WO2016084378A1 - 方向性電磁鋼板の製造方法 - Google Patents
方向性電磁鋼板の製造方法 Download PDFInfo
- Publication number
- WO2016084378A1 WO2016084378A1 PCT/JP2015/005879 JP2015005879W WO2016084378A1 WO 2016084378 A1 WO2016084378 A1 WO 2016084378A1 JP 2015005879 W JP2015005879 W JP 2015005879W WO 2016084378 A1 WO2016084378 A1 WO 2016084378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cold rolling
- annealing
- pass
- final
- steel sheet
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 39
- 239000010959 steel Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title abstract description 21
- 238000005097 cold rolling Methods 0.000 claims abstract description 97
- 238000000137 annealing Methods 0.000 claims description 93
- 238000001953 recrystallisation Methods 0.000 claims description 68
- 230000009467 reduction Effects 0.000 claims description 52
- 238000005261 decarburization Methods 0.000 claims description 31
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 abstract description 34
- 238000005096 rolling process Methods 0.000 description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 31
- 239000013078 crystal Substances 0.000 description 23
- 239000003112 inhibitor Substances 0.000 description 18
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- 238000005324 grain boundary diffusion Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 208000009205 Tinnitus Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1227—Warm rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1266—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/221—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/14—Reduction rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/10—Roughness of roll surface
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
Definitions
- the present invention relates to a method for producing a grain-oriented electrical steel sheet capable of obtaining a grain-oriented electrical steel sheet having excellent magnetic properties at low cost.
- Oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the ⁇ 001> orientation, which is the easy axis of iron, is highly aligned in the rolling direction of the steel sheet. .
- Such a crystal structure is obtained by forming a crystal grain having a (110) [001] orientation, which is referred to as a Goss orientation, during secondary recrystallization annealing during the manufacturing process of a grain-oriented electrical steel sheet. It is formed through secondary recrystallization that preferentially grows.
- Such grain-oriented electrical steel sheets have been manufactured by the following procedure (for example, Patent Document 1, Patent Document 2, and Patent Document 3). That is, Si containing 4.5 mass% or less and a slab containing inhibitor components such as MnS, MnSe, and AlN are heated to over 1300 ° C to dissolve the inhibitor components once, and then hot rolled. Use hot-rolled sheet.
- This hot-rolled sheet is subjected to cold rolling at least once with or without intermediate-annealing with or without hot-rolled sheet annealing to obtain a cold-rolled sheet having a final thickness.
- this cold-rolled sheet is subjected to decarburization and primary recrystallization annealing in a wet hydrogen atmosphere to perform primary recrystallization and decarburization.
- Patent Document 4 discloses a technique (inhibitorless method) capable of expressing secondary recrystallization without containing an inhibitor component.
- This technology is completely different from the technical idea of the conventional method for producing grain-oriented electrical steel sheets.
- the conventional grain-oriented electrical steel sheet uses secondary precipitates (inhibitors) such as MnS, AlN, and MnSe to develop secondary recrystallization, whereas the inhibitorless method does not use these inhibitors. Rather, it is a technology for controlling the texture (texture) and developing secondary recrystallization by purifying it.
- This inhibitorless method does not require high-temperature slab heating or high-temperature and long-time secondary recrystallization annealing, which enables production of grain-oriented electrical steel sheets at low cost.
- the present invention advantageously solves the above problem, and it is not necessary to perform slab heating at a high temperature in the manufacturing process of the grain-oriented electrical steel sheet. Therefore, a grain-oriented electrical steel sheet having low magnetic cost and excellent magnetic properties is provided.
- An object is to propose a method for producing a grain-oriented electrical steel sheet by an inhibitorless method, which can be obtained.
- the inventors analyzed the primary recrystallization structure, which is the state immediately before the secondary recrystallization of the grain-oriented electrical steel sheet, and the grain boundary orientation difference angle for the grain boundaries around each crystal grain having various crystal orientations. As a result of the investigation, it was found that the existence frequency of the grain boundary with the misorientation angle of 20 to 45 ° was highest around the Goss orientation grain.
- grain boundaries with misorientation angles of 20-45 ° are high energy grain boundaries.
- This high energy grain boundary has a messy structure with a large free space within the grain boundary.
- grain boundary diffusion is a phenomenon in which atoms move through the grain boundary, grain boundary diffusion is faster at high energy grain boundaries with a large free space in the grain boundary.
- the growth of Goss-oriented grains when using an inhibitor occurs during finish annealing, but this is because diffusion of high-energy grain boundaries is fast, so that pinning of precipitates on high-energy grain boundaries is preferential. It is believed that goss grains grow as the grain boundaries begin to move.
- the inventors further developed this study, and the essential factor for the development of secondary recrystallization of goth-oriented grains is the distribution of high-energy grain boundaries in the primary recrystallization structure, and the role of inhibitors is It has been found that there is a difference in moving speed between high energy grain boundaries and other grain boundaries. Therefore, according to this theory, it is possible to develop secondary recrystallization if a transfer speed difference can be generated between grain boundaries without using an inhibitor.
- the impurity elements present in the steel are easily segregated at the grain boundaries, particularly at the high energy grain boundaries, and therefore when there are many impurity elements, there is a difference in the moving speed between the high energy grain boundaries and other grain boundaries. It is thought that it is gone. However, if the material is highly purified, the effects of such impurity elements can be eliminated, so that the inherent difference in the moving speed that depends on the structure of the high-energy grain boundary becomes obvious, and the Goss-oriented grains have two effects. It is considered that next recrystallization is possible.
- the inventors controlled the primary recrystallization texture together with the purification of the steel material.
- the present inventors have made extensive studies on a method for causing good secondary recrystallization.
- the total rolling reduction in the final cold rolling (hereinafter also referred to as the total cold rolling reduction) and the rolling reduction per pass at the time of final cold rolling are both increased, and the surface roughness of the rolling mill work roll is increased. It was found that by reducing the thickness, the primary recrystallization texture can be improved and the magnetic properties can be improved.
- the experimental results on which the present invention is based will be described.
- the obtained cold rolled sheet was decarburized and annealed at 840 ° C for 120 seconds under conditions of hydrogen partial pressure: 55vol%, nitrogen partial pressure: 45vol%, dew point: 55 ° C, A decarburized annealed plate was used.
- decarburization annealing the texture of the decarburized annealing plate was investigated using X-ray diffraction.
- “%” for hydrogen partial pressure and nitrogen partial pressure means vol%.
- 12.5 g / m 2 of an annealing separator mainly composed of MgO was applied and dried.
- the temperature was raised to 800 ° C. at a rate of 15 ° C./h, the rate of temperature increase between 800 to 850 ° C. was set to 5 ° C./h, and the temperature was maintained at 850 ° C. for 50 hours. Thereafter, the temperature was increased to 1180 ° C. at a rate of temperature increase of 15 ° C./h, and secondary recrystallization annealing was performed for 5 hours and maintained at 1180 ° C. Note that the atmosphere gas in the secondary recrystallization annealing was N 2 gas up to 850 ° C. and H 2 gas up to 850 ° C. or higher.
- FIG. 1 shows the relationship between the rolling reduction per pass in cold rolling and the magnetic flux density after secondary recrystallization annealing, using the surface roughness Ra of the work roll excluding the final pass as a parameter. According to FIG. 1, it is understood that the magnetic flux density is remarkably improved by increasing the rolling reduction per pass in cold rolling to 35% or more and reducing the surface roughness Ra of the work roll excluding the final pass.
- Figure 2 shows the relationship between the rolling reduction per pass in cold rolling and the strength of ⁇ 554 ⁇ ⁇ 225>, which is the main orientation of crystal grains in the decarburized and annealed sheet, and the surface roughness of the work roll excluding the final pass.
- Ra is shown as a parameter.
- the reduction ratio per pass in cold rolling is increased to 35% or more, and the surface roughness Ra of the work roll excluding the final pass is reduced, which is the main orientation of crystal grains ⁇ 554 ⁇ It can be seen that the ⁇ 225> strength is significantly improved.
- FIG. 3 shows the relationship between the rolling reduction per pass in cold rolling and the Goth orientation strength, using the surface roughness Ra of the work roll excluding the final pass as a parameter.
- the Goth orientation strength tends to decrease, but the amount of change It can be seen that there are few.
- Example 2 Next, a continuous cast slab having the same components as in Experiment 1 was heated to 1220 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.5 mm. Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1050 ° C. for 30 seconds, and then cold-rolled using a reverse rolling mill to obtain a cold-rolled sheet. In this cold rolling, the rolling reduction per each pass and the work roll surface roughness (Ra: 0.10 ⁇ m) are constant, and as shown in Table 2, the conditions are such that the total rolling reduction is changed by changing the number of passes. went.
- the rolling reduction per pass of the first pass and the surface roughness Ra of the work roll are the columns before rolling, and the rolling reduction per pass of the second pass and the surface roughness Ra of the work roll are after the first pass.
- the obtained cold rolled sheet was decarburized and annealed at 840 ° C for 120 seconds under conditions of hydrogen partial pressure: 55%, nitrogen partial pressure: 45%, dew point: 55 ° C, A decarburized annealed plate was used.
- FIG. 4 shows the magnetic flux density after secondary recrystallization annealing.
- the magnetic flux density was reduced when the total cold rolling reduction rate was low. That is, according to FIG. 4, good magnetic flux density is obtained when the total cold rolling reduction ratio is 85% or more.
- FIG. 2 of Patent Document 5 as a cold rolling technique using a conventional inhibitor, the magnetic flux density is improved by increasing the number of passes, that is, reducing the rolling reduction per pass. The knowledge to do is obtained. The reason is disclosed that the frequency of ⁇ 110 ⁇ ⁇ 001> orientation grains existing from the surface of the steel sheet toward the inside of the sheet thickness, that is, the frequency of Goss orientation grains increases after cold rolling.
- the magnetic flux density was improved by increasing the rolling reduction per pass in cold rolling.
- the reason for this is that, as shown in FIG. 2, the strength of the ⁇ 554 ⁇ ⁇ 225> orientation, which is the main orientation of the crystal grains, increased in the decarburized annealed plate.
- the ⁇ 554 ⁇ ⁇ 225> azimuth is 30 ° as the azimuth difference from the Goth azimuth. That is, in the inhibitorless technology according to the present invention, the number of crystal grains in the range of high energy grain boundaries with a misorientation angle of 20 to 45 ° has increased, so secondary recrystallization of Goss orientation grains is promoted and the magnetic flux density of the steel sheet is improved. It is thought that.
- strength was slight in the decarburization annealing board.
- the crystal grains are likely to be coarsened before the final cold rolling. That is, if the crystal grains before the final cold rolling are coarse, the crystal grains are smaller than the technique using an inhibitor in which the crystal grains before the final cold rolling are kept fine in the presence of the inhibitor. It is considered that the formation of goth-oriented grains considered to be formed from within the grains easily proceeds. Therefore, even when the rolling reduction per pass in cold rolling and further the total cold rolling reduction are increased, it is considered that the decrease in Goth azimuth strength can be prevented. And it is thought that the increase of ⁇ 554 ⁇ ⁇ 225> oriented grains due to the high cold rolling reduction ratio works favorably for secondary recrystallization of goth oriented grains. This is a phenomenon peculiar to inhibitorless technology.
- Patent Document 7 discloses a technique using a scratch dull roll with Ra of 0.30 or more.
- Patent Document 8 discloses a technique in which the roll surface roughness of the first stand in the second cold rolling is set to 1.0 ⁇ mRa or more, and an inclined polishing roll is used after the second stand.
- Patent Document 9 discloses that a polishing eye inclined at least 2 ° and less than 90 ° with respect to the circumferential direction of the roll in one or more passes in the final cold rolling, and 0 ° or more and less than 90 ° opposite to the polishing eye A technique for increasing the frictional force by using a work roll having a cross polishing eye composed of inclined polishing eyes is disclosed.
- the present invention not only the final pass in the final cold rolling, but also the surface roughness of the work roll before the final pass is reduced, thereby improving the magnetic properties of the steel sheet.
- the rolling method in which the goth direction is increased by high friction rolling is more advantageous in the passes other than the final pass.
- This difference is that, in inhibitorless technology, goth-oriented grains are easily formed during cold rolling, so rather the surface roughness of the work roll is reduced, the frictional force is reduced, and the ⁇ 554 ⁇ in the decarburized annealing plate
- increasing the existence strength of ⁇ 225> oriented grains has an advantage in improving the magnetic properties. This is also considered to be a phenomenon peculiar to the inhibitorless technology as well as the effect of the rolling reduction per pass described above.
- the present invention has been completed based on the findings from the two experiments described above.
- the gist configuration of the present invention is as follows. 1. In mass%, C: 0.08% or less, Si: 4.5% or less and Mn: 0.5% or less, and in mass ppm, S, Se and O are each less than 50 ppm, N is less than 60 ppm, and sol.Al is 100 ppm. After the steel slab composed of Fe and inevitable impurities is heated, the remainder is heated and rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to or without being subjected to hot-rolled sheet annealing.
- the cold-rolled sheet After cold rolling at least once with one or two intermediate sandwiches in place to make a cold-rolled sheet with the final thickness, the cold-rolled sheet is decarburized and annealed to form a decarburized and annealed sheet, and then decarburized and annealed.
- the total cold rolling reduction ratio is 85% or more, the reduction ratio in each pass of the final cold rolling is 32% or more, and the final cold rolling
- a work roll having a surface average roughness Ra of 0.25 ⁇ m or less is used in at least one pass other than the final pass.
- the steel slab is further mass%, Ni: 0.01 to 1.50%, Sn: 0.03 to 0.20%, Sb: 0.01 to 0.20%, P: 0.02 to 0.20%, Cu: 0.05 to 0.50%, Cr: 0.03 to 0.50 %, Mo: 0.008 to 0.50%, and Nb: 0.0010 to 0.0100%.
- % and ppm relating to the component composition mean mass% and mass ppm unless otherwise specified.
- the balance of the component composition of the steel plate or slab is Fe and inevitable impurities.
- C 0.08% or less C is an element useful for improving the primary recrystallized texture. However, if the content exceeds 0.08%, the primary recrystallized texture is deteriorated, so the C content is 0.08%.
- a desirable addition amount from the viewpoint of magnetic properties is in the range of 0.01 to 0.06%.
- C may be set to 0.01% or less in order to omit or simplify the decarburization in the primary recrystallization annealing.
- the lower limit of the amount of C is not limited, but is preferably about 0.003% industrially.
- Si 4.5% or less Si is a useful element that improves iron loss by increasing electrical resistance. However, if the content exceeds 4.5%, the cold rolling property deteriorates significantly, so the Si content is 4.5% or less. Limited. A desirable Si amount from the viewpoint of iron loss is in the range of 2.0 to 4.5%. Depending on the required iron loss level, Si may not be added.
- Mn 0.5% or less Mn has the effect of improving hot workability during production. However, if the content exceeds 0.5%, the primary recrystallized texture deteriorates and the magnetic properties deteriorate. Therefore, the amount of Mn was limited to 0.5% or less. In addition, although there is no restriction
- S, Se, and O each less than 50 ppm
- S, Se, and O are each 50 ppm or more
- secondary recrystallization becomes difficult. This is because coarse oxides and MnS and MnSe coarsened by slab heating make the primary recrystallized structure non-uniform. Accordingly, S, Se, and O are all suppressed to less than 50 ppm.
- N Less than 60 ppm N, too, like S, Se, and O, if excessively present, secondary recrystallization becomes difficult. In particular, when the N content is 60 ppm or more, secondary recrystallization hardly occurs and the magnetic properties are deteriorated. Therefore, N is suppressed to less than 60 ppm.
- sol.Al less than 100 ppm Al is also present in an excessive amount, making secondary recrystallization difficult.
- the amount of sol.Al exceeds 100 ppm, secondary recrystallization becomes difficult under the conditions of low-temperature slab heating, and the magnetic properties deteriorate. Therefore, Al is suppressed to less than 100 ppm in terms of the amount of sol.Al.
- limiting in the lower limit of the amount of Al about 0.003% is preferable industrially.
- Ni 0.01 to 1.50%
- Ni has a function of improving magnetic properties by increasing the uniformity of the hot-rolled sheet structure.
- Ni is preferably contained in an amount of 0.01% or more.
- the content exceeds 1.50%, secondary recrystallization becomes difficult and the magnetic properties deteriorate, so Ni is contained in the range of 0.01 to 1.50%. It is desirable.
- Sn 0.03-0.20% Sn suppresses nitriding and oxidation of steel sheets during secondary recrystallization annealing, promotes secondary recrystallization of grains having good crystal orientation, and effectively improves magnetic properties, particularly iron loss. is there.
- Sn is preferably contained in an amount of 0.03% or more. However, if it exceeds 0.20%, the cold rolling property is deteriorated, so Sn is preferably contained in the range of 0.03 to 0.20%.
- Sb 0.01-0.20%
- Sb is a useful element that effectively suppresses nitriding and oxidation of a steel sheet during secondary recrystallization annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and effectively improves magnetic properties.
- it is preferable to contain 0.01% or more of Sb, but if it exceeds 0.20%, the cold rolling property deteriorates, so Sb should be contained in the range of 0.01 to 0.20%. desirable.
- P 0.02-0.20%
- P is a useful element that improves the primary recrystallization texture and promotes the secondary recrystallization of crystal grains having a good crystal orientation to effectively improve the magnetic properties.
- it is preferable to contain 0.02% or more of P.
- P is contained in the range of 0.02 to 0.20%. desirable.
- Cu 0.05-0.50%
- Cu functions to suppress nitridation and oxidation of the steel sheet during secondary recrystallization annealing, promote secondary recrystallization of crystal grains having good crystal orientation, and effectively improve magnetic properties.
- it exceeds 0.50% the hot rolling property is deteriorated, so it is desirable to contain Cu in the range of 0.05 to 0.50%.
- Cr 0.03-0.50% Cr functions to stabilize the formation of the forsterite undercoat. For that purpose, it is preferable to contain 0.03% or more of Cr. On the other hand, if the content exceeds 0.50%, secondary recrystallization becomes difficult and the magnetic properties deteriorate, so Cr is in the range of 0.03 to 0.50%. It is desirable to contain.
- Mo 0.008 to 0.50%
- Mo has the function of suppressing high-temperature oxidation and reducing the occurrence of surface defects called hege.
- Nb 0.0010 to 0.0100%
- Nb is a useful element that suppresses the growth of primary recrystallized grains and promotes secondary recrystallization of crystal grains having a good crystal orientation to improve magnetic properties.
- Nb it is desirable to contain Nb in an amount of 0.0010% or more, but if it exceeds 0.0100%, it will remain in the ground iron and deteriorate iron loss, so it is desirable to contain it in the range of 0.0010 to 0.0100%. .
- the steel slab adjusted to the above component composition range is subjected to hot rolling without being reheated or after being reheated to obtain a hot rolled sheet.
- the reheating temperature is desirably about 1000 ° C. or higher and about 1300 ° C. or lower. This is because heating the slab above 1300 ° C is meaningless in the present invention that does not contain an inhibitor in the slab, which not only increases the cost but also greatly deteriorates the magnetic properties due to the enlargement of the crystal grains, while it is less than 1000 ° C. This is because the rolling load becomes high and it becomes difficult to roll the steel sheet.
- the hot-rolled sheet After subjecting the hot-rolled sheet to hot-rolled sheet annealing, or without performing hot-rolled sheet annealing, it is subjected to one cold rolling or two or more cold rolling sandwiching the intermediate annealing, and the final plate Thick cold-rolled sheet.
- the total cold rolling reduction in the final cold rolling is 85% or more in the final cold rolling among the two or more cold rollings sandwiching the one cold rolling or intermediate annealing described above, and the final cold rolling.
- the rolling reduction rate in each pass is 32% or more.
- the suitable reduction ratio of each pass in the final cold rolling is 35% or more.
- the degree of orientation integration of the primary recrystallization texture is lowered and the magnetic properties are deteriorated.
- the upper limit is not particularly defined, but the total cold rolling reduction ratio is about 92%, and the reduction ratio in each pass is about 60%. If these upper limit values are exceeded, the rolling load increases and rolling itself becomes difficult, and there is a risk that inconveniences such as defects such as ear cracks and the probability of fracture during rolling increase.
- a work roll having a surface roughness Ra of 0.25 ⁇ m or less in at least one pass other than the final pass in the final cold rolling. This is because when a work roll having a surface roughness Ra exceeding 0.25 ⁇ m is used, the frictional force during rolling is increased, the degree of orientation accumulation of the primary recrystallized texture is reduced, and the amount of improvement in magnetic properties is reduced. It is because it becomes few.
- the lower limit of the surface roughness Ra is not particularly defined, but is about 0.03 ⁇ m from the viewpoint of rollability.
- both edge portions in the sheet width direction of the steel sheet to be subjected to the final cold rolling before the start of the final cold rolling (hereinafter simply referred to as both edge portions of the sheet width) It is advantageous to heat the temperature to 100 ° C. or higher. If the temperature at both edge portions of the sheet width is less than 100 ° C., the brittleness improvement effect is insufficient and the occurrence of ear cracks is insufficiently reduced.
- the upper limit of the heating temperature at both edge portions of the plate width is not particularly defined, but is set to about 400 ° C. from the viewpoint of productivity. Further, this cold rolling may be performed at room temperature, but it is advantageous in terms of preventing the occurrence of texture and cracking that the rolling is performed by raising the steel plate temperature to a temperature higher than room temperature, for example, about 200 ° C. It is.
- decarburization annealing is performed on the cold-rolled sheet after the final cold rolling.
- the primary purpose of this decarburization annealing is to adjust the primary recrystallization texture optimal for secondary recrystallization by primary recrystallization of the cold-rolled sheet.
- the annealing temperature of decarburization annealing be set to about 800 ° C. or more and less than 950 ° C.
- the annealing atmosphere at this time is preferably a wet hydrogen nitrogen or wet hydrogen argon atmosphere.
- the second purpose of decarburization annealing is decarburization from steel plates. If the steel sheet contains more than 50 ppm of carbon, the iron loss will deteriorate, so it is desirable to reduce the carbon to 50 ppm or less.
- the third purpose of the decarburization annealing is to form a subscale composed of an internal oxide layer of SiO 2 which is a raw material for the undercoat mainly composed of forsterite.
- the primary recrystallized grains are adjusted to a suitable grain size for the development of secondary recrystallization, and in order to further improve the magnetic properties, decarburization annealing is performed. It is effective to reach the maximum temperature at the later stage. When raising the temperature of the latter stage of decarburization annealing, it is preferable to reduce the dew point as much as possible in order not to make the oxygen basis weight excessive. It is appropriate that the maximum temperature is 860 ° C. or higher, and the atmospheric oxidation defined by P (H 2 O) / P (H 2 ) is 0.10 or lower.
- the suitable conditions of the temperature before the decarburization annealing and the temperature increase rate at the time of decarburization annealing are described.
- the pre-stage temperature of decarburization annealing is less than 800 ° C, the oxidation reaction and decarburization reaction do not proceed sufficiently, so that the necessary amount of oxidation in steel cannot be secured and decarburization can be completed. Can not.
- the iron loss can be improved by setting the heating rate between 500 ° C. and 700 ° C. to 50 ° C./s or more during the decarburization annealing. Therefore, it is preferable that the temperature rising rate between 500 ° C. and 700 ° C. is 50 ° C./s or more during decarburization annealing.
- the upper limit value of the temperature increase rate between 500 and 700 ° C. is not particularly defined, but is about 500 ° C./s from the viewpoint of productivity.
- an annealing separator containing magnesia (MgO) as a main component is applied to the surface of the steel sheet, and then secondary recrystallization annealing is performed according to a conventional method.
- a sulfur increasing treatment for increasing the amount of S in the ground iron can be performed in order to further improve the magnetic properties.
- a vulcanization treatment it is advantageous to contain 1.0 to 15.0 mass% of sulfide and / or sulfate in the annealing separator mainly composed of MgO.
- an insulating film can be further applied and baked on the steel sheet surface.
- the type of the insulating coating is not particularly limited, and any conventionally known insulating coating is suitable.
- a coating solution containing phosphate-chromate-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate at about 800 ° C.
- An insulating film formed by baking is particularly suitable.
- the shape of the steel sheet can be adjusted by flattening annealing. Furthermore, this planarization annealing can be combined with the baking treatment of the insulating film.
- Example 1 C: 0.03%, Si: 3.5%, Mn: 0.08%, sol.Al: 75ppm, N: 45ppm, S: 30ppm, Se: 1ppm, O: 9ppm, P: 0.06% and Cu: 0.10%,
- the balance is a continuous cast slab with a composition of Fe and inevitable impurities, reheated to 1200 ° C, hot-rolled to a hot-rolled sheet with a thickness of 2.5 mm, and then hot-rolled at 1050 ° C for 30 seconds Plate annealing was performed. Then, the edge portions of the hot-rolled sheet were raised to 200 ° C.
- decarburization annealing is performed between 500 and 700 ° C at a heating rate of 20 ° C / s, 120 ° C at 850 ° C, atmosphere: H 2 55% -N 2 45%, dew point: 55 ° C. gave.
- an annealing separator having a blending ratio of MgO: 90% by mass, MgSO 4 : 5% by mass and TiO 2 : 5% by mass was applied to the surface of the decarburized annealing plate at 12.5 g / m 2 per side.
- a treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and the temperature was 800 ° C. I baked in. Then, it investigated about the magnetic characteristic of the obtained steel plate.
- the magnetic properties were obtained by subjecting the obtained steel sheet to stress relief annealing at 800 ° C for 3 hours, and then the magnetic flux density B 8 when excited at 800 A / m and iron when excited at 1.7 Hz at 50 Hz. Loss W 17/50 was evaluated.
- the results obtained are also shown in Table 3.
- Table 3 the rolling reduction per pass of the first pass and the surface roughness Ra of the work roll are the columns before rolling, and the rolling reduction per pass of the second pass and the surface roughness Ra of the work roll are after the first pass. Column, and so on.
- the total cold rolling reduction rate is 85% or more, the reduction rate in each pass is 32% or more, and at least one pass other than the final pass
- a work roll having a surface roughness Ra of 0.25 ⁇ m or less is used, a grain-oriented electrical steel sheet having good magnetic properties is obtained.
- Example 2> Contains C: 0.025%, Si: 3.4%, Mn: 0.10%, sol.Al: 70ppm, N: 42ppm, S: 20ppm, Se: 2ppm, O: 30ppm, P: 0.07% and Cu: 0.08%
- the remaining cast slab containing Fe and inevitable impurities is reheated to 1220 ° C and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, followed by 30 at 1050 ° C.
- Second hot-rolled sheet annealing was performed. Next, both edge portions of the hot-rolled sheet are raised by induction heating to the temperature shown in Table 4 before the final cold rolling, and then cooled by a tandem rolling mill under the conditions shown in Table 4.
- Cold rolling was performed to perform cold rolling. After cold rolling, the occurrence of ear cracks in the cold rolled sheet was investigated. The maximum ear cracking depth is also shown in Table 4. Then, after raising the temperature between 500 and 700 ° C at the rate of temperature rise shown in Table 4, decarburization annealing was performed at 850 ° C for 120 s, atmosphere: H 2 55% -N 2 45%, dew point: 50 ° C. gave.
- an annealing separator having a blending ratio of MgO: 90% by mass, MgSO 4 : 5% by mass and TiO 2 : 5% by mass was applied to the surface of the decarburized annealing plate at 12.5 g / m 2 per side. , Dried.
- a treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and the temperature was 800 ° C. I baked in. Thereafter, the magnetic characteristics at the center of the coil width were investigated. Magnetic properties are evaluated by magnetic flux density B 8 when excited at 800 A / m after 800 hours at 800 ° C, and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. did. The results are also shown in Table 4. In Table 4, the rolling reduction per pass of the first pass and the surface roughness Ra of the work roll are the columns before rolling, and the rolling reduction per pass of the second pass and the surface roughness Ra of the work roll are after the first pass. Column, and so on.
- the total cold rolling reduction rate is 85% or more, the reduction rate in each pass is 32% or more, and at least one pass other than the final pass
- a work roll having a surface roughness Ra of 0.25 ⁇ m or less is used, a grain-oriented electrical steel sheet having good magnetic properties is obtained.
- production of an ear crack can be reduced by making the temperature of both edge parts of a steel plate into 100 degreeC or more before the start of the last cold rolling.
- the magnetic characteristics can be further improved by rapidly raising the temperature between 500 and 700 ° C. at a rate of temperature rise of 50 ° C./s or more during decarburization annealing.
- Example 3 Continuously cast slabs with various components shown in Table 5 were re-heated to 1230 ° C, hot-rolled to a hot-rolled sheet with a thickness of 2.2 mm, and then annealed at 1025 ° C for 30 seconds. Was given. Next, both edge portions of the hot-rolled sheet were raised to 200 ° C. by induction heating before the final cold rolling. Subsequently, using a tandem rolling mill, cold rolling was conducted for 4 passes under a rolling reduction ratio of 44% for each pass and a surface roughness Ra of the work roll: 0.10 ⁇ m, and the plate thickness was 0.22 mm. Cold-rolled sheet was used.
- an annealing separator having a blending ratio of MgO: 90% by mass, MgSO 4 : 5% by mass and TiO 2 : 5% by mass is applied to the surface of the decarburized annealing plate at 12.5 g / m 2 per both sides and dried. It was.
- the temperature increase rate to 800 ° C: 15 ° C / h
- the temperature was held at 870 ° C for 50 hours
- the secondary recrystallization annealing was performed under the condition that the temperature was raised at 5.0 ° C./h and held at 1160 ° C.
- Atmospheric gas in the secondary recrystallization annealing is up to 870 ° C. N 2 gas, 870 ° C. or higher using H 2 gas.
- a treatment liquid containing phosphate-chromate-colloidal silica in a mass ratio of 3: 1: 3 was applied to the surface of the secondary recrystallization annealed plate obtained under the above conditions, and the temperature was 800 ° C. I baked in. Thereafter, the magnetic characteristics at the center of the coil width were investigated. Magnetic properties are evaluated by magnetic flux density B 8 when excited at 800 A / m after 800 hours at 800 ° C, and iron loss W 17/50 when excited at 1.7 Hz at 50 Hz. did. The results are also shown in Table 5.
- the total cold rolling reduction in the final cold rolling is 85% or more, and the reduction in each pass is 32% or more. Furthermore, by using a work roll having a surface roughness Ra of 0.25 ⁇ m or less in at least one pass other than the final pass, a grain-oriented electrical steel sheet having good magnetic properties is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Metal Rolling (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
すなわち、4.5mass%以下程度のSiと、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃超に加熱して、インヒビター成分を一旦固溶させたのち、熱間圧延を施して熱延板とする。この熱延板に、熱延板焼鈍を施しまたは施すことなしに、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とする。ついで、この冷延板に、湿潤水素雰囲気中で脱炭・一次再結晶焼鈍を施して一次再結晶および脱炭を行う。その後、得られた鋼板の表面にマグネシア(MgO)を主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5h程度の最終仕上焼鈍を行って製品とする。
すなわち、従来の方向性電磁鋼板がMnS、AlN、MnSeなどの析出物(インヒビター)を利用して、二次再結晶を発現させていたのに対して、インヒビターレス法は、これらインヒビターを用いず、むしろ、高純度化することにより、テクスチャー(集合組織)を制御して、二次再結晶を発現させる技術である。
このインヒビターレス法では、高温のスラブ加熱や高温長時間の二次再結晶焼鈍が不要であることから、低コストでの方向性電磁鋼板の製造が可能となった。
その結果、発明者らは、ゴス方位粒が優先的に二次再結晶するためには、一次再結晶組織におけるゴス方位との方位差角が20~45°の範囲にある粒界が重要な役割を果たしていることを発見し、Acta Material(45巻(1997)1285ページ)において報告した。
ここに、インヒビターを用いた場合のゴス方位粒の成長は、仕上げ焼鈍中に起こるが、これは、高エネルギー粒界の拡散が速いため、高エネルギー粒界上の析出物のピン止めが優先的に外れ、粒界移動を開始してゴス粒が成長すると考えられている。
以下、本発明の基礎となった実験結果について説明する。
質量%および質量ppmで、C:0.03%、Si:3.2%、Mn:0.08%、P:0.05%、Cu:0.10%、Sb:0.03%、sol.Al:60ppm、N:30ppm、S:20ppm、Se:1ppmおよびO:12ppmを含有し、残部はFeおよび不可避的不純物の組成になる連鋳スラブを、1220℃に加熱後、熱間圧延して、板厚:2.5mmの熱延板とした。ついで、熱延板に、1050℃で30秒の熱延板焼鈍を施したのち。リバース式の圧延機を用いて冷間圧延を施し、冷延板とした、この冷間圧延に際しては、各パス当たりの圧下率は一定として、表1に示すように、パス回数とワークロールの表面平均粗さRa(以下、単に表面粗さRaともいう)を種々に変化させる条件で行った。冷間圧延の最終パスについては、いずれも表面粗さRaが0.10μmのワークロールを用いて、圧延後での鋼板の表面粗さRaはほぼ同じとなるようにした。なお、表1中、1パス目のワークロールの表面粗さRaは圧延前の欄に、2パス目のワークロールの表面粗さRaは1パス後の欄に記載し、以降同様に記載している。
冷間圧延後、得られた冷延板に、840℃で120秒間均熱する脱炭焼鈍を、水素分圧:55vol%、窒素分圧:45vol%、露点:55℃の条件で行って、脱炭焼鈍板とした。脱炭焼鈍後にX線回折を用いて、脱炭焼鈍板の集合組織を調査した。なお、以下、本明細書において、水素分圧および窒素分圧にかかる%表示はvol%を意味する。
上記の脱炭焼鈍板から切り出したサンプルの表面に、MgOを主剤とする焼鈍分離剤を12.5g/m2塗布し、乾燥した。ついで、800℃までを15℃/hの昇温速度で昇温し、800~850℃間の昇温速度を5℃/hとし、850℃で50時間保定した。その後、1180℃まで昇温速度:15℃/hで昇温し、1180℃に5h保定する二次再結晶焼鈍を施した。なお、二次再結晶焼鈍における雰囲気ガスは、850℃まではN2ガス、850℃以上はH2ガスとした。
図1によると、冷間圧延におけるパス当たりの圧下率を35%以上に高め、かつ最終パスを除いたワークロールの表面粗さRaを低下させることで、著しく磁束密度が向上することが分かる。
図2によると、冷間圧延におけるパス当たりの圧下率を35%以上に高め、かつ最終パスを除いたワークロールの表面粗さRaを低下させることで、結晶粒の主方位である{554}<225>強度が著しく向上することが分かる。
図3によると、冷間圧延におけるパス当たりの圧下率を高め、かつ最終パスを除いたワークロールの表面粗さを低下させることで、ゴス方位強度は低下する傾向が認められるが、その変化量は僅かであることが分かる。
次に、実験1と同じ成分の連鋳スラブを、1220℃に加熱後、熱間圧延して板厚:2.5mmの熱延板とした。ついで、熱延板に1050℃で30秒の熱延板焼鈍を施したのち、リバース式の圧延機を用いて冷間圧延を施し、冷延板とした。この冷間圧延に際しては、各パス当たりの圧下率とワークロール表面粗さ(Ra:0.10μm)は一定として、表2に示すように、パス回数を変化させて総圧下率を変更する条件で行った。なお、表2中、1パス目のパス当たり圧下率とワークロールの表面粗さRaは圧延前の欄に、2パス目のパス当たり圧下率とワークロールの表面粗さRaは1パス後の欄に記載し、以降同様に記載している。
冷間圧延後、得られた冷延板に、840℃で120秒間均熱する脱炭焼鈍を、水素分圧:55%、窒素分圧:45%、露点:55℃の条件で行って、脱炭焼鈍板とした。
上記の脱炭焼鈍板から切り出したサンプルの表面に、MgOを主剤とし、硫酸マグネシウムを8質量%含有する焼鈍分離剤を12.5g/m2塗布し、乾燥した。ついで、800℃までを15℃/hの昇温速度で昇温し、800~850℃間の昇温速度を5℃/hとし、850℃で50時間保定した。その後、1180℃まで昇温速度:15℃/hで昇温し、1180℃に5h保定する二次再結晶焼鈍を施した。なお、二次再結晶焼鈍における雰囲気ガスは、850℃まではN2ガス、850℃以上はH2ガスとした。
図4によれば、表面粗さRaを低下させたワークロールを用い、かつパス当たりの圧下率を高くした場合でも、総冷延圧下率が低い場合は磁束密度が低下した。すなわち、図4によると、良好な磁束密度が得られるのは総冷延圧下率が85%以上の場合である。
従来のインヒビターを使用する技術の冷間圧延技術としては、特許文献5の図2中に示されるように、パス回数を増加させること、すなわちパス当たりの圧下率を低下させることで磁束密度が向上する知見が得られている。その理由として、鋼板表面から板厚の内部寄りに{110}<001>方位粒が存在する頻度、すなわちゴス方位粒の存在頻度は冷間圧延後に高まることが開示されている。
そのため、冷間圧延におけるパス当たりの圧下率、さらには総冷延圧下率を高めた場合であっても、ゴス方位強度の減少が食い止められると考えられる。そして、高冷延圧下率化による{554}<225>方位粒の増加が、ゴス方位粒の二次再結晶に対して有利に働くものと考えられる。これは、インヒビターレス技術に特有な現象といえる。
鋼板の表面粗さが磁気特性に影響を及ぼすことは公知であり、特許文献6に開示されているように、鋼板表面を平滑化、すなわち表面粗さRaを0.35以下とすることで磁気特性が改善することは既に知られている。そして、その目的で最終の冷間圧延の最終パスでは、Raが0.35以下のブライトロールを使用することが一般的になっている。
例えば、特許文献7には、Raが0.30以上のスクラッチダルロールを使用する技術が開示されている。また、特許文献8には、第2回目の冷間圧延における第1スタンドのロール表面粗さを1.0μmRa以上として、第2スタンド以降に傾斜研磨ロールを使用する技術が開示されている。さらに、特許文献9には、最終冷間圧延における1パス以上を、ロール周方向に対して2°以上90°未満傾斜した研磨目と、上記研磨目とは逆向きに0°以上90°未満傾斜した研磨目とからなるクロス研磨目を有するワークロールを使用して摩擦力を高める技術が開示されている。
この違いは、インヒビターレス技術では、冷間圧延時にゴス方位粒が容易に形成されるため、むしろワークロールの表面粗さを低減し、摩擦力を低減して、脱炭焼鈍板における{554}<225>方位粒の存在強度を高めることが、磁気特性の向上に対して有利に働くからと考えられる。これも、前述したパス当たりの圧下率の効果同様、インヒビターレス技術に特有な現象と考えられる。
本発明は、上記した2つの実験による知見に基づき完成されたものである。
1.質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有すると共に、質量ppmで、S、SeおよびOをそれぞれ50ppm未満、Nを60ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱した後、熱間圧延を施して熱延板とし、該熱延板に熱延板焼鈍を施しまたは施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、ついで冷延板に脱炭焼鈍を施して脱炭焼鈍板としたのち、該脱炭焼鈍板の表面にMgOを主体とする焼鈍分離剤を塗布してから、二次再結晶焼鈍を施す一連の工程よりなる方向性電磁鋼板の製造方法において、
上記冷間圧延工程の最終の冷間圧延において総冷延圧下率を85%以上とし、該最終の冷間圧延の各パスでの圧下率をそれぞれ32%以上とし、さらに該最終の冷間圧延における最終パス以外の少なくとも1パス以上で、表面平均粗さRa:0.25μm以下のワークロールを使用することを特徴とする方向性電磁鋼板の製造方法。
安価に製造することが可能となり、その工業的価値は極めて高い。
まず、本発明において鋼スラブの成分組成を上記の範囲に限定した理由について説明する。なお、本発明において、成分組成に関する「%」、「ppm」表示は特に断らない限り質量%および質量ppmを意味するものとする。また、鋼板やスラブの成分組成の残部は、Feおよび不可避的不純物である。
C:0.08%以下
Cは、一次再結晶集合組織を改善する上で有用な元素であるが、含有量が0.08%を超えるとかえって一次再結晶集合組織の劣化を招くので、C量は0.08%以下に限定した。磁気特性の観点から望ましい添加量は、0.01~0.06%の範囲である。なお、要求される磁気特性のレベルがさほど高くない場合には、一次再結晶焼鈍における脱炭を省略あるいは簡略化するために、Cを0.01%以下としてもよい。この場合におけるC量の下限値に制限はないが、工業的には0.003%程度が好ましい。
Siは、電気抵抗を高めることによって鉄損を改善する有用元素であるが、含有量が4.5%を超えると冷間圧延性が著しく劣化するので、Si量は4.5%以下に限定した。鉄損の観点から望ましいSi量は、2.0~4.5%の範囲である。なお、要求される鉄損レベルによっては、Siを添加しなくてもよい。
Mnは、製造時における熱間加工性を向上させる効果があるが、含有量が0.5%を超えた場合には、一次再結晶集合組織が悪化して磁気特性の劣化を招くので、Mn量は0.5%以下に限定した。なお、Mnの下限値に制限はないが、工業的には0.05%程度が好ましい。
S、SeおよびO量がそれぞれ50ppm以上になると、二次再結晶が困難になる。この理由は、粗大な酸化物や、スラブ加熱によって粗大化したMnS,MnSeが一次再結晶組織を不均一にするためである。従って、S,SeおよびOはいずれも、50ppm未満に抑制するものとした。
Nもまた、SやSe,Oと同様、過剰に存在すると、二次再結晶が困難になる。特にN量が60ppm以上になると、二次再結晶が生じ難くなり、磁気特性が劣化するので、Nは60ppm未満に抑制するものとした。
Alもまた、過剰に存在すると二次再結晶が困難になる。特に、sol.Al量が100ppmを超えると、低温スラブ加熱の条件では二次再結晶し難くなり、磁気特性が劣化するので、Alはsol.Al量で100ppm未満に抑制するものとした。なお、Al量の下限値に制限はないが、工業的には0.003%程度が好ましい。
Ni:0.01~1.50%
Niは、熱延板組織の均一性を高めることにより、磁気特性を改善する働きがある。そのためには、Niを0.01%以上含有させることが好ましいが、含有量が1.50%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Niは0.01~1.50%の範囲で含有させることが望ましい。
Snは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性、特に鉄損を効果的に向上させる働きがある。そのためには、Snを0.03%以上含有させることが好ましいが、0.20%を超えて含有されると冷間圧延性の劣化を招くので、Snは0.03~0.20%の範囲で含有させることが望ましい。
Sbは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素である。その目的のためには、Sbを0.01%以上含有させることが好ましいが、0.20%を超えて含有されると冷間圧延性が劣化するので、Sbは0.01~0.20%の範囲で含有させることが望ましい。
Pは、一次再結晶集合組織を改善し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる有用元素である。その目的のためには、Pを0.02%以上含有させることが好ましいが、0.20%を超えて含有されると冷間圧延性が劣化するので、Pは0.02~0.20%の範囲で含有させることが望ましい。
Cuは、二次再結晶焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を効果的に向上させる働きがある。そのためには、Cuを0.05%以上含有させることが好ましいが、0.50%を超えて含有されると熱間圧延性の劣化を招くので、Cuは0.05~0.50%の範囲で含有させることが望ましい。
Crは、フォルステライト下地被膜の形成を安定化させる働きがある。そのためには、Crを0.03%以上含有させることが好ましいが、一方で含有量が0.50%を超えると二次再結晶が困難となり、磁気特性が劣化するので、Crは0.03~0.50%の範囲で含有させることが望ましい。
Moは、高温酸化を抑制し、へゲと呼ばれる表面欠陥の発生を減少させる働きがある。そのためには、Moを0.008%以上含有させることが好ましいが、含有量が0.50%を超えると冷間圧延性が劣化するので、Moは0.008~0.50%の範囲で含有させることが望ましい。
Nbは、一次再結晶粒の成長を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して磁気特性を向上させる有用元素である。そのためには、Nbを0.0010%以上含有することが望ましいが、0.0100%を超えて含有されると地鉄中に残留して鉄損を劣化させるので0.0010~0.0100%の範囲で含有させることが望ましい。
上記の成分組成範囲に調整した鋼スラブを、再加熱することなくあるいは再加熱したのち、熱間圧延に供して熱延板とする。なお、スラブを再加熱する場合には、再加熱温度は1000℃以上、1300℃以下程度とすることが望ましい。というのは、1300℃を超えるスラブ加熱は、スラブ中にインヒビターを含まない本発明では無意味で、コストアップとなるだけでなく結晶粒の巨大化により磁気特性は大きく劣化し、一方1000℃未満では、圧延荷重が高くなって鋼板の圧延が困難となるからである。
本発明では、上記した1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延のうち、最終の冷間圧延における総冷延圧下率を85%以上とし、かつ最終の冷間圧延の各パスでの圧下率を32%以上とすることが、磁気特性を向上させる上で最も重要である。なお、最終の冷間圧延における各パスの好適圧下率は35%以上である。
総冷延圧下率および各パスでの圧下率が上記した規定値に満たないと、一次再結晶集合組織の方位集積度が低下して磁気特性が劣化する。なお、上限値は特に定めないが、総冷延圧下率は92%程度、各パスでの圧下率は60%程度とする。これらの上限値を超えると、圧延荷重が増加し、圧延自体が困難になる他、耳割れ等の欠陥や圧延中での破断の確率が上昇する不都合が生じるおそれがある。
また、この冷間圧延は、常温で行ってもよいが、常温より高い温度たとえば200℃程度に鋼板温度を上げて圧延する温間圧延とすることが、集合組織および割れ発生防止の点で有利である。
この脱炭焼鈍の第一の目的は、冷延板を一次再結晶させて、二次再結晶に最適な一次再結晶集合組織に調整することである。そのためには、脱炭焼鈍の焼鈍温度は800℃以上、950℃未満程度とすることが望ましい。この時の焼鈍雰囲気は、湿水素窒素あるいは湿水素アルゴン雰囲気とすることが望ましい。
すなわち、脱炭焼鈍の前段温度が800℃未満であると酸化反応、脱炭反応が十分に進まないので、必要な鋼中酸化量を確保することができず、また脱炭を完了させることができない。
また、脱炭焼鈍の昇温中、500~700℃間の昇温速度を50℃/s以上とすることで、鉄損を改善することができる。ごきため、脱炭焼鈍の昇温中、500~700℃間の昇温速度を50℃/s以上とすることが好ましい。なお、500~700℃間の昇温速度の温度の上限値は特に定めないが、生産性の観点から500℃/s程度とする。
また、本発明では、脱炭焼鈍後、二次再結晶完了までの間に、一層の磁気特性向上のために、地鉄中のS量を増加させる増硫処理を行うことができる。かかる増硫処理としては、MgOを主体とする焼鈍分離剤中に、硫化物および/または硫酸塩を1.0~15.0質量%含有させることが有利である。
C:0.03%、Si:3.5%、Mn:0.08%、sol.Al:75ppm、N:45ppm、S:30ppm、Se:1ppm、O:9ppm、P:0.06%およびCu:0.10%を含有し、残部はFeおよび不可避的不純物の組成になる連鋳スラブを、1200℃に再加熱後、熱間圧延して、板厚:2.5mmの熱延板とした後、1050℃で30秒の熱延板焼鈍を施した。ついで、この熱延板の板幅両エッヂ部を、最終の冷間圧延前に、誘導加熱で200℃まで上昇させた後、表3に示す条件で冷間圧延を施して、板厚:0.26mmの冷延板とした。その後、500~700℃間を昇温速度:20℃/sで昇温し、850℃で120s、雰囲気:H255%-N245%、露点:55℃の条件での脱炭焼鈍を施した。
脱炭焼鈍後、MgO:90質量%、MgSO4:5質量%およびTiO2:5質量%の配合割合になる焼鈍分離剤を、脱炭焼鈍板の表面に両面当たり12.5g/m2塗布し、乾燥させた。ついで、800℃まで昇温速度:15℃/hで、800℃から850℃まで昇温速度:2.0℃/hで昇温し、850℃で50時間保定したのち、1160℃まで昇温速度:5.0℃/hで昇温し、1160℃に5h保定する条件で二次再結晶焼鈍を施して、二次再結晶焼鈍板とした。この二次再結晶焼鈍における雰囲気ガスは、850℃まではN2ガス、850℃以上はH2ガスを使用した。
上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩-クロム酸塩-コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。その後、得られた鋼板の磁気特性について調査した。
磁気特性は、得られた鋼板に対して800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
得られた結果を表3に併記する。なお、表3中、1パス目のパス当たり圧下率とワークロールの表面粗さRaは圧延前の欄に、2パス目のパス当たり圧下率とワークロールの表面粗さRaは1パス後の欄に記載し、以降同様に記載している。
C:0.025%、Si:3.4%、Mn:0.10%、sol.Al:70ppm、N:42ppm、S:20ppm、Se:2ppm、O:30ppmを含有し、さらにP:0.07%およびCu:0.08%を含有し、残部はFeおよび不可避的不純物の組成になる連鋳スラブを、1220℃に再加熱後、熱間圧延して、板厚:2.2mmの熱延板としたのち、1050℃で30秒の熱延板焼鈍を施した。ついで、この熱延板の板幅両エッヂ部を、最終冷間圧延前に、表4で示される温度まで誘導加熱で上昇させた後、表4で示した条件で、タンデム式圧延機による冷間圧延を行って冷延板とした。冷間圧延後、冷延板の耳割れの発生について調査した。最大の耳割れ深さを表4に併記する。
その後、500~700℃間を表4に示した昇温速度で昇温したのち、850℃で120s、雰囲気:H255%-N245%、露点:50℃の条件で脱炭焼鈍を施した。
脱炭焼鈍後、MgO:90質量%、MgSO4:5質量%およびTiO2:5質量%の配合割合になる焼鈍分離剤を、脱炭焼鈍板の表面に両面当たり12.5g/m2塗布し、乾燥させた。ついで、800℃まで昇温速度:15℃/hで、800℃から840℃まで昇温速度:2.0℃/hで昇温し、840℃で50時間保定したのち、1160℃まで昇温速度:5.0℃/hで昇温し、1160℃に5h保定する条件で二次再結晶焼鈍を施して、二次再結晶焼鈍板とした。この二次再結晶焼鈍における雰囲気ガスは、840℃まではN2ガス、840℃以上はH2ガスを使用した。
上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩-クロム酸塩-コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
その結果を表4に併記する。なお、表4中、1パス目のパス当たり圧下率とワークロールの表面粗さRaは圧延前の欄に、2パス目のパス当たり圧下率とワークロールの表面粗さRaは1パス後の欄に記載し、以降同様に記載している。
表5に示す種々の成分になる連鋳スラブを、1230℃に再加熱後、熱間圧延して、板厚:2.2mmの熱延板としたのち、1025℃で30秒の熱延板焼鈍を施した。ついで、この熱延板の板幅両エッヂ部を、最終の冷間圧延前に、誘導加熱で200℃まで上昇させた。引き続き、タンデム式の圧延機を用いて、各パス当たりの圧下率:44%、ワークロールの表面粗さRa:0.10μmの条件で、4パスの冷間圧延を施し、板厚:0.22mmの冷延板とした。
冷延板からサンプルを採取し、昇温速度:150℃/sで500~700℃間を昇温し、焼鈍の前段として、H255%-N245%、露点:55℃の雰囲気中で840℃で100s間保定し、後段としてH255%-N245%、露点:20℃の雰囲気中で900℃まで昇温する、脱炭焼鈍を施した。
ついで、MgO:90質量%、MgSO4:5質量%およびTiO2:5質量%の配合割合になる焼鈍分離剤を、脱炭焼鈍板の表面に両面当たり12.5g/m2塗布し、乾燥させた。ついで、800℃まで昇温速度:15℃/hで、800℃から870℃まで昇温速度:2.0℃/hで昇温し、870℃で50時間保定したのち、1160℃まで昇温速度:5.0℃/hで昇温し、1160℃に5h保定する条件で二次再結晶焼鈍を施して二次再結晶焼鈍板とした。この二次再結晶焼鈍における雰囲気ガスは、870℃まではN2ガス、870℃以上はH2ガスを使用した。
上記の条件で得られた二次再結晶焼鈍板の表面に、リン酸塩-クロム酸塩-コロイダルシリカを、質量比で3:1:3の割合で含有する処理液を塗布し、800℃で焼き付けた。その後、コイル幅中央部の磁気特性について調査した。磁気特性は、800℃で3時間の歪取り焼鈍を行ったのち、800A/mで励磁したときの磁束密度B8および50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。
その結果を表5に併記する。
Claims (4)
- 質量%で、C:0.08%以下、Si:4.5%以下およびMn:0.5%以下を含有すると共に、質量ppmで、S、SeおよびOをそれぞれ50ppm未満、Nを60ppm未満、sol.Alを100ppm未満に抑制し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、加熱した後、熱間圧延を施して熱延板とし、該熱延板に熱延板焼鈍を施しまたは施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、ついで該冷延板に脱炭焼鈍を施して脱炭焼鈍板としたのち、該脱炭焼鈍板の表面にMgOを主体とする焼鈍分離剤を塗布してから、二次再結晶焼鈍を施す一連の工程よりなる方向性電磁鋼板の製造方法において、
上記冷間圧延工程の最終の冷間圧延において総冷延圧下率を85%以上とし、該最終の冷間圧延の各パスでの圧下率をそれぞれ32%以上とし、さらに該最終の冷間圧延における最終パス以外の少なくとも1パスで、表面平均粗さ(Ra):0.25μm以下のワークロールを使用する方向性電磁鋼板の製造方法。 - 前記最終の冷間圧延の開始前に、該最終の冷間圧延に供する鋼板の板幅両エッヂ部を100℃以上の温度に加熱する請求項1記載の方向性電磁鋼板の製造方法。
- 前記脱炭焼鈍工程の昇温中、500~700℃間の昇温速度を50℃/s以上とする請求項1または2記載の方向性電磁鋼板の製造方法。
- 前記鋼スラブが、さらに質量%で、 Ni:0.01~1.50%、Sn:0.03~0.20%、Sb:0.01~0.20%、P:0.02~0.20%、Cu:0.05~0.50%、Cr:0.03~0.50%、Mo:0.008~0.50%およびNb:0.0010~0.0100%のうちから選んだ1種または2種以上を含有する請求項1~3のいずれかに記載の方向性電磁鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177015659A KR101983199B1 (ko) | 2014-11-27 | 2015-11-26 | 방향성 전자 강판의 제조 방법 |
EP15862897.4A EP3225704B1 (en) | 2014-11-27 | 2015-11-26 | Method for manufacturing grain-oriented electrical steel sheet |
RU2017122404A RU2665649C1 (ru) | 2014-11-27 | 2015-11-26 | Способ изготовления листа из текстурированной электротехнической стали |
CN201580064481.5A CN107002162B (zh) | 2014-11-27 | 2015-11-26 | 取向性电磁钢板的制造方法 |
JP2016561251A JP6098772B2 (ja) | 2014-11-27 | 2015-11-26 | 方向性電磁鋼板の製造方法 |
US15/528,208 US10428403B2 (en) | 2014-11-27 | 2015-11-26 | Method for manufacturing grain-oriented electrical steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014240500 | 2014-11-27 | ||
JP2014-240500 | 2014-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016084378A1 true WO2016084378A1 (ja) | 2016-06-02 |
WO2016084378A8 WO2016084378A8 (ja) | 2017-03-02 |
Family
ID=56073966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005879 WO2016084378A1 (ja) | 2014-11-27 | 2015-11-26 | 方向性電磁鋼板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10428403B2 (ja) |
EP (1) | EP3225704B1 (ja) |
JP (1) | JP6098772B2 (ja) |
KR (1) | KR101983199B1 (ja) |
CN (1) | CN107002162B (ja) |
RU (1) | RU2665649C1 (ja) |
WO (1) | WO2016084378A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109477186A (zh) * | 2016-07-29 | 2019-03-15 | 杰富意钢铁株式会社 | 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法 |
JP2020164907A (ja) * | 2019-03-28 | 2020-10-08 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
WO2023074908A1 (ja) * | 2021-10-29 | 2023-05-04 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法および方向性電磁鋼板 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3340435A4 (en) * | 2015-08-21 | 2019-03-27 | Yoshikawa Kogyo Co., Ltd. | STATOR CORE AND ENGINE COMPRISING IT |
US11578377B2 (en) | 2017-05-12 | 2023-02-14 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for producing the same |
CN108411087B (zh) * | 2018-03-15 | 2019-07-02 | 马钢(集团)控股有限公司 | 一种附着力优良的无取向电工钢生产方法 |
KR102542693B1 (ko) * | 2018-09-27 | 2023-06-13 | 제이에프이 스틸 가부시키가이샤 | 방향성 전기 강판과 그 제조 방법 |
KR102516331B1 (ko) | 2018-10-31 | 2023-03-31 | 제이에프이 스틸 가부시키가이샤 | 무방향성 전기 강판과 그 제조 방법 및 모터 코어와 그 제조 방법 |
EP4159336A4 (en) * | 2020-06-30 | 2024-04-03 | JFE Steel Corporation | METHOD AND PLANT FOR THE PRODUCTION OF GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET |
EP4202066A1 (de) * | 2021-12-21 | 2023-06-28 | Thyssenkrupp Electrical Steel Gmbh | Verfahren zum erzeugen eines kornorientierten elektrobands, kaltgewalztes stahlband und kornorientiertes elektroband |
CN116024420B (zh) * | 2023-03-23 | 2023-07-28 | 首钢智新迁安电磁材料有限公司 | 一种高磁感取向硅钢及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115919A (ja) * | 1984-06-29 | 1986-01-24 | Kawasaki Steel Corp | けい素鋼板の冷間圧延方法 |
JPH06339701A (ja) * | 1993-05-31 | 1994-12-13 | Kawasaki Steel Corp | 打抜性および溶接性の優れた積層鉄心用電磁鋼板の製造方法 |
JPH11199933A (ja) * | 1998-01-09 | 1999-07-27 | Kawasaki Steel Corp | 方向性電磁鋼板の製造方法 |
JP2012184497A (ja) * | 2011-02-17 | 2012-09-27 | Jfe Steel Corp | 方向性電磁鋼板の製造方法 |
WO2014017590A1 (ja) * | 2012-07-26 | 2014-01-30 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1965559A (en) | 1933-08-07 | 1934-07-03 | Cold Metal Process Co | Electrical sheet and method and apparatus for its manufacture and test |
JPS5113469B2 (ja) | 1972-10-13 | 1976-04-28 | ||
AT329358B (de) | 1974-06-04 | 1976-05-10 | Voest Ag | Schwingmuhle zum zerkleinern von mahlgut |
JPS5938326A (ja) | 1982-08-27 | 1984-03-02 | Kawasaki Steel Corp | 一方向性珪素鋼板の製造方法 |
JP2594634B2 (ja) | 1988-12-26 | 1997-03-26 | 川崎製鉄株式会社 | 方向性けい素鋼板の冷間圧延方法 |
JP3873309B2 (ja) | 1995-12-01 | 2007-01-24 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
IT1284268B1 (it) * | 1996-08-30 | 1998-05-14 | Acciai Speciali Terni Spa | Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da |
DE69706388T2 (de) | 1996-10-21 | 2002-02-14 | Kawasaki Steel Corp., Kobe | Kornorientiertes elektromagnetisches Stahlblech |
JP3707268B2 (ja) | 1998-10-28 | 2005-10-19 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP4029523B2 (ja) * | 1999-07-22 | 2008-01-09 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
EP2107130B1 (en) * | 2000-08-08 | 2013-10-09 | Nippon Steel & Sumitomo Metal Corporation | Method to produce grain-oriented electrical steel sheet having high magnetic flux density |
JP4598320B2 (ja) * | 2001-07-12 | 2010-12-15 | 新日本製鐵株式会社 | 方向性電磁鋼板の製造方法 |
JP3948284B2 (ja) | 2002-01-10 | 2007-07-25 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP4258349B2 (ja) * | 2002-10-29 | 2009-04-30 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
HUE027079T2 (en) * | 2005-08-03 | 2016-10-28 | Thyssenkrupp Steel Europe Ag | A method for producing magnetizable, grain oriented steel strip |
JP5228563B2 (ja) | 2008-03-25 | 2013-07-03 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP5573175B2 (ja) | 2010-01-14 | 2014-08-20 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP4840518B2 (ja) * | 2010-02-24 | 2011-12-21 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
CN102114493A (zh) * | 2010-10-14 | 2011-07-06 | 新万鑫(福建)精密薄板有限公司 | 一种高磁感、低铁损的取向硅钢生产工艺 |
ITFI20110194A1 (it) | 2011-09-08 | 2013-03-09 | Menarini Int Operations Lu Sa | Dispositivo autoiniettore di dosi di farmaco |
EP2876173B9 (en) | 2012-07-20 | 2019-06-19 | Nippon Steel & Sumitomo Metal Corporation | Manufacturing method of grain-oriented electrical steel sheet |
-
2015
- 2015-11-26 CN CN201580064481.5A patent/CN107002162B/zh active Active
- 2015-11-26 KR KR1020177015659A patent/KR101983199B1/ko active IP Right Grant
- 2015-11-26 JP JP2016561251A patent/JP6098772B2/ja active Active
- 2015-11-26 WO PCT/JP2015/005879 patent/WO2016084378A1/ja active Application Filing
- 2015-11-26 RU RU2017122404A patent/RU2665649C1/ru active
- 2015-11-26 EP EP15862897.4A patent/EP3225704B1/en active Active
- 2015-11-26 US US15/528,208 patent/US10428403B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6115919A (ja) * | 1984-06-29 | 1986-01-24 | Kawasaki Steel Corp | けい素鋼板の冷間圧延方法 |
JPH06339701A (ja) * | 1993-05-31 | 1994-12-13 | Kawasaki Steel Corp | 打抜性および溶接性の優れた積層鉄心用電磁鋼板の製造方法 |
JPH11199933A (ja) * | 1998-01-09 | 1999-07-27 | Kawasaki Steel Corp | 方向性電磁鋼板の製造方法 |
JP2012184497A (ja) * | 2011-02-17 | 2012-09-27 | Jfe Steel Corp | 方向性電磁鋼板の製造方法 |
WO2014017590A1 (ja) * | 2012-07-26 | 2014-01-30 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109477186A (zh) * | 2016-07-29 | 2019-03-15 | 杰富意钢铁株式会社 | 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法 |
CN109477186B (zh) * | 2016-07-29 | 2020-11-27 | 杰富意钢铁株式会社 | 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法 |
JP2020164907A (ja) * | 2019-03-28 | 2020-10-08 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP7028215B2 (ja) | 2019-03-28 | 2022-03-02 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
WO2023074908A1 (ja) * | 2021-10-29 | 2023-05-04 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法および方向性電磁鋼板 |
Also Published As
Publication number | Publication date |
---|---|
RU2665649C1 (ru) | 2018-09-03 |
CN107002162B (zh) | 2019-06-07 |
US10428403B2 (en) | 2019-10-01 |
JP6098772B2 (ja) | 2017-03-22 |
KR20170084189A (ko) | 2017-07-19 |
EP3225704A4 (en) | 2017-11-15 |
US20170321296A1 (en) | 2017-11-09 |
EP3225704B1 (en) | 2019-02-27 |
CN107002162A (zh) | 2017-08-01 |
KR101983199B1 (ko) | 2019-05-28 |
EP3225704A1 (en) | 2017-10-04 |
JPWO2016084378A1 (ja) | 2017-04-27 |
WO2016084378A8 (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098772B2 (ja) | 方向性電磁鋼板の製造方法 | |
EP2878687B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5610084B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
RU2537628C1 (ru) | Способ производства листа из текстурированной электротехнической стали | |
WO2017006955A1 (ja) | 方向性電磁鋼板とその製造方法 | |
US20150243419A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5949813B2 (ja) | 方向性電磁鋼板の製造方法 | |
CN107250403B (zh) | 方向性电磁钢板及其制造方法 | |
JP6856179B1 (ja) | 方向性電磁鋼板の製造方法 | |
JP6838601B2 (ja) | 低鉄損方向性電磁鋼板とその製造方法 | |
JP6171887B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6601649B1 (ja) | 低鉄損方向性電磁鋼板とその製造方法 | |
KR102428115B1 (ko) | 방향성 전기강판의 제조 방법 | |
JP6225759B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP4029523B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP5920387B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP3948284B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP4259269B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP4258156B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP4259002B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP7338511B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP2012162773A (ja) | 方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862897 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016561251 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528208 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015862897 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177015659 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017122404 Country of ref document: RU Kind code of ref document: A |