WO2017217452A1 - ポリアミド系積層フィルム及びその製造方法 - Google Patents

ポリアミド系積層フィルム及びその製造方法 Download PDF

Info

Publication number
WO2017217452A1
WO2017217452A1 PCT/JP2017/021946 JP2017021946W WO2017217452A1 WO 2017217452 A1 WO2017217452 A1 WO 2017217452A1 JP 2017021946 W JP2017021946 W JP 2017021946W WO 2017217452 A1 WO2017217452 A1 WO 2017217452A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyamide
stretching
degrees
laminated
Prior art date
Application number
PCT/JP2017/021946
Other languages
English (en)
French (fr)
Inventor
真実 松本
幸史朗 前田
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60663520&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017217452(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2017552109A priority Critical patent/JP6290519B1/ja
Priority to CN201780037418.1A priority patent/CN109641434B/zh
Publication of WO2017217452A1 publication Critical patent/WO2017217452A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a novel polyamide-based laminated film and a method for producing the same. Furthermore, this invention relates to the laminated body and container which used the laminated
  • a vinyl chloride film is used for a package (press-through pack) such as a medicine (tablet).
  • a polypropylene film is used in the case of packaging contents that require moisture resistance.
  • laminates obtained by laminating metal foils on resin films have been used for the purpose of imparting better gas barrier properties or moisture resistance from the viewpoint of maintaining the quality of contents.
  • a laminate composed of a base material layer (resin film) / metal foil layer (aluminum foil) / sealant layer is known.
  • a metal can type has been the mainstream of the exterior material of a lithium ion battery, but there have been pointed out disadvantages such as a low degree of freedom in shape and difficulty in weight reduction. For this reason, it has been proposed to use a laminate composed of a base material layer / metal foil layer / sealant layer or a laminate composed of a base material layer / base material layer / metal foil layer / sealant layer as an exterior body.
  • a laminated body is widely used because it is flexible and has a high degree of freedom in shape as compared to a metal can, and can be reduced in weight by thinning and can be easily reduced in size. ing.
  • the moldability in this case is the moldability particularly when the film is cold-molded (cold processing). That is, when a product is produced by molding a film, the molding conditions are as follows: a) hot molding in which the resin is melted under heating and b) cold molding in which the resin is molded without melting. Although there is inter-molding, in the above-mentioned applications, moldability in cold molding (particularly drawing and overhanging) is required. Cold molding is a molding method that is more advantageous than hot molding in that it is superior in terms of production speed and cost because it does not have a heating step, and can draw out the original characteristics of the resin. For this reason, the development of a film suitable for cold forming is being promoted as a polyamide film.
  • a stretched polyamide film As such a polyamide film, a stretched polyamide film is known (for example, Patent Documents 1 and 2).
  • these polyamide-based films are produced by stretching by a tubular method. That is, not only is the productivity low, but the stretched film obtained is not sufficiently satisfactory in terms of thickness uniformity, dimensional stability, and the like.
  • a fatal defect such as a breakage of the metal foil or a pinhole may occur.
  • Patent Documents 3 to 10 polyamide films stretched by the tenter method have also been proposed (for example, Patent Documents 3 to 10).
  • the tenter method is advantageous in terms of productivity, dimensional stability and the like as compared with the tubular method.
  • the polyamide film 14 is manufactured by a process as shown in FIG.
  • the melt-kneaded material 12 is prepared by melting the raw material 11 in the melt-kneading step 11a.
  • the melt-kneaded material 12 is shape
  • the polyamide-based film 14 is obtained by biaxially stretching the unstretched sheet 13 in the stretching step 13a. Further, this stretched polyamide film 14 is laminated in the cold forming step 15a as a secondary process after the laminated body 17 is produced through a laminating step 14a in which, for example, the metal foil layer 15 and the sealant film 16 are sequentially bonded.
  • Various products 18 (for example, containers) are formed by processing the body 17 into a predetermined shape.
  • a stretched polyamide-based film 14 it is desirable to reduce variations in physical properties in each direction on the plane, but at least four directions at every 90 degrees (with any direction as a reference (0 degree)) In contrast, it is preferable to reduce variations in physical properties in the clockwise direction (a total of four directions of 45 degrees, 90 degrees, and 135 degrees).
  • a biaxially stretched polyamide-based film as shown in FIG. 4, if an MD (film flow direction) at the time of biaxial stretching is a reference direction (0 degree direction), centering on an arbitrary point A.
  • A Reference direction (0 degree direction), (b) 45 degree direction clockwise with respect to MD (hereinafter referred to as “45 degree direction”), (c) 90 degree direction clockwise with respect to MD Direction (TD: direction perpendicular to the film flow direction) (hereinafter referred to as “90-degree direction”) and (d) 135 degrees in the clockwise direction with respect to MD (hereinafter referred to as “135-degree direction”). It is desirable to eliminate variations in physical properties in four directions.
  • the thickness of the film is one of the physical properties that affect the moldability during cold forming.
  • a laminated body including a polyamide-based film having a variation in film thickness is cold-molded, there is a high possibility that a relatively thin portion is broken to cause a pinhole or cause delamination. For this reason, it is indispensable to uniformly control the thickness of the polyamide film used for cold forming throughout the film.
  • the thickness accuracy of the polyamide-based film obtained by Patent Documents 3 to 10 above is better when stretched by the tenter method than by the tubular method. Is not fully satisfactory. That is, as described above, it is necessary to uniformly extend in four directions that are vertically and horizontally oblique at the time of cold forming, and therefore, it is necessary to have a sufficient thickness uniformity enough to withstand cold forming. In particular, as the film thickness is reduced (particularly, the thickness is about 15 ⁇ m or less), the influence of the thickness uniformity on the moldability becomes more remarkable.
  • the uniformity of the thickness of the film is easier to ensure as the thickness increases, so it may be possible to design the film to be relatively thick in order to ensure the uniformity of the thickness.
  • polyamide-based films and laminates used for cold forming have come to be widely used mainly for lithium-ion battery exterior materials, which further increases the output and size of batteries. With the demand for cost reduction, etc., it is required to make the polyamide film thinner. However, if the thickness is reduced, it is difficult to ensure the uniformity of the thickness.
  • the adhesive layer has an effect of imparting extensibility to the metal foil with the polyamide film. It is important not to inhibit.
  • the main object of the present invention is to provide a polyamide-based laminated film that is excellent in thickness uniformity, effectively suppresses variations in physical properties in the four directions, and can impart sufficient spreadability to the metal foil. It is to provide.
  • the present inventor can achieve the above object based on the knowledge that a polyamide-based film having specific physical properties can be obtained by adopting a specific production method.
  • the headline and the present invention were completed.
  • this invention relates to the following polyamide-type laminated
  • a laminated film comprising a polyamide-based film and a copolymerized polyester resin layer on at least one of the surfaces thereof, wherein the polyamide-based film has the following properties (1) and (2); (1) A specific direction from an arbitrary point in a polyamide-based film is set to 0 degree, and each of the four directions of 45 degrees, 90 degrees, and 135 degrees clockwise with respect to that direction at the time of 5% elongation by a uniaxial tensile test The difference between the maximum value and the minimum value of the stress is 35 MPa or less, and (2) the difference between the maximum value and the minimum value of each stress at 15% elongation by the uniaxial tensile test in the four directions is 40 MPa or less.
  • the polyamide-based film has a specific direction of 0 degrees from any point, and the thickness in eight directions of 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees, and 315 degrees clockwise with respect to that direction.
  • Item 2. The polyamide-based laminated film according to Item 1, wherein the standard deviation is 0.200 ⁇ m or less. 3.
  • the polyamide-based laminated film according to Item 1 wherein the polyamide-based film contains at least one of an organic lubricant and an inorganic lubricant. 6).
  • Item 2. The polyamide-based laminated film according to Item 1, wherein the copolymerized polyester resin layer includes a copolymerized polyester resin having a glass transition temperature of 10 ° C or lower. 7). 7.
  • a laminate comprising the polyamide-based laminated film according to any one of items 1 to 6 and a metal foil. 8).
  • a method for producing a laminated film comprising a polyamide-based film and a copolymerized polyester resin layer on at least one surface of the polyamide-based film, the first step of producing the polyamide-based film and a copolymerized polyester resin layer on the polyamide-based film And a second step of laminating
  • the first step includes (1) A sheet forming step of obtaining an unstretched sheet by forming a melt-kneaded product containing a polyamide resin into a sheet shape, (2) including a stretching step of obtaining a stretched film by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD, and (3) the following formulas a) and b); a) 0.85 ⁇ X / Y ⁇ 0.95 b) 8.5 ⁇ X ⁇ Y ⁇ 9.5 (However, X represents the draw ratio of MD and Y represents the draw ratio of TD.) Satisfy both A method for producing a polyamide-based laminated film, comprising: 10.
  • the stretching process is sequential biaxial stretching, (2-1) a first stretching step for obtaining a first stretched film by stretching the unstretched sheet into MD at a temperature of 50 to 120 ° C. and (2-2) the first stretch step at a temperature of 70 to 150 ° C.
  • item 9 including the 2nd extending process which obtains a 2nd stretched film by extending
  • Item 11 The method for producing a polyamide-based laminated film according to Item 10, wherein the first stretching step is stretching using a roll, and the second stretching step is stretching using a tenter. 12 Item 11.
  • the method for producing a polyamide-based laminated film according to Item 10 wherein the second stretched film is further subjected to relaxation heat treatment at a temperature of 180 to 230 ° C. 13.
  • Item 11 The method for producing a polyamide-based laminated film according to Item 10, wherein the second step includes a step of applying a coating liquid containing a copolymerized polyester resin to at least one surface of the polyamide-based film.
  • the polyamide-based film in the polyamide-based laminated film of the present invention has excellent thickness uniformity and excellent stress balance when stretched in four directions including a 0 degree direction, a 45 degree direction, a 90 degree direction, and a 135 degree direction. .
  • the laminated body obtained by laminating the laminated film of the present invention and the metal foil is one in which the metal foil has good extensibility, and is drawn by cold forming (particularly deep drawing or stretch forming). In carrying out the process, breakage, delamination, pinholes and the like of the metal foil are effectively suppressed or prevented, and a highly reliable high quality product (molded product) can be obtained.
  • the polyamide film in the present invention is a very thin film having a thickness of, for example, 16 ⁇ m or less, it is excellent in the balance of stress at the time of elongation in the four directions and in the uniformity of the thickness.
  • stacked this film and metal foil can obtain the product reduced in size with high output by cold forming, and becomes advantageous also in cost.
  • the polyamide-based laminated film of the present invention has a copolymerized polyester resin layer as an adhesive layer, it has excellent adhesion to the metal foil and imparts extensibility to the metal foil of the polyamide-based film. Does not hinder the effect. For this reason, it becomes possible to obtain the laminated body excellent in cold moldability by using the polyamide-type laminated film of this invention with metal foil.
  • the manufacturing method of the polyamide-type film of this invention the polyamide-type film which has the above outstanding characteristics can be manufactured efficiently and reliably. In particular, even a very thin film having a thickness of 16 ⁇ m or less can provide a film having excellent thickness uniformity. And when extending
  • FIG. 1 It is a schematic diagram which shows the outline
  • the polyamide-based laminated film of the present invention (hereinafter simply referred to as “laminated film”) is a laminated film comprising a polyamide-based film and a copolymerized polyester resin layer on at least one surface thereof.
  • the polyamide film has the following characteristics (1) and (2): (1) A specific direction from an arbitrary point in a polyamide-based film is set to 0 degree, and each of the four directions of 45 degrees, 90 degrees, and 135 degrees clockwise with respect to that direction at the time of 5% elongation by a uniaxial tensile test The difference between the maximum value and the minimum value of the stress is 35 MPa or less, and (2) the difference between the maximum value and the minimum value of each stress at 15% elongation by the uniaxial tensile test in the four directions is 40 MPa or less. , It is characterized by satisfying all.
  • FIG. 7 shows a schematic diagram of the layer structure of the laminated film of the present invention.
  • a polyamide-based film 51 is used as a base material layer, and a copolymerized polyester resin layer 52 is laminated on one surface thereof.
  • the copolyester resin layer 52 is disposed on one side of the polyamide film 51, but may be disposed on both sides.
  • the copolyester resin layer 52 may be laminated immediately adjacent to the polyamide film 51, or a primer layer formed between the polyamide film 51 and the copolyester resin layer 52 (see FIG. (Not shown). Below, the structure of the laminated
  • a polyamide-based film (hereinafter sometimes abbreviated as “the film of the present invention”) is (1) a specific direction in the polyamide-based film is defined as 0 degree, and 45 in a clockwise direction with respect to that direction. In four directions of degrees, 90 degrees, and 135 degrees, the difference (A value) between the maximum value and the minimum value of each stress at the time of 5% elongation by the uniaxial tensile test is 35 MPa or less. (2) In the four directions, the difference (B value) between the maximum value and the minimum value of each stress at 15% elongation by a uniaxial tensile test is 40 MPa or less.
  • the film of the present invention is a film mainly composed of a polyamide resin.
  • the polyamide resin is a polymer formed by amide bonding of a plurality of monomers. Representative examples thereof include 6-nylon, 6,6-nylon, 6,10-nylon, 11-nylon, 12-nylon, poly (metaxylene adipamide), and the like.
  • As the polyamide resin for example, 6-nylon / 6,6-nylon, 6-nylon / 6,10-nylon, 6-nylon / 11-nylon, 6-nylon / 12-nylon, etc.
  • a polymer may be used. Moreover, these may be mixed. Among these, from the viewpoint of cold moldability, strength, cost, etc., a) 6-nylon homopolymer, b) copolymer containing 6-nylon, or c) a mixture thereof is preferable.
  • the number average molecular weight of the polyamide resin is not particularly limited and can be changed according to the kind of the polyamide resin to be used. However, it is usually preferably about 10,000 to 40,000, particularly 15,000 to 25,000. By using a polyamide resin within such a range, it becomes easy to stretch even at a relatively low temperature. As a result, crystallization that may occur when stretching at a relatively high temperature, resulting in a decrease in cold formability, etc. It can be avoided reliably.
  • the content of the polyamide resin in the film of the present invention is usually 90 to 100% by mass, preferably 95 to 100% by mass, and more preferably 98 to 100% by mass. That is, a component other than the polyamide resin may be included as necessary within a range not impeding the effects of the present invention.
  • various additives such as pigments, antioxidants, ultraviolet absorbers, preservatives, antistatic agents, inorganic fine particles, as well as bending resistance pinhole improvers such as polyolefins, polyamide elastomers, polyester elastomers, etc. You may add 1 type, or 2 or more types.
  • lubricant for imparting slip properties.
  • examples of the method of adding these lubricants (particles) include a method of adding particles in a polyamide resin as a raw material, a method of adding them directly to an extruder, and the like. May be employed, or two or more methods may be used in combination.
  • the present invention film includes not only the polyamide film itself but also a polyamide film in which a primer layer is formed.
  • the adhesiveness of a polyamide-type film and metal foil can be improved more, if a copolyester resin layer is formed in the primer layer surface and metal foil is bonded together.
  • the adhesive strength with metal foil improves, sufficient spreadability can be provided with metal foil.
  • the case of including such a primer layer is also included in the polyamide film of the present invention.
  • a layer containing various synthetic resins such as polyurethane resin, acrylic resin, and polyester resin can be employed.
  • a primer layer containing a polyurethane resin is preferable.
  • a polyurethane resin for example, an anionic water-dispersible polyurethane resin is preferably contained.
  • the primer layer containing this resin can be suitably formed, for example, by applying an aqueous coating material containing the resin to the surface of the polyamide-based film (not having a primer layer).
  • the polyurethane resin is a polymer obtained, for example, by a reaction between a polyfunctional isocyanate and a hydroxyl group-containing compound. More specifically, polyfunctional isocyanates such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate, polymethylene polyphenylene polyisocyanate, or aliphatic polyisocyanates such as hexamethylene diisocyanate, xylene isocyanate, and polyether polyols, The urethane resin obtained by reaction with hydroxyl-containing compounds, such as polyester polyol, polyacrylate polyol, and polycarbonate polyol, can be illustrated.
  • polyfunctional isocyanates such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate, polymethylene polyphenylene polyisocyanate, or aliphatic polyisocyanates such as hexamethylene diisocyanate, xy
  • the anionic water-dispersible polyurethane resin used in the present invention is obtained by introducing an anionic functional group into a polyurethane resin.
  • the method for introducing an anionic functional group into the polyurethane resin is not limited. For example, a) a method using a diol having an anionic functional group as a polyol component, and b) an anionic functional group as a chain extender. Examples include a method using a diol.
  • diol having an anionic functional group examples include glyceric acid, dioxymaleic acid, dioxyfumaric acid, tartaric acid, dimethylolpropionic acid, dimethylolbutanoic acid, 2,2-dimethylolvaleric acid, and 2,2-dimethylolpentanoic acid.
  • aliphatic carboxylic acids such as 4,4-di (hydroxyphenyl) valeric acid and 4,4-di (hydroxyphenyl) butyric acid
  • aromatic carboxylic acids such as 2,6-dioxybenzoic acid and the like can be mentioned.
  • a volatile base When dispersing an anionic polyurethane resin in water, it is generally preferable to use a volatile base.
  • the volatile base is not particularly limited, and a known volatile base can be used. More specifically, ammonia, methylamine, ethylamine, dimethylamine, diethylamine, triethylamine, morpholine, ethanolamine and the like are exemplified. Among these, triethylamine is more preferable in that the liquid stability of the water-dispersible polyurethane resin is good and the residual amount in the primer layer is small because the boiling point is relatively low.
  • the primer layer For the purpose of improving the water resistance, heat resistance, etc. of the primer layer, it is preferable to contain a melamine resin in the primer layer.
  • the content of the melamine resin is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the anionic water-dispersible polyurethane resin.
  • a typical example of a melamine resin is tri (alkoxymethyl) melamine.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Various melamine resins may be used alone or in combination of two or more.
  • the solid content concentration of the anionic water-dispersible polyurethane resin in the aqueous coating can be appropriately changed depending on the specifications of the coating device, drying / heating device, etc., but in the case of a too dilute solution, the drying process takes a long time. It is easy to cause the problem. On the other hand, if the solid content concentration is too high, it is difficult to obtain a uniform coating agent, and this tends to cause problems in coating properties. From such a viewpoint, the solid content concentration of the anionic water-dispersible polyurethane resin in the aqueous coating material is preferably in the range of 3 to 30% by mass.
  • an anionic water-dispersible polyurethane resin in addition to the main component, an anionic water-dispersible polyurethane resin, the above-mentioned components can be added to the aqueous coating material. Further, various additives such as an antifoaming agent, a surfactant, an antistatic agent, and a slip agent can be added in order to improve the coating property when the aqueous coating agent is applied to the film.
  • the surfactant is not particularly limited, but anionic surfactants such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, etc.
  • anionic surfactants such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, etc.
  • nonionic surfactants such as acetylene glycol can be mentioned.
  • the surfactant is preferably contained in the aqueous coating agent in an amount of 0.01 to 1% by mass. Moreover, it is preferable that it volatilizes by the heat processing in the manufacturing process of a polyamide-type film.
  • the thickness of the primer layer is not limited, it is usually preferably 0.01 to 0.10 ⁇ m, more preferably 0.02 to 0.09 ⁇ m.
  • the thickness of the primer layer is less than 0.01 ⁇ m, it becomes difficult to form a primer layer having a uniform thickness on the film. As a result, the effect of improving the adhesion between the polyamide film and the metal foil as described above is poor.
  • the thickness of the primer layer exceeds 0.10 ⁇ m, the effect of improving the adhesion between the polyamide film and the metal foil is saturated, which is disadvantageous in cost.
  • the film of the present invention preferably has a biaxially oriented molecular orientation.
  • Such a film can be basically obtained by biaxial stretching.
  • a biaxially stretched film using a roll and a tenter is suitable.
  • the film of the present invention must satisfy both the A value and the B value at the same time as an index indicating that the stress balance during elongation in the secondary processing is very excellent. To do.
  • the A value and the B value exceed the above ranges, the stress balance in all directions of the polyamide film is poor, and it becomes difficult to obtain uniform moldability.
  • uniform moldability cannot be obtained, for example, when cold-molding a laminate in which the film of the present invention and a metal foil are laminated, sufficient spreadability is not imparted to the metal foil (that is, the polyamide film is a metal foil). Therefore, the metal foil is likely to break, or problems such as delamination and pinholes are likely to occur.
  • the A value is usually 35 MPa or less, particularly 30 MPa or less, more preferably 25 MPa or less, and most preferably 20 MPa or less.
  • the lower limit value of the A value is not limited, but is usually about 15 MPa.
  • the B value is usually 40 MPa or less, particularly 38 MPa or less, more preferably 34 MPa or less, and most preferably 30 MPa or less.
  • the lower limit of the B value is not limited, but is usually about 20 MPa.
  • the stress in the four directions at the time of 5% elongation is not particularly limited, but in terms of the cold formability of the laminate, any of them is preferably in the range of 35 to 130 MPa, and in the range of 40 to 90 MPa. More preferably, it is most preferably in the range of 45 to 75 MPa.
  • the stress in the four directions at the time of 15% elongation is not particularly limited, but in terms of the cold formability of the laminate, any of them is preferably in the range of 55 to 145 MPa, and in the range of 60 to 130 MPa. More preferably, it is most preferably in the range of 65 to 115 MPa.
  • the stress in the four directions in the film of the present invention is measured as follows. First, the film of the present invention was conditioned at 23 ° C. ⁇ 50% RH for 2 hours, and then, as shown in FIG. 5, an arbitrary position on the film was set as the center point A, and the reference direction (0 degree direction) of the film was arbitrary. And 45 degrees direction (b), 90 degree direction (c) and 135 degree direction (d) from the reference direction (a) in the clockwise direction as the measurement directions, and each measurement direction from the center point A The sample was cut into a strip shape of 100 mm and 15 mm perpendicular to the measurement direction. For example, as shown in FIG.
  • the sample 41 is cut out in the range of 30 mm to 130 mm from the center point A (vertical 100 mm ⁇ horizontal 15 mm). Cut the sample in the same way for the other directions.
  • a tensile tester AG-1S manufactured by Shimadzu Corporation
  • the stress at 5% and 15% elongation was obtained at a tensile speed of 100 mm / min. Measure each.
  • said MD becomes a reference direction when MD in the extending process at the time of film manufacture is known.
  • the film of the present invention that satisfies the above characteristic values is preferably obtained by a biaxial stretching method including a step in which at least one of the longitudinal direction and the transverse direction is stretched by a tenter.
  • a biaxial stretching method a simultaneous biaxial stretching method in which a longitudinal direction and a transverse direction are simultaneously performed, and a sequential biaxial stretching in which a longitudinal direction is performed and then a transverse direction is performed.
  • the vertical direction is exemplified as the previous step, but in the present invention, either the vertical direction or the horizontal direction may be the first step.
  • the film of the present invention is preferably obtained by a sequential biaxial stretching method from the standpoint of flexibility in setting stretching conditions. Therefore, the film of the present invention is preferably obtained by sequential biaxial stretching including a step in which at least one of the longitudinal direction and the transverse direction is stretched by a tenter.
  • the film of the present invention is desirably manufactured by the manufacturing method of the present invention described later.
  • the film of the present invention has 0 standard deviation with respect to the thickness in the eight directions described below as an index indicating that the thickness accuracy (thickness uniformity) is very high. It is preferably 200 or less, more preferably 0.180 or less, and even more preferably 0.160 or less. When the standard deviation indicating the thickness accuracy is 0.200 or less, the variation in the thickness of the film surface becomes very small. For example, even when the thickness of the film is 16 ⁇ m or less, it is bonded to the metal foil. When the laminated body is subjected to deep-drawing cold forming, defects such as delamination and pinholes do not occur, and good moldability can be obtained.
  • the thickness accuracy is low, and particularly when the film thickness is small, sufficient extensibility cannot be imparted to the metal foil when bonded to the metal foil, resulting in delamination. Or generation
  • the thickness accuracy was evaluated by adjusting the polyamide film at 23 ° C. ⁇ 50% RH for 2 hours, and then setting an arbitrary position on the film as a center point A as shown in FIG. After specifying the direction, the center point A is the reference direction (a), 45 degrees direction (b), 90 degrees direction (c), 135 degrees direction (d), 180 degrees direction ( e) Draw a total of 8 straight lines L1 to L8 each having a length of 100 mm in 8 directions of 225 degree direction (f), 270 degree direction (g), and 315 degree direction (h).
  • FIG. 6 shows a state in which measurement points (10 points) when measuring L2 in the 45 degree direction are taken as an example. And the average value of the measured value of 80 data obtained by measuring in all the straight lines is calculated, this is set as the average thickness, and the standard deviation of the thickness is calculated using the obtained 80 data. .
  • said MD becomes a reference direction when MD in the extending process at the time of film manufacture is known.
  • the average thickness and the standard deviation may be based on the point A in any one place of the polyamide film, but in the polyamide film wound around the obtained film roll, the following 3 It is more desirable that the average thickness and the standard deviation are within the above ranges at any point.
  • the three points are a) a position near the center of the winding width and half the winding amount, b) a position near the right end of the winding width and half the winding amount, and c) the winding width. It is a position near the left end of and near the end of the winding.
  • the average thickness of the film of the present invention is preferably 30 ⁇ m or less, more preferably 26 ⁇ m or less, further preferably 16 ⁇ m or less, more preferably 15.2 ⁇ m or less, and 12. Most preferably, it is 2 ⁇ m or less.
  • the film of the present invention is preferably laminated with a metal foil to form a laminate (a laminate including a metal foil), and can be suitably used for cold forming applications.
  • a film is excellent in the stress balance at the time of extension in the four directions, even if it is a thin film, by performing biaxial stretching using a tenter as described later under stretching conditions that satisfy specific conditions. And it can be set as the film whose thickness precision (thickness uniformity etc.) in the said 4 directions is very high. As a result, it is possible to obtain excellent cold formability.
  • the lower limit of the thickness of the film is not particularly limited, but if the average thickness is less than 2 ⁇ m, impartability to the metal foil when bonded to the metal foil tends to be insufficient, and the moldability is poor. Usually, it may be about 2 ⁇ m.
  • the polyamide-based film of the present invention is a laminate bonded to a metal foil and is preferably used for cold forming applications.
  • the polyamide-based film of the present invention satisfying the above characteristics is used and will be described later.
  • a copolyester resin is used for the adhesive layer, the adhesiveness to the metal foil is excellent, and sufficient spreadability can be imparted to the metal foil. This effect improves moldability during cold forming (particularly during drawing (especially deep drawing)), prevents metal foil from breaking, and causes defects such as delamination and pinholes. Can also be suppressed or prevented.
  • the thickness of the polyamide film decreases, it becomes difficult to impart sufficient spreadability to the metal foil.
  • the stress at the time of stretching varies, and the thickness accuracy is low, so that the polyamide film or the metal foil is significantly broken by the pressing force at the time of cold forming.
  • the thinner the film the greater the variation in stress when stretched, and the greater the variation in thickness, and thus a higher degree of control is required.
  • the thickness is 15 ⁇ m or less, and the variation in stress at the time of elongation is small. It is difficult to manufacture a product with high accuracy.
  • Patent Documents 1 to 10 only a minimum of 15 ⁇ m thickness of polyamide-based film described as a specific example is disclosed.
  • the present invention by adopting a specific manufacturing method as described later, even when the thickness is 16 ⁇ m or less, the stress balance at the time of elongation in the four directions is excellent, and the thickness A polyamide-based film having high uniformity can be provided.
  • a special polyamide-based film when a laminate laminated with a metal foil is used, for example, for an exterior body of a battery (for example, a lithium ion battery), for example, the number of electrodes, the capacity of an electrolyte, etc. can be increased. In addition, the battery itself can be reduced in size and cost.
  • the polyamide-based laminated film of the present invention includes a copolymerized polyester resin layer together with the polyamide-based film of (A).
  • the copolymerized polyester resin layer and the like will be described.
  • Copolyester resin layer copolymerized polyester resin layer comprises a copolymerized polyester resin as a resin component.
  • the copolymerized polyester resin layer mainly functions as an adhesive layer and has particularly excellent low-temperature adhesiveness.
  • the content of the copolyester resin in the copolyester resin layer is usually preferably about 80 to 100% by weight, more preferably 90 to 100% by weight. Therefore, other components may be contained in the copolymerized polyester resin layer within a range not impairing the effects of the present invention.
  • the copolyester resin is not limited as long as it has the above-mentioned functions, but those having a glass transition temperature of 30 ° C. or lower are particularly preferable, those having a glass transition temperature of 10 ° C. or lower are more preferable, and further ⁇ 40 to 10 ° C. Some are most preferred.
  • the glass transition temperature exceeds 30 ° C., the adhesiveness at a low temperature may be lowered.
  • the low-temperature adhesiveness is lowered, a heat treatment at a high temperature is required to improve the adhesiveness. As a result, it becomes difficult to simplify the processing process and reduce the cost.
  • the glass transition temperature is lower than ⁇ 40 ° C., the adhesiveness at low temperature tends to be poor.
  • a copolymer containing a dicarboxylic acid component (hereinafter simply referred to as “acid component” unless otherwise specified) and a glycol component as shown below can be preferably used.
  • the acid component preferably contains terephthalic acid and isophthalic acid.
  • the contents of both are not particularly limited, but can be, for example, 30 to 80 mol% of terephthalic acid in the acid component and 20 to 60 mol% of isophthalic acid, and more preferably 35 to 35 mol of terephthalic acid in the dicarboxylic acid component. 75 mol% and isophthalic acid 20 to 50 mol%.
  • the total content of terephthalic acid and isophthalic acid in the acid component is not limited, but it is usually preferably 30 mol% or more, particularly preferably 50 mol% or more, and more preferably 80 mol%. % Or more is most preferable.
  • the copolymerized polyester resin may contain a dicarboxylic acid component other than terephthalic acid and isophthalic acid as long as the effects of the present invention are not hindered.
  • aromatic dicarboxylic acids such as phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, diphenic acid; oxalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, Saturated aliphatic dicarboxylic acids such as sebacic acid, dodecanedioic acid, eicosane diacid, hydrogenated dimer acid; fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, dimer acid, etc.
  • 1,4-cyclohexanedicarboxylic acid 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and anhydrides thereof; tetrahydrophthalic acid and anhydrides thereof Alicyclic dicarboxylic acids such as products; 5-sodium sulfoisophthalic acid, 5-na Such dicarboxylic acids having a sulfonic acid salt such as potassium sulfo terephthalic acid.
  • polyvalent carboxylic acids having 6 or more carbon atoms in the main chain are preferred, and the dicarboxylic acid component preferably contains 3 to 48 mol%.
  • the polyvalent carboxylic acid having 6 or more carbon atoms in the main chain include adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Of these, sebacic acid is preferred.
  • the upper limit of the number of carbon atoms in the main chain in the polyvalent carboxylic acid is not limited, but is usually about 20.
  • the “main chain” in the present invention refers to a linear carbon chain having a continuous and maximum number of carbon atoms.
  • the content of the dicarboxylic acid component other than terephthalic acid and isophthalic acid in the copolyester resin is not limited, but it is usually preferably 3 to 48 mol% in the dicarboxylic acid component.
  • the glycol component preferably contains a glycol having a main chain having 6 or more carbon atoms. Further, the upper limit of the carbon number of the main chain can be about 150, for example, but is not limited thereto. For example, a range of about 6 to 120 can be set as the carbon number.
  • glycols having 6 or more carbon atoms in the main chain examples include 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, and 1,9-nonanediol.
  • 1,4-cyclohexanedimethanol and polytetramethylene glycol is more preferable.
  • polytetramethylene glycol is more preferable in that the effect of improving the adhesiveness at a low temperature is higher.
  • the content of glycol having 6 or more carbon atoms in the main chain can be appropriately set according to the type of glycol component used and the like, but is usually preferably 1 to 45 mol%, particularly 3 to 40 mol in the glycol component. More preferably, it is mol%, and most preferably 4 to 35 mol%. In particular, when polytetramethylene glycol is used, the content thereof is more preferably 3 to 20 mol% in the glycol component, and most preferably 4 to 15 mol%.
  • the copolymerized polyester resin may contain a glycol component other than glycol having a main chain having 6 or more carbon atoms.
  • glycol components include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,5-pentanediol.
  • Aliphatic glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol and 2-ethyl-2-butylpropanediol; alicyclic glycols such as 1,3-cyclobutanedimethanol; 2,2-bis Examples include alkylene oxide adducts of [4- (hydroxyethoxy) phenyl] propane and alkylene oxide adducts of bis [4- (hydroxyethoxy) phenyl] sulfone.
  • ethylene glycol and neopentyl glycol are preferably contained in a total of 55 mol% or more in the acid component, and in particular, it is preferable to contain 65 mol% or more in total. Furthermore, since the effect of improving adhesiveness at low temperature is high, it is preferable to contain 35 mol% or more of neopentyl glycol, and it is preferable to contain 40 mol% or more.
  • ethylene glycol can be 15 to 60 mol% and neopentyl glycol 30 to 60 mol%, preferably ethylene glycol 20 to 55 mol% and neopentyl glycol 35 to 50 mol%. Can do.
  • a modified resin obtained by modifying such a copolymer in addition to the above-described copolymer containing an acid component and a glycol component, a modified resin obtained by modifying such a copolymer can also be employed.
  • a modified resin include a polyester polyurethane resin that is a polymer of the copolymer and an organic diisocyanate compound.
  • organic diisocyanate component known or commercially available isocyanates can be used. Specifically, 1,6-hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, tetramethylene diisocyanate, 3,3 ′ -Dimethoxy-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 2,6-naphthalene diisocyanate, 3,3'-dimethyl-4,4'-diisocyanate, 4,4'-diisocyanate diphenyl ether, 1,5 -Xylylene diisocyanate, 1,3-diisocyanate methylcyclohexane, 1,4-diisocyanate methylcyclohexane, 4,4'-d
  • 1,6-hexamethylene diisocyanate 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate
  • 1,6-hexamethylene diisocyanate can be preferably used from the viewpoints of reactivity, weather resistance, and the like.
  • 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate can be preferably used.
  • Such a polyester polyurethane resin may be a known or commercially available one. Moreover, what was manufactured by the well-known method is also employable.
  • Examples of the method for producing a polyester polyurethane resin include a method of reacting a copolymerized polyester resin and an organic diisocyanate in a solution.
  • a copolymer containing an acid component and a glycol component is prepared in advance, and the copolymer is dissolved in a general-purpose solvent such as toluene.
  • a general-purpose solvent such as toluene.
  • an organic diisocyanate component and a urethanization catalyst are charged and reacted at 40 to 80 ° C. to obtain a target polyester polyurethane resin.
  • urethanization catalyst is not limited, and examples thereof include organotin compounds such as dibutyltin dilaurate and tin octylate, and amine catalysts such as triethylenediamine.
  • the coating film obtained by applying to the substrate and drying is subjected to a heat treatment at 40 to 80 ° C. for 2 to 7 days to react.
  • a method for obtaining a polyester polyurethane resin can also be employed.
  • the urethanization catalyst as described above may be added to the solvent.
  • the copolyester resin contains a crosslinking agent.
  • the adhesiveness of a polyamide-type film and metal foil can be improved, and especially water resistance (performance which does not produce peeling easily even if it immerses in high temperature water) can be improved further.
  • the crosslinking agent is not particularly limited, and examples thereof include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, carbodiimide compounds, oxazoline group-containing compounds, aziridine compounds, zirconium salt compounds, and silane coupling agents. Among these, it is preferable to use an isocyanate compound in terms of particularly high reactivity.
  • the content of the crosslinking agent in the copolymerized polyester resin is preferably 0.01 to 40% by mass, and more preferably 0.1 to 38% by mass.
  • the content of the crosslinking agent is less than 0.01% by mass, the effect of improving the adhesiveness or water resistance as described above becomes poor.
  • the content of the crosslinking agent exceeds 40% by mass, the resin composition is cured, and it is difficult to follow the elongation of the polyamide film or the metal foil, and the cold formability tends to be poor.
  • the thickness of the copolymerized polyester resin layer can be appropriately set according to the use of the polyamide-based laminated film of the present invention, but is generally preferably 0.1 to 15 ⁇ m, The thickness is more preferably 0.3 to 12 ⁇ m, and most preferably 0.5 to 10 ⁇ m.
  • attaching a polyamide-type laminated film and another base material tends to become inadequate.
  • the said thickness exceeds 15 micrometers, there exists a possibility that it may become difficult to apply
  • the polyamide-based laminated film of the present invention has a copolymerized polyester resin layer, which will be described in detail below, on at least one surface of the film of the present invention.
  • the primer layer (on the entire surface or part of at least one surface of the polyamide-based film) It is preferable to have an anchor coat layer (AC layer). That is, in the polyamide-based laminated film of the present invention, a copolymer polyester resin layer may be laminated immediately adjacent to the polyamide-based film, or the primer layer of the polyamide-based film and the copolymer polyester resin layer are adjacent to each other. And may be laminated.
  • the manufacturing method of the present invention is a method of manufacturing a laminated film including a polyamide-based film and a copolymerized polyester resin layer on at least one surface of the polyamide-based film. And a second step of laminating a copolymer polyester resin layer on the polyamide film,
  • the first step includes (1) A sheet process (sheet forming process) for obtaining an unstretched sheet by forming a melt-kneaded product containing a polyamide resin into a sheet shape, (2) Step of obtaining a stretched film by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD (stretching step) Including, and (3) the following formulas a) and b); a) 0.85 ⁇ X / Y ⁇ 0.95 b) 8.5 ⁇ X ⁇ Y ⁇ 9.5 (However, X represents the draw ratio of MD and Y represents the draw ratio of TD.) It is characterized by that.
  • the sheet forming process sheet forming step to obtain an unstretched sheet by molding the melt-kneaded product containing a polyamide resin into a sheet.
  • polyamide resin various materials as described above can be used.
  • additives can also be contained in the melt-kneaded product.
  • the preparation of the melt-kneaded product itself may be performed according to a known method. For example, by feeding a raw material containing polyamide resin into an extruder equipped with a heating device and melting it by heating to a predetermined temperature, the molten kneaded product is extruded by a T-die and cooled and solidified by a casting drum or the like. An unstretched sheet that is a sheet-like molded body can be obtained.
  • the average thickness of the unstretched sheet is not particularly limited, but is generally about 15 to 250 ⁇ m, and preferably 50 to 235 ⁇ m. By setting within such a range, the stretching step can be carried out more efficiently.
  • a stretched film is obtained by biaxially stretching the unstretched sheet sequentially or simultaneously in MD and TD.
  • At least one direction of MD and TD is obtained by sequential biaxial stretching including a step of stretching by a tenter. Thereby, a more uniform film thickness can be obtained.
  • the tenter itself is a device conventionally used for stretching a film, and is a device that widens in the longitudinal direction and / or the lateral direction while gripping both ends of an unstretched sheet. Even when a tenter is used, there are two methods of simultaneous biaxial stretching and sequential biaxial stretching. Simultaneous biaxial stretching using a tenter is a method in which MD and TD are biaxially stretched simultaneously by a tenter by stretching to MD while holding both ends of an unstretched film.
  • sequential biaxial stretching using a tenter is: 1) a method of stretching an MD by passing an unstretched sheet through a plurality of rolls having different rotational speeds, and then stretching the stretched film to TD by a tenter; ) There is a method of stretching an MD of an unstretched sheet with a tenter, and then stretching the stretched film to TD with a tenter.
  • the method of 1) above is particularly preferable in terms of physical properties and productivity of the resulting film. preferable.
  • the unstretched film is sequentially biaxially stretched by the steps as shown in FIG.
  • the unstretched sheet 13 is stretched in the MD (longitudinal direction) by passing through a plurality of rolls 21. Since these plural rolls have different rotational speeds, the unstretched sheet 13 is stretched in the MD due to the speed difference. That is, the unstretched sheet is stretched by passing it from the low-speed roll group to the high-speed roll group.
  • the number of rolls is five, but actually, other numbers may be used.
  • rolls having different functions can be installed in the form of a preheating roll, a stretching roll, and a cooling roll in order.
  • the number of rolls having these functions can also be set as appropriate.
  • the first stretched film 13 ′ that has passed the roll 21 is stretched to TD by being introduced into the tenter 22. More specifically, as shown in FIG. 3, the first stretched film 13 ′ introduced into the tenter 22 is held by a clip connected to a link device 34 that is fixed to the guide rail at both ends near the entrance. It passes through the preheating zone 31, the stretching zone 32, and the relaxation heat treatment zone 33 in the order of the flow direction. The first stretched film 13 ′ is heated to a certain temperature in the preheating zone 31 and then stretched to TD in the stretching zone 32. Thereafter, relaxation treatment is performed at a constant temperature in the relaxation heat treatment zone 33. In this way, the second stretched film 14 (present film) is obtained. Thereafter, the link device 34 fixed to the guide rail is removed from the second stretched film 14 near the exit of the tenter 22 and returned to the vicinity of the entrance of the tenter 22.
  • sequential biaxial stretching using a tenter is advantageous in terms of productivity, equipment and the like since MD is stretched by a roll, and is advantageous in controlling film thickness and the like because TD is stretched by a tenter.
  • the following formulas a) and b) in the stretching step, the following formulas a) and b); a) 0.85 ⁇ X / Y ⁇ 0.95 (Preferably 0.89 ⁇ X / Y ⁇ 0.93) b) 8.5 ⁇ X ⁇ Y ⁇ 9.5 (Preferably 8.7 ⁇ X ⁇ Y ⁇ 9.1) (However, X represents the MD draw ratio and Y represents the TD draw ratio). If any one of the above conditions a) and b) is not satisfied, the resulting polyamide-based film has a poor balance of stress in the four directions, making it difficult to obtain the film of the present invention.
  • the temperature condition in the stretching step for example, when performing the above-mentioned simultaneous biaxial stretching, it is preferable to stretch in a temperature range of 180 ° C. to 220 ° C.
  • MD stretching may be performed in a temperature range of 50 to 120 ° C. (especially 50 to 80 ° C., more preferably 50 to 70 ° C., and further 50 to 65 ° C.).
  • the TD stretching is preferably performed in a temperature range of 70 to 150 ° C. (especially 70 to 130 ° C., more preferably 70 to 120 ° C., and further 70 to 110 ° C.).
  • the film of the present invention can be produced more reliably.
  • These temperatures can be set and controlled while preheating, for example, in the roll 21 (preheating roll) shown in FIG. 2, the preheating zone 31 of the tenter shown in FIG.
  • the relaxation heat treatment is preferably performed at a relaxation rate of 2 to 5% in the temperature range of 180 to 230 ° C. These temperatures can be set and controlled in the relaxation heat treatment zone of the tenter shown in FIG.
  • the heating method of the present invention preferably includes a method of blowing hot air.
  • a sequential biaxial stretching step in which MD is stretched by a roll and TD is stretched by a tenter can be suitably employed.
  • the temperature conditions shown below it becomes possible to further improve the stress balance at the time of stretching in the four directions, and the thickness accuracy in the four directions is higher.
  • the film of the present invention having an average thickness of 16 ⁇ m or less can be obtained more reliably and efficiently.
  • the temperature in the stretching in the MD it is preferable to stretch at a temperature range of 50 ⁇ 70 ° C. using a roll, and more preferably in the Among these 50 ⁇ 65 ° C..
  • MD stretching is preferably performed in two or more stages.
  • the first stage draw ratio is 1.1 to 1.2
  • the second stage stretch ratio is 2.3 to 2.6. It can be appropriately set within the range of .53 to 3.12.
  • the temperature gradient in MD stretching is preferable to provide a temperature gradient in MD stretching.
  • the temperature difference from T2 is usually preferably 2 ° C. or higher, and more preferably 3 ° C. or higher.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film is preferably usually 1 to 5 seconds, more preferably 2 to 4 seconds. preferable.
  • TD Stretching TD stretching is performed by a tenter in which each zone is formed as shown in FIG.
  • the temperature of the preheating zone is preferably 60 to 70 ° C.
  • the temperature of the stretching zone is preferably in the temperature range of 70 to 130 ° C., more preferably in the temperature range of 75 to 120 ° C., and most preferably in the temperature range of 80 to 110 ° C. .
  • the temperature gradient (temperature difference between the beginning (inlet) temperature T1 and the end (exit) temperature T2 in the running direction of the film) is usually preferably 5 ° C. or more, and more preferably 8 More preferably, the temperature is higher than or equal to ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film in the stretching zone is usually preferably 1 to 5 seconds, particularly 2 to 4 seconds. It is more preferable.
  • the heat treatment temperature is usually preferably in the range of 180 to 230 ° C., more preferably in the range of 180 to 220 ° C., and most preferably in the range of 180 to 210 ° C.
  • the relaxation rate is usually preferably about 2 to 5%.
  • the polyamide-based film of the present invention having a primer layer on at least one surface of the film surface, it is preferable to carry out the same stretching method and stretching conditions as described above.
  • the coating amount of the aqueous coating agent is preferably adjusted so that the primer layer formed on the stretched film surface has a thickness of 0.01 to 0.10 ⁇ m.
  • a stretching method other than the above is not adopted as the stretching step from the viewpoint of maintaining the uniformity of thickness.
  • the polyamide-based laminated film of the present invention is produced by laminating a copolymerized polyester resin layer on the polyamide-based film obtained in the first step.
  • the method for forming the copolyester resin layer is not particularly limited.
  • the copolyester resin layer is formed by a method including a step of applying and drying a coating liquid obtained by dissolving or dispersing the copolyester resin in a solvent on a polyamide film.
  • Method b) Any method including a step of laminating a preformed film for a copolyester resin layer on a polyamide film may be used, but it is particularly easy to adjust the thickness of the coating film and to make the film thin From the viewpoint of being, it is desirable to adopt the method a).
  • a coating liquid in which a copolyester resin is dissolved or dispersed in a solvent is prepared.
  • the solid content concentration of the coating liquid is not particularly limited, but generally may be set as appropriate within a range of about 5 to 50% by mass.
  • Examples of the solvent used in the coating liquid include water, ketone organic solvents, aromatic hydrocarbon organic solvents, ether organic solvents, halogen-containing organic solvents, alcohol organic solvents, ester organic solvents, glycols, and the like.
  • Organic solvents such as organic solvents can be used. These may be known or commercially available.
  • the organic solvent the following solvents can be used. In addition, you may use the solvent to be used individually or in combination of 2 or more types.
  • ketone organic solvent examples include methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, 2-hexanone, 5-methyl-2-hexanone, cyclopentanone, and cyclohexanone.
  • aromatic hydrocarbon organic solvent examples include toluene, xylene, benzene and the like.
  • ether organic solvent examples include dioxane and tetrahydrofuran.
  • halogen-containing organic solvent examples include carbon tetrachloride, trichloromethane, dichloromethane and the like.
  • Examples of the alcohol organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert-amyl alcohol.
  • 1-ethyl-1-propanol, 2-methyl-1-butanol and the like can be used.
  • ester organic solvents examples include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, 3-methoxybutyl acetate, and methyl propionate.
  • glycol organic solvents include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Examples include diethylene glycol monobutyl ether and diethylene glycol ethyl ether acetate.
  • organic solvents such as 3-methoxy-3-methylbutanol, 3-methoxybutanol, acetonitrile, dimethylformamide, dimethylacetamide, diacetone alcohol and the like can be used.
  • a coating solution in which a resin is dissolved or dispersed in water
  • a resin is dissolved or dispersed in water
  • an emulsifier may be used as necessary, and a known method such as a method of neutralizing using a basic compound as a dispersion aid can also be applied.
  • a known method can be used. Examples include gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, and brushing.
  • the uniform liquid layer is formed in close contact with the coating surface by subjecting it to a drying treatment or a heat treatment for drying.
  • the temperature for the heat treatment is not particularly limited, but is usually about 70 to 150 ° C., preferably about 80 to 120 ° C. Further, if necessary, it can be held at a relatively low temperature for the purpose of aging or the like. For example, it can be maintained in a temperature range of 50 ° C. or less (preferably 25 to 45 ° C.).
  • the holding time is not limited, and may be set as appropriate within a range of about 1 to 96 hours, for example.
  • the laminated body of the present invention comprises the laminated film of the present invention and a metal foil.
  • multilayer film of this invention is preferable.
  • stacked another layer through the adhesive layer further on such a laminated body may be sufficient.
  • the adhesive layer it is particularly desirable to employ the above-mentioned copolymerized polyester resin layer.
  • a laminated body 60 having a three-layer structure in which a polyamide film 51 / a copolyester resin layer 52 / a metal foil 53 are laminated in this order may be mentioned.
  • the composition, thickness, etc. may be the same or different from each other.
  • it is desirable that a primer layer (not shown) is formed on at least the surface on which the copolymerized polyester layer is laminated on the polyamide film surface.
  • the metal foil examples include metal foils (including alloy foils) containing various metal elements (aluminum, iron, copper, nickel, etc.), and pure aluminum foils or aluminum alloy foils are particularly preferably used.
  • the aluminum alloy foil preferably contains iron (aluminum-iron-based alloy, etc.), and other components are publicly known as defined by JIS, etc. as long as the moldability of the laminate is not impaired. Any component may be included as long as the content is within the range.
  • the thickness of the metal foil is not particularly limited, but is preferably 15 to 80 ⁇ m, more preferably 20 to 60 ⁇ m from the viewpoint of moldability and the like.
  • the sealant film it is preferable to employ a thermoplastic resin having heat sealing properties such as polyethylene, polypropylene, olefin copolymer, polyvinyl chloride and the like.
  • the thickness of the sealant film is not limited, but is usually preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the laminate of the present invention may include the film of the present invention and a polyester film.
  • the polyester film and the base material are bonded via a copolymerized polyester resin layer.
  • it shall have a copolymerized polyester resin layer on both surfaces of the film of the present invention, and a laminate in which polyester film / copolymerized polyester resin layer / film of the present invention / copolymerized polyester resin layer / metal foil are laminated in this order.
  • a laminate including a polyester film heat resistance, voltage resistance, chemical resistance, and the like can be improved, and peel strength can also be increased.
  • the polyester forming the polyester film is not particularly limited, and for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2, 6-naphthalate and the like are preferable. Among these, it is preferable to use PET from the viewpoint of cost and effect.
  • the laminate of the present invention includes the film of the present invention, it can be suitably used for cold forming (particularly deep drawing or stretch forming).
  • the draw molding is basically a method of molding a bottomed container having a shape such as a cylinder, a rectangular tube, or a cone from a single laminate. Such containers are generally characterized by no seams.
  • the container containing the laminate of the present invention also includes a container containing the laminate of the present invention.
  • molded using the laminated body of this invention is also included by this invention.
  • a container manufactured by drawing (drawing) or bulging (extension) as cold forming is preferable, and a container manufactured by pultrusion is particularly preferable.
  • the container according to the present invention is a method for producing a container from the laminate of the present invention, and preferably comprises a method for producing a container comprising a step of cold forming the laminate. Can do. Therefore, for example, a seamless container can be produced from the laminate of the present invention.
  • the cold forming method itself in this case is not limited, and can be performed according to a known method.
  • the molding temperature (the temperature of the laminate) can be appropriately set according to the physical properties of the resin used (for example, the glass transition point).
  • the molding temperature is preferably 50 ° C. or lower, more preferably 45 ° C. or lower. Therefore, for example, cold molding can be performed after setting the molding temperature to room temperature (about 20 to 30 ° C.). For example, cold molding can be performed at a temperature below the glass transition point of the resin.
  • drawing such as cylindrical drawing, rectangular drawing, irregular drawing, conical drawing, pyramid drawing, ball head drawing, etc.
  • the drawing process is classified into a shallow drawing process and a deep drawing process, but the laminate of the present invention can be applied particularly to a deep drawing process.
  • drawing processes can be carried out using a normal mold.
  • a press machine including a punch, a die, and a blank holder, a) a step of placing the laminate of the present invention between the die and a blank holder, and b) deformation into a container shape by pushing the punch into the laminate.
  • the drawing process can be performed by a method including a step of causing the drawing process.
  • the container obtained in this way can be highly reliable because defects such as metal foil breakage, delamination, and pinholes are effectively suppressed. For this reason, the container which concerns on this invention can be used for various uses including the packaging material of various industrial products.
  • a molded body by deep drawing is suitably used for an exterior body of a lithium ion battery, and a molded body by overhang molding is suitably used for a press-through pack or the like.
  • Glass transition temperature (Tg) of copolyester resin According to JIS-K 7121, an input compensation type differential scanning calorimeter (diamond DSC type manufactured by PerkinElmer Co., Ltd.) was used to measure from 20 ° C. to 120 ° C. under a temperature rising rate of 10 ° C./min. Find the temperature at the intersection of the straight line in the temperature rise curve, which extends the low temperature side baseline to the high temperature side, and the tangent line drawn at the point where the slope of the step change part of the glass transition is maximum. The transition temperature was used.
  • Thickness of primer layer The obtained polyamide-based film was embedded in an epoxy resin, and a slice having a thickness of 100 nm was collected with a frozen ultramicrotome. The cutting temperature was ⁇ 120 ° C., and the cutting speed was 0.4 mm / min. The collected sections were subjected to gas phase staining with a RuO 4 solution for 1 hour, and the primer layer thickness was measured by transmission measurement at an acceleration voltage of 100 kV using JEM-1230 TEM (manufactured by JEOL Ltd.). At this time, arbitrary 5 points
  • the esterification reaction was allowed to proceed for 3 hours. After 3 hours, the temperature in the system was 240 ° C., and the system was depressurized. After the inside of the system reached a high vacuum (pressure: 0.1 to 10 ⁇ 5 Pa), a polymerization reaction was further performed for 3 hours to obtain a copolyester resin (A).
  • Preparation Examples 2-7 Copolymerized polyester resins (B) to (G) were obtained in the same manner as in Preparation Example 1, except that the types of components used, their compositions, and the polymerization reaction time were changed as shown in Table 1.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • ADA adipic acid (the main chain has 6 carbon atoms)
  • AZA Azelaic acid (main chain has 8 carbon atoms)
  • SEA Sebacic acid (main chain has 9 carbon atoms)
  • EG Ethylene glycol
  • NPG Neopentyl glycol
  • CHDM 1,4-cyclohexanedimethanol
  • PTMG1000 Polytetramethylene glycol (molecular weight: 1000, main chain carbon number is about 54)
  • HD 1,6-hexanediol (main chain has 6 carbon atoms)
  • Table 1 shows the charged composition at the time of preparation of the obtained copolymer polyester resins (A) to (G) and the composition and characteristic values of the obtained copolymer.
  • Example 1 Manufacture of polyamide-based film Using a polyamide 6 resin (A1030BRF, relative viscosity 3.1) manufactured by Unitika Co., Ltd. and a nylon 6 resin (A1030QW, relative viscosity 2.7) containing 6% by mass of silica as a raw material, A1030BRF / silica-containing Nylon resin was melt kneaded in an extruder at a composition ratio of 97.5 / 2.5 (mass ratio), supplied to a T die, and discharged into a sheet. The said sheet
  • the obtained unstretched sheet was subjected to a stretching process by sequential biaxial stretching. More specifically, after the MD of the sheet was stretched using a roll, the TD was stretched by a method of stretching using a tenter.
  • the MD was stretched by passing the sheet through a plurality of stretching rolls so that the total stretching ratio was 2.85 times.
  • the heating conditions were stretched along a film take-off direction by providing a temperature gradient such that the beginning (T1) of the running direction was 58 ° C. and the end (T2) was 61 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film was about 3 seconds.
  • a polyurethane water dispersion was coated on one side with a gravure coater so that the coat thickness after stretching was 0.03 to 0.08 ⁇ m. Thereafter, TD was stretched.
  • aqueous dispersion 7 parts by mass of tri (methoxymethyl) melamine resin (“Beccamin APM” manufactured by DIC) is used with respect to 100 parts by mass of an anionic water-dispersible polyurethane resin (“Hydran KU400SF” manufactured by DIC). An aqueous coating obtained by mixing was used.
  • TD stretching was performed using a tenter as shown in FIG.
  • a preheating zone (preheating portion) temperature 70 ° C.
  • the film was stretched 3.2 times to TD in the stretching zone.
  • a temperature gradient was provided along the film take-up direction so that the beginning (T1) of the running direction was 78 ° C. and the end (T2) was 100 ° C.
  • the running time (heating time) of the film from the beginning (inlet) to the end (outlet) of the running direction of the film in the stretching zone was about 3 seconds.
  • the film that passed through the stretching zone was subjected to relaxation heat treatment in a relaxation heat treatment zone (heat treatment part) at a temperature of 202 ° C. and a relaxation rate of 3%.
  • a relaxation heat treatment zone heat treatment part
  • surface was obtained by manufacturing continuously 1000 m or more.
  • the obtained film was wound up into a roll.
  • Adhesive Copolymerized polyester resin A obtained in Preparation Example 1 was used as the copolyester resin, and 95% by mass of copolyester resin A and a crosslinking agent [4,4′-diphenylmethane diisocyanate (Mitsui “Polymeric MDI” manufactured by Kagaku Co., Ltd.)] was mixed so that the concentration was 5 mass%, and a mixed solvent of toluene and methyl ethyl ketone in a mass ratio of 8: 2 was added so that the resin solids concentration would be 20 mass%. Then, it was dissolved with a paint shaker to obtain an adhesive (A-1).
  • a crosslinking agent [4,4′-diphenylmethane diisocyanate (Mitsui “Polymeric MDI” manufactured by Kagaku Co., Ltd.)] was mixed so that the concentration was 5 mass%, and a mixed solvent of toluene and methyl ethyl ketone in a
  • the adhesive (A- 1) was coated using a desktop coating apparatus (film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542-AB type, equipped with a bar coater), and then dried in hot air at 80 ° C. for 1 minute to give a resin having a film thickness of 3.5 ⁇ m A film was formed and heat treated at 40 ° C. for 72 hours.
  • a desktop coating apparatus film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542-AB type, equipped with a bar coater
  • the surface of the polyamide film is laminated so that one side of the metal foil [aluminum foil: thickness 40 ⁇ m (JIS standard A8079H-O)] is in close contact, and the upper and lower roll surface temperature is 80 ° C., linear pressure is 40 N / cm, speed Dry lamination was performed under conditions of 1 m / min, and heat treatment was performed at 40 ° C. for 96 hours to obtain a laminate having a three-layer structure [polyamide film / copolyester resin layer / metal foil].
  • the metal foil aluminum foil: thickness 40 ⁇ m (JIS standard A8079H-O)
  • linear pressure is 40 N / cm
  • speed Dry lamination was performed under conditions of 1 m / min
  • heat treatment was performed at 40 ° C. for 96 hours to obtain a laminate having a three-layer structure [polyamide film / copolyester resin layer / metal foil].
  • a sealant film [unstretched polypropylene film (GHC thickness, 50 ⁇ m, Mitsui Chemicals Tosero Co., Ltd. )] And aged for 72 hours in an atmosphere of 40 ° C. to prepare a laminate of 5 layers [polyamide film / copolyester resin layer / metal foil / copolyester resin layer / sealant film]. did.
  • Example 2 to 41 Comparative Examples 1 to 20
  • a polyamide film was obtained in the same manner as in Example 1, except that the production conditions and the target thickness of the stretched polyamide film were changed to those shown in Tables 2 to 5 and Tables 7 to 8.
  • a laminate was produced in the same manner as in Example 1. However, about Example 21, more specifically, it changed as follows.
  • Example 42 As the copolyester resin, the copolyester resin A obtained in Preparation Example 1 was used, the copolyester resin A was 95% by mass, a cross-linking agent [tolylene diisocyanate (“Desmodur by Sumika Covestrourethane Co., Ltd.”). The adhesive (A-2) was obtained in the same manner as in Example 1 except that E14 ")] was blended so as to be 5% by mass. Next, a laminate having a three-layer structure was prepared in the same manner as in Example 1 except that the adhesive (A-2) was used for the polyamide-based film obtained in Example 1, and a five-layer structure was further obtained. A laminate was obtained.
  • a cross-linking agent tolylene diisocyanate (“Desmodur by Sumika Covestrourethane Co., Ltd.”).
  • the adhesive (A-2) was obtained in the same manner as in Example 1 except that E14 ")] was blended so as to be 5% by mass.
  • Example 43 A three-layered laminate was produced in the same manner as in Example 42 except that the polyamide-based film obtained in Example 8 was used as the polyamide-based film, and a five-layered laminate was further obtained.
  • Example 44 As the copolyester resin, the copolyester resin A obtained in Preparation Example 1 was used, 95% by mass of the copolyester resin A, and a crosslinking agent [hexamethylene diisocyanate (“TPA-100” manufactured by Asahi Kasei Chemicals Corporation)].
  • An adhesive (A-3) was obtained in the same manner as in Example 1 except that the amount was 5% by mass.
  • a laminate having a three-layer structure was obtained in the same manner as in Example 1 except that the adhesive (A-3) was used for the polyamide-based film obtained in Example 1, and a laminate having a five-layer structure was further obtained. Got the body.
  • Example 45 A three-layered laminate was obtained in the same manner as in Example 44 except that the polyamide-based film obtained in Example 8 was used as the polyamide-based film, and a five-layered laminate was further obtained.
  • Example 46 An adhesive (A-4) was obtained in the same manner as in Example 1 except that only the copolyester resin A obtained in Preparation Example 1 was used as the copolyester resin and no crosslinking agent was blended. Next, a laminate having a three-layer structure was prepared in the same manner as in Example 1 except that the adhesive (A-4) was used for the polyamide-based film obtained in Example 1, and a five-layer structure was further obtained. A laminate was obtained.
  • Example 47 A three-layered laminate was obtained in the same manner as in Example 46 except that the polyamide-based film obtained in Example 8 was used as the polyamide-based film, and a five-layered laminate was obtained.
  • Adhesives (B) to (G) were obtained in the same manner as in Example 1 except that the copolymer polyester resins B to G obtained in Preparation Examples 2 to 8 shown in Table 1 were used as the copolymer polyester resin. It was. Next, a laminate having a three-layer structure was prepared in the same manner as in Example 1 except that the adhesives (B) to (G) shown in Tables 19 to 20 were used for the polyamide-based film obtained in Example 1. This was manufactured to obtain a laminate having a five-layer structure.
  • Adhesives (B) to (G) were obtained in the same manner as in Example 1 except that the copolymer polyester resins B to G obtained in Preparation Examples 2 to 8 shown in Table 1 were used as the copolymer polyester resin. It was. A laminate having a three-layer structure was produced in the same manner as in Example 1 except that the adhesives (B) to (G) shown in Tables 19 to 20 were used for the polyamide-based film obtained in Example 8. Further, a laminate having a five-layer structure was obtained.
  • Example 60 Polyester polyurethane obtained by solution polymerization using copolymer polyester resin A obtained in Preparation Example 1 as the copolymer polyester resin and hexamethylene diisocyanate (“TPA-100” manufactured by Asahi Kasei Chemicals Corporation) as the isocyanate compound.
  • TPA-100 hexamethylene diisocyanate
  • Example 60 Polyester polyurethane obtained by solution polymerization using copolymer polyester resin A obtained in Preparation Example 1 as the copolymer polyester resin and hexamethylene diisocyanate (“TPA-100” manufactured by Asahi Kasei Chemicals Corporation) as the isocyanate compound.
  • TPA-100 hexamethylene diisocyanate
  • a body was prepared, and a laminate having a five-layer structure was obtained.
  • Example 61 A laminate having a three-layer structure was prepared in the same manner as in Example 1 except that the adhesive (H) obtained in Example 60 was used for the polyamide-based film obtained in Example 8, and five layers were further formed. A laminate of structure was obtained.
  • Example 62 In the laminate of the five-layer structure obtained in Example 1, the surface of the polyamide film that is not laminated with the aluminum foil was coated with the adhesive (A) in the same manner as in Example 1, and the film thickness was 3.5 ⁇ m. A copolymerized polyester resin layer (a) was formed. A PET film (Embret PET-12 thickness 12 ⁇ m manufactured by Unitika Co., Ltd.) was bonded to the surface of this resin layer, and a 7-layer laminate [PET film / copolyester resin layer (a) / polyamide film / copolyester resin) Layer / metal foil / copolymerized polyester resin layer / sealant film].
  • PET film Embret PET-12 thickness 12 ⁇ m manufactured by Unitika Co., Ltd.
  • Example 63 Except for using the five-layer laminate obtained in Example 8, in the same manner as in Example 62, a seven-layer laminate [PET film / copolyester resin layer (a) / polyamide film / Copolymerized polyester resin layer / metal foil / copolymerized polyester resin layer / sealant film] was prepared.
  • Example 64-67 The three-layer structure was the same as in Example 1 except that the resin film shown in Tables 20 to 21 was formed using the adhesive (A-1) on the polyamide-based film obtained in Example 1. A laminate having a five-layer structure was obtained.
  • Example 68 In the preparation of the adhesive, the copolymerized polyester resin A obtained in Preparation Example 1 was used as the copolymerized polyester resin, 99% by mass of the copolymerized polyester resin A, and the crosslinking agent [4,4′-diphenylmethane diisocyanate (Mitsui Chemicals). Except for blending so that it might be 1 mass%, an adhesive (A-1-1) was obtained. Other than that was carried out similarly to Example 1, and produced the laminated body of 3 layer structure, and also obtained the laminated body of 5 layer structure.
  • Example 69 In the preparation of the adhesive, the copolymerized polyester resin A obtained in Preparation Example 1 was used as the copolymerized polyester resin, 65% by mass of the copolymerized polyester resin A, and the crosslinking agent [4,4′-diphenylmethane diisocyanate (Mitsui Chemicals). Except that the amount of “Polymeric MDI” manufactured by the company was blended to 35% by mass, the same procedure as in Example 1 was carried out to obtain an adhesive (A-1-2). Other than that was carried out similarly to Example 1, and produced the laminated body of 3 layer structure, and also obtained the laminated body of 5 layer structure.
  • the crosslinking agent [4,4′-diphenylmethane diisocyanate
  • Example 70 In the preparation of the adhesive, the copolymerized polyester resin A obtained in Preparation Example 1 was used as the copolymerized polyester resin, and 99% by mass of the copolymerized polyester resin A and a cross-linking agent [tolylene diisocyanate (Sumika Covestro An adhesive (A-2-1) was obtained in the same manner as in Example 1 except that “Desmodule E14” manufactured by Urethane Co., Ltd.)] was blended so as to be 1% by mass. Other than that was carried out similarly to Example 1, and produced the laminated body of 3 layer structure, and also obtained the laminated body of 5 layer structure.
  • a cross-linking agent tolylene diisocyanate (Sumika Covestro An adhesive (A-2-1) was obtained in the same manner as in Example 1 except that “Desmodule E14” manufactured by Urethane Co., Ltd.)] was blended so as to be 1% by mass.
  • Example 71 In the preparation of the adhesive, the copolymerized polyester resin A obtained in Preparation Example 1 was used as the copolymerized polyester resin, and 65% by mass of the copolymerized polyester resin A and a cross-linking agent [tolylene diisocyanate (Suika Covestro The same procedure as in Example 1 was carried out except that “Desmodur E14” produced by Urethane Co., Ltd.)] was blended so as to be 35% by mass to obtain an adhesive (A-2-2). Other than that was carried out similarly to Example 1, and produced the laminated body of 3 layer structure, and also obtained the laminated body of 5 layer structure.
  • Comparative Example 21 In place of the adhesive (A-1), a two-component polyurethane adhesive (“TM-K55 / CAT-10L” manufactured by Toyo Morton) was used for the polyamide film obtained in Example 1, and the coating thickness was Was applied to 3.5 ⁇ m, and then dried at 80 ° C. for 10 seconds. The same metal foil as in Example 1 was bonded to the adhesive-coated surface. Next, after apply
  • TM-K55 / CAT-10L manufactured by Toyo Morton
  • Test example 1 The physical properties of the polyamide-based films and laminates obtained in each Example and Comparative Example were evaluated. The evaluation results are shown in Tables 9-21. Regarding the units in the table, the temperature unit is “° C.”, the average thickness and thickness accuracy unit is “ ⁇ m”, the primer layer thickness unit is “ ⁇ m”, the stress unit is “MPa”, and the drawing depth is The unit of thickness indicates “mm”. The magnification is a magnification based on 1.
  • each draw ratio indicates a ratio (times) based on 1.
  • the unit of each heat treatment temperature is “° C.”
  • the unit of relaxation rate is “%”
  • the target thickness is “ ⁇ m”.
  • these laminates had a high Erichsen value and had a uniform extensibility in all directions when cold-molded. That is, the laminates of these examples had excellent moldability without causing the aluminum foil to break, delamination, pinholes, or the like.
  • the laminate including the polyamide-based laminated film and the metal foil had poor adhesion and water resistance. Inferior to alcohol or alcohol resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Wrappers (AREA)

Abstract

【課題】厚みの均一性に優れるとともに、0度方向、45度方向、90度方向及び135度方向からなる4方向における物性のバラツキが比較的小さなポリアミド系積層フィルム及びその製造方法を提供する。 【解決手段】ポリアミド系フィルム表面の少なくとも片面に、共重合ポリエステル樹脂層を有する積層フィルムであって、(1)ポリアミド系フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下、(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下であるポリアミド系積層フィルムに係る。

Description

ポリアミド系積層フィルム及びその製造方法
 本発明は、新規なポリアミド系積層フィルムとその製造方法に関する。さらに、本発明は、その積層フィルムを用いた積層体及び容器に関する。
 各種の樹脂フィルムは、さまざまな加工を施すことによって包装体等の各種の製品とされている。例えば、薬剤(錠剤)等の包装体(プレススルーパック)には塩化ビニルフィルムが使用されている。また例えば、防湿性が要求される内容物を包装する場合にはポリプロピレンフィルムが使用されている。近年では、内容物の品質保持の観点からより優れたガスバリア性又は防湿性を付与することを目的として、樹脂フィルムに金属箔を積層してなる積層体が使用されている。例えば、基材層(樹脂フィルム)/金属箔層(アルミニウム箔)/シーラント層から構成される積層体が知られている。
 工業分野においては、リチウムイオン電池の外装材は、従来より金属缶タイプが主流であるが、形状の自由度の低さ、軽量化の困難さ等の欠点が指摘されている。このため、基材層/金属箔層/シーラント層からなる積層体、あるいは基材層/基材層/金属箔層/シーラント層からなる積層体を外装体として用いることが提案されている。このような積層体は、金属缶と比較して柔軟で形状の自由度が高く、さらに薄膜化による軽量化が可能であり、かつ、小型化が容易であることから、広く用いられるようになっている。
 上記用途で使用される積層体にはさまざまな性能が要求されており、特に防湿性は非常に重要な要素となる。ところが、防湿性を付与するアルミニウム箔等の金属箔は単体では延展性に乏しく、成型性に劣る。このため、基材層を構成する樹脂フィルムとしてポリアミド系フィルムを用いることにより延展性を付与し、成型性を高めている。
 この場合の成型性とは、特にフィルムを冷間成型(冷間加工)する際の成型性である。すなわち、フィルムを成型することにより製品を製造する際、その成型条件として、a)樹脂を加熱下で溶融させて成型する熱間成型及びb)樹脂を溶融させることなく、固体のまま成型する冷間成型があるが、上記用途では冷間成型(特に絞り加工、張り出し加工)における成型性が求められる。冷間成型は、加熱工程がないので生産速度・コスト面で優れることに加え、樹脂本来の特徴を引き出せるという点で熱間成型よりも有利な成型方法である。このため、ポリアミド系フィルムとしても、冷間成型に適したフィルムの開発が進められている。
 このようなポリアミド系フィルムとしては、延伸加工されたポリアミド系フィルムが知られている(例えば特許文献1~2)。しかし、これらのポリアミド系フィルムは、チューブラー法で延伸することにより製造されたものである。すなわち、生産性が低いだけでなく、得られる延伸フィルムは厚みの均一性、寸法安定性等の点でいずれも十分に満足できるものではない。特に、フィルムの厚みにムラがある場合、そのフィルムと金属箔との積層体を冷間成型により加工しようとすると、金属箔の破断、ピンホール等の致命的な欠陥が生じるおそれがある。
 これに対し、テンター法で延伸されたポリアミド系フィルムも提案されている(例えば特許文献3~10)。テンター法は、チューブラー法に比べて生産性、寸法安定性等という点で有利である。
特許第5487485号 特許第5226942号 特許第5467387号 特開2011-162702号 特開2011-255931号 特開2013-189614号 特許第5226941号 特開2013-22773号 国際公開WO2014/084248号 特許第3671978号
 しかしながら、テンター法により延伸されたポリアミド系フィルムにおいても、フィルムの各方向において物性のバラツキ(異方性)がなお存在する。このため、冷間成型(特に深絞り成型)を行う際の成型性においては十分に満足できる性能を有しているとはいえない。
 ポリアミド系フィルム14は、図1に示すような工程で製造される。まず、原料11が溶融混練工程11aで溶融されることにより溶融混練物12が調製される。溶融混練物12を成形工程12aによりシート状に成形して未延伸シート13が得られる。次いで、未延伸シート13を延伸工程13aで二軸延伸されることによってポリアミド系フィルム14が得られる。さらに、この延伸されたポリアミド系フィルム14は、例えば金属箔層15とシーラントフィルム16とを順に貼り合わせる積層工程14aを経て積層体17を作製した後、二次加工として冷間成型工程15aにおいて積層体17が所定の形状に加工されることにより各種の製品18(例えば容器等)となる。
 このような延伸されたポリアミド系フィルム14において、その平面における各方向における物性のバラツキを軽減することが望ましいが、少なくとも90度ごとの4方向(任意の方向を基準(0度)として、その方向に対して時計回りで45度、90度及び135度の合計4方向)における物性のバラツキを減らすことが好ましい。例えば、二軸延伸されたポリアミド系フィルムでは、図4に示すように、任意の点Aを中心とし、二軸延伸時におけるMD(フィルムの流れ方向)を基準方向(0度方向)とすれば、(a)基準方向(0度方向)、(b)MDに対して時計回りに45度の方向(以下「45度方向」という。)、(c)MDに対して時計回りに90度の方向(TD:フィルムの流れ方向に対して直角方向)(以下「90度方向」という。)及び(d)MDに対して時計回りに135度の方向(以下「135度方向」という。)の4方向の物性のバラツキをなくすことが望ましい。
 延伸されたポリアミド系フィルム14を含む積層体17を冷間成型工程15aに供する場合、ポリアミド系フィルム14が全方向へ引き伸ばされるため、ポリアミド系フィルム14における前記4方向の物性にバラツキがある場合、冷間成型時に全方向へ均一に伸ばすことが困難となる。すなわち、伸びやすい方向と伸びにくい方向とが存在することで、金属箔が破断したり、デラミネーション又はピンホールが発生する。このような問題が起こると、包装体等としての機能が果たせなくなり、被包装体(内容物)の損傷等につながるおそれがある。このため、各方向における物性のバラツキをできるだけ低減することが必要である。
 この場合、冷間成型時の成型性に影響を与える物性の1つとしてフィルムの厚みがある。フィルムの厚みにバラツキがあるポリアミド系フィルムを含む積層体を冷間成型する場合は、相対的に薄い部分が破れてピンホールが生じたり、デラミネーションを引き起こすおそれが高くなる。このため、冷間成型に用いられるポリアミド系フィルムは、フィルム全体にわたって厚みを均一に制御することも必要不可欠である。
 ここに、ポリアミド系フィルムの厚みの均一性については、チューブラー法よりもテンター法で延伸された場合の方がほうが優れるものの、上記の特許文献3~10により得られたポリアミド系フィルムの厚み精度は十分に満足できるものではない。つまり、冷間成型時には上記したように縦横斜めの4方向に均一に伸ばすことが必要であるため、冷間成型に耐えられるだけの十分な厚みの均一性が必要である。とりわけ、フィルム厚みが薄くなればなるほど(特に厚みが約15μm以下)、厚みの均一性が成型性へ与える影響はより顕著になる。
 一般に、フィルムの厚みの均一性はその厚みが厚いほど確保しやすいので、厚みの均一性を確保するために比較的厚めに設計するということも考えられる。ところが、近年において、冷間成型用に使用されるポリアミド系フィルム及びその積層体は、リチウムイオン電池の外装材を中心に広く使用されるようになっており、電池のさらなる高出力化、小型化、コスト削減の要請等に伴い、ポリアミド系フィルムの厚みをより薄くすることが求められている。しかし、厚みを薄くすれば、それだけ厚みの均一性を確保することが困難となる。
 このように、より薄くても、厚みの均一性に優れるとともに前記4方向における物性のバラツキが比較的小さなポリアミド系フィルムの開発が切望されているものの、このようなフィルムは未だ開発されるに至っていないのが現状である。
 また、リチウムイオン電池の外装材としては、ポリアミド系フィルムと金属箔層とを接着剤にて接着させる必要があるが、ポリアミド系フィルムにより金属箔に延展性を付与する効果を、接着剤層により阻害しないことが重要である。
 従って、本発明の主な目的は、厚みの均一性に優れるとともに、前記4方向における物性のバラツキが効果的に抑えられ、金属箔に十分な延展性を付与することができるポリアミド系積層フィルムを提供することにある。
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の製法を採用することによって特異な物性を有するポリアミド系フィルムが得られるという知見に基づいて上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記のポリアミド系積層フィルム及びその製造方法に係る。
1. ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムであって、ポリアミド系フィルムは下記(1)及び(2)の特性;
(1)ポリアミド系フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であること、及び
(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下であること、
をすべて満たすことを特徴とするポリアミド系積層フィルム。
2. ポリアミド系フィルムは、任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度、135度、180度、225度、270度及び315度の8方向の厚みの標準偏差が0.200μm以下である、前記項1に記載のポリアミド系積層フィルム。
3. ポリアミド系フィルムの平均厚みが16μm以下である、前記項1に記載のポリアミド系積層フィルム。
4. 共重合ポリエステル樹脂層の厚みが0.1~15μmである、前記項1に記載のポリアミド系積層フィルム。
5. ポリアミド系フィルム中に有機滑剤及び無機滑剤の少なくとも1種を含有する、前記項1に記載のポリアミド系積層フィルム。
6. 共重合ポリエステル樹脂層が、ガラス転移温度が10℃以下である共重合ポリエステル樹脂を含む、前記項1に記載のポリアミド系積層フィルム。
7. 前記項1~6のいずれかに記載のポリアミド系積層フィルムと金属箔とを含む積層体。
8. 前記項7に記載の積層体を含む容器。
9. ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムを製造する方法であって、ポリアミド系フィルムを製造する第1工程とポリアミド系フィルムに共重合ポリエステル樹脂層を積層する第2工程とを含み、
 前記第1工程は、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
(2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る延伸工程
を含み、かつ、
(3)下記式a)及びb);
   a)0.85≦X/Y≦0.95
   b)8.5≦X×Y≦9.5
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
  の両方を満たす、
ことを特徴とするポリアミド系積層フィルムの製造方法。
10. 延伸工程が逐次二軸延伸であり、
(2-1)50~120℃の温度下で前記未延伸シートをMDに延伸することによって第1延伸フィルムを得る第1延伸工程及び
(2-2)70~150℃の温度下で前記第1延伸フィルムをTDに延伸することによって第2延伸フィルムを得る第2延伸工程
を含む、前記項9に記載のポリアミド系積層フィルムの製造方法。
11. 第1延伸工程がロールを用いる延伸であり、かつ、第2延伸工程がテンターを用いる延伸である、前記項10に記載のポリアミド系積層フィルムの製造方法。
12. 第2延伸フィルムをさらに180~230℃の温度下で弛緩熱処理を行う、前記項10に記載のポリアミド系積層フィルムの製造方法。
13. 第2工程が、共重合ポリエステル樹脂を含む塗工液をポリアミド系フィルムの少なくとも一方の表面に塗布する工程を含む、前記項10に記載のポリアミド系積層フィルムの製造方法。
 本発明のポリアミド系積層フィルムにおけるポリアミド系フィルムは、厚みの均一性に優れるとともに、0度方向、45度方向、90度方向及び135度方向からなる4方向における伸長時の応力バランスに優れている。このため、本発明の積層フィルムと金属箔とを積層して得られる積層体は、金属箔が良好な延展性を有するものとなり、冷間成型にて絞り成型(特に深絞り成型又は張り出し成型)を行う際に、金属箔の破断、デラミネーション、ピンホール等が効果的に抑制ないしは防止されており、信頼性の高い高品質の製品(成形体)を得ることが可能となる。
 特に、本発明におけるポリアミド系フィルムは、例えば厚みが16μm以下という極めて薄いものであっても、前記4方向における伸長時応力のバランスに優れるとともに、厚みの均一性に優れている。これにより、このフィルムと金属箔と積層した積層体は、冷間成型にてより高出力で小型化した製品を得ることが可能となり、コスト的にも有利になる。
 さらに、本発明のポリアミド系積層フィルムは、接着剤層として共重合ポリエステル樹脂層を有しているため、金属箔との接着性に優れるとともに、ポリアミド系フィルムが有する金属箔への延展性の付与効果を阻害することがない。このため、本発明のポリアミド系積層フィルムを金属箔と用いることにより、冷間成型性に優れた積層体を得ることが可能となる。また、本発明のポリアミド系フィルムの製造方法によれば、上記のような優れた特性を有するポリアミド系フィルムを効率的にかつ確実に製造することができる。特に、厚みが16μm以下という極めて薄いフィルムであっても、厚みの均一性に優れたフィルムを提供することができる。しかも、比較的低い温度で延伸する場合には、樹脂本来の特性をより効果的に維持できる結果、冷間成型によりいっそう適したフィルム及び積層体を提供することができる。
本発明のポリアミド系フィルムの製造工程及び冷間加工工程の概要を示す模式図である。 本発明の製造方法に係る逐次二軸延伸により未延伸シートが延伸される工程を示す模式図である。 テンターによる延伸工程を図2のa方向からみた状態を示す図である。 フィルムにおける応力を測定する方向を示す図である。 フィルムにおける応力を測定するための試料を示す図である。 フィルムにおける平均厚みを測定する方法を示す図である。 本発明のポリアミド系積層フィルムの層構成を示す図である。 本発明の積層体の実施形態に係る層構成を示す図である。 本発明の積層体の別の実施形態に係る層構成を示す図である。
1.ポリアミド系積層フィルム及びその製造方法
1-1.ポリアミド系積層フィルム
 本発明のポリアミド系積層フィルム(以下、単に「積層フィルム」という。)は、ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムであって、ポリアミド系フィルムは下記(1)及び(2)の特性;
(1)ポリアミド系フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であること、及び
(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下であること、
をすべて満たすことを特徴とする。
 図7に本発明の積層フィルムの層構成の模式図を示す。本発明の積層フィルム50は、ポリアミド系フィルム51を基材層として、その片面上に共重合ポリエステル樹脂層52が積層されている。図7では、共重合ポリエステル樹脂層52は、ポリアミド系フィルム51の片面上に配置されているが、両面上に配置されていても良い。また、共重合ポリエステル樹脂層52は、ポリアミド系フィルム51に直に隣接して積層されていても良いし、ポリアミド系フィルム51と共重合ポリエステル樹脂層52との層間に形成されたプライマー層(図示せず)を介して積層されていても良い。以下においては、本発明の積層フィルムの構成について説明する。
(A)ポリアミド系フィルム
 ポリアミド系フィルム(以下「本発明フィルム」と略することがある。)は、(1)ポリアミド系フィルムにおける特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差(A値)が35MPa以下である。(2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差(B値)が40MPa以下である。
(A-1)ポリアミド系フィルムの材質・組成
 本発明フィルムは、ポリアミド樹脂を主成分とするフィルムである。ポリアミド樹脂は、複数のモノマーがアミド結合して形成されたポリマーである。その代表的なものとしては、例えば6-ナイロン、6,6-ナイロン、6,10-ナイロン、11-ナイロン、12-ナイロン、ポリ(メタキシレンアジパミド)等が挙げられる。また、ポリアミド樹脂としては、例えば6-ナイロン/6,6-ナイロン、6-ナイロン/6,10-ナイロン、6-ナイロン/11-ナイロン、6-ナイロン/12-ナイロン等の2元以上の共重合体でも良い。また、これらが混合されたものであっても良い。上記の中でも、冷間成型性、強度、コスト等の観点から、a)6-ナイロンのホモポリマー、b)6-ナイロンを含むコポリマー又はc)これらの混合物が好ましい。
 ポリアミド樹脂の数平均分子量は、特に限定されず、用いるポリアミド樹脂の種類等に応じて変更できるが、通常10000~40000程度、特に15000~25000とすることが望ましい。このような範囲内のポリアミド樹脂を用いることにより、比較的低温下でも延伸しやすくなる結果、比較的高い温度下で延伸する場合に生じ得る結晶化及びそれによる冷間成型性の低下等をより確実に回避することができる。
 本発明フィルム中におけるポリアミド樹脂の含有量は、通常は90~100質量%であり、好ましくは95~100質量%であり、より好ましくは98~100質量%である。すなわち、本発明の効果を妨げない範囲内で、必要に応じてポリアミド樹脂以外の成分が含まれていても良い。例えば、ポリオレフィン類、ポリアミドエラストマー類、ポリエステルエラストマー類等の耐屈曲ピンホール性改良剤のほか、顔料、酸化防止剤、紫外線吸収剤、防腐剤、帯電防止剤、無機微粒子等の各種の添加剤を1種あるいは2種以上を添加しても良い。また、スリップ性を付与するための滑剤として、各種の無機滑剤、有機滑剤の少なくとも1種が含まれていることが好ましい。これら滑剤(粒子)を添加する方法としては、原料とするポリアミド樹脂中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれかの一方の方法を採用しても良く、2つ以上の方法を併用しても良い。
 本発明フィルムは、ポリアミド系フィルム自体のほか、ポリアミド系フィルムにプライマー層を形成したものも包含する。プライマー層を有するポリアミド系フィルムを用いる場合、プライマー層表面に共重合ポリエステル樹脂層を形成して金属箔を貼り合わせると、ポリアミド系フィルムと金属箔との接着性をより高めることができる。これにより、金属箔との接着強力が向上するとともに、金属箔により十分な延展性を付与することができる。このため、ポリアミド系フィルム又は金属箔が破断しにくくなることに加えて、デラミネーション又はピンホールの発生をより効果的に防止することができる。従って、このようなプライマー層を含む場合も、本発明のポリアミド系フィルムに包含される。
 プライマー層は、例えばポリウレタン樹脂、アクリル樹脂、ポリエステル樹脂等の各種の合成樹脂を含む層を採用することができる。特に、ポリウレタン樹脂を含むプライマー層が好ましい。このようなポリウレタン樹脂としては、例えばアニオン型水分散性ポリウレタン樹脂を含有することが好ましい。この樹脂を含有するプライマー層は、例えばポリアミド系フィルムの表面に前記樹脂を含む水性塗剤を(プライマー層を有しない)ポリアミド系フィルムに塗布することにより好適に形成することができる。
 ポリウレタン樹脂は、例えば多官能イソシアネートと水酸基含有化合物との反応により得られるポリマーである。より詳細には、トリレンジイソイアネート、ジフェニルメタンイソシアネート、ポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート、又はヘキサメチレンジイソシアネート、キシレンイソシアネート等の脂肪族ポリイソシアネート等の多官能イソシアネートと、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリレートポリオール、ポリカーボネートポリオール等の水酸基含有化合物との反応により得られるウレタン樹脂を例示することができる。
 本発明において用いられるアニオン型水分散性ポリウレタン樹脂は、ポリウレタン樹脂中にアニオン性官能基が導入されたものである。ポリウレタン樹脂中にアニオン性官能基を導入する方法としては、限定的でなく、例えばa)ポリオール成分としてアニオン性官能基を有するジオール等を用いる方法、b)鎖伸張剤としてアニオン性官能基を有するジオール等を用いる方法等が挙げられる。
 アニオン性官能基を有するジオールとしては、例えばグリセリン酸、ジオキシマレイン酸、ジオキシフマル酸、酒石酸、ジメチロールプロピオン酸、ジメチロールブタン酸、2,2-ジメチロール吉草酸、2,2-ジメチロールペンタン酸、4,4-ジ(ヒドロキシフェニル)吉草酸、4,4-ジ(ヒドロキシフェニル)酪酸等の脂肪族カルボン酸のほか、2,6-ジオキシ安息香酸等の芳香族カルボン酸等が挙げられる。
 アニオン型のポリウレタン樹脂を水中に分散させる際には、一般的に揮発性塩基が用いることが好ましい。揮発性塩基は、特に限定的でなく、公知のものを使用することができる。より具体的には、アンモニア、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、モルホリン、エタノールアミン等が例示される。この中でも、トリエチルアミンは、水分散性ポリウレタン樹脂の液安定性が良好であり、さらに沸点が比較的低温であることからプライマー層への残留量が少ないという点でより好ましい。
 上記のようなアニオン型水分散性ポリウレタン樹脂として市販品を用いることもできる。例えば、DIC社製の「ハイドランADS-110」、「ハイドランADS-120」、「ハイドランKU-400SF」、「ハイドランHW-311」、「ハイドランHW-312B」、「ハイドランHW-333」、「ハイドランAP-20」、「ハイドランAP-201」、「ハイドランAPX-101H」、「ハイドランAP-60LM」、第一工業製薬社製の「スーパーフレックス107M」、「スーパーフレックス150」、「スーパーフレックス150HS」、「スーパーフレックス410」、「スーパーフレックス420NS」、「スーパーフレックス460」、「スーパーフレックス460S」、「スーパーフレックス700」、「スーパーフレックス750」、「スーパーフレックス840」、三井化学ポリウレタン社製の「タケラックW-6010」、「タケラックW-6020」、「タケラックW-511」、「タケラックWS-6021」、「タケラックWS-5000」、DSM社製の「NeoRez R9679」、「NeoRez R9637」、「NeoRez R966」、「NeoRez R972」等が挙げられる。
 プライマー層の耐水性、耐熱性等の向上を目的として、プライマー層にメラミン樹脂を含有させることが好ましい。メラミン樹脂の含有量は、アニオン型水分散性ポリウレタン樹脂100質量部に対して1~10質量部とすることが好ましい。
 メラミン樹脂の代表的なものとして、トリ(アルコキシメチル)メラミンが挙げられる。そのアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。各種のメラミン樹脂は、それぞれ単独で使用しても良いし、2種以上を同時に使用しても良い。
 水性塗剤におけるアニオン型水分散性ポリウレタン樹脂の固形分濃度は、塗工装置、乾燥・加熱装置等の仕様によって適宜変更され得るものであるが、希薄すぎる溶液では、乾燥工程において長時間を要するという問題を生じやすい。他方、固形分濃度が高すぎると、均一な塗剤を得にくく、このため塗工性に問題を生じ易い。このような観点から、水性塗剤におけるアニオン型水分散性ポリウレタン樹脂の固形分濃度は3~30質量%の範囲であることが好ましい。
 水性塗剤には、主成分であるアニオン型水分散性ポリウレタン樹脂のほかに、上記のような各成分を添加することができる。さらに、水性塗剤をフィルムに塗布する際の塗工性を向上させるために、例えば消泡剤、界面活性剤、帯電防止剤、スリップ剤等の各種の添加剤を加えることができる。
 特に、界面活性剤を添加することにより、特に基材フィルムへの水性塗剤の濡れを促進することができる。界面活性剤は、特に限定されないが、例えばポリエチレンアルキルフェニルエーテル、ポリオキシエチレン-脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸金属石鹸、アルキル硫酸塩、アルキルスルホン酸塩、アルキルスルホコハク酸塩等のアニオン型界面活性剤のほか、アセチレングリコール等のノニオン型界面活性剤を挙げることができる。界面活性剤は、水性塗剤中に0.01~1質量%含まれていることが好ましい。また、ポリアミド系フィルムの製造工程における熱処理で揮発するものであることが好ましい。
 プライマー層の厚みは限定的ではないが、通常は0.01~0.10μmであることが好ましく、特に0.02~0.09μmであることがより好ましい。プライマー層の厚みが0.01μm未満であると、フィルム上に均一な膜厚のプライマー層を形成することが困難となる。その結果、上記したようなポリアミド系フィルムと金属箔の接着性の向上効果が乏しいものとなる。一方、プライマー層の厚みが0.10μmを超えると、ポリアミド系フィルムと金属箔の接着性が良好となる効果は飽和し、コスト的に不利になる。
(A-2)ポリアミド系フィルムの物性
 本発明フィルムは、好ましくは分子配向が二軸配向したものである。このようなフィルムは、基本的には二軸延伸によって得ることができる。特に、ロール及びテンターを用いて二軸延伸されたフィルムが好適である。
(A-2-1)応力特性
 本発明フィルムは、二次加工時における伸長時の応力バランスが非常に優れていることを示す指標として、前記A値及びB値を同時に満足することを必須とする。前記A値及びB値が上記範囲を超えるものとなると、ポリアミド系フィルムの全方向での応力バランスが悪く、均一な成型性を得ることが困難となる。均一な成型性が得られない場合、例えば本発明フィルムと金属箔とを積層した積層体を冷間成型する場合において、金属箔に十分な延展性が付与されない(すなわち、ポリアミド系フィルムが金属箔に追従しにくくなる)ため、金属箔の破断が発生したり、あるいはデラミネーション、ピンホール等の不具合が発生しやすくなる。
 前記A値は、通常は35MPa以下であるが、特に30MPa以下、さらには25MPa以下であることが好ましく、20MPa以下であることが最も好ましい。なお、前記A値の下限値は限定的ではないが、通常は15MPa程度である。
 前記B値は、通常は40MPa以下であるが、特に38MPa以下、さらには34MPa以下であることが好ましく、30MPa以下であることが最も好ましい。なお、前記B値の下限値は限定的ではないが、通常は20MPa程度である。
 また、5%伸長時における前記4方向の応力は、特に限定されないが、積層体の冷間成型性という点において、いずれも35~130MPaの範囲内であることが好ましく、40~90MPaの範囲内であることがより好ましく、中でも45~75MPaの範囲内であることが最も好ましい。
 15%伸長時における前記4方向の応力は、特に限定されないが、積層体の冷間成型性という点において、いずれも55~145MPaの範囲内であることが好ましく、60~130MPaの範囲内であることがより好ましく、中でも65~115MPaの範囲内であることが最も好ましい。
 本発明フィルムにおいて、5%及び15%伸長時における前記4方向の応力が上記範囲を満たさない場合には、十分な冷間成型性が得られないことがある。
 本発明フィルムにおける前記4方向の応力は、次のように測定する。まず、本発明フィルムを23℃×50%RHで2時間調湿した後、図5に示すように、フィルム上の任意の位置を中心点Aとし、フィルムの基準方向(0度方向)を任意で特定し、その基準方向(a)から時計回りに45度方向(b)、90度方向(c)及び135度方向(d)の各方向を測定方向とし、中心点Aからそれぞれの測定方向に100mm、測定方向に対して垂直方向に15mmの短冊状に裁断したものを試料とする。例えば、図5に示すように、0度方向では中心点Aから30mm~130mmの範囲で試料41(縦100mm×横15mm)のように切り取る。他の方向についても同様に試料を切り取る。これらの試料について、50N測定用のロードセルとサンプルチャックとを取り付けた引張試験機(島津製作所社製AG-1S)を用い、引張速度100mm/minにて、5%及び15%伸長時の応力をそれぞれ測定する。なお、上記の基準方向は、フィルム製造時の延伸工程におけるMDが判明しているときには、MDを基準方向とする。
 上記のような特性値を満足する本発明フィルムは、縦方向及び横方向の少なくとも一方向がテンターにより延伸する工程を含む二軸延伸方法より得られるものであることが好ましい。
 一般に、二軸延伸方法としては、縦方向と横方向の延伸工程を同時に実施する同時二軸延伸方法と、縦方向の延伸工程を実施した後、横方向の延伸工程を実施する逐次二軸延伸方法がある。なお、前記の説明では、縦方向が先の工程として例示されているが、本発明では縦方向及び横方向のいずれが先であっても良い。
 本発明フィルムは、延伸条件設定の自由度等の見地より、逐次二軸延伸方法により得られるものであることが好ましい。従って、本発明フィルムは、縦方向及び横方向の少なくとも一方向がテンターにより延伸される工程を含む逐次二軸延伸によって得られるものであることが好ましい。特に、本発明フィルムは、後記に示す本発明の製造方法によって製造されることが望ましい。
(A-2-2)平均厚み及び厚み精度
 本発明フィルムは、厚み精度(厚みの均一性)が非常に高いものであることを示す指標として、後記に示す8方向の厚みに対する標準偏差が0.200以下であることが好ましく、中でも0.180以下であることが好ましく、さらには0.160以下であることがより好ましい。上記の厚み精度を示す標準偏差が0.200以下である場合、フィルム表面の厚みのバラツキが非常に小さいものとなり、例えばフィルムの厚みが16μm以下の場合であっても、金属箔と貼り合わせた積層体とし、深絞り冷間成型を行った際にデラミネーション、ピンホール等の不具合が発生せず、良好な成型性を得ることができる。標準偏差が0.200を超える場合、厚み精度が低いため、特にフィルムの厚みが小さい場合、金属箔と貼り合わせた際に、金属箔に十分な延展性を付与することができず、デラミネーション又はピンホールの発生が顕著となり、良好な成型性が得られないことがある。
 上記厚み精度の評価方法は、ポリアミド系フィルムを23℃×50%RHで2時間調湿した後、図6に示すように、フィルム上の任意の位置を中心点Aとし、基準方向(0度方向)を特定した後、中心点Aから基準方向(a)、基準方向に対して時計回りに45度方向(b)、90度方向(c)、135度方向(d)、180度方向(e)、225度方向(f)、270度方向(g)及び315度方向(h)の8方向へそれぞれ100mmの直線L1~L8の合計8本引く。それぞれの直線上において、中心点から10mm間隔で厚みを、長さゲージ 「HEIDENHAIN‐METRO MT1287」(ハイデンハイン社製)により測定する(10点測定する)。図6では、一例として、45度方向のL2を測定する場合の測定点(10点)をとった状態を示す。そして、全部の直線において測定して得られたデータ80点の測定値の平均値を算出し、これを平均厚みとし、得られたデータ80点を用いて厚みの標準偏差を算出するものである。なお、上記の基準方向は、フィルム製造時の延伸工程におけるMDが判明しているときには、MDを基準方向とする。
 本発明において、平均厚み及び標準偏差は、ポリアミド系フィルムのいずれかの一箇所のA点を基準とすれば良いが、特に得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、下記の3点のいずれにおいても上記範囲内の平均厚み及び標準偏差であることがより望ましい。3点としては、a)巻幅の中心付近であって、かつ、巻量の半分にあたる位置、b)巻幅の右端付近であって、かつ、巻量の半分にあたる位置、及びc)巻幅の左端付近であって、かつ、巻終わり付近の位置である。
 また、本発明フィルムの平均厚みは、30μm以下であることが好ましく、中でも26μm以下であることが好ましく、さらには16μm以下であることが好ましく、15.2μm以下であることがより好ましく、12.2μm以下であることが最も好ましい。
 本発明フィルムは、金属箔と貼り合せて積層体(金属箔を含む積層体)とすることが好適であり、冷間成型用途に好適に用いることができる。このようなフィルムは、後述するようなテンターを用いる二軸延伸を特定の条件を満足する延伸条件で行うことにより、厚みの小さいフィルムであっても、前記4方向における伸長時の応力バランスに優れ、かつ、前記4方向における厚み精度(厚みの均一性等)が非常に高いフィルムとすることができる。その結果、優れた冷間成型性を得ることが可能となる。
 フィルムの平均厚みが30μmを超える場合は、ポリアミド系フィルム自身の成型性が低下し、小型の電池外装材に用いることが困難な場合があり、またコスト面でも不利となるおそれがある。一方、フィルムの厚みの下限は特に限定するものではないが、平均厚みが2μm未満では、金属箔と貼り合わせた際における金属箔への延展性付与が不十分となりやすく、成型性に劣るものとなるおそれがあるため、通常は2μm程度とすれば良い。
 本発明のポリアミド系フィルムは、金属箔と貼り合わせた積層体とし、冷間成型用途に用いることが好適なものであるが、上記特性を満足する本発明のポリアミド系フィルムを用い、かつ後述する共重合ポリエステル樹脂を接着剤層に用いると、金属箔との接着性に優れるとともに、金属箔に十分な延展性を付与することができる。この効果により、冷間成型時(この中でも絞り成型(特に深絞り成型)時)等における成型性が向上し、金属箔の破断を防止することができ、デラミネーション、ピンホール等の不具合の発生も抑制ないしは防止することができる。
 ポリアミド系フィルムの厚みは、小さくなるほど金属箔に十分な延展性を付与することが困難となる。特に、20μm以下の極めて薄いフィルムでは、伸長時の応力にバラツキがあったり、厚み精度が低いので、冷間成型時の押し込み力によってポリアミド系フィルム又は金属箔の破断が顕著となる。つまり、薄いフィルムほど伸長時の応力のバラツキが大きくなり、厚みのバラツキも大きくなる傾向にあることから、より高度な制御が要求される。
 この場合において、ポリアミド系フィルムを製造する一般的な方法であるチューブラー法あるいはテンター法を用いる従来の製造方法では、15μm以下の厚みであって、なおかつ、伸長時の応力のバラツキが小さく、厚み精度が高いものを製造することは困難である。このことは、例えば特許文献1~10のいずれにおいても、具体的な実施例として記載されているポリアミド系フィルムは、最少で15μmの厚みのものしか開示されていないことからも明らかである。
 これに対し、本発明では、後記に示すような特定の製造方法を採用することにより、特に厚みが16μm以下のものであっても、上記4方向における伸長時の応力バランスに優れ、かつ、厚みの均一性が高いポリアミド系フィルムを提供することができる。このような特殊なポリアミド系フィルムが提供できる結果、金属箔と積層した積層体を例えば電池(例えばリチウムイオン電池)の外装体等に用いる場合には例えば電極数、電解液等の容量を増やせるほか、電池自体の小型化、低コスト化等にも寄与することができる。
(B)ポリアミド系積層フィルム
 本発明のポリアミド系積層フィルムは、前記(A)のポリアミド系フィルムとともに共重合ポリエステル樹脂層を含む。以下、共重合ポリエステル樹脂層等について説明する。
 共重合ポリエステル樹脂層
 共重合ポリエステル樹脂層は、樹脂成分として共重合ポリエステル樹脂を含む。共重合ポリエステル樹脂層は、主に接着剤層として機能するものであり、特に優れた低温接着性を有する。共重合ポリエステル樹脂層中における共重合ポリエステル樹脂の含有量は、通常は80~100重量%程度とすることが好ましく、特に90~100重量%とすることがより好ましい。従って、本発明の効果を損なわない範囲内において、共重合ポリエステル樹脂層中に他の成分が含まれていても良い。
 共重合ポリエステル樹脂は、上記のような機能を有する限り制限されないが、特にガラス転移温度が30℃以下であるものが好ましく、特に10℃以下であるものがより好ましく、さらに-40~10℃であるものが最も好ましい。ガラス転移温度が30℃を超えると、低温での接着性が低くなるおそれがある。低温接着性が低くなると、接着性を高めるために高温での熱処理が必要となる結果、処理工程の簡略化、低コスト化等を図ることが困難となる。一方、ガラス転移温度が-40℃よりも低い場合も、低温での接着性に劣るものとなりやすい。
 上記のような共重合ポリエステル樹脂としては、以下に示すようなジカルボン酸成分(以下、特にことわりの限り、単に「酸成分」という。)とグリコール成分を含む共重合体を好適に用いることができる。
 酸成分
 酸成分としては、テレフタル酸及びイソフタル酸を含有していることが好ましい。この場合の両者の含有量は、特に制限されないが、例えば酸成分中テレフタル酸30~80モル%及びイソフタル酸20~60モル%とすることができ、さらに好ましくはジカルボン酸成分中テレフタル酸35~75モル%及びイソフタル酸20~50モル%とすることができる。
 また、酸成分中におけるテレフタル酸及びイソフタル酸の合計含有量は、限定的ではないが、通常は30モル%以上とすることが好ましく、特に50モル%以上とすることが好ましく、さらには80モル%以上とすることが最も好ましい。
 共重合ポリエステル樹脂中においては、本発明の効果を妨げない限り、テレフタル酸及びイソフタル酸以外のジカルボン酸成分が含まれていても良い。例えば、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、ジフェン酸等の芳香族ジカルボン酸;シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、水添ダイマー酸等の飽和脂肪族ジカルボン酸;フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸及びその無水物;テトラヒドロフタル酸及びその無水物等の脂環式ジカルボン酸;5-ナトリウムスルホイソフタル酸、5-ナトリウムスルホテレフタル酸等のスルホン酸塩基を有するジカルボン酸等が挙げられる。
 これらの中でも、主鎖の炭素数が6以上である多価カルボン酸が好ましく、ジカルボン酸成分中に3~48モル%含有することが好ましい。主鎖の炭素数が6以上である多価カルボン酸としては、例えばアジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等が挙げられる。中でもセバシン酸が好ましい。多価カルボン酸における主鎖の炭素数の上限は、限定的ではないが、通常は20程度とすれば良い。なお、本発明における「主鎖」とは、炭素数が連続で最大となる直鎖状の炭素鎖をいう。
 共重合ポリエステル樹脂中のテレフタル酸とイソフタル酸以外のジカルボン酸成分の含有量は、限定的ではないが、通常はジカルボン酸成分中に3~48モル%含有することが好ましい。
 グリコール成分
 上記グリコール成分としては、主鎖の炭素数が6以上であるグリコールを含有することが好ましい。また、上記主鎖の炭素数の上限は、例えば150程度とすることができるが、これに制約されない。例えば、前記炭素数として6~120程度の範囲を設定することもできる。
 主鎖の炭素数が6以上であるグリコールとしては、例えば1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。中でも1,4-シクロヘキサンジメタノール、ポリテトラメチレングリコール等の少なくとも1種がより好ましい。特に、低温での接着性を向上させる効果がより高いという点で、ポリテトラメチレングリコールがより好ましい。
主鎖の炭素数が6以上であるグリコールの含有量は、用いるグリコール成分の種類等に応じて適宜設定できるが、通常はグリコール成分中1~45モル%とすることが好ましく、特に3~40モル%とすることがより好ましく、さらには4~35モル%とすることが最も好ましい。特に、ポリテトラメチレングリコールを用いる場合は、その含有量をグリコール成分中3~20モル%とすることがより好ましく、特に4~15モル%とすることが最も好ましい。
共重合ポリエステル樹脂として、本発明の効果を妨げない限り、主鎖の炭素数が6以上であるグリコール以外のグリコール成分を含んでいても良い。このようなグリコール成分としては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-エチル-2-ブチルプロパンジオール等の脂肪族グリコール;1,3-シクロブタンジメタノール等の脂環族グリコール;2,2-ビス[4-(ヒドロキシエトキシ)フェニル]プロパンのアルキレンオキシド付加体、ビス[4-(ヒドロキシエトキシ)フェニル]スルホンのアルキレンオキシド付加体等が挙げられる。
 これらの中でも、エチレングリコール及びネオペンチルグリコールを含有していることが好ましい。この場合、エチレングリコール及びネオペンチルグリコールを酸成分中において合計で55モル%以上含有することが好ましく、中でも合計で65モル%以上含有することが好ましい。さらには、低温での接着性を向上させる効果が高いため、ネオペンチルグリコールを35モル%以上含有することが好ましく、その中でも40モル%以上含有することが好ましい。従って、例えばグリコール成分中にエチレングリコール15~60モル%及びネオペンチルグリコール30~60モル%とすることができ、好ましくはエチレングリコール20~55モル%及びネオペンチルグリコール35~50モル%とすることができる。
 本発明における共重合ポリエステル樹脂としては、前記したような酸成分とグリコール成分とを含む共重合体のほか、そのような共重合体を変性した変性樹脂も採用することができる。このような変性樹脂としては、例えば前記共重合体と有機ジイソシアネート化合物との重合体であるポリエステルポリウレタン樹脂が挙げられる。
 有機ジイソシアネート成分としては、公知又は市販のイソシアネートを用いることができる。具体的には、1,6-ヘキサメチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、テトラメチレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、1,5-キシリレンジイソシアネート、1,3-ジイソシアネートメチルシクロヘキサン、1,4-ジイソシアネートメチルシクロヘキサン、4,4’-ジイソシアネートシクロヘキサン、4,4’-ジイソシアネートシクロヘキシルメタン、イソホロンジイソシアネート等のイソシアネートが例示される。
 これらの中でも、1,6-ヘキサメチレンジイソシアネート、2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネートの少なくとも1種を用いることができる。特に、反応性、耐候性等の観点から1,6-ヘキサメチレンジイソシアネートを好適に使用することができる。また、反応性の観点から2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネートの少なくとも1種を好適に用いることができる。
 このようなポリエステルポリウレタン樹脂は、公知又は市販のものを使用することができる。また、公知の方法により製造したものを採用することもできる。
 ポリエステルポリウレタン樹脂の製造方法としては、例えば、共重合ポリエステル樹脂と有機ジイソシアネートを溶液中で反応させる方法等が挙げられる。溶液中で反応させる際には、酸成分とグリコール成分とを含む共重合体を予め調製し、その共重合体をトルエン等の汎用溶剤に溶解する。その後、有機ジイソシアネート成分とウレタン化触媒を仕込み、40~80℃で反応させ、目的とするポリエステルポリウレタン樹脂を得ることができる。
 この場合、ウレタン化の反応性を上げるために、前記共重合体に対して、例えばジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸等を共重合させることが好ましい。また、上記ウレタン化触媒としては、限定的でなく、ジブチルチンジラウレート、オクチル酸スズ等の有機スズ化合物、トリエチレンジアミン等のアミン系触媒等を例示できる。
 また、共重合体と有機ジイソシアネートとを溶剤中で混合した後、基材に塗布、乾燥して得られた塗膜を40~80℃で2~7日で熱処理して反応させ、目的とするポリエステルポリウレタン樹脂を得る方法等も採用することができる。この場合、溶剤中に上記のようなウレタン化触媒等を添加しても良い。
 架橋剤
 共重合ポリエステル樹脂中には架橋剤が含まれていることが好ましい。これにより、ポリアミド系フィルムと金属箔との接着性を向上させ、とりわけ耐水性(高温水中に浸漬させても剥離が生じにくい性能)をよりいっそう高めることができる。
 架橋剤としては、特に限定されず、例えばイソシアネート化合物、メラミン化合物、尿素化合物、エポキシ化合物、カルボジイミド化合物、オキサゾリン基含有化合物、アジリジン化合物、ジルコニウム塩化合物、シランカップリング剤等が挙げられる。これらの中でも、特に反応性が高いという点でイソシアネート化合物を用いることが好ましい。
 共重合ポリエステル樹脂中の架橋剤の含有量は0.01~40質量%であることが好ましく、中でも0.1~38質量%であることが好ましい。架橋剤の含有量が0.01質量%未満であると、上記したような接着性又は耐水性の向上効果が乏しくなる。一方、架橋剤の含有量が40質量%を超えると、樹脂組成物が硬化し、ポリアミド系フィルム又は金属箔の伸びに追従することが困難となりやすく、冷間成型性に劣るものとなりやすい。
 共重合ポリエステル樹脂層の厚み
 共重合ポリエステル樹脂層の厚みは、本発明のポリアミド系積層フィルムの用途等に応じて適宜設定できるが、一般的には0.1~15μmであることが好ましく、中でも0.3~12μmであることがより好ましく、さらには0.5~10μmであることが最も好ましい。上記厚みが0.1μm未満の場合、ポリアミド系積層フィルムと他の基材(金属箔等)とを接着する場合の接着性が不十分となりやすい。一方、上記厚みが15μmを超える場合、フィルムに塗布することが困難となったり、ポリアミド系フィルムが有する金属箔への延展性付与効果を阻害するおそれがある。
 本発明のポリアミド系積層フィルムは、本発明フィルム表面の少なくとも片面に下記に詳述する共重合ポリエステル樹脂層を有するものであるが、ポリアミド系フィルム表面の少なくとも片面の全面又は一部にプライマー層(アンカーコート層:AC層)を有することが好ましい。すなわち、本発明のポリアミド系積層フィルムは、ポリアミド系フィルムに直に隣接して共重合ポリエステル樹脂層が積層されていても良いし、あるいはポリアミド系フィルムのプライマー層と共重合ポリエステル樹脂層とが隣接して積層されていても良い。
1-2.ポリアミド系積層フィルムの製造方法
 本発明の製造方法は、ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムを製造する方法であって、ポリアミド系フィルムを製造する第1工程とポリアミド系フィルムに共重合ポリエステル樹脂層を積層する第2工程とを含み、
 前記第1工程は、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート工程(シート成形工程)、
(2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る工程(延伸工程)
を含み、かつ、
(3)下記式a)及びb);
   a)0.85≦X/Y≦0.95
   b)8.5≦X×Y≦9.5
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)の両方を満たす、
ことを特徴とする。
(A)第1工程
 第1工程では、基材層となるポリアミド系フィルムを製造する。以下においては、各工程について説明する。
 シート成形工程
 シート成形工程では、ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得る。
 ポリアミド樹脂としては、前記で述べたような各種の材料を用いることができる。また、各種の添加剤も溶融混練物中に含有させることができる。
 溶融混練物の調製自体は、公知の方法に従って実施すれば良い。例えば、加熱装置を備えた押出機にポリアミド樹脂を含む原料を投入し、所定温度に加熱することによって溶融させた後、その溶融混練物をTダイにより押し出し、キャスティングドラム等により冷却固化させることによってシート状の成形体である未延伸シートを得ることができる。
 この場合の未延伸シートの平均厚みは特に限定されないが、一般的には15~250μm程度とし、特に50~235μmとすることが好ましい。このような範囲内に設定することによって、より効率的に延伸工程を実施することができる。
 延伸工程
 延伸工程では、前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る。
 前記のとおり、MD及びTDの少なくとも一方向がテンターにより延伸される工程を含む逐次二軸延伸により得られるものであることが好ましい。これにより、より均一なフィルム厚みを得ることが可能となる。
 テンター自体は、従来よりフィルムの延伸のために使用されている装置であり、未延伸シートの両端を把持しながら縦方向及び/又は横方向に拡幅させる装置である。テンターを用いる場合においても、同時二軸延伸及び逐次二軸延伸の2つの方法がある。テンターを用いる同時二軸延伸は、未延伸フィルムの両端を把持しながらMDへ延伸すると同時にTDへも延伸することにより、MD及びTDの二軸延伸をテンターにより同時に行う方法である。一方、テンターを用いる逐次二軸延伸は、1)回転速度が異なる複数のロールに未延伸シートを通過させることによりMDを延伸した後、その延伸されたフィルムをテンターによりTDへ延伸する方法、2)未延伸シートをテンターによりMDを延伸した後、その延伸されたフィルムをテンターによりTDへ延伸する方法等があるが、得られるフィルムの物性、生産性等の点で前記1)の方法が特に好ましい。前記1)の方法については、図2に示すような工程により未延伸フィルムの逐次二軸延伸が行われる。
 まず、図2に示すように、未延伸シート13が複数のロール21を通過することによりMD(縦方向)に延伸される。これら複数のロールは回転速度が異なるため、その速度差により未延伸シート13がMDに延伸される。すなわち、未延伸シートを低速ロール群から高速ロール群へ通過させることで延伸するものである。
 なお、図2では、ロール数は5個であるが、実際はそれ以外の個数であっても良い。また、ロールは、例えば順に予熱用ロール、延伸用ロール及び冷却用ロールというかたちで互いに機能が異なるロールを設置することもできる。これらの各機能を有するロールの個数も適宜設定することができる。また、延伸用ロールを複数設ける場合、多段階で延伸できるような設定としても良い。例えば、1段目を延伸倍率E1とし、2段目を延伸倍率E2という2段階の延伸によりMDの延伸倍率を(E1×E2)の範囲内で適宜設定することが可能となる。このようにして第1延伸フィルム13’が得られる。
 次に、ロール21を通過した第1延伸フィルム13’は、テンター22に導入されることによりTDに延伸される。より具体的には、図3に示すように、テンター22に導入された第1延伸フィルム13’は、入口付近においてその両端をガイドレールに固定されたリンク装置34に接続されたクリップに把持され、流れ方向の順に予熱ゾーン31、延伸ゾーン32及び弛緩熱処理ゾーン33を通過する。予熱ゾーン31で第1延伸フィルム13’は一定の温度に加熱された後、延伸ゾーン32でTDに延伸される。その後、弛緩熱処理ゾーン33において、一定の温度で弛緩処理が行われる。このようにして第2延伸フィルム14(本発明フィルム)が得られる。その後、ガイドレールに固定されたリンク装置34は、テンター22の出口付近で第2延伸フィルム14から外され、テンター22の入口付近に戻される。
 このように、テンターを用いる逐次二軸延伸は、MDをロールによって延伸することから生産性、設備面等において有利であり、TDをテンターによって延伸することからフィルム厚みの制御等において有利となる。
 本発明の製造方法では、延伸工程において、下記式a)及びb);
   a)0.85≦X/Y≦0.95
     (好ましくは0.89≦X/Y≦0.93)
   b)8.5≦X×Y≦9.5
     (好ましくは8.7≦X×Y≦9.1)
  (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)の両方を満たすことが必須である。上記a)及びb)の条件のいずれか一方でも満足しない場合は、得られるポリアミド系フィルムは4方向の応力のバランスが悪いものとなり、本発明フィルムを得ることが困難となる。
 延伸工程における温度条件は、例えば、前記の同時二軸延伸を行う際には180℃~220℃の温度範囲で延伸することが好ましい。また例えば、前記の逐次二軸延伸を行う際には、MDの延伸を50~120℃(特に50~80℃、さらに50~70℃、またさらに50~65℃)の温度範囲で行うことが好ましく、TDの延伸を70~150℃(特に70~130℃、さらに70~120℃、またさらに70~110℃)の温度範囲で行うことが好ましい。このような温度範囲に制御することによって、より確実に本発明フィルムを製造することが可能となる。これらの温度は、例えば図2に示すロール21(予熱用ロール)、図3に示すテンターの予熱ゾーン31等にて予熱しながら設定・制御することができる。
 また、テンターを用いる同時二軸延伸及び逐次二軸延伸ともに、延伸後は弛緩熱処理を行うことが好ましい。弛緩熱処理は、温度180~230℃の範囲で弛緩率2~5%とすることが好ましい。これらの温度は、図3に示すテンターの弛緩熱処理ゾーンにて設定・制御することができる。
 延伸時の温度範囲を上記のようなものとするための手段としては、フィルム表面に熱風を吹き付ける方法、遠赤外線又は近赤外線ヒーターを用いる方法、それらを組み合わせる方法等がある。特に、本発明の加熱方法としては、熱風を吹き付ける方法を含むことが好ましい。
<延伸工程における実施の形態>
 本発明における延伸工程としては、MDをロールによって延伸し、TDをテンターによって延伸する逐次二軸延伸工程を好適に採用することができる。この方法を採用し、かつ下記に示す温度条件を満足することにより、前記4方向の伸長時の応力バランスをより優れたものとすることが可能となり、かつ、前記4方向の厚み精度をより高いものとすることが可能となるため、特に平均厚み16μm以下の本発明フィルムをより確実かつ効率的に得ることができる。
 MDの延伸
 まず、MDの延伸における温度は、ロールを用いて50~70℃の温度範囲で延伸することが好ましく、中でも50~65℃とすることがより好ましい。
 MDの延伸は、2段階以上の多段延伸を行うことが好ましい。この場合、延伸倍率を段階的に上げていくことが好ましい。すなわち、n段目の延伸橋率よりも(n+1)段目の延伸倍率の方が高くなるように制御することが好ましい。これによって全体をよりいっそう均一に延伸することができる。例えば、2段階で延伸する場合、1段目を延伸倍率1.1~1.2とし、2段目を延伸倍率2.3~2.6という2段階の延伸により縦方向の延伸倍率を2.53~3.12の範囲内で適宜設定することができる。
 さらには、MDの延伸において、温度勾配を設けることが好ましい。特に、フィルムの引き取り方向に沿って、順次温度を上げていくことが好ましく、MDの延伸部全体において、その温度勾配(フィルムの走行方向のはじめ(入口)の温度T1とおわり(出口)の温度T2との温度差)は、通常2℃以上であることが好ましく、3℃以上であることがより好ましい。このとき、フィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は、通常1~5秒間であることが好ましく、特に2~4秒間であることがより好ましい。
 TDの延伸
 TDの延伸は、図3に示すような各ゾーンが形成されるテンターにより延伸を行う。このとき、予熱ゾーンの温度は60~70℃とすることが好ましい。そして、延伸ゾーンの温度を70~130℃の温度範囲とすることが好ましく、特に75~120℃の温度範囲とすることがより好ましく、さらには80~110℃の温度範囲とすることが最も好ましい。
 また、延伸ゾーンにおいてもフィルムの引き取り方向に沿って、順次温度を上げていくことが好ましい。特に、延伸ゾーン全体において、その温度勾配(フィルムの走行方向のはじめ(入口)の温度T1とおわり(出口)の温度T2との温度差)は、通常5℃以上であることが好ましく、さらに8℃以上であることがより好ましい。このとき、延伸ゾーンにおけるフィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は、通常1~5秒間であることが好ましく、特に2~4秒間であることがより好ましい。
 弛緩熱処理ゾーンにおいては、弛緩熱処理を行うことが望ましい。その熱処理温度は通常180~230℃の範囲とすることが好ましく、中でも180~220℃の範囲とすることがより好ましく、さらには180~210℃とすることが最も好ましい。また、弛緩率は、通常2~5%程度とすることが好ましい。
 また、フィルム表面の少なくとも片面にプライマー層を有する本発明のポリアミド系フィルムを得る際にも、上記と同様の延伸方法及び延伸条件で行うことが好ましい。なお、フィルム表面にプライマー層を形成するためには上記のような製造方法において、MDに延伸した後のポリアミド系フィルムに水性塗剤を塗布することが好ましい。そして、続いてそのフィルムを、水性塗剤(塗膜)とともに、上記と同様の延伸条件でTDに延伸すること(インラインコーティング)が好ましい。水性塗剤の塗布量は、延伸後のフィルム表面に形成されるプライマー層の厚みが0.01~0.10μmとなるように調整することが好ましい。
 なお、本発明の製造方法では、延伸工程として、厚みの均一性の保持等の観点より、上記以外の延伸方法は採用されないことが望ましい。例えば、チューブラー法(インフレーション法)による延伸工程を含まないことが望ましい。
(B)第2工程
 第2工程では、第1工程で得られたポリアミド系フィルム上に共重合ポリエステル樹脂層を積層することにより、本発明のポリアミド系積層フィルムを製造する。
 共重合ポリエステル樹脂層を形成する方法としては、特に限定されず、例えばa)共重合ポリエステル樹脂を溶媒に溶解又は分散した塗工液をポリアミド系フィルムに塗布及び乾燥する工程を含む方法により形成する方法、b)予め成形された共重合ポリエステル樹脂層用フィルムをポリアミド系フィルムに積層する工程を含む方法等のいずれであっても良いが、特に塗膜の厚みを調整しやすく、薄膜化も容易であるという見地より前記a)の方法を採用することが望ましい。
 上記a)の方法では、まず共重合ポリエステル樹脂を溶剤に溶解又は分散した塗工液(接着剤)を調製する。塗工液の固形分濃度は、特に制限されないが、一般的には5~50質量%程度の範囲内で適宜設定すれば良い。
 塗工液で用いる溶媒としては、水のほか、例えばケトン系有機溶剤、芳香族系炭化水素系有機溶剤、エーテル系有機溶剤、含ハロゲン系有機溶剤、アルコール系有機溶剤、エステル系有機溶剤、グリコール系有機溶剤等の有機溶剤を使用することができる。これらは公知又は市販のものを適宜使用することができる。有機溶剤としては、以下のような溶剤を使用することができる。なお、使用する溶媒は、単独又は2種以上を組み合わせて使用しても良い。
 ケトン系有機溶剤としては、例えばメチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、2-ヘキサノン、5-メチル-2-ヘキサノン、シクロペンタノン、シクロヘキサノン等が挙げられる。
 芳香族炭化水素系有機溶剤としては、例えばトルエン、キシレン、ベンゼン等が挙げられる。
 エーテル系有機溶剤としては、例えばジオキサン、テトラヒドロフラン等が挙げられる。
 含ハロゲン系有機溶剤としては、例えば四塩化炭素、トリクロロメタン、ジククロロメタン等が挙げられる。
 アルコール系有機溶剤としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-アミルアルコール、イソアミルアルコール、sec-アミルアルコール、tert-アミルアルコール、1-エチル-1-プロパノール、2-メチル-1-ブタノール等を使用することができる。
 エステル系有機溶剤としては、例えば酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-3-メトキシブチル、プロピオン酸メチル等が挙げられる。
 グリコール系有機溶剤としては、例えばエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールエチルエーテルアセテート等が挙げられる。
 また、3-メトキシ-3-メチルブタノール、3-メトキシブタノール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジアセトンアルコール等の有機溶剤も使用することができる。
 また、樹脂を水に溶解又は分散させた塗工液(水溶液又は水分散体)も好適に使用することができる。樹脂を水へ分散する場合は、必要に応じて乳化剤を使用すれば良く、分散助剤として塩基性化合物を使用して中和する方法等の公知の方法も適用できる。
 上記のようにして得られた塗工液を塗布する方法としては、公知の方法を用いることができる。例えばグラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等が挙げられる。
 これらの塗工方法により塗工液を基材であるポリアミド系フィルム表面に塗布した後、乾燥処理又は乾燥のための加熱処理に供することにより、均一な樹脂層を塗布面に密着させて形成することができる。加熱処理する場合の温度は、特に限定されないが、通常は70~150℃程度とし、好ましくは80~120℃程度の範囲内で適宜設定すれば良い。さらに、必要に応じて、エージング等の目的で比較的低い温度で保持させることもできる。例えば、50℃以下(好ましくは25~45℃)の温度範囲で保持することができる。保持時間は、限定的ではなく、例えば1~96時間程度の範囲内で適宜設定すれば良い。
2.本発明の積層体
 本発明の積層体は、本発明の積層フィルムと金属箔とを含むものである。本発明の積層体の形態としては、本発明のポリアミド系積層フィルムの共重合ポリエステル樹脂層上に金属箔が積層された積層体が好ましい。また、このような積層体にさらに接着剤層を介して、他の層を積層させた積層体であっても良い。接着剤層としては、特に前記の共重合ポリエステル樹脂層を採用することが望ましい。
 このような積層体としては、例えば、図8に示すように、ポリアミド系フィルム51/共重合ポリエステル樹脂層52/金属箔53の順に積層してなる3層構造を有する積層体60が挙げられる。また例えば、図9に示すように、ポリアミド系フィルム51/共重合ポリエステル樹脂層52a/金属箔53/共重合ポリエステル樹脂層52b/シーラントフィルム54の順に積層してなる5層構造を有する積層体70が挙げられる。また、共重合ポリエステル樹脂層を2層以上採用する場合、組成、厚み等は互いに同じでも良いし、互いに異なっていても良い。この場合、ポリアミド系フィルム表面において、少なくとも共重合ポリエステル層が積層される面にはプライマー層(図示せず)が形成されていることが望ましい。
 金属箔としては、各種の金属元素(アルミニウム、鉄、銅、ニッケル等)を含む金属箔(合金箔を含む。)が挙げられるが、特に純アルミニウム箔又はアルミニウム合金箔が好適に用いられる。アルミニウム合金箔については、鉄を含有していること(アルミニウム-鉄系合金等)が好ましく、他の成分については前記積層体の成型性を損なわない範囲で、JIS等に規定されている公知の含有量の範囲であればいずれの成分を含んでいても良い。
 金属箔の厚みは、特に限定されないが、成型性等の観点より15~80μmであることが好ましく、特に20~60μmとすることがより好ましい。
 シーラントフィルムは、例えばポリエチレン、ポリプロピレン、オレフィン系共重合体、ポリ塩化ビニル等のヒートシール性を有する熱可塑性樹脂を採用することが好ましい。シーラントフィルムの厚みは、限定的ではないが、通常20~80μmであることが好ましく、特に30~60μmであることがより好ましい。
 また、本発明の積層体は、本発明フィルムとポリエステルフィルムとを含むものとしても良い。このとき、ポリエステルフィルムと基材(本発明フィルム等)は共重合ポリエステル樹脂層を介して接着されていることが好ましい。例えば、本発明フィルムの両表面に共重合ポリエステル樹脂層を有するものとし、ポリエステルフィルム/共重合ポリエステル樹脂層/本発明フィルム/共重合ポリエステル樹脂層/金属箔の順に積層した積層体とすることが好ましい。ポリエステルフィルムを含む積層体とすることにより、耐熱性、耐電圧、耐薬品性等が高められるほか、剥離強力も高めることができる。
 ポリエステルフィルムを形成するポリエステルとしては、特に限定されず、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2、6-ナフタレート等が好ましい。これらの中でも、コストと効果の観点からPETを用いることが好ましい。
 本発明の積層体は、特に本発明フィルムを含むものであることから、冷間成型である絞り成型(特に深絞り成型又は張り出し成型)に好適に用いることができる。ここに、絞り成型は、基本的には1枚の積層体から円筒、角筒、円錐等の形状を有する底付き容器を成型する方法である。このような容器は、一般に継ぎ目がないという特徴を有する。
3.本発明の積層体を含む容器
 本発明は、本発明の積層体を含む容器も包含する。例えば、本発明の積層体を用いて成型された容器も、本発明に包含される。この中でも冷間成型することにより得られる容器であることが好ましい。特に、冷間成型として絞り成型(絞り加工)又は張り出し成型(張り出し加工)により製造される容器であることが好ましく、特に絞り成型により製造される容器が好ましい。
 すなわち、本発明に係る容器は、本発明の積層体から容器を製造する方法であって、前記積層体を冷間成型する工程を含むことを特徴とする容器の製造方法により好適に製造することができる。従って、例えば本発明の積層体から継ぎ目のない容器等を製造することができる。
 この場合の冷間成型方法自体は、限定的でなく、公知の方法に従って実施することができる。例えば、積層体に含まれる樹脂を溶融させることなく、固体のままで成型する方法を採用すれば良い。かかる条件を満たす限り、成型温度(積層体の温度)は、用いる樹脂の物性(例えばガラス転移点等)に応じて適宜設定することができる。一般的には、成型温度は50℃以下とすることが好ましく、さらに45℃以下とすることがより好ましい。従って、例えば成型温度を常温(20~30℃程度)としたうえで冷間成型を実施することもできる。また例えば樹脂のガラス転移点以下の温度で冷間成型を実施することができる。
 より具体的な成型方法(加工方法)としては、例えば円筒絞り加工、角筒絞り加工、異形絞り加工、円錐絞り加工、角錐絞り加工、球頭絞り加工等の絞り加工を好ましく採用することができる。また、絞り加工としては、浅絞り加工と深絞り加工に分類されるが、本発明の積層体は、特に深絞り加工にも適用することができる。
 これらの絞り加工は、通常の金型を用いて実施することができる。例えば、パンチ、ダイス及びブランクホルダーを含むプレス機械を用い、a)前記ダイスとブランクホルダー間に本発明の積層体を配置する工程及びb)前記パンチを前記積層体に押し込むことにより容器状に変形させる工程を含む方法により絞り加工を実施することができる。
 このようにして得られる容器は、金属箔の破断、デラミネーション、ピンホール等の不具合が効果的に抑制されているので、高い信頼性を得ることができる。このため、本発明に係る容器は、各種の工業製品の包装材料をはじめとして、様々な用途に使用できる。特に、深絞り成型による成型体はリチウムイオン電池の外装体、張り出し成型による成型体はプレススルーパック等に好適に用いられる。
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、実施例及び比較例で得られたポリアミド系フィルム、ポリアミド系積層フィルム及び積層体の各種の特性値の測定方法及び評価方法は、以下のとおりに行った。
(1)共重合ポリエステル樹脂の組成
 NMR測定装置(日本電子社製JNM-LA400型)を用い、1H-NMR測定を行って、それぞれの共重合成分の組成を求めた。なお、測定溶媒としては、重水素化トリフルオロ酢酸を用いた。
(2)共重合ポリエステル樹脂の数平均分子量
 ゲルパーミエーションクロマトグラフィー(GPC)を用いて、以下の条件でポリスチレン換算の数平均分子量を測定した。
  送液ユニット:島津製作所社製LC-10ADvp
  紫外-可視分光光度計:島津製作所社製SPD-6AV、検出波長:254nm
  カラム:Shodex社製KF-803 1本、Shodex社製KF-804 2本を直列に接続して使用
  溶媒:テトラヒドロフラン
  測定温度:40℃
(3)共重合ポリエステル樹脂のガラス転移温度(Tg)
 JIS-K 7121に従って、入力補償型示差走査熱量測定装置(パーキンエルマー社製ダイヤモンドDSC型)を用い、20℃から120℃まで、昇温速度10℃/分の条件で測定をおこない、得られた昇温曲線中の、低温側ベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大となるような点で引いた接線との交点の温度を求め、ガラス転移温度とした。
(4)ポリアミド系フィルムの5%伸長時及び15%伸長時の4方向の応力
 ポリアミド系フィルムの5%伸長時及び15%伸長時の4方向の応力は、基準方向(0度方向)をMDとしたうえで、前記で説明した方法で測定し、算出した。
 なお、測定に用いたサンプルフィルムとしては、得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを用いた。
(5)ポリアミド系フィルムの平均厚みと標準偏差
 ポリアミド系フィルムの平均厚みと標準偏差は、前記の方法でそれぞれ測定し、算出した。なお、測定に用いたサンプルフィルムは、次の3種類であった。
 得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、a)巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを「A」と表記し、b)巻幅の右端付近であって、かつ、巻量の半分にあたる位置で採取したものを「B」と表記し、c)巻幅の左端付近であって、かつ、巻終わり付近の位置で採取したものを「C」と表記した。
(6)プライマー層の厚み
 得られたポリアミド系フィルムをエポキシ樹脂中に包埋し、凍結ウルトラミクロトームで厚み100nmの切片を採取した。切削温度は-120℃、切削速度は0.4mm/分とした。採取した切片をRuO溶液で1時間気相染色し、JEM-1230 TEM(日本電子社製)を用いて、透過測定にて加速電圧100kVでプライマー層厚みを測定した。このとき、プライマー層の厚みを測定する箇所を任意の5点選択し、5点の測定値の平均値を厚みとした。
 なお、測定に用いたサンプルフィルムとしては、得られたフィルムロールに巻き取られたポリアミド系フィルムにおいて、巻幅の中心付近であって、かつ、巻量の半分にあたる位置で採取したものを用いた。
(7)積層体の成型性
 絞り深さ(エリクセン試験)JISZ2247に基づいて、エリクセン試験機(安田精機製作所社製No.5755)を用い、得られた積層体(5層構造又は7層構造の積層体)に鋼球ポンチを所定の押し込み深さで押し付け、エリクセン値を求めた。エリクセン値は0.5mmごとに測定した。エリクセン値が5mm以上である場合が好適であり、特に8mm以上である場合を深絞り成型により好適であると判断した。測定環境は、23℃×50%RHとした。
(8)積層体の耐アルコール性
 得られた積層体(5層構造又は7層構造の積層体)を長さ100mm、幅15mmの寸法に裁断して試験片とした。この試験片を、エタノールを充填した容器中に挿入して密栓し、85℃で3時間保管した後、さらに水中に1昼夜浸漬した後の試験片の剥離状況を目視で観察した。
 ○:積層体の剥離が見られなかった。
 △:積層体全面積の10%未満で剥離が確認された。
 ×:積層体全面積の10%を超える範囲で剥離が確認された。
(9)積層体の耐水性
 得られた積層体(5層構造又は7層構造の積層体)を長さ100mm、幅15mmの寸法に裁断して試験片とし、その試験片を1昼夜85℃の水中に浸漬した後の試験片の剥離状況を目視で観察した。
 ○:積層体の剥離が見られなかった。
 △:積層体全面積の10%未満で剥離が確認された。
 ×:積層体全面積の10%を超える範囲で剥離が確認された。
(10)積層体の接着性
 得られた積層体(5層構造又は7層構造の積層体)を25mm幅で切り出して測定サンプルとし、引張り試験機(インテスコ社製精密万能材料試験機2020型)を用い、引張り速度50mm/分、引張り角度180度で塗膜の剥離強度を測定することにより接着強度を評価した。
 ◎:剥離強度が8N/25mm以上である。
 ○:剥離強度が5N/25mm以上、8N/25mm未満である。
 △:剥離強度が2N/25mm以上、5N/25mm未満である。
 ×:剥離強度が2N/25mm未満である。
<共重合ポリエステル樹脂の調製>
 調製例1
 テレフタル酸83g(50モル%)、イソフタル酸83g(50モル%)、エチレングリコール23g(37モル%)、ネオペンチルグリコール66g(63モル%)、1,4-シクロヘキサンジメタノール36g(25モル%)、ポリテトラメチレングリコール100g(10モル%)及び重合触媒としてテトラブチルチタネート0.1gを反応器に仕込み、系内を窒素に置換した。そして、これらの原料を1000rpmで撹拌しながら、反応器を245℃で加熱し、溶融させた。反応器内温度が245℃に到達してから、3時間エステル化反応を進行させた。3時間経過後、系内の温度を240℃にし、系内を減圧した。系内が高真空(圧力:0.1~10-5Pa)に到達してから、さらに3時間重合反応を行って、共重合ポリエステル樹脂(A)を得た。
 調製例2~7
 使用する各成分の種類とその組成及び重合反応時間を表1のように変更した以外は、調製例1と同様にし、共重合ポリエステル樹脂(B)~(G)を得た。
 なお、表1における略語は、それぞれ以下のものを示す。
 TPA:テレフタル酸
 IPA:イソフタル酸
 ADA:アジピン酸(主鎖の炭素数が6)
 AZA:アゼライン酸(主鎖の炭素数が8)
 SEA:セバシン酸(主鎖の炭素数が9)
 EG:エチレングリコール
 NPG:ネオペンチルグリコール
 CHDM:1,4-シクロヘキサンジメタノール
 PTMG1000:ポリテトラメチレングリコール(分子量:1000、主鎖の炭素数が約54)
 HD:1,6-ヘキサンジオール(主鎖の炭素数が6)
 得られた共重合ポリエステル樹脂(A)~(G)の調製時の仕込組成と得られた共重合体の組成及び特性値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1
(1)ポリアミド系フィルムの製造
 ユニチカ社製ポリアミド6樹脂(A1030BRF、相対粘度3.1) 及びシリカ6質量%含有ナイロン6樹脂(A1030QW、相対粘度2.7)を原料として用い、A1030BRF/シリカ含有ナイロン樹脂=97.5/2.5(質量比)の組成比率にて押出機内で溶融混練し、Tダイへ供給してシート状に吐出した。20℃に温度調節した金属ドラムに前記シートを巻き付け、冷却して巻き取ることにより未延伸シートを製造した。このとき、延伸後に得られるポリアミド系フィルムの厚みが15μmとなるように、ポリアミド樹脂の供給量等を調整した。
 次いで、得られた未延伸シートを逐次二軸延伸により延伸工程を実施した。より具体的には、前記シートのMDについてはロールを用いて延伸した後、TDについてはテンターを用いて延伸する方法により延伸を行った。
 まず、MDの延伸は、前記シートを複数個の延伸用ロールに通過させることにより、MDへ全延伸倍率2.85倍となるように延伸した。このとき、2段階で延伸を行い、1段目の延伸倍率を1.1とし、2段目の延伸倍率を2.59とし、全延伸倍率(MD1×MD2)1.1×2.59=2.85倍とした。加熱条件は、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が58℃、おわり(T2)が61℃となるように温度勾配を設けて延伸を行った。このとき、フィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 MDの延伸後、プライマー層の形成のため、グラビアコーターでポリウレタン水分散体を延伸後のコート厚みが0.03~0.08μmになるように片面にコーティングした。その後、TDの延伸を行った。上記水分散体としては、アニオン型水分散性ポリウレタン樹脂(DIC社製「ハイドランKU400SF」)100質量部に対して、トリ(メトキシメチル)メラミン樹脂(DIC社製「ベッカミンAPM」)7質量部を混合して得られる水性塗剤を用いた。
 次に、TDの延伸は、図3に示すようなテンターを用いて実施した。まず予熱ゾーン(予熱部)の温度を70℃として予熱を行いながら、延伸ゾーンにおいてTDへ3.2倍延伸した。このとき、延伸ゾーン(延伸部)では、フィルムの引き取り方向に沿って、走行方向のはじめ(T1)が78℃、おわり(T2)が100℃となるように温度勾配を設けた。このとき、延伸ゾーンにおけるフィルムの走行方向のはじめ(入口)とおわり(出口)までのフィルムの走行時間(加熱時間)は約3秒間であった。
 延伸ゾーンを通過したフィルムは、弛緩熱処理ゾーン(熱処理部)において温度202℃及び弛緩率3%の条件で弛緩熱処理された。このようにして1000m以上連続製造することにより、片面にプライマー層が形成された二軸延伸ポリアミド系フィルム(巻量2000m)を得た。得られたフィルムはロール状に巻き取られた。
(2)接着剤の調製
 共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを95質量%、架橋剤〔4,4′-ジフェニルメタンジイソシアネート(三井化学社製「ポリメリックMDI」)〕を5質量%となるように配合し、樹脂固形分の濃度が20質量%になるようにトルエンとメチルエチルケトンの質量比8:2の混合溶剤を投入し、密栓してペイントシェイカーで溶解し、接着剤(A-1)を得た。
(3)積層体の作製
 上記(1)で得られた二軸延伸ポリアミド系フィルムを用い、ポリアミド系フィルムのプライマー層が形成された面に、上記(2)で得られた接着剤(A-1)を、卓上型コーティング装置(安田精機社製フィルムアプリケータ;No.542-AB型、バーコータ装着)を用いてコーティングした後、80℃で1分熱風乾燥させ、膜厚3.5μmの樹脂被膜を形成し、40℃で72時間熱処理した。ポリアミド系フィルムの樹脂層形成面に、金属箔〔アルミニウム箔:厚み40μm(JIS規格A8079H-O)〕)の片面が密着するように重ね、上下ロール表面温度80℃、線圧40N/cm、速度1m/minの条件でドライラミネートを行い、40℃で96時間熱処理し、3層構成〔ポリアミド系フィルム/共重合ポリエステル樹脂層/金属箔〕の積層体を得た。
 次に、ポリアミド系フィルムと金属箔の積層体の金属箔側に上記接着剤を同様の条件で塗布した後、その塗布面にシーラントフィルム〔未延伸ポリプロピレンフィルム(三井化学東セロ株式会社製 GHC 厚み50μm)〕を貼り合わせ、40℃の雰囲気下で72時間エージング処理を施し、5層構成〔ポリアミド系フィルム/共重合ポリエステル樹脂層/金属箔/共重合ポリエステル樹脂層/シーラントフィルム〕の積層体を作製した。
 実施例2~41、比較例1~20
 製造条件及び延伸後のポリアミド系フィルムの目標厚みを表2~5及び表7~8に示したものに変更した以外は、実施例1と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて、実施例1と同様にして積層体を作製した。ただし、実施例21については、より具体的には以下のように変更した。
(1)実施例21について
 実施例1に示したポリアミド系フィルムの製造において、ユニチカ社製ポリアミド6樹脂(A1030BRF)、ユニチカ社製ポリアミド66樹脂(A226)及びシリカ6質量%含有ナイロン6樹脂(A1030QW)の組成比率が、A1030BRF/A226/シリカ含有ナイロン6樹脂=89.0/9.7/1.3(質量比)である組成物を原料とし、製造条件を表3に示すものに変更した以外は、実施例8と同様の方法でポリアミド系フィルムを得た。得られたポリアミド系フィルムを用いて、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例42
 共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを95質量%、架橋剤〔トリレンジイソイアネート(住化コベストロウレタン社製「デスモジュールE14」)〕を5質量%となるように配合した以外は、実施例1と同様にして接着剤(A-2)を得た。次いで、実施例1で得られたポリアミド系フィルムに、上記接着剤(A-2)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例43
 ポリアミド系フィルムとして、実施例8で得られたポリアミド系フィルムを用いた以外は、実施例42と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例44
 共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを95質量%、架橋剤〔ヘキサメチレンジイソシアネート(旭化成ケミカルズ社製「TPA-100」)〕を5質量%となるように配合した以外は、実施例1と同様にして接着剤(A-3)を得た。次いで、実施例1で得られたポリアミド系フィルムに、上記接着剤(A-3)を用いた以外は、実施例1と同様にして3層構造の積層体を得、さらに5層構造の積層体を得た。
 実施例45
 ポリアミド系フィルムとして、実施例8で得られたポリアミド系フィルムを用いた以外は、実施例44と同様にして3層構造の積層体を得、さらに5層構造の積層体を得た。
 実施例46
 共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aのみを用い、架橋剤を配合しなかった以外は、実施例1と同様にして接着剤(A-4)を得た。次いで、実施例1で得られたポリアミド系フィルムに、上記接着剤(A-4)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例47
 ポリアミド系フィルムとして、実施例8で得られたポリアミド系フィルムを用いた以外は、実施例46と同様にして3層構造の積層体を得、さらに5層構造の積層体を得た。
 実施例48、50、52、54、56、58
 共重合ポリエステル樹脂として、表1に示す調製例2~8で得られた共重合ポリエステル樹脂B~Gを用いた以外は、実施例1と同様にして接着剤(B)~(G)を得た。次に、実施例1で得られたポリアミド系フィルムに、表19~20に示す接着剤(B)~(G)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例49、51、53、55、57、59
 共重合ポリエステル樹脂として、表1に示す調製例2~8で得られた共重合ポリエステル樹脂B~Gを用いた以外は、実施例1と同様にして接着剤(B)~(G)を得た。実施例8で得られたポリアミド系フィルムに、表19~20に示す接着剤(B)~(G)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例60
 共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、イソシアネート化合物として、ヘキサメチレンジイソシアネート(旭化成ケミカルズ社製「TPA-100」を用い、溶液重合にて得られたポリエステルポリウレタンを使用した以外は、実施例1と同様にして接着剤(H)を得た。溶液重合は共重合ポリエステル樹脂A100部に脱水酢酸エチルを70部加え75℃で1時間溶解後、ヘキサメチレンジイソシアネート及びオクチル錫0.02部加え2時間反応を行った。 実施例1で得られたポリアミド系フィルムに、接着剤(H)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例61
 実施例8で得られたポリアミド系フィルムに、実施例60で得られた接着剤(H)を用いた以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例62
 実施例1で得られた5層構造の積層体において、ポリアミド系フィルムのアルミニウム箔を積層していない面に、接着剤(A)を実施例1と同様にコーティングし、膜厚3.5μmの共重合ポリエステル樹脂層(a)を形成した。この樹脂層面にPETフィルム(ユニチカ社製のエンブレットPET-12 厚み12μm)を貼り合せ、7層構造の積層体〔PETフィルム/共重合ポリエステル樹脂層(a)/ポリアミド系フィルム/共重合ポリエステル樹脂層/金属箔/共重合ポリエステル樹脂層/シーラントフィルム〕を作製した。
 実施例63
 実施例8で得られた5層構造の積層体を用いた以外は、実施例62と同様にして、7層構造の積層体〔PETフィルム/共重合ポリエステル樹脂層(a)/ポリアミド系フィルム/共重合ポリエステル樹脂層/金属箔/共重合ポリエステル樹脂層/シーラントフィルム〕を作製した。
 実施例64~67
 実施例1で得られたポリアミド系フィルムに、接着剤(A-1)を用いて、膜厚が表20~21に示す樹脂被膜を形成した以外は、実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例68
 接着剤の作製において、共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを99質量%、架橋剤〔4,4′-ジフェニルメタンジイソシアネート(三井化学社製「ポリメリックMDI」)〕を1質量%となるように配合した以外は、実施例1と同様に行い、接着剤(A-1-1)を得た。それ以外は実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例69
 接着剤の調製において、共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを65質量%、架橋剤〔4,4′-ジフェニルメタンジイソシアネート(三井化学社製「ポリメリックMDI」)〕を35質量%となるように配合した以外は、実施例1と同様に行い、接着剤(A-1-2)を得た。それ以外は実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例70
 接着剤の調製において、共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを99質量%、架橋剤〔トリレンジイソイアネート(住化コベストロウレタン社製「デスモジュールE14」)〕を1質量%となるように配合した以外は、実施例1と同様に行い、接着剤(A-2-1)を得た。それ以外は実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 実施例71
 接着剤の調製において、共重合ポリエステル樹脂として、調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aを65質量%、架橋剤〔トリレンジイソイアネート(住化コベストロウレタン社製「デスモジュールE14」)〕を35質量%となるように配合した以外は、実施例1と同様に行い、接着剤(A-2-2)を得た。それ以外は実施例1と同様にして3層構造の積層体を作製し、さらに5層構造の積層体を得た。
 比較例21
 実施例1で得られたポリアミド系フィルムに、接着剤(A-1)に代えて、二液型ポリウレタン系接着剤(東洋モートン社製「TM‐K55/CAT-10L」)を用い、塗布厚みが3.5μmとなるように塗布した後、80℃で10秒間乾燥した。その接着剤塗布面に実施例1と同様の金属箔を貼り合せた。次に、ポリアミド系フィルムと金属箔の積層体の金属箔側に上記接着剤を同様の条件で塗布した後、その塗布面に実施例1と同様のシーラントフィルムを貼り合わせ、40℃の雰囲気下で72時間エージング処理を施し、5層構造の積層体を作製した。
 試験例1
 各実施例及び比較例で得られたポリアミド系フィルム及び積層体の物性について評価した。その評価結果を表9~21に示す。なお、表中の単位については、温度の単位は「℃」、平均厚み及び厚み精度の単位は「μm」、プライマー層の厚みの単位は「μm」、応力の単位は「MPa」、絞り深さの単位は「mm」をそれぞれ示す。倍率は、1を基準とした倍率である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 なお、各表において、各延伸倍率は1を基準とした倍率(倍)を示す。また、各熱処理温度の単位は「℃」、弛緩率の単位は「%」、目標厚みは「μm」を示す。 
 これらの結果からも明らかなように、実施例1~71では、特にポリアミド系フィルムの延伸倍率が所定の範囲であったため、得られたポリアミド系フィルムは、一軸引張試験において0度方向、45度方向、90度方向及び135度方向へ5%伸長時の応力の最大値と最小値の差が35MPa以下であり、かつ、15%伸長時の応力の最大値と最小値の差が40MPa以下を満たしたものとなった。そして、これらのポリアミド系フィルムを用いて得られたポリアミド系積層フィルムは、共重合ポリエステル樹脂層を有するものであったため、これらのポリアミド系積層フィルムと金属箔を含む積層体は、接着性に優れ、耐水性、耐アルコール性にも優れたものであった。さらには、これらの積層体は、エリクセン値が高く、冷間成型したときに全方向へ均一な延展性を有するものであった。つまり、これらの実施例の積層体は、アルミニウム箔が破断したり、デラミネーション、ピンホール等が発生することがなく、優れた成型性を有していた。
 一方、比較例1~20では、特にポリアミド系フィルムの延伸倍率が所定の範囲を満足するものではなかったため、得られたポリアミド系フィルムは、一軸引張試験において0度方向、45度方向、90度方向及び135度方向へ5%伸長時の応力の最大値と最小値の差が35MPa以下で、かつ、15%伸長時の応力の最大値と最小値の差が40MPa以下を満たさないものとなった。このため、これら比較例のポリアミド系フィルムを用いて得られたポリアミド系フィルムと金属箔を含む積層体は、エリクセン値が低く、冷間成型したときに全方向へ均一な延展性を有するものとすることができず、成型性に劣るものであった。また、比較例21のポリアミド系積層フィルムは、共重合ポリエステル樹脂層を有していないものであったため、該ポリアミド系積層フィルムと金属箔を含む積層体は、接着性に劣るものであり、耐水性又は耐アルコール性に劣っていた。

Claims (13)

  1. ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムであって、ポリアミド系フィルムは下記(1)及び(2)の特性;
    (1)ポリアミド系フィルムにおける任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度及び135度の4方向において、一軸引張試験による5%伸長時の各応力の最大値と最小値の差が35MPa以下であること、及び
    (2)前記4方向において、一軸引張試験による15%伸長時の各応力の最大値と最小値の差が40MPa以下であること、
    をすべて満たすことを特徴とするポリアミド系積層フィルム。
  2. ポリアミド系フィルムは、任意の点から特定の方向を0度とし、その方向に対して時計回りに45度、90度、135度、180度、225度、270度及び315度の8方向の厚みの標準偏差が0.200μm以下である、請求項1に記載のポリアミド系積層フィルム。
  3. ポリアミド系フィルムの平均厚みが16μm以下である、請求項1に記載のポリアミド系積層フィルム。
  4. 共重合ポリエステル樹脂層の厚みが0.1~15μmである、請求項1に記載のポリアミド系積層フィルム。
  5. ポリアミド系フィルム中に有機滑剤及び無機滑剤の少なくとも1種を含有する、請求項1に記載のポリアミド系積層フィルム。
  6. 共重合ポリエステル樹脂層が、ガラス転移温度が10℃以下である共重合ポリエステル樹脂を含む、請求項1に記載のポリアミド系積層フィルム。
  7. 請求項1~6のいずれかに記載のポリアミド系積層フィルムと金属箔とを含む積層体。
  8. 請求項7に記載の積層体を含む容器。
  9. ポリアミド系フィルム及びその表面の少なくとも一方の表面上にある共重合ポリエステル樹脂層を含む積層フィルムを製造する方法であって、ポリアミド系フィルムを製造する第1工程とポリアミド系フィルムに共重合ポリエステル樹脂層を積層する第2工程とを含み、
     前記第1工程は、
    (1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
    (2)前記未延伸シートをMD及びTDに逐次又は同時に二軸延伸することによって延伸フィルムを得る延伸工程
    を含み、かつ、
    (3)下記式a)及びb);
       a)0.85≦X/Y≦0.95
       b)8.5≦X×Y≦9.5
      (但し、Xは前記MDの延伸倍率を示し、Yは前記TDの延伸倍率を示す。)
      の両方を満たす、
    ことを特徴とするポリアミド系積層フィルムの製造方法。
  10. 延伸工程が逐次二軸延伸であり、
    (2-1)50~120℃の温度下で前記未延伸シートをMDに延伸することによって第1延伸フィルムを得る第1延伸工程及び
    (2-2)70~150℃の温度下で前記第1延伸フィルムをTDに延伸することによって第2延伸フィルムを得る第2延伸工程
    を含む、請求項9に記載のポリアミド系積層フィルムの製造方法。
  11. 第1延伸工程がロールを用いる延伸であり、かつ、第2延伸工程がテンターを用いる延伸である、請求項10に記載のポリアミド系積層フィルムの製造方法。
  12. 第2延伸フィルムをさらに180~230℃の温度下で弛緩熱処理を行う、請求項10に記載のポリアミド系積層フィルムの製造方法。
  13. 第2工程が、共重合ポリエステル樹脂を含む塗工液をポリアミド系フィルムの少なくとも一方の表面に塗布する工程を含む、請求項10に記載のポリアミド系積層フィルムの製造方法。
PCT/JP2017/021946 2016-06-15 2017-06-14 ポリアミド系積層フィルム及びその製造方法 WO2017217452A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017552109A JP6290519B1 (ja) 2016-06-15 2017-06-14 ポリアミド系積層フィルム及びその製造方法
CN201780037418.1A CN109641434B (zh) 2016-06-15 2017-06-14 聚酰胺系层叠膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119026 2016-06-15
JP2016119026 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017217452A1 true WO2017217452A1 (ja) 2017-12-21

Family

ID=60663520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021946 WO2017217452A1 (ja) 2016-06-15 2017-06-14 ポリアミド系積層フィルム及びその製造方法

Country Status (3)

Country Link
JP (1) JP6290519B1 (ja)
CN (1) CN109641434B (ja)
WO (1) WO2017217452A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089081A1 (ja) * 2011-12-13 2013-06-20 出光ユニテック株式会社 二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材
JP2015107586A (ja) * 2013-12-04 2015-06-11 出光ユニテック株式会社 延伸ナイロンフィルム、多層フィルム、包装材、電池および延伸ナイロンフィルムの製造方法
WO2015129713A1 (ja) * 2014-02-25 2015-09-03 ユニチカ株式会社 二軸延伸ポリアミドフィルムおよびその製造方法
WO2015147121A1 (ja) * 2014-03-26 2015-10-01 ユニチカ株式会社 二軸延伸ポリアミドフィルムおよびその製造方法
WO2016098821A1 (ja) * 2014-12-17 2016-06-23 ユニチカ株式会社 ポリアミド系フィルム及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022773A (ja) * 2011-07-15 2013-02-04 Idemitsu Unitech Co Ltd 冷間成形用二軸延伸ナイロンフィルム、ラミネートフィルム、および成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089081A1 (ja) * 2011-12-13 2013-06-20 出光ユニテック株式会社 二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材
JP2015107586A (ja) * 2013-12-04 2015-06-11 出光ユニテック株式会社 延伸ナイロンフィルム、多層フィルム、包装材、電池および延伸ナイロンフィルムの製造方法
WO2015129713A1 (ja) * 2014-02-25 2015-09-03 ユニチカ株式会社 二軸延伸ポリアミドフィルムおよびその製造方法
WO2015147121A1 (ja) * 2014-03-26 2015-10-01 ユニチカ株式会社 二軸延伸ポリアミドフィルムおよびその製造方法
WO2016098821A1 (ja) * 2014-12-17 2016-06-23 ユニチカ株式会社 ポリアミド系フィルム及びその製造方法

Also Published As

Publication number Publication date
CN109641434A (zh) 2019-04-16
CN109641434B (zh) 2021-12-21
JP6290519B1 (ja) 2018-03-07
JPWO2017217452A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
TWI710589B (zh) 聚醯胺系膜及聚醯胺系膜的製造方法
WO2017170333A1 (ja) 電池包装用積層体
JP5981073B1 (ja) ポリアミド系フィルム及びその製造方法
WO2017217435A1 (ja) ポリアミド系フィルム及びその製造方法
JP6819816B2 (ja) ポリエステルフィルムロール
US20230340261A1 (en) Biaxially stretched polyamide film
JP2013031988A (ja) 積層ポリエステルフィルム
JP5723509B2 (ja) 積層ポリエステルフィルム
CN108367559B (zh) 涂布膜
JP2017222087A (ja) ポリアミド系フィルム及びその製造方法
JP6290519B1 (ja) ポリアミド系積層フィルム及びその製造方法
JP5295822B2 (ja) 帯電防止性白色ポリエステルフィルム
EP3854837B1 (en) Film for coating metal sheet and resin-coated metal sheet
CN113498376B (zh) 双轴取向聚酯薄膜和双轴取向聚酯薄膜的制造方法
JP2010208060A (ja) 帯電防止性白色ポリエステルフィルム
JP2012218309A (ja) 多層ポリエステルフィルム。

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017552109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813347

Country of ref document: EP

Kind code of ref document: A1