WO2014017590A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2014017590A1
WO2014017590A1 PCT/JP2013/070186 JP2013070186W WO2014017590A1 WO 2014017590 A1 WO2014017590 A1 WO 2014017590A1 JP 2013070186 W JP2013070186 W JP 2013070186W WO 2014017590 A1 WO2014017590 A1 WO 2014017590A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
annealing
heating
steel sheet
temperature
Prior art date
Application number
PCT/JP2013/070186
Other languages
English (en)
French (fr)
Inventor
之啓 新垣
今村 猛
龍一 末廣
早川 康之
有衣子 脇阪
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2015105718/02A priority Critical patent/RU2599942C2/ru
Priority to IN610DEN2015 priority patent/IN2015DN00610A/en
Priority to EP13822589.1A priority patent/EP2878688B1/en
Priority to US14/414,623 priority patent/US9748028B2/en
Priority to KR1020147035234A priority patent/KR101625540B1/ko
Priority to CN201380011743.2A priority patent/CN104160044B/zh
Priority to JP2014527000A priority patent/JP5716870B2/ja
Publication of WO2014017590A1 publication Critical patent/WO2014017590A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.
  • a grain-oriented electrical steel sheet is a soft magnetic material whose crystal orientation is highly integrated in the Goss orientation ( ⁇ 110 ⁇ ⁇ 001>), and is mainly used for transformer iron cores, motor iron cores, and the like.
  • grain oriented electrical steel sheets used for transformers are strongly required to have low iron loss in order to reduce no-load loss (energy loss).
  • As means for reducing iron loss, reduction of plate thickness, increase of Si addition amount, improvement of orientation of crystal orientation, application of tension to steel plate, smoothing of steel plate surface, refinement of secondary recrystallization structure, etc. Is known to be effective.
  • Patent Document 1 discloses a heating rate of 100 ° C./s or more in a non-oxidizing atmosphere in which P H2O / PH2 is 0.2 or less immediately before decarburization annealing of a cold-rolled steel sheet rolled to a final thickness.
  • Patent Document 1 discloses a heating rate of 100 ° C./s or more in a non-oxidizing atmosphere in which P H2O / PH2 is 0.2 or less immediately before decarburization annealing of a cold-rolled steel sheet rolled to a final thickness.
  • a technique for obtaining a grain-oriented electrical steel sheet with low iron loss by heating to a temperature of 700 ° C. or higher is disclosed.
  • Patent Document 3 film characteristics and magnetic characteristics are obtained by heating a temperature range of 600 ° C. or higher to 800 ° C. or higher at a rate of temperature increase of 95 ° C./s and appropriately controlling the atmosphere in this temperature range.
  • a technique for obtaining an electrical steel sheet that is superior to the above is disclosed.
  • the present invention has been made in view of the above problems in the prior art, and its purpose is to increase the temperature rise rate when primary recrystallization annealing is as high as 80 ° C./s or more as in the prior art.
  • the object is to propose a manufacturing method capable of stably obtaining a grain-oriented electrical steel sheet with low iron loss.
  • the inventors have studied the ideal heat cycle in the primary recrystallization annealing, particularly the heating rate (heating pattern) from various viewpoints.
  • the purpose of rapid heating to a temperature of about 700 ° C. in the temperature raising process in the primary recrystallization annealing is a temperature range in which recrystallization of ⁇ 222 ⁇ : ⁇ fiber ⁇ 111 ⁇ fiber structure easily proceeds preferentially.
  • a temperature range such as 550 ° C. and 580 ° C. in a short time, it is considered that recrystallization of ⁇ 110 ⁇ : Goth structure ⁇ 110 ⁇ ⁇ 001> is relatively promoted.
  • the present invention contains C: 0.001 to 0.10 mass%, Si: 1.0 to 5.0 mass%, Mn: 0.01 to 0.5 mass%, and Al: 0.0100 mass%. Less than, S, Se, O, and N: each reduced to 0.0050 mass% or less, the steel slab having a composition composed of Fe and unavoidable impurities in the remainder is hot-rolled and subjected to or after hot-rolled sheet annealing Without making the final sheet thickness by one or two or more cold rolling sandwiching the intermediate annealing, after the primary recrystallization annealing, and then applying the annealing separator and finish annealing In the production method, rapid heating is performed at an average temperature increase rate of 40 to 200 ° C./s between 550 and 700 ° C.
  • the steel slab in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Cu: 0.01 to 0.2 mass%, Ni: 0.01 to 0.5 mass%, Cr: 0.00% in addition to the above component composition. 01 to 0.5 mass%, Sb: 0.01 to 0.1 mass%, Sn: 0.01 to 0.5 mass%, Mo: 0.01 to 0.5 mass%, Bi: 0.001 to 0.1 mass% Ti, 0.005 to 0.02 mass%, P: 0.001 to 0.05 mass%, and Nb: 0.0005 to 0.0100 mass%, or one or more selected from And
  • the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that sulfide and / or sulfate is added to the annealing separator, or nitriding is performed after the primary recrystallization.
  • the present invention even when the temperature rising rate in the temperature raising process of the primary recrystallization annealing is relatively low, the effect of refining secondary recrystallized grains equal to or higher than that of the prior art that rapidly heats at a high temperature rising rate is achieved. Therefore, it is possible to easily and stably obtain a grain-oriented electrical steel sheet with low iron loss.
  • 3 is a graph showing the influence of a heating pattern on the relationship between a heating rate between 550 and 700 ° C. and iron loss. It is a graph which shows the influence which a heating pattern has on ⁇ 110 ⁇ inverse strength.
  • the test piece was heated to 700 ° C. at various heating rates using an electric heating device, then heated to 800 ° C. at 30 ° C./s, and held for 60 seconds in a wet hydrogen atmosphere.
  • a primary recrystallization annealing was performed which also served as a carbon annealing.
  • the heating in the primary recrystallization annealing is performed by heating pattern 1 in which the temperature is continuously increased from room temperature to 700 ° C. at a constant temperature increase rate and heated between 700 ° C. and 800 ° C. at a constant temperature increase rate;
  • the heating pattern 2 was held for 3 seconds at 450 ° C. during heating up to 700 ° C., and the heating pattern 3 was held for 15 seconds at a temperature of 450 ° C. during heating up to 700 ° C.
  • the heating rate in the heating patterns 2 and 3 is the heating rate before and after the holding, and the atmosphere conditions and the like in the heating patterns 2 and 3 are all the same as those in the heating pattern 1.
  • Test specimens of the same dimensions are collected from the same position of the cold rolled coil obtained in Experiment 1, and continuously heated from room temperature to 700 ° C. at an annealing rate of 40 ° C./100° C./s using an electric heating device.
  • an electric heating device When heating from room temperature to 700 ° C. at an annealing rate of 100 ° C./s, after heating at 400 ° C., 500 ° C., or 600 ° C. during heating for 3 seconds, 700 ° C. To 800 ° C. at a temperature rising rate of 30 ° C./s, and subjected to primary recrystallization annealing also serving as decarburization annealing for 60 seconds in a wet hydrogen atmosphere.
  • the inverse strength was measured by the X-ray diffraction method. When held at 400 ° C. and 500 ° C., it was held at 600 ° C. or at 40 ° C./s. Compared to the case of continuous heating, the ⁇ 110 ⁇ inverse strength is high and equal to or higher than that when rapidly heated at 100 ° C./s, that is, the Goss orientation ( ⁇ 110 ⁇ ) that becomes the nucleus during secondary recrystallization ⁇ 001>) It was confirmed that the recrystallization of grains was promoted.
  • the mechanism by which this phenomenon occurs is considered as follows.
  • the driving force that causes recrystallization is strain energy, that is, it is considered that the release of strain energy is likely to occur in a portion with high strain energy
  • technical literature Shiraiwa, Terasaki, Kodama, “Al killed steel The phenomenon of ⁇ 222 ⁇ preferentially recrystallized in the Japan Institute of Metals, Vol. 35, No. 1, p. 20) is preferentially recrystallized in the ⁇ 222 ⁇ structure. It shows that high strain energy is accumulated.
  • the strain energy decreases, and the driving force for causing recrystallization of the ⁇ 222 ⁇ structure significantly decreases. Since the ⁇ 222 ⁇ structure needs to exist in a certain amount as the structure phagocytosed by the Goss grains, the recrystallization of the ⁇ 222 ⁇ structure is suppressed excessively, and thus the primary recrystallization sufficient for the secondary recrystallization. It is likely that the organization was not obtained. Therefore, when the heating rate is relatively slow, it is considered that the same effect as when the heating rate is high is obtained only when the tissue recovery temperature range is maintained for a very short time, and the heating rate is high. In this case, it is considered that the same effect as that obtained under the condition where the heating rate is higher is obtained.
  • C 0.001 to 0.10 mass%
  • C is a component useful for the generation of goth-oriented crystal grains, and needs to be contained in an amount of 0.001 mass% or more in order to effectively exhibit such action.
  • C is set in the range of 0.001 to 0.10 mass%. Preferably, it is in the range of 0.01 to 0.08 mass%.
  • Si 1.0 to 5.0 mass%
  • Si has the effect of increasing the electrical resistance of steel and lowering the iron loss, and needs to contain at least 1.0 mass%. On the other hand, addition exceeding 5.0 mass% makes it difficult to cold-roll. Therefore, Si is set in the range of 1.0 to 5.0 mass%. Preferably, it is in the range of 2.0 to 4.5 mass%.
  • Mn 0.01 to 0.5 mass%
  • Mn is an element effective for improving the hot workability of steel, and needs to be contained in an amount of 0.01 mass% or more. On the other hand, addition exceeding 0.5 mass% is not preferable because the austenite fraction increases during hot rolling and the texture deteriorates. Therefore, Mn is in the range of 0.01 to 0.5 mass%. Preferably, it is in the range of 0.01 to 0.10 mass%.
  • Al Less than 0.0100 mass%, N, S, Se: each 0.0050 mass% or less
  • Al, N, S, and Se are components that form inhibitors, and when added excessively, the temperature that causes secondary recrystallization increases. In addition, it becomes difficult to control secondary recrystallization.
  • an inhibitor forming element when such an inhibitor forming element is present in a large amount, not only a high slab heating temperature is required for solid solution dispersion, but also when the slab heating temperature is insufficient, coarse AlN, MnS , MnSe, etc. cause the primary recrystallization structure to be non-uniform and cause secondary recrystallization failure. Therefore, it is necessary to reduce Al to less than 0.0100 mass% and N, S, and Se to 0.0050 mass% or less.
  • Al is 0.0050 mass% or less
  • N, S, and Se are each 0.0030 mass% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • O since O has an inhibitory effect of inhibiting the secondary recrystallization by forming an oxide, it is desirable to reduce it to 0.0050 mass% or less in the steelmaking stage for manufacturing the steel slab.
  • the grain-oriented electrical steel sheet targeted by the present invention includes Cu: 0.01 to 0.2 mass%, Ni: 0.01 to 0.5 mass%, Cr: 0.01 in addition to the essential components described above.
  • Ti: 0.005 to 0.02 mass%, P: 0.001 to 0.05 mass%, and Nb: 0.0005 to 0.0100 mass% can be contained.
  • the addition of these elements can suppress fluctuations in the size of primary recrystallized grains due to temperature variations during the manufacturing process.
  • the addition amount is less than the lower limit value of the above range, the above effect cannot be obtained sufficiently.
  • the addition amount exceeds the upper limit value of the above range, poor appearance of the coating and secondary recrystallization are likely to occur.
  • the crystal grains gradually become coarse even in the initial stage of the secondary recrystallization annealing.
  • the particle size at the time of primary recrystallization may be large.
  • the primary recrystallization grain size before secondary recrystallization needs to be suppressed to a certain extent, specifically 35 ⁇ m or less. The driving force is lost, and secondary recrystallization failure may occur.
  • conventional techniques for nitriding before secondary recrystallization are applied, or sulfides and sulfates are added to the annealing separator to cause sulfurization in the steel sheet. It is also possible to moderately suppress grain growth during secondary recrystallization annealing and suppress secondary recrystallization failure.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention is a method of hot rolling a steel slab having the above-described component composition, and after or without hot-rolled sheet annealing, at least once with or without intermediate annealing.
  • This is a manufacturing method comprising a series of steps in which cold rolling is performed to obtain a final plate thickness, followed by primary recrystallization annealing, followed by application of an annealing separator and secondary recrystallization annealing.
  • the method for producing the steel slab is not particularly limited, and the steel slab can be produced by melting the steel having the above-described component composition by a conventionally known refining process and using a continuous casting method, an ingot-bundling rolling method, or the like.
  • the steel slab is then subjected to hot rolling, but the reheating temperature of the steel slab prior to hot rolling is not particularly limited as long as it is capable of rolling in the component system of the present invention in which an inhibitor is not actively added.
  • the reheating temperature of the steel slab prior to hot rolling is not particularly limited as long as it is capable of rolling in the component system of the present invention in which an inhibitor is not actively added.
  • the hot-rolled hot-rolled sheet is subjected to cold-rolling of the final thickness after hot-rolled sheet annealing or by hot-rolled sheet annealing, or by cold rolling at least twice with intermediate annealing interposed therebetween.
  • a board there is no restriction
  • the cold-rolled sheet having the above final thickness is subjected to primary recrystallization annealing.
  • primary recrystallization annealing rapid heating is performed at an average temperature increase rate of 40 to 200 ° C./s between 550 and 700 ° C., and as a preceding step, 10 ° C. / It is necessary to keep the temperature rising rate below s for 1 to 10 seconds.
  • the reason why the temperature range for rapid heating is in the range of 550 to 700 ° C.
  • the temperature range is a temperature range where ⁇ 222 ⁇ is preferentially recrystallized, as disclosed in the technical literature described above, By rapidly heating this temperature range, it is possible to promote the generation of the ⁇ 110 ⁇ ⁇ 001> orientation that becomes the nucleus of secondary recrystallization. As a result, the secondary recrystallized structure is refined and iron loss is reduced. It is because it is improved.
  • the reason for setting the average temperature increase rate in the above temperature range to 40 to 200 ° C./s is that the effect of improving the iron loss is not sufficient if it is less than 40 ° C./s. This is because the iron loss improvement effect is saturated.
  • the reason for maintaining a temperature rising rate of 10 ° C./s or less in any temperature range between 250 ° C. and 550 ° C. for 1 to 10 seconds is that the temperature rising rate is lower than that in the conventional technique in which the temperature is continuously increased. This is because the effect of improving the iron loss can be obtained even by heating between 550 and 700 ° C.
  • the heating rate of 10 ° C./s or less may be a negative heating rate as long as the steel plate temperature does not deviate from the range of 250 to 550 ° C.
  • the technical idea of the present invention is to reduce the recrystallization superiority of ⁇ 222 ⁇ by holding for a short time in a temperature range in which dislocation density is reduced and recrystallization does not occur. Therefore, the above effect cannot be obtained at less than 250 ° C. at which dislocation transfer is hardly expected.
  • ⁇ 222 ⁇ recrystallization begins to occur, and even when maintained at a temperature of more than 550 ° C., ⁇ 110 ⁇ Generation of ⁇ 001> orientation cannot be promoted.
  • the holding time if the holding time is less than 1 second, the holding effect is not sufficient.
  • the holding time exceeds 10 seconds, the recovery may proceed excessively and secondary recrystallization failure may occur.
  • the steel sheet that has been subjected to the primary recrystallization annealing satisfying the above conditions is then subjected to finish annealing for secondary recrystallization after applying and drying an annealing separator on the steel sheet surface.
  • an annealing separator for example, MgO as a main component and optionally added TiO 2 or the like as needed, or SiO 2 or Al 2 O 3 as a main component can be used.
  • the conditions for finish annealing are not particularly limited, and may be performed according to a conventional method.
  • the steel sheet is then coated with an insulating coating on the surface of the steel sheet, or coated with an insulating coating on the surface of the steel sheet, and then subjected to flattening annealing that combines baking and shape correction.
  • the type of the insulating coating is not particularly limited, but in the case of forming an insulating coating that applies a tensile tension to the steel sheet surface, Japanese Patent Laid-Open Nos. 50-79442 and 48-39338 are disclosed. It is preferable to bake at about 800 ° C. using a coating solution containing phosphate-chromic acid-colloidal silica disclosed in the above.
  • the secondary recrystallized structure can be stably refined over almost the entire length of the product coil, and good iron loss characteristics can be imparted.
  • a steel slab containing 0.01 mass% was heated at 1100 ° C. for 30 minutes, and then hot-rolled to a hot-rolled sheet having a thickness of 2.2 mm, and subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute. Cold rolling was performed to obtain a cold rolled coil having a final thickness of 0.23 mm.
  • a sample of L: 300 mm ⁇ C: 100 mm was taken from the longitudinal direction and the center in the width direction of the cold-rolled coil thus obtained, and in the laboratory, the primary recycle that also served as decarburization annealing using an induction heating device. Crystal annealing was performed.
  • this primary recrystallization annealing as shown in Table 1, a pattern (No. 1, No. 1) which is continuously heated from room temperature (RT) to 700 ° C. at a constant heating rate of 20 to 300 ° C./s. 2,9,11,13) and two types of patterns (No. 3 to 8, 10, 12) of heating between T1 and T2 during heating between the above temperatures for a predetermined time at a predetermined heating rate. After heating, 700 ° C.
  • a steel slab having the composition shown in Table 2 is heated at 1200 ° C. for 20 minutes, and then hot rolled to form a hot-rolled sheet having a thickness of 2.0 mm and subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute.
  • channel on the steel plate surface was given.
  • the mixture was heated from room temperature to 750 ° C. at various heating rates similarly shown in Table 2, heated from 750 to 840 ° C.
  • an annealing separator containing MgO as the main component and 10 mass% of TiO 2 is applied as a water slurry and applied and dried. Then, after winding on the coil and subjecting it to final finish annealing, a phosphate-based insulating tension coating was applied, and flattening annealing was performed for both baking and shape correction to obtain a product coil of grain-oriented electrical steel sheet.
  • a test piece having a size of L: 320 mm ⁇ C: 30 mm was taken from the longitudinal direction and the width direction central portion of the product coil thus obtained, and the iron loss W 17/50 was measured by the Epstein test. It was written together in 2. From Table 2, No. 1 which performed the heating of primary recrystallization annealing on the conditions suitable for this invention. It can be seen that all the steel sheets 4 to 12 have excellent iron loss characteristics.
  • Example 2 No. of Table 2 used in Example 2 was used. Samples with a width of 150 mm were collected from 1 hot-rolled sheet and heated at 1150 ° C. for 2 minutes at 1150 ° C. at one edge of the plate width (30 mm from the width end) and 1050 ° C. for 2 minutes. Thus, the crystal grains at one edge of the steel plate were coarsened.
  • This treatment assumes that the steel sheet is overheated due to deceleration, etc. due to some trouble during annealing line passing, and the material whose crystal grains are coarsened at this stage is the same as the normal material.
  • the post-process is a process, it is considered that secondary recrystallization failure is likely to occur due to changes in texture and primary recrystallization grain size.
  • the hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm, and then heated from room temperature to 750 ° C. at a heating rate of 100 ° C./s, provided that the heating is performed at 450 ° C. For 3 seconds, heated from 750 to 800 ° C. at a heating rate of 25 ° C./s, and then subjected to primary recrystallization annealing also serving as decarburization annealing for decarburization in a wet hydrogen atmosphere.
  • an annealing separator containing MgO as a main component and added with 5 mass% of TiO 2 in the form of a water slurry was applied and dried, and subjected to final finish annealing.
  • 1-4 grain-oriented electrical steel sheets were obtained.
  • no. No. 1 steel sheet was not held during the heating of the primary recrystallization annealing.
  • No. 3 steel sheet was decarburized and then subjected to nitriding treatment.
  • an annealing separator in which 10 mass% of MgSO 4 was added in addition to TiO 2 was used.
  • the technology of the present invention can also be used for texture control of thin steel sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

mass%で、C:0.001~0.10%、Si:1.0~5.0%、Mn:0.01~0.5%を含有し、かつ、Al:0.0100%未満、S,Se,OおよびN:それぞれ0.0050%以下に低減した鋼スラブを熱間圧延し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、一次再結晶焼鈍を施した後、焼鈍分離剤を塗布して仕上焼鈍を施す方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍の加熱過程における550~700℃間を平均昇温速度40~200℃/sで急速加熱するとともに、250℃~550℃間のいずれかの温度域において昇温速度10℃/s以下で1~10秒間保持することにより、二次再結晶粒の微細化を図り、低鉄損を安定して実現した方向性電磁鋼板を得る。

Description

方向性電磁鋼板の製造方法
 本発明は、鉄損特性に優れる方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、その結晶方位がゴス方位({110}<001>)に高度に集積した軟磁性材料であり、主として変圧器の鉄心や電動機の鉄心などに用いられている。中でも、変圧器に用いられる方向性電磁鋼板には、無負荷損(エネルギーロス)を低減するため、鉄損が低いことが強く求められている。鉄損を低減する手段としては、板厚の低減や、Si添加量の増加、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などが有効であることが知られている。
 上記手段の中の二次再結晶粒を細粒化する技術としては、特許文献1~特許文献4などに開示の脱炭焼鈍時に急速加熱する方法や、脱炭焼鈍直前に急速加熱処理し、一次再結晶集合組織を改善する方法等が提案されている。例えば、特許文献1には、最終板厚まで圧延した冷延鋼板を脱炭焼鈍する直前に、PH2O/PH2が0.2以下の非酸化性雰囲気中で100℃/s以上の加熱速度で700℃以上の温度まで加熱することによって低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献3などには、600℃以上の温度域を95℃/s以上の昇温速度で800℃以上に加熱し、この温度域の雰囲気を適正に制御することによって被膜特性と磁気特性に優れる電磁鋼板を得る技術が開示されている。
 これらの急速加熱で一次再結晶集合組織を改善する技術は、急速加熱の温度範囲として概ね室温から700℃以上の温度範囲に対して、一義的に昇温速度を規定するものである。この技術思想は、再結晶温度近傍までを短時間で昇温することによって、通常の加熱速度であれば優先的に形成するγファイバー({111}繊維組織)の発達を抑制し、二次再結晶の核となる{110}<001>組織の発生を促進する等、一次再結晶集合組織の改善を図ることと理解されている。この技術の適用により、二次再結晶粒が細粒化され、鉄損を改善することができる。
 ところで、上記急速加熱を行う技術においては、特許文献5に開示の技術のように、圧延条件を適性に制御することによって50℃/s以上で急速加熱の効果を発現させることができるものもあるが、概ね80℃/s以上あるいはさらに高い昇温速度で大きな効果が得られるとされている。しかし、昇温速度を高めるためには、誘導加熱や通電加熱などの特殊で大型の加熱設備が必要となり、かつ、短時間に大きなエネルギーの投入が必要となるという問題がある。また、急速加熱による急激な温度変化によって、鋼板の形状が悪化し、製造ラインで通板性が低下するという問題もある。
特開平07-062436号公報 特開平10-298653号公報 特開2003-027194号公報 特開2000-204450号公報 特開平07-062437号公報
 本発明は、従来技術における上記問題点に鑑みてなされたものであり、その目的は、一次再結晶焼鈍における昇温速度が、従来技術のように80℃/s以上と高い場合はより高い昇温速度と同等の効果を得、80℃/s未満の比較的低い場合においても急速加熱の効果を発現させることによって、従来技術に比べてより効率的に二次再結晶粒の微細化を図り、もって、低鉄損の方向性電磁鋼板を安定して得ることができる製造方法を提案することにある。
 発明者らは、上記課題を解決するべく、一次再結晶焼鈍におけるヒートサイクルのあり方、特に、昇温速度(加熱パターン)について、様々な観点から検討を行った。前述したように、一次再結晶焼鈍における昇温過程において約700℃の温度まで急速加熱する目的は、{222}:γファイバー{111}繊維組織の再結晶が優先的に進み易い温度域である550℃、580℃といった温度範囲を短時間で通過させることにより、{110}:ゴス組織{110}<001>の再結晶を相対的に促進させることにあると考えられる。
 これに対して、昇温過程における{222}が優先的に発達する550~700℃の温度域よりも低い温度域は、組織の回復や転位のポリゴン化が生じ、転位密度は低下するものの、再結晶が生じるには十分ではない。そのため、上記温度域で長時間保持しても{222}の再結晶はほとんど進行しない。しかし、上記温度域では、歪蓄積量の高い組織ほど転位密度が大幅に低下するため、短時間の保持によって一次再結晶集合組織に大きな変化が生じ、二次再結晶粒の微細化効果を効果的に発現させることができることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.001~0.10mass%、Si:1.0~5.0mass%、Mn:0.01~0.5mass%を含有し、かつ、Al:0.0100mass%未満、S,Se,OおよびN:それぞれ0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、熱延板焼鈍を施した後もしくは施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延により最終板厚とした後、一次再結晶焼鈍を施し、その後、焼鈍分離剤を塗布して仕上焼鈍を施す方向性電磁鋼板の製造方法において、前記一次再結晶焼鈍の加熱過程における550~700℃間を平均昇温速度40~200℃/sで急速加熱するとともに、250℃~550℃間のいずれかの温度域において昇温速度10℃/s以下で1~10秒間保持することを特徴とする方向性電磁鋼板の製造方法である。
 本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Cu:0.01~0.2mass%、Ni:0.01~0.5mass%、Cr:0.01~0.5mass%、Sb:0.01~0.1mass%、Sn:0.01~0.5mass%、Mo:0.01~0.5mass%、Bi:0.001~0.1mass%、Ti:0.005~0.02mass%、P:0.001~0.05mass%およびNb:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、上記焼鈍分離剤中に硫化物および/または硫酸塩を添加する、あるいは、上記一次再結晶後に窒化処理を施すことを特徴とする。
 本発明によれば、一次再結晶焼鈍の昇温過程における昇温速度が比較的低い場合においても、高い昇温速度で急速加熱する従来技術と同等以上の二次再結晶粒の微細化効果を発現させることができるので、低鉄損の方向性電磁鋼板を容易かつ安定的に得ることが可能となる。
Alキルド鋼における焼鈍時間と再結晶粒の数に及ぼす焼鈍温度の影響を示すグラフである。 550~700℃間の昇温速度と鉄損の関係に及ぼす加熱パターンの影響を示すグラフである。 加熱パターンが{110}インバース強度に及ぼす影響を示すグラフである。
 まず、本発明を開発するに至った実験について説明する。
<実験1>
 C:0.03mass%、Si:3.1mass%、Mn:0.03mass%を含有し、かつ、Al:0.0100mass%未満、S,Se,OおよびN:各0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施し、1回の冷間圧延により板厚が0.30mmの冷延板(コイル)とした後、この冷延コイルの長手方向、幅方向の中央部から、L:300mm×C:100mmの試験片を30枚切り出した。
 次いで、上記の試験片に、通電加熱装置を用いて、種々の昇温速度で700℃の温度に加熱後、30℃/sで800℃まで加熱し、湿水素雰囲気中で60秒間保持する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍における加熱は、室温から700℃までを一定の昇温速度で連続的に昇温し、700℃から800℃間を一定の昇温速度で加熱する加熱パターン1と、上記700℃までの加熱途中の450℃で3秒間保持する加熱パターン2および上記700℃までの加熱途中の450℃の温度で15秒間保持する加熱パターン3の3つのパターンで行った。なお、加熱パターン2,3における昇温速度は、上記保持する前後の昇温速度をいい、加熱パターン2,3における雰囲気条件等は全て加熱パターン1と同一とした。
 次いで、一次再結晶(脱炭)焼鈍後の試験片表面に、MgOを主成分とする焼鈍分離剤を塗布し、1150℃×10時間の二次再結晶焼鈍(仕上焼鈍)を施した後、リン酸塩系の絶縁張力コーティングを塗布・焼き付けした。
 このようにして得た仕上焼鈍後の試験片について、SST(単板試験器)を用いて鉄損W17/50(商用周波数50Hzで磁束密度1.7Tまで励磁した際の鉄損)を測定し、その結果を図1に示した。この図から、加熱途中の450℃で3秒間保持する加熱パターン2の場合には、連続昇温する加熱パターン1の場合よりも良好な鉄損が得られており、例えば、加熱パターン2の場合には昇温速度40℃/sでも加熱パターン1の昇温速度80℃/sと同等の鉄損が得られている。これに対して、加熱途中の450℃で15秒間保持する加熱パターン3の場合には、全ての試験片で鉄損W17/50が1.10W/kg以上となり(図示せず)、さらに昇温速度が100℃/s以上では、二次再結晶自体が起きていなかった。
<実験2>
 実験1で得た冷延コイルの同一位置から同一寸法の試験片を採取し、通電加熱装置を用いて、室温から700℃までを焼鈍速度40℃/sまたは100℃/sで連続して加熱する条件と、室温から700℃までを焼鈍速度100℃/sで加熱する際、加熱途中の400℃、500℃、600℃のいずれかの温度で3秒間保持する条件で加熱した後、700℃から800℃まで昇温速度30℃/sで加熱し、湿水素雰囲気中で60秒間保持する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。斯くして得られた一次再結晶焼鈍板について、X線回折法でインバース強度を測定したところ、400℃および500℃で保持した場合には、600℃で保持した場合や、40℃/sで連続加熱した場合と比較して{110}インバース強度が高く、100℃/sで急速加熱したときと同等以上となっていること、すなわち、二次再結晶時に核となるGoss方位({110}<001>)粒の再結晶が促進されていることが確認された。
 このような現象が起こるメカニズムについて、以下のように考えている。
 一般に、再結晶を起こす駆動力は歪エネルギーである、すなわち、歪エネルギーの解放は、歪みエネルギーの高い部分において生じ易いと考えられており、技術文献(白岩、寺崎、小玉、「Alキルド鋼での等温焼鈍中の再結晶挙動」、日本金属学会誌、第35巻、第1号、p.20)において認められた{222}が優先的に再結晶するという現象は、{222}組織に高い歪エネルギーが蓄積されていることを示している。
 ここで、冷延した鋼板を、転位がポリゴン化し、歪エネルギーが減少して組織が回復する温度域に短時間保持した場合には、他の結晶方位に比べて歪エネルギーの高い{222}において歪エネルギーの減少は大きくなる。その結果、回復が起こる温度で保持した場合には、組織による、圧延時の歪エネルギー蓄積の差異は失われ、再結晶時における{222}組織の優先成長性は低下する。このような加熱途中で保持したときの効果は、一次再結晶焼鈍後に形成される集合組織の観点から見れば、高い昇温速度で急速加熱した効果と同一である。
 一方、組織が回復する温度域で必要以上に保持した場合には、歪エネルギーが低下し、{222}組織の再結晶が生じるための駆動力が大幅に低下する。{222}組織はGoss粒に蚕食される組織として一定量存在している必要があるため、過剰に{222}組織の再結晶が抑制されたことで、二次再結晶に十分な一次再結晶組織が得られなかった可能性が高い。したがって、比較的昇温速度の遅い場合では、組織回復温度域に極短時間保持した場合にのみ、昇温速度が高い場合と同等の効果が得られたものと考えられ、昇温速度が高い場合も、さらに昇温速度が高い条件と同等の効果が得られたものと考えられる。
 次に、本発明が対象とする方向性電磁鋼板の成分組成について説明する。
C:0.001~0.10mass%
 Cは、ゴス方位結晶粒の発生に有用な成分であり、かかる作用を有効に発現させるためには0.001mass%以上の含有を必要とする。一方、Cを0.10mass%を超えて含有すると、脱炭焼鈍において脱炭不良を起こすおそれがある。よって、Cは0.001~0.10mass%の範囲とする。好ましくは0.01~0.08mass%の範囲である。
Si:1.0~5.0mass%
 Siは、鋼の電気抵抗を高めて鉄損を低下させる効果があり、少なくとも1.0mass%の含有を必要とする。一方、5.0mass%を超える添加は、冷間圧延することを困難とする。よって、Siは1.0~5.0mass%の範囲とする。好ましくは2.0~4.5mass%の範囲である。
Mn:0.01~0.5mass%
 Mnは、鋼の熱間加工性を向上させるのに有効な元素であり、0.01mass%以上含有させる必要がある。一方、0.5mass%を超える添加は、熱延時にオーステナイト分率が増加し、集合組織が劣化するため好ましくない。よって、Mnは0.01~0.5mass%の範囲とする。好ましくは0.01~0.10mass%の範囲である。
Al:0.0100mass%未満、N,S,Se:各0.0050mass%以下
 Al,N,SおよびSeは、インヒビターを形成する成分であり、過剰に添加すると二次再結晶を起こす温度が上昇し、二次再結晶を制御することが困難となる。また、このようなインヒビター形成元素が多く存在すると、その固溶分散のために、高いスラブ加熱温度が必要となるだけでなく、スラブ加熱温度が十分でなかった場合は、粗大化したAlN,MnS,MnSe等が一次再結晶組織を不均一にして二次再結晶不良を引き起こす原因となる。よって、Alは0.0100mass%未満、N,S,Seはそれぞれ0.0050mass%以下に低減する必要がある。好ましくは、Al:0.0050mass%以下、N,S,Se:それぞれ0.0030mass%以下である。
 本発明が対象とする方向性電磁鋼板において、上記成分以外の残部は、Feおよび不可避的不純物である。なお、Oは、酸化物を形成して二次再結晶を阻害するインヒビター効果を有することから、鋼スラブを製造する製鋼段階において0.0050mass%以下に低減しておくことが望ましい。
 なお、本発明が対象とする方向性電磁鋼板は、上記必須とする成分の他に、Cu:0.01~0.2mass%、Ni:0.01~0.5mass%、Cr:0.01~0.5mass%、Sb:0.01~0.1mass%、Sn:0.01~0.5mass%、Mo:0.01~0.5mass%、Bi:0.001~0.1mass%、Ti:0.005~0.02mass%、P:0.001~0.05mass%およびNb:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を含有することができる。
 これらは、結晶粒径や表面に偏析したり、あるいは、炭窒化物を形成したりすることで、補助的なインヒビターとしての作用を有する元素である。インヒビターを積極的に添加しない本発明の成分系においては、これらの元素を添加することで、製造工程中の温度のバラつきによる一次再結晶粒の大きさの変動を抑制することができる。しかし、添加量が上記範囲の下限値未満では上記効果が十分に得られず、逆に、上記範囲の上限値を超えると被膜の外観不良や二次再結晶不良が発生しやすくなる。
 また、インヒビターを積極的に添加しない本発明の成分系では、二次再結晶焼鈍初期にも徐々に結晶粒は粗大化していく。上述したように、上工程の温度が高温側に振れてしまった場合、一次再結晶時の粒径が大きくなっていることがある。二次再結晶のためには、二次再結晶前の一次再結晶粒径がある程度、具体的には35μm以下に抑制されている必要があるため、場合によっては、二次再結晶に必要な駆動力が失われ、二次再結晶不良が生じることもある。これを抑制するためには、従来から知られている二次再結晶前に窒化処理を施す技術を適用したり、焼鈍分離剤中に硫化物や硫酸塩を添加し、鋼板中に浸硫させたりすることによって、二次再結晶焼鈍中の粒成長を適度に抑え、二次再結晶不良を抑制することも可能である。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 本発明の方向性電磁鋼板の製造方法は、前述した成分組成を有する鋼スラブを熱間圧延し、熱延板焼鈍を施した後もしくは施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とした後、一次再結晶焼鈍を施し、その後、焼鈍分離剤を塗布して二次再結晶焼鈍を施す一連の工程からなる製造方法である。
 上記鋼スラブの製造方法は、特に制限はなく、従来公知の精錬プロセスで前述した成分組成の鋼を溶製し、連続鋳造法、造塊-分塊圧延法等で製造することができる。
 上記鋼スラブは、その後、熱間圧延に供するが、熱間圧延に先立つ鋼スラブの再加熱温度は、インヒビターを積極的に添加しない本発明の成分系では、圧延可能な温度があればよく特に制限はないが、1100℃以上とするのが好ましい。
 熱間圧延した熱延板は、熱延板焼鈍を施した後、あるいは熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。なお、上記熱間圧延以降から冷間圧延までの製造条件については、特に制限はなく、常法に準じて行なえばよい。
 次いで、上記の最終板厚とした冷延板は、一次再結晶焼鈍を施す。一次再結晶焼鈍における加熱は、550~700℃間を平均昇温速度40~200℃/sで急速加熱するとともに、その前段階として、250~550℃間のいずれかの温度域で10℃/s以下の昇温速度を1~10秒間保持することが必要である。
 ここで、急速加熱する温度域を550~700℃の範囲とする理由は、先述した技術文献に開示されているように、この温度域は、{222}が優先再結晶する温度範囲であり、この温度範囲を急速加熱することによって、二次再結晶の核となる{110}<001>方位の発生を促進することができ、その結果、二次再結晶組織を細粒化し、鉄損が改善されるからである。
 また、上記温度範囲の平均昇温速度を40~200℃/sとする理由は、40℃/s未満では鉄損の改善効果が十分ではなく、一方、200℃/sより高くしても、鉄損改善効果が飽和するからである。
 また、250~550℃間のいずれかの温度域で10℃/s以下の昇温速度を1~10秒間保持する理由は、連続的に昇温する従来技術に比べて、低い昇温速度で550~700℃間を加熱しても、鉄損の改善効果を得ることができるからである。なお、上記10℃/s以下の昇温速度は、鋼板温度が250~550℃の範囲から外れない限り、負の昇温速度となってもよい。
 すなわち、本発明は、転位密度の低下が生じ、かつ、再結晶が起こらない温度域で短時間保持することにより、{222}の再結晶優位性を低下させることを技術思想としている。したがって、転位の移動がほとんど見込めない250℃未満では上記効果は得られず、一方、550℃を超えると{222}の再結晶が生じ始めるため、550℃超の温度で保持しても{110}<001>方位の発生を促進することができない。また、保持時間については、1秒未満では保持する効果が十分ではなく、一方、10秒を超えると回復が進行し過ぎて二次再結晶不良を引き起こすおそれがある。
 上記の条件を満たして一次再結晶焼鈍した鋼板は、その後、鋼板表面に焼鈍分離剤を塗布・乾燥した後、二次再結晶させる仕上焼鈍を施す。上記焼鈍分離剤としては、例えば、MgOを主成分とし、必要に応じてTiOなどを適宜添加したものや、SiOやAlを主成分としたもの等を用いることできる。なお、仕上焼鈍の条件は、特に制限はなく、常法に準じて行えばよい。
 仕上焼鈍後の鋼板は、その後、鋼板表面に絶縁被膜を塗布・焼付けし、あるいは、鋼板表面に絶縁被膜を塗布した後、焼付と形状矯正を兼ねた平坦化焼鈍を施して製品とするのが好ましい。なお、上記絶縁被膜の種類については、特に制限はないが、鋼板表面に引張張力を付与する絶縁被膜を形成する場合には、特開昭50-79442号公報や特開昭48-39338号公報等に開示されたリン酸塩-クロム酸-コロイダルシリカを含有する塗布液を用いて、800℃程度で焼き付けるのが好ましい。また、上記焼鈍分離剤として、SiOやAlを主成分とするものを用いる場合には、仕上焼鈍後の鋼板表面にはフォルステライト被膜が形成されないので、改めてMgOを主成分とする水スラリーを塗布し、フォルステライト被膜を形成する焼鈍を施してから、絶縁被膜を形成してもよい。
 上記に説明した本発明の製造方法によれば、製品コイルのほぼ全長に亘って安定的に二次再結晶組織を細粒化し、良好な鉄損特性を付与することができる。
 C:0.06mass%、Si:3.3mass%、Mn:0.08mass%、S:0.001mass%、Al:0.002mass%、N:0.002mass%、Cu:0.05mass%およびSb:0.01mass%を含有する鋼スラブを1100℃で30分加熱後、熱間圧延して板厚2.2mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延コイルとした。
 このようにして得た冷延コイルの長手方向および幅方向中央部から、L:300mm×C:100mmの試料を採取し、ラボにて、誘導加熱装置を用いて脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、この一次再結晶焼鈍では、表1に示したように、室温(RT)から700℃の間を一定の昇温速度20~300℃/sで連続的に加熱するパターン(No.1,2,9,11,13)と、上記温度間の加熱途中のT1~T2間を所定の昇温速度で所定時間加熱するパターン(No.3~8,10,12)の2種類のパターンで加熱した後、700℃から820℃までを昇温速度40℃/sで加熱し、湿水素雰囲気中で820℃×2分間の脱炭を施した。
 次いで、上記一次再結晶焼鈍後の試料に、MgOを主成分とし、TiOを5mass%添加した焼鈍分離剤を水スラリー状にして塗布・乾燥した後、最終仕上焼鈍を施し、リン酸塩系の絶縁張力コーティングを塗布・焼付けし、方向性電磁鋼板とした。
 斯くして得た各試料について、単板磁気測定法(SST)で鉄損W17/50を測定した後、酸洗して鋼板表面の絶縁被膜およびフォルステライト被膜を剥ぎ取り、二次再結晶粒の粒径を測定した。なお、鉄損特性の測定は、1加熱条件当たり20枚について行い、平均値で評価した。また、二次再結晶の粒径は、300mm長の試験片に対して線分法を用いて測定した。
 上記測定の結果を表1に併記した。この結果から、本発明に適合する条件で一次再結晶焼鈍した鋼板は、二次再結晶後の粒径が小さく、かつ、鉄損特性も良好であること、特に、RT~700℃間の昇温速度が低い50℃/sの場合に鉄損低減効果が大きいことがわかる。
Figure JPOXMLDOC01-appb-T000001
 表2に示した成分組成を有する鋼スラブを1200℃で20分加熱後、熱間圧延して板厚2.0mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した後、一次冷間圧延して板厚1.5mmとし、1100℃×2分の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とし、電解エッチングして鋼板表面に線状溝を形成する磁区細分化処理を施した。
 次いで、同じく表2に示した種々の昇温速度で室温から750℃まで加熱し、750から840℃までを昇温速度10℃/sで加熱してから、PH2O/PH2=0.3の湿水素雰囲気中で2分間保持する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とし、TiOを10mass%添加した焼鈍分離剤を水スラリー状にして塗布・乾燥し、コイルに巻き取り、最終仕上焼鈍を施した後、リン酸塩系の絶縁張力コーティングを塗布し、焼付と形状矯正を兼ねた平坦化焼鈍を施して方向性電磁鋼板の製品コイルとした。
 斯くして得た製品コイルの長手方向、幅方向中央部からL:320mm×C:30mmの大きさの試験片を採取し、エプスタイン試験で鉄損W17/50を測定し、その結果を表2に併記した。表2から、一次再結晶焼鈍の加熱を本発明に適合する条件で加熱を施したNo.4~12の鋼板は、いずれも鉄損特性に優れていることがわかる。
Figure JPOXMLDOC01-appb-T000002
 実施例2で用いた表2のNo.1の熱延板から幅:150mmの供試材を採取し、ラボにて、板幅の片側エッジ部(幅端部から30mmの範囲)を1150℃、それ以外を1050℃で2分間加熱して、鋼板の片側エッジ部の結晶粒を粗大化させた。この処理は、焼鈍ライン通板時に何らかのトラブルが原因で、減速などにより鋼板が過加熱された場合を想定しており、この段階で結晶粒が粗大化した素材を、正常材とまったく同じ条件で後工程を処理とした場合、集合組織や一次再結晶粒径の変化によって、二次再結晶不良が生じ易い条件となることを考慮したものである。
 次いで、上記熱延板を冷間圧延し、最終板厚0.23mmの冷延板とした後、室温から750℃まで昇温速度100℃/sで加熱し、ただし、上記加熱途中の450℃で3秒間保持し、750から800℃まで昇温速度25℃/sで加熱した後、湿水素雰囲気で脱炭する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。その後、MgOを主成分とし、TiOを5mass%添加した焼鈍分離剤を水スラリー状にして塗布・乾燥し、最終仕上焼鈍を施して表3に示したNo.1~4の方向性電磁鋼板を得た。なお、上記方向性電磁鋼板の製造に際して、No.1の鋼板については、一次再結晶焼鈍の加熱途中での保持は行わず、No.3の鋼板については、脱炭後、窒化処理を施し、また、No.4の鋼板については、TiOに加えてMgSOを10mass%添加した焼鈍分離剤を用いた。
 斯くして得た方向性電磁鋼板から、L方向が320mm、C方向が30mmの試験片を幅方向に5枚、長さ方向に8枚、合計40枚を切り出し、エプスタイン試験で鉄損W17/50を測定した後、酸洗して鋼板表面のフォルステライト被膜を除去し、鋼板エッジ部の二次再結晶状況を観察した。
 上記の結果を表3に併記した。なお、表3中に示した鉄損値は、高温加熱した片側エッジ部試験片の鉄損値も含む平均値である。この結果から、一次再結晶焼鈍の加熱途中の450℃で3秒間保持した鋼板は、いずれも鉄損特性が良好であり、中でも窒化処理を施したNo.3や、焼鈍分離剤中にMgSOを添加したNo.4の鋼板では、高温加熱した片側エッジ部にも二次再結晶不良(二次再結晶が生じていない不良箇所)は認められず、鉄損特性も大きく改善されていることがわかる。
Figure JPOXMLDOC01-appb-T000003
 本発明の技術は、薄鋼板の集合組織制御にも利用することができる。

Claims (4)

  1. C:0.001~0.10mass%、Si:1.0~5.0mass%、Mn:0.01~0.5mass%を含有し、かつ、Al:0.0100mass%未満、S,Se,OおよびN:それぞれ0.0050mass%以下に低減し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、熱延板焼鈍を施した後もしくは施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延により最終板厚とした後、一次再結晶焼鈍を施し、その後、焼鈍分離剤を塗布して仕上焼鈍を施す方向性電磁鋼板の製造方法において、
    前記一次再結晶焼鈍の加熱過程における550~700℃間を平均昇温速度40~200℃/sで急速加熱するとともに、250℃~550℃間のいずれかの温度域において昇温速度10℃/s以下で1~10秒間保持することを特徴とする方向性電磁鋼板の製造方法。
  2. 前記鋼スラブは、前記成分組成に加えてさらに、Cu:0.01~0.2mass%、Ni:0.01~0.5mass%、Cr:0.01~0.5mass%、Sb:0.01~0.1mass%、Sn:0.01~0.5mass%、Mo:0.01~0.5mass%、Bi:0.001~0.1mass%、Ti:0.005~0.02mass%、P:0.001~0.05mass%およびNb:0.0005~0.0100mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 前記焼鈍分離剤中に硫化物および/または硫酸塩を添加することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 前記一次再結晶後に窒化処理を施すことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
PCT/JP2013/070186 2012-07-26 2013-07-25 方向性電磁鋼板の製造方法 WO2014017590A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2015105718/02A RU2599942C2 (ru) 2012-07-26 2013-07-25 Способ изготовления листа электротехнической текстурированной стали
IN610DEN2015 IN2015DN00610A (ja) 2012-07-26 2013-07-25
EP13822589.1A EP2878688B1 (en) 2012-07-26 2013-07-25 Method for producing grain-oriented electrical steel sheet
US14/414,623 US9748028B2 (en) 2012-07-26 2013-07-25 Method for producing grain-oriented electrical steel sheet
KR1020147035234A KR101625540B1 (ko) 2012-07-26 2013-07-25 방향성 전자 강판의 제조 방법
CN201380011743.2A CN104160044B (zh) 2012-07-26 2013-07-25 取向性电磁钢板的制造方法
JP2014527000A JP5716870B2 (ja) 2012-07-26 2013-07-25 方向性電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-165519 2012-07-26
JP2012165519 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017590A1 true WO2014017590A1 (ja) 2014-01-30

Family

ID=49997399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070186 WO2014017590A1 (ja) 2012-07-26 2013-07-25 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US9748028B2 (ja)
EP (1) EP2878688B1 (ja)
JP (1) JP5716870B2 (ja)
KR (1) KR101625540B1 (ja)
CN (1) CN104160044B (ja)
IN (1) IN2015DN00610A (ja)
RU (1) RU2599942C2 (ja)
WO (1) WO2014017590A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168869A (ja) * 2014-03-10 2015-09-28 Jfeスチール株式会社 冷延鋼板、方向性電磁鋼板および方向性電磁鋼板の製造方法
JP2015172223A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015172222A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015183189A (ja) * 2014-03-20 2015-10-22 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP2015193921A (ja) * 2014-03-17 2015-11-05 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015214723A (ja) * 2014-05-09 2015-12-03 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
WO2016084378A1 (ja) * 2014-11-27 2016-06-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2019137881A (ja) * 2018-02-07 2019-08-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN112210298A (zh) * 2020-09-29 2021-01-12 深圳市深涂涂料有限公司 一种水性冷镀铝、锌涂料配方及其应用的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129015A1 (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6350398B2 (ja) 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6354957B2 (ja) 2015-07-08 2018-07-11 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
BR112018011105B1 (pt) * 2015-12-04 2021-10-26 Jfe Steel Corporation Método para fabricar chapa de aço eletromagnética de grão orientado
US20200123632A1 (en) * 2017-07-13 2020-04-23 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP3913073A4 (en) * 2019-01-16 2022-09-21 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A CORNORATED ELECTRICAL STEEL SHEET

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839388A (ja) 1971-09-25 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS63105926A (ja) * 1986-10-23 1988-05-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH0762437A (ja) 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH0762436A (ja) 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH07312308A (ja) * 1994-05-18 1995-11-28 Nippon Steel Corp 磁気特性の優れたグラス被膜の少ない一方向性電磁鋼板の製造方法
JPH10298653A (ja) 1997-04-25 1998-11-10 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2000204450A (ja) 1999-01-14 2000-07-25 Nippon Steel Corp 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP2003027194A (ja) 2001-07-12 2003-01-29 Nippon Steel Corp 皮膜特性と磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2008001983A (ja) * 2006-05-24 2008-01-10 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
JP2013139629A (ja) * 2011-12-06 2013-07-18 Jfe Steel Corp 低鉄損方向性電磁鋼板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975127A (en) 1987-05-11 1990-12-04 Kawasaki Steel Corp. Method of producing grain oriented silicon steel sheets having magnetic properties
US4898626A (en) 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid heat treatment of grain oriented electrical steel
JP3392664B2 (ja) 1996-10-31 2003-03-31 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2000256810A (ja) * 1999-03-11 2000-09-19 Kawasaki Steel Corp 低磁場高周波での磁気特性及び打ち抜き加工性に優れる方向性けい素鋼板及びその製造方法
IT1316026B1 (it) * 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Procedimento per la fabbricazione di lamierini a grano orientato.
US7976644B2 (en) 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP2008001979A (ja) 2006-05-24 2008-01-10 Nippon Steel Corp 方向性電磁鋼板の製造方法とその製造方法に用いる脱炭焼鈍炉
WO2008062853A1 (fr) * 2006-11-22 2008-05-29 Nippon Steel Corporation Feuille d'acier électromagnétique à orientation unidirectionnelle de grains, ayant une excellente adhésion de film, et son procédé de fabrication
JP4833906B2 (ja) 2007-04-20 2011-12-07 新日本製鐵株式会社 誘導加熱設備
JP2010163634A (ja) 2009-01-13 2010-07-29 Chugai Ro Co Ltd ストリップ材処理装置
JP5417936B2 (ja) * 2009-03-31 2014-02-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5988026B2 (ja) 2011-07-28 2016-09-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5672273B2 (ja) 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2878689B1 (en) 2012-07-26 2018-09-05 JFE Steel Corporation Method of producing grain-oriented electrical steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839388A (ja) 1971-09-25 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS63105926A (ja) * 1986-10-23 1988-05-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
JPH0762437A (ja) 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH0762436A (ja) 1993-08-24 1995-03-07 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH07312308A (ja) * 1994-05-18 1995-11-28 Nippon Steel Corp 磁気特性の優れたグラス被膜の少ない一方向性電磁鋼板の製造方法
JPH10298653A (ja) 1997-04-25 1998-11-10 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2000204450A (ja) 1999-01-14 2000-07-25 Nippon Steel Corp 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP2003027194A (ja) 2001-07-12 2003-01-29 Nippon Steel Corp 皮膜特性と磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2008001983A (ja) * 2006-05-24 2008-01-10 Nippon Steel Corp 磁束密度の高い方向性電磁鋼板の製造方法
JP2013139629A (ja) * 2011-12-06 2013-07-18 Jfe Steel Corp 低鉄損方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIRAIWA, TERASAKI; KODAMA: "Recrystallization behavior during isothermal annealing in Al killed steel", JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, vol. 35, no. 1, pages 20

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168869A (ja) * 2014-03-10 2015-09-28 Jfeスチール株式会社 冷延鋼板、方向性電磁鋼板および方向性電磁鋼板の製造方法
JP2015172223A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015172222A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015193921A (ja) * 2014-03-17 2015-11-05 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
JP2015183189A (ja) * 2014-03-20 2015-10-22 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015214723A (ja) * 2014-05-09 2015-12-03 Jfeスチール株式会社 鉄損特性に優れる方向性電磁鋼板の製造方法
WO2016084378A1 (ja) * 2014-11-27 2016-06-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6098772B2 (ja) * 2014-11-27 2017-03-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JPWO2016084378A1 (ja) * 2014-11-27 2017-04-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US10428403B2 (en) 2014-11-27 2019-10-01 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
JP2019137881A (ja) * 2018-02-07 2019-08-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN112210298A (zh) * 2020-09-29 2021-01-12 深圳市深涂涂料有限公司 一种水性冷镀铝、锌涂料配方及其应用的制备方法

Also Published As

Publication number Publication date
IN2015DN00610A (ja) 2015-06-26
EP2878688B1 (en) 2019-07-03
KR20150010787A (ko) 2015-01-28
CN104160044A (zh) 2014-11-19
RU2015105718A (ru) 2016-09-10
US9748028B2 (en) 2017-08-29
EP2878688A4 (en) 2016-03-02
RU2599942C2 (ru) 2016-10-20
CN104160044B (zh) 2016-01-13
JP5716870B2 (ja) 2015-05-13
EP2878688A1 (en) 2015-06-03
KR101625540B1 (ko) 2016-05-30
US20150194247A1 (en) 2015-07-09
JPWO2014017590A1 (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5716870B2 (ja) 方向性電磁鋼板の製造方法
JP5679090B2 (ja) 方向性電磁鋼板の製造方法
KR102120572B1 (ko) 무 방향성 전자 강판의 제조 방법
KR101558292B1 (ko) 방향성 전자 강판의 제조 방법
KR101921401B1 (ko) 방향성 전기 강판의 제조 방법
WO2016136095A1 (ja) 無方向性電磁鋼板の製造方法
KR101600724B1 (ko) 철손 특성이 우수한 방향성 전기 강판의 제조 방법
KR102140991B1 (ko) 방향성 전자 강판의 제조 방법
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
JP6191826B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
WO2014049770A1 (ja) 方向性電磁鋼板の製造方法
KR20150121012A (ko) 방향성 전자 강판의 제조 방법
JP2013047382A (ja) 方向性電磁鋼板の製造方法
KR101755958B1 (ko) 방향성 전기 강판
JP2015200002A (ja) 方向性電磁鋼板の製造方法
JP2017122247A (ja) 方向性電磁鋼板の製造方法
JP2020084303A (ja) 方向性電磁鋼板の製造方法
JP6947147B2 (ja) 方向性電磁鋼板の製造方法
JP2014194073A (ja) 方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP5310510B2 (ja) 方向性電磁鋼板の製造方法
JP6702259B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527000

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035234

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414623

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013822589

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015105718

Country of ref document: RU

Kind code of ref document: A