WO2016092671A1 - ダクト式空気調和システム - Google Patents

ダクト式空気調和システム Download PDF

Info

Publication number
WO2016092671A1
WO2016092671A1 PCT/JP2014/082860 JP2014082860W WO2016092671A1 WO 2016092671 A1 WO2016092671 A1 WO 2016092671A1 JP 2014082860 W JP2014082860 W JP 2014082860W WO 2016092671 A1 WO2016092671 A1 WO 2016092671A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
room temperature
conditioned
air conditioning
air conditioner
Prior art date
Application number
PCT/JP2014/082860
Other languages
English (en)
French (fr)
Inventor
憂樹 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/082860 priority Critical patent/WO2016092671A1/ja
Priority to AU2014413429A priority patent/AU2014413429B2/en
Priority to EP14897425.6A priority patent/EP3054233A4/en
Priority to US15/517,037 priority patent/US10234159B2/en
Priority to JP2016563354A priority patent/JPWO2016092671A1/ja
Priority to NZ731322A priority patent/NZ731322A/en
Publication of WO2016092671A1 publication Critical patent/WO2016092671A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F2003/0446Systems in which all treatment is given in the central station, i.e. all-air systems with a single air duct for transporting treated air from the central station to the rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present invention relates to a duct-type air conditioning system that supplies conditioned air to a plurality of air-conditioned spaces by a duct connected to an air conditioner.
  • a conventional duct-type air conditioning system represented by Patent Document 1 includes an outdoor unit that constitutes an air conditioner, an indoor unit that constitutes an air conditioner, a room temperature sensor, and a duct connected to an outlet of the indoor unit.
  • a plurality of duct branch portions branched from the duct and disposed in a plurality of air-conditioned spaces, a plurality of dampers each disposed in the plurality of duct branch portions and opening and closing an air passage in the duct branch portion, and a plurality of duct branch portions And a plurality of air outlets that are arranged at the respective end portions and exhaust conditioned air to a plurality of air-conditioned spaces.
  • the air-conditioning of each air-conditioned space is performed by opening and closing the damper.
  • An air conditioner used in a conventional duct type air conditioning system discharges conditioned air based on a temperature difference between a set temperature of a room temperature set by a user and a room temperature detected in each of a plurality of air-conditioned spaces.
  • the conventional duct-type air conditioning system cannot supply conditioned air suitable for the air-conditioned space desired by the user from among the plurality of air-conditioned spaces. Therefore, in order to supply conditioned air suitable for the air-conditioned space desired by the user from among the plurality of air-conditioned spaces, when air-conditioning the air-conditioned space, air conditioning is performed from the plurality of air-conditioned spaces.
  • the user must select a target air-conditioned space and the user must select a room temperature sensor located near the air-conditioned space to be air-conditioned, and the conventional duct-type air conditioning system has poor user convenience. There was a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a duct-type air conditioning system capable of improving user convenience.
  • a duct type air conditioning system is disposed in an air conditioner and a plurality of air-conditioned spaces to which conditioned air of the air conditioner is supplied.
  • the air conditioner has an air conditioning control amount calculation unit that calculates a control amount of the air conditioner based on a room temperature detected by the room temperature sensor determined by the control device. And butterflies.
  • the duct type air conditioning system according to the present invention has an effect of improving user convenience.
  • Configuration diagram of a duct-type air conditioning system according to Embodiment 1 of the present invention Functional block diagram of each of the indoor unit, control device, and controller constituting the duct type air conditioning system
  • Functional block diagram of room temperature determination unit The figure which shows the example of a sensor setting table The flowchart which shows operation
  • Functional block diagram of the room temperature determination unit of the duct type air conditioning system according to Embodiment 2 of the present invention The flowchart which shows operation
  • FIG. 1 is a configuration diagram of a duct-type air conditioning system according to Embodiment 1 of the present invention.
  • the duct type air conditioning system 1 includes an indoor unit 2 constituting an air conditioner, an outdoor unit 3 constituting the air conditioner and connected to the indoor unit 2, a control device 4 for controlling the air conditioner, and a control line.
  • a plurality of controllers 6-1 and 6-2 that transmit various information to the control device 4, and conditioned air from the indoor unit 2 is supplied to a plurality of air-conditioned spaces 10-1, 10-2, 10-3, A duct 7 to be supplied to 10-4, and a plurality of duct branch portions 7-1, 7-2 branched from the duct 7 and arranged in the air-conditioned spaces 10-1, 10-2, 10-3, 10-4 7-3, 7-4, and a plurality of duct branch portions 7-1, 7-2, 7-3, 7-4, which are respectively arranged to open and close the air path in the duct under the control of the control device 4.
  • a room temperature sensor 11-1 for detecting the room temperature of the air-conditioned space 10-1
  • a room temperature sensor 11-2 for detecting the room temperature of the air-conditioned space 10-2, and a room temperature of the air-conditioned space 10-3. It includes a room temperature sensor 11-3 and a room temperature sensor 11-4 that detects the room temperature of the air-conditioned space 10-4.
  • the control device 4, the indoor unit 2, the outdoor unit 3, the plurality of controllers 6-1, 6-2, and the plurality of dampers 9-1, 9-2, 9-3, 9-4 are connected by a control line 5. .
  • the plurality of dampers 9-1, 9-2, 9-3, 9-4 are individually controlled to be opened / closed by the control device 4.
  • Room temperature information 11 a detected by the room temperature sensors 11-1, 11-2, 11-3, and 11-4 is transmitted to the control device 4 through the control line 5.
  • various settings for individually controlling the air conditioning in the plurality of air-conditioned spaces 10-1, 10-2, 10-3, and 10-4 are performed. Is transmitted to the control device 4 as controller output information 6a.
  • the control device 4 is used in the duct type air conditioning system of FIG. 1, the control device 4 is used.
  • the control device 4 is configured to be removable from the air conditioner, and a plurality of dampers 9-1, 9-2, 9-3 are provided. , 9-4 is removed from the air conditioner when the control is not necessary, and if control of the plurality of dampers 9-1, 9-2, 9-3, 9-4 is required, the air conditioner is removed.
  • the control device 4 may be connected to the machine.
  • the air-conditioner can be controlled with the intake temperature of the indoor unit as the control room temperature.
  • the same air conditioner can be used in the system, and the air conditioner can be shared.
  • the duct type air conditioning system 1 of FIG. 1 uses one duct and a plurality of duct branch parts, the configuration of the duct is not limited to the illustrated example.
  • the duct-type air conditioning system 1 connects one end of a plurality of ducts to the indoor unit 2 and arranges the other end of the plurality of ducts in a plurality of air-conditioned spaces, thereby providing a plurality of conditioned air from the indoor unit 2.
  • the structure which supplies directly to several air-conditioned space with a duct of may be sufficient.
  • the duct type air conditioning system 1 of FIG. 1 uses a duct with a built-in damper, the duct type air conditioning system 1 can control air conditioning even when a duct without a built-in damper is used.
  • FIG. 2 is a functional block diagram of each of the indoor unit, the control device, and the controller constituting the duct type air conditioning system.
  • the controllers 6-1 and 6-2 start the air-conditioning operation and the room temperature setting operation of the air-conditioned space that the user desires to air-condition out of the plurality of air-conditioned spaces 10-1, 10-2, 10-3, and 10-4.
  • a room temperature sensor used for air conditioning control of the air-conditioned space where the user desires air conditioning is set from the air conditioning operation unit 61 that performs such operations and the plurality of room temperature sensors 11-1, 11-2, 11-3, and 11-4.
  • a room temperature sensor setting unit 62 and a communication unit 63 that communicates with the control device 4 are provided.
  • the control device 4 uses a communication unit 41 that communicates with the indoor unit 2, a controller output information 6a from the controllers 6-1 and 6-2, and a room temperature sensor 11 corresponding to the air-conditioned space using the room temperature information 11a from the room temperature sensor.
  • a room temperature determination unit 42 that outputs room temperature information 42a detected by the determined room temperature sensor, a communication unit 43 that communicates with the controllers 6-1 and 6-2, and a plurality of dampers 9-1, And a damper control unit 44 for performing opening / closing control of 9-2, 9-3, 9-4.
  • the indoor unit 2 uses the communication unit 21 that communicates with the control device 4, the room temperature information 42a from the room temperature determination unit 42, and the controller output information 6a to determine the temperature determined by the room temperature determination unit 42 and the air-conditioned space.
  • An air conditioning control amount calculation unit 22 that calculates a temperature difference from the set temperature and determines an air conditioning control amount of the air conditioner based on the calculated temperature difference, and the indoor unit 2 according to the air conditioning control amount from the air conditioning control amount calculation unit 22
  • an air conditioning control unit 23 that performs supply control of the conditioned air.
  • the air conditioning operation unit 61 When the air conditioning operation unit 61 performs an air conditioning operation start operation or a room temperature setting operation in an air-conditioned space where the user desires air conditioning, the air conditioning operation unit 61 generates operation information 61a indicating the operation content.
  • room temperature sensor setting information 62a representing the room temperature sensor set by the room temperature sensor setting unit 62 is generated.
  • the operation information 61a and the room temperature sensor setting information 62a are transmitted as the controller output information 6a to the control device 4 and the indoor unit 2, and the room temperature information 42a generated by the room temperature determination unit 42 is transmitted to the indoor unit 2.
  • FIG. 3 is a functional block diagram of the room temperature determination unit.
  • the room temperature determination unit 42 illustrated in FIG. 3 is a sensor setting table that is sensor setting information that stores a plurality of air-conditioned spaces and room temperature sensors set by the room temperature sensor setting unit 62 in association with each other based on the room temperature sensor setting information 62a.
  • the air-conditioned space specifying unit 422 for specifying the air-conditioned space for starting the air-conditioning operation based on the operation information 61a, and the air-conditioned space specified by the air-conditioned space specifying unit 422 are collated with the sensor setting table 421.
  • a room temperature information generation unit 423 that determines a room temperature sensor corresponding to the air-conditioned space and generates room temperature information of the room temperature detected by the determined room temperature sensor.
  • the sensor setting table 421 is not limited to a table in which a plurality of air-conditioned spaces and a plurality of room temperature sensors are associated with each other using the room temperature sensor setting unit 62.
  • the control device 4 directly does not use the room temperature sensor setting unit 62.
  • the sensor setting table 421 may be registered.
  • FIG. 4 is a diagram showing an example of a sensor setting table.
  • the sensor setting table 421 includes a plurality of air-conditioned spaces 10-1, 10-2, 10-3, 10-4 and a plurality of room temperature sensors 11-1, 11-2, 11-3, 11 shown in FIG. -4 are stored in association with each other.
  • the air-conditioned space 10-1 and the room temperature sensor 11-1 are associated with each other, and the air-conditioned space 10-2 and the room temperature sensor 11-2 are associated with each other. It is assumed that the space 10-3 and the room temperature sensor 11-3 are associated with each other, and the air-conditioned space 10-4 and the room temperature sensor 11-4 are associated with each other.
  • FIG. 5 is a flowchart showing the operation of the duct type air conditioning system according to Embodiment 1 of the present invention.
  • the room temperature sensor setting unit 62 performs a setting operation of a room temperature sensor used for air conditioning control of the air-conditioned space that the user desires to air-condition.
  • the sensor setting table 421 is set by the plurality of air-conditioned spaces and the room temperature sensor setting unit 62.
  • the room temperature sensors are stored in association with each other (step S1).
  • step S2 If the air-conditioned space specifying unit 422 has not performed the air-conditioning operation start operation of the air-conditioned spaces 10-1, 10-2, 10-3, 10-4 in the air-conditioning operation unit 61 (step S2, No), step S2
  • the air-conditioned space specifying unit 422 determines that the air-conditioned space from which the air-conditioned operation is started is the air-conditioned space 10 ⁇ 1 (step S3)
  • the room temperature information generation unit 423 collates the air-conditioned space specified by the air-conditioned space specifying unit 422 with the sensor setting table 421, thereby corresponding to the air-conditioned space.
  • the room temperature information 42a of the room temperature detected by the determined room temperature sensor is generated (step S4).
  • the air conditioning control amount calculation unit 22 uses the room temperature information 42a from the room temperature determination unit 42 and the controller output information 6a, and the temperature difference between the room temperature determined by the room temperature determination unit 42 and the set temperature of the air-conditioned space 10-1. (Step S5), the air conditioning control amount of the air conditioner corresponding to the temperature difference is calculated (step S6), and the air conditioning control unit 23 performs air conditioning control according to the air conditioning control amount (step S7).
  • the conventional technology when air-conditioning the air-conditioned space, the user must select the air-conditioned space to be air-conditioned from a plurality of air-conditioned spaces and also select a room temperature sensor located near the air-conditioned space to be air-conditioned. In other words, the conventional technique has a problem that user convenience is poor.
  • the duct type air conditioning system 1 of Embodiment 1 when air-conditioning a plurality of air-conditioned spaces at the same time, the room temperature sensor provided in the air-conditioned space where the operation start operation is performed is automatically performed.
  • the air conditioning control can be performed using the room temperature identified and detected by the identified room temperature sensor. Therefore, the convenience of the user can be improved.
  • Embodiment 2 the configuration example in which the air-conditioning control is performed when the air-conditioning operation of one air-conditioned space is started has been described. However, in the second embodiment, the air-conditioning operation is started in a plurality of air-conditioned spaces. A configuration example for simultaneously performing air-conditioning control of the air-conditioned space will be described.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.
  • FIG. 6 is a functional block diagram of a room temperature determination unit included in the duct type air conditioning system according to Embodiment 2 of the present invention.
  • the room temperature determination unit 42 illustrated in FIG. 6 includes an average of room temperatures detected by a plurality of room temperature sensors determined by the sensor setting table 421, the air-conditioned space specifying unit 422, the room temperature information generation unit 423, and the room temperature information generation unit 423. And an average temperature calculation unit 426 for calculating the temperature.
  • the average temperature calculated by the average temperature calculation unit 426 is output as room temperature information 42a.
  • FIG. 7 is a flowchart showing the operation of the duct type air conditioning system according to Embodiment 2 of the present invention.
  • the room temperature sensor setting unit 62 a setting operation of a room temperature sensor used for air conditioning control of the air-conditioned space that the user desires to air-condition is performed.
  • the room temperature sensors are stored in association with each other (step S21).
  • step S22 If the air-conditioned space specifying unit 422 does not perform the air-conditioning operation start operation with the air-conditioned spaces 10-1, 10-2, 10-3, 10-4 in the air-conditioning operation unit 61 (No in step S22), step When the process of S22 is continued and, for example, the air-conditioning operation start operation of the air-conditioned spaces 10-1 and 10-3 is performed (Yes in step S22), the air-conditioned space specifying unit 422 performs a plurality of air-conditioning operations.
  • the air-conditioned spaces 10-1 and 10-3 are specified (step S23), and the room temperature information generation unit 423 refers to the sensor setting table 421 to thereby correspond to the room temperature sensor 11-1 and the air-conditioned space corresponding to the air-conditioned space 10-1.
  • the room temperature sensor 11-3 corresponding to 10-3 is determined, room temperature information of a plurality of room temperatures detected by the determined room temperature sensor is generated (step S24), and the average temperature calculation unit 426 is the room temperature information generation unit 4 Calculating the average temperature of room temperature using a plurality of room information room temperature generated in 3 (step S25).
  • FIG. 8 is a diagram showing the room temperature detected by the room temperature sensors arranged in the plurality of air-conditioned spaces set in the sensor setting table and the state of the operation start operation of the air-conditioned space.
  • 8 shows a plurality of air-conditioned spaces 10-1, 10-2, 10-3, 10-4 and a plurality of room temperature sensors 11-1, 11-2, 11-3, 11 set in the sensor setting table 421. Correspondence with -4 is shown. Further, FIG. 8 shows the room temperature detected by each of the plurality of room temperature sensors 11-1, 11-2, 11-3, and 11-4 and whether the operation start operation is performed by the air conditioning operation unit 61 by ON or OFF. Yes.
  • the operation start operation column shown in FIG. 8 includes the air-conditioned spaces 10-1 and 10-3. ON, and the air-conditioned spaces 10-2 and 10-4 are OFF. Since the room temperatures detected by the plurality of room temperature sensors 11-1 and 11-3 provided in the plurality of air-conditioned spaces 10-1 and 10-3 are 24 ° C. and 26 ° C., respectively, the average temperature calculation unit 426 The calculated average temperature is 25 ° C.
  • the air conditioning control amount determination unit 22 uses the room temperature information 42a and the controller output information 6a from the room temperature determination unit 42 to calculate a temperature difference between the average temperature calculated by the room temperature determination unit 42 and the set temperature of the air-conditioned space. Then, the air conditioning control amount of the air conditioner corresponding to the temperature difference is calculated (step S27), and the air conditioning control unit 23 performs air conditioning control according to the air conditioning control amount (step S28).
  • the control device of the second embodiment determines the plurality of room temperature sensors provided in the plurality of air-conditioned spaces for which the air-conditioning operation start operation has been performed by the controller.
  • the control amount of the air conditioner is calculated based on the average temperature of the room temperature detected by the plurality of room temperature sensors determined in (1).
  • the duct-type air conditioning system 1 automatically uses the room temperature detected by the room temperature sensor provided in the air-conditioned space where the operation start operation is performed when simultaneously air-conditioning a plurality of air-conditioned spaces. Air conditioning control can be performed. Therefore, the convenience of the user is improved, and air conditioning control that is not biased toward a specific room temperature sensor can be performed, and the comfort of the user can be improved.
  • Embodiment 3 FIG.
  • the configuration example in which the air-conditioning control is performed using the average temperature of the room temperature detected by the plurality of room temperature sensors when the air-conditioning operation of the plurality of air-conditioned spaces is simultaneously started has been described.
  • the structural example which performs air-conditioning control using the room temperature weighted according to the number of blower outlets is demonstrated.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.
  • FIG. 9 is a functional block diagram of each of the indoor unit, the control device, and the controller that constitute the duct type air conditioning system according to Embodiment 3 of the present invention.
  • the controllers 6-1 and 6-2 are provided with a plurality of air outlets provided in a plurality of air-conditioned spaces in addition to the air conditioning operation unit 61, the room temperature sensor setting unit 62, and the communication unit 63, respectively. It is the point which has the blower outlet number setting part 64 for setting the number of nozzles.
  • the outlet number information 64 a set by the outlet number setting unit 64 is included in the controller output information 6 a and is transmitted to the room temperature determination unit 42 via the communication unit 63 and the communication unit 43.
  • FIG. 10 is a functional block diagram of the room temperature determination unit shown in FIG.
  • the room temperature determination unit 42 illustrated in FIG. 10 includes a plurality of sensor information generated by the room temperature information generation unit 423 based on the sensor setting table 421, the air-conditioned space identification unit 422, the room temperature information generation unit 423, and the outlet number information 64a.
  • a weighted average temperature calculation unit 427 that calculates a temperature obtained by weighted averaging of the room temperature detected by the room temperature sensor.
  • the weighted average temperature calculated by the weighted average temperature calculation unit 427 is output as room temperature information 42a.
  • the weighted average temperature calculation unit 427 calculates the weighted average temperature using the following formula. However, n is the number of a plurality of outlets arranged in the air-conditioned space where the air-conditioning operation is started, T is the temperature detected by the room temperature sensor arranged in the air-conditioned space where the air-conditioning operation is started, and N is It is the sum total of the blower outlet of the several to-be-conditioned space which started the air-conditioning driving
  • operation. Weighted average temperature ⁇ (n ⁇ T) / N
  • FIG. 11 is a flowchart showing the operation of the duct type air conditioning system according to Embodiment 3 of the present invention.
  • the room temperature sensor setting unit 62 performs a setting operation of a room temperature sensor used for air conditioning control of the air-conditioned space that the user desires to air-condition.
  • the sensor setting table 421 is set by the plurality of air-conditioned spaces and the room temperature sensor setting unit 62.
  • the room temperature sensors are stored in association with each other (step S31).
  • step S32 If the air-conditioned space specifying unit 422 has not performed the air-conditioning operation start operation with the air-conditioned spaces 10-1, 10-2, 10-3, 10-4 in the air-conditioning operation unit 61 (step S32, No), step If the process of S32 is continued and, for example, an air-conditioning operation start operation is performed for the air-conditioned spaces 10-1 and 10-3 (Yes in step S32), the air-conditioned space specifying unit 422 performs a plurality of air-conditioning operations.
  • the air-conditioned spaces 10-1 and 10-3 are specified (step S33), and the room temperature information generation unit 423 refers to the sensor setting table 421 to thereby associate the room temperature sensor 11-1 and the air-conditioned space corresponding to the air-conditioned space 10-1.
  • the room temperature sensor 11-3 corresponding to 10-3 is determined, and room temperature information of a plurality of room temperatures detected by the determined room temperature sensor is generated (step S34).
  • the weighted average temperature calculation unit 427 calculates a temperature obtained by weighted and averaging the room temperature using the plurality of room temperature information generated by the room temperature information generation unit 423 (step S35).
  • the room temperature detected by the room temperature sensor 11-1 is 24 ° C.
  • the room temperature detected by the room temperature sensor 11-3 is 26 ° C.
  • the number of outlets arranged in the air-conditioned space 10-1 is four.
  • the weighted average temperature is 25 ° C.
  • the air conditioning control amount determination unit 22 uses the room temperature information 42a from the room temperature determination unit 42 and the controller output information 6a to calculate the temperature difference between the weighted average temperature calculated by the room temperature determination unit 42 and the set temperature of the air-conditioned space.
  • the air conditioning control amount corresponding to the temperature difference is calculated (step S36), and the air conditioning control unit 23 performs air conditioning control according to the air conditioning control amount (step S38).
  • the control device determines a plurality of room temperature sensors provided in the plurality of air-conditioned spaces for which the air-conditioning operation start operation has been performed by the controller, and the air conditioner A room temperature detected by a plurality of room temperature sensors determined by the apparatus is weighted and averaged by the number of a plurality of air outlets arranged at ends of the plurality of ducts, and the air conditioner is based on the weighted and averaged temperature. The amount of control is calculated.
  • the duct-type air conditioning system 1 can not only obtain the same effects as those of the second embodiment, but also can quickly bring the room temperature of the air-conditioned space that is difficult to be air-conditioned closer to the set temperature, thereby improving user comfort. Further improvement can be achieved.
  • Embodiment 4 FIG.
  • the configuration example in which the air-conditioning control is performed using the room temperature that is weighted corresponding to the number of outlets has been described.
  • priorities are set for a plurality of air-conditioned spaces
  • a configuration example in which air conditioning control is preferentially performed from a high air-conditioned space will be described.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.
  • FIG. 12 is a functional block diagram of each of the indoor unit, the control device, and the controller constituting the duct type air conditioning system according to Embodiment 4 of the present invention.
  • the controllers 6-1 and 6-2 have priorities for setting priorities in a plurality of air-conditioned spaces in addition to the air conditioning operation unit 61, the room temperature sensor setting unit 62, and the communication unit 63.
  • This is a point having a rank setting unit 65.
  • the priority order information 65 a set by the priority order setting unit 65 is included in the controller output information 6 a and transmitted to the room temperature determination unit 42 via the communication unit 63 and the communication unit 43.
  • FIG. 13 is a functional block diagram of the room temperature determination unit shown in FIG.
  • the room temperature determination unit 42 shown in FIG. 13 includes a plurality of air-conditioned spaces, the room temperature sensors set by the room temperature sensor setting unit 62 based on the room temperature sensor setting information 62a and the priority information 65a, and the priorities of the plurality of air-conditioned spaces. Are matched with each other and stored in the sensor setting table 421A, the air-conditioned space specifying unit 422, and the sensor setting table 421A, so that the priority order is selected from the plurality of air-conditioned spaces specified by the air-conditioned space specifying unit 422.
  • a room temperature information generation unit 423A that determines a room temperature sensor corresponding to the highest air-conditioned space and generates room temperature information of the room temperature detected by the determined room temperature sensor.
  • the room temperature generated by the room temperature information generation unit 423A is output as room temperature information 42a.
  • FIG. 14 is a diagram showing an example of the sensor setting table shown in FIG.
  • the sensor setting table 421A includes a plurality of air-conditioned spaces 10-1, 10-2, 10-3, 10-4 and a plurality of room temperature sensors 11-1, 11-2, 11-3, 11-4, 1 To 4 are stored in association with each other.
  • the air-conditioned space 10-1, the room temperature sensor 11-1, and the priority “4” are associated, and the air-conditioned space 10-2 and the room temperature sensor 11-2 have priority.
  • the priority “3” is associated with the air-conditioned space 10-3, the room temperature sensor 11-3, and the priority “2”.
  • the air-conditioned space 10-4, the room temperature sensor 11-4, and the priority “ 1 ” is assumed to be associated.
  • the priority “1” is the highest and the priority “4” is the lowest.
  • FIG. 15 is a flowchart showing the operation of the duct type air conditioning system according to Embodiment 4 of the present invention.
  • the room temperature sensor setting unit 62 a setting operation of a room temperature sensor used for air conditioning control of an air-conditioned space where the user desires air conditioning is performed.
  • the priority order setting unit 65 performs an operation for setting the priority order of a plurality of air-conditioned spaces. Thereby, a plurality of air-conditioned spaces, room temperature sensors, and priorities are stored in the sensor setting table 421A in association with each other (step S41).
  • step S42 If the air-conditioned space specifying unit 422 has not performed the air-conditioning operation start operation with the air-conditioned spaces 10-1, 10-2, 10-3, 10-4 in the air-conditioning operation unit 61 (No in step S42), step If the process of S42 is continued and, for example, an air-conditioning operation start operation is performed on the air-conditioned spaces 10-1 and 10-3 (Yes in step S42), the air-conditioned space specifying unit 422 performs a plurality of air-conditioning operations.
  • the air-conditioned spaces 10-1 and 10-3 are identified (step S43), and the room temperature information generating unit 423A refers to the sensor setting table 421A, so that the air-conditioned spaces 10- having higher priority than the air-conditioned spaces 10-1 are used.
  • step S44 room temperature information 42a of the room temperature detected by the room temperature sensor 11-3 is generated.
  • the air conditioning control amount calculation unit 22 uses the room temperature information 42a and the controller output information 6a from the room temperature determination unit 42, and the temperature difference between the room temperature determined by the room temperature determination unit 42 and the set temperature of the air-conditioned space 10-3. (Step S45), the air conditioning control amount of the air conditioner corresponding to the temperature difference is calculated (step S46), and the air conditioning control unit 23 performs air conditioning control according to the air conditioning control amount (step S47).
  • the sensor setting information corresponds to the plurality of air-conditioned spaces, the plurality of room temperature sensors, and the priority order of the plurality of air-conditioned spaces.
  • the control device determines a room temperature sensor having a higher priority among a plurality of room temperature sensors provided in the plurality of air-conditioned spaces for which an air conditioning operation start operation has been performed by the controller, and the air conditioner Calculates the control amount of the air conditioner based on the room temperature detected by the room temperature sensor determined by the control device.
  • the duct-type air conditioning system 1 not only obtains the same effect as in the first embodiment, but also preferentially air-conditions any air-conditioned space desired by the user when air-conditioning a plurality of air-conditioned spaces at the same time. It is possible to further improve the comfort of the user.
  • the control amount of the air conditioner according to the second, third, and fourth embodiments when the air conditioning operation start operation of the plurality of air-conditioned spaces is performed by the controller. It is good also as a structure which has a function which selects the operation
  • the duct type air conditioning system is arranged in an air conditioner and a plurality of air-conditioned spaces to which conditioned air of the air conditioner is supplied.
  • the air conditioner has an air conditioning control amount calculation unit that calculates a control amount of the air conditioner based on a room temperature detected by the room temperature sensor determined by the control device.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 ダクト式空気調和システムは、空気調和機と、空気調和機の調和空気が供給される複数の被空調空間に配置された複数のダクトと、複数の被空調空間に設けられた複数の室温センサと、空気調和機を制御する制御装置4と、空気調和機を制御するコントローラ6-1,6-2と、を備え、制御装置4は、複数の被空調空間と複数の室温センサとを対応付けたセンサ設定情報を用いて、コントローラ6-1,6-2で空調運転開始操作が行われた複数の被空調空間の何れかの被空調空間に設けられた室温センサを決定し、前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて空気調和機の制御量を算出する空調制御量算出部22を有する。

Description

ダクト式空気調和システム
 本発明は、空気調和機に繋がるダクトにより複数の被空調空間へ調和空気を供給するダクト式空気調和システムに関する。
 特許文献1に代表される従来のダクト式空気調和システムは、空気調和機を構成する室外機と、空気調和機を構成する室内機と、室温センサと、室内機の吹出口に接続されたダクトと、ダクトから分岐し複数の被空調空間に配置される複数のダクト分岐部と、複数のダクト分岐部内に各々配置されダクト分岐部内の風路を開閉する複数のダンパと、複数のダクト分岐部の端部に各々配置され調和空気を複数の被空調空間に排気する複数の吹出口とを有する。従来のダクト式空気調和システムではダンパが開閉することで各被空調空間の空調が行なわれる。
特開平7-49144号公報
 従来のダクト式空気調和システムに用いられる空気調和機は、ユーザが設定した室温の設定温度と複数の各被空調空間で検出された室温との温度差に基づいて調和空気を排出する。ただし個々の被空調空間で検出される室温が異なるため、従来のダクト式空気調和システムでは、複数の被空調空間の中からユーザが望む被空調空間に適した調和空気を供給することができない。このようなことから、複数の被空調空間の中からユーザが望む被空調空間に適した調和空気を供給するためには、被空調空間の空調を行う際、複数の被空調空間の中から空調対象の被空調空間をユーザが選択すると共に、空調を行う被空調空間の近くに位置する室温センサをユーザが選択しなければならず、従来のダクト式空気調和システムは、ユーザの利便性が悪いという問題点があった。
 本発明は、上記に鑑みてなされたものであって、ユーザの利便性の向上を図ることができるダクト式空気調和システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るダクト式空気調和システムは、空気調和機と、前記空気調和機の調和空気が供給される複数の被空調空間に配置された複数のダクトと、前記複数の被空調空間に設けられた複数の室温センサと、前記空気調和機を制御する制御装置と、前記空気調和機を制御するコントローラと、を備え、前記制御装置は、前記複数の被空調空間と前記複数の室温センサとを対応付けたセンサ設定情報を用いて、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間の何れかの被空調空間に設けられた室温センサを決定し、前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて前記空気調和機の制御量を算出する空調制御量算出部を有することを特徴とする。
 本発明に係るダクト式空気調和システムは、ユーザの利便性の向上を図ることができるという効果を奏する。
本発明の実施の形態1に係るダクト式空気調和システムの構成図 ダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図 室温決定部の機能ブロック図 センサ設定テーブルの例を示す図 本発明の実施の形態1に係るダクト式空気調和システムの動作を示すフローチャート 本発明の実施の形態2に係るダクト式空気調和システムが有する室温決定部の機能ブロック図 本発明の実施の形態2に係るダクト式空気調和システムの動作を示すフローチャート センサ設定テーブルに設定された複数の被空調空間に配置された室温センサで各々検出される室温と、被空調空間の運転開始操作の状態を示す図 本発明の実施の形態3に係るダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図 図9に示す室温決定部の機能ブロック図 本発明の実施の形態3に係るダクト式空気調和システムの動作を示すフローチャート 本発明の実施の形態4に係るダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図 図12に示す室温決定部の機能ブロック図 図13に示すセンサ設定テーブルの例を示す図 本発明の実施の形態4に係るダクト式空気調和システムの動作を示すフローチャート
 以下に、本発明の実施の形態に係るダクト式空気調和システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係るダクト式空気調和システムの構成図である。ダクト式空気調和システム1は、空気調和機を構成する室内機2と、空気調和機を構成し室内機2に接続された室外機3と、空気調和機を制御する制御装置4と、制御線5を介して各種情報を制御装置4へ伝送する複数のコントローラ6-1,6-2と、室内機2からの調和空気を複数の被空調空間10-1,10-2,10-3,10-4へ供給するダクト7と、ダクト7から分岐し被空調空間10-1,10-2,10-3,10-4に配置された複数のダクト分岐部7-1,7-2,7-3,7-4と、複数のダクト分岐部7-1,7-2,7-3,7-4内に各々配置され制御装置4からの制御によりダクト内の風路を開閉する複数のダンパ9-1,9-2,9-3,9-4と、複数のダクト分岐部7-1,7-2,7-3,7-4の端部に各々配置され調和空気を複数の被空調空間10-1,10-2,10-3,10-4に排気する複数の吹出口8-1,8-2,8-3,8-4と、被空調空間10-1の室温を検出する室温センサ11-1と、被空調空間10-2の室温を検出する室温センサ11-2と、被空調空間10-3の室温を検出する室温センサ11-3と、被空調空間10-4の室温を検出する室温センサ11-4とを有する。
 制御装置4、室内機2、室外機3、複数のコントローラ6-1,6-2、および複数のダンパ9-1,9-2,9-3,9-4は制御線5で接続される。複数のダンパ9-1,9-2,9-3,9-4は、制御装置4により個々に開閉制御される。室温センサ11-1,11-2,11-3,11-4で各々検出された室温の室温情報11aは制御線5で制御装置4へ送信される。コントローラ6-1,6-2では、複数の被空調空間10-1,10-2,10-3,10-4における空調を個別に制御するための各種設定が行われ、設定内容を表す情報はコントローラ出力情報6aとして制御装置4に送信される。
 なお、図1のダクト式空気調和システムでは、制御装置4を用いているが、例えば制御装置4を空気調和機から取り外し可能な構成とし、複数のダンパ9-1,9-2,9-3,9-4の制御が不要な場合には空気調和機から制御装置4を取り外し、複数のダンパ9-1,9-2,9-3,9-4の制御が必要な場合には空気調和機に制御装置4を接続する構成でもよい。この構成により複数のダンパの制御が不要なダクト式空気調和システムにおいては、室内機の吸い込み温度を制御室温として空調機を制御することができるため、複数のダンパの制御が不要なダクト式空気調和システムでも同一の空調機を用いることができ、空調機を共通化することができる。また、図1のダクト式空気調和システム1では2つのコントローラと4つのダクト分岐部と4つのダンパとが用いられているが、コントローラ、ダクト分岐部、およびダンパの数は図示例に限定されるものではない。また複数の被空調空間に設けられる吹出口の数は図示例に限定されるものではない。また図1のダクト式空気調和システム1では1本のダクトと複数のダクト分岐部とが用いられているが、ダクトの構成は図示例に限定されるものではない。例えばダクト式空気調和システム1は、複数のダクトの一端を室内機2に繋げ、かつ、複数のダクトの他端を複数の被空調空間へ配置することで、室内機2からの調和空気を複数のダクトで直接複数の被空調空間へ供給する構成でもよい。また図1のダクト式空気調和システム1ではダンパを内蔵したダクトが用いられているが、ダクト式空気調和システム1はダンパを内蔵しないダクトを用いた場合でも空調制御が可能である。
 図2はダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図である。コントローラ6-1,6-2は、複数の被空調空間10-1,10-2,10-3,10-4の中からユーザが空調を望む被空調空間の空調運転開始操作および室温設定操作といった操作を行う空調操作部61と、複数の室温センサ11-1,11-2,11-3,11-4の中からユーザが空調を望む被空調空間の空調制御に用いる室温センサを設定する室温センサ設定部62と、制御装置4と通信を行う通信部63とを備える。制御装置4は、室内機2と通信を行う通信部41と、コントローラ6-1,6-2からのコントローラ出力情報6aと室温センサからの室温情報11aを用いて被空調空間に対応した室温センサを決定し、決定した室温センサで検出された室温の室温情報42aを出力する室温決定部42と、コントローラ6-1,6-2と通信を行う通信部43と、複数のダンパ9-1,9-2,9-3,9-4の開閉制御を行うダンパ制御部44とを備える。室内機2は、制御装置4と通信を行う通信部21と、室温決定部42からの室温情報42aとコントローラ出力情報6aとを用いて、室温決定部42で決定された温度と被空調空間の設定温度との温度差を算出し、算出した温度差に基づいて空気調和機の空調制御量を決定する空調制御量算出部22と、空調制御量算出部22からの空調制御量に従って室内機2の調和空気の供給制御を行う空調制御部23とを備える。
 空調操作部61において、ユーザが空調を望む被空調空間の空調運転開始操作または室温設定操作が行われた場合、空調操作部61では操作内容を示す操作情報61aが生成される。室温センサ設定部62で室温センサの設定が行われた場合、室温センサ設定部62で設定された室温センサを表す室温センサ設定情報62aが生成される。これらの操作情報61aおよび室温センサ設定情報62aはコントローラ出力情報6aとして制御装置4および室内機2に送信され、室温決定部42で生成された室温情報42aは室内機2に送信される。
 図3は室温決定部の機能ブロック図である。図3に示す室温決定部42は、室温センサ設定情報62aに基づいて複数の被空調空間と室温センサ設定部62で設定された室温センサとを対応付けて格納するセンサ設定情報であるセンサ設定テーブル421と、操作情報61aに基づいて空調運転を開始する被空調空間を特定する被空調空間特定部422と、被空調空間特定部422で特定された被空調空間をセンサ設定テーブル421に照合することで被空調空間に対応した室温センサを決定し、決定した室温センサで検出された室温の室温情報を生成する室温情報生成部423とを有する。なおセンサ設定テーブル421は、室温センサ設定部62を用いて複数の被空調空間と複数の室温センサとを対応付けたものに限定されず、例えば室温センサ設定部62を用いずに直接制御装置4にセンサ設定テーブル421を登録したものでもよい。
 図4はセンサ設定テーブルの例を示す図である。センサ設定テーブル421には一例として図1に示す複数の被空調空間10-1,10-2,10-3,10-4と複数の室温センサ11-1,11-2,11-3,11-4とが対応付けて格納されている。具体的には、センサ設定テーブル421には、被空調空間10-1と室温センサ11-1とが対応付けられ、被空調空間10-2と室温センサ11-2とが対応付けられ、被空調空間10-3と室温センサ11-3とが対応付けられ、被空調空間10-4と室温センサ11-4とが対応付けられているものとする。
 以下動作を説明する。図5は本発明の実施の形態1に係るダクト式空気調和システムの動作を示すフローチャートである。室温センサ設定部62においてユーザが空調を望む被空調空間の空調制御に用いる室温センサの設定操作が行われ、これによりセンサ設定テーブル421には複数の被空調空間と室温センサ設定部62で設定された室温センサとが対応付けて格納される(ステップS1)。被空調空間特定部422は空調操作部61で被空調空間10-1,10-2,10-3,10-4の空調運転開始操作が行われていない場合(ステップS2,No)、ステップS2の処理を継続し、例えば被空調空間10-1の空調運転開始操作が行われた場合(ステップS2,Yes)、被空調空間特定部422は空調運転を開始する被空調空間が被空調空間10-1であることを特定し(ステップS3)、室温情報生成部423は被空調空間特定部422で特定された被空調空間をセンサ設定テーブル421に照合することで被空調空間に対応した室温センサを決定し、決定した室温センサで検出された室温の室温情報42aを生成する(ステップS4)。空調制御量算出部22は、室温決定部42からの室温情報42aとコントローラ出力情報6aとを用いて、室温決定部42で決定された室温と被空調空間10-1の設定温度との温度差を算出し(ステップS5)、温度差に対応した空気調和機の空調制御量を算出し(ステップS6)、空調制御部23は空調制御量に従って空調制御を行う(ステップS7)。
 従来技術では被空調空間の空調を行う際、ユーザは複数の被空調空間の中から空調対象の被空調空間を選択すると共に、空調を行う被空調空間の近くに位置する室温センサを選択しなければならず、従来技術はユーザの利便性が悪いという問題点があった。これに対して実施の形態1のダクト式空気調和システム1によれば、複数の被空調空間を同時に空調する場合、運転開始操作が行われた被空調空間に設けられた室温センサを自動的に特定し、特定された室温センサで検出された室温を用いて空調制御を行うことができる。従ってユーザの利便性の向上を図ることができる。
実施の形態2.
 実施の形態1では一つの被空調空間の空調運転が開始された場合に空調制御を行う構成例を説明したが、実施の形態2では複数の被空調空間の空調運転が開始された場合に複数の被空調空間の空調制御を同時に行う構成例を説明する。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図6は本発明の実施の形態2に係るダクト式空気調和システムが有する室温決定部の機能ブロック図である。図6に示す室温決定部42は、センサ設定テーブル421と、被空調空間特定部422と、室温情報生成部423と、室温情報生成部423で決定した複数の室温センサで検出された室温の平均温度を算出する平均温度算出部426とを有する。平均温度算出部426で算出された平均温度は室温情報42aとして出力される。
 以下動作を説明する。図7は本発明の実施の形態2に係るダクト式空気調和システムの動作を示すフローチャートである。室温センサ設定部62においてユーザが空調を望む被空調空間の空調制御に用いる室温センサの設定操作が行われ、これによりセンサ設定テーブル421には複数の被空調空間と室温センサ設定部62で設定された室温センサとが対応付けて格納される(ステップS21)。被空調空間特定部422は空調操作部61で被空調空間10-1,10-2,10-3,10-4との空調運転開始操作が行われていない場合(ステップS22,No)、ステップS22の処理を継続し、例えば被空調空間10-1,10-3の空調運転開始操作が行われた場合(ステップS22,Yes)、被空調空間特定部422は空調運転を開始する複数の被空調空間10-1,10-3を特定し(ステップS23)、室温情報生成部423はセンサ設定テーブル421を参照することで被空調空間10-1に対応する室温センサ11-1と被空調空間10-3に対応する室温センサ11-3とを決定し、決定した室温センサで検出された複数の室温の室温情報を生成し(ステップS24)、平均温度算出部426は室温情報生成部423で生成された複数の室温の室温情報を用いて室温の平均温度を算出する(ステップS25)。
 図8はセンサ設定テーブルに設定された複数の被空調空間に配置された室温センサで各々検出される室温と、被空調空間の運転開始操作の状態を示す図である。図8にはセンサ設定テーブル421に設定された複数の被空調空間10-1,10-2,10-3,10-4と複数の室温センサ11-1,11-2,11-3,11-4との対応関係が示されている。さらに図8には複数の室温センサ11-1,11-2,11-3,11-4で各々検出される室温と、空調操作部61で運転開始操作の有無がONまたはOFFで示されている。上記の例では空調操作部61において複数の被空調空間10-1,10-3の運転開始操作が行われたため、図8に示す運転開始操作欄は被空調空間10-1,10-3がON、被空調空間10-2,10-4がOFFである。そして複数の被空調空間10-1,10-3に設けられた複数の室温センサ11-1,11-3で検出された室温が各々24℃と26℃であるため、平均温度算出部426で算出される平均温度は25℃である。
 空調制御量決定部22は、室温決定部42からの室温情報42aとコントローラ出力情報6aとを用いて、室温決定部42で算出された平均温度と被空調空間の設定温度との温度差を算出し(ステップS26)、温度差に対応した空気調和機の空調制御量を算出し(ステップS27)、空調制御部23は空調制御量に従って空調制御を行う(ステップS28)。
 以上のように実施の形態2の制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の前記室温センサを決定し、空気調和機は、制御装置で決定した複数の室温センサで検出された室温の平均温度に基づいて前記空気調和機の制御量を算出する。この構成により、ダクト式空気調和システム1は、複数の被空調空間を同時に空調する場合、運転開始操作が行われた被空調空間に設けられた室温センサで検出された室温を用いて自動的に空調制御を行うことができる。従ってユーザの利便性が向上すると共に、特定の室温センサに偏らない空調制御を行うことができユーザの快適性の向上も図ることができる。
実施の形態3.
 実施の形態2では複数の被空調空間の空調運転が同時に開始される場合に複数の室温センサで検出された室温の平均温度を用いて空調制御を行う構成例を説明したが、実施の形態3では吹出口数に対応した重みづけがなされた室温を用いて空調制御を行う構成例を説明する。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図9は本発明の実施の形態3に係るダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図である。実施の形態1との違いはコントローラ6-1,6-2が空調操作部61、室温センサ設定部62、および通信部63に加えて、複数の被空調空間に各々設けられた複数の吹出口の口数を設定するための吹出口数設定部64を有する点である。吹出口数設定部64で設定された吹出口数情報64aはコントローラ出力情報6aに含められ、通信部63および通信部43を介して室温決定部42へ伝送される。
 図10は図9に示す室温決定部の機能ブロック図である。図10に示す室温決定部42は、センサ設定テーブル421と、被空調空間特定部422と、室温情報生成部423と、吹出口数情報64aに基づいて室温情報生成部423で生成された複数の室温センサで検出された室温を加重平均化した温度を算出する加重平均温度算出部427とを有する。加重平均温度算出部427で算出された加重平均温度は室温情報42aとして出力される。
 加重平均温度算出部427では以下の式で加重平均温度が算出される。ただしnは空調運転を開始した被空調空間に配置された複数の吹出口の口数であり、Tは空調運転を開始した被空調空間に配置された室温センサで検出された温度であり、Nは空調運転を開始した複数の被空調空間の吹出口の総和である。
 加重平均温度=Σ(n×T)/N
 以下動作を説明する。図11は本発明の実施の形態3に係るダクト式空気調和システムの動作を示すフローチャートである。室温センサ設定部62においてユーザが空調を望む被空調空間の空調制御に用いる室温センサの設定操作が行われ、これによりセンサ設定テーブル421には複数の被空調空間と室温センサ設定部62で設定された室温センサとが対応付けて格納される(ステップS31)。被空調空間特定部422は空調操作部61で被空調空間10-1,10-2,10-3,10-4との空調運転開始操作が行われていない場合(ステップS32,No)、ステップS32の処理を継続し、例えば被空調空間10-1,10-3の空調運転開始操作が行われた場合(ステップS32,Yes)、被空調空間特定部422は空調運転を開始する複数の被空調空間10-1,10-3を特定し(ステップS33)、室温情報生成部423はセンサ設定テーブル421を参照することで被空調空間10-1に対応する室温センサ11-1と被空調空間10-3に対応する室温センサ11-3とを決定し、決定した室温センサで検出された複数の室温の室温情報を生成する(ステップS34)。
 加重平均温度算出部427は室温情報生成部423で生成された複数の室温の室温情報を用いて室温を加重平均化した温度を算出する(ステップS35)。例えば室温センサ11-1で検出された室温が24℃であり、室温センサ11-3で検出された室温が26℃であり、被空調空間10-1に配置された吹出口の口数が4つであり、被空調空間10-3に配置された吹出口の口数が3つである場合、加重平均化した温度は25℃となる。
 空調制御量決定部22は、室温決定部42からの室温情報42aとコントローラ出力情報6aとを用いて、室温決定部42で算出された加重平均温度と被空調空間の設定温度との温度差を算出し(ステップS36)、温度差に対応した空調制御量を算出し(ステップS37)、空調制御部23は空調制御量に従って空調制御を行う(ステップS38)。
 以上のように実施の形態3の制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の室温センサを決定し、前記空気調和機は、前記制御装置で決定した複数の室温センサで検出された室温を、前記複数のダクトの端部に各々配置される複数の吹出口の数で加重平均化し、加重平均化した温度に基づいて前記空気調和機の制御量を算出する。この構成によりダクト式空気調和システム1は、実施の形態2と同様の効果が得られるだけでなく、空調され難い被空調空間の室温を設定温度へより早く近づけることができ、ユーザの快適性の更なる向上を図ることができる。
実施の形態4.
 実施の形態3では吹出口数に対応した重みづけがなされた室温を用いて空調制御を行う構成例を説明したが、実施の形態4では複数の被空調空間に優先順位を設定し、優先順位の高い被空調空間から優先的に空調制御を行う構成例を説明する。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 図12は本発明の実施の形態4に係るダクト式空気調和システムを構成する室内機、制御装置、およびコントローラの各々の機能ブロック図である。実施の形態1との違いはコントローラ6-1,6-2が空調操作部61、室温センサ設定部62、および通信部63に加えて、複数の被空調空間に優先順位を設定するための優先順位設定部65を有する点である。優先順位設定部65で設定された優先順位情報65aはコントローラ出力情報6aに含められ、通信部63および通信部43を介して室温決定部42へ伝送される。
 図13は図12に示す室温決定部の機能ブロック図である。図13に示す室温決定部42は、室温センサ設定情報62aおよび優先順位情報65aに基づいて複数の被空調空間と室温センサ設定部62で設定された室温センサと複数の被空調空間の優先順位とを対応付けて格納するセンサ設定テーブル421Aと、被空調空間特定部422と、センサ設定テーブル421Aに照合することにより、被空調空間特定部422で特定された複数の被空調空間の中から優先順位が最も高い被空調空間に対応した室温センサを決定し、決定した室温センサで検出された室温の室温情報を生成する室温情報生成部423Aとを有する。室温情報生成部423Aで生成された室温は室温情報42aとして出力される。
 図14は図13に示すセンサ設定テーブルの例を示す図である。センサ設定テーブル421Aには一例として複数の被空調空間10-1,10-2,10-3,10-4と複数の室温センサ11-1,11-2,11-3,11-4と1から4までの優先順位とが対応付けて格納されている。具体的には、センサ設定テーブル421Aには、被空調空間10-1と室温センサ11-1と優先順位「4」とが対応付けられ、被空調空間10-2と室温センサ11-2と優先順位「3」とが対応付けられ、被空調空間10-3と室温センサ11-3と優先順位「2」とが対応付けられ、被空調空間10-4と室温センサ11-4と優先順位「1」とが対応付けられているものとする。図示例では優先順位「1」が最も高く、優先順位「4」が最も低いものとする。
 以下動作を説明する。図15は本発明の実施の形態4に係るダクト式空気調和システムの動作を示すフローチャートである。室温センサ設定部62においてユーザが空調を望む被空調空間の空調制御に用いる室温センサの設定操作が行われる。また優先順位設定部65において複数の被空調空間の優先順位の設定操作が行われる。これによりセンサ設定テーブル421Aには複数の被空調空間と室温センサと優先順位とが対応付けて格納される(ステップS41)。被空調空間特定部422は空調操作部61で被空調空間10-1,10-2,10-3,10-4との空調運転開始操作が行われていない場合(ステップS42,No)、ステップS42の処理を継続し、例えば被空調空間10-1,10-3の空調運転開始操作が行われた場合(ステップS42,Yes)、被空調空間特定部422は空調運転を開始する複数の被空調空間10-1,10-3を特定し(ステップS43)、室温情報生成部423Aはセンサ設定テーブル421Aを参照することで、被空調空間10-1よりも優先順位が高い被空調空間10-3に対応する室温センサ11-3を決定し、室温センサ11-3で検出された室温の室温情報42aを生成する(ステップS44)。空調制御量算出部22は、室温決定部42からの室温情報42aとコントローラ出力情報6aとを用いて、室温決定部42で決定された室温と被空調空間10-3の設定温度との温度差を算出し(ステップS45)、温度差に対応した空気調和機の空調制御量を算出し(ステップS46)、空調制御部23は空調制御量に従って空調制御を行う(ステップS47)。
 以上のように実施の形態4のダクト式空気調和システム1によれば、センサ設定情報には、前記複数の被空調空間と前記複数の室温センサと前記複数の被空調空間の優先順位とが対応付けられ、前記制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の室温センサの中で優先順位が高い室温センサを決定し、前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて前記空気調和機の制御量を算出する。この構成によりダクト式空気調和システム1は、実施の形態1と同様の効果が得られるだけでなく、複数の被空調空間を同時に空調する場合、ユーザが望む任意の被空調空間を優先的に空調することができ、ユーザの快適性の更なる向上を図ることができる。
 なお実施の形態2,3,4に係る空気調和機は、コントローラで複数の被空調空間の空調運転開始操作が行われた場合、実施の形態2,3,4に係る空気調和機の制御量を算出する動作を選択する機能を有する構成としてもよい。この構成により1つの空気調和機でユーザの環境に合った空調制御を選択することができ、ユーザの利便性の更なる向上を図ることができる。
 以上に説明したように実施の形態1,2,3,4に係るダクト式空気調和システムは、空気調和機と、前記空気調和機の調和空気が供給される複数の被空調空間に配置された複数のダクトと、前記複数の被空調空間に設けられた複数の室温センサと、前記空気調和機を制御する制御装置と、前記空気調和機を制御するコントローラと、を備え、前記制御装置は、前記複数の被空調空間と前記複数の室温センサとを対応付けたセンサ設定情報を用いて、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間の何れかの被空調空間に設けられた前記室温センサを決定し、前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて前記空気調和機の制御量を算出する空調制御量算出部を有する。この構成により、複数の被空調空間を同時に空調する場合でも運転開始操作が行われた被空調空間に設けられた室温センサで検出された室温を用いて自動的に空調制御を行うことができ、従ってユーザの利便性の向上を図ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 ダクト式空気調和システム、2 室内機、3 室外機、4 制御装置、5 制御線、6-1,6-2 コントローラ、6a コントローラ出力情報、7 ダクト、7-1,7-2,7-3,7-4 ダクト分岐部、8-1,8-2,8-3,8-4 吹出口、9-1,9-2,9-3,9-4 ダンパ、10-1,10-2,10-3,10-4 被空調空間、11-1,11-2,11-3,11-4 室温センサ、11a 室温情報、21 通信部、22 空調制御量算出部、23 空調制御部、41 通信部、42 室温決定部、42a 室温情報、43 通信部、44 ダンパ制御部、61 空調操作部、61a 操作情報、62 室温センサ設定部、62a 室温センサ設定情報、63 通信部、64 吹出口数設定部、64a 吹出口数情報、65 優先順位設定部、65a 優先順位情報、421,421A センサ設定テーブル、422 被空調空間特定部、423,423A 室温情報生成部、426 平均温度算出部、427 加重平均温度算出部。

Claims (6)

  1.  空気調和機と、
     前記空気調和機の調和空気が供給される複数の被空調空間に配置された複数のダクトと、
     前記複数の被空調空間に設けられた複数の室温センサと、
     前記空気調和機を制御する制御装置と、
     前記空気調和機を制御するコントローラと、
     を備え、
     前記制御装置は、前記複数の被空調空間と前記複数の室温センサとを対応付けたセンサ設定情報を用いて、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間の何れかの被空調空間に設けられた室温センサを決定し、
     前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて前記空気調和機の制御量を算出する空調制御量算出部を有することを特徴とするダクト式空気調和システム。
  2.  前記制御装置は、前記複数の被空調空間と前記複数の室温センサとを対応付けたセンサ設定テーブルを用いて室温センサを決定することを特徴とする請求項1に記載のダクト式空気調和システム。
  3.  前記制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の室温センサを決定し、
     前記空気調和機は、前記制御装置で決定した複数の室温センサで検出された室温の平均温度に基づいて前記空気調和機の制御量を算出することを特徴とする請求項1または請求項2に記載のダクト式空気調和システム。
  4.  前記制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の室温センサを決定し、決定した複数の室温センサで検出された室温を、前記複数のダクトの端部に各々配置される複数の吹出口の数で加重平均化し、
     前記空気調和機は、前記制御装置で加重平均化した温度に基づいて前記空気調和機の制御量を算出することを特徴とする請求項1または請求項2に記載のダクト式空気調和システム。
  5.  前記センサ設定情報には、前記複数の被空調空間と前記複数の室温センサと前記複数の被空調空間の優先順位とが対応付けられ、
     前記制御装置は、前記コントローラで空調運転開始操作が行われた前記複数の被空調空間に設けられた複数の室温センサの中で優先順位が高い室温センサを決定し、
     前記空気調和機は、前記制御装置で決定した室温センサで検出された室温に基づいて前記空気調和機の制御量を算出する請求項1または請求項2に記載のダクト式空気調和システム。
  6.  前記空気調和機は、前記コントローラで前記複数の被空調空間の空調運転開始操作が行われた場合、請求項3から請求項5の何れか1項に記載される前記空気調和機の制御量を算出する動作を選択する機能を有することを特徴とするダクト式空気調和システム。
PCT/JP2014/082860 2014-12-11 2014-12-11 ダクト式空気調和システム WO2016092671A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2014/082860 WO2016092671A1 (ja) 2014-12-11 2014-12-11 ダクト式空気調和システム
AU2014413429A AU2014413429B2 (en) 2014-12-11 2014-12-11 Duct-type air conditioning system
EP14897425.6A EP3054233A4 (en) 2014-12-11 2014-12-11 Duct-type air conditioning system
US15/517,037 US10234159B2 (en) 2014-12-11 2014-12-11 Duct type air conditioning system
JP2016563354A JPWO2016092671A1 (ja) 2014-12-11 2014-12-11 ダクト式空気調和システム
NZ731322A NZ731322A (en) 2014-12-11 2014-12-11 Duct type air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082860 WO2016092671A1 (ja) 2014-12-11 2014-12-11 ダクト式空気調和システム

Publications (1)

Publication Number Publication Date
WO2016092671A1 true WO2016092671A1 (ja) 2016-06-16

Family

ID=56106918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082860 WO2016092671A1 (ja) 2014-12-11 2014-12-11 ダクト式空気調和システム

Country Status (6)

Country Link
US (1) US10234159B2 (ja)
EP (1) EP3054233A4 (ja)
JP (1) JPWO2016092671A1 (ja)
AU (1) AU2014413429B2 (ja)
NZ (1) NZ731322A (ja)
WO (1) WO2016092671A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520212B1 (en) * 2015-12-01 2019-12-31 George N. Beck Heating and cooling control system
US11614244B2 (en) * 2019-04-15 2023-03-28 Daikin Industries, Ltd. Air conditioning system
CN113692515B (zh) * 2019-04-15 2023-02-17 大金工业株式会社 空调系统
EP3745036A1 (en) * 2019-04-26 2020-12-02 Carrier Corporation System and method for building climate control

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107410A (ja) * 1984-10-31 1986-05-26 Yamatake Honeywell Co Ltd 空調制御方式
JPS63263125A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd 自動車用空調機の吹出温度制御装置
JPH06101897A (ja) * 1992-09-21 1994-04-12 Toshiba Home Technol Corp 空気調和機
JPH0749144A (ja) 1993-08-05 1995-02-21 Namirei Kk 空気調和装置
JPH08261545A (ja) * 1995-03-24 1996-10-11 Mitsubishi Electric Corp 空気調和機
JPH09126523A (ja) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp 空気調和装置
JP2001091036A (ja) * 1999-09-24 2001-04-06 Hitachi Plant Eng & Constr Co Ltd 空調制御方法
JP2004239580A (ja) * 2003-02-10 2004-08-26 Trinity Ind Corp 空調装置とその制御システム
JP2004279000A (ja) * 2003-03-18 2004-10-07 Fujitsu General Ltd 空気調和機の制御方法
JP2013231549A (ja) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp 空気調和機システム
JP2014077598A (ja) * 2012-10-11 2014-05-01 Mitsubishi Electric Corp 温度調節器、空気調和機、給湯器及び床暖房

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811897A (en) 1986-02-20 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Duct type air conditioning system
JP2902061B2 (ja) 1990-06-26 1999-06-07 株式会社東芝 ダクト式空気調和装置の制御方法
JPH05106905A (ja) 1991-10-16 1993-04-27 Mitsubishi Electric Corp ダクト式空気調和機
JPH05149605A (ja) * 1991-11-30 1993-06-15 Toshiba Corp 空気調和機
US5303767A (en) * 1993-01-22 1994-04-19 Honeywell Inc. Control method and system for controlling temperatures
JP3230894B2 (ja) 1993-05-07 2001-11-19 東プレ株式会社 空気調和設備の制御方法
JPH10132363A (ja) 1996-10-24 1998-05-22 Toshiba Corp 空調システム装置
AU2002301200B2 (en) 2000-10-05 2008-05-15 Advantage Air Aust. Pty Ltd An improved air control system for an air-conditioning installation
US7448435B2 (en) * 2005-02-23 2008-11-11 Emerson Electric Co. System and method for controlling a multi-zone heating or cooling system
JP2009150590A (ja) 2007-12-19 2009-07-09 Daikin Ind Ltd 空調システム
JP5372974B2 (ja) * 2011-01-28 2013-12-18 シャープ株式会社 コントローラおよび制御方法
JP5793359B2 (ja) * 2011-07-11 2015-10-14 アズビル株式会社 空調制御システムおよび空調制御方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107410A (ja) * 1984-10-31 1986-05-26 Yamatake Honeywell Co Ltd 空調制御方式
JPS63263125A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd 自動車用空調機の吹出温度制御装置
JPH06101897A (ja) * 1992-09-21 1994-04-12 Toshiba Home Technol Corp 空気調和機
JPH0749144A (ja) 1993-08-05 1995-02-21 Namirei Kk 空気調和装置
JPH08261545A (ja) * 1995-03-24 1996-10-11 Mitsubishi Electric Corp 空気調和機
JPH09126523A (ja) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp 空気調和装置
JP2001091036A (ja) * 1999-09-24 2001-04-06 Hitachi Plant Eng & Constr Co Ltd 空調制御方法
JP2004239580A (ja) * 2003-02-10 2004-08-26 Trinity Ind Corp 空調装置とその制御システム
JP2004279000A (ja) * 2003-03-18 2004-10-07 Fujitsu General Ltd 空気調和機の制御方法
JP2013231549A (ja) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp 空気調和機システム
JP2014077598A (ja) * 2012-10-11 2014-05-01 Mitsubishi Electric Corp 温度調節器、空気調和機、給湯器及び床暖房

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054233A4

Also Published As

Publication number Publication date
NZ731322A (en) 2019-04-26
US20170299211A1 (en) 2017-10-19
EP3054233A1 (en) 2016-08-10
AU2014413429B2 (en) 2019-01-03
JPWO2016092671A1 (ja) 2017-04-27
US10234159B2 (en) 2019-03-19
AU2014413429A1 (en) 2017-04-27
EP3054233A4 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6377174B2 (ja) ダクト式空気調和システム
WO2016092671A1 (ja) ダクト式空気調和システム
US9534804B2 (en) Air conditioning system and air conditioning control method for server room
JP2013019582A (ja) 空調制御システムおよび空調制御方法
JP6906302B2 (ja) 空気調和システム
JP6415596B2 (ja) 空気制御システム
US20140031990A1 (en) Hvac controller and a hvac system employing designated comfort sensors with program schedule events
JP2012241350A (ja) 建物
JP6985794B2 (ja) 空調システム用の制御装置、空調システム
WO2019058517A1 (ja) 熱交換型換気システム
JP2005133979A (ja) 恒温恒湿空気調和システム
JP2000346432A (ja) マルチ形空気調和機
JP6976779B2 (ja) 空調システム
JP5856476B2 (ja) 風量制御システムおよび風量制御方法
US11105529B2 (en) Multi-zone indoor climate control and a method of using the same
JP7350504B2 (ja) 空調システム
JP2008232553A (ja) 空気調和機
US20100044447A1 (en) Temperature control for positive pressure air purification unit
JP6759093B2 (ja) 空調システム用の制御装置、空調システム
US20140144159A1 (en) Control of active climatic beams
JP2013200089A (ja) 空気調和機
JP2021089098A (ja) 熱交換換気装置及び空気調和システム
JP6309360B2 (ja) 空調システムおよび空調方法
JPH01208634A (ja) 空調装置
KR20140072458A (ko) 시트 통풍 제어 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014897425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897425

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517037

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014413429

Country of ref document: AU

Date of ref document: 20141211

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE