WO2018221273A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2018221273A1
WO2018221273A1 PCT/JP2018/019336 JP2018019336W WO2018221273A1 WO 2018221273 A1 WO2018221273 A1 WO 2018221273A1 JP 2018019336 W JP2018019336 W JP 2018019336W WO 2018221273 A1 WO2018221273 A1 WO 2018221273A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transmission
frequency module
multilayer substrate
region
Prior art date
Application number
PCT/JP2018/019336
Other languages
English (en)
French (fr)
Inventor
大 中川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880036706.XA priority Critical patent/CN110710118B/zh
Publication of WO2018221273A1 publication Critical patent/WO2018221273A1/ja
Priority to US16/595,548 priority patent/US11239876B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0039Galvanic coupling of ground layer on printed circuit board [PCB] to conductive casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1322Encapsulation comprising more than one layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Definitions

  • the present invention relates to a high-frequency module and a communication device.
  • a plurality of electronic components mounted on the upper surface of the printed circuit board, a resin portion covering the plurality of electronic components, a shield metal film formed on at least a part of the side surface of the printed circuit board and the surface of the resin portion,
  • a high-frequency module including a ground pattern connected to a shield metal film on a side surface of a printed board (for example, Patent Document 1).
  • the shield metal film suppresses leakage of high-frequency noise to the outside and entry into the high-frequency module.
  • the shield conductor film may form an unintended signal path in the high-frequency module (specifically, between a plurality of circuits provided in the high-frequency module), and may deteriorate the circuit characteristics of the high-frequency module.
  • an object of the present invention is to provide a high-frequency module excellent in both suppression of high-frequency noise and circuit characteristics.
  • a high-frequency module includes a multilayer substrate including a plurality of insulator layers and at least one ground conductor layer, and a first substrate provided in a first region of the multilayer substrate. 1 circuit, a second circuit provided in a second region different from the first region in the multilayer substrate, and provided on a side surface of the multilayer substrate and partially in contact with the ground conductor layer A shield conductor film, and the ground conductor layer is not in contact with the shield conductor film at a portion closest to both the first region and the second region on the side surface of the multilayer substrate.
  • the first circuit may be a transmission circuit
  • the second circuit may be an antenna circuit
  • the first circuit may be a transmission circuit and the second circuit may be a reception circuit.
  • the transmission circuit includes a transmission filter
  • the reception circuit includes a reception filter
  • the transmission filter and the reception filter are built in a single duplexer component, and the portion is closest to the duplexer component. It is a part of the side surface of the multilayer substrate, and the length of the portion may be longer than the length of the side facing the portion of the duplexer component.
  • the ground conductor layer can be prevented from contacting the shield conductor film along the entire length of the duplexer component, unintended signal transmission between the transmission circuit and the reception circuit included in the duplexer component is more effective. It is possible to suppress the deterioration of circuit characteristics.
  • the shield conductor film may not be formed on the portion of the side surface of the multilayer substrate.
  • a communication device includes the high-frequency module and an RF signal processing circuit connected to the high-frequency module.
  • a high frequency module excellent in both suppression of high frequency noise and circuit characteristics, and a communication device using such a high frequency module can be obtained.
  • FIG. 1 is a plan view showing an example of the structure of the high-frequency module according to the embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the high-frequency module according to the embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the structure of the high-frequency module according to the embodiment.
  • FIG. 4 is a perspective view showing an example of the structure of the high-frequency module according to the embodiment.
  • FIG. 5 is a perspective view showing an example of the structure of the high-frequency module according to the embodiment.
  • FIG. 6 is a plan view for explaining an example of the effect of the high-frequency module according to the embodiment.
  • FIG. 7 is a plan view for explaining an example of the effect of the high-frequency module according to the embodiment.
  • FIG. 8 is a block diagram illustrating an example of a functional configuration of the communication apparatus according to the embodiment.
  • FIG. 1 is a plan view showing an example of the structure of the high-frequency module according to Embodiment 1.
  • FIG. 1 is a plan view showing an example of the structure of the high-frequency module according to Embodiment 1.
  • FIG. 2 and 3 are cross-sectional views showing an example of the structure of the high-frequency module according to Embodiment 1.
  • FIG. 2 corresponds to a cross section taken along line II-II in FIG. 1 in the direction of the arrow
  • FIG. 3 corresponds to a cross section taken along line III-III in FIG.
  • the high-frequency module 100 includes a multilayer substrate 110 on which a power amplifier 121, a duplexer 131, and a low-noise amplifier 141 are mounted, and has a connection terminal 134 for input / output of an antenna signal. ing.
  • the power amplifier 121 and the duplexer 131 are connected by a wiring pattern 123.
  • the duplexer 131 and the connection terminal 134 are connected by a wiring pattern 133.
  • a terminal of the duplexer 131 connected to the connection terminal 134 is referred to as an antenna terminal 132.
  • the low noise amplifier 141 and the duplexer 131 are connected by a wiring pattern 143.
  • the power amplifier 121 is configured using a semiconductor element, amplifies a transmission RF signal Tx in a transmission frequency band acquired via a signal terminal (not shown), and supplies the amplified signal to the duplexer 131.
  • the duplexer 131 is a composite part including the transmission filter 122 and the reception filter 142.
  • the transmission filter 122 removes harmonic components contained in the transmission RF signal Tx amplified by the power amplifier 121, and supplies the transmission RF signal Tx from which the harmonic components have been removed to the antenna circuit.
  • the reception filter 142 separates the signal component of the reception frequency band included in the signal supplied from the antenna circuit, and supplies the signal component to the low noise amplifier 141 as the reception RF signal Rx.
  • the low noise amplifier 141 is configured using a semiconductor element, amplifies the reception RF signal Rx supplied from the duplexer 131, and supplies the amplified signal to an external circuit via a signal terminal (not shown).
  • the power amplifier 121, the duplexer 131, and the low noise amplifier 141 may be configured by independent single chip components.
  • the circuit including the power amplifier 121, the transmission filter 122, and the wiring pattern 123 is an example of a transmission circuit, and the transmission circuit is formed in the region 120.
  • the circuit including the antenna terminal 132, the wiring pattern 133, and the connection terminal 134 of the duplexer 131 is an example of an antenna circuit, and the antenna circuit is formed in the region 130.
  • the circuit including the low noise amplifier 141, the reception filter 142, and the wiring pattern 143 is an example of a reception circuit, and the reception circuit is formed in the region 140.
  • the region where each circuit of the transmission circuit, the antenna circuit, and the reception circuit is formed is a polygonal region that includes all elements constituting the circuit when the multilayer substrate 110 is viewed in plan. It is.
  • the multilayer substrate 110 includes insulator layers 111 and 112 and a ground conductor layer 113.
  • the ground conductor layer 113 is disposed between the insulator layers 111 and 112 as an example, but is not limited to this example.
  • the ground conductor layer 113 may be disposed on the lower surface of the insulator layer 111 or may be disposed on the upper surface of the insulator layer 112.
  • the resin layer 114 is provided on the upper surface of the multilayer substrate 110, and the power amplifier 121, the duplexer 131, and the low noise amplifier 141 are sealed with the resin layer 114.
  • Shield conductor films 151 to 156 are provided so as to continuously cover the side surface of the multilayer substrate 110 and the side surface of the resin layer 114.
  • a shield conductor film 169 is provided on the top surface of the resin layer 114.
  • the ground conductor layer 113 is in partial contact with the shield conductor films 151 to 156.
  • the ground conductor layer 113 includes shield conductor films 151 to 156 at portions closest to both the first region where the first circuit is formed and the second region where the second circuit is formed on the side surface of the multilayer substrate 110. There is no contact.
  • the ground conductor layer 113 has a shield conductor film 151 at a portion closest to both the region 120 where the transmission circuit is formed and the region 130 where the antenna circuit is formed on the side surface of the multilayer substrate 110. No contact with 156.
  • the portion closest to both the region 120 and the region 130 is, for example, the portion of the side surface of the multilayer substrate 110 where the sum of the shortest distance to the region 120 and the shortest distance to the region 130 is minimum.
  • a slit 181 provided on the left side surface is an example.
  • the ground conductor layer 113 is not in contact with the shield conductor films 151 to 156 in the portion closest to both the region 120 where the transmission circuit is formed and the region 140 where the reception circuit is formed on the side surface of the multilayer substrate 110.
  • the portion closest to both the region 120 and the region 140 is, for example, the portion of the side surface of the multilayer substrate 110 where the sum of the shortest distance to the region 120 and the shortest distance to the region 140 is minimum.
  • a slit 182 provided on the right side surface is an example.
  • the slits 181 and 182 have no ground conductor layer 113 formed between the peripheral edge of the ground conductor layer 113 and the side surface of the multilayer substrate 110 at a position away from the side surface of the multilayer substrate 110 when the multilayer substrate 110 is viewed in plan. It is an area. Within the slits 181 and 182, the insulator layers 111 and 112 are directly joined without passing through the ground conductor layer 113.
  • the slit 182 is a part of the side surface of the multilayer substrate 110 to which the duplexer 131 having the transmission circuit and the reception circuit is closest.
  • the length of the slit 182 that is, the length of the portion of the side surface of the multilayer substrate 110 where the peripheral edge of the ground conductor layer 113 and the shield conductor films 151 to 156 are not in contact is: The length of the side facing the slit 182 of the duplexer 131 is longer.
  • the ground conductor layer 113 and the shield conductor films 151 to 156 are disposed on the side surfaces of the multilayer substrate 110 closest to both the region 120 where the transmission circuit is formed and the region 130 where the antenna circuit is formed. There is no contact. As a result, the strength of the ground, that is, the impedance can be adjusted to suppress the formation of an unintended signal path between the transmission circuit and the antenna circuit.
  • unintentional signal transmission between the transmission circuit and the antenna circuit can be suppressed by preventing a part of the ground conductor layer from contacting the shield conductor film, for example, spurious characteristics, etc.
  • the deterioration of the circuit characteristics can be suppressed.
  • the ground conductor layer 113 and the shield conductor films 151 to 156 are not brought into contact with each other in the portion closest to both the region 120 where the transmission circuit is formed and the region 140 where the reception circuit is formed on the side surface of the multilayer substrate 110.
  • the strength of the ground that is, the impedance can be adjusted to prevent an unintended signal path from being formed between the transmission circuit and the reception circuit.
  • unintentional signal transmission between the transmission circuit and the reception circuit can be suppressed by preventing a part of the ground conductor layer from contacting the shield conductor film. Degradation of circuit characteristics such as can be suppressed.
  • FIG. 4 is a perspective view showing an example of the structure of the high-frequency module 100.
  • the ground substrate layer 113 and the shield conductor films 151 to 156 and 169 are shown with the multilayer substrate 110 and the resin layer 114 transparent.
  • a part of the shield conductor film 169 is omitted, and the ground conductor layer 113, the shield conductor films 151 to 156, and the shield conductor film 169 are distinguished by grays having different concentrations.
  • a part of the ground conductor layer 113 reaches the side surface of the multilayer substrate 110 and is in contact with the shield conductor films 151 to 156. Another part of the periphery of the ground conductor layer 113 is located away from the side surface of the multilayer substrate 110 and does not contact the side surface of the multilayer substrate 110, and the periphery of the ground conductor layer 113 and the side surface of the multilayer substrate 110 are not in contact with each other. Slits 181 and 182 are formed between them.
  • the shield conductor films 151 to 156 are continuously formed from the side surface of the multilayer substrate 110 to the side surface of the resin layer 114, and are further connected to the shield conductor film 169 on the top surface of the resin layer 114.
  • the shield conductor film 169 is provided on the entire top surface of the resin layer 114, and a part of the illustration is omitted.
  • the shield conductor film is not formed on the side surface of the multilayer substrate 110 where the ground conductor layer 113 is separated from the portions 181 and 182, that is, where the slits 181 and 182 are formed.
  • FIG. 5 is a perspective view showing another example of the structure of the high-frequency module 100.
  • the structure of FIG. 5 differs from the structure of FIG. 4 only in that shield conductor films 161 to 165 are added and a shield conductor film is formed on the entire periphery of the side surface of the multilayer substrate 110.
  • the shapes of the ground conductor layer 113, the slits 181 and 182, the shield conductor films 151 to 156 on the side surfaces of the resin layer 114, and the shield conductor film 169 in FIG. 5 are the same as those in FIG.
  • the circuit is referred to as a transmission circuit 120, an antenna circuit 130, a reception circuit 140, and the like, using the same reference numerals as the region where the circuit is formed.
  • FIG. 6 is a plan view for explaining an example of the effect of the slit 181 in the high-frequency module 100.
  • harmonics before being filtered by the transmission circuit 120 are generated.
  • the included transmission signals 183 and 184 may be transmitted to the antenna circuit via the ground conductor layer and the shield conductor film.
  • the ground conductor layer 113 is provided with the slit 181 that reaches the portion closest to both the transmission circuit 120 and the antenna circuit 130 on the side surface of the multilayer substrate 110.
  • the ground conductor layer 113 is not brought into contact with the shield conductor films 151 to 156 by the slit 181, thereby adjusting the strength of the ground, that is, the impedance, and an unintended signal path between the transmission circuit 120 and the antenna circuit 130. Can be suppressed. Thereby, unintended transmission of the transmission signals 183 and 184 is suppressed.
  • FIG. 7 is a plan view for explaining an example of the effect of the slit 182 in the high-frequency module 100.
  • the transmission signals 185 and 186 that have passed through the ground conductor layer are generated.
  • the signal is transmitted to a receiving circuit such as a low noise amplifier via the shield conductor film.
  • the ground conductor layer 113 is provided with the slit 182 reaching the portion closest to both the transmission circuit 120 and the reception circuit 140 on the side surface of the multilayer substrate 110.
  • the ground conductor layer 113 is not brought into contact with the shield conductor films 151 to 156 by the slit 182, thereby adjusting the strength of the ground, that is, the impedance, and an unintended signal path between the transmission circuit 120 and the reception circuit 140. Can be suppressed. Thereby, unintended transmission of the transmission signals 185 and 186 is suppressed.
  • the length of the slit 182 is longer than the length of the side of the duplexer 131 that faces the slit 182.
  • the slit 182 can be provided along the entire length of the duplexer 131, unintentional signal transmission between the transmission filter 122 and the reception filter 142 included in the duplexer 131 is more effectively suppressed, Deterioration of circuit characteristics can be suppressed.
  • the shield conductor film is formed on the side surface of the multilayer substrate 110 at the corresponding portions of the slits 181 and 182, that is, which of the structures shown in FIGS. 4 and 5 is adopted depends on the required shielding effect and intention. It is determined according to the balance with the signal transmission suppression effect.
  • FIG. 8 is a block diagram illustrating an example of a functional configuration of the communication device 1 according to the second embodiment.
  • the communication device 1 includes a front end circuit 10, an RF signal processing circuit 20, and a baseband signal processing circuit 30.
  • the front end circuit 10 includes a power amplifier 11, a low noise amplifier 12, and a duplexer 13.
  • the high-frequency module 100 described in the first embodiment is used.
  • the power amplifier 11 amplifies the transmission RF signal Tx received from the RF signal processing circuit 20.
  • the duplexer 13 supplies the transmission RF signal Tx amplified by the power amplifier 11 to the antenna circuit, and supplies the reception RF signal Rx supplied from the antenna circuit to the low noise amplifier 12.
  • the antenna 2 may be included in the communication device 1.
  • the low noise amplifier 12 amplifies the reception RF signal Rx supplied from the duplexer 13 and supplies it to the RF signal processing circuit 20.
  • the RF signal processing circuit 20 converts the transmission signal received from the baseband signal processing circuit 30 into a transmission RF signal Tx and supplies it to the front end circuit 10.
  • the conversion may include signal modulation and up-conversion.
  • the RF signal processing circuit 20 converts the received RF signal Rx received from the front end circuit 10 into a received signal and supplies the received signal to the baseband signal processing circuit 30.
  • the conversion may include signal demodulation and down-conversion.
  • the RF signal processing circuit 20 may be composed of a high frequency integrated circuit (RFIC) chip.
  • the baseband signal processing circuit 30 converts transmission data generated by an application device / application software that performs voice calls, image display, and the like into a transmission signal and supplies the transmission signal to the RF signal processing circuit 20.
  • the conversion may include data compression, multiplexing, and error correction code addition.
  • the received signal received from the RF signal processing circuit 20 is converted into received data and supplied to the application device / application software. Such conversion may include data decompression, demultiplexing, and error correction.
  • the baseband signal processing circuit 30 may be configured with a baseband integrated circuit (BBIC) chip.
  • BBIC baseband integrated circuit
  • a high-performance communication device can be obtained by using the high-frequency module 100 having excellent circuit characteristics for the front-end circuit 10.
  • the present invention can be widely used for various communication devices as a high-frequency module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Transceivers (AREA)

Abstract

高周波モジュール(100)は、複数の絶縁体層と少なくとも1つのグランド導体層(113)とを含む多層基板(110)と、多層基板(110)の第1領域に設けられた第1回路である送信回路(120)および第1領域と異なる第2領域に設けられた第2回路であるアンテナ回路(130)と、多層基板(110)の側面に設けられ、グランド導体層(113)と部分的に接触しているシールド導体膜(151~156)と、を備え、グランド導体層(113)は、多層基板(110)の側面の第1領域と第2領域との双方に最近接する部分においてシールド導体膜(151~156)と接触していない。

Description

高周波モジュール及び通信装置
 本発明は、高周波モジュール及び通信装置に関する。
 従来、プリント基板の上面に装着された複数の電子部品と、複数の電子部品を覆う樹脂部と、少なくともプリント基板の側面の一部と樹脂部の表面上とに形成されたシールド金属膜と、プリント基板の側面でシールド金属膜と接続されたグランドパターンとを備える高周波モジュールがある(例えば、特許文献1)。シールド金属膜は、高周波ノイズの外部への漏洩や高周波モジュール内への進入を抑制する。
特開2011-187779号公報
 しかしながら、シールド導体膜は、高周波モジュール内で(具体的には、高周波モジュール内に設けられる複数の回路間で)意図しない信号経路を形成し、高周波モジュールの回路特性を劣化させることがある。
 そこで、本発明は、高周波ノイズの抑制および回路特性の双方に優れた高周波モジュールを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、複数の絶縁体層と少なくとも1つのグランド導体層とを含む多層基板と、前記多層基板の第1領域に設けられた第1回路と、前記多層基板において前記第1領域と異なる領域である第2領域に設けられた第2回路と、前記多層基板の側面に設けられ、前記グランド導体層と部分的に接触しているシールド導体膜と、を備え、前記グランド導体層は、前記多層基板の側面の前記第1領域と前記第2領域との双方に最近接する部分において前記シールド導体膜と接触していない。
 高周波モジュールの内部においては、意図しない信号経路がグランド導体層とシールド導体膜とが接触している箇所に形成され易いことが分かっている。そこで、上記の構成により、多層基板の側面の第1領域と第2領域との双方に最近接する部分においてグランド導体層とシールド導体膜とを接触させないことで、グランドの強さ、つまりインピーダンスを調整して、第1回路と第2回路との間に意図しない信号経路が形成されることを抑える。
 これにより、意図しない信号伝達によって生じる回路特性の劣化を抑制し、回路特性に優れた高周波モジュールが得られる。
 また、前記第1回路は送信回路であり、前記第2回路はアンテナ回路であってもよい。
 送信回路とアンテナ回路との間に意図しない信号伝達があると、例えば、フィルタ処理される前の高調波を含む送信信号が、送信回路からアンテナ回路へ直接伝達し、スプリアス特性が劣化する懸念がある。
 その点、上記の構成によれば、送信回路とアンテナ回路との間の意図しない信号伝達を抑えることができるので、例えば、スプリアス特性などの回路特性の劣化を抑制できる。
 また、前記第1回路は送信回路であり、前記第2回路は受信回路であってもよい。
 送信回路と受信回路との間に意図しない信号伝達があると、例えば、送信信号が、送信回路から受信回路へ伝達し、アイソレーション特性が劣化する懸念がある。
 その点、上記の構成によれば、送信回路と受信回路との間の意図しない信号伝達を抑えることができるので、例えば、アイソレーション特性などの回路特性の劣化を抑制できる。
 また、前記送信回路は送信フィルタを含み、前記受信回路は受信フィルタを含み、前記送信フィルタと前記受信フィルタとは、単一のデュプレクサ部品に内蔵され、前記部分は、前記デュプレクサ部品が最近接する前記多層基板の側面の一部であり、前記部分の長さは、前記デュプレクサ部品の前記部分に対向する辺の長さよりも長いとしてもよい。
 この構成によれば、デュプレクサ部品の全長に沿ってグランド導体層をシールド導体膜に接触させないことができるので、デュプレクサ部品に含まれる送信回路と受信回路との間の意図しない信号伝達をより効果的に抑えることができ、回路特性の劣化を抑制できる。
 また、前記シールド導体膜は、前記多層基板の前記側面の前記部分には形成されていなくてもよい。
 この構成によれば、グランド導体層を介して生じる意図しない信号伝達のみならず、シールド導体膜を介して生じる意図しない信号伝達も抑えられるので、回路特性の劣化をより効果的に抑制できる。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、前記高周波モジュールに接続されたRF信号処理回路と、を備える。
 この構成によれば、前述した高周波モジュールの効果に基づいて、回路特性に優れた通信装置が得られる。
 本発明に係る高周波モジュールおよび通信装置によれば、高周波ノイズの抑制および回路特性の双方に優れた高周波モジュール、およびそのような高周波モジュールを用いた通信装置が得られる。
図1は、実施の形態に係る高周波モジュールの構造の一例を示す平面図である。 図2は、実施の形態に係る高周波モジュールの構造の一例を示す断面図である。 図3は、実施の形態に係る高周波モジュールの構造の一例を示す断面図である。 図4は、実施の形態に係る高周波モジュールの構造の一例を示す斜視図である。 図5は、実施の形態に係る高周波モジュールの構造の一例を示す斜視図である。 図6は、実施の形態に係る高周波モジュールの効果の一例を説明する平面図である。 図7は、実施の形態に係る高周波モジュールの効果の一例を説明する平面図である。 図8は、実施の形態に係る通信装置の機能的な構成の一例を示すブロック図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 図1は、実施の形態1に係る高周波モジュールの構造の一例を示す平面図である。
 図2、3は、実施の形態1に係る高周波モジュールの構造の一例を示す断面図である。図2は、図1のII-II線を矢印の方向に見た断面に対応し、図3は、図1のIII-III線を矢印の方向に見た断面に対応する。
 図1~3に示されるように、高周波モジュール100は、多層基板110に、パワーアンプ121、デュプレクサ131、およびローノイズアンプ141を搭載してなり、アンテナ信号の入出力用の接続端子134を有している。
 パワーアンプ121とデュプレクサ131とは、配線パターン123で接続される。デュプレクサ131と接続端子134とは、配線パターン133で接続される。接続端子134と接続されるデュプレクサ131の端子を、アンテナ端子132と呼ぶ。ローノイズアンプ141とデュプレクサ131とは、配線パターン143で接続される。
 パワーアンプ121は、半導体素子を用いて構成され、図示していない信号端子を介して取得された送信周波数帯域の送信RF信号Txを増幅し、デュプレクサ131へ供給する。
 デュプレクサ131は、送信フィルタ122および受信フィルタ142を内蔵した複合部品である。送信フィルタ122は、パワーアンプ121で増幅された送信RF信号Txに含まれる高調波成分を除去し、高調波成分が除去された送信RF信号Txをアンテナ回路に供給する。受信フィルタ142は、アンテナ回路から供給された信号に含まれる受信周波数帯域の信号成分を分離し、受信RF信号Rxとしてローノイズアンプ141に供給する。
 ローノイズアンプ141は、半導体素子を用いて構成され、デュプレクサ131から供給された受信RF信号Rxを増幅し、図示していない信号端子を介して外部の回路へ供給する。
 パワーアンプ121、デュプレクサ131、およびローノイズアンプ141は、それぞれが独立した単一のチップ部品で構成されてもよい。
 パワーアンプ121、送信フィルタ122、および配線パターン123を含む回路は送信回路の一例であり、送信回路は、領域120に形成されている。
 また、デュプレクサ131のアンテナ端子132、配線パターン133、および接続端子134を含む回路はアンテナ回路の一例であり、アンテナ回路は、領域130に形成されている。
 また、ローノイズアンプ141、受信フィルタ142、および配線パターン143を含む回路は受信回路の一例であり、受信回路は、領域140に形成されている。
 図1に示した例では、送信回路、アンテナ回路および受信回路の各回路が形成された領域とは、多層基板110を平面視したときに当該回路を構成するすべての要素が含まれる多角形領域である。
 多層基板110は、絶縁体層111、112とグランド導体層113とを含む。グランド導体層113は、一例として、絶縁体層111、112の間に配置されているが、この例には限られない。グランド導体層113は、絶縁体層111の下面に配置されてもよく、また、絶縁体層112の上面に配置されてもよい。
 多層基板110の上面に樹脂層114が設けられ、パワーアンプ121、デュプレクサ131、およびローノイズアンプ141は樹脂層114で封止される。
 多層基板110の側面と樹脂層114の側面を連続して覆うように、シールド導体膜151~156が設けられる。樹脂層114の天面には、シールド導体膜169が設けられる。
 グランド導体層113は、シールド導体膜151~156と部分的に接触している。グランド導体層113は、多層基板110の側面のうち、第1回路が形成された第1領域と第2回路が形成された第2領域との双方に最近接する部分においてシールド導体膜151~156と接触していない。
 図1の例にあっては、グランド導体層113は、多層基板110の側面において送信回路が形成された領域120とアンテナ回路が形成された領域130との双方に最近接する部分においてシールド導体膜151~156と接触していない。ここで、領域120と領域130との双方に最近接する部分とは、例えば、多層基板110の側面のうち、領域120までの最短距離と、領域130までの最短距離との和が最小となる部分を意味する。図1にあっては左方の側面に設けたスリット181がその一例である。
 また、グランド導体層113は、多層基板110の側面において送信回路が形成された領域120と受信回路が形成された領域140との双方に最近接する部分においてシールド導体膜151~156と接触していない。ここで、領域120と領域140との双方に最近接する部分とは、例えば、多層基板110の側面のうち、領域120までの最短距離と、領域140までの最短距離との和が最小となる部分を意味する。図1にあっては右方の側面に設けたスリット182がその一例である。
 スリット181、182は、多層基板110を平面視したとき、多層基板110の側面から離れた位置にあるグランド導体層113の周縁と多層基板110の側面との間にできたグランド導体層113のない領域である。スリット181、182内において、絶縁体層111、112は、グランド導体層113を介さず、直接接合される。
 別の見方をすれば、スリット182は、送信回路と受信回路を有するデュプレクサ131が最近接する多層基板110の側面の一部である。多層基板110を平面視したとき、スリット182の長さ、つまり、多層基板110の側面にあってグランド導体層113の周縁とシールド導体膜151~156とが接触していない部分の長さは、デュプレクサ131のスリット182に対向する辺の長さよりも長い。
 高周波モジュール100によれば、多層基板110の側面において送信回路が形成された領域120とアンテナ回路が形成された領域130との双方に最近接する部分においてグランド導体層113がシールド導体膜151~156と接触していない。これにより、グランドの強さ、つまりインピーダンスを調整して、送信回路とアンテナ回路との間に意図しない信号経路が形成されることを抑えることができる。
 特に、送信回路とアンテナ回路との間に意図しない信号伝達があると、例えば、フィルタ処理される前の高調波を含む送信信号が、送信回路からアンテナ回路へ直接伝達し、スプリアス特性が劣化する懸念がある。
 その点、上記の構成によれば、送信回路とアンテナ回路との間の意図しない信号伝達をグランド導体層の一部をシールド導体膜に接触させないことによって抑えることができるので、例えば、スプリアス特性などの回路特性の劣化を抑制できる。
 また、多層基板110の側面において送信回路が形成された領域120と受信回路が形成された領域140との双方に最近接する部分においてグランド導体層113とシールド導体膜151~156とを接触させない。これにより、グランドの強さ、つまりインピーダンスを調整して、送信回路と受信回路との間に意図しない信号経路が形成されることを抑えることができる。
 特に、送信回路と受信回路との間に意図しない信号伝達があると、例えば、送信信号が、送信回路から受信回路へ伝達し、アイソレーション特性が劣化する懸念がある。
 その点、上記の構成によれば、送信回路と受信回路との間の意図しない信号伝達をグランド導体層の一部をシールド導体膜に接触させないことによって抑えることができるので、例えば、アイソレーション特性などの回路特性の劣化を抑制できる。
 その結果、送信回路と受信回路との間での意図しない信号伝達によって生じる回路特性の劣化を抑制し、回路特性に優れた高周波モジュールが得られる。
 グランド導体層113、シールド導体膜151~156、169、およびスリット181、182の立体的な形状および配置について、説明を続ける。
 図4は、高周波モジュール100の構造の一例を示す斜視図である。図4では、理解の便宜のため、多層基板110、樹脂層114を透明として、グランド導体層113およびシールド導体膜151~156、169を表している。シールド導体膜169の一部は省略し、グランド導体層113、シールド導体膜151~156、およびシールド導体膜169を、それぞれ異なる濃度の灰色で区別している。
 グランド導体層113の一部は、多層基板110の側面に達し、シールド導体膜151~156と接触している。グランド導体層113の周縁の他の一部は、多層基板110の側面から離れた位置にあって多層基板110の側面とは接触せず、グランド導体層113の周縁と多層基板110の側面との間にはスリット181、182が形成されている。
 シールド導体膜151~156は、多層基板110の側面から樹脂層114の側面にかけて連続的に形成され、さらに、樹脂層114の天面のシールド導体膜169に接続している。シールド導体膜169は、樹脂層114の天面の全面に設けられており、一部の図示は省略されている。
 多層基板110の側面のうち、グランド導体層113が部分181、182から離れている部分、すなわち、スリット181、182が形成されている部分には、シールド導体膜は形成されていない。
 図5は、高周波モジュール100の構造の他の一例を示す斜視図である。図5の構造は、図4の構造と比べて、シールド導体膜161~165を追加し、多層基板110の側面の全周にシールド導体膜を形成した点においてのみ相違する。図5におけるグランド導体層113、スリット181、182、樹脂層114の側面におけるシールド導体膜151~156、およびシールド導体膜169の各形状は、図4のものと同一である。
 以上のように構成された高周波モジュール100の効果について説明する。なお、以下では簡明のため、回路を、回路が形成された領域と同一の符号を用いて、送信回路120、アンテナ回路130、受信回路140などと参照する。
 図6は、高周波モジュール100におけるスリット181の効果の一例を説明する平面図である。
 高周波モジュールの内部においては、意図しない信号経路がグランド導体層とシールド導体膜とが接触している箇所に形成され易いことが分かっている。
 例えば、多層基板の側面において送信回路120とアンテナ回路130の双方に最近接する部分おいてグランド導体層とシールド導体膜とが接触していると、送信回路120でフィルタ処理される前の高調波を含む送信信号183、184が、グランド導体層とシールド導体膜を経由して、アンテナ回路へ伝達されることがある。
 これが送信回路120とアンテナ回路130との間に発生する意図しない信号伝達となり、スプリアス特性を劣化させる懸念がある。
 その点、高周波モジュール100によれば、グランド導体層113に多層基板110の側面の送信回路120とアンテナ回路130との双方に最近接する部分に至るスリット181を設けている。
 これにより、スリット181によってグランド導体層113をシールド導体膜151~156に接触させないことで、グランドの強さ、つまりインピーダンスを調整して、送信回路120とアンテナ回路130との間に意図しない信号経路が形成されることを抑えることができる。これにより、送信信号183、184の意図しない伝達が抑制される。
 その結果、送信信号183、184の意図しない信号伝達によって生じる、スプリアス特性などの回路特性の劣化を抑制し、回路特性に優れた高周波モジュール100が得られる。
 図7は、高周波モジュール100におけるスリット182の効果の一例を説明する平面図である。
 例えば、多層基板の側面において送信回路120と受信回路130の双方に最近接する部分においてグランド導体層とシールド導体膜とが接触していると、グランド導体層を通ってしまった送信信号185、186が、シールド導体膜を経由して、ローノイズアンプ等の受信回路へ伝達されることがある。
 これが送信回路120と受信回路130との間に発生する意図しない信号伝達となり、受信感度を劣化させる原因となってしまう。
 その点、高周波モジュール100によれば、グランド導体層113に、多層基板110の側面の送信回路120と受信回路140との双方に最近接する部分に至るスリット182を設けている。
 これにより、スリット182によってグランド導体層113をシールド導体膜151~156に接触させないことで、グランドの強さ、つまりインピーダンスを調整して、送信回路120と受信回路140との間に意図しない信号経路が形成されることを抑えることができる。これにより、送信信号185、186の意図しない伝達が抑制される。
 その結果、送信信号185、186の意図しない信号伝達によって生じる、アイソレーション特性などの回路特性の劣化を抑制し、回路特性に優れた高周波モジュール100が得られる。
 また、スリット182の長さは、デュプレクサ131のスリット182に対向する辺の長さよりも長い。
 この構成によれば、デュプレクサ131の全長に沿ってスリット182を設けることができるので、デュプレクサ131に含まれる送信フィルタ122と受信フィルタ142との間の意図しない信号伝達をより効果的に抑制し、回路特性の劣化を抑制できる。
 なお、多層基板110の側面においてスリット181、182の対応部分にシールド導体膜を形成するか否か、つまり、図4および図5のいずれの構造を採用するかは、要求されるシールド効果と意図しない信号伝達の抑制効果とのバランスに応じて決定される。
 すなわち、図4に示されるように、スリット181、182の対応部分にシールド導体膜を形成しない構造によれば、グランド導体層113を介して生じる意図しない信号伝達のみならず、シールド導体膜を介して生じる意図しない信号伝達も抑制されるので、回路特性の劣化をより効果的に抑制できる。
 また、図5に示されるように、スリット181、182の対応部分にシールド導体膜162、165を形成する構造によれば、グランド導体層113を介して生じる意図しない信号伝達を抑制しつつ、より大きなシールド効果を得ることができる。
 (実施の形態2)
 実施の形態2では、実施の形態1に係る高周波モジュールを含むフロントエンド回路を備えた通信装置について説明する。
 図8は、実施の形態2に係る通信装置1の機能的な構成の一例を示すブロック図である。図8に示されるように、通信装置1は、フロントエンド回路10、RF信号処理回路20、およびベースバンド信号処理回路30を備える。
 フロントエンド回路10は、パワーアンプ11、ローノイズアンプ12、およびデュプレクサ13を有する。フロントエンド回路10には、実施の形態1で説明した高周波モジュール100が用いられる。
 フロントエンド回路10において、パワーアンプ11は、RF信号処理回路20から受信した送信RF信号Txを増幅する。
 デュプレクサ13は、パワーアンプ11で増幅された送信RF信号Txをアンテナ回路に供給するとともに、アンテナ回路から供給された受信RF信号Rxをローノイズアンプ12へ供給する。アンテナ2は、通信装置1に含まれてもよい。
 ローノイズアンプ12は、デュプレクサ13から供給された受信RF信号Rxを増幅し、RF信号処理回路20へ供給する。
 RF信号処理回路20は、ベースバンド信号処理回路30から受信した送信信号を送信RF信号Txに変換し、フロントエンド回路10へ供給する。当該変換は、信号の変調及びアップコンバートを含んでもよい。また、RF信号処理回路20は、フロントエンド回路10から受信した受信RF信号Rxを受信信号に変換し、ベースバンド信号処理回路30へ供給する。当該変換は、信号の復調及びダウンコンバートを含んでもよい。RF信号処理回路20は、高周波集積回路(RFIC)チップで構成されてもよい。
 ベースバンド信号処理回路30は、音声通話や画像表示などを行う応用装置/応用ソフトウェアで生成された送信データを送信信号に変換し、RF信号処理回路20へ供給する。当該変換は、データの圧縮、多重化、誤り訂正符号の付加を含んでもよい。また、RF信号処理回路20から受信した受信信号を受信データに変換し、応用装置/応用ソフトウェアへ供給する。当該変換は、データの伸長、多重分離、誤り訂正を含んでもよい。ベースバンド信号処理回路30は、ベースバンド集積回路(BBIC)チップで構成されてもよい。
 通信装置1によれば、回路特性に優れた高周波モジュール100をフロントエンド回路10に用いることにより、高性能な通信装置が得られる。
 以上、本発明の実施の形態に係る高周波モジュール及び通信装置について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 本発明は、高周波モジュールとして、各種の通信装置に広く利用できる。
  1  通信装置
  2  アンテナ
  10  フロントエンド回路
  11  パワーアンプ
  12  ローノイズアンプ
  13  デュプレクサ
  20  RF信号処理回路
  30  ベースバンド信号処理回路
  100  高周波モジュール
  110  多層基板
  111、112  絶縁体層
  113  グランド導体層
  114  樹脂層
  120  送信回路(送信回路が形成された領域)
  121  パワーアンプ
  122  送信フィルタ
  123  配線パターン
  130  アンテナ回路(アンテナ回路が形成された領域)
  131  デュプレクサ
  132  アンテナ端子
  133  配線パターン
  134  接続端子
  140  受信回路(受信回路が形成された領域)
  141  ローノイズアンプ
  142  受信フィルタ
  143  配線パターン
  151~156、161~165、169  シールド導体膜
  181、182  スリット
  183~186  送信信号

Claims (6)

  1.  複数の絶縁体層と少なくとも1つのグランド導体層とを含む多層基板と、
     前記多層基板の第1領域に設けられた第1回路と、
     前記多層基板において前記第1領域と異なる領域である第2領域に設けられた第2回路と、
     前記多層基板の側面に設けられ、前記グランド導体層と部分的に接触しているシールド導体膜と、を備え、
     前記グランド導体層は、前記多層基板の側面において前記第1領域と前記第2領域との双方に最近接する部分において前記シールド導体膜と接触していない、
     高周波モジュール。
  2.  前記第1回路は送信回路であり、前記第2回路はアンテナ回路である、
     請求項1に記載の高周波モジュール。
  3.  前記第1回路は送信回路であり、前記第2回路は受信回路である、
     請求項1に記載の高周波モジュール。
  4.  前記送信回路は送信フィルタを含み、
     前記受信回路は受信フィルタを含み、
     前記送信フィルタと前記受信フィルタとは、単一のデュプレクサ部品に内蔵され、
     前記部分は、前記デュプレクサ部品が最近接する前記多層基板の側面の一部であり、
     前記多層基板を平面視したとき、前記部分の長さは、前記デュプレクサ部品の前記部分に対向する辺の長さよりも長い、
     請求項3に記載の高周波モジュール。
  5.  前記シールド導体膜は、前記多層基板の前記側面の前記部分には形成されていない、
     請求項1から4のいずれか1項に記載の高周波モジュール。
  6.  請求項1から5のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールに接続されたRF信号処理回路と、
     を備える通信装置。
PCT/JP2018/019336 2017-06-02 2018-05-18 高周波モジュール及び通信装置 WO2018221273A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880036706.XA CN110710118B (zh) 2017-06-02 2018-05-18 高频模块以及通信装置
US16/595,548 US11239876B2 (en) 2017-06-02 2019-10-08 High-frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017110366 2017-06-02
JP2017-110366 2017-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/595,548 Continuation US11239876B2 (en) 2017-06-02 2019-10-08 High-frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2018221273A1 true WO2018221273A1 (ja) 2018-12-06

Family

ID=64456135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019336 WO2018221273A1 (ja) 2017-06-02 2018-05-18 高周波モジュール及び通信装置

Country Status (3)

Country Link
US (1) US11239876B2 (ja)
CN (1) CN110710118B (ja)
WO (1) WO2018221273A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006023A1 (ja) * 2019-07-11 2021-01-14 株式会社村田製作所 高周波モジュール、通信装置及び弾性波装置
WO2022196443A1 (ja) * 2021-03-17 2022-09-22 ヤマハ株式会社 D級増幅器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563388A (ja) * 1991-08-31 1993-03-12 Ibiden Co Ltd 静電破壊防止用プリント配線板
JP2004297456A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 高周波モジュール
JP2008219453A (ja) * 2007-03-05 2008-09-18 Alps Electric Co Ltd 送受信回路モジュール
JP2012019091A (ja) * 2010-07-08 2012-01-26 Sony Corp モジュールおよび携帯端末

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149496B2 (en) * 2003-03-27 2006-12-12 Kyocera Corporation High-frequency module and radio communication apparatus
JP2005086603A (ja) * 2003-09-10 2005-03-31 Tdk Corp 電子部品モジュールおよびその製造方法
TW200529722A (en) * 2004-02-04 2005-09-01 Ibiden Co Ltd Multilayer printed wiring board
US20050201971A1 (en) * 2004-03-09 2005-09-15 Radhakrishnan Janardanan Nair Advertisement method
JP4521602B2 (ja) * 2005-06-06 2010-08-11 ルネサスエレクトロニクス株式会社 マルチモード高周波回路
US20070023203A1 (en) * 2005-07-26 2007-02-01 Leizerovich Gustavo D Method and system for customized radio frequency shielding using solder bumps
JP4702622B2 (ja) * 2006-03-28 2011-06-15 日立金属株式会社 スイッチモジュール
SE533579C2 (sv) * 2007-01-25 2010-10-26 Silex Microsystems Ab Metod för mikrokapsling och mikrokapslar
US8343806B2 (en) * 2009-03-05 2013-01-01 Raytheon Company Hermetic packaging of integrated circuit components
JP2011187779A (ja) 2010-03-10 2011-09-22 Panasonic Corp モジュール
JP2011198866A (ja) * 2010-03-18 2011-10-06 Renesas Electronics Corp 半導体装置およびその製造方法
WO2013031602A1 (ja) * 2011-09-02 2013-03-07 株式会社村田製作所 回路モジュール及び複合回路モジュール
DE102012210033B4 (de) * 2012-06-14 2023-02-02 Robert Bosch Gmbh Bauelement mit Durchkontaktierung und Verfahren zur Herstellung
WO2014083908A1 (ja) * 2012-11-29 2014-06-05 株式会社村田製作所 高周波モジュール
WO2014087792A1 (ja) * 2012-12-07 2014-06-12 株式会社村田製作所 高周波モジュール
JP6076068B2 (ja) * 2012-12-17 2017-02-08 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP6250934B2 (ja) * 2013-01-25 2017-12-20 太陽誘電株式会社 モジュール基板及びモジュール
JP2015072935A (ja) * 2013-09-03 2015-04-16 太陽誘電株式会社 回路モジュール及びその製造方法
US9160825B2 (en) * 2013-10-30 2015-10-13 Taiyo Yuden Co., Ltd. Communication module
WO2016092692A1 (ja) * 2014-12-12 2016-06-16 株式会社メイコー モールド回路モジュール及びその製造方法
US9331030B1 (en) * 2014-12-15 2016-05-03 Industrial Technology Research Institute Integrated antenna package and manufacturing method thereof
CN106486736B (zh) * 2015-08-28 2019-10-18 爱思开海力士有限公司 立体式电磁干扰抑制结构及具有该立体式电磁干扰抑制结构的电子装置
US20170179041A1 (en) * 2015-12-22 2017-06-22 Intel Corporation Semiconductor package with trenched molding-based electromagnetic interference shielding
US10396036B2 (en) * 2015-12-26 2019-08-27 Intel Corporation Rlink-ground shielding attachment structures and shadow voiding for data signal contacts of package devices; vertical ground shielding structures and shield fencing of vertical data signal interconnects of package devices; and ground shielding for electro optical module connector data signal contacts and contact pins of package devices
US10418332B2 (en) * 2017-03-13 2019-09-17 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming partition fence and shielding layer around semiconductor components
US10497650B2 (en) * 2017-04-13 2019-12-03 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563388A (ja) * 1991-08-31 1993-03-12 Ibiden Co Ltd 静電破壊防止用プリント配線板
JP2004297456A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 高周波モジュール
JP2008219453A (ja) * 2007-03-05 2008-09-18 Alps Electric Co Ltd 送受信回路モジュール
JP2012019091A (ja) * 2010-07-08 2012-01-26 Sony Corp モジュールおよび携帯端末

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006023A1 (ja) * 2019-07-11 2021-01-14 株式会社村田製作所 高周波モジュール、通信装置及び弾性波装置
WO2022196443A1 (ja) * 2021-03-17 2022-09-22 ヤマハ株式会社 D級増幅器

Also Published As

Publication number Publication date
CN110710118B (zh) 2021-08-20
US11239876B2 (en) 2022-02-01
US20200044683A1 (en) 2020-02-06
CN110710118A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US12113566B2 (en) Radio frequency module
KR101445543B1 (ko) 고주파 회로 모듈
JP5677499B2 (ja) 高周波回路モジュール
JP5117632B1 (ja) 高周波回路モジュール
JP6285228B2 (ja) 通信モジュール
KR102448318B1 (ko) 고주파 모듈 및 통신 장치
JP5726366B2 (ja) プリント回路基板およびダイプレクサ回路
JP6250934B2 (ja) モジュール基板及びモジュール
WO2018123972A1 (ja) 高周波モジュール及び通信装置
JP2015111748A (ja) 回路モジュール
JP2014099842A (ja) 高周波回路モジュール
WO2018221273A1 (ja) 高周波モジュール及び通信装置
WO2020071020A1 (ja) 高周波モジュールおよび通信装置
US11509345B2 (en) Wireless communication module
WO2018101112A1 (ja) 配線基板、カプラモジュール、及び通信装置
US11139231B2 (en) Radio frequency module and communication device
US10383211B2 (en) Front-end circuit and high-frequency module
WO2013118664A1 (ja) 高周波モジュール
US11418226B2 (en) Radio frequency module and communication device
JP2007089007A (ja) 受信装置
JP5218570B2 (ja) デュプレクサモジュール
JP2005101938A (ja) 複合型分波回路、チップ部品およびrfモジュール
US20230261682A1 (en) Radio frequency module and communication device
JP2008219453A (ja) 送受信回路モジュール
JP2014099839A (ja) 高周波回路モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP