WO2018186154A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2018186154A1
WO2018186154A1 PCT/JP2018/010638 JP2018010638W WO2018186154A1 WO 2018186154 A1 WO2018186154 A1 WO 2018186154A1 JP 2018010638 W JP2018010638 W JP 2018010638W WO 2018186154 A1 WO2018186154 A1 WO 2018186154A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
frequency module
conductor
supply circuit
Prior art date
Application number
PCT/JP2018/010638
Other languages
English (en)
French (fr)
Inventor
亮史 本多
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018186154A1 publication Critical patent/WO2018186154A1/ja
Priority to US16/591,727 priority Critical patent/US11139231B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49833Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the chip support structure consisting of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/062Means for thermal insulation, e.g. for protection of parts

Definitions

  • the present invention relates to a high-frequency module and a communication device, and more particularly, to an amplifying circuit provided on a multilayer substrate and a high-frequency module including a ground conductor in the multilayer substrate.
  • Patent Document 1 discloses a power amplifier module which is an example of such a high-frequency module.
  • FIG. 11 is a circuit diagram showing a configuration of a power amplifier module 900 described in Patent Document 1.
  • the power amplifier module 900 includes a semiconductor circuit portion Q1 formed by connecting three stages of semiconductor elements, an input matching circuit portion IM1 connected to the preceding stage, an output matching circuit portion OM1 connected to the subsequent stage, and a bias circuit portion BC1. And.
  • Patent Document 1 it is assumed that the inductor elements L5 to L8 of the bias circuit unit BC1 ideally have an infinite impedance so as not to leak the signal amplified by the semiconductor circuit unit Q1 to the power supply terminal Vdd. Yes.
  • a conductor pattern having a ground potential is generally formed on a multilayer substrate or in a multilayer substrate with a relatively large area.
  • a conductor pattern is also referred to as a ground pattern or a ground conductor, and is used for circuit grounding, noise shielding, heat dissipation, and the like.
  • a ground pattern that occupies almost the entire surface of the inner layer is formed on the inner layer of the multilayer substrate.
  • leakage of the signal amplified by the semiconductor circuit unit Q1 to the power supply terminal Vdd can be prevented, but leakage to the bias circuit unit BC1 is not necessarily prevented sufficiently. is there. If the signal leakage from the amplifier circuit to the bias circuit is not sufficiently prevented, there is a concern about the deterioration of the characteristics of the amplifier circuit or the oscillation caused by the leaked signal returning to the amplifier circuit through the bias circuit.
  • an object of the present invention is to provide a high-frequency module that can more reliably prevent signal leakage from the amplifier circuit to the bias circuit, more broadly, signal leakage from the amplifier circuit to the power supply circuit.
  • a high-frequency module includes a multilayer substrate including a plurality of insulator layers, an amplifier circuit that is provided on the multilayer substrate and amplifies a high-frequency signal, and the multilayer substrate.
  • the first conductor pattern and the second conductor pattern are provided physically separated from each other in the inner layer of the multilayer substrate.
  • the first conductor pattern for the amplifier circuit and the second conductor pattern for the power supply circuit which are physically separated from each other in the inner layer of the multilayer substrate, are provided.
  • signal leakage through the conductor pattern between the amplifier circuit and the power supply circuit can be prevented more reliably than when one conductor pattern is provided for the amplifier circuit and the power supply circuit without separation. Is done.
  • first and second conductor patterns separated in the inner layer of the multilayer substrate may be drawn out to the surface layer of the multilayer substrate by, for example, via conductors and connected to each other in the surface layer.
  • the ground potential can be applied to the first and second conductor patterns from the connection point of the surface layer.
  • the signal leaking between the amplifier circuit and the power supply circuit via the first and second conductor patterns is greatly attenuated by passing through a long signal path passing through the surface layer, so that the effect of preventing signal leakage is maintained. Is done.
  • first conductor pattern and the second conductor pattern may be provided in the same inner layer of the multilayer substrate.
  • the high-frequency module can be reduced in height.
  • the amplifier circuit includes an amplifier element, an input matching circuit connected to the input terminal of the amplifier element, and an output matching circuit connected to the output terminal of the amplifier element, and the first conductor pattern is grounded
  • a first part having a potential and used in the input matching circuit may be physically separated from a second part having a ground potential and used in the output matching circuit.
  • the amplifying circuit includes a first amplifying element and a second amplifying element, and the power supply circuit is connected to the first power supply circuit connected to the first amplifying element and the second amplifying element.
  • the second conductor pattern has a ground potential and a third portion used in the first power circuit, and has a ground potential and the second power circuit. It may be physically separated from the fourth part used in the above.
  • the second conductor pattern is separated into the third and fourth portions, the signal is less likely to leak between the amplifier circuit and the first and second power supply circuits. A larger feedback suppression effect can be obtained.
  • a plurality of via conductors that are electrically connected to the at least one conductor pattern and extend in the stacking direction of the multilayer substrate are provided at the periphery of at least one conductor pattern of the first and second conductor patterns. It may be provided.
  • the plurality of via conductors function as a shield, signals are less likely to leak between the amplifier circuit and the power supply circuit, so that a greater feedback suppression effect can be obtained.
  • a communication device includes the high-frequency module and an RF signal processing circuit connected to the high-frequency module.
  • a high-performance communication device can be obtained by using a high-frequency module that can more reliably prevent signal leakage from the amplifier circuit to the power supply circuit.
  • the first conductor pattern having the ground potential and used in the amplifier circuit and the second conductor pattern having the ground potential and used in the power supply circuit are arranged in the inner layer of the multilayer substrate. Provide physically separated from each other. Thereby, the high frequency module which can prevent more reliably the leakage of the signal from an amplifier circuit to a power supply circuit is obtained. By using such a high-frequency module, a communication device having high performance can be obtained.
  • FIG. 1 is a circuit diagram illustrating an example of a functional configuration of the high-frequency module according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a planar structure of the high-frequency module according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a stacked structure of the high-frequency module according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a planar structure of the high-frequency module according to the second embodiment.
  • FIG. 5 is a schematic diagram illustrating an example of a stacked structure of the high-frequency module according to the second embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of a planar structure of the high-frequency module according to the third embodiment.
  • FIG. 1 is a circuit diagram illustrating an example of a functional configuration of the high-frequency module according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a planar structure of the high-frequency module according to the first embodiment.
  • FIG. 7 is a schematic diagram illustrating an example of a stacked structure of the high-frequency module according to the third embodiment.
  • FIG. 8 is a schematic diagram illustrating an example of a planar structure of the high-frequency module according to the fourth embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a stacked structure of the high-frequency module according to the fourth embodiment.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the communication apparatus according to the fifth embodiment.
  • FIG. 11 is a circuit diagram showing an example of the configuration of a conventional power amplifier module.
  • the high-frequency module according to Embodiment 1 is a multi-band amplifier module provided on a multilayer substrate. First, the functional configuration of the high-frequency module will be described, and then the structural features of the high-frequency module will be described.
  • FIG. 1 is a circuit diagram showing an example of a functional configuration of the high-frequency module according to the first embodiment.
  • the high-frequency module 100 includes an amplification circuit 110 that amplifies a high-frequency signal, and a power supply circuit 120 that supplies power to the amplification circuit 110.
  • the amplifying circuit 110 is a multi-band amplifying circuit, receives a multi-band input high-frequency signal RFIN including high-frequency signals in two frequency bands, and amplifies the input high-frequency signal RFIN to output high-frequency signals for each frequency band. Signals LBOUT and HBOUT are output.
  • the amplification circuit 110 includes an amplification element 111, an input matching circuit 112 connected to the input terminal of the amplification element 111, and an output matching circuit 113 connected to the output terminal of the amplification element 111.
  • the amplification element 111 has two signal paths corresponding to different frequency bands, and includes two stages of amplification elements for each signal path.
  • the upstream amplification elements ML1 and MH1 are examples of first amplification elements, and the subsequent amplification elements ML2 and MH2 are examples of second amplification elements.
  • the amplifying elements ML1, MH1, ML2, and MH2 may be hetero bipolar transistors.
  • the amplifying element 111 may be configured by an integrated circuit (IC) including the amplifying elements ML1, MH1, ML2, and MH2.
  • the input matching circuit 112 performs impedance matching on the input high-frequency signal RFIN and supplies it to one of the signal paths of the amplifying element 111 that is selected by the switch SW.
  • the amplifying element 111 amplifies the high frequency signal supplied from the input matching circuit 112 and supplies it to the output matching circuit 113.
  • the output matching circuit 113 performs impedance matching on the high-frequency signal supplied from the amplifying element 111 and outputs it as output high-frequency signals LBOUT and HBOUT.
  • the output high-frequency signals LBOUT and HBOUT are supplied to a subsequent circuit (not shown). Since the input matching circuit 112 and the output matching circuit 113 are both general impedance matching circuits, detailed description thereof is omitted.
  • the power supply circuit 120 includes a first power supply circuit 121 and a second power supply circuit 122.
  • the first power supply circuit 121 is connected to the preceding amplification elements ML1 and MH1 included in the amplification element 111, and supplies a bias voltage Vcc1 to the amplification elements ML1 and MH1.
  • the second power supply circuit 122 is connected to the subsequent amplification elements ML2 and MH2 included in the amplification element 111, and supplies the bias voltage Vcc2 to the amplification elements ML2 and MH2. That is, each of the first power supply circuit 121 and the second power supply circuit 122 includes a bias circuit that supplies a bias voltage to the amplifying element 111.
  • the bias voltages Vcc1 and Vcc2 are generated by, for example, a power supply module (not shown) provided separately from the high frequency module 100 and supplied to the high frequency module 100.
  • FIGS. 2 and 3 are schematic diagrams respectively showing an example of a planar structure and a laminated structure of the high-frequency module according to the first embodiment. 2, the rough planar arrangement of the main circuit elements shown in FIG. 1 is indicated using the same reference numerals as those in FIG.
  • the multilayer substrate 600 is formed by laminating a plurality of insulator layers 601 to 606.
  • the multilayer substrate 600 is provided with an amplifier circuit 110 and a power supply circuit 120.
  • the amplifier circuit 110 and the power supply circuit 120 may be provided in regions 210 and 220 that do not overlap each other when the multilayer substrate 600 is viewed in plan.
  • the multilayer substrate 600 is provided with a plurality of conductor patterns.
  • the conductor pattern refers to a conductor provided along the main surface of the insulator layers 601 to 606.
  • the conductor pattern includes a wiring conductor that transmits a signal and a power supply, and a ground conductor that has a ground potential and is used for circuit grounding, noise shielding, heat dissipation, and the like.
  • Conductor patterns provided in different layers are appropriately connected by conductor vias that extend through the insulator layers 601 to 606 in the stacking direction.
  • the ground conductor 310 and the wiring conductors 412, 413, and 414 are provided in the region 210 where the amplifier circuit 110 is provided.
  • the ground conductor 310 is used in the amplifier circuit 110. To be used in the amplifier circuit 110 may mean that it is connected to an element constituting the amplifier circuit 110, for example.
  • the wiring conductor 412 transmits the input high frequency signal RFIN.
  • the wiring conductors 413 and 414 transmit the output high-frequency signals LBOUT and HBOUT, respectively.
  • the ground conductor 310 is an example of a first conductor pattern.
  • the ground conductor 320 and the wiring conductors 421 and 422 are provided in the region 220 where the power supply circuit 120 is provided.
  • the ground conductor 320 is used in the power supply circuit 120.
  • To be used in the power supply circuit 120 may mean that it is connected to an element constituting the power supply circuit 120, for example.
  • the wiring conductors 421 and 422 transmit bias voltages Vcc1 and Vcc2, respectively.
  • the ground conductor 320 is an example of a second conductor pattern.
  • ground conductors 310 and 320 are denoted by reference numerals, but the ground conductors 310 and 320 are not limited to the conductor patterns denoted by reference numerals.
  • the conductor pattern which is in the inner layer of the multilayer substrate 600 and has a ground potential and is used in the amplifier circuit 110 is the ground conductor 310.
  • the conductor pattern which is in the inner layer of the multilayer substrate 600 and has a ground potential and is used in the power supply circuit 120 is the ground conductor 320.
  • the ground conductors 310 and 320 are provided physically separated from each other in the inner layer of the multilayer substrate 600.
  • Each of the elements CL1, CL2, CL3, CH1, CH2, and CH3 constituting the amplifier circuit 110 is connected to the ground conductor 310 through a conductor via.
  • Elements (not shown) constituting the power supply circuit 120 are connected to the ground conductor 320 via another conductor via. That is, the ground conductor 310 used in the amplifier circuit 110 and the ground conductor 320 used in the power supply circuit 120 are physically separated in the inner layer of the multilayer substrate 600.
  • the output signal of the amplifier circuit 110 is more reliably leaked to the power circuit 120 via the ground conductor. To be prevented.
  • ground conductor used in the amplifier circuit 110 may not be connected to the elements constituting the amplifier circuit 110.
  • a ground conductor provided for noise shielding of the amplifier circuit 110 is an example of a ground conductor used in the amplifier circuit 110 even if it is not connected to an element constituting the amplifier circuit 110.
  • the ground conductor used in the power supply circuit 120 may not be connected to the elements constituting the power supply circuit 120.
  • the ground conductors 310 and 320 may be led to the surface layer (lower surface in the example of FIG. 3) of the multilayer substrate 600 through via conductors and connected to each other by a conductor pattern 330 provided on the surface layer. As a result, a ground potential can be applied from the conductor pattern 330 to the ground conductors 310 and 320. Since the signal leaking between the amplifier circuit 110 and the power supply circuit 120 via the conductor pattern 330 is greatly attenuated by passing through a long signal path passing through the surface layer, the effect of preventing signal leakage is maintained.
  • ground conductors 310 and 320 may be provided in the same inner layer of the multilayer substrate 600.
  • ground conductors are provided in both the regions 210 and 220 on the bonding surfaces of the insulator layers 605 and 606.
  • ground conductors 310 and 320 are provided in the same inner layer of the multilayer substrate 600 that at least a part of the ground conductor 310 and at least a part of the ground conductor 320 are the same in the stacking direction of the multilayer substrate 600. It may mean being at a height. In other words, when the multilayer substrate 600 is viewed from the side, it may mean that the ground conductor 310 and the ground conductor 320 have overlapping portions.
  • the ground conductors 310 and 320 can be provided in one inner layer, the height of the high-frequency module can be reduced.
  • the high-frequency module according to the second embodiment is different from the high-frequency module according to the first embodiment in that a via conductor that is electrically connected to the ground conductor is provided at the periphery of the ground conductor.
  • a via conductor that is electrically connected to the ground conductor is provided at the periphery of the ground conductor.
  • FIGS. 4 and 5 are schematic diagrams respectively showing an example of a planar structure and a laminated structure of the high-frequency module 100b according to the second embodiment.
  • the high-frequency module 100b is different from the high-frequency module 100a shown in FIGS. 2 and 3 in that a plurality of via conductors 510 and 520 are added to the peripheral portions of the ground conductors 310 and 320, respectively.
  • the via conductors 510 and 520 have a ground potential by being electrically connected to the peripheral portions of the ground conductors 310 and 320, respectively.
  • the high-frequency module 100b since the plurality of via conductors 510 and 520 function as shields, signals are less likely to leak between the amplifier circuit 110 and the power supply circuit 120, so that a greater feedback suppression effect can be obtained. .
  • the high-frequency module according to the third embodiment is different from the high-frequency module according to the first embodiment in that the ground conductor is separated and provided in finer portions.
  • description of items similar to those in the first embodiment will be omitted, and items different from those in the third embodiment will be mainly described.
  • FIGS. 6 and 7 are schematic diagrams respectively showing an example of a planar structure and a laminated structure of the high-frequency module 100c according to the third embodiment.
  • the regions 210 and 220 are each divided into a plurality of finer portions.
  • the region 210 is divided into portions 211, 212, and 213 that do not overlap each other when the multilayer substrate 600 is viewed in plan.
  • the amplification element 111, the input matching circuit 112, and the output matching circuit 113 may be provided in the portions 211, 212, and 213 of the region 210, respectively.
  • the region 220 is divided into portions 221 and 222 that do not overlap each other when the multilayer substrate 600 is viewed in plan.
  • the first power supply circuit 121 and the second power supply circuit 122 may be provided in the portions 221 and 222 of the region 220, respectively.
  • the ground conductor 311 is provided in the portion 211 where the amplification element 111 is provided.
  • a ground conductor 312 and a wiring conductor 412 are provided in the portion 212 where the input matching circuit 112 is provided.
  • a ground conductor 313 and wiring conductors 413 and 414 are provided in a portion 213 where the output matching circuit 113 is provided. That is, in the high-frequency module 100 c, the ground conductor 310 as the first conductor pattern is physically separated into the ground conductors 311, 312, and 313.
  • the ground conductors 311, 312 and 313 are used in the amplification element 111, the input matching circuit 112 and the output matching circuit 113, respectively.
  • To be used in the amplifying element 111 may mean connecting to the amplifying element 111, for example.
  • To be used in the input matching circuit 112 may mean that it is connected to an element constituting the input matching circuit 112, for example.
  • To be used in the output matching circuit 113 may mean that it is connected to an element constituting the output matching circuit 113, for example.
  • the ground conductors 312, 313 are examples of the first portion and the second portion of the first conductor pattern, respectively.
  • a ground conductor 321 and a wiring conductor 421 are provided in a portion 221 where the first power supply circuit 121 is provided.
  • a ground conductor 322 and a wiring conductor 422 are provided in a portion 222 where the second power supply circuit 122 is provided. That is, in the high frequency module 100c, the ground conductor 320 as the second conductor pattern is physically separated into the ground conductors 321 and 322.
  • the ground conductors 321 and 322 are used in the first power supply circuit 121 and the second power supply circuit 122, respectively.
  • To be used in the first power supply circuit 121 may mean that it is connected to an element constituting the first power supply circuit 121, for example.
  • To be used in the second power supply circuit 122 may mean that it is connected to an element constituting the second power supply circuit 122, for example.
  • the ground conductors 321 and 322 are examples of the third portion and the fourth portion of the second conductor pattern, respectively.
  • the ground conductors 311, 312, 313, 321, and 322 are provided physically separated from each other in the inner layer of the multilayer substrate 600.
  • the amplifying element 111 is connected to the ground conductor 311 through a conductor via.
  • An element (not shown) constituting the input matching circuit is connected to the ground conductor 312 through another conductor via.
  • Each of the elements CL1, CL2, CL3, CH1, CH2, and CH3 constituting the output matching circuit 113 is connected to the ground conductor 313 via another conductor via.
  • An element (not shown) constituting the first power supply circuit 121 is connected to the ground conductor 321 through a conductor via.
  • An element (not shown) constituting the second power supply circuit 122 is connected to the ground conductor 322 through another conductor via.
  • ground conductor 311 used in the amplification element 111 the ground conductor 312 used in the input matching circuit 112, the ground conductor 313 used in the output matching circuit 113, and the ground conductor 321 used in the first power supply circuit 121.
  • the ground conductor 322 used in the second power supply circuit 122 is physically separated in the inner layer of the multilayer substrate 600.
  • one ground conductor is used for at least one of the amplifier element 111, the input matching circuit 112, and the output matching circuit 113, and at least one of the first power circuit 121 and the second power circuit 122. Compared with the case where the circuit is not separated from the circuit, leakage of the output signal of the amplifier circuit 110 to the power supply circuit 120 through the ground conductor is more reliably prevented.
  • the ground conductor is more finely separated, so that the amplifying element 111, the input matching circuit 112, the output matching circuit 113, the first power supply circuit 121, and the first power circuit 121 Since signals are less likely to leak between the two power supply circuits 122, a greater feedback suppression effect can be obtained.
  • the ground conductor 311 used in the amplifying element 111 may not be connected to the amplifying element 111.
  • a ground conductor provided for noise shielding and heat dissipation of the amplifying element 111 is an example of a ground conductor used in the amplifying element 111 even if it is not connected to the amplifying element 111.
  • the ground conductor used in the input matching circuit 112 does not have to be connected to the element constituting the input matching circuit 112, and the ground conductor used in the output matching circuit 113 is the element constituting the output matching circuit 113. It may not be connected to.
  • ground conductor used in the first power supply circuit 121 may not be connected to an element constituting the first power supply circuit 121, and the ground conductor used in the second power supply circuit 122 is the second conductor.
  • the power supply circuit 122 may not be connected to the elements included in the power supply circuit 122.
  • the high-frequency module according to the fourth embodiment is different from the high-frequency module according to the third embodiment in that a via conductor electrically connected to the ground conductor is provided at the peripheral edge of the ground conductor.
  • description of items similar to those in the third embodiment will be omitted, and items different from those in the fourth embodiment will be mainly described.
  • FIGS. 8 and 9 are schematic diagrams respectively showing an example of a planar structure and a laminated structure of the high-frequency module 100d according to the fourth embodiment.
  • the high-frequency module 100d has a plurality of via conductors 511, 512, 513, 521, and 522 at the periphery of the ground conductors 311, 312, 313, 321, and 322, as compared to the high-frequency module 100c shown in FIGS. They are different in that they are added.
  • the via conductors 511, 512, 513, 521, and 522 have a ground potential by being electrically connected to the peripheral portions of the ground conductors 311, 312, 313, 321, and 322, respectively.
  • the plurality of via conductors 511, 512, 513, 521, and 522 function as shields, whereby the amplifying element 111, the input matching circuit 112, the output matching circuit 113, the first power supply circuit 121, and the first power circuit 121 Since signals are less likely to leak between the two power supply circuits 122, a greater feedback suppression effect can be obtained.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the communication device 1 according to the fifth embodiment.
  • the communication device 1 includes a baseband signal processing circuit 10, an RF signal processing circuit 20, and a front end circuit 30.
  • the baseband signal processing circuit 10 converts transmission data generated by an application device / application software that performs voice calls, image display, and the like into a transmission signal and supplies the transmission signal to the RF signal processing circuit 20.
  • the conversion may include data compression, multiplexing, and error correction code addition.
  • the received signal received from the RF signal processing circuit 20 is converted into received data and supplied to the application device / application software. Such conversion may include data decompression, demultiplexing, and error correction.
  • the baseband signal processing circuit 10 may be composed of a baseband integrated circuit (BBIC).
  • BBIC baseband integrated circuit
  • the RF signal processing circuit 20 converts the transmission signal received from the baseband signal processing circuit 10 into a transmission RF signal Tx and supplies it to the front end circuit 30.
  • the conversion may include signal modulation and up-conversion.
  • the RF signal processing circuit 20 converts the received RF signal Rx received from the front end circuit 30 into a received signal and supplies the received signal to the baseband signal processing circuit 10.
  • the conversion may include signal demodulation and down-conversion.
  • the RF signal processing circuit 20 may be composed of a high frequency integrated circuit (RFIC).
  • the front end circuit 30 includes a PA (power amplifier) module 31, an LNA (low noise amplifier) module 32, diplexers 33 and 34, and a duplexer 35. Any one of the high-frequency modules 100a to 100d described in the first to fourth embodiments is used for the PA module 31. That is, the ground conductor in the inner layer of the multilayer board constituting the PA module 31 includes a ground conductor used in an amplifier circuit including a power amplifier and a ground conductor used in a power supply circuit (including a bias circuit) that supplies power to the power amplifier. Physically separated.
  • the front end circuit 30 may be entirely constituted by a single high-frequency module.
  • the PA module 31 amplifies the multiband transmission RF signal Tx received from the RF signal processing circuit 20 and outputs transmission RF signals Tx1 and Tx2 for each frequency band.
  • the diplexer 33 combines the transmission RF signals Tx1 and Tx2 and supplies the synthesized signals to the duplexer 35.
  • the duplexer 35 mixes the transmission RF signal received from the diplexer 33 with the antenna signal ANT, separates the reception RF signal from the antenna signal ANT, and supplies the separated signal to the diplexer 34.
  • the antenna signal ANT is transmitted and received at the antenna 2.
  • the antenna 2 may be included in the communication device 1.
  • the diplexer 34 separates the reception RF signals Rx1 and Rx2 for each frequency band from the reception RF signal separated by the duplexer 35.
  • the LNA module 32 supplies the RF signal processing circuit 20 with a multiband received RF signal Rx obtained by amplifying the received RF signals Rx1 and Rx2.
  • a high-performance communication apparatus can be obtained by using a high-frequency module that can more reliably prevent leakage of signals from the amplifier circuit to the power supply circuit as the PA module 31.
  • any one of the high-frequency modules 100a to 100d described in the first to fourth embodiments may be applied to the LNA module 32 in the same manner as the PA module 31. That is, the ground conductor in the inner layer of the multilayer substrate constituting the LNA module 32 includes a ground conductor used in an amplifier circuit including a low noise amplifier and a ground conductor used in a power supply circuit (including a bias circuit) that supplies power to the low noise amplifier. May be physically separated.
  • the present invention can be widely used for various communication devices as a high-frequency module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Amplifiers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

複数の絶縁体層を含む多層基板(600)と、多層基板(600)上に設けられ、高周波信号を増幅する増幅回路(110)と、多層基板(600)上に設けられ、増幅回路(110)に電源を供給する電源回路(120)と、接地電位を有し増幅回路(110)で用いられる第1の導体パターンであるグランド導体(310)と、接地電位を有し電源回路(120)で用いられる第2の導体パターンであるグランド導体(320)と、を備える。グランド導体(310、320)は、多層基板(600)の内層において互いに物理的に分離して設けられている。

Description

高周波モジュール及び通信装置
 本発明は高周波モジュール及び通信装置に関し、特には、多層基板に設けられた増幅回路と、多層基板内にグランド導体を備えた高周波モジュールに関する。
 従来、多層基板に設けられた増幅回路と、多層基板内にグランド導体を備えた高周波モジュールがある。例えば、特許文献1には、そのような高周波モジュールの一例であるパワーアンプモジュールが開示されている。
 図11は、特許文献1に記載されているパワーアンプモジュール900の構成を示す回路図である。パワーアンプモジュール900は、半導体素子を3段接続してなる半導体回路部Q1と、その前段に接続された入力整合回路部IM1と、後段に接続された出力整合回路部OM1と、バイアス回路部BC1とを備えている。
 特許文献1では、バイアス回路部BC1のインダクタ素子L5~L8は、半導体回路部Q1で増幅された信号を電源端子Vddへ漏洩させないよう、理想的にはインピーダンスを無限大にすることが求められるとしている。
特開2005-210044号公報
 多層基板に設けられる高周波モジュールにあっては、多層基板上または多層基板内に接地電位を有する導体パターンを、比較的大きな面積で形成することが一般的である。そのような導体パターンは、グランドパターンまたはグランド導体とも称され、回路の接地、ノイズシールド、放熱などに用いられる。例えば、特許文献1のパワーアンプモジュール900では、多層基板の内層に、当該内層のほぼ全面を占めるグランドパターンが形成されている。
 しかしながら、パワーアンプモジュール900の構成にあっては、半導体回路部Q1で増幅された信号の電源端子Vddへ漏洩は防止できても、バイアス回路部BC1への漏洩は必ずしも十分には防止されないことがある。増幅回路からバイアス回路へ信号の漏洩の防止が十分でないと、漏洩した信号がバイアス回路を介して増幅回路へ帰還することによって生じる増幅回路の特性の劣化や発振などの不具合が懸念される。
 そこで、本発明は、増幅回路からバイアス回路への信号の漏洩、より広くは増幅回路から電源回路への信号の漏洩、をより確実に防止できる高周波モジュールを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、複数の絶縁体層を含む多層基板と、前記多層基板上に設けられ、高周波信号を増幅する増幅回路と、前記多層基板上に設けられ、前記増幅回路に電源を供給する電源回路と、接地電位を有し前記増幅回路で用いられる第1の導体パターンと、接地電位を有し前記電源回路で用いられる第2の導体パターンと、を備え、前記第1の導体パターンと前記第2の導体パターンとが、前記多層基板の内層において互いに物理的に分離して設けられている。
 この構成によれば、多層基板の内層において互いに物理的に分離された増幅回路用の第1の導体パターンと電源回路用の第2の導体パターンとを設けている。これにより、1つの導体パターンを増幅回路用と電源回路用とで分離せずに設ける場合と比べて、増幅回路と電源回路との間での導体パターンを介した信号の漏洩がより確実に防止される。その結果、電源回路へ漏洩した信号が増幅回路へ帰還することによって生じる増幅特性の劣化や発振を回避し、より性能の高い高周波モジュールを得ることができる。
 なお、多層基板の内層において分離されている第1および第2の導体パターンは、例えば、ビア導体などで多層基板の表層へ引き出され、表層において互いに接続されていてもよい。その場合、表層の接続点から第1および第2の導体パターンに接地電位を印加することができる。第1および第2の導体パターンを介して増幅回路と電源回路との間で漏洩する信号は、表層を経由する長い信号経路を通ることで大きく減衰するので、信号の漏洩を防止する効果は維持される。
 また、前記第1の導体パターンと前記第2の導体パターンとが、前記多層基板の同一の内層に設けられていてもよい。
 この構成によれば、1つの内層を使って第1および第2の導体パターンを設けることができるので、高周波モジュールを低背化することができる。
 また、前記増幅回路は、増幅素子、前記増幅素子の入力端に接続された入力整合回路、および前記増幅素子の出力端に接続された出力整合回路を含み、前記第1の導体パターンは、接地電位を有し前記入力整合回路で用いられる第1の部分と、接地電位を有し前記出力整合回路で用いられる第2の部分とに、物理的に分離されていてもよい。
 この構成によれば、第1の導体パターンが第1および第2の部分に分離されることにより、入力整合回路および出力整合回路と電源回路との間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 また、前記増幅回路は、第1の増幅素子および第2の増幅素子を含み、前記電源回路は、前記第1の増幅素子に接続された第1の電源回路と前記第2の増幅素子に接続された第2の電源回路とを含み、前記第2の導体パターンは、接地電位を有し前記第1の電源回路で用いられる第3の部分と、接地電位を有し前記第2の電源回路で用いられる第4の部分とに、物理的に分離されていてもよい。
 この構成によれば、第2の導体パターンが第3および第4の部分に分離されることにより、増幅回路と第1および第2の電源回路との間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 また、前記第1および第2の導体パターンのうち少なくとも1つの導体パターンの周縁部に、前記少なくとも1つの導体パターンと電気的に接続し、かつ前記多層基板の積層方向に延びる複数のビア導体が設けられていてもよい。
 この構成によれば、複数のビア導体がシールドとして機能することにより、増幅回路と電源回路との間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、前記高周波モジュールに接続されたRF信号処理回路と、を備える。
 この構成によれば、増幅回路から電源回路への信号の漏洩をより確実に防止できる高周波モジュールを用いることにより、高性能の通信装置が得られる。
 本発明に係る高周波モジュールによれば、接地電位を有し増幅回路で用いられる第1の導体パターンと、接地電位を有し電源回路で用いられる第2の導体パターンとを、多層基板の内層において互いに物理的に分離して設ける。これにより、増幅回路から電源回路への信号の漏洩をより確実に防止できる高周波モジュールが得られる。そのような高周波モジュールを用いることによって、高い性能を有する通信装置が得られる。
図1は、実施の形態1に係る高周波モジュールの機能的な構成の一例を示す回路図である。 図2は、実施の形態1に係る高周波モジュールの平面構造の一例を示す模式図である。 図3は、実施の形態1に係る高周波モジュールの積層構造の一例を示す模式図である。 図4は、実施の形態2に係る高周波モジュールの平面構造の一例を示す模式図である。 図5は、実施の形態2に係る高周波モジュールの積層構造の一例を示す模式図である。 図6は、実施の形態3に係る高周波モジュールの平面構造の一例を示す模式図である。 図7は、実施の形態3に係る高周波モジュールの積層構造の一例を示す模式図である。 図8は、実施の形態4に係る高周波モジュールの平面構造の一例を示す模式図である。 図9は、実施の形態4に係る高周波モジュールの積層構造の一例を示す模式図である。 図10は、実施の形態5に係る通信装置の機能的な構成の一例を示すブロック図である。 図11は、従来のパワーアンプモジュールの構成の一例を示す回路図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 実施の形態1に係る高周波モジュールは、多層基板に設けられたマルチバンド対応の増幅器モジュールである。まず、高周波モジュールの機能的な構成について説明し、その後、高周波モジュールの構造的な特徴について説明する。
 図1は、実施の形態1に係る高周波モジュールの機能的な構成の一例を示す回路図である。図1に示されるように、高周波モジュール100は、高周波信号を増幅する増幅回路110と、増幅回路110に電源を供給する電源回路120とを備える。
 増幅回路110は、マルチバンド対応の増幅回路であり、2つの周波数帯の高周波信号を含むマルチバンドの入力高周波信号RFINを受信し、入力高周波信号RFINを増幅して得た周波数帯ごとの出力高周波信号LBOUT、HBOUTを出力する。
 増幅回路110は、増幅素子111、増幅素子111の入力端に接続された入力整合回路112、および増幅素子111の出力端に接続された出力整合回路113を含む。増幅素子111は、異なる周波数帯に対応する2つの信号経路を有し、信号経路ごとに2段の増幅素子を含む。前段の増幅素子ML1、MH1は、第1の増幅素子の一例であり、後段の増幅素子ML2、MH2は、第2の増幅素子の一例である。限定されない一例として、増幅素子ML1、MH1、ML2、MH2は、ヘテロバイポーラトランジスタであってもよい。増幅素子111は、増幅素子ML1、MH1、ML2、MH2を備える集積回路(IC)で構成されてもよい。
 入力整合回路112は、入力高周波信号RFINを、インピーダンス整合を取って、増幅素子111の信号経路のうちスイッチSWにより選択される一方へ供給する。増幅素子111は、入力整合回路112から供給された高周波信号を増幅し、出力整合回路113へ供給する。出力整合回路113は、増幅素子111から供給された高周波信号を、インピーダンス整合を取って、出力高周波信号LBOUT、HBOUTとして出力する。出力高周波信号LBOUT、HBOUTは、図示していない後段の回路へ供給される。入力整合回路112および出力整合回路113は、いずれも一般的なインピーダンス整合回路であるため、詳細な説明を省略する。
 電源回路120は、第1の電源回路121および第2の電源回路122を含む。
 第1の電源回路121は、増幅素子111に含まれる前段の増幅素子ML1、MH1に接続され、バイアス電圧Vcc1を増幅素子ML1、MH1に供給する。第2の電源回路122は、増幅素子111に含まれる後段の増幅素子ML2、MH2に接続され、バイアス電圧Vcc2を増幅素子ML2、MH2に供給する。つまり、第1の電源回路121および第2の電源回路122の各々は、増幅素子111にバイアス電圧を供給するバイアス回路を含んでいる。バイアス電圧Vcc1、Vcc2は、例えば、高周波モジュール100とは別体に設けられる電源モジュール(図示せず)で生成され、高周波モジュール100へ供給される。
 次に、高周波モジュール100の構造について説明する。
 図2および図3は、実施の形態1に係る高周波モジュールの平面構造および積層構造の一例をそれぞれ示す模式図である。図2では、図1に示される主要な回路素子の大まかな平面配置を、図1と同じ符号を用いて示している。
 図2および図3に示される高周波モジュール100aは、多層基板600を用いて構成される。多層基板600は、複数の絶縁体層601~606を積層してなる。多層基板600には、増幅回路110および電源回路120が設けられている。増幅回路110および電源回路120は、例えば、多層基板600を平面視したときに互いに重複しない領域210、220にそれぞれ設けられていてもよい。
 多層基板600には、複数の導体パターンが設けられる。導体パターンとは、絶縁体層601~606の主面に沿って設けられた導体を指す。導体パターンは、信号および電源を伝達する配線導体、および、接地電位を有し、回路の接地、ノイズシールド、放熱などに用いられるグランド導体を含む。異なる層に設けられた導体パターンは、絶縁体層601~606を貫通して積層方向に延びる導体ビアによって、適宜接続される。
 図2および図3の例では、増幅回路110が設けられた領域210に、グランド導体310と配線導体412、413、414とが設けられる。グランド導体310は、増幅回路110で用いられる。増幅回路110で用いられるとは、例えば、増幅回路110を構成する素子と接続されることを意味してもよい。配線導体412は、入力高周波信号RFINを伝達する。配線導体413、414は、出力高周波信号LBOUT、HBOUTをそれぞれ伝達する。ここで、グランド導体310は、第1の導体パターンの一例である。
 また、電源回路120が設けられた領域220に、グランド導体320と配線導体421、422とが設けられている。グランド導体320は、電源回路120で用いられる。電源回路120で用いられるとは、例えば、電源回路120を構成する素子と接続されることを意味してもよい。配線導体421、422は、バイアス電圧Vcc1、Vcc2をそれぞれ伝達する。ここで、グランド導体320は、第2の導体パターンの一例である。
 なお、図3では、代表的なグランド導体310、320にのみ符号を付しているが、グランド導体310、320は符号を付した導体パターンには限られない。多層基板600の内層にあって接地電位を有し増幅回路110で用いられる導体パターンはすべてグランド導体310である。また、多層基板600の内層にあって接地電位を有し電源回路120で用いられる導体パターンはすべてグランド導体320である。
 高周波モジュール100aにあっては、グランド導体310、320は、多層基板600の内層において、互いに物理的に分離して設けられている。
 増幅回路110を構成する素子CL1、CL2、CL3、CH1、CH2、CH3のそれぞれは、導体ビアを介してグランド導体310に接続される。電源回路120を構成する素子(図示せず)は、別の導体ビアを介してグランド導体320に接続される。すなわち、増幅回路110で用いられるグランド導体310と電源回路120で用いられるグランド導体320とが、多層基板600の内層において物理的に分離されている。これにより、1つのグランド導体を増幅回路110用と電源回路120用とで分離せずに設ける場合と比べて、増幅回路110の出力信号のグランド導体を介した電源回路120への漏洩がより確実に防止される。
 なお、増幅回路110で用いられるグランド導体は、増幅回路110を構成する素子と接続されていなくてもよい。例えば、増幅回路110のノイズシールドのために設けられるグランド導体は、増幅回路110を構成する素子と接続されていなくても、増幅回路110で用いられるグランド導体の一例である。同様に、電源回路120で用いられるグランド導体は、電源回路120を構成する素子と接続されていなくてもよい。
 グランド導体310、320は、ビア導体を介して多層基板600の表層(図3の例では下方表面)へ引き出され、表層に設けられた導体パターン330によって互いに接続されていてもよい。これにより、導体パターン330からグランド導体310、320に接地電位を印加することができる。導体パターン330を介して増幅回路110と電源回路120との間で漏洩する信号は、表層を経由する長い信号経路を通ることで大きく減衰するので、信号の漏洩を防止する効果は維持される。
 このようにして、増幅回路110から電源回路120への信号の漏洩はより確実に防止される。その結果、増幅回路110から電源回路120へ漏洩した信号が増幅回路110へ帰還することによって生じる増幅特性の劣化や発振を回避し、より性能の高い高周波モジュール100aを得ることができる。
 なお、グランド導体310、320は、多層基板600の同一の内層に設けられていてもよい。図3では、一例として、絶縁体層605、606の接合面において、領域210、220の両方にグランド導体が設けられている。
 なお、グランド導体310、320が多層基板600の同一の内層に設けられているとは、グランド導体310の少なくとも一部とグランド導体320の少なくとも一部とが、多層基板600の積層方向での同じ高さにあることを意味してもよい。言い換えれば、多層基板600を側面視したとき、グランド導体310とグランド導体320とに互いに重複する部分があることを意味してもよい。
 これにより、1つの内層にグランド導体310、320を設けることができるので、高周波モジュールを低背化することができる。
 (実施の形態2)
 実施の形態2に係る高周波モジュールは、実施の形態1に係る高周波モジュールと比べて、グランド導体の周縁部にグランド導体と電気的に接続されたビア導体を備える点で相違する。以下では、実施の形態1と同様の事項については説明を省略し、実施の形態2で相違する事項について主に説明する。
 図4および図5は、実施の形態2に係る高周波モジュール100bの平面構造および積層構造の一例をそれぞれ示す模式図である。高周波モジュール100bは、図2および図3に示される高周波モジュール100aと比べて、グランド導体310、320の周縁部に、複数のビア導体510、520がそれぞれ追加される点で相違する。ビア導体510、520は、グランド導体310、320の周縁部とそれぞれ電気的に接続されることにより、接地電位を有する。
 高周波モジュール100bによれば、複数のビア導体510、520がシールドとして機能することにより、増幅回路110と電源回路120との間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 (実施の形態3)
 実施の形態3に係る高周波モジュールは、実施の形態1に係る高周波モジュールと比べて、グランド導体をより細かい部分に分離して設ける点で相違する。以下では、実施の形態1と同様の事項については説明を省略し、実施の形態3で相違する事項について主に説明する。
 図6および図7は、実施の形態3に係る高周波モジュール100cの平面構造および積層構造の一例をそれぞれ示す模式図である。高周波モジュール100cでは、領域210、220が、それぞれさらに細かい複数の部分に分けられる。
 領域210は、多層基板600を平面視したときに互いに重複しない部分211、212、213に分けられる。増幅素子111、入力整合回路112、および出力整合回路113は、例えば、領域210の部分211、212、213にそれぞれ設けられていてもよい。
 領域220は、多層基板600を平面視したときに互いに重複しない部分221、222に分けられる。第1の電源回路121および第2の電源回路122は、例えば、領域220の部分221、222にそれぞれ設けられていてもよい。
 図6および図7の例では、増幅素子111が設けられた部分211に、グランド導体311が設けられる。入力整合回路112が設けられた部分212に、グランド導体312と配線導体412とが設けられる。出力整合回路113が設けられた部分213に、グランド導体313と配線導体413、414とが設けられる。つまり、高周波モジュール100cでは、第1の導体パターンとしてのグランド導体310が、グランド導体311、312、313に物理的に分離されている。
 グランド導体311、312および313は、増幅素子111、入力整合回路112および出力整合回路113で、それぞれ用いられる。増幅素子111で用いられるとは、例えば、増幅素子111と接続されることを意味してもよい。入力整合回路112で用いられるとは、例えば、入力整合回路112を構成する素子と接続されることを意味してもよい。出力整合回路113で用いられるとは、例えば、出力整合回路113を構成する素子と接続されることを意味してもよい。ここで、グランド導体312、313は、それぞれ第1の導体パターンの第1の部分および第2の部分の一例である。
 また、第1の電源回路121が設けられた部分221に、グランド導体321と配線導体421とが設けられている。第2の電源回路122が設けられた部分222に、グランド導体322と配線導体422とが設けられている。つまり、高周波モジュール100cでは、第2の導体パターンとしてのグランド導体320が、グランド導体321、322に物理的に分離されている。
 グランド導体321および322は、第1の電源回路121および第2の電源回路122で、それぞれ用いられる。第1の電源回路121で用いられるとは、例えば、第1の電源回路121を構成する素子と接続されることを意味してもよい。第2の電源回路122で用いられるとは、例えば、第2の電源回路122を構成する素子と接続されることを意味してもよい。ここで、グランド導体321、322は、それぞれ第2の導体パターンの第3の部分および第4の部分の一例である。
 高周波モジュール100cにあっては、グランド導体311、312、313、321、322は、多層基板600の内層において、互いに物理的に分離して設けられている。
 増幅素子111は、導体ビアを介してグランド導体311に接続される。入力整合回路を構成する素子(図示せず)は、別の導体ビアを介してグランド導体312に接続される。出力整合回路113を構成する素子CL1、CL2、CL3、CH1、CH2、CH3のそれぞれは、さらに別の導体ビアを介して、グランド導体313に接続される。
 第1の電源回路121を構成する素子(図示せず)は、導体ビアを介してグランド導体321に接続される。第2の電源回路122を構成する素子(図示せず)は、別の導体ビアを介してグランド導体322に接続される。
 すなわち、増幅素子111で用いられるグランド導体311と、入力整合回路112で用いられるグランド導体312と、出力整合回路113で用いられるグランド導体313と、第1の電源回路121で用いられるグランド導体321と、第2の電源回路122で用いられるグランド導体322とが、多層基板600の内層において物理的に分離されている。
 これにより、1つのグランド導体を増幅素子111、入力整合回路112および出力整合回路113のうちの少なくとも1つの回路用と、第1の電源回路121および第2の電源回路122のうちの少なくとも1つの回路用とに分離せずに設ける場合と比べて、増幅回路110の出力信号のグランド導体を介した電源回路120への漏洩がより確実に防止される。
 また、図2および図3の高周波モジュール100aと比較しても、グランド導体がより細かく分離されることで、増幅素子111、入力整合回路112、出力整合回路113、第1の電源回路121および第2の電源回路122の相互間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 なお、増幅素子111で用いられるグランド導体311は、増幅素子111と接続されていなくてもよい。例えば、増幅素子111のノイズシールドや放熱のために設けられるグランド導体は、増幅素子111と接続されていなくても、増幅素子111で用いられるグランド導体の一例である。同様に、入力整合回路112で用いられるグランド導体は、入力整合回路112を構成する素子と接続されていなくてもよく、出力整合回路113で用いられるグランド導体は、出力整合回路113を構成する素子と接続されていなくてもよい。また、第1の電源回路121で用いられるグランド導体は、第1の電源回路121を構成する素子と接続されていなくてもよく、第2の電源回路122で用いられるグランド導体は、第2の電源回路122を構成する素子と接続されていなくてもよい。
 (実施の形態4)
 実施の形態4に係る高周波モジュールは、実施の形態3に係る高周波モジュールと比べて、グランド導体の周縁部にグランド導体と電気的に接続されたビア導体を備える点で相違する。以下では、実施の形態3と同様の事項については説明を省略し、実施の形態4で相違する事項について主に説明する。
 図8および図9は、実施の形態4に係る高周波モジュール100dの平面構造および積層構造の一例をそれぞれ示す模式図である。高周波モジュール100dは、図6および図7に示される高周波モジュール100cと比べて、グランド導体311、312、313、321、322の周縁部に、複数のビア導体511、512、513、521、522がそれぞれ追加される点で相違する。ビア導体511、512、513、521、522は、グランド導体311、312、313、321、322の周縁部とそれぞれ電気的に接続されることにより、接地電位を有する。
 高周波モジュール100dによれば、複数のビア導体511、512、513、521、522がシールドとして機能することにより、増幅素子111、入力整合回路112、出力整合回路113、第1の電源回路121および第2の電源回路122の相互間で信号がより漏洩しにくくなるので、より大きな帰還抑制効果が得られる。
 (実施の形態5)
 実施の形態5では、実施の形態1~4で説明した高周波モジュールを備えた通信装置について説明する。
 図10は、実施の形態5に係る通信装置1の機能的な構成の一例を示すブロック図である。図10に示されるように、通信装置1は、ベースバンド信号処理回路10、RF信号処理回路20、およびフロントエンド回路30を備える。
 ベースバンド信号処理回路10は、音声通話や画像表示などを行う応用装置/応用ソフトウェアで生成された送信データを送信信号に変換し、RF信号処理回路20へ供給する。当該変換は、データの圧縮、多重化、誤り訂正符号の付加を含んでもよい。また、RF信号処理回路20から受信した受信信号を受信データに変換し、応用装置/応用ソフトウェアへ供給する。当該変換は、データの伸長、多重分離、誤り訂正を含んでもよい。ベースバンド信号処理回路10は、ベースバンド集積回路(BBIC)で構成されてもよい。
 RF信号処理回路20は、ベースバンド信号処理回路10から受信した送信信号を送信RF信号Txに変換し、フロントエンド回路30へ供給する。当該変換は、信号の変調及びアップコンバートを含んでもよい。また、RF信号処理回路20は、フロントエンド回路30から受信した受信RF信号Rxを受信信号に変換し、ベースバンド信号処理回路10へ供給する。当該変換は、信号の復調及びダウンコンバートを含んでもよい。RF信号処理回路20は、高周波集積回路(RFIC)で構成されてもよい。
 フロントエンド回路30は、PA(パワーアンプ)モジュール31、LNA(ローノイズアンプ)モジュール32、ダイプレクサ33、34、およびデュプレクサ35を有する。PAモジュール31には、実施の形態1~4で説明した高周波モジュール100a~100dのいずれかが用いられる。すなわち、PAモジュール31を構成する多層基板の内層のグランド導体は、パワーアンプを含む増幅回路で用いられるグランド導体とパワーアンプに電源を供給する電源回路(バイアス回路を含む)で用いられるグランド導体とに物理的に分離される。フロントエンド回路30は、全体が単一の高周波モジュールによって構成されてもよい。
 PAモジュール31は、RF信号処理回路20から受信したマルチバンドの送信RF信号Txを増幅し、周波数帯ごとの送信RF信号Tx1、Tx2を出力する。ダイプレクサ33は、送信RF信号Tx1、Tx2を合成して、デュプレクサ35へ供給する。
 デュプレクサ35は、ダイプレクサ33から受信した送信RF信号をアンテナ信号ANTに混合するとともに、アンテナ信号ANTから受信RF信号を分離して、ダイプレクサ34へ供給する。アンテナ信号ANTは、アンテナ2において送信および受信される。アンテナ2は、通信装置1に含まれてもよい。
 ダイプレクサ34は、デュプレクサ35で分離された受信RF信号から、周波数帯ごとの受信RF信号Rx1、Rx2を分離する。LNAモジュール32は、受信RF信号Rx1、Rx2を増幅して得たマルチバンドの受信RF信号Rxを、RF信号処理回路20へ供給する。
 通信装置1によれば、PAモジュール31に、増幅回路から電源回路への信号の漏洩をより確実に防止できる高周波モジュールを用いることにより、高性能の通信装置が得られる。
 なお、PAモジュール31と同様に、実施の形態1~4で説明した高周波モジュール100a~100dのいずれかを、LNAモジュール32に適用してもよい。すなわち、LNAモジュール32を構成する多層基板の内層のグランド導体は、ローノイズアンプを含む増幅回路で用いられるグランド導体とローノイズアンプに電源を供給する電源回路(バイアス回路を含む)で用いられるグランド導体とに物理的に分離されてもよい。
 以上、本発明の実施の形態に係る高周波モジュール及び通信装置について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 本発明は、高周波モジュールとして、各種の通信装置に広く利用できる。
  1  通信装置
  2  アンテナ
  10  ベースバンド信号処理回路
  20  RF信号処理回路
  30  フロントエンド回路
  31、900  PA(パワーアンプ)モジュール
  32  LNA(ローノイズアンプ)モジュール
  33、34  ダイプレクサ
  35  デュプレクサ
  100、100a、100b、100c、100d  高周波モジュール
  110  増幅回路
  111  増幅素子
  112  入力整合回路
  113  出力整合回路
  120  電源回路
  121  第1の電源回路
  122  第2の電源回路
  210、220  領域
  211、212、213、221、222  領域の部分
  310、311、312、313、320、321、322  グランド導体
  412、413、414、421、422  配線導体
  510、511、512、513、520、521、522  ビア導体
  600  多層基板
  601~606  絶縁体層

Claims (6)

  1.  複数の絶縁体層を含む多層基板と、
     前記多層基板上に設けられ、高周波信号を増幅する増幅回路と、
     前記多層基板上に設けられ、前記増幅回路に電源を供給する電源回路と、
     接地電位を有し前記増幅回路で用いられる第1の導体パターンと、
     接地電位を有し前記電源回路で用いられる第2の導体パターンと、を備え、
     前記第1の導体パターンと前記第2の導体パターンとが、前記多層基板の内層において互いに物理的に分離して設けられている、
     高周波モジュール。
  2.  前記第1の導体パターンと前記第2の導体パターンとが、前記多層基板の同一の内層に設けられている、
     請求項1に記載の高周波モジュール。
  3.  前記増幅回路は、増幅素子、前記増幅素子の入力端に接続された入力整合回路、および前記増幅素子の出力端に接続された出力整合回路を含み、
     前記第1の導体パターンは、接地電位を有し前記入力整合回路で用いられる第1の部分と、接地電位を有し前記出力整合回路で用いられる第2の部分とに、物理的に分離されている、
     請求項1または2に記載の高周波モジュール。
  4.  前記増幅回路は、第1の増幅素子および第2の増幅素子を含み、
     前記電源回路は、前記第1の増幅素子に接続された第1の電源回路と前記第2の増幅素子に接続された第2の電源回路とを含み、
     前記第2の導体パターンは、接地電位を有し前記第1の電源回路で用いられる第3の部分と、接地電位を有し前記第2電源回路で用いられる第4の部分とに、物理的に分離されている、
     請求項1から3のいずれか1項に記載の高周波モジュール。
  5.  前記第1および第2の導体パターンのうち少なくとも1つの導体パターンの周縁部に、前記少なくとも1つの導体パターンと電気的に接続し、かつ前記多層基板の積層方向に延びる複数のビア導体が設けられている、
     請求項1から4のいずれか1項に記載の高周波モジュール。
  6.  請求項1から5のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールに接続されたRF信号処理回路と、
     を備える通信装置。
PCT/JP2018/010638 2017-04-04 2018-03-16 高周波モジュール及び通信装置 WO2018186154A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/591,727 US11139231B2 (en) 2017-04-04 2019-10-03 Radio frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074463 2017-04-04
JP2017-074463 2017-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/591,727 Continuation US11139231B2 (en) 2017-04-04 2019-10-03 Radio frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2018186154A1 true WO2018186154A1 (ja) 2018-10-11

Family

ID=63712800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010638 WO2018186154A1 (ja) 2017-04-04 2018-03-16 高周波モジュール及び通信装置

Country Status (2)

Country Link
US (1) US11139231B2 (ja)
WO (1) WO2018186154A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196443A1 (ja) * 2021-03-17 2022-09-22 ヤマハ株式会社 D級増幅器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129194A (ja) * 2020-02-13 2021-09-02 株式会社村田製作所 高周波モジュール及び通信装置
JP2022099532A (ja) * 2020-12-23 2022-07-05 株式会社村田製作所 高周波モジュール及び通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258369A (ja) * 2007-04-04 2008-10-23 Renesas Technology Corp 半導体装置およびその製造方法
JP2011003651A (ja) * 2009-06-17 2011-01-06 Fujitsu Ten Ltd 回路装置、及び電子機器
JP2016171220A (ja) * 2015-03-13 2016-09-23 本田技研工業株式会社 回路部品間の干渉を防止し得る回路基板、及び当該回路基板備える電子装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4018312B2 (ja) * 2000-02-21 2007-12-05 株式会社ルネサステクノロジ 無線通信装置
JP2005210044A (ja) 2003-12-26 2005-08-04 Tdk Corp インダクタ素子内蔵基板およびパワーアンプモジュール
JP4553627B2 (ja) * 2004-04-30 2010-09-29 太陽誘電株式会社 高周波回路モジュールおよび無線通信機器
JP4858538B2 (ja) * 2006-02-14 2012-01-18 株式会社村田製作所 多層セラミック電子部品、多層セラミック基板、および多層セラミック電子部品の製造方法
CN101874429B (zh) * 2007-11-30 2013-04-03 株式会社村田制作所 陶瓷复合多层基板及其制造方法以及电子元器件
WO2010087302A1 (ja) 2009-01-28 2010-08-05 株式会社村田製作所 アンテナ共用モジュール
WO2011007529A1 (ja) * 2009-07-14 2011-01-20 パナソニック株式会社 高周波電力増幅器
JP5870808B2 (ja) * 2012-03-28 2016-03-01 富士通株式会社 積層モジュール
JP5285806B1 (ja) * 2012-08-21 2013-09-11 太陽誘電株式会社 高周波回路モジュール
JP5342704B1 (ja) * 2012-11-12 2013-11-13 太陽誘電株式会社 高周波回路モジュール
JP5783186B2 (ja) * 2013-01-21 2015-09-24 株式会社村田製作所 積層基板モジュール
JP6108887B2 (ja) * 2013-03-13 2017-04-05 キヤノン株式会社 半導体パッケージ及びプリント回路板
JP6119845B2 (ja) * 2013-04-16 2017-04-26 株式会社村田製作所 高周波部品およびこれを備える高周波モジュール
CN105230140B (zh) * 2013-05-08 2018-09-25 株式会社村田制作所 多层布线基板
JP6337473B2 (ja) * 2014-01-15 2018-06-06 富士通株式会社 集積回路及び送受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258369A (ja) * 2007-04-04 2008-10-23 Renesas Technology Corp 半導体装置およびその製造方法
JP2011003651A (ja) * 2009-06-17 2011-01-06 Fujitsu Ten Ltd 回路装置、及び電子機器
JP2016171220A (ja) * 2015-03-13 2016-09-23 本田技研工業株式会社 回路部品間の干渉を防止し得る回路基板、及び当該回路基板備える電子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196443A1 (ja) * 2021-03-17 2022-09-22 ヤマハ株式会社 D級増幅器

Also Published As

Publication number Publication date
US20200035592A1 (en) 2020-01-30
US11139231B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
KR102448318B1 (ko) 고주파 모듈 및 통신 장치
US8391821B2 (en) Radio frequency circuit for multi-mode operation
US9985681B2 (en) Front end circuit, module, and communication device
KR102438877B1 (ko) 고주파 모듈 및 통신 장치
TW201931665A (zh) 寬頻帶功率組合器及分離器
JP6601350B2 (ja) 高周波モジュール及び通信装置
WO2018186154A1 (ja) 高周波モジュール及び通信装置
WO2018123972A1 (ja) 高周波モジュール及び通信装置
KR102414508B1 (ko) 고주파 모듈 및 통신 장치
US10700431B2 (en) Wiring board, coupler module, and communication device
US11394421B2 (en) Radio frequency module and communication device
US11489551B2 (en) Radio-frequency module and communication device
KR20210131234A (ko) 고주파 모듈 및 통신 장치
US20220393706A1 (en) Radio frequency module and communication apparatus
US20200058436A1 (en) High-frequency module
US11418226B2 (en) Radio frequency module and communication device
KR20210146787A (ko) 고주파 모듈 및 통신 장치
US20230261682A1 (en) Radio frequency module and communication device
US20200044683A1 (en) High-frequency module and communication device
US20230074286A1 (en) High frequency module and communication apparatus
KR102430753B1 (ko) 고주파 모듈 및 통신 장치
KR20080043067A (ko) 송신단 프론트 엔드 모듈
WO2022215200A1 (ja) ドハティ増幅器
WO2023195263A1 (ja) 高周波回路及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP