WO2022196443A1 - D級増幅器 - Google Patents

D級増幅器 Download PDF

Info

Publication number
WO2022196443A1
WO2022196443A1 PCT/JP2022/010000 JP2022010000W WO2022196443A1 WO 2022196443 A1 WO2022196443 A1 WO 2022196443A1 JP 2022010000 W JP2022010000 W JP 2022010000W WO 2022196443 A1 WO2022196443 A1 WO 2022196443A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
input
amplifier
amplifier circuit
Prior art date
Application number
PCT/JP2022/010000
Other languages
English (en)
French (fr)
Inventor
佳郎 三宅
正夫 野呂
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2022196443A1 publication Critical patent/WO2022196443A1/ja
Priority to US18/362,039 priority Critical patent/US20230378914A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/267A capacitor based passive circuit, e.g. filter, being used in an amplifying circuit

Definitions

  • the present invention relates to a class D amplifier that drives a load with pulses modulated based on an input signal.
  • Patent Document 1 discloses an input amplifier circuit that amplifies an input signal, a modulation and amplification circuit that outputs a pulse whose pulse width is modulated by the output signal of the input amplification circuit, and a low frequency component of the pulse output by the modulation and amplification circuit. and an output filter for passing the signal to a load, the output signal of the output filter being negatively fed back to the input of an input amplifier circuit.
  • a modulation and amplification circuit that outputs a pulse whose pulse width is modulated by the output signal of the input amplification circuit, and a low frequency component of the pulse output by the modulation and amplification circuit.
  • an output filter for passing the signal to a load, the output signal of the output filter being negatively fed back to the input of an input amplifier circuit.
  • the switching speed of the class D amplifier can be increased by more than one digit compared to the past.
  • the switching frequency of the class D amplifier is increased, unwanted radiation of electromagnetic waves from the class D amplifier increases.
  • the present invention has been made in view of the circumstances described above, and an object of the present invention is to suppress unnecessary radiation in a class D amplifier.
  • the present invention is a class D amplifier including an input amplifier circuit, a modulation circuit, an output amplifier circuit, and an output filter mounted on a single printed circuit board, wherein the input amplifier circuit uses an input ground as a reference voltage. amplifies a signal, the modulation circuit outputs a pulse modulated by the signal amplified by the input amplification circuit, the output amplification circuit amplifies the pulse with an output ground as a reference voltage, and the output filter , an output signal is generated by passing a first low frequency component of the amplified pulse, and in the printed circuit board, the solid pattern of the output ground includes the input amplifier circuit, the modulation circuit, the output amplifier circuit, the
  • the class D amplifier formed across the output filter includes a feedback circuit that negatively feeds back a voltage at a connection point of the output filter with one end of the load to the inverting input of the input amplifier circuit, and a feedback circuit of the load in the solid pattern. and a feedback circuit that negatively feeds back the voltage between the other end and the connection point to the non-in
  • the present invention also provides a class D amplifier including an input amplifier circuit, a modulation circuit, an output amplifier circuit, and an output filter mounted on a single printed circuit board, wherein the input amplifier circuit connects an input ground to a reference voltage.
  • the modulation circuit outputs a pulse with a switching frequency of 1.7 MHz or higher modulated by the signal amplified by the input amplification circuit, and the output amplification circuit connects the output ground to the reference voltage and the output filter passes a low-frequency component of the amplified pulse to generate an output signal.
  • a class D amplifier formed across the modulation circuit, the output amplifier circuit, and the output filter is provided.
  • FIG. 1 is a circuit diagram showing the configuration of a class D amplifier according to one embodiment of the present invention
  • FIG. 1 is a layout diagram showing the configuration of a class D amplifier mounted on a printed circuit board
  • FIG. 4 is a layout diagram of a class D amplifier as a comparative example
  • FIG. 1 is a circuit diagram showing the configuration of a class D amplifier 100 according to one embodiment of the invention.
  • This class D amplifier 100 includes an input amplifier circuit 10 , a modulation circuit 20 , a separator 30 , an output amplifier circuit 40 , an output filter 50 and a feedback circuit 60 .
  • the input amplifier circuit 10 and the modulation circuit 20 operate with the input ground G1 as a reference voltage
  • the output amplifier circuit 40 operates with the output ground G2 as a reference voltage.
  • the input amplifier circuit 10 is an amplifier that amplifies an input signal given as a differential voltage between the input terminals 15p and 15n, and includes an input-stage differential amplifier 11, a rear-stage differential amplifier 12, and a capacitor 13.
  • the non-inverting input of the input amplifier circuit 10, that is, the non-inverting input of the differential amplifier 11, is connected to the input terminal 15p via the resistor R1 and to the input ground G1 via the resistor R3.
  • the inverting input of the input amplifier circuit 10, ie, the inverting input of the differential amplifier 11, is connected to the input terminal 15n via the resistor R2 and to the input ground G1 via the resistor R4.
  • Differential amplifier 11 amplifies a voltage difference caused by a positive-phase input signal and a negative-phase input signal supplied from input terminals 15p and 15n via resistors R1 and R2, respectively.
  • Differential amplifier 12 operates as an integrator by connecting capacitor 13 between its output and inverting input. This integrator integrates the difference voltage between the signal output from the differential amplifier 11 and the voltage-divided first feedback signal supplied from an intermediate node between resistors R9 and R7, which will be described later, and the integrated The signal is output as a first output signal amplified by the input amplifier circuit 10 .
  • the modulation circuit 20 has a comparator 21 and a triangular wave generator 22 that outputs a triangular wave signal with a predetermined frequency as a carrier signal.
  • the comparator 21 compares the first output signal and the triangular wave signal output by the triangular wave generator 22 to generate and output a first pulse pulse width modulated by the first output signal. do.
  • the separating unit 30 is a circuit that transmits the first pulse to the input of the output amplifying circuit 40 while the input of the output amplifying circuit 40 and the output of the modulating circuit 20 are electrically isolated. Consists of More specifically, the separator 30 applies a voltage proportional to the voltage difference between the output of the modulation circuit 20 and the input ground G1 between the input of the output amplifier circuit 40 and the low voltage power supply line 102 as an isolated first pulse. occurs in A level shifter that shifts the voltage of the first pulse and outputs it as the shifted first pulse may be used instead of the separator 30 as described above.
  • the output amplifier circuit 40 includes a driver 43 and output stage transistors 41 and 42 capable of power switching at high frequencies (1.7 MHz or higher).
  • the output stage transistors 41 and 42 are GaN transistors (Gallium nitride transistors).
  • a positive voltage is supplied to the drain of the output stage transistor 41 from an external positive power supply B101 via the power supply line 101 and the power supply terminal 17p.
  • the source of the output stage transistor 41 is connected to the drain of the output stage transistor 42 , and the common connection node thereof is the output of the output amplifier circuit 40 .
  • a negative voltage is supplied to the source of the output stage transistor 42 from an external negative power supply B102 via the power supply line 102 and the power supply terminal 17n.
  • the reference voltage of this positive power supply B102 and negative power supply B101 is the output ground G2.
  • a power supply capacitor C101 is connected in parallel to the positive power supply B101, and a power supply capacitor C102 is connected in parallel to the negative power supply B102.
  • the driver 43 is a circuit that drives the output stage transistors 41 and 42 based on the isolated first pulse. More specifically, the driver 43 turns on the output stage transistor 41 and turns off the output stage transistor 42 when the isolated voltage of the first pulse is lower than, for example, a predetermined reference voltage. Further, the driver 43 turns off the output stage transistor 41 and turns on the output stage transistor 42 when the isolated voltage of the first pulse is higher than, for example, a predetermined reference voltage. Due to the high-speed switching of the output stage transistors, a large current with a high frequency flows through the output section of the class D amplifier circuit 100 . In order to improve power efficiency and reduce unnecessary radiation, it is desirable to shorten the current path of the printed circuit board 300 as much as possible.
  • the output of the output amplifier circuit 40 outputs the second pulse.
  • This second pulse is a pulse having an H level corresponding to the positive voltage of the power supply line 101 and an L level corresponding to the negative voltage of the power supply line 102 .
  • the output amplifier circuit 40 power-amplifies the first pulse and outputs it as a second pulse.
  • the output filter 50 is composed of a series-connected inductance 51 and a capacitor 52 inserted between the output of the output amplifier circuit 40 and the output ground G2.
  • a common connection node of inductance 51 and capacitor 52 is connected to output terminal 16p of class D amplifier 100, and a connection node of capacitor 52 in output ground G2 is connected to output terminal 16n of class D amplifier 100.
  • FIG. A load 53 is connected between the output terminals 16p and 16n. This load 53 is, for example, a speaker, but may be a motor, a light emitting element, or the like.
  • the output filter 50 passes the first low-frequency component of the PWM pulse (second pulse) amplified by the output amplifier circuit 40 and generates an output signal to be supplied to the load 53 .
  • the input signal is an audio signal
  • an audio signal obtained by power amplifying the input signal is generated as the output signal.
  • the first low frequency component is a component obtained by removing the high frequency component from the second pulse by the output filter 50 . Since the class D amplifier 100 has a high switching frequency, the cutoff frequency of the output filter 50 may be higher than that of a general class D amplifier.
  • the output filter 50 is connected in parallel with a low-pass filter F8 in which a resistor R8 and a capacitor C8 are connected in series. Resistors R9 and R7 are connected in series between the common connection node of the resistor R8 and the capacitor C8 and the input ground G1. It is connected to the negative phase input, and the low-pass filter F8, resistor R8 and capacitor C8 form a third feedback circuit.
  • the second low-frequency component of the second pulse output from output amplifier circuit 40 passes through low-pass filter F8 as a first feedback signal, and the first feedback signal is divided by resistors R9 and R7. and negatively fed back to the input of the differential amplifier 12 in the subsequent stage.
  • the cutoff frequency of low pass filter F8 is higher than the cutoff frequency of the output filter.
  • This negative feedback is optional, and the third feedback circuit may be omitted. By providing this negative feedback, the linearity of amplification from the differential amplifier 12 of the class D amplifier circuit 100 to the output terminal is further improved.
  • the feedback section 60 includes a second feedback circuit 61 in which a resistor R5 and a capacitor C5 are connected in parallel, and a first feedback circuit 62 in which a resistor R6 and a capacitor C6 are connected in parallel.
  • the feedback circuit 61 negatively feeds back the voltage of the output ground G2 (the voltage on the cold side of the output signal) to the non-inverting input of the differential amplifier 11 of the input amplifier circuit 10 as a third feedback signal.
  • the feedback circuit 62 negatively feeds back the voltage of the common connection node of the inductance 51 and the capacitor 52 (hot-side voltage of the output signal) to the inverting input of the differential amplifier 11 of the input amplifier circuit 10 as a second feedback signal.
  • the feedback unit 60 negatively feeds back the voltage of the first connection point (common connection node of the inductance 51 and the capacitor 52) with one end of the load 53 in the output filter 50 to the input of the class D amplifier 100, and outputs ground.
  • the voltage at the second connection point (connection point with the capacitor 52) with the other end of the load 53 in G2 is negatively fed back.
  • This negative feedback improves the amplification linearity of the entire class D amplifier circuit 100 (from the input terminal to the output terminal).
  • the voltage of the output terminal 16n is also negatively fed back, so even if the voltage of the output ground G2 connected to the output terminal 16n dynamically changes at a high switching frequency, the adverse effects will not occur. It is possible to suppress the effect on the output signal.
  • FIG. 2 is a layout diagram showing the configuration of the class D amplifier 100 mounted on one printed circuit board 300.
  • the printed circuit board 300 is mounted with the input amplifier circuit 10, the modulation circuit 20, the separator 30, the output amplifier circuit 40, the output filter 30, and the power supply capacitors C101 and C102 of FIG.
  • output amplifier circuit 40, output filter 50, and power supply capacitors C101 and C102 are arranged close to each other.
  • the printed circuit board 300 is also provided with the input terminals 15p and 15n, the output terminals 16p and 16n, and the power supply terminals 17p and 17n shown in FIG.
  • Input terminals 15p and 15n are supplied with, for example, audio signals balanced and transmitted from a sound source (not shown) as input signals.
  • An external load 53 such as a speaker is connected between the output terminals 16p and 16n.
  • An external positive power supply B101 and a negative power supply 17n are connected to the power supply terminals 17p and 17n, respectively.
  • the printed circuit board 300 also includes a feedback path 311 for feeding back the first feedback signal from the output filter 50 to the input amplifier circuit 10, and a feedback path 312 for feeding back the second feedback signal from the output terminal 16p to the input amplifier circuit 10. and a feedback path 313 for feeding back the third feedback signal to the input amplifier circuit 10 from the output terminal 16n connected to the output ground G2.
  • the feedback path 311 includes, in the vicinity of the input amplifier circuit 10, a third feedback circuit composed of the low-pass filter F8 and the resistors R9 and R7 in FIG.
  • Feedback path 312 includes first feedback circuit 62 in FIG.
  • Feedback path 313 includes second feedback circuit 61 in FIG. 1 in the vicinity of input amplifier circuit 10 .
  • the printed circuit board 300 includes the input amplifier circuit 10, the modulation circuit 20, the separation unit 30, the output amplifier circuit 40, the output filter 50, the power supply capacitors C101 and C102, and the output ground G2 extending over the entire feedback paths 311 to 313.
  • a solid pattern 302 is formed.
  • the printed circuit board is multi-layered, and the solid pattern 302 is provided on a layer different from the wiring of other circuits including the feedback path.
  • the third feedback circuit of the feedback path 311 negatively feeds back the second low frequency component of the second pulse as the first feedback signal to the inverting input of the differential amplifier 12 in the subsequent stage.
  • the first feedback circuit 62 negatively feeds back the voltage at the first connection point to the inverting input of the input amplifier circuit 10 as a second feedback signal
  • the second feedback circuit 61 on the feedback path 313 feeds the voltage at the second connection point to the second feedback signal. 3 is negatively fed back to the non-inverting input of the input amplifier circuit 10 as a feedback signal.
  • the solid pattern 302 of the output ground G2 is formed across the entire circuit that constitutes the class D amplifier 100, particularly across the input amplifier circuit 10, the modulation circuit 20, the output amplifier circuit 40 and the output filter 50. Therefore, even if an output current having a frequency one order of magnitude higher than that of a general class D amplifier flows, unnecessary radiation of the class D amplifier 100 can be suppressed.
  • FIG. 3 is a layout diagram showing a mounting state of a general class D amplifier 100' with a low switching frequency (less than 1.7 MHz) on a printed circuit board 300, which is a comparative example of this embodiment.
  • a class D amplifier with a low switching frequency unnecessary radiation can be sufficiently suppressed by providing a solid pattern 302 of the output ground G2 across the output amplifier circuit 40 and the output filter 50 after the separator 30 .
  • a solid pattern 301 of the input ground G1 across the input amplifier circuit 10 and the modulation circuit 20 is provided in order to prevent noise from jumping into the input signal. Further, since the influence of the inductance on the current path becomes small when the switching frequency is low, the feedback path 313 in this embodiment is not necessary.
  • a solid pattern 302 of the output ground G2 having a wider area than the comparative example is used for the input amplifier circuit 10, the modulation circuit 20, and the output amplifier circuit 40. and the output filter 50 .
  • the feedback path 312 negatively feeds the second feedback signal of the output terminal 16p (the connection point with one end of the load 53 in the output filter 50) to the input amplifier circuit 10, and the feedback path 313 , the third feedback signal of the output terminal 16n (connection point to the other end of the load 53 on the solid pattern 302 of the output ground G2) is negatively fed back to the input amplifier circuit 10, so that the wide solid pattern 302 and the high switching frequency are severe conditions.
  • the input signal can be amplified without deteriorating the distortion factor.
  • the output stage transistors 41 and 42 perform power switching at a high frequency of 1.7 MHz or higher, the frequency of switching noise is out of the AM (Amplitude Modulation) radio band. has the advantage that no disturbance to the AM (Amplitude Modulation) radio band.
  • the modulation circuit 20 outputs a PWM pulse pulse width modulated by the signal amplified by the input amplifier circuit 10, but a PDM pulse density modulated by the signal amplified by the input amplifier circuit 10 (Pulse Density Modulation) pulses may be output.
  • the input ground G1 may be a solid pattern, or may be a normal ground wiring. Regardless of whether the input ground G1 is a solid pattern or not, the input ground G1 is connected by a low impedance to the solid pattern 302 of the output ground G2.
  • GaN transistors were used as the output stage transistors 41 and 42, but other transistors capable of equivalent high-speed and efficient power switching may be used.
  • a triangular wave is used as the carrier wave signal, but a signal of other shape such as a sawtooth wave may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

D級増幅器の電磁輻射を低減する。 1枚のプリント基板300上に実装された入力増幅回路10、変調回路20、出力増幅回路40、および出力フィルタ50を備えるD級増幅器100であって、入力増幅回路10は、入力アースG1を基準電圧として入力信号を増幅し、変調回路20は、入力増幅回路10によって増幅された信号により変調された、スイッチング周波数が1.7MHz以上のパルスを出力し、出力増幅回路40は、出力アースG2を基準電圧としてパルスを増幅し、出力フィルタ50は、増幅されたパルスの第1低域成分を通過させて出力信号を生成し、プリント基板300において、出力アースG2のベタパターン302は、入力増幅回路10、変調回路20、出力増幅回路40、出力フィルタ50に跨って形成されている。

Description

D級増幅器
 この発明は、入力信号に基づいて変調されたパルスにより負荷を駆動するD級増幅器に関する。
 特許文献1は、入力信号を増幅する入力増幅回路と、入力増幅回路の出力信号によりパルス幅変調されたパルスを出力する変調および増幅回路と、変調および増幅回路が出力するパルスの低域成分を通過させて負荷に供給する出力フィルタとを有し、出力フィルタの出力信号を入力増幅回路の入力に負帰還させるD級増幅器を開示している。このD級増幅器によれば、入力信号に対し、低歪で高効率の増幅を行うことができる。
米国特許第6297692号
 近年、D級増幅器を構成する半導体スイッチング素子の高性能化により、D級増幅器のスイッチング速度が、従来と比べて1桁以上、高速化できるようになった。しかし、D級増幅器のスイッチング周波数を上げると、D級増幅器からの電磁波の不要輻射が大きくなる。
 この発明は、以上説明した事情に鑑みてなされたものであり、D級増幅器における不要輻射を抑制することを目的とする。
 この発明は、1枚のプリント基板上に実装された入力増幅回路、変調回路、出力増幅回路、および出力フィルタを備えるD級増幅器であって、前記入力増幅回路は、入力アースを基準電圧として入力信号を増幅し、前記変調回路は、前記入力増幅回路によって増幅された信号により変調されたパルスを出力し、前記出力増幅回路は、出力アースを基準電圧として前記パルスを増幅し、前記出力フィルタは、増幅された前記パルスの第1低域成分を通過させて出力信号を生成し、前記プリント基板において、前記出力アースのベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタに跨って形成され、前記D級増幅器は、前記出力フィルタにおける負荷の一端との接続点の電圧を前記入力増幅回路の反転入力に負帰還する帰還回路と、前記ベタパターンにおける前記負荷の他端との接続点との間の電圧を前記入力増幅回路の非反転入力に負帰還する帰還回路とを、さらに有するD級増幅器を提供する。
 また、この発明は、1枚のプリント基板上に実装された入力増幅回路、変調回路、出力増幅回路、および出力フィルタを備えるD級増幅器であって、前記入力増幅回路は、入力アースを基準電圧として入力信号を増幅し、前記変調回路は、前記入力増幅回路によって増幅された信号により変調された、スイッチング周波数が1.7MHz以上のパルスを出力し、前記出力増幅回路は、出力アースを基準電圧として前記パルスを増幅し、前記出力フィルタは、増幅された前記パルスの低域成分を通過させて出力信号を生成し、前記プリント基板において、前記出力アースのベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタに跨って形成されているD級増幅器を提供する。
この発明の一実施形態によるD級増幅器の構成を示す回路図である。 プリント基板に実装された同D級増幅器の構成を示すレイアウト図である。 比較例であるD級増幅器のレイアウト図である。
 以下、図面を参照し、この発明の実施形態を説明する。
 図1は、この発明の一実施形態によるD級増幅器100の構成を示す回路図である。このD級増幅器100は、入力増幅回路10と、変調回路20と、分離部30と、出力増幅回路40と、出力フィルタ50と、帰還回路60とを含む。このD級増幅器100において、入力増幅回路10と、変調回路20は、入力アースG1を基準電圧として動作し、出力増幅回路40は、出力アースG2を基準電圧として動作する。
 入力増幅回路10は、入力端子15pおよび15n間の差分電圧として与えられる入力信号を増幅する増幅器であって、入力段の差動増幅器11と後段の差動増幅器12とキャパシタ13とを含む。入力増幅回路10の非反転入力、つまり、差動増幅器11の非反転入力は、抵抗R1を介して入力端子15pに接続されるとともに、抵抗R3を介して入力アースG1に接続されている。また、入力増幅回路10の反転入力、つまり、差動増幅器11の反転入力は、抵抗R2を介して入力端子15nに接続されるとともに、抵抗R4を介して入力アースG1に接続されている。差動増幅器11は、入力端子15pおよび15nから抵抗R1およびR2を各々介して供給される、正相入力信号および逆相入力信号により生じる電圧差を増幅する。差動増幅器12は、その出力と反転入力の間にキャパシタ13を接続することで、積分器として動作する。この積分器は、差動増幅器11の出力する信号と、後述する抵抗R9およびR7間の中間ノードから供給される、分圧された第1帰還信号との差電圧を積分し、その積分された信号を入力増幅回路10によって増幅された第1出力信号として出力する。
 変調回路20は、比較器21と、所定周波数の三角波信号を搬送波信号として出力する三角波発生部22とを有する。比較器21は、第1出力信号と、三角波発生部22が出力する三角波信号とを比較することにより、第1出力信号によりパルス幅変調(Pulse Width Modulation)された第1パルスを生成して出力する。
 分離部30は、出力増幅回路40の入力と変調回路20の出力とを電気的に絶縁した状態で、第1パルスを出力増幅回路40の入力に伝達する回路であり、例えばフォトカプラまたはトランス等により構成される。さらに詳述すると、分離部30は、変調回路20の出力と入力アースG1の間の電圧差に比例した電圧を、絶縁された第1パルスとして出力増幅回路40の入力および低電圧電源線102間に生じる。なお、このような分離部30の代わりに、第1パルスの電圧をシフトし、シフトされた第1パルスとして出力するレベルシフタを用いてもよい。
 出力増幅回路40は、ドライバ43と、高い周波数(1.7MHz以上)で電力スイッチング可能な出力段トランジスタ41および42とを含む。例えば、出力段トランジスタ41および42は、GaNトランジスタ(Gallium nitride Transistor)である。出力段トランジスタ41のドレインには、電源線101および電源端子17pを介して、外付けの正電源B101から正電圧が供給される。出力段トランジスタ41のソースは、出力段トランジスタ42のドレインに接続され、その共通接続ノードが出力増幅回路40の出力である。そして、出力段トランジスタ42のソースには、電源線102および電源端子17nを介して、外付けの負電源B102から負電圧が供給される。この正電源B102および負電源B101の基準電圧は出力アースG2である。そして、正電源B101には電源キャパシタC101が並列接続され、負電源B102には電源キャパシタC102が並列接続されている。
 ドライバ43は、絶縁された第1パルスに基づいて、出力段トランジスタ41および42を駆動する回路である。さらに詳述すると、ドライバ43は、絶縁された第1パルスの電圧が例えば所定の基準電圧より低い場合に、出力段トランジスタ41をONさせるとともに、出力段トランジスタ42をOFFさせる。また、ドライバ43は、絶縁された第1パルスの電圧が例えば所定の基準電圧より高い場合に、出力段トランジスタ41をOFFさせるとともに、出力段トランジスタ42をONさせる。出力段トランジスタの高速スイッチングにより、D級増幅回路100の出力部には高い周波数の大電流が流れる。電力効率を上げかつ不要輻射を減らすため、プリント基板300では、その電流経路をできるだけ短くすることが望ましい。
 従って、分離部30を介して出力増幅回路40のドライバ43に第1パルスが与えられることにより、出力増幅回路40の出力から第2パルスが出力される。この第2パルスは、電源線101の正電圧に対応したHレベルと、電源線102の負電圧に対応したLレベルを有するパルスとなる。このように出力増幅回路40は、第1パルスを電力増幅して、第2パルスとして出力する。
 出力フィルタ50は、出力増幅回路40の出力と出力アースG2との間に挿入された、直列接続されたインダクタンス51およびキャパシタ52により構成される。そして、インダクタンス51およびキャパシタ52の共通接続ノードが、D級増幅器100の出力端子16pに接続され、出力アースG2におけるキャパシタ52との接続ノードが、D級増幅器100の出力端子16nに接続される。そして、出力端子16pおよび16n間に、負荷53が接続される。この負荷53は、例えばスピーカであるが、モータや発光素子などでもよい。出力フィルタ50は、出力増幅回路40によって増幅されたPWMパルス(第2パルス)の第1低域成分を通過させ、負荷53に供給する出力信号を生成する。入力信号がオーディオ信号の場合、その入力信号を電力増幅したオーディオ信号が、出力信号として生成される。第1低域成分は、出力フィルタ50により、第2パルスから高域成分を除いた成分である。D級増幅器は100は、スイッチング周波数が高いので、出力フィルタ50のカットオフ周波数は、一般のD級増幅器のカットオフ周波数よりも高くても良い。
 出力フィルタ50には、抵抗R8およびキャパシタC8を直列接続したローパスフィルタF8が並列接続されている。そして、抵抗R8およびキャパシタC8の共通接続ノードと入力アースG1との間には、抵抗R9およびR7が直列接続され、この抵抗R9およびR7の共通接続ノードが入力増幅回路10の差動増幅器12の逆相入力に接続され、ローパスフィルタF8、抵抗R8およびキャパシタC8で第3帰還回路を構成している。D級増幅回路100では、出力増幅回路40から出力される第2パルスの第2低域成分が第1帰還信号としてローパスフィルタF8を通過し、その第1帰還信号が抵抗R9およびR7により分圧され、後段の差動増幅器12の入力に負帰還される。ローパスフィルタF8のカットオフ周波数は、出力フィルタのカットオフ周波数より高い。なお、この負帰還は、オプションであり、第3帰還回路を省略しても良い。この負帰還を備えることにより、D級増幅回路100の差動増幅器12から出力端子までにおける増幅の直線性がさらに改善する。
 帰還部60は、抵抗R5およびキャパシタC5を並列接続した第2帰還回路61と、抵抗R6およびキャパシタC6を並列接続した第1帰還回路62とを含む。帰還回路61は、出力アースG2の電圧(出力信号のコールド側の電圧)を第3帰還信号として入力増幅回路10の差動増幅器11の非反転入力に負帰還する。帰還回路62は、インダクタンス51およびキャパシタ52の共通接続ノードの電圧(出力信号のホット側の電圧)を第2帰還信号として入力増幅回路10の差動増幅器11の反転入力に負帰還する。すなわち、帰還部60は、D級増幅器100の入力に、出力フィルタ50における負荷53の一端との第1接続点(インダクタンス51およびキャパシタ52の共通接続ノード)の電圧を負帰還するとともに、出力アースG2における負荷53の他端との第2接続点(キャパシタ52との接続点)の電圧を負帰還する。この負帰還により、D級増幅回路100全体(入力端子から出力端子まで)としての増幅の直線性が改善する。出力端子16pの電圧に加えて、出力端子16nの電圧を負帰還しているので、出力端子16nに接続された出力アースG2の電圧が高いスイッチング周波数で動的に変化したとしても、その悪影響が出力信号に及ぶのを抑えることができる。
 図2は1枚のプリント基板300に実装されたD級増幅器100の構成を示すレイアウト図である。図2に示すように、プリント基板300には、図1の入力増幅回路10、変調回路20、分離部30、出力増幅回路40、出力フィルタ30、電源キャパシタC101およびC102が実装される。D級増幅回路100の出力における電流経路を短くするため、出力増幅回路40、出力フィルタ50、電源キャパシタC101およびC102が、相互に近接して配置されている。
 また、プリント基板300には、図1の入力端子15pおよび15nと、出力端子16pおよび16nと、電源端子17pおよび17nが設けられている。入力端子15pおよび15nには、例えば、図示しない音源からバランス伝送されたオーディオ信号が、入力信号として与えられる。出力端子16pおよび16n間には、スピーカ等の外付けの負荷53が接続される。そして、電源端子17pおよび17nには、外付けの正電源B101および負電源17nが各々接続される。
 また、プリント基板300には、出力フィルタ50から入力増幅回路10への第1帰還信号を帰還する帰還経路311と、出力端子16pから入力増幅回路10への第2帰還信号を帰還する帰還経路312と、出力アースG2に接続された出力端子16nから入力増幅回路10への第3帰還信号を帰還する帰還経路313とが形成されている。
 ここで、帰還経路311は、入力増幅回路10の近傍に、図1におけるローパスフィルタF8、抵抗R9およびR7からなる第3帰還回路を含む。帰還経路312は、入力増幅回路10の近傍に、図1における第1帰還回路62を含む。帰還経路313は、入力増幅回路10の近傍に、図1における第2帰還回路61を含む。そして、プリント基板300には、入力増幅回路10、変調回路20、分離部30、出力増幅回路40、出力フィルタ50、電源キャパシタC101およびC102、帰還経路311~313の全域を跨る出力アースG2のベタパターン(solid pattern)302が形成されている。プリント基板は多層であって、ベタパターン302は帰還経路を含むその他の回路の配線とは異なる層に設けられる。そして、本実施形態では、帰還経路311の第3帰還回路が、第2パルスの第2低域成分を第1帰還信号として後段の差動増幅器12の反転入力に負帰還し、帰還経路312の第1帰還回路62が、第1接続点の電圧を第2帰還信号として入力増幅回路10の反転入力に負帰還し、帰還経路313の第2帰還回路61が、第2接続点の電圧を第3帰還信号として入力増幅回路10の非反転入力に負帰還する。
 本実施形態によれば、D級増幅器100を構成する回路の全域、特に入力増幅回路10、変調回路20、出力増幅回路40および出力フィルタ50に跨って出力アースG2のベタパターン302が形成されているので、一般のD級増幅器より一桁以上高い周波数の出力電流が流れたとしても、D級増幅器100の不要輻射を抑制することができる。
 図3は本実施形態の比較例である、低いスイッチング周波数(1.7MHz未満)の一般のD級増幅器100’のプリント基板300における実装状態を示すレイアウト図である。スイッチング周波数の低いD級増幅器では、出力アースG2のベタパターン302を、分離部30以降の出力増幅回路40、出力フィルタ50を跨ぐよう設けることで、不要輻射を十分に抑えられる。そして、入力信号へのノイズの飛び込みを防ぐため、ベタパターン302とは別の、入力増幅回路10および変調回路20を跨る入力アースG1のベタパターン301が設けている。また、スイッチング周波数が低いと電流経路におけるインダクタンスの影響が小さくなるので、本実施形態における帰還経路313は必要がない。
 本実施形態(図2)では、高いスイッチング周波数での不要輻射を抑えるために、比較例よりも面積の広い出力アースG2のベタパターン302が、入力増幅回路10、変調回路20、出力増幅回路40および出力フィルタ50に跨って形成されている。
 本実施形態では、ベタパターン302を広くしたため、出力の電流経路が特定し辛くなっており、さらに、スイッチング周波数が高いことから、電流経路におけるインダクタンスの悪影響が大きくなっている。
 しかしながら、本実施形態では、帰還経路312により、出力端子16p(出力フィルタ50における負荷53の一端との接続点)の第2帰還信号を、入力増幅回路10に負帰還するとともに、帰還経路313により、出力端子16n(出力アースG2のベタパターン302における負荷53の他端との接続点)の第3帰還信号を入力増幅回路10に負帰還するので、広いベタパターン302と高いスイッチング周波数という厳しい状況でも、歪率を悪化させることなく入力信号を増幅することができる。また、本実施形態において、出力段トランジスタ41および42は、1.7MHz以上の高い周波数で電力スイッチングを行うので、スイッチングノイズの周波数がAM(Amplitude modulation;振幅変調)ラジオの帯域をはずれ、AMラジオに対する妨害が起こらなくなるという利点がある。
<他の実施形態>
 以上、この発明の実施形態について説明したが、この発明には他にも実施形態が考えられる。例えば次の通りである。
(1)上記実施形態において、変調回路20は、入力増幅回路10により増幅された信号によりパルス幅変調されPWMパルスを出力したが、入力増幅回路10により増幅された信号によりパルス密度変調されたPDM(Pulse Density Modulation)パルスを出力するものであってもよい。
(2)入力アースG1は、ベタパターンとしてもよいが、普通のアース配線としてもよい。入力アースG1がベタパターンか否かに関わらず、入力アースG1は、低インピーダンスにより出力アースG2のベタパターン302に接続される。
(3)上記実施形態では、出力段トランジスタ41および42としてGaNトランジスタを用いたが、同等の高速かつ効率的な電力スイッチングができる他のトランジスタがあれば、それを用いてもよい。
(4)上記実施形態では、搬送波信号として、三角波を用いたが、鋸波など他の形状の信号を用いてもよい。
100,100’……D級増幅器、15p,15n……入力端子、10……入力増幅回路、11,12……差動増幅器、13,52,C8,C5,C6……キャパシタ、R1,R2,R3,R4,R5,R6,R7,R8,R9……抵抗、20……変調回路、21……比較器、22……三角波発生部、30……分離部、40……出力増幅回路、41,42……出力段トランジスタ、16p,16n……出力端子、50……出力フィルタ、51……インダクタンス、53……負荷、G1……入力アース、G2……出力アース、B101,B102……直流電源、17p,17n……電源端子、C101,C102……電源キャパシタ、F8……ローパスフィルタ、60……帰還回路、61,62……帰還フィルタ、301,302……ベタパターン。  

Claims (9)

  1.  1枚のプリント基板上に実装された入力増幅回路、変調回路、出力増幅回路、および出力フィルタを備えるD級増幅器であって、
     前記入力増幅回路は、入力アースを基準電圧として入力信号を増幅し、
     前記変調回路は、前記入力増幅回路によって増幅された信号により変調されたパルスを出力し、
     前記出力増幅回路は、出力アースを基準電圧として前記パルスを増幅し、
     前記出力フィルタは、増幅された前記パルスの第1低域成分を通過させて出力信号を生成し、
     前記プリント基板において、前記出力アースのベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタに跨って形成され、
     前記D級増幅器は、前記出力フィルタにおける負荷の一端との第1接続点の電圧を前記入力増幅回路の反転入力に負帰還する第1帰還回路と、前記ベタパターンにおける前記負荷の他端との第2接続点との間の電圧を前記入力増幅回路の非反転入力に負帰還する第2帰還回路とを、さらに有するD級増幅器。
  2.  前記出力フィルタは、前記出力増幅回路の出力と前記出力アースとの間に挿入された、互いに直列接続されたインダクタンスおよびキャパシタを含み、
     前記第1接続点は、前記インダクタンスおよび前記キャパシタの共通接続ノードである請求項1に記載のD級増幅器。
  3.  前記第2接続点は、前記出力アースにおける前記負荷の他端との接続点である請求項2に記載のD級増幅器。
  4.  前記ベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタに加え、前記第1帰還回路による負帰還の第1経路および前記第2帰還回路による負帰還の第2経路に跨るものである請求項2又は3に記載のD級増幅器。
  5.  前記第1経路は、前記プリント基板上に形成される前記第2経路に沿って形成される請求項2から4のいずれかに記載のD級増幅器。
  6.  前記増幅されたパルスの第2低域成分を前記入力増幅回路に負帰還する第3帰還回路をさらに備え、
     前記ベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタ、前記第1経路および前記第2経路に加え、前記第3帰還回路による負帰還の第3経路に跨るものである請求項4に記載のD級増幅器。
  7.  前記変調回路の出力と前記出力増幅回路の入力とを電気的に絶縁する分離部をさらに備え、
     前記ベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタ、前記第1経路、前記第2経路および前記第3経路に加え、前記分離部に跨るものである請求項6に記載のD級増幅器。
  8.  前記出力増幅回路は、GaNトランジスタを用いて前記パルスの増幅を行う請求項1から7のいずれかに記載のD級増幅器。
  9.  1枚のプリント基板上に実装された入力増幅回路、変調回路、出力増幅回路、および出力フィルタを備えるD級増幅器であって、
     前記入力増幅回路は、入力アースを基準電圧として入力信号を増幅し、
     前記変調回路は、前記入力増幅回路によって増幅された信号により変調された、スイッチング周波数が1.7MHz以上のパルスを出力し、
     前記出力増幅回路は、出力アースを基準電圧として前記パルスを増幅し、
     前記出力フィルタは、増幅された前記パルスの低域成分を通過させて出力信号を生成し、
     前記プリント基板において、前記出力アースのベタパターンは、前記入力増幅回路、前記変調回路、前記出力増幅回路、前記出力フィルタに跨って形成されているD級増幅器。
PCT/JP2022/010000 2021-03-17 2022-03-08 D級増幅器 WO2022196443A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/362,039 US20230378914A1 (en) 2021-03-17 2023-07-31 Class-d amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043176A JP2022142907A (ja) 2021-03-17 2021-03-17 D級増幅器
JP2021-043176 2021-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/362,039 Continuation US20230378914A1 (en) 2021-03-17 2023-07-31 Class-d amplifier

Publications (1)

Publication Number Publication Date
WO2022196443A1 true WO2022196443A1 (ja) 2022-09-22

Family

ID=83320427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010000 WO2022196443A1 (ja) 2021-03-17 2022-03-08 D級増幅器

Country Status (3)

Country Link
US (1) US20230378914A1 (ja)
JP (1) JP2022142907A (ja)
WO (1) WO2022196443A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433361A (ja) * 1990-05-30 1992-02-04 Sanyo Electric Co Ltd 混成集積回路装置
JPH0617267U (ja) * 1992-07-29 1994-03-04 クラリオン株式会社 アースパターン構造
US20050253664A1 (en) * 2004-04-28 2005-11-17 Nokia Corporation Integrated RF-front end having an adjustable antenna
WO2018186154A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 高周波モジュール及び通信装置
WO2018221273A1 (ja) * 2017-06-02 2018-12-06 株式会社村田製作所 高周波モジュール及び通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433361A (ja) * 1990-05-30 1992-02-04 Sanyo Electric Co Ltd 混成集積回路装置
JPH0617267U (ja) * 1992-07-29 1994-03-04 クラリオン株式会社 アースパターン構造
US20050253664A1 (en) * 2004-04-28 2005-11-17 Nokia Corporation Integrated RF-front end having an adjustable antenna
WO2018186154A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 高周波モジュール及び通信装置
WO2018221273A1 (ja) * 2017-06-02 2018-12-06 株式会社村田製作所 高周波モジュール及び通信装置

Also Published As

Publication number Publication date
US20230378914A1 (en) 2023-11-23
JP2022142907A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
US6707337B2 (en) Self-operating PWM amplifier
US7714646B2 (en) Audio power amplifier and a pre-amplifier thereof
US7417503B2 (en) Method for high efficiency audio amplifier
US20080297244A1 (en) PWM Loop Filter with Minimum Aliasing Error
US20070216477A1 (en) Baseband noise reduction
US20080303590A1 (en) Power amplifier with noise shaping function
JP5479284B2 (ja) 電子回路
EP1994638B1 (en) Hybrid feedback controlled oscillation modulator and switching power amplifier system
US7190224B2 (en) Class D amplifier
US8710922B2 (en) Method and apparatus for filter-less class D audio amplifier EMI reduction
US20060145755A1 (en) Square wave modulation design for a class-D audio amplifier
US20170279422A1 (en) Btl output self-oscillating class d amplifier
US10164581B2 (en) Self-oscillating amplifier with high order loop filter
KR100972155B1 (ko) 2중 부궤환 d급 증폭기
WO2022196443A1 (ja) D級増幅器
JP3132280B2 (ja) D級電力増幅器
US11245368B2 (en) Class D amplifier
US10819293B2 (en) Power amplifier
KR101461097B1 (ko) D급 오디오 앰프회로
US10911010B2 (en) Class-D amplifier and sound system
TWI724979B (zh) 可抑制差模電源雜訊的d類放大器
US11476821B2 (en) Electronic filter apparatus
US4039965A (en) Audio frequency transistor amplifier
GB2439983A (en) Frequency compensation for an audio power amplifier
JP2007067554A (ja) Dクラスアンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771195

Country of ref document: EP

Kind code of ref document: A1