WO2016076311A1 - タンニン酸誘導体を含む皮膜形成性組成物 - Google Patents
タンニン酸誘導体を含む皮膜形成性組成物 Download PDFInfo
- Publication number
- WO2016076311A1 WO2016076311A1 PCT/JP2015/081600 JP2015081600W WO2016076311A1 WO 2016076311 A1 WO2016076311 A1 WO 2016076311A1 JP 2015081600 W JP2015081600 W JP 2015081600W WO 2016076311 A1 WO2016076311 A1 WO 2016076311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- tannic acid
- forming composition
- acid derivative
- sample
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D199/00—Coating compositions based on natural macromolecular compounds or on derivatives thereof, not provided for in groups C09D101/00 - C09D107/00 or C09D189/00 - C09D197/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/086—Organic or non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/20—Metallic substrate based on light metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2401/00—Form of the coating product, e.g. solution, water dispersion, powders or the like
- B05D2401/10—Organic solvent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0254—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
Definitions
- the present invention relates to a film-forming composition containing a tannic acid derivative, and specifically includes a tannic acid derivative having a predetermined chain hydrocarbon group, and is excellent in rust prevention, antibacterial properties, sterilization, bactericidal properties, and the like.
- the present invention relates to a composition for forming a film.
- Mg Magnesium
- Mg is an abundant element on the earth's surface, is light and strong, and has good castability, so it is widely used for wheels, aircraft parts, mobile phone parts and the like.
- Mg is corrosive, and when it is immersed in an acidic solution, an alkaline solution, or salt water, it is easily corroded with generation of hydrogen. Therefore, various rust preventives that protect the surface of metal substrates such as Mg and Mg alloys have been developed.
- Patent Document 1 a method for producing a rust-proof and corrosion-resistant iron material that does not use harmful chromium-based compounds is disclosed.
- Patent Document 2 a method for producing a rust-proof and corrosion-resistant iron material that does not use harmful chromium-based compounds is disclosed.
- Patent Document 3 the surface treatment metal plate which does not contain hexavalent chromium, and its manufacturing method are disclosed.
- tannin which is a kind of polyphenol
- Non-patent Document 1 tannin hardly dissolves in an organic solvent, its use is limited.
- Patent Document 3 it is known that at least a part of hydroxyl groups contained in the tannin molecule is substituted with an alkyl ether or an alkyl ester to form a water-insoluble tannic acid derivative.
- the stable film is a film formed by reacting gallic acid or the like in tannic acid with zinc on a film formed by causing tannic acid to undergo cohesive polymerization or associative polymerization.
- Non-Patent Document 1 FIG. 10 and the left column on page 42 related thereto. Involved in these reactions are hydroxyl groups such as gallic acid contained in tannic acid. Therefore, if this hydroxyl group is changed to alkyl ether or the like, it is difficult to form a film, and it is predicted that the rust prevention effect will be reduced. Also in patent document 1, it evaluates exclusively in a solution state.
- the present inventors have made various studies for the purpose of providing a rust inhibitor having a high rust preventive effect, and the alkyl ether derivative forms a film by a mechanism completely different from that of tannic acid.
- the inventors have found that the present invention has various effects in addition to the rust prevention effect, and has made the present invention.
- the present invention is a film-forming composition
- a film-forming composition comprising a tannic acid derivative in which hydrogen atoms in at least some of the hydroxyl groups of tannic acid are substituted with chain hydrocarbon groups having 3 to 18 carbon atoms.
- composition of the present invention is film-forming and forms stable films on various substrates.
- Research on the mechanism of film formation has just begun, but tannic acid derivative molecules can be ordered with their chain hydrocarbon groups aligned. The reason is considered. This orientation compensates for the decrease in hydroxyl groups and brings about an excessive film stability, and exhibits various functions such as rust prevention, antibacterial properties, and bactericidal properties superior to those of the tannic acid aggregated film.
- Example 1 is an FT-IR spectrum of a derivative prepared with TA (C 10 ) 20 ).
- 5 is a graph showing the relationship between the amount of drop-cast on a substrate and the film thickness. It is the electrode block diagram used in order to test rust prevention ability. It is a measurement result of cathode current density (Cathodic current density) in rust prevention test 1. It is a measurement result of the anode current density (Anodic current density) in the rust prevention test 1. It is a measurement result of cathode current density in rust prevention test 2.
- Tannin is a general term for plant components that produce polyhydric phenol by hydrolysis.
- Hydrolyzable tannin and flavanol skeleton which are easily hydrolyzed by acids and enzymes, are formed by esterification of gallic acid or ellagic acid to sugars such as glucose. It is broadly classified into condensed tannin polymerized. Any type of tannin or a mixture thereof can be derivatized in the present invention, and the effects of the present invention are expected.
- Hydrolyzable tannin is preferable, and for example, tannic acid represented by the following formula (1) as a main component is derivatized.
- the tannic acid used in the examples described later is a natural product derived from the larvae of Nurde, and is produced by cleavage or recombination of the ester bond of gallic acid or ellagic acid in the process of extraction or purification. Although it can contain substances, it has been confirmed that each effect such as rust prevention and sterilization can be sufficiently achieved.
- Tannic acid has a plurality of hydroxyl groups, but in the derivative of the present invention, hydrogen atoms in at least some of the plurality of hydroxyl groups are substituted with a chain hydrocarbon group having 3 to 18 carbon atoms.
- the total number of hydroxyl groups in the raw material tannic acid varies depending on the type. Preferably, 10% or more of the number of substituents is substituted, more preferably 20% or more, and particularly preferably 40% or more.
- the total number of hydroxyl groups is 25, and at least 1, preferably 3 or more, more preferably 5 or more, particularly preferably 10 or more are substituted.
- the upper limit of the number of substituents varies depending on the type of substituent, the base material to be applied and the purpose of use. All hydroxyl groups may be substituted as long as the desired adhesiveness can be achieved with respect to the substrate to be used.
- the number is preferably 20 or less, more preferably 15 or less.
- Examples of the chain hydrocarbon group having 3 to 18 carbon atoms include linear or branched alkyl groups, alkenyl groups, and alkynyl groups, which are bonded to the tannic acid skeleton through a bond containing an oxygen atom derived from a hydroxyl group. Is done.
- chain hydrocarbon group examples include butyl group, hexyl group, heptyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, propylene group, hexylene group, Hexadecenyl group, octadecenyl group and the like are included.
- it has 4 to 18 carbon atoms, more preferably 6 to 16 carbon atoms.
- the bond containing an oxygen atom include an ether bond, an ester bond, and a urethane bond.
- the tannic acid derivative is obtained by a Williamson ether synthesis method which is one of alkylation reactions. Specifically, it can be produced by reacting tannic acid with an alkyl halide in the presence of a basic catalyst in a solvent such as tetrahydrofuran or dimethyl sulfoxide.
- a basic catalyst any one or two or more catalysts selected from the group of MH, M 2 CO 3 , and M (M: alkali metal) can be used.
- K 2 CO 3 converts the OH group to O ⁇ M + and promotes the nucleophilic reaction of the O ⁇ group to a halogenated alkyl (X—R 1 : X: halogen, R 1 : alkyl group).
- alkyl halide for example, alkyl iodide can be used. Moreover, what has a sulfonyl group etc. as a leaving group can be used instead of halogenated alkyl. Moreover, alkylation reactions other than the above-mentioned Williamson ether synthesis method can also be used. Furthermore, a dehydration condensation reaction with carboxylic acids using a condensing agent such as N, N′-dicyclohexylcarbodiimide (DCC) or a condensation reaction with isocyanate can also be used.
- a condensing agent such as N, N′-dicyclohexylcarbodiimide (DCC) or a condensation reaction with isocyanate
- FIG. 1 shows an example of derivatization of tannic acid of formula (1).
- K 2 CO 3 is used as a basic catalyst and a derivative (TA (C 10 ) 9 ) having nine decyl groups is synthesized by heating to 85 ° C. in DMF.
- TA (C 10 ) 9 a derivative having nine decyl groups
- the composition of the present invention is film-forming.
- the solvent when the solvent is removed after being applied in the form of a solution or the like on the substrate, it remains in the form of a film on the substrate.
- the film may not be a continuous film, and may be a film formed discontinuously by, for example, spraying.
- the tannin derivative may be cross-linked or mixed with a matrix such as a resin.
- the cross-linking agent may be premixed in the composition of the present invention, or may be added when the composition is applied to the substrate.
- composition of the present invention can be used for various applications utilizing various actions and film forming ability of tannin derivatives.
- it can be used as a rust inhibitor, antioxidant, disinfectant, bactericidal or sterilizing agent, and antibacterial agent.
- the base material to be applied is not limited, and includes a wide variety of metals, metal oxides, resins, elastomers, polymers, inorganics, concrete, mortar, wood, animal or human skin.
- the composition may be in various forms, for example, in the form of a solution, paste, gel, emulsion, spray.
- the composition includes at least one solvent.
- the solvent it is sufficient that the tannic acid derivative can be dissolved.
- alcohol solvents such as propylene alcohol and butanol
- ether solvents such as ethylene glycol monomethyl ether and ethylene glycol monopropyl ether, ethyl acetate, isobutyl acetate and the like.
- ester solvents and ketone solvents such as methyl ethyl ketone.
- the composition of the present invention contains water or a mixed solvent of an organic solvent having compatibility with water such as alcohols.
- the form of the emulsion is not limited, and any of an oil-in-water type (o / w), a water-in-oil type (w / o) emulsion, and a w / o / w type may be used.
- the tannic acid derivative may be directly dispersed in water, or an organic solvent solution of the tannic acid derivative may be dispersed.
- an aqueous dispersion obtained by volatilizing only the organic solvent after preparing the emulsion in a mixed solvent of an organic solvent compatible with water may be used.
- the composition of the present invention includes a liquefied or compressed gas that acts as a propellant.
- the liquefied gas include liquefied petroleum gas and dimethyl ether
- the compressed gas include carbon dioxide and nitrogen.
- Carbon dioxide may be a supercritical fluid that exceeds the critical point, and may be used in an industrial sterilization process or the like.
- the composition of the present invention can be prepared by mixing a tannic acid derivative in an amount corresponding to the purpose and each of the above components according to a conventional method. What is necessary is just to adjust variously the density
- conventional additives such as surfactants, dispersants, antifoaming agents, leveling agents, pH adjusting agents, cross-linking agents, fillers and the like may be blended in each composition as long as the object of the present invention is not impaired. .
- the film formation method may be any method, and examples thereof include a bar coater method, a spin coating method, a dipping method, and a spray method.
- the film thickness of the film is not limited and is preferably adjusted according to the application. For example, in the case of a rust preventive film, the thickness is preferably 100 nm or more. If it is less than 100 nm, the approach of water molecules to the surface of the substrate made of metal or alloy cannot be sufficiently prevented, and a sufficient rust prevention effect may not be obtained.
- FIG. 2 is an appearance photograph (a) of a powder of tannic acid and an appearance photograph when added to water (b) and chloroform (c). As shown in FIG. 2 (a), the tannic acid powder was an ocher powder. Tannic acid was dissolved in water and not dissolved in chloroform (CHCl 3 ). This raw material tannic acid was used as Comparative Example 1.
- TA tannic acid
- alkyl iodide n-decyl iodide, n-hexyl iodide, (N-hexadecyl iodide) and an equal amount of K 2 CO 3 were added, respectively, and then heated at 85 ° C. for 8 hours to synthesize each tannic acid derivative shown in Table 1.
- TA (Cm) n a tannic acid derivative having n substituents having m carbon atoms
- Example 1 TA (C 10 ) 5 represented by the chemical formula (2) was synthesized under the above-mentioned synthesis conditions with a tannic acid concentration of 56 wt% and an n-decyl iodide concentration of 44 wt%.
- FIG. 3 is an appearance photograph of the obtained derivative. It was a gel-like substance.
- m 10. The yield was 88%.
- the number of introduced substituents was estimated from the charging ratio of tannic acid and n-decyl iodide.
- FIG. 4 is an appearance photograph (a) of the derivative and an appearance photograph when added to water (b) and chloroform (c).
- the derivative was a partially gel-like powder.
- the derivative did not dissolve in water.
- the derivative powder was dissolved in CHCl 3 .
- Example 3 TA (C 10 ) 15 represented by the chemical formula (4) was synthesized under the same synthesis conditions as in Example 1 except that the concentration of tannic acid was changed to 30 wt% and the concentration of n-decyl iodide was changed to 70 wt%.
- Example 5 TA (C 6 ) 5 was synthesized under the same synthesis conditions as in Example 1 except that the concentration of tannic acid was 62 wt%, n-hexyl iodide was used, and the concentration was changed to 38 wt%. The yield was 73%.
- Example 6 TA (C 6 ) 10 was synthesized under the same synthesis conditions as in Example 1, except that the concentration of tannic acid was 45 wt%, n-hexyl iodide was used, and the concentration was changed to 55 wt%. The yield was 87%.
- Example 7 TA (C 16 ) 5 was synthesized under the same synthesis conditions as in Example 1 except that the concentration of tannic acid was 49 wt%, n-hexadecyl iodide was used, and the concentration was changed to 51 wt%. The yield was 72%.
- Example 8 TA (C 16 ) 10 was synthesized under the same synthesis conditions as in Example 1 except that the tannic acid concentration was 33 wt%, n-hexadecyl iodide was used, and the concentration was changed to 67 wt%. The yield was 61%.
- FIG. 5 shows the spectra of the derivatives obtained in Comparative Example 1 and Examples 1 to 4 in an overlapping manner. For each derivative of the example, an alkyl group peak was observed around 3000 cm ⁇ 1 .
- the film-forming composition of the present invention is useful as a rust-preventing composition, disinfecting, sterilizing, sterilizing or antibacterial composition, but this composition is coated on a substrate such as metal or glass,
- a substrate such as metal or glass
- Mg alloy rod (AZ31) (Osaka Fuji Kogyo Co., Ltd., composition: Al 3.2 mass%, Zn 0.93 mass%, Mn 0.4 mass%, Si 0.04 mass%, Cu 0.0038 mass%, Ni 0.0086 mass%, Fe 0.003 mass%, The remainder of Mg, 1.5 cm in diameter) was cut to produce a 4 mm thick Mg alloy disc. Next, the surface was polished with SiC paper and cleaned in the order of EtOH, H 2 O, and acetone to produce the following disk specimens (1) to (6). (1) Mg alloy (AZ31) uncoated sample. (2) Sample in which the Mg alloy (AZ31) disk surface was coated with TA (C 10 ) 5 (Example 1).
- FIG. 6 is a graph showing the relationship between the drop-cast amount and the dry film thickness when TA (C 10 ) 5 (Example 1) is used. As shown in the figure, the thickness formed was linearly dependent on the drop-cast amount. The same applies to any material. Based on this graph, the dry film thickness was 20 ⁇ m.
- Each disk obtained was used as a working electrode, a calomel electrode was used as a reference electrode, a platinum wire was used as a counter electrode, and an electrolyte solution was 3.5 wt. % (Aqueous NaCl solution) was used to measure IV (current-voltage) characteristics with the configuration shown in FIG. The scan speed was 1 mV / s.
- FIG. 8 shows the measurement results of the cathode current density.
- the uncoated sample and Comparative Example 1 (TA) were almost the same, and the most current flowed. That is, the most corroded.
- TA (C 10 ) 10 Example 2 had the largest rust prevention effect.
- FIG. 9 is a measurement result of anode current density. Comparative Example 1 (TA) was most corroded. On the other hand, the current value of TA (C 10 ) 10 (Example 2) was low, there was little change, and the rust prevention effect was the greatest.
- FIG. 10 shows the measurement results of the cathode current density. The uncoated was most corroded. On the other hand, TA (C 10 ) 10 (Example 2) and TA (C 16 ) 10 (Example 8) showed the same excellent antirust effect.
- FIG. 11 shows the measurement result of the anode current density.
- the uncoated was most corroded.
- the current value of TA (C 10 ) 10 (Example 2) was low, there was little change, and the rust prevention effect was most excellent.
- TA (C 16 ) 10 (Example 8) was less changed and had a large rust prevention effect.
- FIG. 13 shows a photograph before immersion of an uncoated sample (a), a photograph after immersion for 2 hours (b), a photograph before immersion of a sample coated with TA (C 10 ) 10 (Example 2), The photograph (d) after 50-hour immersion is shown.
- the uncoated sample corroded 80% of the surface after being immersed for only 2 hours, whereas the sample coated with TA (C 10 ) 10 (Example 2) showed almost no corrosion even after being immersed for 50 hours. It was.
- FIG. 14 shows photographs of each sample before immersion and after immersion for 50 hours. After the TA coated sample was immersed for 50 hours, the surface was greatly corroded, and partial peeling occurred. Also, the TA (C 10 ) 5 coated sample was slightly corroded. On the other hand, the TA (C 10 ) 20 coated sample and the TA (C 10 ) 15 coated sample showed almost no corrosion even when immersed for 50 hours.
- a TA (C 10 ) 10 (Example 2) coated sample was prepared with a film thickness of 20 ⁇ m, 12, 27, 32, and 40 ⁇ m, and the corrosion current density was measured.
- the corrosion current density is the corrosion rate at the corrosion potential.
- the graph based on the left vertical axis and the lower horizontal axis in FIG. 15 is a graph showing the relationship between the film thickness and the corrosion current density. It has been found that when the film thickness is increased to 20 ⁇ m or more, the corrosion current density is reduced and the corrosion prevention effect is enhanced.
- ⁇ Rust prevention test 6> An uncoated sample and a TA (C 16 ) 10 (Example 8) coated sample were prepared using Zn, Fe, Cu, and Al in addition to the Mg alloy, and a salt water immersion experiment was performed.
- FIG. 16 shows a sample photograph. All the uncoated samples were corroded by immersion in salt water for a predetermined time. On the other hand, in the case of the TA (C 16 ) 10 coated sample, no metal was corroded.
- TA (Comparative Example 1) TA (C 6 ) 10 (Example 6), TA (C 10 ) 10 (Example 2), TA (C 16 ) 10 (Example 8), 5 cm ⁇ 5 cm
- a drop-cast film was formed on a glass substrate.
- a THF solution was prepared, drop-casted in an amount of 1.1 mg / cm 2 , and then annealed at 80 ° C. for 1 h to form a drop-cast film.
- FIG. 17 shows a photograph (a) showing a film of tannic acid, a photograph (b) showing a film of Ta (C 6 ) 10 , a photograph (c) showing a film of Ta (C 10 ) 10 , and Ta (C 16 ).
- 10 is a photograph (d) showing 10 films.
- TA was not able to form a beautiful film on glass, and wrinkles with blisters were formed. On the other hand, although all the other samples were slightly colored orange, a highly transparent film could be formed.
- TA (Comparative Example 1) For each of TA (Comparative Example 1), TA (C 6 ) 10 (Example 6), TA (C 10 ) 10 (Example 2), TA (C 16 ) 10 (Example 8), the method described above is used. A film was formed on a glass substrate, Escherichia coli was seeded thereon, and the surface change at room temperature was observed.
- FIG. 18 is a graph showing the results of bacterial growth on the membrane. The number of E. coli seeded at the start (0 h) was 1.2 ⁇ 10 5 CFU / mL. After 24 hours, TA coated (control) was 1.4 ⁇ 10 7 CFU / mL.
- TA (C 6 ) 10 almost disappeared ( ⁇ 10), and was found to have antibacterial and bactericidal effects. Further, TA (C 10 ) 10 becomes 2.7 ⁇ 10 2 CFU / mL after 24 hours, and TA (C 16 ) 10 becomes 1.6 ⁇ 10 2 CFU / mL after 24 hours, and has antibacterial and bactericidal effects. I understood that. Until now, tannic acid was known to exhibit bactericidal properties as an aqueous solution. However, tannic acid became a habit even after film formation, and there was a problem that it was not durable as a film.
- CFU / ml is an abbreviation for Colony Forming Unit (colony forming unit), which is a quantitative unit for food bacteria testing, and is a unit of bacterial amount.
- the unit number 20 CFU / ml capable of forming a colony means that 20 bacteria are present in 1 ml.
- Staphylococcus aureus S. Aureus
- MRSA methicillin-resistant Staphylococcus aureus
- FIG. 19 is a photograph (a) of the surface 24 hours after seeding S. aureus on TA coated (control), and methicillin-resistant S. aureus (MRSA) on TA coated (control). photo time after the surface (b), TA (C 6 ) 10 dropcast film on Staphylococcus aureus surface photograph of 24 hours after seeded (S.Aureus) (c), TA (C 6) 10 It is a photograph (d) of the surface 24 hours after seeding methicillin-resistant Staphylococcus aureus (MRSA) on the drop cast film.
- TA (C 6 ) 10 , TA (C 10 ) 10 , TA (C 16 ) 10 had antibacterial and bactericidal effects of S. aureus and methicillin-resistant Staphylococcus aureus (MRSA).
- ⁇ Sterilization and sterilization test 3 As in the bactericidal test 2, 1.6 ⁇ 10 5 (CFU / mL) methicillin-resistant Staphylococcus aureus (MRSA) is seeded on TA (C 6 ) 10 films of different thickness formed on the glass substrate in the same manner as above. After 24 hours, the number of bacteria was examined. As shown in Table 4, even when the membrane was as thin as 0.1 mg / cm 2 , it was sterilized without any problem.
- CFU / mL methicillin-resistant Staphylococcus aureus
- the coating amount of TA (C 6 ) 10 is 0.1 mg / cm 2 , 0.5 mg / cm 2 , 1.0 mg / cm 2 , 2.0 mg / cm on the glass substrate by the same method as above. 2 was created.
- FIG. 20 shows these photographs.
- FIG. 21 shows a UV-visible spectrum (Abs.) Of each film when a glass substrate is used as a reference sample, and
- FIG. 22 shows a visible transmission (%) spectrum.
- a film having a coating amount of 0.1 mg / cm 2 exhibited a transmittance of 90% or more in the entire visible light region. As described above, since the 0.1 mg / cm 2 film has sufficient bactericidal properties, it is expected to be used as a bactericidal membrane for display devices.
- the film-forming composition of the present invention forms a film on metal, glass, etc., exhibits rust prevention, sterilization, and sterilization effects, and is expected to be used in a wide range of applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
[比較例1]
(材料調製・特性評価)
タンニン酸の粉末(WAKO, 203-06331)を用意した。図2は、タンニン酸の粉末の外観写真(a)と、水(b)、クロロホルム(c)に添加した時の外観写真である。図2(a)に示すように、タンニン酸の粉末は、黄土色の粉末であった。タンニン酸は水に溶解し、クロロホルム(CHCl3)には溶解しなかった。この原料のタンニン酸を比較例1として用いた。
タンニン酸の濃度を56wt%とし、ヨウ化n-デシルの濃度を44wt%として、上述の合成条件で、化学式(2)に示すTA(C10)5を合成した。図3は、得られた誘導体の外観写真である。ゲル状物質であった。なお、式(2)において、m=10である。収率は88%であった。置換基の導入数は、タンニン酸とヨウ化n-デシルの仕込み比から見積もった。
タンニン酸の濃度を39wt%とし、ヨウ化n-デシルの濃度を61wt%と変えた他は実施例1と同様の合成条件で、化学式(3)に示すTA(C10)10を合成した。なお、式(3)において、m=10である。収率は74%であった。
タンニン酸の濃度を30wt%とし、ヨウ化n-デシルの濃度を70wt%と変えた他は実施例1と同様の合成条件で、化学式(4)に示すTA(C10)15を合成した。なお、式(4)において、m=10である。収率は76%であった。
タンニン酸の濃度を24wt%とし、ヨウ化n-デシルの濃度を76wt%と変えた他は実施例1と同様の合成条件で、化学式(5)に示すTA(C10)20を合成した。なお、式(5)において、m=10である。収率は94%であった。
タンニン酸の濃度を62wt%とし、ヨウ化n-ヘキシルを用い、その濃度を38wt%と変えた他は実施例1と同様の合成条件で、TA(C6)5を合成した。収率は73%であった。
タンニン酸の濃度を45wt%とし、ヨウ化n-ヘキシルを用い、その濃度を55wt%と変えた他は実施例1と同様の合成条件で、TA(C6)10を合成した。収率は87%であった。
タンニン酸の濃度を49wt%とし、ヨウ化n-ヘキサデシルを用い、その濃度を51wt%と変えた他は実施例1と同様の合成条件で、TA(C16)5を合成した。収率は72%であった。
タンニン酸の濃度を33wt%とし、ヨウ化n-ヘキサデシルを用い、その濃度を67wt%と変えた他は実施例1と同様の合成条件で、TA(C16)10を合成した。収率は61%であった。
得られた各誘導体のFT-IR測定を行った。図5に、比較例1、実施例1~4で得られた各誘導体の各スペクトルを重ねて示す。実施例の各誘導体については3000cm-1付近にアルキル基のピークを確認した。
Mg合金棒(AZ31)(大阪富士工業社製、組成:Al 3.2 質量%, Zn 0.93 質量%, Mn 0.4 質量%, Si 0.04 質量%, Cu 0.0038 質量%, Ni 0.0086 質量%, Fe 0.003 質量%, Mg 残部、直径1.5cm)を切断し、厚さ4mmのMg合金円板を作製した。次に、表面をSiCペーパーで磨き、EtOH、H2O、アセトンの順番で清浄処理して、下記の円板試験片(1)~(6)を作製した。
(1)Mg合金(AZ31)無被覆サンプル。
(2)Mg合金(AZ31)円板表面をTA(C10)5(実施例1)で被覆したサンプル。
(3)Mg合金(AZ31)円板表面をTA(C10)10(実施例2)で被覆したサンプル。
(4)Mg合金(AZ31)円板表面をTA(C10)15(実施例3)で被覆したサンプル。
(5)Mg合金(AZ31)円板表面をTA(C10)20(実施例4)で被覆したサンプル。
(6)Mg合金(AZ31)円板表面をTA(比較例1)で被覆したサンプル。
防錆試験1と同様にして、下記の4つのサンプルについて、I-V特性を測定した。
(1)Mg合金(AZ31)無被覆サンプル。
(2)Mg合金(AZ31)円板表面をTA(C10)10(実施例2)で被覆したサンプル。
(3)Mg合金(AZ31)円板表面をTA(C6)10(実施例6)で被覆したサンプル。
(4)Mg合金(AZ31)円板表面をTA(C16)10(実施例8)で被覆したサンプル。
Mg合金(AZ31)無被覆サンプルと、Mg合金(AZ31)円板表面をTA(C10)10(実施例2)で被覆したサンプルの塩水浸漬実験を行った。図12に示すように、浸漬時、撹拌子を用い、200rpmで攪拌した。塩水は、3.5wt%NaCl溶液を298Kの条件で用いた。
図13に、無被覆サンプルの浸漬前の写真(a)、2時間浸漬後の写真(b)、TA(C10)10(実施例2)で被覆したサンプルの浸漬前の写真(c)、50時間浸漬後の写真(d)を示す。無被覆サンプルはわずか2時間浸漬しただけで表面の8割が腐食したのに対し、TA(C10)10(実施例2)で被覆したサンプルでは50時間浸漬しても腐食がほとんど見られなかった。
TA(比較例1)を被覆したサンプル(TA coated(contorol))、TA(C10)20(実施例4)で被覆したサンプル(TA(C10)20 coated)、TA(C10)5(実施例1)で被覆したサンプル(TA(C10)5 coated)、TA(C10)15(実施例3)で被覆したサンプル(TA(C10)15 coated)を用いた他は防錆試験3と同様にして、塩水浸漬実験を行った。
膜厚20μmの他、12、27、32、40μmとして、TA(C10)10(実施例2) coatedサンプルを作成し、腐食電流密度を測定した。腐食電流密度とは腐食電位における腐食速度のことである。
図15の左縦軸、下横軸を基準とするグラフは、膜厚と腐食電流密度の関係を示すグラフである。20μm以上に膜厚を厚くすると腐食電流密度は低減し、腐食防止効果が高くなることが判明した。
基板をMg合金の他、Zn、Fe、Cu、Alとして、無被覆サンプルと、TA(C16)10(実施例8) coatedサンプルを作成し、塩水浸漬実験を行った。図16にサンプルの写真を示す。無被覆サンプルは、所定の時間の塩水浸漬により、いずれも腐食された。一方、TA(C16)10 coated サンプルの場合、いずれの金属も腐食されなかった。
TA(比較例1)、TA(C6)10(実施例6)、TA(C10)10(実施例2)、TA(C16)10(実施例8)の各々について、5cm×5cmのガラス基板上へドロップ-キャスト膜を形成した。THF溶液を調製し、1.1mg/cm2の量、ドロップ-キャストしてから、1h、80℃の条件でアニールして、ドロップ-キャスト膜を作成した。
TA(比較例1)、TA(C6)10(実施例6)、TA(C10)10(実施例2)、TA(C16)10(実施例8)の各々について、上述の方法でガラス基板上に膜を形成し、その上に大腸菌を播いて、室温での表面の変化を観察した。図18は、膜上でのバクテリアの増殖結果を示すグラフである。スタート時(0h)に播いた、大腸菌の個数は1.2×105CFU/mLであった。24h後、TA coated(control)については、1.4×107CFU/mLとなっていた。一方、TA(C6)10では、ほとんど無くなっており(<10個)、抗菌・殺菌効果があることが分かった。また、TA(C10)10は、24h後に2.7×102CFU/mLとなり、TA(C16)10は、24h後に1.6×102CFU/mLとなり、抗菌・殺菌効果があることが分かった。タンニン酸はこれまで水溶液としては殺菌性を示すことが知られていたが、成膜しても皴皺になってしまい、膜としての耐久性がなかったことが問題であった。また、水に対して高い溶解性を持つことから、薄膜化した状態では抗菌試験等の水系の試験を行うことができなかった。一方、本発明におけるタンニン酸誘導体は、水に対する溶解性を極めて低く調整することが可能であることから、薄膜としての抗菌性を始めて評価することが可能となった。ここで、CFU/mlとは、食品細菌検査の定量単位を意味するColony Forming Unit(コロニーフォーミングユニット)の略称で菌量の単位である。例えば、コロニーを形成する能力のある単位数20CFU/mlとは1ml中に菌が20個存在することを表す。
上記と同様の方法でガラス基板上に形成したTA(C6)10の膜上(塗布量1.2mg/cm2)に、メチシリン耐性黄色ブドウ球菌(MRSA)を1.6x105(CFU/mL)播き、室温での菌数の変化を時間を追って調べた。表3に示すとおり、2時間以内にMRSAを殺菌することが分かった。
上記と同様の方法でガラス基板上に形成した異なる厚みのTA(C6)10の膜に、殺菌性試験2と同様にメチシリン耐性黄色ブドウ球菌(MRSA)を1.6x105(CFU/mL)播き、24時間後菌数を調べた。表4に示すとおり、膜が0.1mg/cm2の薄い場合であっても問題なく殺菌された。
Claims (8)
- タンニン酸の少なくとも一部の水酸基における水素原子が、炭素数3~18の鎖状炭化水素基により置換されたタンニン酸誘導体を含む皮膜形成性組成物。
- 該鎖状炭化水素基がアルキル基である、請求項1記載の皮膜形成性組成物。
- 該タンニン酸誘導体が、その水酸基の10%~80%が該鎖状炭化水素基により置換されている、請求項1又は2記載の皮膜形成性組成物。
- さらに溶剤を含み、溶液もしくはペーストの形態である、請求項1~3のいずれか1項に記載の皮膜形成性組成物。
- さらに水を含み、エマルジョンの形態である、請求項1~3のいずれか1項に記載の皮膜形成性組成物。
- さらに不活性ガスを含み、スプレーの形態である、請求項1~3のいずれか1項に記載の皮膜形成性組成物。
- 防錆用組成物である、請求項1~6のいずれか1項記載の皮膜形成性組成物。
- 消毒用、殺菌用、滅菌用又は抗菌用組成物である、請求項1~6のいずれか1項記載の皮膜形成性組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016559061A JP6531955B2 (ja) | 2014-11-11 | 2015-11-10 | タンニン酸誘導体を含む皮膜形成性組成物 |
US15/526,208 US20170321061A1 (en) | 2014-11-11 | 2015-11-10 | Film-forming composition containing tannic acid derivatives |
EP15858158.7A EP3219773B1 (en) | 2014-11-11 | 2015-11-10 | Film-forming composition including tannic acid derivative |
US15/971,539 US10538674B2 (en) | 2014-11-11 | 2018-05-04 | Method of forming anti-rust or anti-bacterial film containing tannic acid derivatives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-228667 | 2014-11-11 | ||
JP2014228667 | 2014-11-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/526,208 A-371-Of-International US20170321061A1 (en) | 2014-11-11 | 2015-11-10 | Film-forming composition containing tannic acid derivatives |
US15/971,539 Continuation US10538674B2 (en) | 2014-11-11 | 2018-05-04 | Method of forming anti-rust or anti-bacterial film containing tannic acid derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076311A1 true WO2016076311A1 (ja) | 2016-05-19 |
Family
ID=55954394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081600 WO2016076311A1 (ja) | 2014-11-11 | 2015-11-10 | タンニン酸誘導体を含む皮膜形成性組成物 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20170321061A1 (ja) |
EP (1) | EP3219773B1 (ja) |
JP (2) | JP6531955B2 (ja) |
WO (1) | WO2016076311A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142793A1 (ja) * | 2017-01-31 | 2018-08-09 | 国立研究開発法人物質・材料研究機構 | 接着剤組成物、その接着剤組成物の製造方法、その接着剤組成物を用いた接着方法、及びその接着剤組成物が被着された構造物 |
WO2019221015A1 (ja) * | 2018-05-16 | 2019-11-21 | 国立研究開発法人物質・材料研究機構 | 微小会合体およびその製造方法 |
JP2020125372A (ja) * | 2019-02-01 | 2020-08-20 | 国立研究開発法人物質・材料研究機構 | 機能性組成物、機能性膜、機能性積層膜および機能性積層膜の製造方法 |
US11008457B2 (en) | 2016-05-27 | 2021-05-18 | National Institute For Materials Science | Film composition containing a tannic acid derivative and process for producing said film composition |
WO2022124101A1 (ja) | 2020-12-11 | 2022-06-16 | 国立研究開発法人物質・材料研究機構 | 積層体、及び、包装体又は容器 |
WO2022124102A1 (ja) * | 2020-12-11 | 2022-06-16 | 国立研究開発法人物質・材料研究機構 | 水性コーティング剤、積層体、及び、包装体又は容器 |
WO2022131371A1 (ja) * | 2020-12-18 | 2022-06-23 | 凸版印刷株式会社 | ポリフェノール誘導体及び高分子材料 |
WO2023286642A1 (ja) * | 2021-07-16 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | 抗ウイルス性コーティング剤、抗ウイルス剤、積層体、及び、包装体又は容器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115814154B (zh) * | 2022-11-25 | 2024-09-17 | 西北工业大学 | 一种pH响应型控释杀菌涂层及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61103991A (ja) * | 1984-10-26 | 1986-05-22 | Idemitsu Petrochem Co Ltd | 防錆油組成物 |
JPH05112754A (ja) * | 1991-10-23 | 1993-05-07 | Aisin Chem Co Ltd | 水性塗料組成物 |
JP2004002652A (ja) * | 2002-04-03 | 2004-01-08 | Sk Kaken Co Ltd | 塗料組成物 |
JP2004307362A (ja) * | 2003-04-03 | 2004-11-04 | Wakayama Prefecture | 水不溶性タンニン誘導体およびその製造方法 |
JP2008223111A (ja) * | 2007-03-15 | 2008-09-25 | Fukushima Prefecture | 架橋したタンニンを利用した防錆皮膜形成用処理剤、防錆皮膜形成方法および防錆処理金属。 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177174A (en) * | 1976-05-14 | 1979-12-04 | Dai Nippon Toryo Co., Ltd. | Epoxy resin composition cured by reaction product of phenol carboxylic acids with polyamino compounds |
DE3575860D1 (de) * | 1984-07-11 | 1990-03-15 | Univ Sydney | Antiallergikum. |
JPH0723391B2 (ja) * | 1986-03-06 | 1995-03-15 | ポーラ化成工業株式会社 | アスコルビン酸―ゲラニイン結合体 |
JPH01198669A (ja) * | 1987-10-19 | 1989-08-10 | Kureha Chem Ind Co Ltd | 防錆塗料組成物 |
JPH026573A (ja) * | 1988-06-27 | 1990-01-10 | Sankyo Seiki Mfg Co Ltd | 耐蝕性被膜材料 |
US4880478A (en) * | 1988-12-22 | 1989-11-14 | The United States Of America As Represented By The Secretary Of The Army | Protective coating for steel surfaces and method of application |
DE60041364D1 (de) * | 2000-11-21 | 2009-02-26 | Sambix Corp | Whiskerloses galvanisiertes produkt mit vielschich whiskerlosem galvanisiertem produkt mit vielschichtigem rostschutzfilm |
AT508319A1 (de) * | 2009-05-20 | 2010-12-15 | Mittermayr Alexander | Verfahren zur aromabehandlung eines in einer verpackung vorgesehenen lebensmittels |
US20110126501A1 (en) * | 2009-10-16 | 2011-06-02 | Woongjin Coway Co., Ltd. | Composition for prevention of influenza viral infection comprising tannic acid, air filter comprising the same and air cleaning device comprising the filter |
FR2952067B1 (fr) * | 2009-11-03 | 2012-05-25 | Saint Gobain Technical Fabrics | Composition filmogene renfermant un agent apte a pieger le formaldehyde |
RU2524937C1 (ru) * | 2010-09-02 | 2014-08-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Металлический лист c предварительно нанесённым покрытием с превосходной проводимостью и коррозионной стойкостью |
WO2014090832A1 (en) * | 2012-12-11 | 2014-06-19 | Sandoz Ag | Tannin derivative and pharmaceutical compositions comprising said tannin derivative |
US10179114B2 (en) * | 2013-01-24 | 2019-01-15 | Northwestern University | Phenolic coatings and methods of making and using same |
US9474699B2 (en) * | 2014-03-31 | 2016-10-25 | Johnson & Johnson Consumer Inc. | Compostions and methods for enhancing the topical application of a basic benefit agent |
-
2015
- 2015-11-10 US US15/526,208 patent/US20170321061A1/en not_active Abandoned
- 2015-11-10 WO PCT/JP2015/081600 patent/WO2016076311A1/ja active Application Filing
- 2015-11-10 JP JP2016559061A patent/JP6531955B2/ja active Active
- 2015-11-10 EP EP15858158.7A patent/EP3219773B1/en active Active
-
2018
- 2018-05-04 US US15/971,539 patent/US10538674B2/en active Active
-
2019
- 2019-01-25 JP JP2019011459A patent/JP6691698B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61103991A (ja) * | 1984-10-26 | 1986-05-22 | Idemitsu Petrochem Co Ltd | 防錆油組成物 |
JPH05112754A (ja) * | 1991-10-23 | 1993-05-07 | Aisin Chem Co Ltd | 水性塗料組成物 |
JP2004002652A (ja) * | 2002-04-03 | 2004-01-08 | Sk Kaken Co Ltd | 塗料組成物 |
JP2004307362A (ja) * | 2003-04-03 | 2004-11-04 | Wakayama Prefecture | 水不溶性タンニン誘導体およびその製造方法 |
JP2008223111A (ja) * | 2007-03-15 | 2008-09-25 | Fukushima Prefecture | 架橋したタンニンを利用した防錆皮膜形成用処理剤、防錆皮膜形成方法および防錆処理金属。 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3219773A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11008457B2 (en) | 2016-05-27 | 2021-05-18 | National Institute For Materials Science | Film composition containing a tannic acid derivative and process for producing said film composition |
JPWO2018142793A1 (ja) * | 2017-01-31 | 2019-11-14 | 国立研究開発法人物質・材料研究機構 | 接着剤組成物、その接着剤組成物の製造方法、その接着剤組成物を用いた接着方法、及びその接着剤組成物が被着された構造物 |
EP3578619A4 (en) * | 2017-01-31 | 2020-09-09 | National Institute for Materials Science | ADHESIVE COMPOSITION, PROCESS FOR PRODUCING AN ADHESIVE COMPOSITION, BONDING PROCESS USING AN ADHESIVE COMPOSITION, AND STRUCTURE HAVING AN ADHESIVE COMPOSITION ATTACHED TO IT |
WO2018142793A1 (ja) * | 2017-01-31 | 2018-08-09 | 国立研究開発法人物質・材料研究機構 | 接着剤組成物、その接着剤組成物の製造方法、その接着剤組成物を用いた接着方法、及びその接着剤組成物が被着された構造物 |
US11634617B2 (en) | 2017-01-31 | 2023-04-25 | National Institute For Materials Science | Adhesive composition, a process of producing the adhesive composition, a bonding method using the adhesive composition, and a structure having the adhesive composition applied thereon |
WO2019221015A1 (ja) * | 2018-05-16 | 2019-11-21 | 国立研究開発法人物質・材料研究機構 | 微小会合体およびその製造方法 |
JPWO2019221015A1 (ja) * | 2018-05-16 | 2021-02-12 | 国立研究開発法人物質・材料研究機構 | 微小会合体およびその製造方法 |
JP7061815B2 (ja) | 2018-05-16 | 2022-05-02 | 国立研究開発法人物質・材料研究機構 | 微小会合体およびその製造方法 |
JP7217883B2 (ja) | 2019-02-01 | 2023-02-06 | 国立研究開発法人物質・材料研究機構 | 機能性組成物、機能性膜、構造体、機能性積層膜および機能性積層膜の製造方法 |
JP2020125372A (ja) * | 2019-02-01 | 2020-08-20 | 国立研究開発法人物質・材料研究機構 | 機能性組成物、機能性膜、機能性積層膜および機能性積層膜の製造方法 |
WO2022124101A1 (ja) | 2020-12-11 | 2022-06-16 | 国立研究開発法人物質・材料研究機構 | 積層体、及び、包装体又は容器 |
JP7152732B1 (ja) * | 2020-12-11 | 2022-10-13 | 国立研究開発法人物質・材料研究機構 | 積層体、及び、包装体又は容器 |
JP7160298B1 (ja) * | 2020-12-11 | 2022-10-25 | 国立研究開発法人物質・材料研究機構 | 水性コーティング剤、積層体、及び、包装体又は容器 |
WO2022124102A1 (ja) * | 2020-12-11 | 2022-06-16 | 国立研究開発法人物質・材料研究機構 | 水性コーティング剤、積層体、及び、包装体又は容器 |
WO2022131371A1 (ja) * | 2020-12-18 | 2022-06-23 | 凸版印刷株式会社 | ポリフェノール誘導体及び高分子材料 |
WO2023286642A1 (ja) * | 2021-07-16 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | 抗ウイルス性コーティング剤、抗ウイルス剤、積層体、及び、包装体又は容器 |
JP7283710B1 (ja) * | 2021-07-16 | 2023-05-30 | 国立研究開発法人物質・材料研究機構 | 抗ウイルス性コーティング剤、積層体、及び、包装体又は容器 |
Also Published As
Publication number | Publication date |
---|---|
EP3219773B1 (en) | 2019-05-08 |
US10538674B2 (en) | 2020-01-21 |
JP6691698B2 (ja) | 2020-05-13 |
JP2019077954A (ja) | 2019-05-23 |
JP6531955B2 (ja) | 2019-06-19 |
US20180258291A1 (en) | 2018-09-13 |
US20170321061A1 (en) | 2017-11-09 |
EP3219773A4 (en) | 2018-04-25 |
JPWO2016076311A1 (ja) | 2017-09-21 |
EP3219773A1 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6691698B2 (ja) | タンニン酸誘導体を含む皮膜形成性組成物を用いて基材上に膜を形成する皮膜形成方法、及び基材上に形成されたタンニン酸誘導体を含む膜 | |
Stroescu et al. | Chitosan-vanillin composites with antimicrobial properties | |
Katariya et al. | Corrosion inhibition effectiveness of zeolite ZSM-5 coating on mild steel against various organic acids and its antimicrobial activity | |
JP6631928B2 (ja) | タンニン酸誘導体を含むフィルム組成物、そのフィルム組成物の製造方法 | |
TWI358433B (en) | Capsaicin derivates and the production and use the | |
EP3127970A1 (en) | Nano-coating material, method for manufacturing same, coating agent, functional material, and method for manufacturing same | |
Elshaarawy et al. | Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants: Fabrication of high-performance economic and ecofriendly anti-biofouling coatings | |
JP5237275B2 (ja) | 安定な低vocの低粘度の殺生物剤組成物およびその組成物の製法 | |
JP2005281299A (ja) | 抗菌・防カビ剤及びそれを用いた塗料組成物 | |
Patil et al. | Functional anti-corrosive and anti-bacterial surface coatings based on mercaptosuccinic and thiodipropionic acids and algae oil as renewable feedstock | |
Almehmadi et al. | Zinc oxide doped arylidene based polyketones hybrid nanocomposites for enhanced biological activity | |
JPS59227842A (ja) | 新規な第四アンモニウム化合物、それの製法及びそれを消毒薬として使用する方法 | |
CN104957137B (zh) | 含dbnpa的消毒剂组合物及其制备方法 | |
FR3006149A1 (fr) | Composition antimicrobienne a base de silicone | |
TW200401769A (en) | Novel imidazolyl alcohol compound method for making the same, and surface treatment agent using such imidazolyl alcohol compound | |
JP2013256625A (ja) | 水系ポリアミドイミドワニス及び塗料 | |
Zhao et al. | Double Immobilized Superhydrophobic and Lubricated Slippery Surface with Antibacterial and Antifouling Properties | |
EP2337823B1 (fr) | Compositions antisalissures photoreticulables, films obtenus a partir de ces compositions et utilisations correspondantes | |
WO2014074376A1 (en) | Controlled release composition containing dcoit | |
JP2015081317A (ja) | コーティング剤、コーティング膜、および、コーティング剤の製造方法 | |
JPH07150077A (ja) | 塗料用ワニス組成物及び防汚塗料組成物 | |
JPS642669B2 (ja) | ||
Nasr Esfahani et al. | Exploiting of novel natural reactive deep eutectic solvents in the sustainable synthesis and tuning the coating’s properties of antibacterial polyurethane coatings | |
Yu et al. | Antifouling activity of PEGylated chitosan coatings: Impacts of the side chain length and encapsulated ZnO/Ag nanoparticles | |
JP4888679B2 (ja) | 耐熱性樹脂組成物及び塗料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858158 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016559061 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015858158 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15526208 Country of ref document: US |