり、これらの実施例のポリアミド系フィルムは、アルミニウム箔が破断したり、デラミネーション、ピンホール等が発生することがなく、優れた成型性を有することがわかる。
 また、実施例29~59で得られたポリアミド系フィルムは、片面にアニオン型水分散性ポリウレタン樹脂を含有するプライマー層を有するものであることから、これらのポリアミド系フィルムを用いた積層体は、耐湿熱性にも優れていることがわかる。
 一方、比較例17~36では、特にポリアミド系フィルムの延伸倍率が所定の範囲を満足するものではなかったため、0度方向、45度方向、90度方向及び135度方向からなる4方向における前記A値及びB値が本発明の要件を満たさないものとなった。このため、これら比較例のポリアミド系フィルムを用いて得られた積層体は、エリクセン値が低く、冷間成型したときに全方向へ均一な延展性を有するものとすることができず、成型性に劣ることがわかる。

Claims (13)

  1. ポリアミド系フィルムであって、
    (1)前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であり、かつ、
    (2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下である、
    ことを特徴とするポリアミド系フィルム。
  2. 前記フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度、135度、180度、225度、270度及び315度の8方向の平均厚みに対する標準偏差値が0.200以下である、請求項1に記載のポリアミド系フィルム。
  3. 平均厚みが15μm以下である、請求項1に記載のポリアミド系フィルム。
  4. 沸水収縮率がMD:2.0~5.0%及びTD2.5~5.5%であり、弾性率がMD:1.5~3.0%及びTD:1.5~2.5%である、請求項1に記載のポリアミド系フィルム。
  5. 相対粘度が2.9~3.1である、請求項1に記載のポリアミド系フィルム。
  6. フィルム表面の少なくとも片面にプライマー層を有する、請求項1に記載のポリアミド系フィルム。
  7. 請求項1に記載ポリアミド系フィルム及びそのフィルム上に積層された金属箔を含む積層体。
  8. 請求項6に記載のポリアミド系フィルム及びそのフィルム上のプライマー層上に積層された金属箔を含む積層体。
  9. 請求項7又は8に記載の積層体を含む容器。
  10. ポリアミド系フィルムを製造する方法であって、
    (1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
    (2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る延伸工程
    を含み、かつ、
    (3)下記式a)及びb);
       a)0.85≦X/Y≦0.95
       b)8.5≦X×Y≦9.5
      (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
      の両方を満たす、
    ことを特徴とするポリアミド系フィルムの製造方法。
  11. 延伸工程が逐次二軸延伸であり、
    (2-1)50~120℃の温度下で前記未延伸シートをMDに延伸することによって第1延伸フィルムを得る第1延伸工程及び
    (2-2)70~150℃の温度下で前記第1延伸フィルムをTDに延伸することによって第2延伸フィルムを得る第2延伸工程
    を含む、請求項10に記載の製造方法。
  12. 第1延伸工程がロールを用いる延伸であり、かつ、第2延伸工程がテンターを用いる延伸である、請求項11に記載の製造方法。
  13. 第2延伸フィルムをさらに180~230℃の温度下で弛緩熱処理を行う、請求項11に記載の製造方法。
PCT/JP2015/085257 2014-12-17 2015-12-16 ポリアミド系フィルム及びその製造方法 WO2016098821A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580027475.2A CN106414567B (zh) 2014-12-17 2015-12-16 聚酰胺系膜及其制造方法
KR1020167027240A KR101776590B1 (ko) 2014-12-17 2015-12-16 폴리아미드계 필름 및 그 제조방법
EP15870023.7A EP3235859B1 (en) 2014-12-17 2015-12-16 Polyamide film and method for producing same
US15/535,448 US20180264711A1 (en) 2014-12-17 2015-12-16 Polyamide film and method for producing same
JP2016512130A JP5981073B1 (ja) 2014-12-17 2015-12-16 ポリアミド系フィルム及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255107 2014-12-17
JP2014-255107 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098821A1 true WO2016098821A1 (ja) 2016-06-23

Family

ID=56126705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085257 WO2016098821A1 (ja) 2014-12-17 2015-12-16 ポリアミド系フィルム及びその製造方法

Country Status (7)

Country Link
US (1) US20180264711A1 (ja)
EP (1) EP3235859B1 (ja)
JP (2) JP5981073B1 (ja)
KR (1) KR101776590B1 (ja)
CN (1) CN106414567B (ja)
TW (1) TWI609032B (ja)
WO (1) WO2016098821A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217435A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系フィルム及びその製造方法
WO2017217436A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系フィルム、これを用いた積層体及び容器、ならびにその製造方法
WO2017217452A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系積層フィルム及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003781A (ja) * 2018-06-22 2020-01-09 住友化学株式会社 樹脂フィルム及びその製造方法
EP4029905A4 (en) * 2020-03-26 2022-12-21 Unitika Ltd. POLYAMIDE RESIN FILM 6

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198139A (ja) * 1999-01-05 2000-07-18 Unitika Ltd 二軸延伸ポリアミドフィルムの製造方法
JP2002029015A (ja) * 2000-07-17 2002-01-29 Toyobo Co Ltd 積層フィルム
JP2006088690A (ja) * 2004-08-25 2006-04-06 Toyobo Co Ltd 二軸配向ポリアミド系樹脂フィルムおよびその製造方法
WO2009069307A1 (ja) * 2007-11-30 2009-06-04 Unitika Ltd. 塩化ビニリデン系共重合体混合物がコーティングされたポリアミドフィルムおよびその製造方法
WO2010110282A1 (ja) * 2009-03-25 2010-09-30 ユニチカ株式会社 易接着ポリアミドフィルムおよびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177228A (ja) * 1985-02-04 1986-08-08 Mitsubishi Monsanto Chem Co 熱収縮性二軸延伸ポリアミドフイルムおよびその製造方法
EP0386759B1 (en) * 1989-03-10 1995-08-16 Idemitsu Petrochemical Co. Ltd. Process for producing biaxially oriented nylon film
JPH0637078B2 (ja) * 1989-10-13 1994-05-18 出光石油化学株式会社 二軸延伸ナイロン66フィルムの製造方法
JP3569987B2 (ja) * 1994-12-22 2004-09-29 東洋紡績株式会社 2軸配向ポリアミド系樹脂フィルム
US5939205A (en) * 1996-04-16 1999-08-17 Toyo Boseki Kabushiki Kaisha Gas barrier resin film
JP3671978B1 (ja) 2004-06-02 2005-07-13 東洋紡績株式会社 ポリアミド系樹脂フィルムロール、およびその製造方法
JP5226942B2 (ja) 2006-08-14 2013-07-03 出光ユニテック株式会社 冷間成形用二軸延伸ナイロンフィルム、ラミネート包材及び冷間成形用二軸延伸ナイロンフィルムの製造方法
JP5226941B2 (ja) 2006-08-14 2013-07-03 出光ユニテック株式会社 冷間成形用二軸延伸ナイロンフィルム、ラミネート包材及び冷間成形用二軸延伸ナイロンフィルムの製造方法
JP2008081616A (ja) * 2006-09-28 2008-04-10 Unitika Ltd 二軸延伸ポリアミドフィルム及びその製造方法
JP5215791B2 (ja) * 2008-09-18 2013-06-19 三菱樹脂株式会社 易開封性深絞り包装体
JP5999674B2 (ja) 2010-02-12 2016-09-28 興人フィルム&ケミカルズ株式会社 冷間成形用二軸延伸ナイロンフィルム
JP5467387B2 (ja) 2010-03-02 2014-04-09 興人フィルム&ケミカルズ株式会社 二軸延伸ナイロンフィルムを含む冷間成形用電池ケース包材
CN102190120B (zh) * 2010-03-04 2013-12-11 厦门长天企业有限公司 一种聚酰胺薄膜及其制造方法
JP5487485B2 (ja) 2010-04-01 2014-05-07 興人フィルム&ケミカルズ株式会社 冷間成形用二軸延伸ナイロンフィルム
JP2011255931A (ja) 2010-06-09 2011-12-22 Kohjin Co Ltd 二軸延伸ナイロンフィルムを含む冷間成形用プレススルーパック包材
CN102059836A (zh) * 2010-10-11 2011-05-18 中山火炬职业技术学院 一种热收缩双向拉伸薄膜
JP2013022773A (ja) 2011-07-15 2013-02-04 Idemitsu Unitech Co Ltd 冷間成形用二軸延伸ナイロンフィルム、ラミネートフィルム、および成形体
WO2013027476A1 (ja) * 2011-08-22 2013-02-28 東洋紡株式会社 二軸配向ポリアミド系樹脂積層フィルム
JP6222906B2 (ja) 2012-02-15 2017-11-01 興人フィルム&ケミカルズ株式会社 冷間成形用二軸延伸ナイロンフィルム
CN104736451A (zh) 2012-11-30 2015-06-24 尤尼吉可株式会社 冷成型用包装材料和使用该冷成型用包装材料的压穿式包装

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198139A (ja) * 1999-01-05 2000-07-18 Unitika Ltd 二軸延伸ポリアミドフィルムの製造方法
JP2002029015A (ja) * 2000-07-17 2002-01-29 Toyobo Co Ltd 積層フィルム
JP2006088690A (ja) * 2004-08-25 2006-04-06 Toyobo Co Ltd 二軸配向ポリアミド系樹脂フィルムおよびその製造方法
WO2009069307A1 (ja) * 2007-11-30 2009-06-04 Unitika Ltd. 塩化ビニリデン系共重合体混合物がコーティングされたポリアミドフィルムおよびその製造方法
WO2010110282A1 (ja) * 2009-03-25 2010-09-30 ユニチカ株式会社 易接着ポリアミドフィルムおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3235859A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217435A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系フィルム及びその製造方法
WO2017217436A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系フィルム、これを用いた積層体及び容器、ならびにその製造方法
WO2017217452A1 (ja) * 2016-06-15 2017-12-21 ユニチカ株式会社 ポリアミド系積層フィルム及びその製造方法

Also Published As

Publication number Publication date
TW201630974A (zh) 2016-09-01
CN106414567A (zh) 2017-02-15
JP2016187967A (ja) 2016-11-04
JPWO2016098821A1 (ja) 2017-04-27
EP3235859A1 (en) 2017-10-25
KR101776590B1 (ko) 2017-09-08
KR20160122852A (ko) 2016-10-24
US20180264711A1 (en) 2018-09-20
EP3235859B1 (en) 2020-11-18
CN106414567B (zh) 2018-07-24
JP5981073B1 (ja) 2016-08-31
TWI609032B (zh) 2017-12-21
EP3235859A4 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP5981073B1 (ja) ポリアミド系フィルム及びその製造方法
WO2017217435A1 (ja) ポリアミド系フィルム及びその製造方法
KR101859485B1 (ko) 폴리에스테르 필름, 적층체 및 폴리에스테르 필름의 제조 방법
KR20140007884A (ko) 연신 폴리아미드 필름
WO2017170333A1 (ja) 電池包装用積層体
CN101842219A (zh) 聚酰胺系树脂膜的制造方法及由该方法得到的聚酰胺系树脂膜
JP6841484B2 (ja) ポリアミド系フィルム及びその製造方法
WO2006137185A1 (ja) ポリアミド系混合樹脂積層フィルムロール、およびその製造方法
JP6321896B1 (ja) ポリアミド系フィルム、これを用いた積層体及び容器、ならびにその製造方法
EP3854837B1 (en) Film for coating metal sheet and resin-coated metal sheet
JP2021088190A (ja) ポリアミド系フィルム及びその製造方法
JP2021119237A (ja) ポリエステルフィルム、積層体およびポリエステルフィルムの製造方法
JP6963781B2 (ja) ポリエステルフィルム、積層体およびポリエステルフィルムの製造方法
JP6290519B1 (ja) ポリアミド系積層フィルム及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167027240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015870023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15535448

Country of ref document: US