WO2014087792A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2014087792A1
WO2014087792A1 PCT/JP2013/080189 JP2013080189W WO2014087792A1 WO 2014087792 A1 WO2014087792 A1 WO 2014087792A1 JP 2013080189 W JP2013080189 W JP 2013080189W WO 2014087792 A1 WO2014087792 A1 WO 2014087792A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
base material
electrodes
electrode
internal electrode
Prior art date
Application number
PCT/JP2013/080189
Other languages
English (en)
French (fr)
Inventor
若林祐貴
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390000956.0U priority Critical patent/CN204994110U/zh
Priority to JP2014528365A priority patent/JP5610111B1/ja
Publication of WO2014087792A1 publication Critical patent/WO2014087792A1/ja
Priority to US14/686,922 priority patent/US9437559B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • H01L2924/1421RF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09354Ground conductor along edge of main surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias

Definitions

  • the present invention relates to a high-frequency module in which an internal electrode and a via electrode connected to a ground and a high-frequency circuit component are provided inside a laminated substrate in which a plurality of base materials are laminated.
  • the high-frequency module is configured by mounting active elements, passive elements, and wirings constituting a high-frequency circuit inside the multilayer substrate or on the top surface of the multilayer substrate.
  • a multilayer substrate is configured by laminating a plurality of base materials, providing internal electrodes between layers, and providing via electrodes penetrating the layers (see, for example, Patent Document 1).
  • FIG. 6 is a perspective view of a multilayer substrate constituting a high-frequency module according to a conventional example.
  • a laminated substrate 101 shown in FIG. 6 includes a laminated portion 102 composed of a plurality of base materials, a ground internal electrode 103 provided between layers of the laminated portion 102, and a ground provided in a layer of the laminated portion 102.
  • a via electrode 104 for use The internal electrode 103 is provided endlessly along the outer edge of the stacked portion 102 viewed from the stacking direction (hereinafter, the outer edge viewed from the stacking direction is simply referred to as the outer edge).
  • the via electrodes 104 are densely arranged along the outer edge of the stacked portion 102 and connect the opposed internal electrodes 103 to each other. Therefore, the high-frequency module 101 has a shielding property against high-frequency noise at the outer edge of the stacked portion 2 by the ground internal electrode 103 and the via electrode 104.
  • the ground internal electrode 103 is provided along the outer edge of the laminated portion 102, the thickness around the outer edge of the laminated portion 102 increases by the thickness of the internal electrode 103.
  • the amount of thickness reduction of the stacked portion 102 that occurs at the time of manufacture becomes small around the via electrode, when the number of ground via electrodes 104 is large, the thickness is reduced between the periphery and the center of the stacked portion 102. Will be greatly different. Therefore, in order to mold the stacked portion 102 with high flatness, it is desirable that the number of layers of the stacked portion 102, the number of internal electrodes 103, and the number of via electrodes 104 are small.
  • the internal electrode 103 is provided along the entire circumference of the outer edge in all layers of the stacked portion 102, the inner area is smaller than the internal electrode 103, and the area is used. Low efficiency. Therefore, in order to realize a complicated wiring structure in which a large number of active elements and passive elements are mounted on the stacked portion 102, it is difficult to reduce the number of layers of the stacked portion 102 and the number of internal electrodes 103.
  • the internal electrode 103 is provided with almost the same overall length as the outer edge of the stacked portion 102, when the number of the via electrodes 104 is reduced, the internal electrode 103 has inductivity and the internal electrode 103 has a ground potential.
  • the high-frequency characteristics are deteriorated due to the potential difference from. Therefore, in order to prevent deterioration of the high frequency characteristics, it is difficult to greatly reduce the number of via electrodes 104.
  • the high-frequency module 101 can reduce the number of layers of the stacked portion 102, the number of internal electrodes 103, and the number of via electrodes 104 in order to ensure a complicated wiring structure and good high-frequency characteristics. It was not possible to achieve high flatness.
  • the multilayer substrate 101 according to the conventional example since the metal density in the vicinity of the outer edge of the multilayer portion 102 is high, the permeation (gas escape) of the gas released from the internal residue at the time of manufacture is hindered. There was also a problem that delamination was likely to occur between the layers and the reliability was lowered.
  • an object of the present invention is to provide a high-frequency circuit with a complicated wiring structure and a high-frequency circuit with good high-frequency characteristics even when the number of ground internal electrodes and via electrodes is reduced, and has high flatness.
  • An object of the present invention is to provide a high-frequency module that can achieve high reliability and shielding performance.
  • the high-frequency module according to the present invention includes a laminated part, a plurality of bottom electrodes, a high-frequency circuit part, and a plurality of ground internal electrodes.
  • the stacking unit is formed by stacking a plurality of base materials in the stacking direction.
  • the bottom electrode is provided on one main surface in the stacking direction of the stacked portion.
  • the high-frequency circuit unit is provided through the inside of the stacked unit, and is connected to at least one of the bottom electrodes.
  • Each of the plurality of ground internal electrodes is provided between any layers of the laminated portion and connected to the ground bottom electrode, and extends along the outer edge of the laminated portion and extends outside the high-frequency circuit portion. And endlessly connected to each other when seen through from the stacking direction.
  • the plurality of ground internal electrodes are arranged so as to be endlessly (looped) as seen through from the stacking direction, so that the high-frequency circuit portion provided inside the ground internal electrode is affected by high-frequency noise. It is hard to receive.
  • the metal density in the vicinity of the outer edge of the laminated portion is small, the gas release property during production is high.
  • the thickness in the vicinity of the outer edge of the stacked portion is suppressed.
  • the area of the ground internal electrode is small in each layer, the area utilization efficiency is high.
  • the ground internal electrode is in the form of a line end and shorter than the entire circumference of the outer edge, the ground internal electrode is difficult to have inductivity.
  • the high-frequency circuit unit includes a surface-mounted element mounted on the other main surface on the opposite side to the one main surface of the stacked unit on which the bottom electrode is provided, and the bottom electrode for the ground When it sees through from the lamination direction, it is suitable when it overlaps with the said high frequency circuit part.
  • the shielding property in the stacking direction can also be obtained by the surface mount type element and the ground bottom electrode.
  • each of the plurality of ground internal electrodes overlap each other at the corners of the stacked portion as seen through from the stacking direction.
  • the electrode density at the corners of the laminated portion increases and the strength increases.
  • the external stress that acts on the high-frequency module from the external substrate is large at the corner portion of the laminated portion. Therefore, the reliability can be further improved by increasing the strength of the corner portion.
  • the stacked unit is a cube including the first to fourth base materials, and the first base is formed along the first side of the stacked unit as viewed from the stacking direction as a plurality of ground internal electrodes.
  • a fourth ground internal electrode is a cube including the first to fourth base materials
  • the first base is formed along the first side of the stacked unit as viewed from the stacking direction as a plurality of ground internal electrodes.
  • the first base material, the second base material, the third base material, and the fourth base material may be arranged in the stacking direction in the order according to the description order.
  • the laminated portion is a cube including the first and second base materials, and the first base is formed along the first side of the laminated portion as viewed from the lamination direction as a plurality of ground internal electrodes.
  • a first ground internal electrode provided on the material a second ground internal electrode provided on the second base material along a second side orthogonal to the first side, A third ground internal electrode provided on the first base material along a third side orthogonal to the second side, and a fourth side orthogonal to the third side
  • a fourth ground internal electrode provided on the second base material is a cube including the first and second base materials
  • the first base is formed along the first side of the laminated portion as viewed from the lamination direction as a plurality of ground internal electrodes.
  • a first ground internal electrode provided on the material a second ground internal electrode provided on the second base material along a second side orthogonal to the first side
  • a third ground internal electrode provided on the first base material along a third side orthogonal to the second side
  • the stacked unit is a cube including the first and second base materials, and is orthogonal to the first side and the first side of the stacked unit as viewed from the stacking direction as a plurality of ground internal electrodes.
  • a first ground internal electrode provided on the first base material along the second side, a third side orthogonal to the second side, and a fourth side orthogonal to the third side
  • a second ground internal electrode provided on the second base material along the side.
  • the high-frequency circuit portion provided in the laminated portion is not easily affected by high-frequency noise, and high shielding properties can be obtained.
  • gas can be easily released from the laminated portion during manufacturing, delamination is unlikely to occur, and high reliability can be obtained.
  • the thickness in the vicinity of the outer edge of the laminated portion is suppressed, high flatness can be obtained.
  • the area utilization efficiency is high in each layer, and since the internal electrode for ground is not easily inductive, it is easy to realize a complicated wiring structure and good high-frequency characteristics. Even when good high-frequency characteristics are realized, the number of base materials, the number of ground internal electrodes, and the number of ground via electrodes can be reduced. Thereby, extremely high flatness can be realized.
  • FIG. 1 is a circuit diagram of a high-frequency circuit unit 11 included in the high-frequency module 1 according to the first embodiment.
  • the high-frequency circuit unit 11 is, for example, an NFC (Near Field Communication) type reader / writer circuit, and is connected to the antenna 12.
  • NFC Near Field Communication
  • the high-frequency circuit unit 11 includes an RF-IC 13 and a plurality of passive elements 14.
  • the plurality of passive elements 14 constitute a low-pass filter circuit 15 and a matching circuit 16.
  • the RF-IC 13 is connected to the antenna 12 via a low-pass filter circuit 15 and a matching circuit 16.
  • the ground potential is stabilized, so that the high-frequency characteristics of each unit, that is, the filter characteristics in the low-pass filter circuit 15 and the matching characteristics by the matching circuit 16 are stabilized. .
  • FIG. 2A is a side sectional view of the high-frequency module 1.
  • FIG. 2B is a plan view of the bottom surface side of the high-frequency module 1.
  • the cross section shown in FIG. 2A is a cross section at a position indicated by a broken line B-B ′ in FIG.
  • conductive members are indicated by hatching with solid lines
  • insulating members are indicated by hatching with non-solid lines.
  • the high-frequency module 1 includes a stacked unit 2, an input / output bottom electrode 3, a ground bottom electrode 4, a bottom-side resist. Part 5, top surface electrode 7, and top surface side resist part 8.
  • the laminated portion 2 is a cube having a bottom surface as a mounting surface, and is configured by laminating six layers of base materials described later in the vertical direction.
  • wiring for connecting the RF-IC 13, each passive element 14, and the antenna 12 is provided as an internal electrode.
  • the RF-IC 13 and each passive element 14 are configured as chip-type elements mounted on the top surface of the stacked unit 2. Part or all of the passive elements 14 are mounted as chip-type elements on the top surface of the stacked unit 2, built in the stacked unit 2 as chip-type elements, or configured by internal electrodes of the stacked unit 2. May be.
  • the top surface electrode 7 is provided on the top surface of the laminated portion 2, and the terminals of the RF-IC 13 and each passive element 14 are joined to each other.
  • the top surface side resist portion 8 is provided on the top surface of the laminated portion 2 except for the region where the top surface electrode 7 is formed, and mounting solder for mounting the RF-IC 13 and each passive element 14 is provided for each top surface side resist portion 8. It has a function of preventing a short circuit from leaking from the top electrode 7.
  • the bottom electrode 3 and the bottom electrode 4 are provided on the bottom surface of the laminated portion 2. Therefore, the high-frequency module 1 has a bottom surface mounting type configuration.
  • the bottom electrode 3 for input / output is a pad electrode with a small area arranged along the outer edge on the bottom surface of the laminated portion 2.
  • These bottom electrodes 3 function as a control terminal to which a control signal for controlling the RF-IC 13 is input, an output terminal for outputting an output signal output from the RF-IC 13, a ground terminal, and the like.
  • the ground bottom electrode 4 is a large-area pad electrode provided on the bottom surface of the laminated portion 2 so as to cover the central portion surrounded by the bottom electrode 3.
  • the bottom side resist portion 5 is provided on the bottom surface of the laminated portion 2 in a state where a plurality of openings 6 are formed in a matrix, and when mounted on the external substrate 21 described later.
  • the mounting solder has a function of preventing leakage from each terminal to cause a short circuit defect.
  • Each opening 6 exposes bottom electrode 3 or bottom electrode 4 on the bottom surface side of laminated portion 2. More specifically, the plurality of openings 6 located in the outer rows and columns arranged along the outer edge of the stacked portion 2 respectively face the entire surface of any of the plurality of bottom surface electrodes 3. Thus, the entire surface of the bottom electrode 3 is exposed to the bottom surface side of the laminated portion 2. The plurality of openings 6 located in the inner rows and columns arranged in the vicinity of the central portion of the laminated portion 2 are partially laminated with the bottom electrode 4 partially facing the part of the bottom electrode 4. The part 2 is exposed on the bottom side.
  • FIG. 2 (C) is a side sectional view of the high frequency module 1 mounted on an external substrate.
  • the high frequency module 1 is mounted on the external substrate 21.
  • the external substrate 21 is provided with component mounting electrodes 23 and 24 on the surface.
  • the component mounting electrode 23 is a small-area pad electrode provided in each of the regions overlapping with the plurality of pad electrodes constituting the bottom electrode 3 described above.
  • the component mounting electrode 24 is a single large-area pad electrode provided in a region overlapping with the large-area pad electrode constituting the bottom electrode 4 described above.
  • the component mounting electrodes 23 and 24 are bonded to the bottom electrode 3 and the bottom electrode 4 exposed from the opening 6 by applying cream-like mounting solder (solder paste) 25 on the entire surface and melting and solidifying. ing.
  • cream-like mounting solder solder paste
  • FIG. 3A is an exploded perspective view of the high-frequency module 1.
  • FIG. 3B is a transparent view of the high-frequency module 1 viewed from the top side in the stacking direction.
  • the first side facing the lower side in FIG. 3B when the stacked unit 2 is viewed from the top surface in the stacking direction is referred to as a side X1.
  • the second side facing the left side in FIG. 3B is referred to as side Y1.
  • the third side facing upward in FIG. 3B is referred to as side X2.
  • the fourth side facing the right side in FIG. 3B is referred to as side Y2.
  • the stacked unit 2 of the high-frequency module 1 has 6 base layers, and the bases 31, 32, 33, 34, 35, and 36 are provided.
  • the base material 31 constitutes the top surface of the laminated portion 2, and the above-described RF-IC 13 and the plurality of passive elements 14 are mounted on the top surface of the base material 31.
  • the base material 36 constitutes the bottom surface of the laminated portion 2, and the bottom electrode 4 and the bottom electrode 3 described above are formed on the bottom surface of the base material 36. In FIG. 3A, the bottom electrode 4 and the bottom electrode 3 are not shown.
  • the base materials 31, 32, 33, 34, 35, and 36 are stacked so as to be hung from the top surface side to the bottom surface side of the stacked portion 2 in the order according to the description order.
  • the base 31 has the above-mentioned top surface electrode 7 formed on the top surface, and a via electrode connected to the top surface electrode 7 is formed inside.
  • a via electrode connected to the top surface electrode 7 is formed inside.
  • the via electrode and the top electrode 7 of the base material 31 are not shown.
  • the base material 32 has a ground internal electrode 32A and a ground via electrode 32B formed in a part near the outer edge.
  • the ground internal electrode 32A extends along the side X1 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side Y1 and the side Y2.
  • the ground via electrodes 32B are arranged at equal intervals along the side X1, and are connected to the ground internal electrode 32A.
  • a region where the ground internal electrode 32 ⁇ / b> A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 32 internal electrodes and via electrodes constituting the connection wiring of the high-frequency circuit unit 11 shown in FIG. 1 are formed.
  • FIG. 3A wiring electrodes and via electrodes formed in the wiring region 10 of the base material 32 are not shown.
  • the base material 33 has a ground internal electrode 33A and a ground via electrode 33B formed in a part near the outer edge.
  • the ground internal electrode 33A extends along the side Y1 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side X1 and the side X2.
  • the ground via electrodes 33B are arranged at equal intervals along the side Y1, and are connected to the ground internal electrode 33A so as to overlap.
  • a region where the ground internal electrode 33 ⁇ / b> A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 33 internal electrodes and via electrodes constituting the connection wiring of the high-frequency circuit unit 11 shown in FIG. 1 are formed.
  • the wiring region 10 of the substrate 33 may be formed with internal electrodes and via electrodes connected to the ground via electrode 32B.
  • FIG. 3A the wiring electrodes and via electrodes formed in the wiring region 10 of the base material 33 are not shown.
  • the base material 34 has a ground internal electrode 34A and a ground via electrode 34B formed in a part near the outer edge.
  • the ground internal electrode 34A extends along the side X2 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side Y1 and the side Y2.
  • the ground via electrodes 34B are arranged at equal intervals along the side X2, and are connected to the ground internal electrode 34A.
  • a region where the ground internal electrode 34A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 34 internal electrodes and via electrodes constituting the connection wiring of the high-frequency circuit unit 11 shown in FIG. 1 are formed.
  • the wiring region 10 of the base material 34 internal electrodes and via electrodes connected to the ground via electrodes 32B and 33B may be formed.
  • FIG. 3A the wiring electrodes and via electrodes formed in the wiring region 10 of the base material 34 are not shown.
  • the substrate 35 has a ground internal electrode 35A and a ground via electrode 35B formed in a part near the outer edge as viewed from the stacking direction.
  • the ground internal electrode 35 ⁇ / b> A extends along the side Y ⁇ b> 2 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side X ⁇ b> 2 and the side X ⁇ b> 1.
  • the ground via electrodes 35B are arranged at equal intervals along the side Y2, and are connected to the ground internal electrode 35A.
  • a region where the ground internal electrode 35 ⁇ / b> A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 35 internal electrodes and via electrodes constituting the connection wiring of the high-frequency circuit unit 11 shown in FIG. 1 are formed.
  • the wiring region 10 of the substrate 35 may be formed with internal electrodes and via electrodes connected to the ground via electrodes 32B, 33B, and 34B. In FIG. 3A, the wiring electrodes and via electrodes formed in the wiring region 10 of the substrate 35 are not shown.
  • the base material 36 is configured as a wiring area 10 as viewed from the stacking direction.
  • internal electrodes and via electrodes constituting the connection wiring of the high-frequency circuit unit 11 shown in FIG. 1 are formed. These internal electrodes and via electrodes are also connected to the aforementioned input / output bottom electrode 3.
  • the wiring region 10 of the base material 36 is formed with internal electrodes and via electrodes connected to the ground via electrodes 32B, 33B, 34B, and 35B. These internal electrodes and via electrodes are also connected to the ground bottom electrode 4 described above.
  • FIG. 3A the wiring electrodes and via electrodes formed in the wiring region 10 of the substrate 36 are not shown.
  • ground internal electrodes 32A to 35A are formed in the laminated portion 2 in this way, the ground internal electrodes 32A to 35A provided on the base materials 32 to 35 are as shown in FIG. When viewed from the top surface side in the stacking direction, it is continuous in an endless manner inside the stacked portion 2.
  • the high-frequency circuit unit 11 provided through the wiring region 10 of each of the base materials 31 to 36 has a high shielding property on the side surface side of the stacked unit 2.
  • the bottom electrode 4 for ground provided on the bottom surface of the stacked portion 2 is surrounded by the ground internal electrodes 32A to 35A when viewed from the top surface side in the stacking direction as shown in FIG. 3B. Covers the entire area. Therefore, in this high frequency module 1, not only the shielding property with respect to the side surface direction but also the shielding property on the bottom surface side in the stacking direction can be obtained. Further, since the top surface of the laminated portion 2 is almost covered with the top surface electrode 7 and each element, the high frequency module 1 can ensure a certain degree of shielding performance on the top surface side in the stacking direction. it can.
  • the shielding performance of the stacked portion 2 can be improved.
  • the thickness around the outer edge of the portion 2 is larger than the thickness near the center of the laminated portion 2.
  • all the ground internal electrodes 32A to 35A overlap only at the corners, and the thickness of the laminated portion 2 increases by the thickness of all the ground internal electrodes 32A to 35A.
  • the ground internal electrodes 32A to 35A do not overlap each other, and the thickness of the stacked portion 2 increases only by the thickness of one of the ground internal electrodes 32A to 35A.
  • the metal density is reduced in at least a part of the vicinity of the outer edge of the laminated portion 2. Then, when the solvent component and moisture contained in the material are volatilized when the laminated part 2 is formed, the volatilized gas can easily escape from the laminated part 2. Therefore, generation
  • the area occupied by the ground internal electrodes 32A to 35A is only the area of the region along one side of the outer edge, and therefore the area occupied by the wiring region 10 is large.
  • the area utilization efficiency in 32 to 35 is high. Therefore, even if the wiring structure of the high-frequency circuit unit 11 is complicated, it is not necessary to increase the number of base materials in the stacked unit 2, and the number of ground internal electrodes can be suppressed. Then, since the increase in the thickness of the laminated portion 2 due to the ground internal electrode can also be suppressed, even if the wiring structure of the high-frequency circuit portion 11 is complicated, high flatness can be realized in the laminated portion 2. is there.
  • the ground internal electrodes 32A to 35A are sufficiently shorter than the entire length of the outer periphery of the stacked portion 2, and even if the number of ground via electrodes 32B to 35B is small, it is difficult to have inductivity. Accordingly, the ground internal electrodes 32A to 35A are unlikely to have a potential difference from the ground potential, and it is easy to realize good high frequency characteristics. Therefore, the number of ground via electrodes can be reduced while realizing good high frequency characteristics. Then, it is possible to suppress the influence of the decrease in the thickness shrinkage of the laminated portion 2 that occurs around the ground via electrode during manufacturing, and the flatness of the laminated portion 2 can be further increased.
  • ground internal electrodes 32A to 35A are arranged so as to be spirally displaced inside the laminated portion 2 .
  • the ground internal electrodes 32A to 35A are arranged as described above. It is not limited.
  • the stacking order of the base materials on which the ground internal electrodes 32A to 35A are provided may be changed.
  • the bottom electrode 3 for input / output is arranged around the outer edge and the bottom electrode 4 for ground is arranged near the center of the inner side is shown.
  • the arrangement of the bottom electrode is in such an arrangement relationship. It is not limited.
  • ground internal electrodes 32A to 35A are arranged so as to overlap each other at the corners of the stacked portion 2.
  • the positions where the ground internal electrodes 32A to 35A overlap are the corner portions of the stacked portion 2.
  • they may overlap in the vicinity of the center of each side of the outer edge.
  • FIG. 4A is an exploded perspective view of the high-frequency module 41 according to the second embodiment.
  • FIG. 4B is a transparent view of the high-frequency module 41 viewed from the top side in the stacking direction.
  • the high-frequency module 41 includes a laminated portion 42.
  • the stacked unit 42 has four base layers and includes base members 51, 52, 53, and 56.
  • the base material 51 constitutes the top surface of the laminated portion 42, and the RF-IC 43 and a plurality of passive elements 44 are mounted on the top surface of the base material 51.
  • the base material 56 constitutes the bottom surface of the laminated portion 42, and the bottom electrode 45 for ground is formed on the bottom surface of the base material 56.
  • the base materials 51, 52, 53, and 56 are stacked so as to hang from the top surface side to the bottom surface side of the stacked portion 42 in the order according to the description order.
  • the base material 51 has a top surface electrode formed on the top surface, and a via electrode connected to the top surface electrode is formed inside.
  • the base material 52 has ground internal electrodes 52A and 54A and ground via electrodes 52B and 54B formed in a part near the outer edge.
  • the ground internal electrode 52A extends along the side X1 when viewed from the top surface side in the stacking direction, and is formed in the shape of a closed line whose both ends terminate in the vicinity of the side Y1 and the side Y2.
  • the ground internal electrode 54A extends along the side X2 when viewed from the top surface side in the stacking direction, and is formed in the shape of a closed line whose both ends terminate in the vicinity of the side Y1 and the side Y2.
  • the ground via electrodes 52B are arranged at equal intervals along the side X1, and are connected to the ground internal electrode 52A.
  • the ground via electrodes 54B are arranged at equal intervals along the side X2, and are connected to the ground internal electrode 54A.
  • a region where the ground internal electrodes 52A and 54A are not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 52 internal electrodes and via electrodes that form connection wiring of the high-frequency circuit unit are formed.
  • the base 53 has ground internal electrodes 53A and 55A and ground via electrodes 53B and 55B formed in a part near the outer edge.
  • the ground internal electrode 53A extends along the side Y1 when viewed from the top surface side in the stacking direction, and is formed in the shape of a closed line whose both ends terminate in the vicinity of the side X1 and the side X2.
  • the ground internal electrode 55 ⁇ / b> A extends along the side Y ⁇ b> 2 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side X ⁇ b> 1 and the side X ⁇ b> 2.
  • the ground via electrodes 53B are arranged at equal intervals along the side Y1, and are connected to the ground internal electrode 53A.
  • the ground via electrodes 55B are arranged at equal intervals along the side Y2, and are connected to the ground internal electrode 55A.
  • a region where the ground internal electrodes 53A and 55A are not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 53 internal electrodes and via electrodes that form connection wiring of the high-frequency circuit unit are formed.
  • the wiring region 10 of the substrate 53 may be formed with internal electrodes and via electrodes connected to the ground via electrodes 52B and 54B.
  • the base material 56 is configured as a wiring region 10 as viewed from the stacking direction.
  • internal electrodes and via electrodes that form connection wiring of the high-frequency circuit unit are formed.
  • the wiring region 10 of the base material 56 is formed with internal electrodes and via electrodes connected to the ground via electrodes 52B, 53B, 54B, and 55B. These internal electrodes and via electrodes are also connected to a bottom electrode 45 for ground.
  • the ground internal electrodes 52A to 55A are thus formed in the stacked portion 42, the ground internal electrodes 52A to 55A are viewed from the top side in the stacking direction as shown in FIG. Inside the stacked portion 42, the end portions are continuous.
  • FIG. 5A is an exploded perspective view of the high-frequency module 61 according to the third embodiment.
  • FIG. 5B is a transparent view of the high-frequency module 61 viewed from the top side in the stacking direction.
  • the high-frequency module 61 includes a stacked portion 62.
  • the stacking unit 62 has four base materials and includes base materials 71, 72, 73, and 76.
  • the base material 71 constitutes the top surface of the laminated portion 62, and the RF-IC 63 and a plurality of passive elements 64 are mounted on the top surface of the base material 71.
  • the base material 76 constitutes the bottom surface of the laminated portion 62, and a ground bottom electrode 65 is formed on the bottom surface of the base material 76.
  • the base materials 71, 72, 73, and 76 are stacked in the order in accordance with the description order from the top surface side to the bottom surface side of the stacked portion 62.
  • the base material 71 has a top surface electrode formed on the top surface, and a via electrode connected to the top surface electrode is formed inside.
  • the base 72 has a ground internal electrode 72A and a ground via electrode 72B formed in a part near the outer edge.
  • the ground internal electrode 72A extends along the side X1 and the side Y1 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side X2 and the side Y2. Yes.
  • the ground via electrodes 72B are arranged at equal intervals along the side X1 and the side Y1, and are connected to the ground internal electrode 72A.
  • a region where the ground internal electrode 72A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 72 internal electrodes and via electrodes that form connection wiring of the high-frequency circuit unit are formed.
  • the base 73 has a ground internal electrode 73A and a ground via electrode 73B formed in a part near the outer edge.
  • the ground internal electrode 73A extends along the side X2 and the side Y2 when viewed from the top surface side in the stacking direction, and is formed in a end line shape in which both ends terminate in the vicinity of the side X1 and the side Y1. Yes.
  • the ground via electrodes 73B are arranged at equal intervals along the side X2 and the side Y2, and are connected to overlap with the ground internal electrode 73A.
  • a region where the ground internal electrode 73 ⁇ / b> A is not provided as viewed from the stacking direction is configured as the wiring region 10.
  • the wiring region 10 of the base material 73 internal electrodes and via electrodes that form connection wiring of the high-frequency circuit unit are formed.
  • an internal electrode or a via electrode connected to the ground via electrode 72B may be formed.
  • the base material 76 is configured as the wiring region 10 as viewed from the stacking direction.
  • internal electrodes and via electrodes that form connection wiring of the high-frequency circuit section are formed.
  • internal electrodes and via electrodes connected to the ground via electrodes 72B and 73B are formed. These internal electrodes and via electrodes are also connected to a bottom electrode 65 for ground.
  • ground internal electrodes 72A and 73A are formed in the stacked portion 62 in this way, the ground internal electrodes 72A and 73A are viewed from the top side in the stacking direction as shown in FIG. Inside the stacked portion 62, the end portions are continuous.
  • the same effect as that of the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 高周波モジュールは、積層部(2)と、底面電極(4)と、グランド用内部電極(32A,33A,34A,35A)と、を備えている。底面電極(4)は、グランド用であり、積層部(2)の底面に設けられている。積層部(2)は、高周波回路部の配線が内部を通過する配線領域(10)を有している。グランド用内部電極(32A~35A)は、それぞれ、積層部(2)のいずれかの層間に設けられて底面電極(4)に接続されており、積層部(2)の外縁に沿って配線領域(10)の外側を延伸する有端線路からなる。グランド用内部電極(32A~35A)を、積層部(2)の積層方向から透視すると、互いに無端状に連なっている。

Description

高周波モジュール
 本発明は、複数の基材が積層された積層基板の内部に、グランドに接続される内部電極およびビア電極と、高周波回路構成部とが設けられている高周波モジュールに関する。
 高周波モジュールは、高周波回路を構成する能動素子や受動素子、配線を、積層基板の内部や積層基板の天面に搭載して構成される。積層基板は、複数の基材を積層し、層間に内部電極を設けるとともに、層内を貫通するビア電極を設けて構成される(例えば、特許文献1参照)。
 図6は、従来例に係る高周波モジュールを構成する積層基板の斜視図である。
 図6に示す積層基板101は、複数の基材からなる積層部102と、積層部102の層間に設けられているグランド用の内部電極103と、積層部102の層内に設けられているグランド用のビア電極104と、を備えている。内部電極103は、積層方向から視た積層部102の外縁(以下、積層方向から視た外縁を、単に外縁と称する。)に沿って無端状に設けられている。ビア電極104は、積層部102の外縁に沿って密に配列されており、対向する内部電極103同士を接続している。したがって、高周波モジュール101は、グランド用の内部電極103とビア電極104とにより、積層部2の外縁での高周波ノイズに対するシールド性を得ている。
実開平06-52191号公報
 従来例に係る高周波モジュールでは、グランド用の内部電極103が積層部102の外縁に沿って設けられているため、内部電極103の厚み分だけ積層部102の外縁周辺の厚みが増してしまう。その上、製造時に生じる積層部102の厚み縮小量は、ビア電極の周囲で小さくなるため、グランド用のビア電極104の数が多い場合には、積層部102の外縁周辺と中心部とで厚みが大きく相違してしまう。したがって、高い平坦度で積層部102を成形するためには、積層部102の層数や、内部電極103の数、ビア電極104の数は少ない方が望ましい。
 しかしながら、従来例に係る高周波モジュールでは、積層部102の全ての層で、外縁の全周に沿って内部電極103が設けられているために、内部電極103よりも内側の面積が小さく、面積利用効率が低い。したがって、積層部102に多数の能動素子や受動素子を搭載する複雑な配線構造を実現するためには、積層部102の層数や、内部電極103の数を減らすことが難しかった。
 また、内部電極103が積層部102の外縁の全長と殆ど同じ全長で設けられているために、ビア電極104の数を少なくした場合、内部電極103が誘導性を持ち、内部電極103にグランド電位からの電位差が生じて高周波特性が劣化してしまう。したがって高周波特性の劣化を防ぐためには、ビア電極104の数を大きく減らすことも難しかった。
 このように従来例に係る高周波モジュール101は、複雑な配線構造や良好な高周波特性を確保するために、積層部102の層数や、内部電極103の数、ビア電極104の数を減らすことができず、高い平坦度を実現することが難しかった。
 さらには、従来例に係る積層基板101では、積層部102の外縁付近における金属密度が高いために、製造時に内部残留物から放出されるガスの透過(ガス抜け)が妨げられて積層部102の層間でデラミネーションが発生し易く、信頼性が低下する問題もあった。
 そこで本発明の目的は、グランド用の内部電極やビア電極の数を減らしても、配線構造が複雑な高周波回路や、高周波特性が良好な高周波回路を構成することが可能であり、高い平坦性と信頼性とシールド性とを実現することができる、高周波モジュールを提供することにある。
 本発明に係る高周波モジュールは、積層部と、複数の底面電極と、高周波回路部と、複数のグランド用内部電極と、を備えている。積層部は、複数の基材を積層方向に積層してなる。底面電極は、積層部の積層方向の一方主面に設けられている。高周波回路部は、積層部の内部を通過して設けられており、少なくともいずれかの底面電極に接続されている。複数のグランド用内部電極は、それぞれ、積層部のいずれかの層間に設けられてグランド用の底面電極に接続されており、積層部の外縁に沿って高周波回路部の外側を延伸する有端線路からなり、積層方向から透視すると互いに無端状に連なっている。
 この構成では、複数のグランド用内部電極を、積層方向から透視して無端状(ループ状)に連なるように配置するので、グランド用内部電極よりも内側に設けられる高周波回路部が高周波ノイズの影響を受けにくい。また、積層部の外縁付近での金属密度が小さいので、製造時のガス抜け性が高い。また、積層方向でのグランド用内部電極の重なりが少ないので、積層部の外縁付近での厚みが抑制される。また、各層においてグランド用内部電極の面積が小さいので、面積利用効率が高い。また、グランド用内部電極が有端線路状で外縁部の全周よりも短いので、グランド用内部電極が誘導性を持ち難い。
 上述の高周波モジュールにおいて高周波回路部は、前記底面電極が設けられている前記積層部の一方主面とは反対側の他方主面に搭載される表面実装型素子を備え、前記グランド用の底面電極は、積層方向から透視すると前記高周波回路部に重なっていると好適である。
 この構成では、グランド用内部電極により側面方向に対するシールド性を得ながら、表面実装型素子とグランド用の底面電極とにより積層方向に対するシールド性も得られる。
 上述の高周波モジュールにおいて複数のグランド用内部電極それぞれの端部は、積層方向から透視すると積層部の角部分で互いに重なり合っていると好適である。
 この構成では、積層部の角部分での電極密度が高くなり強度が高くなる。通常、外部基板から高周波モジュールに作用する外部応力は積層部の角部分で大きいため、角部分の強度を高めることでさらに信頼性を高められる。
 上述の高周波モジュールにおいて積層部は、第1乃至第4の基材を含む立方体であり、複数のグランド用内部電極として、積層方向から視て積層部の第1の辺に沿って第1の基材に設けられている第1のグランド用内部電極と、第1の辺に直交する第2の辺に沿って第2の基材に設けられている第2のグランド用内部電極と、第2の辺に直交する第3の辺に沿って第3の基材に設けられている第3のグランド用内部電極と、第3の辺に直交する第4の辺に沿って第4の基材に設けられている第4のグランド用内部電極と、を備えていてもよい。
 上述の高周波モジュールにおいて、第1の基材と第2の基材と第3の基材と第4の基材とは、記載順に従った順番で積層方向に並んでいてもよい。
 上述の高周波モジュールにおいて積層部は、第1および第2の基材を含む立方体であり、複数のグランド用内部電極として、積層方向から視て積層部の第1の辺に沿って第1の基材に設けられている第1のグランド用内部電極と、第1の辺に対して直交する第2の辺に沿って第2の基材に設けられている第2のグランド用内部電極と、第2の辺に対して直交する第3の辺に沿って第1の基材に設けられている第3のグランド用内部電極と、第3の辺に対して直交する第4の辺に沿って第2の基材に設けられている第4のグランド用内部電極と、を備えていてもよい。
 上述の高周波モジュールにおいて積層部は、第1および第2の基材を含む立方体であり、複数のグランド用内部電極として、積層方向から視て積層部の第1の辺と第1の辺に直交する第2の辺とに沿って第1の基材に設けられている第1のグランド用内部電極と、第2の辺に直交する第3の辺と第3の辺に直交する第4の辺とに沿って第2の基材に設けられている第2のグランド用内部電極と、を備えていてもよい。
 本発明によれば、高周波モジュールにおいて、積層部に設けられる高周波回路部が高周波ノイズの影響を受けにくく、高いシールド性が得られる。また、製造時に積層部からのガス抜け性が高いため、デラミネーションが生じにくく、高い信頼性が得られる。また、積層部の外縁付近での厚みが抑制されるため、高い平坦性が得られる。
 その上、各層において面積利用効率が高く、また、グランド用の内部電極が誘導性を持ち難いために、複雑な配線構造や良好な高周波特性を実現することが容易であり、複雑な配線構造や良好な高周波特性を実現する場合でも、基材の数や、グランド用内部電極の数、グランド用のビア電極の数を減らすことができる。これにより、極めて高い平坦度を実現することが可能である。
第1の実施形態に係る高周波モジュールの回路図である。 第1の実施形態に係る高周波モジュールの構造を説明する図である。 第1の実施形態に係る高周波モジュールの分解斜視図および透過図である。 第2の実施形態に係る高周波モジュールの分解斜視図および透過図である。 第3の実施形態に係る高周波モジュールの分解斜視図および透過図である。 従来例に係る高周波モジュールの積層基板を示す分解斜視図である。
 まず、本発明の第1の実施形態に係る高周波モジュールについて説明する。
 図1は、第1の実施形態に係る高周波モジュール1が備える高周波回路部11の回路図である。
 高周波回路部11は、例えば、NFC(Near Field Communication)方式のリーダライタ回路であり、アンテナ12に接続される。
 高周波回路部11は、RF-IC13と、複数の受動素子14とを備えている。複数の受動素子14は、低域通過フィルタ回路15と、整合回路16とを構成している。RF-IC13は、低域通過フィルタ回路15と整合回路16とを介してアンテナ12に接続される。NFC方式のリーダライタ回路のような高周波回路部11では、グランドの電位が安定することにより、各部の高周波特性、即ち低域通過フィルタ回路15におけるフィルタ特性や、整合回路16によるマッチング特性が安定する。
 図2(A)は、高周波モジュール1の側面側断面図である。図2(B)は、高周波モジュール1の底面側平面図である。図2(A)に示す断面は、図2(B)中に破線B-B’で示す位置の断面である。
 なお、各図では、導電性を持つ部材は実直線によるハッチングで示し、絶縁性を持つ部材は非実直線によるハッチングで示している。
 高周波モジュール1は、前述の高周波回路部11を構成するRF-IC13および受動素子14に加えて、積層部2と、入出力用の底面電極3と、グランド用の底面電極4と、底面側レジスト部5と、天面電極7と、天面側レジスト部8と、を備えている。
 積層部2は、底面を実装面とする立方体であり、ここでは後述する6層の基材を上下方向に積層して構成されている。積層部2の内部には、図1で示した高周波回路部11において、RF-IC13と各受動素子14とアンテナ12とを接続する配線が、内部電極として設けられている。
 RF-IC13と各受動素子14とは、積層部2の天面に搭載されるチップ型素子として構成されている。なお、受動素子14の一部または全部は、チップ型素子として積層部2の天面に搭載するほか、チップ型素子として積層部2に内蔵したり、積層部2の内部電極によって構成したりしてもよい。
 天面電極7は、積層部2の天面に設けられており、RF-IC13と各受動素子14との端子が接合されている。天面側レジスト部8は、天面電極7の形成領域を除いて、積層部2の天面に設けられており、RF-IC13や各受動素子14を実装するための実装用はんだが、各天面電極7から漏れてショート不良が発生することを防ぐ機能を有している。
 底面電極3および底面電極4は、積層部2の底面に設けられている。したがって、高周波モジュール1は、底面実装型の構成となっている。入出力用である底面電極3は、積層部2の底面において外縁に沿って配列されている小面積のパッド電極である。これらの底面電極3は、RF-IC13を制御するための制御信号が入力される制御端子や、RF-IC13が出力する出力信号を出力する出力端子、グランド端子などとして機能する。また、グランド用の底面電極4は、積層部2の底面において、底面電極3に囲まれる中心部を覆うように設けられている大面積のパッド電極である。
 図2(B)に示すように、底面側レジスト部5は、複数の開口部6をマトリクス状に形成した状態で積層部2の底面に設けられており、後述する外部基板21への実装時に、実装用はんだが、各端子から漏れてショート不良が発生することを防ぐ機能を有している。
 各開口部6は、底面電極3または底面電極4を積層部2の底面側に露出させている。より具体的には、積層部2の外縁に沿って配列されている外側の行および列に位置する複数の開口部6は、それぞれ、複数の底面電極3のうちのいずれかの全面に対向して、それらの底面電極3の全面を積層部2の底面側に露出させている。また、積層部2の中心部付近に配列されている内側の行および列に位置する複数の開口部6は、それぞれ、底面電極4の一部に対向して、底面電極4を部分的に積層部2の底面側に露出させている。
 図2(C)は、高周波モジュール1を外部基板に実装した状態での側面側断面図である。
 図2(C)に示すように、高周波モジュール1は外部基板21に実装される。外部基板21は、表面に部品搭載電極23,24が設けられている。部品搭載電極23は、前述の底面電極3を構成する複数のパッド電極と重なる領域それぞれに設けられる小面積のパッド電極である。部品搭載電極24は、前述の底面電極4を構成する大面積のパッド電極と重なる領域に設けられる大面積の単一のパッド電極である。また、部品搭載電極23,24は、全面にクリーム状の実装用はんだ(はんだペースト)25が塗布され、溶融、固化させることにより、開口部6から露出する底面電極3および底面電極4に接合している。
 図3(A)は、高周波モジュール1の分解斜視図である。図3(B)は、高周波モジュール1を積層方向の天面側から視た透過図である。なお、以下の説明では、積層部2を積層方向の天面側から視て、図3(B)中で下側を向く第1の辺を、辺X1と称する。また、図3(B)中の左側を向く第2の辺を、辺Y1と称する。また、図3(B)中の上側を向く第3の辺を、辺X2と称する。また、図3(B)中の右側を向く第4の辺を、辺Y2と称する。
 積層部2の構成についてより具体的に説明すると、図3(A)に示すように、高周波モジュール1の積層部2は、基材の層数が6であり、基材31,32,33,34,35,36を備えている。基材31は積層部2の天面を構成しており、基材31の天面には、前述のRF-IC13および複数の受動素子14が搭載されている。基材36は、積層部2の底面を構成しており、基材36の底面には、前述の底面電極4と底面電極3とが形成されている。なお、図3(A)において、底面電極4と底面電極3とは図示されていない。基材31,32,33,34,35,36は、記載順に従った順番で、積層部2の天面側から底面側に掛けて積層されている。
 基材31は、天面に前述の天面電極7が形成されており、天面電極7に接続されているビア電極が内部に形成されている。図3(A)において、基材31のビア電極と天面電極7とは図示されていない。
 基材32は、外縁付近の一部に、グランド用内部電極32Aとグランド用ビア電極32Bとが形成されている。グランド用内部電極32Aは、積層方向の天面側から視て辺X1に沿って延伸しており、辺Y1と辺Y2との近傍で両端が終端する有端線路状に形成されている。また、グランド用ビア電極32Bは、辺X1に沿って等間隔に配列されており、グランド用内部電極32Aに重なって接続されている。
 また、基材32は、積層方向から視てグランド用内部電極32Aが設けられていない領域が、配線領域10として構成されている。基材32の配線領域10は、図1に示した高周波回路部11の接続配線を構成する内部電極とビア電極とが形成されている。図3(A)において基材32の配線領域10に形成されている配線電極とビア電極とは、図示されていない。
 基材33は、外縁付近の一部に、グランド用内部電極33Aとグランド用ビア電極33Bとが形成されている。グランド用内部電極33Aは、積層方向の天面側から視て辺Y1に沿って延伸しており、辺X1と辺X2との近傍で両端が終端する有端線路状に形成されている。また、グランド用ビア電極33Bは、辺Y1に沿って等間隔に配列されており、グランド用内部電極33Aに重なって接続されている。
 また、基材33は、積層方向から視てグランド用内部電極33Aが設けられていない領域が、配線領域10として構成されている。基材33の配線領域10は、図1に示した高周波回路部11の接続配線を構成する内部電極およびビア電極が形成されている。なお、基材33の配線領域10は、前述のグランド用ビア電極32Bに接続されている内部電極やビア電極が形成されていてもよい。図3(A)において基材33の配線領域10に形成されている配線電極とビア電極とは、図示されていない。
 基材34は、外縁付近の一部に、グランド用内部電極34Aとグランド用ビア電極34Bとが形成されている。グランド用内部電極34Aは、積層方向の天面側から視て辺X2に沿って延伸しており、辺Y1と辺Y2との近傍で両端が終端する有端線路状に形成されている。また、グランド用ビア電極34Bは、辺X2に沿って等間隔に配列されており、グランド用内部電極34Aに重なって接続されている。
 また、基材34は、積層方向から視てグランド用内部電極34Aが設けられていない領域が、配線領域10として構成されている。基材34の配線領域10は、図1に示した高周波回路部11の接続配線を構成する内部電極およびビア電極が形成されている。なお、基材34の配線領域10は、前述のグランド用ビア電極32B,33Bに接続されている内部電極やビア電極が形成されていてもよい。図3(A)において基材34の配線領域10に形成されている配線電極とビア電極とは、図示されていない。
 基材35は、積層方向から視た外縁付近の一部に、グランド用内部電極35Aとグランド用ビア電極35Bとが形成されている。グランド用内部電極35Aは、積層方向の天面側から視て辺Y2に沿って延伸しており、辺X2と辺X1との近傍で両端が終端する有端線路状に形成されている。また、グランド用ビア電極35Bは、辺Y2に沿って等間隔に配列されており、グランド用内部電極35Aに重なって接続されている。
 また、基材35は、積層方向から視てグランド用内部電極35Aが設けられていない領域が、配線領域10として構成されている。基材35の配線領域10は、図1に示した高周波回路部11の接続配線を構成する内部電極およびビア電極が形成されている。なお、基材35の配線領域10は、前述のグランド用ビア電極32B,33B,34Bに接続されている内部電極やビア電極が形成されていてもよい。図3(A)において基材35の配線領域10に形成されている配線電極とビア電極とは、図示されていない。
 基材36は、積層方向から視て全域が、配線領域10として構成されている。基材36の配線領域10は、図1に示した高周波回路部11の接続配線を構成する内部電極およびビア電極が形成されている。これらの内部電極およびビア電極は、前述の入出力用の底面電極3にも接続されている。また、基材36の配線領域10は、前述のグランド用ビア電極32B,33B,34B,35Bに接続されている内部電極やビア電極が形成されている。これらの内部電極やビア電極は、前述のグランド用の底面電極4にも接続されている。図3(A)において基材36の配線領域10に形成されている配線電極とビア電極とは、図示されていない。
 このようにグランド用内部電極32A~35Aが積層部2に形成されているため、各基材32~35に設けられているグランド用内部電極32A~35Aは、図3(B)に示すように積層方向の天面側から視ると、積層部2の内部で、無端状に連なる。
 したがって、この高周波モジュール1に対して外部から来る高周波ノイズや、積層部2の内部で生じる高周波ノイズは、グランド用内部電極32A~35Aが設けられている積層部2の外縁周辺の全周に亘って、グランド用内部電極32A~35Aおよびグランド用ビア電極32B~35Bに吸収や反射されることになる。これにより、各基材31~36の配線領域10を通過して設けられている高周波回路部11は、積層部2の側面側でのシールド性が高いものになる。
 また、積層部2の底面に設けられているグランド用の底面電極4は、図3(B)に示すように積層方向の天面側から視ると、グランド用内部電極32A~35Aに囲まれる領域の全面を覆っている。したがって、この高周波モジュール1では、側面方向に対するシールド性だけでなく、積層方向の底面側でのシールド性も得られる。また、積層部2の天面は、天面電極7や各素子によって殆ど覆われているので、この高周波モジュール1では、積層方向の天面側でのシールド性も、一定程度、確保することができる。
 このように、本実施形態に係る高周波モジュール1の構成では、積層部2のシールド性を高めることができるが、グランド用内部電極32A~35Aやグランド用ビア電極32B~35Bを設けることで、積層部2の外縁周辺での厚みが、積層部2の中心付近での厚みよりも増してしまう。
 しかしながら、積層部2の外縁周辺においては、角部分でのみ、全てのグランド用内部電極32A~35Aが重なり合い、全てのグランド用内部電極32A~35Aの厚み分だけ積層部2の厚みが増し、それ以外では、グランド用内部電極32A~35Aが重なり合わず、グランド用内部電極32A~35Aのうちの一つの厚み分だけしか積層部2の厚みが増すことがない。
 したがって、積層部2における外縁付近の少なくとも一部の領域で、金属密度が小さくなる。すると、積層部2の形成時に材料に含まれる溶剤成分や水分が揮散するような場合に、揮散ガスが積層部2から抜けやすくなる。したがって、積層部2の内部に揮散ガスが滞留して生じる層間のデラミネーションなどの不具合の発生が抑制されることになる。また、積層部2の角部分では金属密度が大きく、強度が局所的に高いものになる。すると、積層部2の角部分に作用する外部応力が大きい場合でも、積層部2が破壊され難くなる。したがって、外部応力による積層部2の損壊や、残留ガスによるデラミネーションの発生を抑制でき、高周波モジュールの信頼性が高いものになる。
 また、各基材32~35においては、グランド用内部電極32A~35Aに占有される面積が外縁部の一辺に沿う領域の面積だけであるため、配線領域10の占める面積が大きく、各基材32~35における面積利用効率が高いものになる。したがって、高周波回路部11の配線構造が複雑であっても、積層部2における基材の数を増す必要が無く、グランド用内部電極の数を抑制することができる。すると、グランド用内部電極による積層部2の厚みの増加も抑制することができるため、高周波回路部11の配線構造が複雑であっても、積層部2に高い平坦性を実現することが可能である。
 また、グランド用内部電極32A~35Aは、積層部2の外縁全周の長さに比べて十分に短く、グランド用ビア電極32B~35Bの数が少なくても、誘導性を持ち難い。したがって、グランド用内部電極32A~35Aが、グランド電位からの電位差を持ち難く、良好な高周波特性を実現することが容易である。このため、良好な高周波特性を実現しながらグランド用ビア電極の数を減らすことができる。すると、製造時に、グランド用ビア電極の周辺で生じる積層部2の厚み収縮量の低下の影響を抑制することができ、積層部2の平坦度をより高めることが可能である。
 以上の説明では、積層部2の内部で、グランド用内部電極32A~35Aが螺旋状にずれるように配置される例を示したが、グランド用内部電極32A~35Aの配置は、上記した配置に限られるものではない。例えば、グランド用内部電極32A~35Aが設けられている基材の積層順を入れ替えるようにしてもよい。
 また、ここでは、入出力用の底面電極3を外縁周辺に配置し、グランド用の底面電極4を内側の中心付近に配置する例を示したが、底面電極の配置はこのような配置関係に限定されるものでは無い。
 また、ここでは、グランド用内部電極32A~35Aが積層部2の角部分で重なるように配置される例を示したが、グランド用内部電極32A~35Aが重なる位置は、積層部2の角部分以外であってもよく、例えば外縁の各辺中央付近で重なるようにしてもよい。
 次に、本発明の第2の実施形態に係る高周波モジュールについて説明する。
 図4(A)は、第2の実施形態に係る高周波モジュール41の分解斜視図である。図4(B)は、高周波モジュール41を積層方向の天面側から視た透過図である。
 高周波モジュール41は、積層部42を備えている。積層部42は、基材の層数が4であり、基材51,52,53,56を備えている。基材51は積層部42の天面を構成しており、基材51の天面には、RF-IC43および複数の受動素子44が搭載されている。基材56は、積層部42の底面を構成しており、基材56の底面には、グランド用の底面電極45が形成されている。基材51,52,53,56は、記載順に従った順番で、積層部42の天面側から底面側に掛けて積層されている。
 基材51は、天面に天面電極が形成されており、天面電極に接続されているビア電極が内部に形成されている。
 基材52は、外縁付近の一部に、グランド用内部電極52A,54Aとグランド用ビア電極52B,54Bとが形成されている。グランド用内部電極52Aは、積層方向の天面側から視て辺X1に沿って延伸しており、辺Y1と辺Y2との近傍で両端が終端する有端線路状に形成されている。グランド用内部電極54Aは、積層方向の天面側から視て辺X2に沿って延伸しており、辺Y1と辺Y2との近傍で両端が終端する有端線路状に形成されている。グランド用ビア電極52Bは、辺X1に沿って等間隔に配列されており、グランド用内部電極52Aに重なって接続されている。グランド用ビア電極54Bは、辺X2に沿って等間隔に配列されており、グランド用内部電極54Aに重なって接続されている。
 また、基材52は、積層方向から視てグランド用内部電極52A,54Aが設けられていない領域が、配線領域10として構成されている。基材52の配線領域10は、高周波回路部の接続配線を構成する内部電極とビア電極とが形成されている。
 基材53は、外縁付近の一部に、グランド用内部電極53A,55Aとグランド用ビア電極53B,55Bとが形成されている。グランド用内部電極53Aは、積層方向の天面側から視て辺Y1に沿って延伸しており、辺X1と辺X2との近傍で両端が終端する有端線路状に形成されている。グランド用内部電極55Aは、積層方向の天面側から視て辺Y2に沿って延伸しており、辺X1と辺X2との近傍で両端が終端する有端線路状に形成されている。グランド用ビア電極53Bは、辺Y1に沿って等間隔に配列されており、グランド用内部電極53Aに重なって接続されている。グランド用ビア電極55Bは、辺Y2に沿って等間隔に配列されており、グランド用内部電極55Aに重なって接続されている。
 また、基材53は、積層方向から視てグランド用内部電極53A,55Aが設けられていない領域が、配線領域10として構成されている。基材53の配線領域10は、高周波回路部の接続配線を構成する内部電極およびビア電極が形成されている。なお、基材53の配線領域10は、前述のグランド用ビア電極52B,54Bに接続されている内部電極やビア電極が形成されていてもよい。
 基材56は、積層方向から視て全域が、配線領域10として構成されている。基材56の配線領域10は、高周波回路部の接続配線を構成する内部電極およびビア電極が形成されている。また、基材56の配線領域10は、前述のグランド用ビア電極52B,53B,54B,55Bに接続されている内部電極やビア電極が形成されている。これらの内部電極やビア電極は、グランド用の底面電極45にも接続されている。
 このようにグランド用内部電極52A~55Aが積層部42に形成されているため、グランド用内部電極52A~55Aは、図4(B)に示すように積層方向の天面側から視ると、積層部42の内部で、無端状に連なっている。
 このような構成の高周波モジュール41においても、第1の実施形態と同様な効果が得られる。
 次に、本発明の第3の実施形態に係る高周波モジュールについて説明する。
 図5(A)は、第3の実施形態に係る高周波モジュール61の分解斜視図である。図5(B)は、高周波モジュール61を積層方向の天面側から視た透過図である。
 高周波モジュール61は、積層部62を備えている。積層部62は、基材の層数が4であり、基材71,72,73,76を備えている。基材71は積層部62の天面を構成しており、基材71の天面には、RF-IC63および複数の受動素子64が搭載されている。基材76は、積層部62の底面を構成しており、基材76の底面には、グランド用の底面電極65が形成されている。基材71,72,73,76は、記載順に従った順番で、積層部62の天面側から底面側に掛けて積層されている。
 基材71は、天面に天面電極が形成されており、天面電極に接続されているビア電極が内部に形成されている。
 基材72は、外縁付近の一部に、グランド用内部電極72Aとグランド用ビア電極72Bとが形成されている。グランド用内部電極72Aは、積層方向の天面側から視て辺X1および辺Y1に沿って延伸しており、辺X2や辺Y2との近傍で両端が終端する有端線路状に形成されている。グランド用ビア電極72Bは、辺X1および辺Y1に沿って等間隔に配列されており、グランド用内部電極72Aに重なって接続されている。
 また、基材72は、積層方向から視てグランド用内部電極72Aが設けられていない領域が、配線領域10として構成されている。基材72の配線領域10は、高周波回路部の接続配線を構成する内部電極とビア電極とが形成されている。
 基材73は、外縁付近の一部に、グランド用内部電極73Aとグランド用ビア電極73Bとが形成されている。グランド用内部電極73Aは、積層方向の天面側から視て辺X2および辺Y2に沿って延伸しており、辺X1と辺Y1との近傍で両端が終端する有端線路状に形成されている。グランド用ビア電極73Bは、辺X2および辺Y2に沿って等間隔に配列されており、グランド用内部電極73Aに重なって接続されている。
 また、基材73は、積層方向から視てグランド用内部電極73Aが設けられていない領域が、配線領域10として構成されている。基材73の配線領域10は、高周波回路部の接続配線を構成する内部電極およびビア電極が形成されている。なお、基材73の配線領域10は、前述のグランド用ビア電極72Bに接続されている内部電極やビア電極が形成されていてもよい。
 基材76は、積層方向から視て全域が、配線領域10として構成されている。基材76の配線領域10は、高周波回路部の接続配線を構成する内部電極およびビア電極が形成されている。また、基材76の配線領域10は、前述のグランド用ビア電極72B,73Bに接続されている内部電極やビア電極が形成されている。これらの内部電極やビア電極は、グランド用の底面電極65にも接続されている。
 このようにグランド用内部電極72A,73Aが積層部62に形成されているため、グランド用内部電極72A,73Aは、図5(B)に示すように積層方向の天面側から視ると、積層部62の内部で、無端状に連なっている。
 このような構成の高周波モジュール61においても、第1の実施形態と同様な効果が得られる。
1,41,61…高周波モジュール
2,42,62…積層部
3,4,45,65…底面電極
5…底面側レジスト部
6…開口部
7…天面電極
8…天面側レジスト部
10…配線領域
11…高周波回路部
12…アンテナ
13,43,63…RF-IC
14,44,64…受動素子
15…低域通過フィルタ回路
16…整合回路
21…外部基板
23,24…部品搭載電極
31,32,33,34,35,36,51,52,53,56,71,72,73,76…基材
32A,33A,34A,35A,52A,53A,54A,55A,72A,73A…グランド用内部電極
32B,33B,34B,35B,52B,53B,54B,55B,72B,73B…グランド用ビア電極

Claims (7)

  1.  複数の基材を積層方向に積層してなる積層部と、
     前記積層部の積層方向の一方主面に設けられている複数の底面電極と、
     前記積層部の内部を通過して設けられており、少なくともいずれかの前記底面電極に接続されている高周波回路部と、
     それぞれ、前記積層部のいずれかの層間に設けられてグランド用の前記底面電極に接続されており、前記積層部の外縁に沿って前記高周波回路部の外側を延伸する有端線路からなり、前記積層方向から透視すると互いに無端状に連なっている、複数のグランド用内部電極と、
     を備える高周波モジュール。
  2.  前記高周波回路部は、前記積層部の一方主面とは反対側の他方主面に搭載される表面実装型素子を備え、
     前記グランド用の底面電極は、積層方向から透視すると前記高周波回路部に重なっている、
     請求項1に記載の高周波モジュール。
  3.  前記複数のグランド用内部電極それぞれの端部は、前記積層方向から透視すると前記積層部の角部分で互いに重なり合っている、
     請求項1または2に記載の高周波モジュール。
  4.  前記積層部は、第1乃至第4の基材を含む立方体であり、
     前記複数のグランド用内部電極として、
     前記積層方向から視て前記積層部の第1の辺に沿って前記第1の基材に設けられている第1のグランド用内部電極と、
     前記第1の辺に直交する第2の辺に沿って前記第2の基材に設けられている第2のグランド用内部電極と、
     前記第2の辺に直交する第3の辺に沿って前記第3の基材に設けられている第3のグランド用内部電極と、
     前記第3の辺に直交する第4の辺に沿って前記第4の基材に設けられている第4のグランド用内部電極と、
     を備える、請求項1~3のいずれかに記載の高周波モジュール。
  5.  前記第1の基材と前記第2の基材と前記第3の基材と前記第4の基材とは、記載順に従った順番で積層方向に並んでいる、請求項4に記載の高周波モジュール。
  6.  前記積層部は、第1および第2の基材を含む立方体であり、
     前記複数のグランド用内部電極として、
     前記積層方向から視て前記積層部の第1の辺に沿って前記第1の基材に設けられている第1のグランド用内部電極と、
     前記第1の辺に対して直交する第2の辺に沿って前記第2の基材に設けられている第2のグランド用内部電極と、
     前記第2の辺に対して直交する第3の辺に沿って前記第1の基材に設けられている第3のグランド用内部電極と、
     前記第3の辺に対して直交する第4の辺に沿って前記第2の基材に設けられている第4のグランド用内部電極と、
    を備える、請求項1~3のいずれかに記載の高周波モジュール。
  7.  前記積層部は、第1および第2の基材を含む立方体であり、
     前記複数のグランド用内部電極として、
     前記積層方向から視て前記積層部の第1の辺と前記第1の辺に直交する第2の辺とに沿って前記第1の基材に設けられている第1のグランド用内部電極と、
     前記第2の辺に直交する第3の辺と前記第3の辺に直交する第4の辺に沿って前記第2の基材に設けられている第2のグランド用内部電極と、を備える、請求項1~3のいずれかに記載の高周波モジュール。
PCT/JP2013/080189 2012-12-07 2013-11-08 高周波モジュール WO2014087792A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201390000956.0U CN204994110U (zh) 2012-12-07 2013-11-08 高频模块
JP2014528365A JP5610111B1 (ja) 2012-12-07 2013-11-08 高周波モジュール
US14/686,922 US9437559B2 (en) 2012-12-07 2015-04-15 High-frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012267909 2012-12-07
JP2012-267909 2012-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/686,922 Continuation US9437559B2 (en) 2012-12-07 2015-04-15 High-frequency module

Publications (1)

Publication Number Publication Date
WO2014087792A1 true WO2014087792A1 (ja) 2014-06-12

Family

ID=50883218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080189 WO2014087792A1 (ja) 2012-12-07 2013-11-08 高周波モジュール

Country Status (4)

Country Link
US (1) US9437559B2 (ja)
JP (1) JP5610111B1 (ja)
CN (1) CN204994110U (ja)
WO (1) WO2014087792A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124035A1 (ja) * 2020-12-11 2022-06-16 株式会社村田製作所 高周波モジュールおよび通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221273A1 (ja) * 2017-06-02 2018-12-06 株式会社村田製作所 高周波モジュール及び通信装置
CN113013567A (zh) * 2021-01-29 2021-06-22 中国电子科技集团公司第三十八研究所 基于siw多馈网络的芯片-封装-天线一体化结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106097A (ja) * 1989-09-20 1991-05-02 Matsushita Electric Ind Co Ltd 駆動回路装置
JPH0652191U (ja) * 1992-12-17 1994-07-15 株式会社村田製作所 多層回路基板
JPH07240595A (ja) * 1994-03-01 1995-09-12 Pfu Ltd シールド機能を備えたプリント板
JP2000040895A (ja) * 1998-07-24 2000-02-08 Sumitomo Metal Electronics Devices Inc 高周波用基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669255B2 (ja) * 2000-09-19 2005-07-06 株式会社村田製作所 セラミック多層基板の製造方法および未焼成セラミック積層体
US7260890B2 (en) * 2002-06-26 2007-08-28 Georgia Tech Research Corporation Methods for fabricating three-dimensional all organic interconnect structures
JP2007027683A (ja) * 2005-06-15 2007-02-01 Ngk Spark Plug Co Ltd 配線基板及びその製造方法
JP4557002B2 (ja) * 2005-07-01 2010-10-06 株式会社村田製作所 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート
US20070215962A1 (en) * 2006-03-20 2007-09-20 Knowles Elecronics, Llc Microelectromechanical system assembly and method for manufacturing thereof
DE112010001927B4 (de) * 2009-06-11 2018-02-22 Murata Manufacturing Co., Ltd. Hochfrequenzschaltermodul
JP5617829B2 (ja) * 2011-05-31 2014-11-05 株式会社村田製作所 コモンモードチョークコイルおよび高周波部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106097A (ja) * 1989-09-20 1991-05-02 Matsushita Electric Ind Co Ltd 駆動回路装置
JPH0652191U (ja) * 1992-12-17 1994-07-15 株式会社村田製作所 多層回路基板
JPH07240595A (ja) * 1994-03-01 1995-09-12 Pfu Ltd シールド機能を備えたプリント板
JP2000040895A (ja) * 1998-07-24 2000-02-08 Sumitomo Metal Electronics Devices Inc 高周波用基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124035A1 (ja) * 2020-12-11 2022-06-16 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
US9437559B2 (en) 2016-09-06
JP5610111B1 (ja) 2014-10-22
CN204994110U (zh) 2016-01-20
US20150221600A1 (en) 2015-08-06
JPWO2014087792A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP4711026B2 (ja) 複合モジュール
WO2010134335A1 (ja) 表面実装用のデバイスおよびコンデンサー素子
JP5574073B2 (ja) 高周波モジュール
JP5817925B2 (ja) 高周波モジュール
JP6687115B2 (ja) Esd保護機能付き実装型複合部品
JP2008060426A (ja) 電子部品モジュール
JP5356520B2 (ja) 配線基板、フィルタデバイスおよび携帯機器
JP5610111B1 (ja) 高周波モジュール
JP2006295111A (ja) 積層型多連バリスタ−ノイズフィルター複合素子
JP6477991B2 (ja) Lcデバイス、lcデバイスの製造方法
JP5817954B1 (ja) 部品内蔵基板
JP6102770B2 (ja) 高周波モジュール
JP6662204B2 (ja) 電子部品
JP6256575B2 (ja) 高周波モジュール
JP5846187B2 (ja) 部品内蔵モジュール
JP4849859B2 (ja) 積層回路基板及びこれを具えた携帯型電子機器
WO2021049399A1 (ja) 電子部品モジュール
JP6083143B2 (ja) チップインダクタ内蔵配線基板
JP2007189396A (ja) バラン
JPWO2006085465A1 (ja) Lcフィルタ複合モジュール
JP2007150181A (ja) 積層型実装構造体
JP2004071962A (ja) 積層インダクタ
JPWO2011132476A1 (ja) 積層基板を備えた電子部品
JP2009049242A (ja) 電子部品内蔵基板
JP2014086680A (ja) 積層コンデンサおよびその実装構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000956.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014528365

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861274

Country of ref document: EP

Kind code of ref document: A1