WO2016092692A1 - モールド回路モジュール及びその製造方法 - Google Patents

モールド回路モジュール及びその製造方法 Download PDF

Info

Publication number
WO2016092692A1
WO2016092692A1 PCT/JP2014/082955 JP2014082955W WO2016092692A1 WO 2016092692 A1 WO2016092692 A1 WO 2016092692A1 JP 2014082955 W JP2014082955 W JP 2014082955W WO 2016092692 A1 WO2016092692 A1 WO 2016092692A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
substrate
metal
circuit module
shield layer
Prior art date
Application number
PCT/JP2014/082955
Other languages
English (en)
French (fr)
Inventor
悟 三輪
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to JP2015533357A priority Critical patent/JPWO2016092692A1/ja
Priority to PCT/JP2014/082955 priority patent/WO2016092692A1/ja
Priority to JP2016563206A priority patent/JPWO2016093040A1/ja
Priority to US15/534,427 priority patent/US20170347462A1/en
Priority to DE112015005552.5T priority patent/DE112015005552T5/de
Priority to PCT/JP2015/082706 priority patent/WO2016093040A1/ja
Priority to CN201580067435.0A priority patent/CN107114005A/zh
Priority to TW104139582A priority patent/TW201637556A/zh
Publication of WO2016092692A1 publication Critical patent/WO2016092692A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10371Shields or metal cases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10522Adjacent components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1322Encapsulation comprising more than one layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1327Moulding over PCB locally or completely
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Definitions

  • the present invention relates to a molded circuit module.
  • the mold circuit module includes a substrate having wiring (for example, a printed circuit board), an electronic component mounted so as to be electrically connected to the wiring of the substrate, and a resin that covers the substrate together with the electronic component.
  • the molded circuit module can protect the electronic component by covering the electronic component with resin, and can protect a portion where the electronic component and the wiring on the substrate are electrically connected.
  • the molded circuit module includes electronic components. Some electronic components are vulnerable to electromagnetic waves. Some electronic components emit electromagnetic waves. In many situations where a molded circuit module is actually used, the molded circuit module is combined with other electronic components. Other electronic components may or may not be included in other molded circuit modules. In addition, other electronic components may be vulnerable to electromagnetic waves, and others may emit electromagnetic waves. When a molded circuit module is actually used, there is a case where it is desired to reduce the influence of an electronic component included in the molded circuit module from electromagnetic waves emitted from other electronic components outside the molded circuit module. In some cases, it is desired to reduce the influence of other electronic components outside the molded circuit module from electromagnetic waves emitted from the electronic components included in the molded circuit module.
  • the metal shield is a box that is open on one side made of a thin metal plate.
  • the metal shield is a box that is open on one side made of a thin metal plate.
  • the box is normal not to mold with resin, but it was positioned inside the box by attaching the box to the substrate with the edge surrounding the box opening in contact with the substrate. Shield the electronic components with a box.
  • the height from the substrate to the top surface of the box tends to increase, and the thickness of the circuit module tends to increase.
  • a metal shield layer is formed by applying a paste containing metal powder to the surface of the resin used in the mold, or by performing plating regardless of whether dry or wet. Proposal of the technique of doing is also made
  • the technique of forming a shield layer by applying a paste containing metal powder on the surface of the resin or performing plating has focused particularly on reducing the thickness of the molded circuit module. In some cases, this is an excellent technology. However, there is room for improvement in such technology.
  • the shield layer described above which is formed by applying a paste containing metal powder on the surface of the resin or by plating, is usually formed of a metal or one kind of metal.
  • the metal is selected from the viewpoint that it has a high ability to shield electromagnetic waves, although the handling and cost are taken into consideration.
  • electromagnetic waves are waves that propagate in space due to changes in electric and magnetic fields. In order to shield or reduce electromagnetic waves, it is necessary to shield either the electric field or the magnetic field, or both.
  • metal is used to shield electromagnetic waves. The ability to shield an electric field and a magnetic field differs depending on the type of metal, and there is a limit to the ability to shield electromagnetic waves, regardless of which metal is used.
  • This invention makes it the subject to provide the technique which improves more the shielding effect of the electromagnetic waves by the shield layer of a mold circuit module.
  • the present invention relates to a first resin that is a resin that covers a substrate having a ground electrode, at least one electronic component mounted on one surface of the substrate, and one surface of the substrate together with the electronic component. Formed by covering the first resin layer, the surface (upper surface) of the first resin layer, the side surface of the first resin layer, and the side surface of the substrate so as to be electrically connected to the grounding electrode.
  • a first metal coating layer made of a first metal, which is a metal having excellent characteristics for electric field shielding, and a second metal, which is a metal having excellent characteristics for magnetic field shielding.
  • a molded circuit module comprising two layers with a second metal coating layer according to.
  • Such a molded circuit module includes a shield layer. Like the shield layer described in the prior art, such a shield layer shields electromagnetic waves, and functions to reduce the influence of electromagnetic waves produced by electronic components outside the molded circuit module on the electronic components inside the molded circuit module. Or an electronic component included in the molded circuit module has a function of reducing the influence on other electronic components outside the molded circuit module.
  • the shield layer in the molded circuit module includes a first metal coating layer made of a first metal which is a metal having excellent characteristics for electric field shielding, and a second metal cover made of a second metal which is a metal having excellent characteristics for shielding a magnetic field. It includes two layers with a metal coating layer.
  • the ability of a metal to shield an electric field and the ability to shield a magnetic field differ depending on the type of metal.
  • different metals ie, a first metal coating layer made of a first metal that is a metal having excellent characteristics for electric field shielding, and a second metal coating layer made of a second metal that is a metal having excellent characteristics for shielding a magnetic field.
  • the shield layer the two electric fields and the magnetic field that generate electromagnetic waves can be well shielded. Thereby, the shield layer in the molded circuit module of the present invention can better shield electromagnetic waves.
  • the shield layer contains the 1st metal coating layer and the 2nd metal coating layer, it does not matter whether it is based on a metal and may contain at least 1 or more other layers.
  • the shield layer in the present invention is electrically connected to the grounding electrode of the substrate.
  • the shield layer may be in direct contact with the grounding electrode or indirectly in contact with the grounding electrode via another conductive metal.
  • the grounding electrode may be present in layers in a predetermined portion in the thickness direction of the substrate.
  • the shield layer is in direct contact with the exposed end face of the ground electrode.
  • the shield layer can be electrically connected to the grounding electrode by using an appropriate metal member such as a partition member.
  • the inventor of the present application also provides the following method for solving the above-described problems.
  • the following method is an example of a manufacturing method for obtaining the above-described molded circuit module.
  • the method includes a plurality of virtual sections adjacent to each other on one side, and at least one electronic component mounted on each of the sections on the one side, and a substrate having a grounding electrode
  • the metal cut is included in the half-cut process for removing the substrate to a predetermined thickness, the surface of the first resin, the side surface of the first resin exposed by the half-cut process, and the side surface of the substrate.
  • a shield layer forming process for forming a shield layer which is a metal layer that is electrically connected to the grounding electrode, and cutting the substrate at the boundary between the sections, A full-cut process of obtaining a plurality of molded circuit modules based on each of the sections by separating the image, wherein the shielding layer is a first metal made of a first metal that is a metal having excellent electric field shielding characteristics.
  • This is a method for manufacturing a molded circuit module, which includes two layers of a covering layer and a second metal covering layer made of a second metal, which is a metal having excellent properties for shielding a magnetic field.
  • the first metal coating layer and the second metal coating layer included in the shield layer are formed by applying a paste containing metal powder or plating.
  • the plating is not limited to a wet dry type. Examples of wet plating include electrolytic plating and electroless plating. Examples of dry plating include physical vapor deposition (PVD) and chemical vapor deposition (CVD). Examples of the former include sputtering and vacuum deposition. Examples of the latter include heat. Examples include CVD and photo-CVD.
  • wet plating is most advantageous from the cost aspect, and the residual stress in the metal coating layer (first metal coating layer and second metal coating layer included in the shield layer) formed by wet plating is Also, wet plating is suitable for application to the present invention because it is smaller than the residual stress in the metal film layer produced by other methods. Furthermore, the thickness of the metal film layer obtained by PVD and CVD, which are thin film formation techniques, is from the order of nm to several ⁇ m, whereas according to wet plating, it is thicker from several ⁇ m to several tens of ⁇ m. Film formation is possible.
  • each of the first metal coating layer and the second metal coating layer included in the shield layer has a thickness of at least several ⁇ m. Good compatibility.
  • Wet plating includes electroless plating and electrolytic plating. Considering the possibility of damage to electronic components included in the molded circuit module, it is necessary to apply a current to the surface of the molded circuit module to be processed. Electroless plating that does not require a current to flow is preferable to electrolytic plating.
  • the first metal constituting the first metal coating layer is a metal having excellent characteristics for electric field shielding
  • the second metal constituting the second metal coating layer has characteristics excellent for magnetic field shielding. It has a metal.
  • the first metal for example, copper or iron can be used.
  • nickel can be used as the second metal. Either the first metal coating layer or the second metal coating layer may be exposed to the outside. In any case, there is no particular effect on the above-described functions.
  • copper when copper is used as the first metal, copper may be naturally oxidized and discolored to black during use of the molded circuit module. Therefore, if the appearance is taken into consideration, the first composed of copper is used. It is better not to expose the metal coating layer to the outside.
  • the first resin is not limited to this, but a resin containing a filler may be used.
  • the method of manufacturing a molded circuit module includes a second coating process in which the surface of the first resin coated with the substrate is coated and cured with a second resin that is a resin that does not contain a filler, and the shield layer is formed.
  • the grounding is performed by applying or plating a paste containing metal powder on the surface of the second resin, the side surface of the first resin exposed by the half-cut process, and the side surface of the substrate. It may be one that forms a shield layer that is a metal layer that is electrically connected to the electrode.
  • the first resin in the present invention corresponds to the resin contained in the molded circuit module described in the prior art.
  • a filler may be mixed in the first resin.
  • the filler is granular. Further, since the filler is composed of a material having a linear expansion coefficient different from that of the resin constituting the first resin, it suppresses the degree of thermal expansion and contraction of the molded circuit module. Often used in modules.
  • the shield layer is formed by applying a paste containing metal powder to the surface of the first resin mixed with the filler or by performing plating, the shield layer may fall off.
  • the filler that is present on the surface of the first resin and is exposed from the first resin may be easily removed from the first resin. When a situation in which the filler is detached from the first resin occurs, Part of the shield layer falls off. It is the second resin that prevents the shield layer from falling off.
  • the second resin covers the surface of the first resin.
  • the shield layer is formed on the surface of the second resin, the side surface of the first resin exposed by the half-cut process performed prior to the full cut for later dicing, and the side surface of the substrate.
  • the second resin does not contain a filler. Therefore, the shield layer formed in this way has no connection with the dropout due to the dropout of the filler. Even in this case, the portion of the shield layer that covers the side surface of the first resin covers the first resin without using the second resin.
  • the side surface of the first resin is moderately roughened. Therefore, the inventor has confirmed that the shield layer is in close contact with the first resin and the shield layer does not easily fall off. Has been.
  • wet plating when wet plating is used for the formation of the shield layer, if the layer made of the second resin does not exist, the shield layer is likely to drop due to the filler being dropped.
  • the present invention is also meaningful in that wet plating can be selected in the process of forming a shield layer when manufacturing a molded circuit module.
  • the shield layer can be prevented from falling off by using the second resin not containing the filler.
  • the second resin is used, at least a portion of the upper surface of the first resin that is covered with the shield layer is covered with the second resin. But even if it is a case where a shield layer is formed via the 2nd resin to the 1st resin, if the 2nd resin falls off from the 1st resin, the shield layer will fall off as a result.
  • the high adhesion of the second resin to the first resin is important. This adhesion is realized by an anchor effect between the first resin and the second resin, an intermolecular force, and a slight covalent bond.
  • main resin means the resin if the resin contained in the first resin is one kind, and if the first resin contains a plurality of kinds of resins, the most weight among them. It means something that is more in ratio.
  • the second resin can be an epoxy resin.
  • covers the part coat
  • the thickness of the second resin is reduced within a range in which the filler exposed from the first resin can be prevented from falling off the first resin and the strength of the second resin can be maintained. Is good. Thinning the second resin layer is advantageous when the shield layer is formed by plating because it is easy to roughen in the next step.
  • the layer made of the second resin is preferably thin enough not to fill the uneven shape on the surface of the first resin.
  • the surface of the cured first resin is parallel to the one surface of the substrate. It is also possible to carry out the first resin molding process of shaving. When a plurality of electronic components are mounted on the molded circuit module, naturally the height of each electronic component may be different. In that case, the surface of the first resin may be uneven. By performing a first resin molding process in which the surface of the cured first resin is cut so that the surface is parallel to the one surface of the substrate, the first resin existing on the tallest electronic component is obtained. Although the thickness of one resin can be reduced while maintaining the necessary limit, the thickness of the molded circuit module can be reduced by this.
  • the thickness of the first resin existing on the tallest electronic component can be controlled to some extent, but such control has low accuracy.
  • the thickness of the first resin existing on the tallest electronic component is controlled by, for example, mechanical cutting. In that case, the accuracy is generally ⁇ 35 ⁇ m. Can be about.
  • the thickness of the first resin existing on the tallest electronic component could not be made thinner than about 500 ⁇ m, but by adding the first resin molding process, the thickness is reduced to 100 ⁇ m or less. In some cases, the thickness can be reduced to about 80 ⁇ m. In this case, after the first resin molding process is performed, it is possible to directly form the shield layer on the surface of the first resin formed by the first resin molding process.
  • the filler present in the cured first resin may easily fall off. Even in such a case, the shield layer can be prevented from falling off due to the filler falling off by performing the second coating step and coating the surface of the first resin with the second resin.
  • the first coating process when the entire one surface of the substrate is coated with the first resin, which is a resin containing a filler, together with the electronic component, it may be performed by any method. In that case, for example, a vacuum printing method can be used. If the vacuum printing method is used, it is possible to prevent the formation of minute bubbles in the cured first resin, and it becomes possible to cover electronic parts having various shapes with the first resin without any gaps. Although there is an advantage, when using vacuum printing in the first coating process, if the thickness of the resin layer present on the component attached to the substrate is thin, the unevenness caused by the difference in height of the electronic component, It always appears on the surface of the first resin.
  • a vacuum printing method can be used. If the vacuum printing method is used, it is possible to prevent the formation of minute bubbles in the cured first resin, and it becomes possible to cover electronic parts having various shapes with the first resin without any gaps.
  • the first resin molding process is very compatible with vacuum printing, and can be used for manufacturing a molded circuit module. It can also be regarded as technology.
  • the first resin has a filling property for entering between electronic components (this is a property before curing), adhesion to the electronic component or substrate, and a property that does not cause warping (these are properties after curing). 3) is required.
  • a filling property for entering between electronic components this is a property before curing
  • adhesion to the electronic component or substrate adhesion to the electronic component or substrate
  • a property that does not cause warping (these are properties after curing). 3) is required.
  • the characteristics to be satisfied by the first resin are the ratio of the filler with respect to the total amount of the first resin including the filler in a weight ratio of 80% or more as a characteristic before curing, and the linear expansion coefficient ( ⁇ 1) as a characteristic after curing is 11 ppm / TMA or less, linear expansion coefficient ( ⁇ 2) is 25 ppm / TMA or less, and 25 ° C. elastic modulus is 15 GPa / DMA or more.
  • the high filling property contributes to reducing the thickness of the completed molded circuit module. There is usually a gap between the underside of the electronic component and the substrate. Such a gap must be designed to be large enough to fill the gap with the first resin.
  • the gap between the lower side of the electronic component and the substrate can be reduced.
  • the thickness of the molded circuit module can be reduced.
  • the gap between the lower side of the electronic component and the substrate can be reduced to 30 ⁇ m (generally 150 to 200 ⁇ m).
  • FIG. 2 is a side sectional view showing a state in which electronic components are mounted on the substrate shown in FIG.
  • the sectional side view which shows the state which attached the partition member to the board
  • the side sectional view showing the state where the substrate shown in Drawing 1 (c) was covered with the 1st resin together with the part, and the 1st resin was hardened.
  • the sectional side view for showing the range removed among the 1st resin shown in Drawing 1 (d).
  • the sectional side view which shows the state which coat
  • the sectional side view which shows the state which performed the process of the half cut with respect to the board
  • the sectional side view which shows the state which provided the shield layer with respect to the board
  • the perspective view which shows the structure of the partition member used with the manufacturing method of the mold circuit module of embodiment.
  • the top view which shows the structure of the other partition member used with the manufacturing method of the mold circuit module of embodiment, a left view, and a front view.
  • the top view which shows the structure of the other partition member used with the manufacturing method of the mold circuit module of embodiment, a left view, and a front view.
  • the top view which shows the structure of the other partition member used with the manufacturing method of the mold circuit module of embodiment, a left view, and a front view.
  • the side view which shows the principle of the vacuum printing method used with the manufacturing method of the mold circuit module of embodiment.
  • the sectional side view which shows an example of a structure of the shield layer obtained by the manufacturing method of the mold circuit module of embodiment.
  • the sectional side view of the mold circuit module obtained by the manufacturing method of the mold circuit module by embodiment.
  • FIG. 8 is a side sectional view showing a state where the mask shown in FIG. 7B is removed.
  • FIG. 8 is a side cross-sectional view showing a state after a half cut process is performed on the substrate shown in FIG.
  • FIG. 8 is a side sectional view showing a state in which a shield layer is provided on the substrate shown in FIG.
  • FIG. 8 is a side cross-sectional view showing a state in which a full cut process and plating resist removal are performed on the substrate shown in FIG.
  • FIG. 9 is a side cross-sectional view showing a state after half-cut processing is performed on the substrate shown in FIG.
  • FIG. 9 is a side sectional view showing a state in which a shield layer is provided on the substrate shown in FIG.
  • FIG. 9 is a side cross-sectional view showing a state in which the top of the substrate shown in FIG.
  • a molded circuit module is manufactured using the substrate 100 shown in FIG.
  • the substrate 100 may be extremely general, and the substrate 100 of this embodiment is also extremely general.
  • the substrate 100 includes wiring not shown.
  • the wiring is electrically connected to an electronic component, which will be described later, and supplies power to the electronic component, and is known or known.
  • the wiring is designed so that it is possible.
  • the wiring may be provided on the substrate 100 by any method, and may be provided anywhere on the substrate 100.
  • the wiring may be provided on the surface of the substrate 100 by printing.
  • the substrate 100 is generally called a printed wiring board.
  • the wiring may also exist inside the substrate 100.
  • the shape of the substrate 100 in plan view is, for example, a rectangle.
  • a ground electrode 110 is provided at an appropriate position on the substrate 100.
  • the grounding electrode 110 may be all or part of the ground electrode 110 inside the substrate 100, or may be all or part of the ground electrode 110 on any surface of the substrate 100. .
  • the ground electrode 110 is used for grounding a shield layer, which will be described later, via the ground electrode 110 when the completed molded circuit module is used.
  • the grounding electrode 110 is designed so that it is possible.
  • a large number of molded circuit modules are manufactured from one substrate 100. That is, in this embodiment, so-called many molded circuit modules are taken from one substrate 100.
  • the substrate 100 is divided into a large number of virtual adjacent sections 120, and one molded circuit module is manufactured from each section 120.
  • the molded circuit modules produced from each compartment 120 are not necessarily the same, but are usually the same.
  • each section 120 has the same size, and each section 120 is provided with wiring and a ground electrode 110 in the same pattern.
  • the mold circuit module manufactured from each division 120 shall be the same.
  • the electronic component 200 is attached. All of the electronic components 200 may be existing ones, for example, active elements such as IC (integrated circuit) amplifiers, oscillators, detectors, and transceivers or passive elements such as resistors, capacitors, and coils. Selected.
  • the electronic component 200 is attached to each compartment 120 such that terminals (not shown) of the electronic component 200 are electrically connected to the wiring of each compartment 120. In this embodiment, since the same molded circuit module is obtained from each section 120, the electronic components 200 mounted on each section 120 are the same.
  • a gap between the lower side of the electronic component 200 and the substrate 100 is smaller than usual, and may be, for example, about 30 ⁇ m.
  • the partition member 300 is attached to the substrate 100 (FIG. 1C).
  • the partition member 300 is a member for creating a partition in the molded circuit module.
  • the purpose of partitioning is to reduce the influence of electromagnetic waves generated by the electronic component 200 in the molded circuit module on other electronic components 200 in the molded circuit module.
  • the partition member 300 may be used as necessary when the following circumstances exist, and is not essential.
  • the electronic component 200A shown in FIG. 1C is a high-frequency oscillator, a strong electromagnetic wave is emitted from the electronic component 200A.
  • the other electronic component 200 is replaced with an electronic component.
  • the electronic component 200A is particularly susceptible to electromagnetic waves produced by other electronic components 200. In such a case, the electronic component 200A is protected from electromagnetic waves produced by the other electronic components 200. There is a need. In any case, it is preferable to shield electromagnetic waves between the electronic component 200 ⁇ / b> A and the other electronic component 200. This is made possible by the partition made by the partition member 300.
  • the partition member 300 is made of a metal having conductivity so as to shield electromagnetic waves. In the manufactured molded circuit module, the partition member 300 is electrically connected to the ground electrode 110 directly or via a shield layer described later. It has become.
  • the partition member 300 is an electronic component 200 (not necessarily only one) when the substrate 100 is viewed in plan by a partition made by the partition member 300 alone or by a partition made by the partition member 300 and a shield layer described later. It is designed as a shape that can be enclosed. Although not limited to this, the partition member 300 in this embodiment has a shape as shown in FIG.
  • the partition member 300 is connected to a ceiling 310 that is a triangle when viewed in plan, more specifically a right triangle, and two sides other than the oblique sides of the ceiling 310, and adjacent ones thereof are connected to each other.
  • the rectangular side wall portion 320 is formed.
  • the partition made by the partition member 300 in this embodiment is electrically connected to the shield layer when the molded circuit module is completed.
  • the partition member 300 may be attached to the substrate 100 in any manner.
  • the partition member 300 can be attached to the substrate 100 by bonding.
  • the grounding electrode 110 and the partitioning member 300 are designed as such, and the grounding electrode 110 and the grounding electrode 110 can be connected with a known conductive adhesive or the like. What is necessary is just to adhere
  • the lower end of the side wall portion 320 of the partition member 300 is brought into contact with the grounding electrode 110 that has been exposed from the beginning of the substrate 100 or exposed from the substrate 100 by scraping the surface of the substrate 100. Can be made.
  • the partition member 300 only needs to be electrically connected to the ground electrode 110 as a result.
  • the partition member 300 may be in direct contact with the grounding electrode 110 or indirectly in contact with the grounding electrode 110 via another conductive metal (for example, a shield layer). Also good. And of course, if one of these is achieved, the other need not be achieved.
  • Other examples of the partition member 300 are shown in FIGS. 2B, 2C, and 2D.
  • Each partition member 300 shown in each figure includes a ceiling portion 310 and a side wall portion 320.
  • a plurality of ceiling holes 311 which are openings are formed in the ceiling portion 310 of the partition member 300 shown in FIGS. 2B, 2C, and 2D.
  • the ceiling hole 311 is a hole for allowing the first resin 400 to flow into the partition member 300 when the first resin 400 is filled, and prevents the partition member 300 and the first resin 400 from being separated after curing. It plays a role.
  • a plurality of side wall holes 321 that are openings are formed in the side wall portion 320 of the partition member 300 shown in FIG.
  • the side wall holes 321 serve to prevent the partition member 300 and the first resin 400 from being separated after the first resin 400 is cured.
  • a resin sealing method such as molding or potting can be used.
  • a vacuum printing method is used. According to the vacuum printing method, it is possible to prevent fine bubbles from being mixed into the molded first resin 400, and it is possible to omit the defoaming process for removing the fine bubbles.
  • the vacuum printing method can be performed using a known vacuum printing machine.
  • VE500 (trademark) which is a vacuum printing sealing device manufactured and sold by Toray Engineering Co., Ltd.
  • the principle of the vacuum printing method will be briefly described with reference to FIG.
  • the substrate 100 is placed between, for example, a metal mask 450 which is a metal mask.
  • a squeegee 460 that is rod-shaped while supplying the first resin 400 in an uncured state and whose length direction is perpendicular to the paper surface in FIG. 3 is shown on the one side shown in FIG. It moves from the position located on the metal mask 450 toward the metal mask 450 on the other side as viewed in FIG.
  • the upper surface of the first resin 400 is leveled by the lower surface of the squeegee 460 and covers the surface of the substrate 100 without any gap while entering between the electronic components 200.
  • the vacuum printing method is performed in a state where the substrate 100, the metal mask 450, and the squeegee 460 are all placed in a vacuum chamber (not shown) in which a vacuum is drawn. Therefore, there is no room for bubbles to enter the first resin 400.
  • the squeegee 460 is moved as shown in FIG. 3, the distance or height of the squeegee 460 from the substrate 100 is usually constant.
  • the first resin 400 covering the substrate 100 is cured by setting an appropriate time.
  • a ceiling hole 311 is provided in the ceiling part 310 of the partition member 300, and a side wall hole 321 is provided in the side wall part 320 of the partition member 300.
  • the first resin 400 before curing enters the partition member 300 from them.
  • the side wall hole 321 provided in the side wall part 320 of the partition member 300 shown in FIG. 2D is hardened in a state where the first resin 400 wraps around the side wall hole 321, so that the partition member 300 The function of fixing the first resin 400 better is exhibited. Even when the below-described process of scraping the upper portion of the first resin 400 is performed, when the ceiling portion 310 of the partition member 300 remains in the first resin 400, the ceiling hole 311 of the ceiling portion 310 also has the same function. Will have.
  • the first resin 400 has a filling property for entering between the electronic components 200 (this is a property before curing), adhesion with the electronic component 200 or the substrate 100, and a property that does not cause warping (these Is a property after curing.
  • the first resin 400 may have the following characteristics. If it is the 1st resin 400 which has the following characteristic, the 1st resin before hardening and after hardening will satisfy the above-mentioned characteristic.
  • the characteristics of the first resin 400 that is preferably satisfied are, as far as the characteristics before curing, the ratio of the filler to the total amount of the first resin including the filler is 80% by weight or more, and the characteristics after curing are linear.
  • the expansion coefficient ( ⁇ 1) is 11 ppm / TMA or less
  • the linear expansion coefficient ( ⁇ 2) is 25 ppm / TMA or less
  • the 25 ° C. elastic modulus is 15 GPa / DMA or more.
  • the resin composition product number: CV5385 (trademark) which Panasonic Corporation manufactures and sells can be mentioned.
  • These resin compositions contain silica (as filler), epoxy resin, curing agent, modifier and the like.
  • the resin composition contains only one type of resin. Therefore, the main resin in the present application of the first resin 400 is an epoxy resin.
  • the first resin 400 includes a filler, but the above-described resin composition (product number: CV5385) includes a filler.
  • the amount of filler contained in these resin compositions is 83%, which is 80% or more by weight with respect to the entire first resin 400.
  • the filler is made of a material having a small linear expansion coefficient, and is usually made of silica. Further, in order to satisfy the filling property of the first resin 400, the filler preferably has a particle size of 30 ⁇ m or less. Both of the fillers contained in the above-described two resin compositions described above satisfy these conditions.
  • the linear expansion coefficient ( ⁇ 1) after curing of the above-described resin composition illustrated is 11 ppm / TMA
  • the linear expansion coefficient ( ⁇ 2) after curing is 25 ppm / TMA
  • the 25 ° C. elastic modulus after curing is 15 GPa / DMA. Yes, satisfying the above-mentioned preferable conditions.
  • the upper portion of the first resin 400 is removed.
  • the main purpose of this is to reduce the thickness of the finally obtained molded circuit module by reducing the thickness of the first resin 400 on the substrate 100.
  • the 1st resin 400 located above the position shown with the broken line L of FIG.1 (e) among the 1st resin 400 is removed.
  • the state which removed the 1st resin 400 located above the position shown with the broken line L is shown by FIG.1 (f).
  • the upper surface of the first resin 400 after removing the first resin 400 positioned above the broken line L is parallel to one surface of the substrate 100. ing.
  • the first resin 400 after removing the first resin 400 located above the broken line L from the uppermost portion when the tallest electronic component 200 is the electronic component 200B.
  • the distance to the top surface of 400 is between 30 ⁇ m and 80 ⁇ m.
  • the partition member 300 when removing the portion of the first resin 400 located above the broken line L, together with the first resin 400, the upper side of the ceiling portion 310 and the side wall portion 320 of the partition member 300. A certain range of is also removed.
  • the partition member 300 is in a state in which only the side wall portion 320 remains in the first resin 400.
  • the side wall portion 320 of the partition member 300 remaining in the first resin 400 serves as a partition that partitions the first resin 400.
  • the upper portion of the partition member 300 is not necessarily removed together with the first resin 400 when the portion of the first resin 400 positioned above the broken line L is removed.
  • the height of the partition member 300 is designed such that the ceiling portion 310 is lower than the broken line L.
  • a suitable known technique can be used for the method of removing the portion of the first resin 400 located above the broken line L.
  • the first resin 400 can be removed by a cutting device such as a milling machine or a polishing cutting device such as a dicer.
  • the upper surface of the first resin 400 (the surface facing the substrate 100) parallel to the substrate 100 is covered with the second resin 500 and the second resin 500 is cured.
  • the reason why the upper surface of the first resin 400 is covered with the second resin 500 is to prevent the filler contained in the first resin 400 from dropping off from the first resin 400.
  • At least a portion of the upper surface of the first resin 400 that is covered with a shield layer described later is covered with the second resin 500.
  • the second resin 500 contains no filler.
  • the material of the second resin 500 is selected from those having high adhesion to the first resin 400 of the second resin 500 after being cured.
  • an epoxy resin or an acrylic resin can be used as the material of the second resin 500.
  • the second resin 500 covers the entire upper surface of the first resin 400.
  • a known technique can be used as the technique used to coat the upper surface of the first resin 400 with the second resin 500.
  • the upper surface of the first resin 400 can be covered with the second resin 500 by spray application using a spray device.
  • the second resin 500 coated with the first resin 400 is cured by putting an appropriate time.
  • the surface of the second resin 500 is roughened.
  • the surface of the second resin 500 is roughened so that a shield layer, which will be described later, is better adhered to the surface of the second resin 500, and the purpose is achieved. Since the technique for roughening the surface of the resin is known or well known, such as etching using a strong acid or strong alkali, the technique may be used for roughening the surface of the second resin 500.
  • Half-cut is a process of making a groove-like cut 100X in the second resin 500, the first resin 400, and the substrate 100.
  • the range into which the incision 100X is made is a range having a predetermined width across the boundary line between adjacent sections 120.
  • the depth of the cut 100X is not limited to this, but in this embodiment, the depth reaches the grounding electrode 110 in the substrate 100. As a result, the end face of the ground electrode 110 is exposed at the periphery of each section 120 after the half-cut process.
  • the width of the cut 100X is not limited to this, but is, for example, 200 ⁇ m to 400 ⁇ m.
  • the width of the cut 100X is determined by the characteristics of the first resin 400, the blade width of a dicer used for half-cutting, and the like.
  • a known technique can be used for the half-cut process.
  • half cut processing can be performed using a DFD641 (trademark), which is a full-auto dicing saw manufactured and sold by Disco Corporation, with a blade having an appropriate width.
  • the shield layer 600 protects the electronic component 200 included in the molded circuit module from electromagnetic waves caused by the electronic components outside the molded circuit module. Alternatively, the electronic component outside the molded circuit module is protected from electromagnetic waves caused by the electronic component 200 in the molded circuit module.
  • the shield layer 600 is formed of a conductive metal suitable for shielding electromagnetic waves.
  • the shield layer 600 of this embodiment has two layers, a first metal coating layer 610 made of a first metal, which is a metal having excellent characteristics for electric field shielding, and a second metal, which is a metal having excellent characteristics for shielding a magnetic field.
  • a second metal coating layer 620 made of metal (FIG. 4).
  • copper or iron can be used as the first metal.
  • nickel can be used as the second metal.
  • copper is used as the first metal and nickel is used as the second metal.
  • Either the first metal coating layer 610 or the second metal coating layer 620 may be exposed to the outside.
  • the second metal coating layer 620 is exposed to the outside. This is because when copper is used as the first metal, copper naturally oxidizes and changes color to black, thus preventing such deterioration of the appearance.
  • the shield layer 600 is provided on the surface of the second resin 500 and the side surface of the first resin 400 and the side surface of the substrate 100 that are exposed to the outside by performing half-cutting.
  • the shield layer 600 is electrically connected to the grounding electrode 110 included in the substrate 100 on the side surface of the substrate 100.
  • the shield layer 600 includes two sides facing the sides connecting the side wall portions 320 among the side wall portions 320 of the partition member 300 constituting the partition (these are due to the half-cut process being performed.
  • the first resin 400 is exposed from the side surface of the first resin 400, and is electrically connected to the side surface of the first resin 400.
  • the partition member 300 is electrically connected to the ground electrode 110 through the shield layer 600.
  • the partition member 300 may already be electrically connected to the grounding electrode 110 at the lower end without the shield layer 600 being interposed.
  • the shield layer 600 can be electrically connected to the grounding electrode 110 via the partition member 300 without being directly connected to the end face of the grounding electrode 110 at the lower end thereof.
  • the shield layer 600 can be formed by applying a paste containing metal powder or by plating.
  • the formation method of each layer may or may not be the same.
  • the first metal coating layer 610 and the second metal coating layer 620 are formed by the same method.
  • the plating is not limited to a wet dry type. An example of wet plating is electroless plating.
  • wet plating examples include physical vapor deposition (PVD) and chemical vapor deposition (CVD). Examples of the former include sputtering and vacuum deposition. Examples of the latter include heat. Examples include CVD and photo-CVD.
  • wet plating should be selected in terms of cost and the aspect of reducing the residual stress in the shield layer 600. Also, in wet plating, the thickness of the shield layer 600 can be increased, more specifically, several ⁇ m to several tens ⁇ m, and a sufficient thickness can be easily obtained to shield electromagnetic waves.
  • wet plating includes electroless plating and electrolytic plating. However, considering the possibility of damage to electronic components included in the mold circuit module, it is necessary to pass a current through the surface of the mold circuit module to be processed. It is preferable to employ no electroless plating. Although not limited to this, in this embodiment, both the first metal coating layer 610 and the second metal coating layer 620 are formed by electroless plating.
  • a full cut process is performed to divide the substrate 100 into the respective sections 120 along the cuts 100X made by performing the half cut (FIG. 1 (j)).
  • a known technique can be used for the full cut processing.
  • full cutting can be performed by mounting and using a blade having an appropriate width on the above-described full-auto dicing saw DFD641 (trademark). Thereby, a mold circuit module is obtained one by one from each section of the substrate 100.
  • FIG. 5 is a sectional view of the molded circuit module M obtained by the above method
  • FIG. 6 is a perspective plan view of the molded circuit module M.
  • the substrate 100 included in the molded circuit module M is covered with the first resin 400 together with the electronic component 200.
  • the upper surface of the first resin 400 is covered with the second resin 500.
  • the upper surface of the second resin 500, the side surfaces of the first resin 400 and the second resin 500, and the side surface of the substrate 100 exposed by the half cut are covered with a shield layer 600.
  • the shield layer 600 includes the first metal coating layer 610 and the second metal coating layer 620, which are electrically connected to the side surface of the grounding electrode 110 inside the substrate 100 as shown in FIG. is doing.
  • the second resin 500 exists in the portion of the shield layer 600 that covers the first resin 400 via the second resin 500, the dropout caused by the filler dropping off from the first resin 400 is It is unrelated.
  • the portion of the shield layer 600 that covers the side surface of the first resin 400 covers the first resin 400 without the second resin 500 interposed therebetween.
  • the side surface of the first resin 400 is covered by the half-cut process. Since it is in a somewhat rough state, the adhesion of the shield layer 600 to the first resin 400 is high, and it is difficult for the first resin 400 to fall off from the side surface.
  • the shield layer 600 includes two sides of the side wall portion 320 of the partition member 300 that constitute the partition, the sides facing the side connecting the side wall portions 320, and the first resin 400. Conducted on the side.
  • the electronic component 200 ⁇ / b> A is surrounded by two side surfaces by the side wall portion 320, two side surfaces by the shield layer 600, and the upper surface by the shield layer 600.
  • the method for manufacturing the molded circuit module of Modification 1 is generally the same as that described in the above embodiment. More specifically, the process described in FIG. 1G is exactly the same as that in the above-described embodiment until the upper surface of the first resin 400 is covered with the second resin 500 and the second resin 500 is cured. .
  • the method for manufacturing a molded circuit module according to Modification 1 is different from the above-described embodiment in that a part of the shield layer 600 on the upper surface of the manufactured molded circuit module does not exist and is open. It is necessary to provide an opening in a part of the shield layer 600 in the following cases, for example.
  • the electronic component 200 when the electronic component 200 is a transceiver, the electronic component 200 must communicate with an external electronic component, for example, by radio waves.
  • the shield layer 600 that shields electromagnetic waves hinders communication by radio waves. Therefore, by providing a range necessary for such communication, for example, a range where the shield layer 600 does not exist immediately above the electronic component 200 that performs communication, and setting the range as an opening of the shield layer 600, the electronic components included in the molded circuit module Of the components 200, those that perform communication can be communicated, and at the same time, the other electronic components 200 can be surrounded by the shield layer 600.
  • making the opening in the shield layer 600 according to the circumstances is the main point of the method for manufacturing the molded circuit module of the first modification.
  • a mask 700 is overlaid on the surface of the second resin 500 (FIG. 7A).
  • the mask 700 is a mold for forming a layer made of a plating resist described later.
  • the mask 700 may be a known one, the mask 700 has a sheet shape, and a mask opening 710 is provided at a position where a layer of plating resist is to be formed.
  • one mask opening 710 is provided for each section 120 and at a common position in the section 120.
  • a plating resist 800 is applied from above the mask 700 (FIG. 7B).
  • the plating resist 800 is made of a material such that the shield layer 600 is not formed on the surface thereof.
  • the plating resist 800 in this embodiment is made of a material that does not adhere to the surface when plating, more specifically, electroless plating is performed. Since the plating resist is well known, its description is omitted.
  • the plating resist 800 adheres to the surface of the second resin 500 at a portion corresponding to the mask opening 710 of the mask 700 and does not adhere to the surface of the second resin 500 at a portion covered with the mask 700.
  • the mask 700 is removed (FIG. 7C).
  • the layer made of the plating resist 800 remains on an appropriate portion of the surface of the second resin 500.
  • the electronic component 200 ⁇ / b> C immediately below the portion where the plating resist 800 is present can be an electronic component 200 that is more advantageous when the shield layer 600 is not present, such as the above-described transceiver.
  • a shield layer 600 having the same two-layer structure as that described in the above embodiment is formed by the same method as that described in the above embodiment (FIG. 7E).
  • the shield layer 600 is formed in a portion where the layer made of the plating resist 800 does not exist, but is not formed in a portion where the layer made of the plating resist 800 exists.
  • the plating resist 800 is removed, and a full-cut process similar to that in the above-described embodiment is performed, whereby a molded circuit module having an opening 630 at a desired position of the shield layer 600 is completed (FIG. 7 ( f)).
  • the method for manufacturing the molded circuit module according to the modified example 2 is the same as the method for manufacturing the molded circuit module according to the modified example 1, in which a part of the shield layer 600 on the upper surface is not present and is opened. It is.
  • the method for manufacturing the molded circuit module of Modification 2 is generally the same as that described in the above embodiment. In particular, the process up to the process of covering the upper surface of the first resin 400 with the second resin 500 and curing the second resin 500 described with reference to FIG.
  • the difference between the method of manufacturing the mold circuit module of Modification 2 in the process so far and the method of manufacturing the mold circuit module according to the above-described embodiment is that the partition member 300 is used in the method of manufacturing the mold circuit module of Modification 2.
  • an appropriate portion of the first resin 400 has a thickness from the substrate 100. This is that a large raised portion 410 is provided, and that the process of cutting the upper portion of the first resin 400 described with reference to FIG. 1E is omitted (FIG. 8A).
  • an opening of a shield layer which will be described later, is formed in a portion where the raised portion 410 exists. That is, the raised portion 410 is provided in a portion where the opening of the shield layer is desired to exist.
  • a shield layer 600 having the same two-layer structure as that described in the above embodiment is formed by the same method as that described in the above embodiment (FIG. 8C).
  • the raised portion 410 is removed together with the second resin 500 covering the raised portion 410 and the shield layer 600 covering the second resin 500 covering the raised portion 410.
  • the portion where the raised portion 410 was present is flush with the surface of the shield layer 600 that covers the portion other than the raised portion 410 via the second resin 500.
  • the above-mentioned part is removed.
  • a molded circuit module having an opening 630 at a desired position of the shield layer 600 is completed (FIG. 8D).

Abstract

 フィラーを含む樹脂層の表面を覆う金属製のシールド層を有するモールド回路モジュールにおけるシールド層の脱落を防止する技術を提供する。 モールド回路モジュールを製造するに当たり、まず、基板(100)を電子部品(200)ごと、フィラーを含む第1樹脂(400)で覆う。次いで第1樹脂(400)の表面をフィラーを含まない第2樹脂(500)で覆う。その後ハーフカットの処理を行うことで、基板(100)内の接地用電極(110)を露出させてから、基板(100)の表面側をすべて覆うシールド層(600)を無電解めっきで形成する。その後フルカットを行い、多数のモールド回路モジュールを得る。

Description

モールド回路モジュール及びその製造方法
 本発明は、モールド回路モジュールに関する。
 モールド回路モジュールが知られている。
 モールド回路モジュールは、配線を有する基板(例えばプリント基板)と、基板の配線と導通するようにして実装された電子部品と、基板を電子部品ごと被覆する樹脂とからなる。モールド回路モジュールは、電子部品を樹脂にて覆うことにより、電子部品を保護することができ、また、電子部品と基板の配線とが導通する箇所を保護することができる。
 上述のようにモールド回路モジュールは、電子部品を含んでいる。そして、電子部品には、電磁波に弱いものがある。また、電子部品には、電磁波を放出するものもある。
 モールド回路モジュールが実際に使用される多くの場面では、モールド回路モジュールは他の電子部品と組合せられる。他の電子部品は、他のモールド回路モジュールに含まれている場合もあるし、そうでない場合もある。また、他の電子部品は、電磁波に弱い場合もあり、また電磁波を放出するものもある。
 モールド回路モジュールが実際に使用されるとき、当該モールド回路モジュール外の他の電子部品が放出する電磁波から、そのモールド回路モジュールに含まれる電子部品が受ける影響を低減したい場合がある。また、モールド回路モジュールに含まれる電子部品が放出する電磁波から、当該モールド回路モジュール外の他の電子部品が受ける影響を低減したい場合がある。
 そのような観点から、樹脂によるモールドが行われていない回路モジュールについてではあるが、回路モジュール全体を電磁波を遮蔽する金属製のシールドで囲むという技術が実用されている。
 ある例においては、金属製のシールドは、薄い金属板にて形成のその一面が開口された箱である。箱を用いる場合には、樹脂によるモールドを施さないのが通常であるが、箱の開口を囲む縁を基板に当接させた状態で箱を基板に取付けることにより、箱の内部に位置させた電子部品を箱によって囲んでシールドする。
 しかしながら、箱を用いる場合には、基板から箱の上面までの高さが大きくなりがちであり、回路モジュールの厚さが大きくなりがちである。箱を用いる場合には箱を作る手間、コストが嵩む上、電子部品の高さに合わせて複数種類の箱を準備するとなると箱を作る手間、コストが益々上昇するから、箱の高さが電子部品の基板からの高さと比較すると無駄といえる程高くなることも起こり得る。
 回路モジュールの厚さは、それが組込まれる最終製品の寸法に大きな影響を与えるため、それを小さくすることは非常に大きな価値があるが、箱を使うと回路モジュールの厚さが大きくなりがちである。
 他方、モールド回路モジュールにおいて、モールドに用いられた樹脂の表面に、金属粉を含んだペーストを塗布したり、或いは乾式、湿式の別は問わずめっきを行うことによって、金属製のシールド層を形成するという技術の提案もなされており、特にペーストの塗布や、乾式のめっきの一種であるスパッタリングは、実用もされている。これらによれば、モールド回路モジュールの厚さが過大となることは防げる。
 上述のように、樹脂の表面に、金属粉を含んだペーストを塗布したり、或いはめっきを行うことによりシールド層を形成する技術は、特にモールド回路モジュールの厚さを小さくするということに着目した場合には、優れた技術であるといえる。しかしながら、かかる技術にも改善の余地がある。
 樹脂の表面に金属粉を含んだペーストを塗布したり、或いはめっきを行うことにより形成される上述のシールド層は通常、金属、それも1種類の金属によって形成される。
 当該金属は、取り回しの良さや、コストという観点ももちろん考慮はされるものの、基本的には、電磁波を遮蔽する能力が高いものという観点から選択される。
 ところで、電磁波は、電場と磁場の変化によって、空間内を伝播する波である。電磁波を遮蔽する、或いは低減させるには、電場又は磁場のいずれか、或いは双方を遮蔽することが必要である。
 上述のように電磁波を遮蔽するには、金属が用いられる。そして、金属の種類によって、電場を、また磁場を、どの程度遮蔽できるかという能力は異なり、どの金属を用いたとしても電磁波を遮蔽する能力には限界がある。
 本願発明は、モールド回路モジュールのシールド層による電磁波の遮蔽効果をより高める技術を提供することをその課題とする。
 上述の課題を解決するため、本願発明者は以下の発明を提案する。
 本願発明は、接地用電極を有する基板と、前記基板の一方の面上に実装された少なくとも1つの電子部品と、前記基板の一方の面を前記電子部品ごと被覆する、樹脂である第1樹脂による第1樹脂層と、前記第1樹脂層の表面(上面)と、前記第1樹脂層の側面と、前記基板の側面とを、前記接地用電極と導通するようにして被覆することによって形成されたシールド層と、を含み、前記シールド層は、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層との2層を含む、モールド回路モジュールである。
 かかるモールド回路モジュールは、シールド層を備えている。かかるシールド層は、従来技術で説明したシールド層と同様に、電磁波を遮蔽するものであり、モールド回路モジュール外の電子部品が作る電磁波が、モールド回路モジュール内の電子部品に与える影響を低減させる機能を有し、又はモールド回路モジュールに含まれる電子部品が、モールド回路モジュール外の他の電子部品に与える影響を低減させる機能を有する。
 そして、このモールド回路モジュールにおけるシールド層は、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層との2層を含んでいる。
 上述したように、金属は、その種類によって、電場を遮蔽する能力と、磁場を遮蔽する能力が異なる。本願発明では、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層という、異なる金属による2つの層をシールド層に含めることにより、電磁波を発生させる元となる電場と磁場をそれぞれよくシールドすることができるようにしている。
 それにより、本願発明のモールド回路モジュールにおけるシールド層は、電磁波をよりよく遮蔽できるものとなる。なお、シールド層は、第1金属被覆層と第2金属被覆層とを含んでいるのであれば、金属によるか否かを問わず、他の層を少なくとも一つ以上含んでいても構わない。
 なお、本願発明におけるシールド層は、基板が持つ接地用電極に導通させられる。シールド層は、接地用電極と導通していれば、接地用電極に直接接触していても、導電性のある他の金属を介して接地用電極に間接的に接触していても良い。例えば、接地用電極は、基板の厚さ方向の所定の部分に層状に存在する場合がある。その場合には、ハーフカット過程で、多数の区画の境界線上を含む所定幅の第1樹脂と基板とを、基板の内部の接地用電極に至るまで除去することとすれば、各区画の周辺に接地用電極の端面が露出することになる。その状態で、金属粉を含んだペーストの塗布、又はめっきを行えば、シールド層は、露出した接地用電極の端面に、直接接することになる。或いは、発明の実施の形態で説明するように、パーテーション部材などの適当な金属部材を用いることで、シールド層を接地用電極と導通させることができる。
 本願発明者は、上述の課題を解決するものとして、以下の方法をも提供する。以下の方法は、上述のモールド回路モジュールを得るための製造方法の一例となる。
 その方法は、互いに隣接する多数の仮想の区画をその一方の面に有するとともに、前記一方の面の前記区画のそれぞれに少なくとも1つの電子部品が実装されたものであり、接地用電極を有する基板の前記一方の全面を、前記電子部品ごと、樹脂である第1樹脂で被覆し硬化させる第1被覆過程と、多数の前記区画の境界線上を含む所定幅の前記第1樹脂と前記基板とを、前記基板の所定の厚さまで除去するハーフカット過程と、前記第1樹脂の表面と、前記ハーフカット過程により露出した、前記第1樹脂の側面と、前記基板の側面とに、金属粉を含んだペーストの塗布、又はめっきにより、前記接地用電極と導通する金属の層であるシールド層を形成するシールド層形成過程と、前記区画の境界で前記基板を切断することにより、前記各区画を切り離すことにより、前記区画のそれぞれに基づく複数のモールド回路モジュールを得るフルカット過程と、を含み、前記シールド層を、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層との2層を含むものとして形成する、モールド回路モジュールの製造方法である。
 シールド層に含まれる第1金属被覆層と第2金属被覆層は、金属粉を含んだペーストの塗布、又はめっきにより形成する。めっきは、湿式乾式を問わない。湿式のめっきの例としては電解めっき、無電解めっきを挙げることができる。乾式のめっきの例としては、物理気相成長(PVD)、化学気相成長(CVD)を挙げることができ、前者の例としては、スパッタリング、真空蒸着を挙げられ、後者の例としては、熱CVD、光CVDを挙げられる。これらのうち、湿式めっきがもっともコスト面からは有利であり、また、湿式めっきにより形成された金属皮膜層(シールド層に含まれる第1金属被覆層と第2金属被覆層)内の残留応力は、他の方法で作られた金属皮膜層内の残留応力よりも小さい点でも湿式めっきは本願発明への応用に向いている。更に、薄膜形成の技術であるPVDやCVDによって得られる金属皮膜層の厚さはnmのオーダーから数μmまでであるのに対し、湿式めっきによれば、数μm~数十μmまでの厚めの膜形成が可能である。電磁波に対するシールド効果を考えると、シールド層に含まれる第1金属被覆層と第2金属被覆層にはそれぞれ、少なくとも数μmの厚さがある方が好ましいので、その点でも湿式めっきは本願発明との相性が良い。なお、湿式めっきには無電解めっきと電解めっきが含まれるが、モールド回路モジュールに含まれる電子部品の損傷の可能性を考えると、加工の対象となるモールド回路モジュールの表面に電流を流すことになる電解めっきよりも、電流を流さなくとも済む無電解めっきの方が好ましい。
 上述のように、第1金属被覆層を構成する第1金属は、電場のシールドに優れる特性を持つ金属であり、第2金属被覆層を構成する第2金属は、磁場のシールドに優れる特性を持つ金属である。
 前記第1金属として、例えば、銅又は鉄を用いることができる。
 前記第2金属として、例えば、ニッケルを用いることができる。
 第1金属被覆層と、第2金属被覆層は、そのいずれを外部に露出させても良い。いずれにしても、上述の機能に関しては特に影響はない。もっとも、第1金属として銅を用いる場合、モールド回路モジュールの使用中に、銅は自然に酸化して黒色に変色することがあるから、見栄えに配慮するのであれば、銅によって構成される第1金属被覆層は外部に露出させない方が良い。
 前記第1樹脂は、これには限られないが、フィラーを含む樹脂を用いるようにしても良い。その場合、モールド回路モジュールの製造方法は、前記基板を被覆した前記第1樹脂の表面を、フィラーを含まない樹脂である第2樹脂で被覆し硬化させる第2被覆過程を含み、前記シールド層形成過程では、前記第2樹脂の表面と、前記ハーフカット過程により露出した、前記第1樹脂の側面と、前記基板の側面とに、金属粉を含んだペーストの塗布、又はめっきにより、前記接地用電極と導通する金属の層であるシールド層を形成する、ものであってもよい。
 本願発明における第1樹脂は、従来技術で説明したモールド回路モジュールに含まれる樹脂に相当する。第1樹脂には、フィラーが混入されることがある。フィラーは、粒状である。また、フィラーは、第1樹脂を構成する樹脂とは異なる線膨張係数を持つ材料によりそれを構成することにより、モールド回路モジュールの熱膨張収縮の程度を抑制するものであるから、現時点におけるモールド回路モジュールにおいては使用される場合が多い。
 他方、フィラーが混入された第1樹脂の表面に、金属粉を含んだペーストを塗布したり、或いはめっきを行うことによりシールド層を形成した場合には、シールド層の脱落が生じうる。第1樹脂の表面に存在し、第1樹脂から露出しているフィラーは第1樹脂から脱落し易くなっている場合があり、フィラーが第1樹脂から脱落する事態が生じると、それに伴って当該部分のシールド層が脱落する。
 かかるシールド層の脱落を防止するのが第2樹脂である。第2樹脂は第1樹脂の表面を覆うものである。そして、シールド層は、第2樹脂の表面と、後のダイシングのためのフルカットに先立って行うハーフカット過程によって露出した前記第1樹脂の側面、及び前記基板の側面とに、形成される。上述のように第2樹脂はフィラーを含まない。したがって、このようにして形成されたシールド層は、フィラーの脱落に起因する脱落とは無縁である。なお、この場合であっても、シールド層のうち第1樹脂の側面を被覆する部分は、第2樹脂を介さずに第1樹脂を被覆することになる。しかしながら、通常の方法でハーフカットを行えば、第1樹脂の側面は適度に荒れるので、そこではシールド層が第1樹脂によく密着し、シールド層の脱落は生じにくいことが本願発明者によって確認されている。
 なお、湿式めっきをシールド層の形成に用いた場合には、仮に第2樹脂による層が存在しないとすると、フィラーの脱落によるシールド層の脱落が起こりやすい。本願発明は、モールド回路モジュールを製造する際におけるシールド層の形成の過程に、湿式めっきを選択できるようにするという点でも意味を持つ。
 上述のように、第1樹脂にフィラーが含まれる場合であっても、フィラーの含まれない第2樹脂を用いることで、シールド層の脱落を防ぐことができる。第2樹脂が用いられる場合、第1樹脂の上面の少なくともシールド層で被覆される部分が第2樹脂で被覆される。もっとも、第1樹脂に対して、第2樹脂を介してシールド層が形成される場合であっても、第2樹脂が第1樹脂から脱落すると、結果的にシールド層の脱落が生じてしまう。
 第2樹脂の第1樹脂からの脱落を防止するには、第2樹脂の第1樹脂に対する密着性の高さが重要である。この密着性は第1樹脂と第2樹脂の間のアンカー効果、分子間力、若干の共有結合で実現されている。
 第2樹脂の第1樹脂に対する密着性を上げるには、第2樹脂として、前記第1樹脂に主樹脂として含まれる樹脂と同種のものを用いるのが簡単である。なお、本願において「主樹脂」とは、第1樹脂に含まれる樹脂が一種類であればその樹脂を意味し、第1樹脂に複数種類の樹脂が含まれるのであれば、その中で最も重量比で多いものを意味するものとする。
 前記第1樹脂に主樹脂として含まれる樹脂がエポキシ樹脂である場合、前記第2樹脂は、エポキシ樹脂とすることができる。これにより、第1樹脂と第2樹脂の密着性は、実用性に足る程度に大きくなる。
 なお、第2樹脂は上述のように、第1樹脂の一方の面の少なくともシールド層で被覆される部分を被覆する。第2樹脂の厚さは、例えば、第1樹脂から露出するフィラーを被覆することでフィラーの第1樹脂からの脱落を防ぐことができ、且つ第2樹脂の強度を維持できる範囲で薄くするのが良い。第2樹脂の層を薄くすることは、次工程での粗化が容易であるという理由により、シールド層をめっきにより形成する場合に有利である。例えば、第2樹脂による層は、第1樹脂の表面の凹凸形状を埋めない程度に薄くするのが良い。
 本願発明では、前記第1被覆過程を実行した後で且つ前記シールド層形成過程を実行する前に、硬化した前記第1樹脂の表面を、その表面が前記基板の前記一方の面と平行となるように削る第1樹脂成形過程を実行することも可能である。
 モールド回路モジュールに複数の電子部品が実装される場合、当然に各電子部品の背の高さが異なる場合がある。その場合第1樹脂の表面に凹凸ができることがあり得る。硬化した前記第1樹脂の表面を、その表面が前記基板の前記一方の面と平行となるように削る第1樹脂成形過程を実行することにより、最も背の高い電子部品の上に存在する第1樹脂の厚さを必要な限度を保ちつつではあるが、小さくすることができるから、これによりモールド回路モジュールの厚さを小さくすることができる。なお、第1樹脂の基板への塗布を行う際にも、最も背の高い電子部品の上に存在する第1樹脂の厚さをある程度制御することができるが、かかる制御はその精度が低い。第1樹脂成形過程では、例えば機械的な切削により、最も背の高い電子部品の上に存在する第1樹脂の厚さを制御することになるが、その場合にはその精度は一般に、±35μm程度とすることができる。通常、最も背の高い電子部品の上に存在する第1樹脂の厚さは、500μm程度より薄くすることができなかったが、第1樹脂成形過程を加えることにより、その厚さを、100μm以下、場合によっては80μm程度にまで薄くすることも可能となる。
 この場合、第1樹脂成形過程が実行された後、それによって作られた第1樹脂の表面に対してシールド層を直接形成することも可能であり、第1樹脂成形過程によって作られた第1樹脂の表面に対して第2被覆過程を実行し、それにより作られた第2樹脂の層の表面に対してシールド層を形成することも可能である。
 なお、第1樹脂成形過程を実行すると、硬化した第1樹脂の中に存在するフィラーが脱落し易い状態となる場合もある。その場合であっても、その後に第2被覆過程を実行し、第1樹脂の表面を第2樹脂で被覆することで、フィラーの脱落に起因するシールド層の脱落を抑制することができる。
 第1被覆過程において、基板の前記一方の全面を、前記電子部品ごと、フィラーを含む樹脂である第1樹脂で被覆する際には、どのような方法でそれを実行しても良い。その際には、例えば、真空印刷法を用いることができる。
 真空印刷法を用いれば、硬化後の第1樹脂の中に微小な気泡が生じることを防ぐことができ、様々な形状を持つ電子部品を、隙間なく第1樹脂で被覆できるようになる。
 という利点はあるものの、第1被覆過程で真空印刷を用いる場合には、基板に取付けられる部品の上に存在する樹脂層の厚みが薄いと、電子部品の高さの違いに起因する凹凸が、第1樹脂の表面にどうしても現れてしまう。これを避けるために、真空印刷を用いる場合には、電子部品の上に位置する第1樹脂の厚さに余裕を持たせることが必要になるが、これは結果として完成したモールド回路モジュールの厚みが大きくなるという欠点につながる。第1樹脂成形過程を行えば、これを解決することができるため、第1樹脂成形過程は、真空印刷と非常に相性が良く、モールド回路モジュールの製造に真空印刷を使用できるようにするための技術であるととらえることもできる。
 第1樹脂には、電子部品の間に入り込むための充填性(これは硬化前の特性である。)と、電子部品或いは基板との密着性と、反りを生じない特性(これらは硬化後の特性である。)の3つが求められる。
 第1樹脂が、上述の特性を満たすには、以下のような特性を有するのが良い。下記特性を有する第1樹脂であれば、硬化前、硬化後の第1樹脂がともに上述の特性を充足する。
 第1樹脂が満たすべき特性は、硬化前の特性として、フィラーを含む第1樹脂の全量に対するフィラーの比率が重量比で80%以上、硬化後の特性として、線膨張係数(α1)が11ppm/TMA以下、線膨張係数(α2)が25ppm/TMA以下、25℃弾性率が15GPa/DMA以上である。
 第1樹脂に求められる特性のうち、充填性の高さは、完成したモールド回路モジュールの厚さを小さくすることに寄与する。電子部品の下側と、基板との間には通常隙間が存在する。かかる隙間は、その隙間に第1樹脂が充填できる程度に大きくなるように設計せざるを得ない。ここで、第1樹脂の充填性が高ければ、電子部品の下側と基板との隙間を小さくできる。それにより、モールド回路モジュールの厚さを小さくすることができるのである。上述の特性を持つ樹脂を用いた場合には、電子部品の下側と基板との隙間を30μmまで小さく(一般には150~200μmである。)することができる。
本願発明の一実施形態によるモールド回路モジュールの製造方法で使用される基板の構成を示す側断面図。 図1(a)に示した基板に電子部品を実装した状態を示す側断面図。 図1(b)に示した基板にパーテーション部材を取付けた状態を示す側断面図。 図1(c)に示した基板を部品ごと第1樹脂で被覆して、第1樹脂を硬化させた状態を示す側断面図。 図1(d)に示した第1樹脂のうち除去される範囲を示すための側断面図。 図1(e)に示した第1樹脂のうち除去されるべき部分が除去された状態を示す側断面図。 図1(f)に示した第1樹脂の上面を第2樹脂で被覆し、第2樹脂を硬化させた状態を示す側断面図。 図1(g)に示した基板に対してハーフカットの処理を行った状態を示す側断面図。 図1(h)に示した基板に対してシールド層を設けた状態を示す側断面図。 図1(i)に示した基板に対してフルカットの処理を行った状態を示す側断面図。 実施形態のモールド回路モジュールの製造方法で用いられるパーテーション部材の構成を示す斜視図。 実施形態のモールド回路モジュールの製造方法で用いられる他のパーテーション部材の構成を示す平面図、左側面図、及び正面図。 実施形態のモールド回路モジュールの製造方法で用いられる他のパーテーション部材の構成を示す平面図、左側面図、及び正面図。 実施形態のモールド回路モジュールの製造方法で用いられる他のパーテーション部材の構成を示す平面図、左側面図、及び正面図。 実施形態のモールド回路モジュールの製造方法で用いられる真空印刷法の原理を示す側面図。 実施形態のモールド回路モジュールの製造方法によって得られるシールド層の構成の一例を示す側断面図。 実施形態によるモールド回路モジュールの製造方法によって得られるモールド回路モジュールの側断面図。 実施形態によるモールド回路モジュールの製造方法によって得られるモールド回路モジュールの透視平面図。 変形例1のモールド回路モジュールの製造方法において、第2樹脂の上にマスクを重ねた状態を示す側断面図。 図7(a)に示したマスクの上からめっきレジストを塗布した状態を示す側断面図。 図7(b)に示したマスクを除去した状態を示す側断面図。 図7(c)に示した基板にハーフカットの処理を行った後の状態を示す側断面図。 図7(d)に示した基板に対してシールド層を設けた状態を示す側断面図。 図7(e)に示した基板に対してフルカットの処理・めっきレジスト除去を行った状態を示す側断面図。 変形例2のモールド回路モジュールの製造方法において、第1樹脂の上面を第2樹脂で被覆し、第2樹脂を硬化させた状態を示す側断面図。 図8(a)に示した基板にハーフカットの処理を行った後の状態を示す側断面図。 図8(b)に示した基板に対してシールド層を設けた状態を示す側断面図。 図8(c)に示した基板における盛上部を除去し、基板に対してフルカットの処理を行った状態を示す側断面図。
 以下、図面を参照しつつ、本発明のモールド回路モジュールの製造方法の好ましい一実施形態を説明する。
 この実施形態では、図1(a)に示した基板100を用いて、モールド回路モジュールを製造する。
 基板100は極一般的なもので良く、この実施形態の基板100も極一般的なものである。基板100は、図示を省略の配線を備えている。配線は、後述する電子部品に対して導通させられ、電子部品に給電を行うものであり、公知或いは周知のものである。それが可能なように配線は設計されている。配線はどのような方法で基板100に設けられたものでも良く、基板100のどこに設けられていても良い。配線は例えば、基板100の表面に印刷で設けられていても良い。その場合の基板100は、プリント配線基板と一般的に称されるものとなる。配線はまた、基板100の内部に存在する場合もある。
 平面視した場合における基板100の形状は例えば矩形である。もっとも基板100の形状は、後述するようにしてモールド回路モジュールを多数個取りする場合に無駄が少なくなるような形状として、適宜設定されるのが通常である。
 基板100の適当な位置には、接地用電極110が設けられている。接地用電極110は、そのすべての部分、或いはその一部が基板100の内部に存在する場合もあり、そのすべての部分、或いはその一部が基板100のいずれかの表面に存在する場合もある。この実施形態では、接地用電極110は、基板100の内部の適当な深さに、層状に存在するものとする。接地用電極110は、完成したモールド回路モジュールが使用されるときに、後述するシールド層を、接地用電極110を介して接地するために用いられる。接地用電極110は、それが可能となるように設計されている。
 この実施形態で説明するモールド回路モジュールの製造方法では、1枚の基板100から多数のモールド回路モジュールを製造する。つまり、この実施形態では、1枚の基板100からモールド回路モジュールを、所謂多数個取りする。基板100は、仮想の隣接する多数の区画120に区分されており、各区画120から1つのモールド回路モジュールが製造されることになる。各区画120から製造されるモールド回路モジュールは必ずしも同じものとする必要はないが、通常は同じものである。各区画120から製造されるモールド回路モジュールが同じものである場合、各区画120は同じ大きさであり、各区画120には同じパターンで、配線と、接地用電極110とが設けられている。これには限られないが、この実施形態では、各区画120から製造されるモールド回路モジュールは同じものであるものとする。
 モールド回路モジュールを製造するには、まず、図1(b)に示したようにして、上述の基板100の一方の面(この実施形態では、図1(b)の上側の面)に対して、電子部品200を取付ける。電子部品200はすべて既存のものでよく、例えば、IC(integrated circuit:集積回路)増幅器、発振器、検波器、送受信器等の能動素子或いは抵抗、コンデンサ、コイル等の受動素子であり、必要に応じて選択される。
 電子部品200は、それらが持つ図示せぬ端子を、各区画120の配線に導通させるようにして、各区画120に取付けられる。この実施形態では各区画120から同じモールド回路モジュールが得られるのであるから、各区画120に実装される電子部品200は同じものとされる。電子部品200の各区画120への取付け方は、公知或いは周知の技術を用いれば良いので、詳しい説明は省略する。
 電子部品200の下側と基板100との隙間は、通常より小さく、例えば30μm程度であっても良い。
 次いで、この実施形態では、必ずしも必要ではないが、パーテーション部材300を基板100に取付ける(図1(c))。パーテーション部材300は、モールド回路モジュールの中にパーテーションを作るための部材である。パーテーションは、モールド回路モジュール内の電子部品200が作る電磁波が、そのモールド回路モジュール内の他の電子部品200に与える影響を低減することを目的とする。なお、パーテーション部材300は、以下のような事情が存在するとき等に必要に応じて使用すれば良いものであり、必須のものではない。
 例えば、この実施形態では、図1(c)に示した電子部品200Aが高周波発振器である場合、電子部品200Aからは強い電磁波が発せられる。そのような場合であり、且つ電子部品200Aの周囲の電子部品200が、強い電磁波によって、その本来の機能に対してノイズを生じさせるようなものである場合には、他の電子部品200を電子部品200Aが作る電磁波から守る必要がある。或いは、電子部品200Aが特に、他の電子部品200が作る電磁波の影響を受けやすいものであることも考えられ、そのような場合には、電子部品200Aを他の電子部品200が作る電磁波から守る必要がある。いずれの場合においても、電子部品200Aと他の電子部品200との間で電磁波を遮蔽するのが良い。それを可能とするのがパーテーション部材300によって作られるパーテーションである。
 パーテーション部材300は、電磁波を遮蔽するべく導電性を持つ金属でできており、製造されたモールド回路モジュールにおいて、直接的に、或いは、後述するシールド層を介して、接地用電極110に導通するようになっている。パーテーション部材300は、パーテーション部材300によって作られるパーテーション単独で、或いはパーテーション部材300によって作られるパーテーションと後述するシールド層によって、基板100を平面視した場合におけるある電子部品200(必ずしも、1つのみとは限らない。)を、囲むことができるような形状として設計される。
 これには限られないが、この実施形態におけるパーテーション部材300は、図2(a)に示したような形状をしている。このパーテーション部材300は、平面視したときに三角形、より詳細には直角三角形である天井部310と、天井部310の斜辺以外の2辺の下に接続され、且つそれらの隣接する一辺が互いに接続された矩形の側壁部320とからなる。この実施形態におけるパーテーション部材300によって作られるパーテーションは、モールド回路モジュールの完成時においては、シールド層と導通するようになっている。例えば、パーテーション部材300によって作られるパーテーションは、モールド回路モジュールが完成した際には、モールド回路モジュールの側面において、2つの側壁部320の互いに接続された辺と対向する辺がシールド層と当接することによって導通するようになっている。なお、この点については後述する。
 パーテーション部材300の基板100への取付け方はどのようにして行っても良い。例えば、接着によって、パーテーション部材300を基板100へ取付けることができる。パーテーション部材300の例えば下端を、接地用電極110に導通させるのであれば、接地用電極110とパーテーション部材300とをそのように設計するとともに、公知の導電性接着剤等で、接地用電極110とパーテーション部材300とを接着すれば良い。例えば、当初から基板100の表面から露出していた、或いは基板100の表面を削り取ることにより基板100から露出させられた接地用電極110に、パーテーション部材300の側壁部320の下端を接触させ、導通させることができる。
 なお、パーテーション部材300は、結果として、接地用電極110に導通していれば良い。換言すれば、パーテーション部材300は、直接、接地用電極110に接触していても良いし、他の導電性の金属(例えばシールド層)を介して間接的に接地用電極110に接触していても良い。そして当然に、これらのうちの一方が達成されているのであれば、その他方は達成されている必要はない。
 パーテーション部材300の他の例を、図2(b)、(c)、(d)に示す。図2(b)、(c)、(d)においては、パーテーション部材300の平面図と、その左側に左側面図と、その下側に正面図とが描かれている。各図において示されたパーテーション部材300は、それぞれ、天井部310と、側壁部320とを備えている。図2(b)、(c)、(d)で示されたパーテーション部材300の天井部310には、開口である複数の天井孔311が穿たれている。この天井孔311は、第1樹脂400充填の際に第1樹脂400をパーテーション部材300の内側に流入させるための孔であり、硬化後にはパーテーション部材300と第1樹脂400との剥離を防止する役割を担うものである。また、図2(d)で示されたパーテーション部材300の側壁部320には、開口である複数の側壁孔321が穿たれている。この側壁孔321は、第1樹脂400の硬化後にはパーテーション部材300と第1樹脂400との剥離を防止する役割を担う。
 次いで、電子部品200と必要に応じてパーテーション部材300とが取付けられた基板100の上記一方の面の全面を、電子部品200とパーテーション部材300ごと、第1樹脂400で被覆し、第1樹脂400を硬化させる(図1(d))。
 第1樹脂400で基板100の一方の面の全面を被覆するには、モールド、ポッティング等の樹脂封止法を用いることができるが、この実施形態では、真空印刷法を用いることとしている。真空印刷法によれば、モールドされた第1樹脂400の内部に細かな気泡が混入することを防ぐことができ、また細かな気泡を除くための脱泡の過程を省略することができる。
 真空印刷法は、公知の真空印刷機を用いて実施することができる。公知の真空印刷機としては、東レエンジニアリング株式会社が製造・販売する真空印刷封止装置であるVE500(商標)を例示することができる。
 真空印刷法の原理について、図3を用いて簡単に述べる。真空印刷法を実施する際には、基板100を例えば金属製のマスクであるメタルマスク450の間に置く。そして、硬化していない状態の第1樹脂400を供給しながら棒状の、図3においては紙面に垂直な方向がその長さ方向となるスキージ460を、図3(a)に示した一方側のメタルマスク450の上に位置する位置から、他方側のメタルマスク450に向けて、同図の(b)で矢視したしたようにして、移動させる。第1樹脂400は、スキージ460の下面でその上面を均され、電子部品200の間に入り込みつつ、基板100の表面を隙間なく覆っていく。真空印刷法は、基板100、メタルマスク450、スキージ460のすべてを真空を引いた図示せぬ真空チャンバの中に入れた状態で実行される。それ故、第1樹脂400の中に気泡が入り込む余地がない。なお、スキージ460を、図3に示したように移動させる場合、スキージ460の基板100からの距離ないし高さは通常、一定である。
 基板100を被覆した第1樹脂400は、適当な時間を置くことで硬化させられる。
 なお、パーテーション部材300の天井部310には天井孔311が設けられており、また、パーテーション部材300の側壁部320には側壁孔321が設けられている場合がある。硬化前の第1樹脂400は、それらから、パーテーション部材300の内部に入り込む。
 図2(d)で示されたパーテーション部材300の側壁部320に設けられた側壁孔321は、第1樹脂400が側壁孔321の中に回り込んだ状態で硬化することで、パーテーション部材300と第1樹脂400とがより良く固定されるようにする機能を発揮する。第1樹脂400の上部を削りとる後述の処理を行った場合でも第1樹脂400の中にパーテーション部材300の天井部310が残る場合においては、天井部310の天井孔311も、同様の機能を持つことになる。
 第1樹脂400には、電子部品200の間に入り込むための充填性(これは硬化前の特性である。)と、電子部品200或いは基板100との密着性と、反りを生じない特性(これらは硬化後の特性である。)の3つが求められる。
 これら特性を第1樹脂400が有するためには、第1樹脂400は、以下のような特性を有するのが良い。下記特性を有する第1樹脂400であれば、硬化前、硬化後の第1樹脂がともに上述の特性を充足する。
 満たされるのが好ましい第1樹脂400の特性は、硬化前の特性についていえば、フィラーを含む第1樹脂の全量に対するフィラーの比率が重量比で80%以上、硬化後の特性についていえば、線膨張係数(α1)が11ppm/TMA以下、線膨張係数(α2)が25ppm/TMA以下、25℃弾性率が15GPa/DMA以上である。
 なお、上記の特性を充足する第1樹脂400の例としては、パナソニック株式会社が製造・販売を行う、樹脂組成物(品番:CV5385(商標))を挙げることができる。これら樹脂組成物には、シリカ(フィラーとして)、エポキシ樹脂、硬化剤、改質剤等が含まれている。樹脂組成物には1種類の樹脂しか含まれていない。したがって、第1樹脂400の本願で言う主樹脂は、エポキシ樹脂である。
 上述の通り第1樹脂400には、フィラーが含まれているが、上述の樹脂組成物(品番:CV5385)には、フィラーが含まれている。また、これら樹脂組成物に含まれるフィラーの量は、第1樹脂400の全体に対して、重量比で80%以上となる83%である。フィラーは、線膨張係数が小さい素材でできており、通常はシリカによりできている。また、フィラーは、第1樹脂400の充填性を満足するために、その粒径は30μm以下とするのがよい。例示した上述の2つの樹脂組成物に含まれるフィラーは、いずれもこれらの条件を満足している。
 また、例示した上述の樹脂組成物の硬化後の線膨張係数(α1)は11ppm/TMA、硬化後の線膨張係数(α2)は25ppm/TMA、硬化後の25℃弾性率は15GPa/DMAであり、上述した好ましい条件を充足している。
 次いで、これは必ずしも必須ではないが、第1樹脂400の上部を除去する。これは、基板100上の第1樹脂400の厚さを小さくすることによって、最終的に得られるモールド回路モジュールの厚さを小さくすることを主たる目的とするものである。この実施形態では、第1樹脂400のうち、図1(e)の破線Lで示した位置よりも上側に位置する第1樹脂400を除去することしている。また、破線Lで示した位置よりも上側に位置する第1樹脂400を除去した状態が、図1(f)に示されている。
 必ずしもこの限りではないが、この実施形態では、破線Lよりも上側に位置する第1樹脂400を除去した後の第1樹脂400の上面は、基板100の一方の面と平行となるようになっている。また、これもこの限りではないが、最も背の高い電子部品200を電子部品200Bとした場合におけるその最上部から、破線Lよりも上側に位置する第1樹脂400を除去した後の第1樹脂400の上面までの距離は、30μm~80μmの間となるようになっている。
 必ずしもこの限りではないが、この実施形態では、第1樹脂400の破線Lよりも上側に位置する部分を除去するとき、第1樹脂400とともに、パーテーション部材300の天井部310及び側壁部320の上側の一定の範囲も除去される。これにより、パーテーション部材300は、その側壁部320のみが第1樹脂400の中に残った状態となる。第1樹脂400の中に残ったパーテーション部材300の側壁部320が、第1樹脂400を仕切るパーテーションとなる。
 なお、パーテーション部材300の上方の部分は、第1樹脂400の破線Lよりも上側に位置する部分を除去するときに、必ずしも第1樹脂400ごと除去される必要はない。その場合、パーテーション部材300の高さは、その天井部310が破線Lよりも低くなるように設計される。
 第1樹脂400の破線Lよりも上側に位置する部分を除去する方法には、適当な公知技術を用いることができる。例えば、フライス盤等の切削装置或いはダイサー等の研磨切削装置によって、第1樹脂400を除去することができる。
 次いで、必ずしも必須ではないがこの実施形態では、基板100と平行とされた第1樹脂400の上面(基板100と対向する面)を、第2樹脂500にて被覆し、第2樹脂500を硬化させる(図1(g))。第2樹脂500で第1樹脂400の上面を被覆するのは、第1樹脂400に含まれたフィラーが第1樹脂400から脱落するのを防止するためである。第1樹脂400の上面の少なくとも後述のシールド層で被覆される部分が、第2樹脂500で被覆される。
 第2樹脂500にはフィラーは含まれていない。第2樹脂500の素材は、硬化した後の第2樹脂500の第1樹脂400に対する密着性が高いものから選択する。例えば、エポキシ樹脂やアクリル樹脂を、第2樹脂500の素材とすることができる。第2樹脂500の第1樹脂400に対する密着性を上げるには、第2樹脂500として、第1樹脂400に主樹脂として含まれる樹脂と同種のものを用いるのが簡単である。第1樹脂400の主樹脂は上述のようにエポキシ樹脂なのであるから、この実施形態では、エポキシ樹脂を第2樹脂500の素材とすることができる。この実施形態では、これには限られないが、第2樹脂500はエポキシ樹脂であるものとする。
 第2樹脂500の厚さは、以下の2つの条件が充足される範囲でなるべく薄くするのが良い。まず、第2樹脂500は、第1樹脂400内のフィラーを保持する役割を担うため、それが可能な程度には厚くする必要がある。次に、第2樹脂500の表面には、めっきの第2樹脂500表面への密着性を良くするために表面粗化を行う場合があるが、第2樹脂500の層が薄過ぎると表面粗化に支障が生じることがあるので、表面粗化を行う場合にはそれに支障がでない程度に厚くする必要がある。これら2つの条件が充足されるようにしつつも、第2樹脂500の厚さを小さくするのが良い。
 また、これには限られないがこの実施形態では、第2樹脂500は、第1樹脂400の上面すべてを被覆することとしている。
 第2樹脂500で第1樹脂400の上面を被覆するために用いる技術には、公知の技術を用いることができる。例えば、スプレー装置による噴霧塗布によって、第2樹脂500で第1樹脂400の上面を被覆することができる。
 第1樹脂400を被覆した第2樹脂500は、適当な時間を置くことで硬化させられる。
 次いで、第2樹脂500の表面を粗化する。第2樹脂500の表面の粗化は、その上に後述するシールド層がより良く密着するようにすることを目的とするものであり、その目的が達成されるようにして行う。樹脂の表面の粗化の技術は、強酸或いは強アルカリを用いたエッチング等、公知或いは周知であるので、第2樹脂500の表面の粗化には、その技術を用いれば良い。
 次いで、基板100に対してハーフカットの処理を行う(図1(h))。ハーフカットは、第2樹脂500、第1樹脂400、及び基板100に対して溝状の切込み100Xを入れる処理である。
 切込み100Xを入れる範囲は、隣り合う区画120の境界線を跨ぐ所定幅の範囲である。切込み100Xの深さは、これには限られないが、この実施形態では基板100内の接地用電極110に至るようなものにする。それにより、ハーフカットの処理後において、各区画120の周縁に、接地用電極110の端面が露出することになる。切込み100Xの幅は、これには限られないが、例えば、200μm~400μmである。切込み100Xの幅は、第1樹脂400の特性、ハーフカットを行うのに用いられるダイサーのブレード幅等によって決定される。
 ハーフカットの処理には、公知の技術を用いることができる。例えば、株式会社ディスコが製造・販売していたフルオートダイシングソーであるDFD641(商標)に、適切な幅のブレードを装着したものを使用して、ハーフカットの処理を行うことができる。
 次いで、第1樹脂400、第2樹脂500、及び基板100のうちの以下に説明する位置を、シールド層600で被覆する(図1(i))。
 シールド層600は、製造されたモールド回路モジュールが使用される場合に、当該モールド回路モジュールの中に含まれる電子部品200を、当該モールド回路モジュールの外にある電子部品に起因する電磁波から保護するか、或いは当該モールド回路モジュール外にある電子部品を当該モールド回路モジュール内にある電子部品200に起因する電磁波から保護するためのものである。
 シールド層600は、電磁波の遮蔽を行うに向いた、導電性を有する金属によって形成される。
 この実施形態のシールド層600は、2層であり、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層610と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層620との2層を含むものとして形成する(図4)。第1金属として、例えば、銅又は鉄を用いることができる。第2金属として、例えば、ニッケルを用いることができる。この実施形態では、これには限られないが、第1金属として銅を、第2金属としてニッケルをそれぞれ用いることとする。第1金属被覆層610と、第2金属被覆層620は、そのいずれを外部に露出させても良い。これには限られないが、この実施形態では、第2金属被覆層620を外部に露出させることとしている。第1金属として銅を用いる場合には、銅は自然に酸化して黒色に変色するので、そのような外観の劣化を防止するためである。
 シールド層600は、第2樹脂500の表面と、ハーフカットを行うことによって外部に露出することになった、第1樹脂400の側面及び基板100の側面とに設ける。シールド層600は、基板100の側面で基板100が備える接地用電極110に導通する。また、シールド層600は、パーテーションを構成するパーテーション部材300の側壁部320のうちの、側壁部320同士を接続する辺に対向する2つの辺(これらは、ハーフカット処理が行われたことにより、第1樹脂400の側面から露出している)と、第1樹脂400の側面で導通する。これにより、パーテーション部材300は、シールド層600を介して接地用電極110と導通することになる。もっとも、パーテーション部材300は、シールド層600を介さずとも、その下端で接地用電極110と既に導通している場合もあり得る。その場合には、シールド層600は、その下端で直接接地用電極110の端面と導通せずとも、パーテーション部材300を介して接地用電極110と導通させることも可能である。
 シールド層600は、金属粉を含んだペーストの塗布、又はめっきにより形成することができる。シールド層600が多層である場合、各層の形成方法は同じであっても同じでなくとも良い。この実施形態では、第1金属被覆層610と、第2金属被覆層620とを同じ方法で形成するものとする。
 めっきは、湿式乾式を問わない。湿式のめっきの例としては無電解めっきを挙げることができる。乾式のめっきの例としては、物理気相成長(PVD)、化学気相成長(CVD)を挙げることができ、前者の例としては、スパッタリング、真空蒸着を挙げられ、後者の例としては、熱CVD、光CVDを挙げられる。
 これらのうち、コスト面、及びシールド層600内の残留応力を小さくできるという面からすれば湿式めっきを選択するべきである。また、湿式めっきでは、シールド層600の厚さを厚めに、より具体的には数μm~数十μmとすることができ、電磁波を遮蔽するに十分な厚さを稼ぎやすい。また、湿式めっきには無電解めっきと電解めっきが含まれるが、モールド回路モジュールに含まれる電子部品の損傷の可能性を考えると、加工の対象となるモールド回路モジュールの表面に電流を流す必要のない無電解めっきを採用するのが好ましい。
 これには限られないが、この実施形態では、第1金属被覆層610と、第2金属被覆層620との双方を、無電解めっきにて形成するものとする。
 最後に、ハーフカットを行うことによって作られた切込み100Xに沿って、基板100を各区画120毎に分割するフルカットの処理を行う(図1(j))。
 フルカットの処理には、公知の技術を用いることができる。例えば、上述のフルオートダイシングソーであるDFD641(商標)に適切な幅のブレードを装着して使用することによってフルカットを行うことができる。
 これにより、基板100の各区画から1つずつ、モールド回路モジュールが得られる。
 図5に、以上の方法によって得たモールド回路モジュールMの断面図を、図6にモールド回路モジュールMの透視平面図を示す。
 図5に示したように、モールド回路モジュールMが備える基板100は、電子部品200ごと第1樹脂400によって被覆されている。また、第1樹脂400の上面は、第2樹脂500によって被覆されている。また、第2樹脂500の上面と、第1樹脂400及び第2樹脂500の側面、及びハーフカットにより露出した基板100の側面は、シールド層600により覆われている。シールド層600は、上述のように第1金属被覆層610と、第2金属被覆層620からなるが、これらは、図5に示すように、基板100の内部の接地用電極110の側面と導通している。シールド層600のうち、第2樹脂500を介して第1樹脂400を被覆している部分は、第2樹脂500が存在するので、フィラーが第1樹脂400から脱落することに起因する脱落とは無縁である。シールド層600のうち、第1樹脂400の側面を被覆している部分は第2樹脂500を介さずに第1樹脂400を被覆しているが、ハーフカットの処理により第1樹脂400の側面がやや荒れた状態になっているので、シールド層600の第1樹脂400に対する密着性が高く、第1樹脂400の側面からの脱落が生じにくい。
 また、図6に示すように、シールド層600は、パーテーションを構成するパーテーション部材300の側壁部320のうちの、側壁部320同士を接続する辺に対向する2つの辺と、第1樹脂400の側面で導通している。
 電子部品200Aは、側壁部320によってその側面の2面を、シールド層600によってその側面の2面を囲まれ、且つその上面をシールド層600によって囲まれることになる。
 次いで、以上の実施形態によるモールド回路モジュールの製造方法の変形例について説明する。
<変形例1>
 変形例1のモールド回路モジュールの製造方法は、概ね上述の実施形態で説明したものと同じである。もっと言えば、図1(g)で説明した、第1樹脂400の上面を、第2樹脂500にて被覆し、第2樹脂500を硬化させる過程までは、上述の実施形態とまったく同じである。
 変形例1によるモールド回路モジュールの製造方法が、上述の実施形態と異なるのは、製造されたモールド回路モジュールの上面のシールド層600の一部が存在せず開口している、という点である。シールド層600の一部に開口を設けることは、例えば、以下の場合に必要となる。
 電子部品200が例えば、送受信器である場合には、当該電子部品200は外部の電子部品と例えば電波による通信を行わなければならない。そのような場合、電磁波を遮蔽するシールド層600は、電波による通信の妨げになる。したがって、かかる通信に必要な範囲、例えば、通信を行う電子部品200の直上にシールド層600の存在しない範囲を設け、当該範囲をシールド層600の開口とすることで、モールド回路モジュールに含まれる電子部品200のうち通信を行うものの通信を可能たらしめると同時に、その他の電子部品200をシールド層600によって囲むことが可能となる。
 このように、事情に応じてシールド層600に開口を作るというのが、変形例1のモールド回路モジュールの製造方法の要点である。
 変形例1のモールド回路モジュールの製造方法では、図1(g)で示した過程の後、第2樹脂500の表面に、マスク700を重ねる(図7(a))。マスク700は、後述するめっきレジストによる層を形成するための型である。マスク700は公知のもので良いが、マスク700はシート状であり、また、めっきレジストによる層が形成されるべき位置にマスク開口710が設けられている。この変形例1では、各区画120につき1つずつ、且つ当該区画120の中の共通する位置に、マスク開口710が設けられている。
 次いで、マスク700の上からめっきレジスト800を塗布する(図7(b))。めっきレジスト800は、その表面にシールド層600が形成されないような素材でできている。この実施形態におけるめっきレジスト800は、めっき、より詳細には、無電解めっきを行ったときに、めっきがその表面に付着しないような素材でできている。めっきレジストは周知のものであるため、その説明は省略する。
 めっきレジスト800は、マスク700のマスク開口710に対応する部分では第2樹脂500の表面に付着し、マスク700で覆われた部分では、第2樹脂500の表面に付着しない。
 次いで、マスク700を除去する(図7(c))。そうすると、めっきレジスト800による層が、第2樹脂500の表面のうちの適宜の部分に残る。例えば、めっきレジスト800が存在する部分の直下にある電子部品200Cを、上述した送受信器の如き、シールド層600が存在しない方が好都合な電子部品200とすることができる。
 次いで、上述の実施形態で説明したのと同じようにして、ハーフカットの処理を行う(図7(d))。
 次いで、上述の実施形態で説明したのと同様の方法で、上述の実施形態で説明したのと同様の2層構造のシールド層600を形成する(図7(e))。シールド層600は、めっきレジスト800による層が存在しない部分には形成されるが、めっきレジスト800による層が存在する部分には形成されない。
 次いで、めっきレジスト800を除去して、上述の実施形態の場合と同様のフルカットの処理を行うことにより、シールド層600の所望の位置に開口630を有するモールド回路モジュールが完成する(図7(f))。
<変形例2>
 変形例2によるモールド回路モジュールの製造方法は、変形例1のモールド回路モジュールの製造方法と同様に、その上面のシールド層600の一部が存在せず開口しているモールド回路モジュールを製造する方法である。
 変形例2のモールド回路モジュールの製造方法は、概ね上述の実施形態で説明したものと同じである。特に、図1(g)で説明した、第1樹脂400の上面を、第2樹脂500にて被覆し、第2樹脂500を硬化させる過程までは、上述の実施形態と略同様である。ここまでの過程における変形例2のモールド回路モジュールの製造方法と、上述の実施形態によるモールド回路モジュールの製造方法との相違点は、変形例2のモールド回路モジュールの製造方法では、パーテーション部材300を用いない点と、変形例2のモールド回路モジュールの製造方法では、第1樹脂400で基板100を電子部品200ごと被覆する際に、第1樹脂400の適当な部分に、基板100からの厚みの大きな盛上部410を設けるという点と、図1(e)を用いて説明した第1樹脂400の上方を削る過程を省略したという点、である(図8(a))。変形例2では、盛上部410が存在する部分に、後述するシールド層の開口が形成されることになる。つまり、盛上部410はそこにシールド層の開口が存在することが望まれる部分に設けられることになる。
 次いで、上述の実施形態で説明したのと同じようにして、ハーフカットの処理を行う(図8(b))。
 次いで、上述の実施形態で説明したのと同様の方法で、上述の実施形態で説明したのと同様の2層構造のシールド層600を形成する(図8(c))。
 次いで、盛上部410を、盛上部410を覆う第2樹脂500及び盛上部410を覆う第2樹脂500を覆うシールド層600ごと除去する。この実施形態では、これには限られないが、盛上部410が存在していた部分を、盛上部410以外を第2樹脂500を介して被覆するシールド層600の表面と面一にするようにして、上述の部分を除去する。そして、上述の実施形態の場合と同様のフルカットの処理を行うことにより、シールド層600の所望の位置に開口630を有するモールド回路モジュールが完成する(図8(d))。
 100 基板
100X 切込み
 110 接地用電極
 120 区画
 200 電子部品
 300 パーテーション部材
 310 天井部
 320 側壁部
 400 第1樹脂
 410 盛上部
 500 第2樹脂
 600 シールド層
 630 開口
 700 マスク
 800 めっきレジスト

Claims (10)

  1.  互いに隣接する多数の仮想の区画をその一方の面に有するとともに、前記一方の面の前記区画のそれぞれに少なくとも1つの電子部品が実装されたものであり、接地用電極を有する基板の前記一方の全面を、前記電子部品ごと、樹脂である第1樹脂で被覆し硬化させる第1被覆過程と、
     多数の前記区画の境界線上を含む所定幅の前記第1樹脂と前記基板とを、前記基板の所定の厚さまで除去するハーフカット過程と、
     前記第1樹脂の表面と、前記ハーフカット過程により露出した、前記第1樹脂の側面と、前記基板の側面とに、金属粉を含んだペーストの塗布、又はめっきにより、前記接地用電極と導通する金属の層であるシールド層を形成するシールド層形成過程と、
     前記区画の境界で前記基板を切断することにより、前記各区画を切り離すことにより、前記区画のそれぞれに基づく複数のモールド回路モジュールを得るフルカット過程と、
     を含み、
     前記シールド層を、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層との2層を含むものとして形成する、
     モールド回路モジュールの製造方法。
  2.  前記第1金属として、銅又は鉄を用いる、
     請求項1記載のモールド回路モジュールの製造方法。
  3.  前記第2金属としてニッケルを用いる、
     請求項1記載のモールド回路モジュールの製造方法。
  4.  前記第1樹脂として、フィラーを含む樹脂を用いるとともに、
     前記基板を被覆した前記第1樹脂の表面を、フィラーを含まない樹脂である第2樹脂で被覆し硬化させる第2被覆過程を含み、
     前記シールド層形成過程では、前記第2樹脂の表面と、前記ハーフカット過程により露出した、前記第1樹脂の側面と、前記基板の側面とに、金属粉を含んだペーストの塗布、又はめっきにより、前記接地用電極と導通する金属の層であるシールド層を形成する、
     請求項1記載のモールド回路モジュールの製造方法。
  5.  前記第2樹脂として、前記第1樹脂に主樹脂として含まれる樹脂と同種のものを用いる、
     請求項4記載のモールド回路モジュールの製造方法。
  6.  前記第1樹脂に主樹脂として含まれる樹脂がエポキシ樹脂であり、前記第2樹脂は、エポキシ樹脂である、
     請求項4記載のモールド回路モジュールの製造方法。
  7.  前記第1被覆過程を実行した後で且つ前記シールド層形成過程を実行する前に、硬化した前記第1樹脂の表面を、その表面が前記基板の前記一方の面と平行となるように削る第1樹脂成形過程を実行する、
     請求項1又は4記載のモールド回路モジュールの製造方法。
  8.  前記第1被覆過程において、基板の前記一方の全面を、前記電子部品ごと、フィラーを含む樹脂である第1樹脂で被覆する際に、真空印刷法を用いる、
     請求項1記載のモールド回路モジュールの製造方法。
  9.  前記第1樹脂として、硬化前の特性として、フィラーを含む第1樹脂の全量に対するフィラーの比率が重量比で80%以上、硬化後の特性として、線膨張係数(α1)が11ppm/TMA以下、線膨張係数(α2)が25ppm/TMA以下、25℃弾性率が15GPa/DMA以上であるものを用いる、
     請求項1記載のモールド回路モジュールの製造方法。
  10.  接地用電極を有する基板と、
     前記基板の一方の面上に実装された少なくとも1つの電子部品と、
     前記基板の一方の面を前記電子部品ごと被覆する、樹脂である第1樹脂による第1樹脂層と、
     前記第1樹脂層の表面と、前記第1樹脂層の側面と、前記基板の側面とを、前記接地用電極と導通するようにして被覆することによって形成されたシールド層と、
     を含み、
     前記シールド層は、電場のシールドに優れる特性を持つ金属である第1金属による第1金属被覆層と、磁場のシールドに優れる特性を持つ金属である第2金属による第2金属被覆層との2層を含む、
     モールド回路モジュール。
PCT/JP2014/082955 2014-12-12 2014-12-12 モールド回路モジュール及びその製造方法 WO2016092692A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015533357A JPWO2016092692A1 (ja) 2014-12-12 2014-12-12 モールド回路モジュール及びその製造方法
PCT/JP2014/082955 WO2016092692A1 (ja) 2014-12-12 2014-12-12 モールド回路モジュール及びその製造方法
JP2016563206A JPWO2016093040A1 (ja) 2014-12-12 2015-11-20 モールド回路モジュール及びその製造方法
US15/534,427 US20170347462A1 (en) 2014-12-12 2015-11-20 Encapsulated Circuit Module, And Production Method Therefor
DE112015005552.5T DE112015005552T5 (de) 2014-12-12 2015-11-20 Gekapseltes Schaltungsmodul und Herstellungsverfahren dafür
PCT/JP2015/082706 WO2016093040A1 (ja) 2014-12-12 2015-11-20 モールド回路モジュール及びその製造方法
CN201580067435.0A CN107114005A (zh) 2014-12-12 2015-11-20 模制电路模块及其制造方法
TW104139582A TW201637556A (zh) 2014-12-12 2015-11-27 模製電路模組及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082955 WO2016092692A1 (ja) 2014-12-12 2014-12-12 モールド回路モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016092692A1 true WO2016092692A1 (ja) 2016-06-16

Family

ID=56106936

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/082955 WO2016092692A1 (ja) 2014-12-12 2014-12-12 モールド回路モジュール及びその製造方法
PCT/JP2015/082706 WO2016093040A1 (ja) 2014-12-12 2015-11-20 モールド回路モジュール及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082706 WO2016093040A1 (ja) 2014-12-12 2015-11-20 モールド回路モジュール及びその製造方法

Country Status (6)

Country Link
US (1) US20170347462A1 (ja)
JP (2) JPWO2016092692A1 (ja)
CN (1) CN107114005A (ja)
DE (1) DE112015005552T5 (ja)
TW (1) TW201637556A (ja)
WO (2) WO2016092692A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217724B2 (en) 2015-03-30 2019-02-26 Mediatek Inc. Semiconductor package assembly with embedded IPD
US11728292B2 (en) 2015-05-05 2023-08-15 Mediatek Inc. Semiconductor package assembly having a conductive electromagnetic shield layer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039224B2 (ja) * 2016-10-13 2022-03-22 芝浦メカトロニクス株式会社 電子部品の製造装置及び電子部品の製造方法
JP6654994B2 (ja) * 2016-10-31 2020-02-26 Towa株式会社 回路部品の製造方法
JP6463323B2 (ja) * 2016-12-01 2019-01-30 太陽誘電株式会社 無線モジュール、およびその製造方法
JP6408540B2 (ja) 2016-12-01 2018-10-17 太陽誘電株式会社 無線モジュール及び無線モジュールの製造方法
CN210223996U (zh) * 2017-02-28 2020-03-31 株式会社村田制作所 带薄膜屏蔽层的电子部件
WO2018221273A1 (ja) * 2017-06-02 2018-12-06 株式会社村田製作所 高周波モジュール及び通信装置
EP3462486B1 (en) 2017-09-29 2021-03-24 Qorvo US, Inc. Process for making a double-sided module with electromagnetic shielding
US10564679B2 (en) 2018-04-05 2020-02-18 Samsung Electro-Mechanics Co., Ltd. Electronic device module, method of manufacturing the same and electronic apparatus
CN112740845B (zh) * 2018-10-05 2023-11-07 株式会社村田制作所 模块
US10861794B2 (en) * 2018-10-31 2020-12-08 Advanced Semiconductor Engineering, Inc. Low frequency electromagnetic interference shielding
KR102639441B1 (ko) * 2018-11-09 2024-02-22 삼성전자주식회사 반도체 패키지 및 이에 이용되는 전자파 차폐 구조물
CN110718536B (zh) * 2019-07-26 2021-08-27 南通通富微电子有限公司 封装结构
WO2021017898A1 (en) * 2019-07-26 2021-02-04 Nantong Tongfu Microelectronics Co., Ltd Packaging structure andformation method thereof
CN110534442B (zh) * 2019-07-26 2023-03-14 通富微电子股份有限公司 封装结构的形成方法
CN110518002B (zh) * 2019-07-26 2023-04-07 通富微电子股份有限公司 封装结构的形成方法
CN110544677B (zh) * 2019-07-26 2023-03-14 通富微电子股份有限公司 封装结构
CN110718535B (zh) * 2019-07-26 2021-07-02 南通通富微电子有限公司 封装结构
CN110718473B (zh) * 2019-07-26 2021-08-27 南通通富微电子有限公司 封装结构的形成方法
CN110473859B (zh) * 2019-07-26 2021-07-02 南通通富微电子有限公司 封装结构
CN110473844B (zh) * 2019-07-26 2021-07-02 通富微电子股份有限公司 封装结构
US11201467B2 (en) 2019-08-22 2021-12-14 Qorvo Us, Inc. Reduced flyback ESD surge protection
WO2021060163A1 (ja) * 2019-09-27 2021-04-01 株式会社村田製作所 モジュールおよびその製造方法
TWI774008B (zh) 2020-06-19 2022-08-11 啟碁科技股份有限公司 封裝結構及其製造方法
KR20220000087A (ko) * 2020-06-25 2022-01-03 삼성전기주식회사 전자 소자 모듈
KR20220003342A (ko) * 2020-07-01 2022-01-10 삼성전기주식회사 전자 소자 패키지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260500A (ja) * 1989-03-31 1990-10-23 Mitsubishi Rayon Co Ltd 電磁波しゃへいテープ
WO2007083352A1 (ja) * 2006-01-17 2007-07-26 Spansion Llc 半導体装置およびその製造方法
JP2010219210A (ja) * 2009-03-16 2010-09-30 Renesas Electronics Corp 半導体装置およびその製造方法
JP2010278421A (ja) * 2009-04-27 2010-12-09 Murata Mfg Co Ltd 電子部品の製造方法
JP2014107372A (ja) * 2012-11-27 2014-06-09 Taiyo Yuden Co Ltd 回路モジュール及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353685A (ja) * 2001-05-28 2002-12-06 Nisshin Steel Co Ltd 電磁波シールド材
WO2008062982A1 (en) * 2006-11-21 2008-05-29 Lg Innotek Co., Ltd Electromagnetic shielding device, radio frequency module having the same, and method of manufacturing the radio frequency module
WO2010041356A1 (ja) * 2008-10-07 2010-04-15 株式会社村田製作所 電子部品モジュールの製造方法
JP2014175485A (ja) * 2013-03-08 2014-09-22 Ibiden Co Ltd 配線板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260500A (ja) * 1989-03-31 1990-10-23 Mitsubishi Rayon Co Ltd 電磁波しゃへいテープ
WO2007083352A1 (ja) * 2006-01-17 2007-07-26 Spansion Llc 半導体装置およびその製造方法
JP2010219210A (ja) * 2009-03-16 2010-09-30 Renesas Electronics Corp 半導体装置およびその製造方法
JP2010278421A (ja) * 2009-04-27 2010-12-09 Murata Mfg Co Ltd 電子部品の製造方法
JP2014107372A (ja) * 2012-11-27 2014-06-09 Taiyo Yuden Co Ltd 回路モジュール及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217724B2 (en) 2015-03-30 2019-02-26 Mediatek Inc. Semiconductor package assembly with embedded IPD
US11728292B2 (en) 2015-05-05 2023-08-15 Mediatek Inc. Semiconductor package assembly having a conductive electromagnetic shield layer

Also Published As

Publication number Publication date
US20170347462A1 (en) 2017-11-30
TW201637556A (zh) 2016-10-16
JPWO2016093040A1 (ja) 2017-04-27
WO2016093040A1 (ja) 2016-06-16
DE112015005552T5 (de) 2017-08-24
CN107114005A (zh) 2017-08-29
JPWO2016092692A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016092692A1 (ja) モールド回路モジュール及びその製造方法
JP5890073B1 (ja) モールド回路モジュール及びその製造方法
JP6121637B2 (ja) モールド回路モジュール及びその製造方法
JP5837515B2 (ja) 回路モジュール
KR101288284B1 (ko) 반도체 패키지 제조 방법
US20110298111A1 (en) Semiconductor package and manufactring method thereof
WO2012023332A1 (ja) 電子部品及びその製造方法
JP5951863B2 (ja) 電子部品モジュール及びその製造方法
JP2014112649A (ja) 電子回路モジュール及びその製造方法
CN102573278B (zh) 多层布线基板
JP5607788B2 (ja) キャリア部材の製造方法及びこれを用いたプリント回路基板の製造方法
WO2016092694A1 (ja) モールド回路モジュール及びその製造方法
US9907157B2 (en) Noise blocking printed circuit board and manufacturing method thereof
WO2016092693A1 (ja) モールド回路モジュール及びその製造方法
JP5302927B2 (ja) 多層配線基板の製造方法
TW201931964A (zh) 一種電路板及載板的結構與封裝體製造方法
JP2005191549A (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
KR101350610B1 (ko) 반도체 패키지
TW201644329A (zh) 空腔基板及其製造方法
JP2016207764A (ja) 部品内蔵配線基板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907886

Country of ref document: EP

Kind code of ref document: A1