WO2016072801A1 - 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법 - Google Patents

유기 플루오르화 지방족 화합물의 제조방법 및 정제방법 Download PDF

Info

Publication number
WO2016072801A1
WO2016072801A1 PCT/KR2015/011955 KR2015011955W WO2016072801A1 WO 2016072801 A1 WO2016072801 A1 WO 2016072801A1 KR 2015011955 W KR2015011955 W KR 2015011955W WO 2016072801 A1 WO2016072801 A1 WO 2016072801A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aliphatic compound
propanol
methyl
spe cartridge
Prior art date
Application number
PCT/KR2015/011955
Other languages
English (en)
French (fr)
Inventor
이상주
오승준
문대혁
류진숙
김재승
이종진
Original Assignee
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140154593A external-priority patent/KR101519425B1/ko
Priority claimed from KR1020150126731A external-priority patent/KR101605291B1/ko
Priority to CN201580065240.2A priority Critical patent/CN107001213B/zh
Priority to JP2017543693A priority patent/JP6605034B2/ja
Priority to US15/524,705 priority patent/US10525151B2/en
Priority to ES15856189T priority patent/ES2838752T3/es
Application filed by 재단법인 아산사회복지재단 filed Critical 재단법인 아산사회복지재단
Priority to CN202010460956.5A priority patent/CN111574515B/zh
Priority to RU2017120040A priority patent/RU2710558C2/ru
Priority to DK15856189.4T priority patent/DK3216780T5/da
Priority to EP15856189.4A priority patent/EP3216780B1/en
Priority to CA2971382A priority patent/CA2971382C/en
Priority to AU2015343906A priority patent/AU2015343906B2/en
Publication of WO2016072801A1 publication Critical patent/WO2016072801A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/22Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/36Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds

Definitions

  • the present invention relates to a method for preparing and purifying an organic fluorinated aliphatic compound, and more particularly, to a method for preparing an organic fluorinated aliphatic compound using a novel multifunctional solvent and an organic fluorinated aliphatic compound using solid phase extraction (SPE). It is about the purification method of.
  • SPE solid phase extraction
  • the present invention also relates to a method for producing a radiopharmaceutical using a cassette comprising a countercurrent reaction container.
  • Positron Emission Tomography PET
  • BPS positron emission tomography
  • Intravenous injection allows the imaging of radiopharmaceutical distribution and biochemical changes in vivo. Therefore, positron emission tomography can quantitatively measure the biochemical changes in living organisms at the site of lesions, thereby measuring disease development and predicting the extent of treatment [A. Agool, R. H. Slart, K. K. Thorp, A. W. Glaudemans, D. C. Cobben, L. B. Been, F.
  • Radiopharmaceuticals are substances used to diagnose or treat diseases by labeling and administering radioisotopes to the human body. Radioactive isotopes used in radiopharmaceuticals are unstable and convert to stable isotopes while releasing radiation, which can then be used to diagnose or treat disease.
  • the radiation includes alpha rays ( ⁇ -rays), beta rays ( ⁇ -rays), gamma rays ( ⁇ -rays), positron rays (positrons, ⁇ + -rays), and the like.
  • radioisotopes used for positron emission tomography include fluoride ([ 18 F] F), carbon ([ 15 C] C), nitrogen ([ 13 N] N), oxygen ([ 15 O] O) and Gallium ([ 68 Ga] Ga), among which, [ 18 F] fluoride has a size similar to that of hydrogen, forms stable bonds with carbon of organic compounds, is easy to produce, and has an appropriate half-life (110 minutes). It has been reported to be very suitable for performing positron emission tomography [Lasne, MC; Perrio, C .; Rouden, J .; Barre, L .; Roeda, D .; Dolle, F .; Crouzel, C. Contrast Agents II, Topics in Current Chemistry, Springer-Verlag, Berlin, 2002, 222, 201-258 .; Bolton, RJ Labelled Compd. Radiopharm. 2002, 45 485-528.
  • [ 18 F] fluoride is generally produced by investigating protons in [ 18 O] H 2 O using a cyclotron, a circular accelerator [MR Kilbourn, JT Hood, MJ Welch, Int. J. Appl. Radiat. Isot. 1984, 35, 599 .; GK Mulholland, RD Hichwa, MR Kilbourn, J. Moskwa, J. Label. Compd. Radiopharm. 1989, 26, 140.].
  • [18 F] fluoride is produced in a very diluted concentration in the [18 O] H 2 O solution
  • [18 O] H 2 O solution is used to recycle belong to the very expensive in price [K.-I , Nishijima, Y. Kuge, E.
  • the [18 O] 4 primary alkyl ammonium salts generally to the H 2 O recycling and [18 F] removing a small amount of metal impurities that are created for the production of fluoride and [18 F] for use in the only labeled reaction fluoride referred to in the Anion exchange with this supported polymer cartridge (Chromafixor QMA) is used [DJ Schlyer, M. Bastos, AP Wolf, J. Nucl. Med. 1987, 28, 764 .; SA Toorongian, GK Mulholland, DM Jewett, MA Bachelor, MR Kilbourn, Nucl. Med. Biol.
  • the [ 18 F] fluoride which is retained from the polymer cartridge supported by the quaternary alkylammonium salt, uses an aqueous solution in which a metal salt such as K 2 CO 3 or an ammonium salt such as TBAHCO 3 is dissolved. Side reactions such as or alkenes occur and thereby have a problem that the labeling efficiency is lowered.
  • the purification of organofluoro-18 compounds produced using HPLC shows low specific radioactivity with overlapping complex byproducts [SM Okarvi, Eur. J. Nucl. Med. 2001, 28, 929 .; JC Walsh, KM Akhoon, N. Satyamurthy, JR Barrio, MM Phelps, SS Gambhir, T.
  • nucleophilic substitution reactions are known to react under polar aprotic solvents such as acetonitrile (CH 3 CN), DMF, and DMSO to increase the reactivity of nucleophiles, fluorides. It is possible to inhibit the side reaction by weakening the ionic bond between metal cation and fluorine anion through hydrogen bonding to increase nucleophilic substitution reactivity of fluorine salt and lower basicity of bases used for [ 18 F] fluoride labeling reaction.
  • polar aprotic solvents such as acetonitrile (CH 3 CN), DMF, and DMSO
  • T-amyl alcohol also has the property of not mixing with water. Accordingly, after the [ 18 F] fluoride labeling reaction, if hydrolysis and purification using HPLC (high performance liquid chromatography) or SPE (solid phase extraction) are required, the alcohol solvent must be removed. There is a problem of mixing with impurities in the purification process.
  • the method of removing the alcohol solvent used in the reaction is generally carried out by drying. This process is a time-consuming step, and when the radioisotope is labeled with a relatively short half-life, the actual reaction yield is reduced by half-life radioactivity. In this case, there is also a decreasing problem. In this case, when the radioisotope evaporates together with the evaporating organic solvent, a problem of polluting the surroundings occurs. In addition, if the frequently used t-amyl alcohol using an automated synthesis device, parts that are not resistant to evaporated t-amyl alcohol will be broken, causing radiopharmaceutical manufacturing failure.
  • cassette type automated synthesis apparatus In the case of non-cassette type automated synthesis apparatus, the main purpose is to be used for research, and it is cumbersome to wash the automated synthesis apparatus after use, whereas cassette type automated synthesis apparatus does not require additional cleaning by using disposable cassette. If you change the cassette, you can use it more than twice a day, and most of all, it is easy to apply GMP. Therefore, in the case of radiopharmaceuticals that are frequently manufactured, the use of a cassette type automated synthesis device has many advantages over the non-cassette type automated synthesis device.
  • the reaction vessel (see FIG. 2A) introduced into the cassette used in the cassette type automated synthesis apparatus enters the reagent supply line 11a to recover the reactants after the reaction.
  • the reaction vessel 10a is used to increase the recovery rate. It is generally designed to reach the bottom surface of (see Fig. 2 (A)), and the bottom is rounded or V-shaped to increase the recovery rate. Therefore, when a positive pressure is applied to the reaction vessel 10a due to vaporization of the solution as the temperature in the reaction vessel 10a rises in the reaction step, the solvent flows back to the reagent supply line 11a that reaches the bottom surface.
  • the reaction solvent is filled during the reaction time with the cassette connected to the other end of (11a).
  • the cassette is made of a material that does not have a resistance to the reaction solvent or the reaction temperature is much higher than the boiling point of the reaction solvent, the cassette is broken by the pressure applied to the cassette, which causes a failure in the manufacture of radiopharmaceuticals. can do.
  • the solution flowed back to the reagent supply line 11a does not participate in the reaction, so the reaction reagent does not participate in the reaction, and thus the variation in the reaction yield is large, which is difficult to secure the stability of the radiopharmaceutical suitable for GMP. Manufacturing becomes impossible.
  • cassettes of a material having resistance to various solvents have been developed, but most of them have been developed in foreign countries.
  • the cost is too high to be used for a single use, and a large amount is used for a single use. This is accompanied by economic difficulties.
  • the reaction vessel 10a which is designed so that the conventional reagent supply line 11a reaches the bottom surface of the reaction vessel 10a (see FIG. 2A)
  • the reagent supply line 11a When the reagent is supplied through the reagent, the reagent supplied to the entire wall of the reaction vessel 10a is splashed by the reagent supply speed.
  • F-18 is eluted from the anion exchange cartridge, and then subjected to a drying step to make it reactive. In this case, when nitrogen is supplied through the same line, the reaction vessel 10a is eventually supplied to the reaction vessel 10a.
  • Nitrogen is supplied into the filled solution and bubbles are generated by the supplied nitrogen, which also causes the reagent to bounce through the wall and to dry.
  • the precursor After the drying of F-18, when the solution containing the precursor is supplied back to the reaction vessel 10a through the reagent supply line 11a, the precursor also splashes to the base wall of the reaction vessel 10a, and remains on the base wall. Participation in the reaction of the dried reagents will be different each time, which will lead to variations in the yield of radiopharmaceuticals.
  • radiopharmaceuticals sensitive to the amount of reagents, there is a problem in that it is difficult to synthesize a stable radiopharmaceutical because the production is frequently failed due to variations in yield.
  • one object of the present invention is to provide a method for producing an organic fluorinated aliphatic compound using a novel multifunctional solvent, and specifically, a polar aprotic solvent used for labeling of radioactive isotopes, which is pointed out above.
  • a polar aprotic solvent used for labeling of radioactive isotopes
  • SPE solid phase extraction
  • one object of the present invention to provide a method for producing a radiopharmaceutical using a cassette containing a reflux reaction container, in detail the amount of the reagent used in the preparation of the radiopharmaceutical is intended to participate in the reaction It is to provide a method for producing a radiopharmaceutical using a cassette comprising a backflow prevention reaction vessel that can be stably supplied into the reaction vessel.
  • one object of the present invention is to prevent backflow of the reaction solvent due to vaporization or the like during the labeling reaction at a high temperature, so that no breakage of the cassette occurs and the reaction solvent is supplied to participate in the labeling reaction. It is to provide a method for producing a radiopharmaceutical using a cassette comprising a protective reaction container.
  • a fluorine salt is reacted with an aliphatic compound having a leaving group by using a polyfunctional solvent represented by the following formula (1) to replace the leaving group [ 18 F]
  • a process for preparing an organic fluorinated aliphatic compound comprising obtaining an aliphatic compound labeled with fluoride:
  • the alkoxy group (OR 3 ) may include any one selected from methoxy, ethoxy, propoxy, isopropoxy and t-butoxy.
  • the halide may include any one selected from chloride (Cl), bromide (Br) and iodide (I).
  • R 1 and R 2 may include a methyl group or an ethyl group.
  • the polyfunctional solvent of the formula (1) is 1-methoxy-2-methyl-2-propanol, 1-ethoxy-2-methyl-2-propanol, 1-propoxy-2-methyl-2-propanol, 1- Isopropoxy-2-methyl-2-propanol, 1-t-butoxy-2-methyl-2-propanol, 1-nitrile-2-methyl-2-propanol, 1-chloro-2methyl-2-propanol , 1-bromo-2-methyl-2-propanol, 1-iodo-2-methyl-2-propanol, 1- (2-methoxyethoxy) 2-methyl-2-propanol and 3- (methoxy It may include any one selected from the group consisting of methyl) -3-pentanol.
  • the fluorine salt used as the source of the [ 18 F] fluoride may include a compound including fluorine-18.
  • the aliphatic compound is an aliphatic compound having an alkyl halide group or an alkyl sulfonate group, and the halide group or sulfonate group is a leaving group.
  • the aliphatic compound is an aliphatic compound having an alkyl halide group or an alkyl sulfonate group, and the halide group or sulfonate group is a primary leaving group or a secondary leaving group.
  • X 2 is a halide group or a sulfonate group.
  • the halide group is any one selected from the group consisting of Cl, Br and I.
  • the sulfonate group may be selected from -SO 3 R 12 (R 12 is a C 1 to C 12 alkyl group, halo C 1 to C 12 alkyl group, a phenyl group, a C 1 to C 4 alkyl phenyl group, a halophenyl group, C 1 to C 4 Any one selected from the group consisting of an alkoxy phenyl group and a nitrophenyl group.
  • the method may further comprise the step of purifying the obtained [ 18 F] fluoride-labeled aliphatic compound using at least one ion exchange SPE cartridge.
  • the ion exchange SPE cartridge may comprise at least one of a cation exchange SPE cartridge and an anion exchange SPE cartridge.
  • the ion exchange SPE cartridge may be composed of a solid support composed of a phenyl group and a polymer composed of hydrocarbon C 1-20 or silica.
  • the cation exchange SPE cartridge may comprise at least one of an SCX (silica based strong cation exchange) SPE cartridge, an MCX (polymer based strong cation exchange) SPE cartridge, and a WCX (polymer based weak cation exchange) SPE cartridge.
  • SCX silicon based strong cation exchange
  • MCX polymer based strong cation exchange
  • WCX polymer based weak cation exchange
  • the anion exchange SPE cartridge may comprise at least one of a SAX (silica based strong anion exchange) SPE cartridge, a MAX (polymer based strong anion exchange) SPE cartridge, and a WAX (polymer based weak anion exchange) SPE cartridge.
  • SAX silicon based strong anion exchange
  • MAX polymer based strong anion exchange
  • WAX polymer based weak anion exchange
  • a method for purifying an organic fluorinated aliphatic compound comprising purifying an organic fluorinated aliphatic compound using solid phase extraction (SPE) performed with an ion exchange SPE cartridge of Formula 2:
  • the solid support is a polymer or silica composed of a phenyl group and a hydrocarbon C1-20;
  • A may be absent when the solid support is a polymer and is phenyl or hydrocarbon C 1-20 when it is silica;
  • B may be an organic cation or an organic anion
  • the organic cation is, Wherein E is nitrogen or phosphorus; R 1 , R 2 , and R 3 are the same or different from each other and a C 1-20 hydrocarbon group, Ar having at least one nitrogen ), C 2-20 heteroaromatic cation with nitrogen and oxygen or nitrogen and sulfur, substituted with a C 1-20 hydrocarbon group at one nitrogen position ( , ) Any one of the compounds)
  • organic anion, sulfonic acid (-SO 3-) or carboxylic acid (-COO -) can be achieved by a).
  • the organic fluorinated aliphatic compound may be purified using an ion exchange SPE cartridge in which B is an organic cation and an ion exchange SPE cartridge in which B is an organic anion.
  • the organic fluorinated aliphatic compound is [ 18 F] fluoropropylcarbomethoxytropan.
  • the method comprises purifying an organic fluorinated aliphatic compound using solid phase extraction (SPE) performed with at least one ion exchange SPE cartridge, wherein the organic fluorine
  • SPE solid phase extraction
  • the cycloaliphatic compound can be achieved by a method for purifying an organic fluorinated aliphatic compound, which is [ 18 F] fluoropropylcarbomethoxytropan.
  • the ion exchange SPE cartridge may comprise at least one of a cation exchange SPE cartridge and an anion exchange SPE cartridge.
  • the ion exchange SPE cartridge may be composed of a solid support composed of a phenyl group and a polymer composed of hydrocarbon C 1-20 or silica.
  • the cation exchange SPE cartridge may comprise at least one of an SCX (silica based strong cation exchange) SPE cartridge, an MCX (polymer based strong cation exchange) SPE cartridge, and a WCX (polymer based weak cation exchange) SPE cartridge.
  • SCX silicon based strong cation exchange
  • MCX polymer based strong cation exchange
  • WCX polymer based weak cation exchange
  • the anion exchange SPE cartridge may comprise at least one of a SAX (silica based strong anion exchange) SPE cartridge, a MAX (polymer based strong anion exchange) SPE cartridge, and a WAX (polymer based weak anion exchange) SPE cartridge.
  • SAX silicon based strong anion exchange
  • MAX polymer based strong anion exchange
  • WAX polymer based weak anion exchange
  • a method for producing a radiopharmaceutical using a cassette comprising a countercurrent reaction container, eluting [ 18 F] fluoride in the countercurrent reaction vessel; Drying the eluent in the countercurrent reaction vessel; Comprises the step of reacting the dried [18 F] fluoride and a precursor of the radiopharmaceutical under the reaction solvent by supplying the precursors and reaction solvent of the radiopharmaceutical into the non-return reaction vessel and preventing the reverse flow reactor, A first line supplied with a reagent used for synthesizing the radiopharmaceutical and a second line providing a vacuum state, wherein the end point of the first line is at least synthesized in the anti-reflux reaction vessel; It is achieved by a method for producing a radiopharmaceutical using a cassette comprising a countercurrent reaction vessel that is present at a position higher than the surface of the reagent used in.
  • the distance between the endpoint of the first line and the surface of the reagent may be up to 5 cm.
  • the cassette including the backflow prevention reaction container may include a cassette of a manifold type.
  • the reaction solvent may include any one of an aprotic solvent, a protic solvent, and a polyfunctional solvent.
  • the aprotic solvent may include any one selected from acetonitrile, dimethylformamide, and dimenyl sulfoxide.
  • the protic solvent is a primary alcohol including methanol, ethanol, n-propanol, n-butanol, n-amyl alcohol, n-hexyl alcohol, n-heptanol, n-octanol, isopropanol, isobutanol, iso Amyl alcohol, secondary alcohols including 3-pentanol, t-butanol, t-amyl alcohol, 2,3-dimethyl-2-butanol, 2- (trifluoromethyl) -2-propanol, 3-methyl- 3-pentanol, 3-ethyl-3-pentanol, 2-methyl-2-pentanol, 2,3-dimethyl-3-pentanol, 2,4-dimethyl-2-pentanol, 2-methyl-2 -Hexanol, 2-cyclopropyl-2-propanol, 2-cyclopropyl-2-butanol, 2-cyclopropyl-3-methyl-2-
  • the multifunctional solvent may include a compound represented by Formula 1 below:
  • R 1 and R 2 are each independently the same functional group as hydrogen, a C 1 to C 10 alkyl group or X,
  • X is any one selected from alkoxy group (OR 3 ), nitrile group (CN) and halide as a polar group.).
  • the R 3 is a C 1 ⁇ C 10 alkyl group
  • the halide may include any one selected from chloride (Cl), bromide (Br) and iodide (I).
  • the polyfunctional solvent is 1-methoxy-2-methyl-2-propanol, 1-ethoxy-2-methyl-2-propanol, 1-propoxy-2-methyl-2-propanol, 1-isopropoxy 2-methyl-2-propanol, 1-t-butoxy-2-methyl-2-propanol, 1-nitrile-2-methyl-2-propanol, 1-chloro-2methyl-2-propanol, 1- It may include any one selected from the group consisting of bromo-2-methyl-2-propanol and 1-iodo-2-methyl-2-propanol.
  • a method for producing an organic fluorinated aliphatic compound using a multifunctional solvent comprising a functional group for improving labeling efficiency of a radioisotope and a functional group for improving purification efficiency.
  • the functional group that improves the labeling efficiency of the radioisotope can be radiolabeled in high yield through the side reaction inhibitory effect which is a side effect of the base, and the functional group that improves the purification efficiency increases the polarity of the reaction solvent.
  • a method for purifying an organic fluorinated aliphatic compound performed in an ion exchange SPE cartridge using solid phase extraction (SPE). Accordingly, the impurities remaining after the organic fluorinated aliphatic compound is produced can be effectively almost almost removed.
  • the present invention it is possible to ensure that the reagents used in the manufacture of radiopharmaceuticals can be stably supplied to the reaction vessel without loss of the amount intended to participate in the reaction, so that the countercurrent reaction vessel capable of synthesizing the radiopharmaceuticals in high yield.
  • a method of manufacturing a radiopharmaceutical using a cassette comprising a.
  • the reaction solvent is prevented from flowing back due to vaporization, etc. during the labeling reaction at a high temperature to prevent the breakage of the cassette and to prevent all of the supplied reaction solvent to participate in the labeling reaction.
  • FIG. 1 is a schematic diagram of a manufacturing process of a radiopharmaceutical using a cassette including a countercurrent reaction container according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a manufacturing process of a radiopharmaceutical using a cassette containing a conventional reaction vessel.
  • the present invention relates to an organic compound comprising a step of obtaining an aliphatic compound labeled with [ 18 F] fluoride by replacing the leaving group by reacting a fluorine salt with an aliphatic compound having a leaving group by using a polyfunctional solvent represented by Formula 1 below.
  • Processes for the preparation of fluorinated aliphatic compounds are provided:
  • R 1 and R 2 are each independently the same functional group as hydrogen, a C 1 to C 10 alkyl group or X 1
  • Ln is a C 1 to C 10 alkyl group or CH 2 (OCH 2 CH 2 ) n to n
  • Polyethylene glycol having an integer of 1 to 10
  • X1 is any one selected from the alkoxy group (OR 3 ), the nitrile group (CN) and the halide as a polar group
  • R 3 is a C 1 to C 10 alkyl group.
  • the fluorine salt is used as a source of [ 18 F] fluoride and is a compound containing fluorine-18.
  • the fluorine salt is an alkali metal fluoride comprising an alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium and cesium; Alkaline earth metal fluorides comprising alkaline earth metals selected from the group consisting of magnesium, calcium, strontium and barium; And ammonium fluoride, but more preferably potassium fluoride or ammonium fluoride.
  • Alkali metal fluoride or tetraalkylammonium fluoride containing potassium is preferably adsorbed by any one support selected from Celite, Molecular Seive, Alumina and Silica gel.
  • the ammonium fluoride is preferably quaternary ammonium fluoride including tetrabutylammonium fluoride and benzyltrimethyl ammonium fluoride; Tertiary ammonium fluorides including triethylammonium fluoride, tributylammonium fluoride; Secondary ammonium fluoride including dibutylammonium fluoride, dihexylammonium fluoride; Butyl ammonium fluoride, may be selected from the group consisting of primary ammonium fluoride including hexyl ammonium fluoride, more preferably tetrabutylammonium fluoride.
  • the aliphatic compound having a leaving group is an aliphatic compound having an alkyl halide group or an alkyl sulfonate group, and the halide group or sulfonate group is a leaving group.
  • the halide group or sulfonate group may be a primary leaving group or a secondary leaving group.
  • the halide group includes any one selected from the group consisting of Cl, Br and I, wherein the sulfonate group is -SO 3 R 12 (R 12 is a C 1 ⁇ C 12 alkyl group, halo C 1 ⁇ C 12 Any one selected from the group consisting of an alkyl group, a phenyl group, a C 1 to C 4 alkyl phenyl group, a halo phenyl group, a C 1 to C 4 alkoxy phenyl group, and a nitrophenyl group.
  • alkyl sulfonate group examples include methanesulfonate, ethanesulfonate, isopropanesulfonate, chloromethanesulfonate and trifluoromethane. Sulfonates, chloroethanesulfonates, and the like.
  • Examples of the aryl sulfonate group include methylphenylsulfonate, ethylphenylsulfonate, chloro Phenylsulfonate, bromophenylsulfonate, methoxyphenylsulfonate or nitrophenylsulfonyl and the like.
  • X 2 includes a halide group or a sulfonate group, and the halide group includes any one selected from the group consisting of Cl, Br, and I, and the sulfonate group is —SO 3 R 12 (R 12 Is any one selected from the group consisting of a C 1 to C 12 alkyl group, a halo C 1 to C 12 alkyl group, a phenyl group, a C 1 to C 4 alkyl phenyl group, a halophenyl group, a C 1 to C 4 alkoxy phenyl group, and a nitrophenyl group One).
  • alkyl sulfonate group examples include methanesulfonate, ethanesulfonate, isopropanesulfonate, chloromethanesulfonate and trifluoromethane. Sulfonates, chloroethanesulfonates, and the like.
  • Examples of the aryl sulfonate group include methylphenylsulfonate, ethylphenylsulfonate, chloro Phenylsulfonate, bromophenylsulfonate, methoxyphenylsulfonate or nitrophenylsulfonyl and the like.
  • aliphatic compound having a leaving group may include the following: 1-phenyl-4- (3-tosylpropyl) -phenylpiperazine (an organic compound having OTs as a primary leaving group) ), 2- (3-methanesulfonyloxypropoxy) naphthalene, which is an organic compound having OMs as a primary leaving group ), 2- (2-methanesulfonyloxypropoxy) naphthalene, which is an organic compound having OMs as a secondary leaving group ), (3-toluenesulfonyloxypropyl) -2 ⁇ -carbomethoxy-3- ⁇ - (4-iodophenyl) tropane ((3-toluenesulfonyloxipropyl) -2 ⁇ - which is an organic compound having OTs as a primary leaving group carbomethoxy-3- ⁇ - (4-iodophenyl) tropane), (3-methanesul
  • the organic fluorinated aliphatic compound prepared according to the method for preparing an organic fluorinated aliphatic compound according to the present invention may also include a radiopharmaceutical.
  • the radiopharmaceutical may comprise at least one of the following:
  • the polyfunctional solvent according to the present invention is an alcohol group (an alcohol group of Formula 1), a functional group (X 1 in Formula 1 ) to improve purification efficiency, and an optimal reaction temperature as a functional group to improve labeling efficiency of radioisotopes.
  • This possible linker (Ln in formula 1) is included.
  • the alcohol group included in the multifunctional solvent according to the present invention may have an effect of inhibiting side reactions of the precursors by such a base to preserve the amount of precursors participating in the reaction, thereby enabling the production of radiopharmaceuticals of high yield.
  • X 1 group contained in the functional group solvent according to the present invention is to increase the solubility in water
  • SPE solid phase extraction
  • HPLC HPLC
  • the method for preparing an organic fluorinated aliphatic compound according to the present invention may further include a step of purifying the obtained aliphatic compound labeled with [ 18 F] fluoride using at least one ion exchange SPE cartridge.
  • the synthesized organic fluorinated aliphatic compound can be purified using both HPLC or SPE, but in the case of HPLC, SPE In comparison, there is a possibility of radioactive loss during purification and the possibility of radioactive degradation products in mass production. This is especially true when preparing [ 18 F] fluoropropylcarbomethoxytropan.
  • the radioactive decomposition product has a retention time similar to that of [ 18 F] fluoropropylcarbomethoxytropan, which causes a problem of low radiochemical purity.
  • the difference of the result may occur depending on the skill of the operator or the researcher, so it may be difficult to stably provide a high quality radiopharmaceutical.
  • it can be purified using a reverse phase SPE cartridge which is generally widely used in the formulation.
  • the impurity [ 18 F] fluoropropylcarbomethoxytropan synthesis, which has a similar polarity as [ 18 F] fluoropropylcarbomethoxytropan, is superior to that of HPLC.
  • intermediate compounds which remain after the fluorination reaction and which do not participate in the fluorination reaction and whose chemical structure is changed) may be difficult to be purified. That is, the presence ratio of these impurities may be different from that of the synthesized [ 18 F] fluoropropylcarbomethoxytropan, but the impurities are almost lipophilic with [ 18 F] fluoropropylcarbomethoxytropan.
  • the precursor-based organic impurities were hardly removed when the product was purified using a reverse phase-based SPE cartridge.
  • the ion exchange SPE purification method according to the present invention uses an ion exchange SPE cartridge, and the ion exchange SPE cartridge may include at least one of a cation exchange SPE cartridge and an anion exchange SPE cartridge.
  • the ion exchange SPE cartridge may be composed of a solid support composed of a phenyl group and a polymer composed of hydrocarbon C 1-20 or silica.
  • the cation exchange SPE cartridge is at least one of: SCX (silica based strong cation exchange) SPE cartridge, MCX (polymer based strong cation exchange) SPE cartridge, and WCX ((polymer based weak cation exchange) SPE cartridge
  • the anion exchange SPE cartridge may comprise one, a SAX (silica based strong anion exchange) SPE cartridge, a MAX (polymer based strong anion exchange) SPE cartridge, and WAX (polymer based weak anion exchange) It may include at least one of the SPE cartridge.
  • the ion exchange SPE cartridge is It includes an ion exchange SPE cartridge composed of the structure of [Formula 2].
  • the solid support is a polymer or silica consisting of a phenyl group and a hydrocarbon C 1-20 ;
  • A may be absent when the solid support is a polymer and is phenyl or hydrocarbon C 1-20 when it is silica;
  • B may be an organic cation or an organic anion, wherein the organic cation, Wherein E is nitrogen or phosphorus;
  • R 1 , R 2 , and R 3 are the same or different from each other and a C 1-20 hydrocarbon group, Ar having at least one nitrogen ), C 2-20 heteroaromatic cation with nitrogen and oxygen or nitrogen and sulfur, substituted with a C 1-20 hydrocarbon group at one nitrogen position ( , ),
  • the organic anion is a sulfonic acid (-SO 3-) or carboxylic acid (-COO - may comprise a
  • the organic fluorinated aliphatic compound can be produced in high yield, high efficiency, and high purity by converting the organic fluorination of the aliphatic compound having a leaving group using a polyfunctional reaction solvent.
  • the multifunctional reaction solvent according to the present invention has a high affinity for water, thereby allowing the purification of the organic fluorinated aliphatic compound without the need for a separate solvent drying process.
  • the organic fluorinated aliphatic compound according to the present invention can be purified both by HPLC or SPE, but when purified using the ion exchange SPE purification method according to the present invention to improve the removal efficiency of residual impurities present after the fluorination reaction You can enjoy the effect.
  • Example 1-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration.
  • [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • the labeling efficiency was confirmed by radio thin layer chromatography. After the reaction, the mixture was diluted with water without drying and purified using a solid phase extraction method. Purification was performed by high performance liquid chromatography.
  • Example 1-2 Organic Fluorination of Aliphatic Compounds Having OMs as Primary or Secondary Leaving Groups
  • Example 2 The same method as in Example 1 was used, except that 2- (3-methanesulfonyloxypropoxy) naphthalene (aliphatic compound having OMs as a primary leaving group) and 2- (2-methanesulfonyloxypropionate) were used in the reaction vessel.
  • 2- (3-methanesulfonyloxypropoxy) naphthalene aliphatic compound having OMs as a primary leaving group
  • 2- (2-methanesulfonyloxypropionate were used in the reaction vessel.
  • the labeling efficiency was confirmed by radio thin layer chromatography. After the reaction, the mixture was diluted with water without drying and purified using a solid phase extraction method. Purification was performed by high performance liquid chromatography.
  • Example 1-1 (3- [ 18 F] fluoropropyl) -4-phenylpiperazine 1-methoxy-2-methyl-2-propanol 89.3% 71.4% 100%
  • Example 1-2 (3- [ 18 F] fluoropropoxy) naphthalene 94.7% 61.5% 100% 2- (2- [ 18 F] fluoropropoxy) naphthalene 95.1% 63.4% 100%
  • Comparative Example 1-1 1- (3- [ 18 F] fluoropropyl) -4-phenylpiperazine Acetonitrile 9.1% 6.2% 100%
  • Example 1-2 2- (3- [ 18 F] fluoropropoxy) naphthalene 56.5% 31.1% 100% 2- (2- [ 18 F] fluoropropoxy) naphthalene 43.7% 20.4% 100% Comparative Example 2-1 1- (3- [ 18 F] fluoropropyl) -4-phenylpiperazine t-amyl alcohol 52
  • the organic fluorinated aliphatic compound was prepared using 1-methoxy-2-methyl-2-propanol, which is a multifunctional solvent, according to the present invention.
  • the yield was 61% or more, it was confirmed that the organic fluorinated aliphatic compound can be produced in high yield, high purity, high efficiency.
  • the conventional reaction solvent t-amyl alcohol Comparative Example 2
  • the labeling efficiency of the organic fluorinated aliphatic compound with respect to the O-alkyl aliphatic compound having an OMs leaving group was 90% or more, but the synthetic yield was 10%.
  • the labeling efficiency of the organic fluorinated aliphatic compound with respect to the O-alkyl aliphatic compound having an OMs leaving group was 56.5% and 43.7%, which was not so high, and the synthetic yield was 31.1% and 20.4%, respectively. It was confirmed that aliphatic compounds could not be prepared.
  • Example 2-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • the labeling efficiency was confirmed by radio thin layer chromatography. After the reaction, the mixture was diluted with water without drying and purified using a solid phase extraction method. Purification was performed by high performance liquid chromatography.
  • Example 2-2 Organic Fluorination of Aliphatic Compounds Having OMs as Primary or Secondary Leaving Groups
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration.
  • [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • the reaction vessel has 2- (3-methanesulfonyloxypropoxy) naphthalene (aliphatic compound having OMs as a primary leaving group) or 2- (2-methanesulfonyloxypropoxy) naphthalene (with OMs as a secondary leaving group 0.1 mL of acetonitrile dissolved in the aliphatic compound) and 1.0 mL of 1-chloro-2methyl-2-propanol as a multifunctional reaction solvent according to the present invention were added and reacted at 120 ° C. to give 2- (3- [ 18 F] fluoropropane. Foxy) naphthalene or 2- (2- [ 18 F] fluoropropoxy) naphthalene was synthesized.
  • the labeling efficiency was confirmed by radio thin layer chromatography. After the reaction, the mixture was diluted with water without drying and purified using a solid phase extraction method. Purification was performed by high performance liquid chromatography.
  • Example 2-1 (3- [ 18 F] fluoropropyl) -4-phenylpiperazine 1-chloro-2-methyl-2-propanol 58.2% 42.3% 100%
  • Example 2-2 (3- [ 18 F] fluoropropoxy) naphthalene 87.1% 51.9% 100%
  • 2- (2- [ 18 F] fluoropropoxy) naphthalene 85.4% 53.1% 100%
  • Example 2 is a case of preparing an organic fluorinated aliphatic compound using 1-chloro-2-methyl-2-propanol as a multifunctional solvent according to the present invention
  • Example 2 In the case of -1, the labeling efficiency rate and the synthetic yield were 58.2% and 42.3%, respectively, about 6-7 times higher than those of the acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent, and the reaction solvent of Table 1 above. It was recognized that it was about three times higher than the synthesis yield of t-amyl alcohol of Comparative Example 2-2.
  • Example 2-2 the labeling efficiency was 87.1% and 85.4%, respectively, and the synthesis yield was 51.9% and 53.1%, respectively, in the synthesis yield of acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent. It was confirmed that it is about 2-3 times higher than that of the conventional reaction solvent and about 5 times higher than the synthetic yield of t-amyl alcohol of Comparative Example 2-2 of Table 1 above.
  • Example 3-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • Example 3-2 Organic Fluorination of Aliphatic Compounds Having OMs as Primary or Secondary Leaving Groups
  • Example 3-1 (3- [ 18 F] fluoropropyl) -4-phenylpiperazine 1-nitrile-2-methyl-2-propanol 42.8% 30.2% 100%
  • Example 3-2 (3- [ 18 F] fluoropropoxy) naphthalene 81.3% 49.4% 100%
  • 2- (2- [ 18 F] fluoropropoxy) naphthalene 83.8% 50.3% 100%
  • Example 3 was carried out when the organic fluorinated aliphatic compound was prepared using 1-nitrile-2-methyl-2-propanol as the multifunctional solvent according to the present invention.
  • the labeling efficiency rate and the synthetic yield were 42.8% and 30.2%, respectively, about 5 times higher than those of the acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent, and Table 1, which is a conventional reaction solvent. It was recognized that it was about 2 times higher than the synthesis yield of t-amyl alcohol of Comparative Example 2-2.
  • Example 3-2 the labeling efficiency was high as 81.3% and 83.8%, respectively, and the synthetic yield was 49.4% and 50.3%, respectively, in the synthetic yield of acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent. It was confirmed that it is about 2-3 times higher than that of the conventional reaction solvent and about 4-5 times higher than the synthetic yield of t-amyl alcohol of Comparative Example 2-2 of Table 1 above.
  • Example 4-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • Example 4-1 (3- [ 18 F] fluoropropyl) -4-phenylpiperazine 3- (methoxymethyl) -3-pentanol 64.7% 43.8% 100%
  • Example 4-2 3- (3- [ 18 F] fluoropropoxy) naphthalene 84.3% 54.9% 100%
  • 2- (2- [ 18 F] fluoropropoxy) naphthalene 83.4% 51.7% 100%
  • Example 4 is an example of preparing an organic fluorinated aliphatic compound using 3- (methoxymethyl) -3-pentanol as the polyfunctional reaction solvent according to the present invention.
  • the labeling efficiency rate and the synthetic yield were 64.7% and 43.8%, respectively, about 7 times higher than those of the acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent, It was recognized that it was about four times higher than the synthesis yield of t-amyl alcohol of Comparative Example 2-2.
  • Example 4-2 the labeling efficiencies were 84.3% and 83.4%, respectively, and the synthetic yields were 54.9% and 51.7%, respectively. Comparative Examples 1-2 (using acetonitrile) and Comparative Examples 2-2 ( t-amyl alcohol) was higher than both in terms of labeling efficiency and yield.
  • Example 5-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • Example 5-2 Organic Fluorination of Aliphatic Compounds Having OMs as Primary or Secondary Leaving Groups
  • Organic fluorination of the aliphatic compound having OMs as a leaving group was carried out using the same material and the same method as in Example 2-2, except that 1- (2-methoxyethoxy) 2-methyl-2- was used as the reaction solvent. Propanol was used to synthesize the organic fluorinated aliphatic compound 2- (3- [ 18 F] fluoropropoxy) naphthalene or 2- (2- [ 18 F] fluoropropoxy) naphthalene.
  • Example 5 prepared an organic fluorinated aliphatic compound using 1- (2-methoxyethoxy) 2-methyl-2-propanol as the polyfunctional reaction solvent according to the present invention.
  • the labeling efficiency ratio and the synthetic yield were 58.7% and 47.0%, respectively, about 8 times higher than those of the acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent, and a conventional reaction solvent. It was found to be about 4 times higher than the synthetic yield of t-amyl alcohol of Comparative Example 2-2 of Table 1 above.
  • Example 5-2 the labeling efficiency was 85.3% and 81.8%, respectively, and the synthetic yield was also confirmed to be 52.1% and 50.3%, respectively, which is Comparative Example 1-2 (using acetonitrile) and Comparative Example 2- In case of 2 (t-amyl alcohol), the labeling efficiency and the synthetic yield were both higher.
  • Example 6-1 Organic Fluorination of Aliphatic Compounds Having OTs as Primary Leaving Groups
  • Example 6-2 Organic Fluorination of Aliphatic Compounds Having OMs as Primary or Secondary Leaving Groups
  • Example 6-1 (3- [ 18 F] fluoropropyl) -4-phenylpiperazine 1-ethoxy-2-methyl-2-propanol 50.1% 39.8% 100%
  • Example 6-2 (3- [ 18 F] fluoropropoxy) naphthalene 87.3% 55.2% 100%
  • 2- (2- [ 18 F] fluoropropoxy) naphthalene 80.1% 53.2% 100%
  • Example 6 is an example of preparing an organic fluorinated aliphatic compound using 1-ethoxy-2-methyl-2-propanol as a polyfunctional reaction solvent according to the present invention.
  • the labeling efficiency rate and the synthetic yield were 50.1% and 39.8%, respectively, about 6 times higher than those of the acetonitrile of Comparative Example 1-2 of Table 1, which is a conventional reaction solvent. It was recognized that it was about three times higher than the synthesis yield of t-amyl alcohol of Comparative Example 2-2.
  • Example 6-2 the labeling efficiency was 87.3% and 80.1%, respectively, and the synthetic yield was also confirmed to be 55.2% and 53.2%, respectively, which is Comparative Example 1-2 (using acetonitrile) and Comparative Example 2- In case of 2 (t-amyl alcohol), the labeling efficiency and the synthetic yield were both higher.
  • Example 7-1 Using Aliphatic Compounds Having OTs as Primary Leaving Groups as Precursors
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration. That is [18 F] fluoride was eluted to a reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • a quaternary ammonium salt support Chromafix or QMA
  • the labeling efficiency was confirmed by radio thin layer chromatography. After the reaction, the mixture was diluted with water without drying and purified using a solid phase extraction method. Purification was performed by high performance liquid chromatography.
  • Example 7-2 Using Aliphatic Compounds Having OMs as Primary Leaving Groups as Precursors
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 7-1, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 7-2, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 7-1, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 7-2, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • Example 7-1 -OTs 1-methoxy-2-methyl-2-propanol 25 minutes 92.7% 74.2% 100%
  • Example 7-2 -OMs 25 minutes 77.4% 65.7% 100%
  • Comparative Example 4-1 -OTs Acetonitrile 25 minutes 12.7% 5.4% 100%
  • Comparative Example 4-2 -OMs 25 minutes 6.1% 6.7% 100%
  • [ 18 F] LVTI 999 was synthesized using an aliphatic compound having Cl as a primary leaving group as a precursor.
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration.
  • [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • [ 18 F] fluorominisonazole was synthesized using an aliphatic compound having OTs as a secondary leaving group as a precursor.
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration.
  • [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • [ 18 F] fluorothymidine was synthesized using an aliphatic compound having ONs as a secondary leaving group as a precursor.
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • [ 18 F] fluorodeoxyglucose was synthesized using an aliphatic compound having OTf as a secondary leaving group as a precursor.
  • [ 18 F] fluoride is adsorbed by passing [ 18 F] fluoride through a quaternary ammonium salt support (Chromafix or QMA) and adsorbed onto the quaternary ammonium support with KOMs mixed solution with hydrogen ion concentration.
  • [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • Mannose triflate (mannose triflate, 1,3,4,6-tetra-O-acetyl-2-O-trifluoro-methanesulfonyl-beta-D-, an aliphatic compound having OTf as a secondary leaving group as a precursor in the reaction vessel)
  • [ 18 F] fluoride was labeled by adding 0.1 mL of acetonitrile dissolved in mannopyranose) and 1.0 mL of 1-methoxy-2-methyl-2-propanol as a multifunctional reaction solvent according to the present invention and reacting at 120 ° C. Was confirmed by radio thin layer chromatography. After the reaction, 1 M hydrochloric acid was added, hydrolysis at 100 ° C. for 5 minutes, 2 M sodium hydroxide was added thereto, neutralized, diluted with water, purified using a solid phase extraction method, and purified by high performance liquid chromatography. .
  • Examples 8 to 11 were prepared using various radiopharmaceuticals using 1-methoxy-2-methyl-2-propanol as a multifunctional solvent according to the present invention, and their labeling efficiency, purification method, purification time, synthesis Yields and purity are as shown in Table 8 below.
  • Example 8 [18 F] LB tee 999, a ninth embodiment of the [18 F] but smile fluoro sol of Example 10, the [18 F] fluoro-thymidine, and Example 11 [18 F] fluoroalkyl of In the case of rodeoxyglucose, as a variety of radiopharmaceuticals currently used in clinical practice at home and abroad, as a result of using the multi-functional solvent 1-methoxy-2-methyl-2-propanol according to the present invention, in Table 3
  • the purity of the radiopharmaceuticals manufactured is 100%, and the labeling efficiencies are very high at 97.4%, 95.7%, 90.5%, and 93.7%, respectively, and the synthetic yields are 65.1%, 63.4%, 61.7%, and 66.4%, respectively.
  • Example 12-2-2 Purified [ 18 F] fluoropropylcarbomethoxytropane synthesized in Example 7-1 (Example 12-2-1) and [ 18 F] fluoropropylcarbomethoxyt synthesized in Example 7-2
  • ropan Example 12-2-2
  • the synthesis reaction was carried out with [ 18 F] fluoropropylcarbomethoxytropane by adding a precursor and a reaction solvent in Examples 7-1 and 7-2.
  • the product was purified by high performance liquid chromatography without drying. Purification was performed by high performance liquid chromatography after purification.
  • Example 12 The results of Example 12 are as shown in Table 9 below.
  • Comparative Example 6 and Comparative Example 7 [ 18 F] fluoropropyl carbomethoxytropan was purified according to each purification method without performing a drying process when performing each purification process
  • Comparative Example 8 is to purify the [ 18 F] fluoropropyl carbomethoxytropan according to each purification method after the drying process.
  • the overall synthesis time was slightly increased compared to the case where the drying process was not performed, but the total synthesis time was increased by about 15 minutes due to the drying process. Due to the synthesis yield was confirmed to be reduced to less than about 50% compared to Example 12.
  • Example 13-1 Purification using reverse phase high performance liquid chromatography (HPLC)
  • Example 7-2 After synthesis of [ 18 F] fluoropropylcarbomethoxytropan, diluted with 8 mL of 70% methanol.
  • the diluted reaction mixture was purified using an HPLC method using a C18 column, and the radioactivity recovery rate was measured by measuring the labeling efficiency and radioactivity of the reaction mixture before purification and the radioactivity of [ 18 F] fluoropropylcarbomethoxytropan after purification. Confirmed.
  • high-performance liquid chromatography was used to confirm radiochemical purity and removal rate of organic impurities based on precursors.
  • Example 13-2 Purification Using Silica-based Reverse Phase Based Solid Phase Extraction Cartridge (SPE)
  • Example 13-3 Purification using a polymer-based reverse phase-based solid phase extraction cartridge (SPE)
  • [ 18 F] fluoropropylcarbomethoxytropane was synthesized using the same material and the same method as Example 7-2, and then the same material and the same method as the above 13-2 was used, using an HLB SPE cartridge. [ 18 F] fluoropropylcarbomethoxytropan was purified.
  • Example 13 The results of Example 13 are as shown in Table 10 below.
  • Example 13-1 Silica-based Reverse Phase HPLC 32.7% 100% 99.7%
  • Example 13-2 Silica-based Reverse Phase SPE (C18) 97.8% 100 2.6%
  • Example 13-3 Polymer-Based Reversed Phase SPE (HLB) 95.7% 100 4.1%
  • Example 13-1 As shown in Table 10, when the purification using silica-based reverse phase HPLC of Example 13-1, the removal rate of precursor-based organic impurities was considerably high, but the radioactivity recovery after purification was too low, making it useful as a radiopharmaceutical. This was found to be very low. On the other hand, in the case of Example 13-2 and Example 13-3 was found that the radioactivity recovery was very good, but the precursor-based organic impurities removal rate is too low.
  • [ 18 F] fluoropropylcarbomethoxytropane was purified using the same materials and the same method as in Example 14-1, but using an SCX SPE cartridge as the purification cartridge.
  • [ 18 F] fluoropropylcarbomethoxytropane was purified using the same materials and the same method as in Example 14-1, but using a WCX SPE cartridge as the purification cartridge.
  • Example 14 The results of Example 14 are as shown in Table 11 below.
  • Example 15-1 Purification Using Polymer-Based Cation Exchange MCX SPE Cartridges
  • Example 15-2 Purification Using Polymer-Based Cation Exchange WCX SPE Cartridges
  • [ 18 F] fluoropropylcarbomethoxytropane was purified using the same materials and methods as in Example 15-1, but using a WCX SPE cartridge as the purification cartridge.
  • Example 15 The results of Example 15 are as shown in Table 11 below.
  • Example 14-1 Silica-based Cation Exchange (CM) 97.0% 100 98.2
  • Example 14-2 Silica-based cation exchange (SCX, -SO 3 -) 94.7% 100 97.1%
  • Example 14-3 Silica-based cation exchange (WCX, -COO -) 96.4% 100 98.7%
  • Example 15-1 The polymer-based cation exchange (MCX, -SO 3 -)) 70.2% 100 96.4%
  • Example 15-2 The polymer-based cation exchange (WCX, -COO -) 75.9% 100 98.1%
  • Example 16 The results of Example 16 are as shown in Table 12 below.
  • Example 17-1 Purification Using Polymer-Based Anionic MAX SPE Cartridges
  • Example 17-2 Purification Using Polymer-Based Anionic WAX SPE Cartridges
  • [ 18 F] fluoropropylcarbomethoxytropane was purified using the same materials and methods as in Example 17-1, using a WAX SPE cartridge as the purification cartridge.
  • Example 17 The results of Example 17 are as shown in Table 12 below.
  • Example 16 Silica-based Anion Exchange (SAX, Quaternary Ammonium) 98.2% 100 92.4%
  • Example 17-1 Polymer-Based Anion Exchange (MAX, Quaternary Ammonium) 81.2% 100 89.6%
  • Example 17-2 Polymer-Based Anion Exchange (WAX, Secondary Ammonium) 70.9% 100 87.0%
  • Example 18-1 SPE purification utilizing both silica based cation and anion exchange
  • Example 18-2 SPE purification utilizing both polymer-based cation and anion exchange
  • Example 18 The results of Example 18 are as shown in Table 13 below.
  • Example 18-1 Silica-Based Ion Exchange (SCX + SAX) 97.2% 100 97.7%
  • [18 F] fluoro-propyl carbonyl methoxy sheet with [18 F] fluoride labeling condition of the plate (a base and the reaction solvent)
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • [ 18 F] fluoropropylcarbomethoxytropan After synthesis, dilute with 20 mL or more of water. The diluted reaction mixture is passed through an SCX + SAX SPE cartridge (using two in combination) to keep [ 18 F] fluoropropylcarbomethoxytropan in the connected SPE cartridge. Rinse connected SPE cartridges with 5 mL or more water to remove residual organic solvents and polar impurities. [ 18 F] fluoropropylcarbomethoxytropan remaining in the finally connected SPE cartridge was eluted with 2 mL or more of ethanol and diluted with physiological saline to prepare [ 18 F] fluoropropylcarbomethoxytropan. . Confirmation of radiochemical purity and removal rate of organic impurities based on precursors was performed using high performance liquid chromatography.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Example 19-1, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 19-1, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • Example 19 The results of Example 19 are as shown in Table 14 below.
  • Example 20-1 Purification after synthesis using reaction solvent 1-methoxy-2-methyl-2-propanol
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • [ 18 F] fluoropropylcarbomethoxytropan After synthesis, dilute with 20 mL or more of water. The diluted reaction mixture is passed through an MCX + MAX SPE cartridge (using two in combination) to keep [ 18 F] fluoropropylcarbomethoxytropan in the connected SPE cartridge. Rinse connected SPE cartridges with 5 mL or more water to remove residual organic solvents and polar impurities. [ 18 F] fluoropropylcarbomethoxytropan remaining in the finally connected SPE cartridge was eluted with 2 mL or more of ethanol and diluted with physiological saline to prepare [ 18 F] fluoropropylcarbomethoxytropan. . Confirmation of radiochemical purity and removal rate of organic impurities based on precursors was performed using high performance liquid chromatography.
  • Example 20-2 Purification after synthesis using reaction solvent acetonitrile
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Example 20-1, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and the same method as in Example 20-1, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • Example 20 The results of Example 20 are as shown in Table 14 below.
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • the diluted reaction mixture was purified using an HPLC method using a C18 column, and diluted using 20 mL or more of water after labeling efficiency and radioactivity and purification of the reaction mixture before purification.
  • the diluted tablet mixture is passed through a C18 SPE cartridge to keep the [ 18 F] fluoropropylcarbomethoxytropan in the C18 SPE cartridge. Rinse the C18 SPE cartridge with at least 5 mL of water to remove residual organic solvent.
  • [ 18 F] fluoropropylcarbomethoxytropan which was finally retained in the C18 SPE cartridge, was eluted with 2 mL or more of ethanol and diluted with physiological saline to prepare [ 18 F] fluoropropylcarbomethoxytropan. It was. Confirmation of radiochemical purity and removal rate of organic impurities based on precursors was performed using high performance liquid chromatography.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Comparative Example 9-1, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Comparative Example 9-1, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • Quaternary ammonium salts support (Chromafix or QMA) in the [18 F] was passed through a fluoride adsorbing method by [18 F] fluoride to replace the anion and the pH is adjusted KOMs mixture with quaternary adsorption to ammonium support [ 18 F] fluoride was eluted with the reaction vessel. After elution, the eluent was completely removed by azeotropic distillation while injecting nitrogen gas at 100 ° C.
  • the diluted reaction mixture is passed through a C18 SPE cartridge to keep the [ 18 F] fluoropropylcarbomethoxytropan in the C18 SPE cartridge.
  • [ 18 F] fluoropropylcarbomethoxytropan which is finally held in a C18 SPE cartridge, was eluted with 2 mL or more of ethanol and diluted with physiological saline to prepare [ 18 F] fluoropropylcarbomethoxytropan. .
  • Confirmation of radiochemical purity and removal rate of organic impurities based on precursors was performed using high performance liquid chromatography.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Comparative Example 10-1, but using 1 mL of acetonitrile as the reaction solvent.
  • [ 18 F] fluoropropylcarbomethoxytropane was prepared using the same material and method as in Comparative Example 10-1, but using 1 mL of t-amyl alcohol as the reaction solvent.
  • the commonly used reverse phase C18 SPE may show high synthesis yield and radiochemical purity, but the removal rate of precursor-based organic impurities is significantly lower than that of ion exchange SPE purification, requiring high specific radioactivity (mCi / umol). Application to [ 18 F] fluoropropylcarbomethoxytropane was difficult.
  • the use of cation and anion exchange SPE cartridges can remove most of the organic impurities that show ionicity, and most of the precursor-based organic impurities can be confirmed.
  • FIG. 1 is a schematic diagram of a manufacturing process of a radiopharmaceutical using a cassette including a countercurrent reaction container according to an embodiment of the present invention.
  • the anti-reflux reaction vessel 10 has a first line 11 to which a reagent used for synthesizing a radiopharmaceutical is supplied and a second to provide a vacuum state in the anti-return reaction vessel 10.
  • Line 13 wherein the first line 11 contains reagents used in the synthesis of radiopharmaceuticals, eg, [ 18 F] fluoride providing solutions, precursors of radiopharmaceuticals, [ 18 F] fluoride
  • a supply unit for supplying each reagent such as a reaction solvent used to label the precursor and a nitrogen or air supply unit are connected in a manifold form to form a cassette.
  • the cassette may be composed of a single manifold or a plurality of manifolds, and the configuration of the cassette of the radiopharmaceutical is that the rest of the configuration except that the reaction vessel of the radiopharmaceutical is a countercurrent reaction vessel 10 according to the present invention is a conventionally known configuration It may contain elements.
  • the end point E of the first line 11 is located at a predetermined height from the bottom of the backflow prevention reaction vessel 10, preferably, the end point E of the first line 11 is It is positioned at a predetermined height (h) from the surface of the material supplied in the backflow prevention reaction vessel 10, more preferably the end point (E) of the first line 11 and the backflow prevention reaction vessel (10)
  • the maximum distance between the surfaces of the reagents used for the synthesis of all radiopharmaceuticals supplied in the up to 5 cm maximum. That is, the end point E of the first line 11 may be located at least 0 cm and at most 5 cm from the surface of the reagent used for the synthesis of all the radiopharmaceuticals supplied into the backflow prevention reaction vessel 10. have.
  • the end point E of the first line 11 is located at a predetermined height from the bottom of the backflow prevention reaction vessel 10, and through the first line 11, the F-18 solution ( 20) is supplied (Fig. 1 (A)), the end point (E) of the first line (11) is located at a certain distance high from the bottom of the backflow prevention reaction vessel (10) F-18 solution (20 ) Is stably supplied without splashing (FIG. 1B) so that the solution is stably supplied to the bottom of the backflow prevention reaction vessel 10 (FIG. 1C). Even though nitrogen or air is supplied through the first line 11 to dry the supplied F-18 solution (FIG. 1D), the end point E of the first line 11 prevents backflow.
  • the F-18 solution 20 does not form bubbles by the provided nitrogen or air, it splashes on the base wall of the backflow prevention reaction vessel 10 because it is positioned at a predetermined interval high from the bottom of the reaction vessel 10. This can be prevented (Fig. 1E).
  • the precursor 30 of the radiopharmaceutical is supplied through the first line 11, and likewise, the radiopharmaceutical onto the F-18 solution 20 stably without splashing to the wall.
  • Precursor 30 is supplied ((F) and (G) of FIG. 1).
  • the reaction solvent 40 is supplied through the first line 11 to perform a reaction in which the f-18 labels the precursor of the radiopharmaceutical. In this case, the endpoint of the first line 11 is performed.
  • (E) is located at a high position (h) at a predetermined interval from the surface of all the reagents supplied in the countercurrent reaction vessel 10, even if the temperature is raised between 100 and 140 °C for the labeling reaction, the reaction solvent 40 It is possible to stably manufacture the radiopharmaceuticals because it can participate in the labeling reaction in the countercurrent reaction vessel 10 stably as much as the amount supplied without being backflowed to the first line 11, and stably produce radiopharmaceuticals. Synthetic yield may be improved, and the other end in which the end point E of the first line 11 is not provided because the reaction solvent 40 does not flow back through the first line 11. There is associated with the set is not in reaction No solvent 40 does not flow back to the cassette is also occur problems such as damaged cassette.
  • FIG. 2 is a schematic diagram of a manufacturing process of a radiopharmaceutical using a cassette containing a conventional reaction vessel.
  • the supply and recovery of the reagent is provided so that the end point (Ea) of the reagent supply line (11a) to the bottom surface of the reaction vessel (10a) in order to increase the recovery rate (Fig. 2 (A )).
  • the F-18 solution 20a is supplied through the reagent supply line 11a, the F-18 solution is splashed to the base wall of the reaction vessel 10a (Fig. 2 (B)).
  • the solution 20a is buried on the base wall of the reaction vessel 10a (FIG. 2C).
  • nitrogen or air is supplied through the reagent supply line 11a to dry the supplied F-18 solution 20a
  • nitrogen or air is supplied into the F-18 solution 20a so that the bubble 22 (D) of FIG. 2 causes a larger amount of the F-18 solution to splash on the base wall of the reaction vessel 10a (FIG. 2E).
  • the precursor of the radiopharmaceutical is supplied through the reagent supply line 11a (FIG. 2 (F)), and the precursor 30a of the radiopharmaceutical, like the F-18 solution 20a, is also a reaction vessel 10a.
  • (G) of the predetermined amount of the radiopharmaceutical precursor also remains on the wall ((H) of FIG. 2), because the reagent supply line 11a is a reaction vessel. It is such that it is located in contact with the bottom surface of 10a.
  • the reaction solvent 40a is injected through the reagent supply line 11a to label F-18 in the precursor of the radiopharmaceutical.
  • the labeling reaction is generally performed at 100 to 140 ° C. and the injected reaction.
  • the boiling point of the solvent 40a is exceeded, which causes vaporization of the reaction solvent 40a so that a positive pressure is applied, and due to this positive pressure, the reaction solvent 40a flows back into the reagent supply line 11a to participate in the labeling reaction. It is not possible (Fig. 2 (I)).
  • the other end of the reagent supply line (11a) that is not provided with the end point (Ea) is connected to the cassette is cassette in this process if the cassette is not resistant according to the type of material of the reaction solvent 40a used The problem of breakage may occur and the recovery of the reactant may be impossible, resulting in a failure to manufacture the radiopharmaceutical.
  • the reaction solvent does not flow back to the first line 11 during the labeling reaction, and thus the cassette is damaged due to the backflow. Since the problem is solved, it is necessary to develop the material of the cassette having the reaction solvent resistance, thereby lowering the manufacturing cost, and the reaction solvent 40 supplied can almost participate in the labeling reaction, thereby improving the synthetic yield of radiopharmaceuticals. It is possible to have a radiopharmaceutical that is compatible with GMP.
  • the reaction solvent used in the method for producing a radiopharmaceutical using the cassette including the backflow prevention reaction container 10 according to the present invention may be any one of an aprotic solvent, a protic solvent, and a polyfunctional solvent. It may include one.
  • the aprotic solvent may include any one selected from acetonitrile, dimethylformamide, and dimenyl sulfoxide.
  • the protic solvent is a primary alcohol including methanol, ethanol, n-propanol, n-butanol, n-amyl alcohol, n-hexyl alcohol, n-heptanol, n-octanol, isopropanol, isobutanol, iso Amyl alcohol, secondary alcohols including 3-pentanol, t-butanol, t-amyl alcohol, 2,3-dimethyl-2-butanol, 2- (trifluoromethyl) -2-propanol, 3-methyl- 3-pentanol, 3-ethyl-3-pentanol, 2-methyl-2-pentanol, 2,3-dimethyl-3-pentanol, 2,4-dimethyl-2-pentanol, 2-methyl-2 -Hexanol, 2-cyclopropyl-2-propanol, 2-cyclopropyl-2-butanol, 2-cyclopropyl-3-methyl-2-
  • the polyfunctional solvent is a compound represented by the following general formula (1):
  • R 1 and R 2 are each independently hydrogen, a C 1 to C 10 alkyl group or the same functional group as X 1 ,
  • X 1 is a polar group any one selected from alkoxy group (OR 3 ), nitrile group (CN) and halide,
  • R 3 is preferably a C 1 to C 10 alkyl group.
  • the alkoxy group is preferably any one selected from methoxy, ethoxy, propoxy, isopropoxy and t-butoxy.
  • the halide is preferably any one selected from chloride (Cl), bromide (Br) and iodide (I).
  • said R ⁇ 1> and R ⁇ 2> are a methyl group or an ethyl group.
  • the polyfunctional solvent of the formula (1) preferably, 1-methoxy-2-methyl-2-propanol, 1-ethoxy-2-methyl-2-propanol, 1-propoxy-2-methyl -2-propanol, 1-isopropoxy-2-methyl-2-propanol, 1-t-butoxy-2-methyl-2-propanol, 1-nitrile-2-methyl-2-propanol, 1-chloro -2methyl-2-propanol, 1-bromo-2-methyl-2-propanol, 1-iodo-2-methyl-2-propanol, 1- (2-methoxyethoxy) 2-methyl-2- It is any one selected from the group which consists of a propanol and 3- (methoxymethyl) -3-pentanol.
  • the method for producing a radiopharmaceutical using a cassette including the backflow prevention reaction vessel 10 comprises the steps of eluting [ 18 F] fluoride in the backflow prevention reaction vessel 10 (FIG. A) to (C)); Drying the eluent in the countercurrent reaction vessel ((D) to (E) of FIG. 1); Supplying a precursor of a radiopharmaceutical and a reaction solvent into the countercurrent reaction vessel to react the dried [ 18 F] fluoride with the precursor of the radiopharmaceutical under the reaction solvent ((F) to (H) of FIG. 1). ).
  • the eluted phase for example, quaternary ammonium salts support (Chromafix or QMA) in the [18 F]
  • the adsorbed [18 F] fluoride with a method for exchanging the anions to pass through the fluoride and the pH is adjusted KOMs [ 18 F] fluoride adsorbed on the quaternary ammonium support in the mixed solution is eluted with the countercurrent reaction vessel (10).
  • the drying step is a step of drying the eluent with nitrogen or air at a predetermined temperature, for example, 100 to 140 ° C. through the first line 11.
  • the precursor and the reaction solvent of the radiopharmaceutical are injected into the first line 11 and reacted at about 100 to 140 ° C.
  • the synthesis step may further comprise the step of dissolving in water using a solid phase extraction (SPE) method or HPLC purification method.
  • SPE solid phase extraction
  • HPLC HPLC purification method.
  • the elution step, the drying step, the synthesis step, and the purification step according to the present invention can utilize a method generally used in the manufacture of radiopharmaceuticals.
  • Such a method for producing a radiopharmaceutical using a cassette including the countercurrent reaction container 10 according to the present invention can be used for the synthesis of any kind of F-18-labeled organic compound under the reaction solvent described above.
  • the fluorine salt which is a source of F-18 fluoride for use in the process of the present invention, may preferably comprise a compound comprising fluorine-18, consisting of lithium, sodium, potassium, rubidium and cesium Alkali metal fluorides comprising an alkali metal selected from the group; Alkaline earth metal fluorides comprising alkaline earth metals selected from the group consisting of magnesium, calcium, strontium and barium; And ammonium fluoride, but more preferably potassium fluoride or ammonium fluoride.
  • Alkali metal fluoride or tetraalkylammonium fluoride containing potassium is preferably adsorbed by any one support selected from Celite, Molecular Seive, Alumina and Silica gel.
  • the ammonium fluoride is preferably quaternary ammonium fluoride including tetrabutylammonium fluoride and benzyltrimethyl ammonium fluoride; Tertiary ammonium fluorides including triethylammonium fluoride, tributylammonium fluoride; Secondary ammonium fluoride including dibutylammonium fluoride, dihexylammonium fluoride; Butyl ammonium fluoride, may be selected from the group consisting of primary ammonium fluoride including hexyl ammonium fluoride, more preferably tetrabutylammonium fluoride.
  • the fluorine salt can be used as 1 pg to 100 ng of [ 18 F] fluoride for 1 mg of the precursor of the radiopharmaceutical described below.
  • the precursor of the radiopharmaceutical used in the present invention is preferably an alkyl halide or an alkyl sulfonate, wherein the halide in the alkyl halide or alkyl sulfonate is selected from the group consisting of Cl, Br and I except F and sulfonate Is -SO 3 R 12 and R 12 is an alkyl group or an aryl group, and more specifically, the alkyl group is preferably a C 1 to C 12 alkyl sulfonate or a halo C 1 to C 12 alkyl group, and examples thereof include methanesulfonate and ethane.
  • the aryl group is preferably selected from a phenyl group, a C 1 to C 4 alkyl phenyl group, a halo phenyl group, a C 1 to C 4 alkoxy phenyl group, or a nitrophenyl group, and examples thereof include methylphenylsulfonate; Ethylphenylsulfonate; Chlorophenylsulfonate, bromophenylsulfonate, methoxyphenylsulfonate or nitrophenylsulfonyl.
  • the precursor of the radiopharmaceutical used in the present invention may include an aliphatic compound having a leaving group used in the method for producing an organic fluorinated aliphatic compound described using Examples 1 to 11 of the present invention. .
  • the radiopharmaceutical which may be prepared according to the method for producing a radiopharmaceutical using the cassette including the reaction vessel 10 of the present invention may include at least one selected from the group consisting of:
  • the backflow prevention reaction vessel 10 of FIG. 1 was applied to TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluoropropylcarbomethoxytropan was prepared using TRACERlab MX as an automated synthesis apparatus.
  • the backflow prevention reaction vessel 10 of FIG. 1 was applied to TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluoropropylcarbomethoxytropan was prepared using TRACERlab MX as an automated synthesis apparatus.
  • the backflow prevention reaction vessel 10 of FIG. 1 was applied to TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluoropropylcarbomethoxytropan was prepared using TRACERlab MX as an automated synthesis apparatus.
  • radiopharmaceuticals are stably synthesized in a high yield without damaging the cassette, in particular aceto Using nitrile (Examples 25 and 26) it was confirmed that the production can be carried out in a yield of about 10%.
  • t-amyl alcohol Examples 23 and 24
  • FP-CIT was prepared in a yield of 20-23%
  • 1-methoxy-2-methyl-2-propanol Examples 21 and 22. Due to the shortening of the manufacturing time, a high yield of 31-33% was obtained, which was increased by about 10%.
  • the countercurrent reaction vessel 10 of FIG. 1 was applied to TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluorothymidine was prepared using TRACERlab MX as an automated synthesis apparatus.
  • [ 18 F] fluorothymidine was synthesized using the same reagents and conditions used in Example 27 using a TRACERlab MXFDG Cassette (GE Healthcare) and a TRACERlab MX automated synthesis apparatus comprising the reaction vessel 10a of FIG. 2.
  • the countercurrent reaction vessel 10 of FIG. 1 was applied to a TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluoromisonidazole was prepared using TRACERlab MX as an automated synthesis apparatus.
  • [ 18 F] fluoromisonidazole was prepared using the same TRACERlab MXFDG Cassette (GE Healthcare) and TRACERlab MX automated synthesis apparatus, including the reaction vessel 10a of FIG. 2, under the same reagents and conditions used in Example 28. Synthesized.
  • the countercurrent reaction vessel 10 of FIG. 1 was applied to TRACERlab MXFDG Cassette (GE Healthcare), and [ 18 F] fluoroestradiol was prepared using TRACERlab MX as an automated synthesis apparatus.
  • [ 18 F] fluoroestradiol was synthesized using the same reagents and conditions as in Example 29 using the existing TRACERlab MXFDG Cassette (GE Healthcare) and TRACERlab MX automated synthesis apparatus including the reaction vessel 10a of FIG. 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 방사성 의약품의 제조방법에 대한 것으로서, 상세하게는 방사성 의약품으로 이용될 수 있는 유기 플루오르화 지방족 화합물의 제조방법, 상기 제조된 유기 플루오르화 지방족 화합물의 정제방법 및 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법에 대한 것이다. 본 발명에 따를 경우 단순한 공정으로도 고수율, 고효율, 고순도로 유기 플루오르화 지방족 화합물을 제조 및 정제가 가능하고, 합성장치의 파손없이 안전하게 방사성 의약품을 제조할 수 있는 효과를 갖는다.

Description

유기 플루오르화 지방족 화합물의 제조방법 및 정제방법
본 발명은 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법에 대한 것으로서, 보다 상세하게는 신규한 다작용기 용매를 이용한 유기 플루오르화 지방족 화합물의 제조방법 및 고체상 추출(SPE)를 이용한 유기 플루오르화 지방족 화합물의 정제방법에 대한 것이다.
또한 본 발명은 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법에 관한 것이다.
현대 문명의 발달에 따라 삶의 질이 향상되고 의학의 발전에 따라 인간의 수명은 늘고 있는 반면 파킨슨병, 우울증, 정신분열증, 알츠하이머병 등의 뇌 질환; 스트레스와 식생활의 변화에 따른 심장질환; 및 인체의 여러 가지 유해 물질에의 노출에 따른 각종 암의 발생율이 점점 증가하고 있다. 이에 따라 이들 질환을 조기에 진단할 수 있는 영상진단법의 개발이 요청되었다.
여러 가지 영상진단법이 상용화되고 있으나 임상에 바로 적용이 가능한 방법으로 양전자방출단층촬영(Positron Emission Tomography; PET)이 있으며, 상기 양전자방출단층촬영은 양전자를 방출하는 방사성 동위원소로 표지된 유기 화합물을 생체 내에 정맥 주사함으로써 생체내의 방사성 의약품의 분포와 생화학적 변화과정을 영상화시킬 수 있는 방법이다. 따라서 양전자방출단층촬영을 통하여 병소 부위에서 생체의 생화학적 변화를 정량적으로 측정할 수 있음으로 병의 발전 정도를 측정하고 치료 정도를 예측할 수 있다[A. Agool, R. H. Slart, K. K. Thorp, A. W. Glaudemans, D. C. Cobben, L. B. Been, F. R. Burlage, P. H. Elsinga, R. A. Dierckx, E. Vellenga, J. L. Holter, Nucl. Med. Commun. 2011, 32, 14.; N. Aide, K. Kinross, C. Cullinane, P. Roselt, K. Waldeck. O, Neels, D. Dorow, G. McArthur, R. J. Hicks, J. Nucl. Med. 2011, 51, 1559.; A. Debucquoy, E. Devos, P. Vermaelen, W. Landuyt, S. De Weer, F. Van Den Heuvel, K. Haustermans, Int. J. Radiat. Biol. 2009, 85, 763.].
방사성 의약품은 방사성 동위원소를 표지하여 인체에 투여하여 질병의 진단 또는 치료에 사용하는 물질이다. 방사성 의약품에 사용되는 방사성 동위원소는 불안정하여 방사선을 방출하면서 안정한 동위원소로 변하는데 이 때 방출하는 방사선을 질병의 진단 또는 치료에 사용가능하다. 방사선은 알파선(α-ray), 베타선(β-ray), 감마선(γ-ray), 양전자선(positron, β+-ray) 등이 있다. 한편, 양전자방출단층촬영에 사용되는 방사성 동위원소는 플루오라이드([18F]F), 탄소([15C]C), 질소([13N]N), 산소([15O]O) 및 갈륨([68Ga]Ga) 등이 있으며, 이중, [18F]플루오라이드는 수소와 비슷한 크기를 가지며, 유기 화합물의 탄소와 안정적인 결합을 형성하고, 그 생산이 용이하며, 적절한 반감기(110 분)를 가지고 있어 양전자 방출단층촬영을 수행하는데 매우 적절한 것으로 보고되어 있다[Lasne, M. C.; Perrio, C.; Rouden, J.; Barre, L.; Roeda, D.; Dolle, F.; Crouzel, C. Contrast Agents II, Topics in Current Chemistry, Springer-Verlag, Berlin, 2002, 222, 201-258.; Bolton, R. J. Labelled Compd. Radiopharm. 2002, 45 485-528].
[18F]플루오라이드를 만드는 방법으로는 일반적으로 원형가속기인 싸이클로트론을 이용하여 [18O]H2O에 양성자를 조사함으로써 만들 수 있다 [M. R. Kilbourn, J. T. Hood, M. J. Welch, Int. J. Appl. Radiat. Isot. 1984, 35, 599.; G. K. Mulholland, R. D. Hichwa, M. R. Kilbourn, J. Moskwa, J. Label. Compd. Radiopharm. 1989, 26, 140.]. 일반적으로 [18F]플루오라이드는 [18O]H2O 용액 안에 매우 묽은 농도로 생산되며 [18O]H2O 용액은 가격 면에서 매우 비싼 편에 속하므로 재활용하여 사용된다 [K.-I, Nishijima, Y. Kuge, E. Tsukamoto, K.-I. Seki, K. Ohkura, Y. Magata, A. Tanaka, K. Nagatsu, N. Tamaki. Appl. Radiat. Isot. 2002, 57, 43; D. Schoeller, Obes. Res. 1999, 7, 519.; SNM Newsline, J. Nucl. Med. 1991, 32, 15N.].
상기에서 언급한 [18O]H2O을 재활용 및 [18F]플루오라이드 생산 시 만들어지는 소량의 금속 불순물을 제거하고 [18F]플루오라이드만을 표지반응에 사용하기 위하여 일반적으로 4차알킬암모늄염이 지지된 고분자 카트리지(Chromafixor QMA)로 음이온을 교환하는 방법을 사용한다 [D. J. Schlyer, M. Bastos, A. P. Wolf, J. Nucl. Med. 1987, 28, 764.; S. A. Toorongian, G. K. Mulholland, D. M. Jewett, M. A. Bachelor, M. R. Kilbourn, Nucl. Med. Biol. 1990, 17, 273.; D. M. Jewett, S. A. Toorongian, G. K. Mulholland, G. L. Watkins, M. R. Kilbourn, Appl. Radiat. Isot. 1988, 39, 1109.; G. K. Mulholland, R. D. T. J. Mangner, D. M. Jewett, M. R. Kilbourn, J. Label. Compd. Radiopharm. 1989, 26, 378.; K. Ohsaki, Y. Endo, S. Yamazaki, M. Tomoi, R. Iwata, Appl. Radiat. Isot. 1998, 49, 373-378.].
4차알킬암모늄염이 지지된 고분자 카트리지로부터 머물러 있는 [18F]플루오라이드는 K2CO3 같은 금속염 또는 TBAHCO3와 같은 암모늄염이 녹아있는 수용액을 이용하게 되는데 이때 사용된 염들의 염기성에 의하여 반응 중 알코올이나 알켄과 같은 부반응들이 일어나게 되고 이에 의하여 표지효율이 떨어지는 문제점을 가지게 된다. 또한 HPLC를 이용하여 생성된 유기플루오로-18 화합물의 정제시에 복잡한 부생성물과 겹쳐서 낮은 비방사능을 보이기도 한다 [S. M. Okarvi, Eur. J. Nucl. Med. 2001, 28, 929.; J. C. Walsh, K. M. Akhoon, N. Satyamurthy, J. R. Barrio, M. M. Phelps, S. S. Gambhir, T. Toyokuni, J. Label. Compds. Radiopharm. 1999, 42, S1.; L. Lang, W. C. Eckelman, Appl. Radiat. Isot. 1994, 45, 1155.; L. Lang, W. C. Eckelman, Appl. Radiat. Isot. 1997, 48, 169.].
일반적으로, 친핵성 치환반응은 친핵체 즉 플루오라이드의 반응성을 증가시키기 위하여 아세토니트릴(CH3CN), DMF 및 DMSO와 같은 극성 비양성자성 용매 하에서 반응하는 것으로 알려져있으나, 최근 알코올 용매가 플루오린금속염과 수소결합을 통하여 금속 양이온과 플루오린 음이온간의 이온결합을 약화시켜 플루오린염의 친핵성 치환 반응성을 증가시키고 [18F]플루오라이드 표지반응에 사용되는 염기들의 염기도를 낮춤으로써 상기의 부반응을 억제한다는 보고가 있다 [D. W. Kim, D. S. Ahn, Y. H. Oh, S. Lee, H. S. Kil, S. J. Oh, S. J. Lee, J. S. Kim, J. S. Ryu, D. H. Moon, D. Y. Chi. J .Am. Chem. Soc. 2006, 128, 16394.; S. J. Lee, S. J. Oh, D. Y. Chi, H. S. Kil, E. N. Kim, J. S. Ryu, D. H. Moon, Eur. J. Nucl. Med. Mol. Imaging. 2007, 34, 1406.].
상기 문제점은 사용되는 염기에 의하여 전구물질이 소모되므로 이를 해소하기 위하여 사용되는 염기의 염기도를 낮춰서 전구물질의 소모를 방지할 수 있는 3차 알코올을 반응용매로 사용하여 [18F]플루오라이드를 유기화합물에 표지하는 방법을 사용할 수 있다. 그러나 이러한 3차 알코올의 예시로서 가장 간단한 구조인 t-부탄올의 경우 끓는 점이 83℃로 낮아 반응온도를 높일 수 없는 단점이 있으며 또 다른 예시로서 t-아밀 알코올의 경우 끓는 점이 100℃ 정도로 올라가지만 일반적으로 [18F]플루오라이드의 표지반응 온도가 100℃ 이상인 것을 감안하면 최적의 끓는 점을 갖는 반응용매로 볼 수 없다.
또한 t-아밀 알코올은 물과 혼합되지 않는 특성을 가진다. 이에 따라, [18F]플루오라이드 표지반응 후, 가수분해 과정과 HPLC(고성능액체크로마토그래피) 또는 SPE(고상추출)를 이용한 정제과정이 필요할 경우 반드시 알코올 용매를 제거해야 하는데 용매가 완전히 제거 되지 않으면 정제과정에서 불순물과 혼합되는 문제를 가진다.
반응에 사용된 알코올 용매를 제거하는 방법은 일반적으로 건조과정을 통하여 제거를 하게 되는데 이러한 과정은 시간소모적인 단계로 비교적 짧은 반감기를 갖는 방사성동위원소를 표지할 경우 반감기에 의한 방사능감소로 실질적인 반응수율이 감소하는 문제가 있으며 또한 이 경우 증발하는 유기용매와 함께 방사성동위원소가 같이 증발하게 되면 주변을 오염시키는 문제가 발생하게 된다. 뿐만 아니라 자동화 합성장치를 이용하여 빈번하게 t-아밀 알코올을 사용할 경우 증발하는 t-아밀 알코올에 저항성이 없는 부품은 파손이 되게 되어 방사성 의약품 제조 실패의 원인이 된다.
한편, 방사성의약품의 제조 시 방사능으로부터 작업자를 보호하기 위하여 핫셀(hot cell)이라는 납으로 차폐된 공간에서 자동화 합성장치를 사용하여 제조를 하며 이러한 자동화 합성장치는 비카세트 타입(TracerLab FXFN, GE Healthcar; Modular Lab, E&Z 등)과 카세트 타입(TracerLab MX, GE Healthcare; FastLab, GE Healthcare; AIO module, Trasis 등)으로 구분이 된다.
비카세트 타입의 자동화 합성장치의 경우 연구에 사용되는 것을 주된 목적으로 하며 사용한 이후 자동화 합성장치를 세척해주어야 하는 번거러움이 있는 반면 카세트 타입의 자동화 합성장치의 경우 일회용 카세트를 사용함으로 추가적인 세척이 필요하지 않으며 카세트를 교환하게 되면 하루에 두 번 이상 사용도 가능한 장점이 있으며 무엇보다 GMP (우수의약품제조관리 제도) 적용에 용이하다. 따라서 제조가 빈번한 방사성의약품의 경우 카세트 타입의 자동화 합성장치를 사용하는 것이 비카세트 타입의 자동화 합성장치에 비하여 많은 장점을 가진다.
그러나 이러한 카세트 타입의 자동화 합성장치를 사용하기 위해서는 제조 하고자 하는 방사성의약품의 제조 조건 (반응용매의 종류, 반응 온도, 반응 시간) 등이 카세트에 적합하여야 하는 문제가 있으며 만약 그렇지 않으면 제조 도중에 카세트의 파손을 유발해 방사성 의약품의 제조에 실패할 수 있다.
카세트 타입의 자동화 합성장치에 사용되는 카세트에 도입되는 반응용기(도 2의 (A) 참조)는 반응 후 반응물을 회수하기 위해서 시약공급라인(11a)이 들어가게 되는데 회수율의 높이기 위해서 반응용기(10a)의 바닥면에까지 닿도록 디자인이 되어있는 것이 일반적(도 2의 (A) 참조)이며 회수율을 높이기 위해서 바닥을 라운드 형 또는 V형으로 한다. 따라서 반응단계에서 반응용기(10a)내 온도가 올라감에 따라 용액의 기화로 인하여 반응용기(10a) 내에 양압이 걸리게 되면 바닥면까지 닿아 있는 시약공급라인(11a)으로 용매가 역류하여 상기 시약공급라인(11a)의 타단에 연결되어 있는 카세트로 반응시간 동안 반응 용매가 채워지게 된다. 이때 반응 용매에 대한 저항성을 갖지 못하는 재질의 카세트를 사용하거나 반응 온도가 반응 용매의 끓는점에 비하여 월등히 높을 경우 카세트에 가해지는 압력에 의해서 카세트가 파손되는 문제가 발생하며 이는 방사성의약품 제조의 실패를 야기할 수 있다. 또한 시약공급라인(11a)으로 역류한 용액은 반응에 참여를 하지 못함으로 반응시약이 전부 반응에 참여를 하지 못하여 반응 수율의 변동의 폭이 크게 되며 이는 수율의 안정성 확보가 어려워 GMP에 적합한 방사성의약품 제조가 불가능하게 된다.
상기 문제점을 해결하기 위하여 다양한 용매에 대한 저항성을 갖는 재질의 카세트가 개발이 되고 있으나 대부분 외국에서 개발이 되고 있으며 신규 재질을 적용한 카세트의 경우, 일회용으로 사용하기에는 비용 단가가 너무 높아서 일회용으로 다량을 사용하기에는 경제적 어려움이 따른다. 또한 반응기로부터 역류하는 라인에 핀치벨브를 설치하여 역류하는 용액이 카세트에 머무르지 않도록 하는 방법도 있으나 이는 역류현상을 근본적으로 방지 하는 것이 아니며 단순히 역류하는 용액이 카세트에 머무르지 않도록 하는 임시방편일 뿐이다.
또한, 종래 시약공급라인(11a)이 반응용기(10a)의 바닥면에까지 닿도록 디자인이 되어있는 반응용기(10a)의 경우(도 2의 (A) 참조), 상기 시약공급라인(11a)을 통하여 시약이 공급될 경우 시약 공급 속도에 의하여 반응용기(10a) 기벽 전체로 공급되는 시약이 튀게 된다. 또한 F-18이 표지된 방사성의약품의 제조과정 중, F-18을 음이온 교환 카트리지로부터 용출 한 후 반응성을 갖게 하기 위해 건조단계를 거치게 되는데 이때 동일한 라인으로 질소가 공급되면 결국 반응용기(10a)에 채워져 있는 용액 안으로 질소가 공급되고, 상기 공급되는 질소로 인하여 버블이 발생하여 역시 시약이 기벽 전체로 튀면서 건조가 이루어 진다. F-18의 건조 후, 전구체를 포함하는 용액을 다시 상기 시약공급라인(11a)을 통하여 반응용기(10a)로 공급할 때 전구체 역시 반응용기(10a)의 기벽으로 튀는 현상이 일어나고, 기벽에 묻은 채로 건조된 시약의 반응 참여는 매번 다를 수 밖에 없으며 이는 곧 방사성의약품의 수율 변동을 초래하게 된다. 특히 시약의 양에 민감한 방사성의약품의 경우 수율의 변동을 넘어 빈번한 생산 실패를 하게 됨으로 안정적인 방사성의약품의 합성이이 어렵게 되는 문제점이 존재한다.
따라서, 본 발명의 일 목적은 신규한 다작용기 용매를 이용하여 유기 플루오르화 지방족 화합물의 제조방법을 제공하는 것으로서, 상세하게는 상기에서 지적되는 방사성 동위원소의 표지에 이용되는 극성 비양성자성 용매와 극성 양성자성 용매의 문제점을 해소하기 위하여 방사성 동위원소의 표지효율을 향상시키는 작용기와 정제효율을 향상시키는 작용기를 갖는 다작용기 용매를 이용한 유기 플루오르화 지방족 화합물의 제조방법을 제공하는 것이다.
또한, 본 발명의 일 목적은 상기 제조된 유기 플루오르화 지방족 화합물을 이온 교환 SPE 카트리지로 수행되는 고체상 추출(SPE)로 효과적으로 정제하는 방법을 제공하는 것이다.
또한, 본 발명의 일 목적은 역류방지 반응용기를 포함하는 카세트를 이용하여 방사성 의약품을 제조하는 방법을 제공하는 것으로서, 상세하게는 방사성 의약품의 제조에 이용되는 시약이 반응에 참여하도록 의도되는 양이 안정적으로 반응용기 내에 공급되도록 할 수 있는 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법을 제공하는 것이다.
또한, 본 발명의 일 목적은, 반응용매가 높은 온도에서 표지반응이 수행되는 동안 기화 등으로 인하여 역류되는 것을 방지하여 카세트의 파손이 일어나지 않으며 공급되는 반응용매 모두가 표지반응에 참여할 수 있도록 하는 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법을 제공하는 것이다.
상기 목적은, 본 발명에 따라, 유기 플루오르화 지방족 화합물의 제조방법에 있어서, 플루오린염을 하기 화학식 1로 표시되는 다작용기 용매를 이용하여 이탈기를 갖는 지방족 화합물과 반응시켜 상기 이탈기를 대체하여 [18F] 플루오라이드가 표지된 지방족 화합물의 획득단계를 포함하는 유기 플루오르화 지방족 화합물의 제조방법:
Figure PCTKR2015011955-appb-I000001
[화학식 1]
(상기 화학식 1에서 R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X1와 동일한 작용기이며, Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며, X1는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이고, R3는 C1~C10 알킬기이다.)에 의해 달성된다.
바람직하게, 상기 Ln은, C1~C3 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~3 사이의 정수인 폴리에틸렌 글리콜일 수 있다.
상기 알콕시기(OR3)는, 메톡시, 에톡시, 프로폭시, 이소프로폭시 및 t-부톡시 중에서 선택되는 어느 하나를 포함할 수 있다.
상기 할라이드는, 클로라이드(Cl), 브로마이드(Br) 및 아이오다이드(I) 중에서 선택되는 어느 하나를 포함할 수 있다.
바람직하게, 상기 R1 및 R2는, 메틸기 또는 에틸기를 포함할 수 있다.
상기 화학식 1의 다작용기 용매는, 1-메톡시-2-메틸-2-프로판올, 1-에톡시-2-메틸-2-프로판올, 1-프로폭시-2-메틸-2-프로판올, 1-이소프로폭시-2-메틸-2-프로판올, 1-t-부톡시-2-메틸-2-프로판올, 1-나이트릴-2-메틸-2-프로판올, 1-클로로-2메틸-2-프로판올, 1-브로모-2-메틸-2-프로판올, 1-아이오도-2-메틸-2-프로판올, 1-(2-메톡시에톡시)2-메틸-2-프로판올 및 3-(메톡시메틸)-3-펜탄올로 이루어지는 군으로부터 선택되는 어느 하나를 포함할 수 있다.
상기 [18F] 플루오라이드의 공급원으로 사용되는 플루오린염은 플루오린-18을 포함하는 화합물을 포함할 수 있다.
상기 지방족 화합물은, 알킬 할라이드 그룹 또는 알킬 설포네이트 그룹을 갖는 지방족 화합물이고, 상기 할라이드 그룹 또는 설포네이트 그룹이 이탈기이다.
상기 지방족 화합물은, 알킬 할라이드 그룹 또는 알킬 설포네이트 그룹을 갖는 지방족 화합물이고, 상기 할라이드 그룹 또는 설포네이트 그룹이 1차 이탈기 또는 2차 이탈기이다.
상기 지방족 화합물은, N-(CH2)n-X2 또는 O-(CH2)n-X2 (X2는 이탈기이고, n=1~1-10 사이의 정수)를 갖는 지방족 화합물이다.
상기 X2는, 할라이드 그룹 또는 설포네이트 그룹이다.
상기 할라이드 그룹은, Cl, Br 및 I으로 구성된 군에서 선택되는 어느 하나이다.
상기 설포네이트 그룹은, -SO3R12 (R12는 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기, 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 및 니트로페닐기로 구성되는 군에서 선택되는 어느 하나)이다.
상기 제조방법은, 적어도 하나의 이온교환 SPE 카트리지를 이용하여 상기 획득된 [18F] 플루오라이드가 표지된 지방족 화합물의 정제 단계를 더 포함할 수 있다.
상기 이온교환 SPE 카트리지는, 양이온 교환 SPE 카트리지 및 음이온 교환 SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
상기 이온교환 SPE 카트리지는, 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카로 이루어진 고체 지지체로 이루어질 수 있다.
상기 양이온 교환 SPE 카트리지는, SCX(실리카 기반의 강한 양이온 교환) SPE 카트리지, MCX(폴리머 기반의 강한 양이온 교환) SPE 카트리지, 및 WCX(폴리머 기반의 약한 양이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
상기 음이온 교환 SPE 카트리지는, SAX(실리카 기반의 강한 음이온 교환) SPE 카트리지, MAX(폴리머 기반의 강한 음이온 교환) SPE 카트리지, 및 WAX(폴리머 기반의 약한 음이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 목적을 달성하기 위하여, 본 발명에 따라, 유기 플루오르화 지방족 화합물의 정제방법에 있어서,
하기 화학식 2의 이온 교환 SPE 카트리지로 수행되는 고체상 추출(SPE)을 이용하여 유기 플루오르화 지방족 화합물의 정제 단계를 포함하는 유기 플루오르화 지방족 화합물의 정제방법:
Figure PCTKR2015011955-appb-I000002
[화학식 2]
(상기 화학식 2에서,
고체 지지체는 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카이고;
A는 상기 고체 지지체가 폴리머인 경우 없을 수 있으며 실리카인 경우 페닐기 또는 탄화수소 C1-20이며;
B는 유기 양이온 또는 유기 음이온일 수 있으며,
상기 유기 양이온은,
Figure PCTKR2015011955-appb-I000003
(여기에서 E는 질소 또는 인; R1, R2, 및 R3는 서로 동일 하거나 상이하고 C1-20의 탄화수소기, 1 이상의 질소를 갖는 Ar(
Figure PCTKR2015011955-appb-I000004
), 질소 및 산소 또는 질소 및 황을 갖는 C2-20의 헤테로방향족 양이온(heteroaromatic cation)으로서 한 개의 질소 위치에서 C1-20의 탄화수소기로 치환된(
Figure PCTKR2015011955-appb-I000005
,
Figure PCTKR2015011955-appb-I000006
) 화합물 중 어느 하나)이고,
상기 유기 음이온은, 설포닉 산(-SO3-) 또는 카르복실 산(-COO-))에 의하여 달성될 수 있다.
상기 정제단계는, 상기 화학식 2의 B가 유기 양이온인 이온 교환 SPE 카트리지 및 상기 화학식 2의 B가 유기 음이온인 이온 교환 SPE 카트리지를 함께 사용하여 유기 플루오르화 지방족 화합물을 정제할 수 있다.
상기 유기 플루오르화 지방족 화합물는, [18F]플루오로프로필카보메톡시트로판이다.
또한, 상기 목적을 달성하기 위하여, 본 발명에 따라, 적어도 하나의 이온교환 SPE 카트리지로 수행되는 고체상 추출(SPE)을 이용하여 유기 플루오르화 지방족 화합물을 정제하는 단계를 포함하고, 여기에서 상기 유기 플루오르화 지방족 화합물은, [18F]플루오로프로필카보메톡시트로판인 것인 유기 플루오르화 지방족 화합물의 정제방법에 의하여 달성될 수 있다.
상기 이온교환 SPE 카트리지는, 양이온 교환 SPE 카트리지 및 음이온 교환 SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
상기 이온교환 SPE 카트리지는, 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카로 이루어진 고체 지지체로 이루어질 수 있다.
상기 양이온 교환 SPE 카트리지는, SCX(실리카 기반의 강한 양이온 교환) SPE 카트리지, MCX(폴리머 기반의 강한 양이온 교환) SPE 카트리지, 및 WCX(폴리머 기반의 약한 양이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
상기 음이온 교환 SPE 카트리지는, SAX(실리카 기반의 강한 음이온 교환) SPE 카트리지, MAX(폴리머 기반의 강한 음이온 교환) SPE 카트리지, 및 WAX(폴리머 기반의 약한 음이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법에 있어서, 역류방지 반응용기에 [18F]플루오라이드를 용리시키는 단계와; 상기 역류방지 반응용기 내 용리액을 건조시키는 단계와; 상기 역류방지 반응용기 내로 방사성의약품의 전구체 및 반응용매를 공급하여 상기 반응용매 하에서 상기 건조된 [18F]플루오라이드와 상기 방사성 의약품의 전구체를 반응시키는 단계를 포함하고, 상기 역류방지 반응용기는, 상기 방사성 의약품의 합성에 이용되는 시약이 공급되는 제1라인과 진공상태를 제공하는 제2라인을 포함하며, 상기 제1라인의 엔드 포인트가 적어도 상기 역류방지 반응용기 내에 공급되는 상기 방사성 의약품의 합성에 이용되는 시약의 표면보다 높은 위치에 존재하는 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법에 의해 달성된다.
상기 제1라인의 엔드 포인트와 상기 시약의 표면 사이의 거리는 최대 5cm일 수 있다.
상기 역류방지 반응용기를 포함하는 카세트는, 매니폴드(manifold) 형태의 카세트를 포함할 수 있다.
상기 반응 용매는, 비양성자성 용매, 양성자성 용매 및 다작용기 용매 중 어느 하나를 포함할 수 있다.
상기 비양성자성 용매는, 아세토니트릴, 다이메틸폼아마이드, 및 다이메닐설폭사이드로 중에서 선택되는 어느 하나를 포함할 수 있다.
상기 양성자성 용매는, 메탄올, 에탄올, n-프로판올, n-부탄올, n-아밀알코올, n-헥실알코올, n-헵탄올, n-옥탄올을 포함하는 1차 알코올, 이소프로판올, 이소부탄올, 이소아밀알코올, 3-펜탄올을 포함하는 2차 알코올, t-부탄올, t-아밀알코올, 2,3-디메틸-2-부탄올, 2-(트리플루오로메틸)-2-프로판올, 3-메틸-3-펜탄올, 3-에틸-3-펜탄올, 2-메틸-2-펜탄올, 2,3-디메틸-3-펜탄올, 2,4-디메틸-2-펜탄올, 2-메틸-2-헥산올, 2-시클로프로필-2-프로판올, 2-시클로프로필-2-부탄올, 2-시클로프로필-3-메틸-2-부탄올, 1-메틸시클로펜탄올, 1-에틸시클로펜탄올, 1-프로필시클로펜탄올, 1-메틸시클로헥산올, 1-에틸시클로헥산올, 1-메틸시클로헵탄올을 포함하는 3차 알코올로 이루어지는 군으로부터 선택되는 어느 하나를 포함할 수 있다.
상기 다작용기 용매는, 하기 화학식 1로 표시되는 화합물을 포함할 수 있다:
Figure PCTKR2015011955-appb-I000007
[화학식 1]
(상기 화학식 1에서
R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X와 동일한 작용기이며,
Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며,
X는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이다.).
상기 R3는 C1~C10 알킬기이고, 상기 할라이드는, 클로라이드(Cl), 브로마이드(Br) 및 아이오다이드(I) 중에서 선택되는 어느 하나를 포함할 수 있다.
상기 다작용기 용매는, 1-메톡시-2-메틸-2-프로판올, 1-에톡시-2-메틸-2-프로판올, 1-프로폭시-2-메틸-2-프로판올, 1-이소프로폭시-2-메틸-2-프로판올, 1-t-부톡시-2-메틸-2-프로판올, 1-나이트릴-2-메틸-2-프로판올, 1-클로로-2메틸-2-프로판올, 1-브로모-2-메틸-2-프로판올, 1-아이오도-2-메틸-2-프로판올으로 이루어지는 군으로부터 선택되는 어느 하나를 포함할 수 있다.
이상 설명한 바와 같이, 본 발명에 따르면, 방사성 동위원소의 표지효율을 향상시키는 작용기 및 정제효율을 향상시키는 작용기를 포함하는 다작용기 용매를 이용하여 유기 플루오르화 지방족 화합물의 제조방법이 제공된다. 상기 방사성 동위원소의 표지효율을 향상시키는 작용기는 염기의 부작용인 부반응 억제효과를 통하여 고수율로 방사성동위원소가 표지될 수 있도록 하며, 상기 정제효율을 향상시키는 작용기는 반응용매의 극성도를 증가시켜 물과 잘 혼합이 되도록 하여 별도로 반응용매만의 제거 공정이 불필요하게 되어 방사성 의약품의 제조시간이 단축 및 제조공정의 단순화가 가능하며 효율적인 정제가 가능하도록 하는 효과를 가진다. 또한, 상기 다작용기를 연결하는 링커에 의하여 끓는 점이 상승하여 플루오린-18 표지 반응에 최적의 반응온도 설정이 가능하여 방사성 의약품의 제조를 최적화할 수 있는 효과를 가진다.
또한, 본 발명에 따르면, 이온교환 SPE 카트리지에서 수행되어 고체상 추출(SPE)을 이용하는 유기 플루오르화 지방족 화합물의 정제방법이 제공된다. 이에 따라, 유기 플루오르화 지방족 화합물이 제조된 후 잔존하는 불순물들이 효과적으로 거의 대부분 제거될 수 있다.
또한, 본 발명에 따르면, 방사성 의약품의 제조에 이용되는 시약이 반응에 참여하도록 의도되는 양이 손실없이 안정적으로 반응용기 내에 공급되도록 할 수 있어 고수율로 방사성의약품을 합성할 수 있는 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법이 제공된다.
또한, 본 발명에 따르면, 반응용매가 높은 온도에서 표지반응이 수행되는 동안 기화 등으로 인하여 역류되는 것을 방지하여 카세트의 파손이 일어나지 않으며 공급되는 반응용매 모두가 표지반응에 참여할 수 있도록 하는 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법이 제공된다.
이에 따라, 방사성의약품의 제조에 이용되는 시약이 공급되는 양만큼 모두 안정적으로 반응에 참여할 수 있어 고수율로, 안정적으로, 합성수율의 편차가 적고 실패없이 방사성 의약품을 제조할 수 있게 되며, 이는 국내에 앞으로 도입되는 GMP(우수의약품제조관리제도)에 적합하도록 방사성의약품의 제조가 가능하도록 한다. 또한, 반응용매의 역류현상이 발생하지 않으므로 카세트가 반응용매 저항성일 필요가 없으므로 방사성의약품을 경제적으로 제조할 수 있는 효과를 가질 수 있다.
도 1은 본 발명의 일 실시예에 따른 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조 공정의 개략도이고
도 2는 종래 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조 공정의 개략도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙이도록 한다.
우선 본 발명의 신규한 다작용기 용매를 이용하여 유기 플루오르화 지방족 화합물의 제조방법 및 상기 제조된 유기 플루오르화 지방족 화합물을 SPE 이용한 정제방법에 대하여 상세히 설명한다.
본 발명은, 플루오린염을 하기 화학식 1로 표시되는 다작용기 용매를 이용하여 이탈기를 갖는 지방족 화합물과 반응시켜 상기 이탈기를 대체하여 [18F] 플루오라이드가 표지된 지방족 화합물의 획득단계를 포함하는 유기 플루오르화 지방족 화합물의 제조방법을 제공한다:
Figure PCTKR2015011955-appb-I000008
[화학식 1]
(상기 화학식 1에서 R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X1와 동일한 작용기이며, Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며, X1는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이고, R3는 C1~C10 알킬기이다.)
상기 플루오린염은 [18F] 플루오라이드의 공급원으로 사용되는 것으로서, 플루오린-18을 포함하는 화합물이다. 상기 플루오린염은, 리튬, 소듐, 포타슘, 루비듐 및 세슘으로 구성되는 군으로부터 선택된 알칼리 금속을 포함하여 구성된 알칼리 금속 플루오라이드; 마그네슘, 칼슘, 스트론튬 및 바륨으로 구성되는 군으로부터 선택된 알칼리 토금속을 포함하여 구성된 알칼리 토금속 플루오라이드; 및 암모늄 플루오라이드 중에서 선택될 수 있으나, 보다 바람직하게는 포타슘 플루오라이드 또는 암모늄 플루오라이드이다. 상기 포타슘을 포함한 알칼리금속 플루오라이드 또는 테트라알킬암모늄 플루오라이드는 바람직하게는 셀라이트(Celite), 분자체(Molecular Seive), 알루미나 및 실리카겔 중에서 선택된 어느 하나의 지지체에 의하여 흡착된 것이 바람직하다. 상기 암모늄 플루오라이드는 바람직하게는 테트라부틸암모늄 플루오라이드 및 벤질트리메틸 암모늄 플루오라이드를 포함하는 4차 암모늄 플루오라이드; 트리에틸암모늄 플루오라이드, 트리부틸암모늄 플루오라이드를 포함하는 3차 암모늄 플루오라이드; 디부틸암모늄 플루오라이드, 디헥실암모늄 플루오라이드를 포함하는 2차 암모늄 플루오라이드; 부틸암모늄 플루오라이드, 헥실암모늄 플루오라이드를 포함하는 1차 암모늄 플루오라이드로 구성되는 군에서 선택될 수 있으나, 보다 바람직하게는 테트라부틸암모늄 플루오라이드이다.
본 발명에 따라, 상기 이탈기를 갖는 지방족 화합물은, 알킬 할라이드 그룹 또는 알킬 설포네이트 그룹을 갖는 지방족 화합물으로서 상기 할라이드 그룹 또는 설포네이트 그룹이 이탈기가 된다. 또는, 상기 할라이드 그룹 또는 설포네이트 그룹이 1차 이탈기 또는 2차 이탈기가 될 수 있다. 상기 할라이드 그룹은, Cl, Br 및 I으로 구성된 군에서 선택되는 어느 하나를 포함하고, 상기 설포네이트 그룹은, -SO3R12 (R12는 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기, 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 및 니트로페닐기로 구성되는 군에서 선택되는 어느 하나)이다. 상기 알킬 설포네이트 그룹(R12가 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기)의 예시는, 메탄설포네이트, 에탄설포네이트, 이소프로판설포네이트, 클로로메탄설포네이트, 트리플루오로메탄설포네이트, 또는 클로로에탄설포네이트 등을 포함할 수 있다. 상기 아릴 설포네이트 그룹(R12가 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 또는 니트로페닐기)의 예시는, 메틸페닐설포네이트, 에틸페닐설포네이트, 클로로페닐설포네이트, 브로모페닐설포네이트, 메톡시페닐설포네이트 또는 니트로페닐설포닐 등을 포함할 수 있다.
또는, 다른 일 실시예에 있어서, 본 발명에 따른 상기 이탈기를 갖는 지방족 화합물은, N-(CH2)n-X2 또는 O-(CH2)n-X2 (X2는 이탈기이고, n=1~1-10 사이의 정수)를 갖는 지방족 화합물을 포함할 수 있다.
상기 X2는, 할라이드 그룹 또는 설포네이트 그룹를 포함하고, 상기 할라이드 그룹은, Cl, Br 및 I으로 구성된 군에서 선택되는 어느 하나를 포함하고, 상기 설포네이트 그룹은, -SO3R12 (R12는 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기, 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 및 니트로페닐기로 구성되는 군에서 선택되는 어느 하나)이다. 상기 알킬 설포네이트 그룹(R12가 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기)의 예시는, 메탄설포네이트, 에탄설포네이트, 이소프로판설포네이트, 클로로메탄설포네이트, 트리플루오로메탄설포네이트, 또는 클로로에탄설포네이트 등을 포함할 수 있다. 상기 아릴 설포네이트 그룹(R12가 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 또는 니트로페닐기)의 예시는, 메틸페닐설포네이트, 에틸페닐설포네이트, 클로로페닐설포네이트, 브로모페닐설포네이트, 메톡시페닐설포네이트 또는 니트로페닐설포닐 등을 포함할 수 있다.
예를 들어, 상기 이탈기를 갖는 지방족 화합물의 구체적인 예로서 다음을 포함할 수 있다: OTs를 1차 이탈기로 갖는 유기 화합물인 1-페닐-4-(3-토실프로필)-페닐피페라진(
Figure PCTKR2015011955-appb-I000009
), OMs를 1차 이탈기로 갖는 유기 화합물인 2-(3-메탄설포닐옥시프로폭시)나프탈렌(
Figure PCTKR2015011955-appb-I000010
), OMs를 2차 이탈기로 갖는 유기 화합물인 2-(2-메탄설포닐옥시프로폭시)나프탈렌(
Figure PCTKR2015011955-appb-I000011
), OTs를 1차 이탈기로 갖는 유기 화합물인 (3-톨루엔설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판((3-toluenesulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane), OMs를 1차 이탈기로 갖는 유기 화합물인 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane), OTs를 2차 이탈기로 갖는 유기 화합물인 3-(2-니트로이미다졸-1-일)-2-O-테트라하이드로피라닐-1- O -톨루엔설포닐 프로판디올(3-(2-nitroimidazol-1-yl)-2- O -tetrahydropyranyl-1- O -toluenesulfonyl propanediol), ONs를 2차 이탈기로 갖는 유기 화합물인 5'-O-DMTr-2'-데옥시-3'-O-노실-b-D-트레오-펜토퓨라노실)-3-N-BOC-티민(5'-O-DMTr-2'-deoxy-3'-O-nosyl-b-D-threo-pentofuranosyl)-3-N-BOC- thymine), OTf를 2차 이탈기로 갖는 유기 화합물인 만노즈 트리플레이트(mannose triflate, 1,3,4,6-tetra-O-acetyl-2-O-trifluoro-methanesulfonyl-beta-D-mannopyranose), Cl 를 1차 이탈기로 갖는 유기 화합물인 ((E)-4-클로로부-2-엔일)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((E)-4-chlorobut-2-enyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane),등을 포함할 수 있다.
상기 본 발명에 따른 유기 플루오르화 지방족 화합물의 제조방법에 따라 제조된 유기 플루오르화 지방족 화합물은 방사성 의약품 역시 포함할 수 있다. 상기 방사성 의약품은 다음 중 적어도 어느 하나를 포함할 수 있다:
[18F]플루오로프로필카보메톡시트로판(
Figure PCTKR2015011955-appb-I000012
),
[18F]플루오로미소니다졸 (
Figure PCTKR2015011955-appb-I000013
),
[18F]플루오로티미딘(
Figure PCTKR2015011955-appb-I000014
),
[18F]플루오로데옥시글루코스(
Figure PCTKR2015011955-appb-I000015
),
[18F]엘비티999 ([18F]LBT999,
Figure PCTKR2015011955-appb-I000016
).
본 발명에 따른 다작용기 용매는, 방사성 동위원소의 표지효율을 향상시키는 작용기로서 알코올기(화학식 1의 알코올기)와, 정제효율을 향상시키는 작용기(화학식 1의 X1)와, 최적반응온도 설정이 가능한 링커(화학식 1의 Ln)를 포함한다.
[18F]플루오라이드를 친핵성 치환반응을 통하여 표지 할 경우 반드시 일정양의 염기를 사용하여야 하며 대표적으로 탄산칼륨 또는 탄산수소칼륨 등이 사용된다. 이러한 염기들은 전구체와 부반응을 일으켜서 전구체의 소모를 야기하여 [18F]플루오라이드의 표지효율을 떨어뜨리게 된다. 그러나 본 발명에 따른 다작용기 용매에 포함되는 알코올기는 이러한 염기에 의한 전구체의 부반응을 억제하여 반응에 참여하는 전구체의 양을 보존함으로써 고수율의 방사성의약품 제조가 가능하도록 하는 효과를 가질 수 있다.
또한 본 발명에 따른 다작용기 용매에 포함되는 X1그룹(화학식 1의 X1그룹)에 의하여 극성도가 증가하기에 본 발명에 따른 다작용기 용매는 물에 대한 용해도가 증가하게 되고 이에 따라 다양한 정제방법 예를 들어 고체상추출(SPE)카트리지를 사용하여 간단히 정제하는 방법 및 HPLC 정제법 등의 적용이 가능하여 고순도의 방사성의약약품 제조가 가능하며, 종래 물에 대한 용해도가 좋지 못한 반응용매의 경우 반드시 반응용매의 제거를 위하여 필요한 건조단계가 생략 가능하므로 반응 시간이 단축되는 효과를 가질 수 있다.
또한, 본 발명에 따른 다작용기 용매에 포함되는 링커(화학식 1의 Ln)의 경우 끓는점을 상승시키므로 최적의 반응온도 설정이 가능함으로 인하여 고수율로 방사성 의약품이 제조될 수 있도록 하는 효과를 가질 수 있다.
또한, 상기 본 발명에 따른 유기 플루오르화 지방족 화합물의 제조방법은, 적어도 하나의 이온교환 SPE 카트리지를 이용하여 상기 획득된 [18F] 플루오라이드가 표지된 지방족 화합물의 정제 단계를 더 포함할 수 있다.
상기 기재한 바와 같이, 본 발명에 따른 다작용기 용매를 이용하여 유기 플루오르화 지방족 화합물을 제조하면, 합성된 유기 플루오르화 지방족 화합물은 HPLC 또는 SPE 모두를 이용하여 정제할 수 있으나, HPLC의 경우에는 SPE에 비교하여 정제 과정에서 방사능 손실이 발생할 수 있으며 대량 생산의 경우 방사능에 의한 분해산물이 발생할 가능성이 존재한다. 이는 특히 [18F]플루오로프로필카보메톡시트로판을 제조할 때 그러하다. 상기 방사능 분해산물의 경우 [18F]플루오로프로필카보메톡시트로판과 유사한 머무름 시간을 가지게 됨으로 방사화학적 순도가 낮아지는 문제가 발생한다. 또한 HPLC 정제의 경우 작업자나 연구자의 숙련도에 따라서 그 결과물의 차이가 발생할 수 있어 안정적으로 고품질의 방사성의약품의 제공이 어려울 수도 있다. 이러한 문제점을 해결하기 위하여 일반적으로 제제화에 널리 사용되는 역상 SPE 카트리지를 이용하여 정제할 수 있다. 그러나 역상 SPE 카트리지를 사용할 경우 방사화학적 순도는 HPLC보다 우수할 지라도 [18F]플루오로프로필카보메톡시트로판과 유사한 극성도를 갖는 불순물([18F]플루오로프로필카보메톡시트로판 합성을 위하여 사용되는 전구체들 중에서 플루오르화 반응 후에 잔류하는, 플루오르화 반응에 참여하지 못하고 화학구조가 변화된 중간체 화합물들)이 정제되기 어려울 수 있다. 즉, 이러한 불순물들이 합성된 [18F]플루오로프로필카보메톡시트로판과 존재 비율이 차이가 있을 수 있으나, 상기 불순물들은 [18F]플루오로프로필카보메톡시트로판과 친지질성이 거의 동일하여 역상 기반의 SPE 카트리지를 사용하여 정제할 경우 전구체 기반의 유기 불순물들이 거의 제거되지 않음을 하기 실시예를 통하여 확인하였다.
그러나, 본 발명에 따른 이온 교환 SPE 정제법을 이용할 경우, [18F]플루오로프로필카보메톡시트로판과 유사한 극성도를 갖는 유기불순물들로부터 고효율로 [18F]플루오로프로필카보메톡시트로판을 정제할 수 있게 된다.
본 발명에 따른 이온 교환 SPE 정제법은, 이온교환 SPE 카트리지를 이용하는 바, 이온교환 SPE 카트리지는, 양이온 교환 SPE 카트리지 및 음이온 교환 SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다. 상기 이온교환 SPE 카트리지는, 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카로 이루어진 고체 지지체로 이루어질 수 있다. 이 때, 상기 양이온 교환 SPE 카트리지는, SCX(실리카 기반의 강한 양이온 교환) SPE 카트리지, MCX(폴리머 기반의 강한 양이온 교환) SPE 카트리지, 및 WCX((폴리머 기반의 약한 양이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있고, 상기 음이온 교환 SPE 카트리지는, SAX(실리카 기반의 강한 음이온 교환) SPE 카트리지, MAX((폴리머 기반의 강한 음이온 교환) SPE 카트리지, 및 WAX((폴리머 기반의 약한 음이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함할 수 있다.
또 다른 실시예에 있어서, 본 발명에 따라, 상기 이온 교환 SPE 카트리지는,
Figure PCTKR2015011955-appb-I000017
[화학식 2]의 구조로 이루어진 이온 교환 SPE 카트리지를 포함한다. 여기에서, 상기 고체 지지체는 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카이고; A는 상기 고체 지지체가 폴리머인 경우 없을 수 있으며 실리카인 경우 페닐기 또는 탄화수소 C1-20이며; B는 유기 양이온 또는 유기 음이온일 수 있으며, 상기 유기 양이온은,
Figure PCTKR2015011955-appb-I000018
(여기에서 E는 질소 또는 인; R1, R2, 및 R3는 서로 동일 하거나 상이하고 C1-20의 탄화수소기, 1 이상의 질소를 갖는 Ar(
Figure PCTKR2015011955-appb-I000019
), 질소 및 산소 또는 질소 및 황을 갖는 C2-20의 헤테로방향족 양이온(heteroaromatic cation)으로서 한 개의 질소 위치에서 C1-20의 탄화수소기로 치환된(
Figure PCTKR2015011955-appb-I000020
,
Figure PCTKR2015011955-appb-I000021
) 화합물 중 어느 하나)이고, 상기 유기 음이온은, 설포닉 산(-SO3-) 또는 카르복실 산(-COO-))을 포함할 수 있다.
상기 기재한 바와 같이, 본 발명에 따르면 다작용기 반응용매를 이용하여 이탈기를 갖는 지방족 화합물의 유기 플루오르화를 통화여 유기 플루오르화 지방족 화합물이 고수율, 고효율, 고순도로 제조 가능하게 된다. 또한, 본 발명에 따른 다작용기 반응용매는 물에 대한 친화성이 높아 별도의 용매 건조 과정이 필요 없이 유기 플루오르화 지방족 화합물의 정제가 가능하게 된다. 또한 본 발명에 따른 유기 플루오르화된 지방족 화합물은 HPLC 또는 SPE 모두 정제가 가능하나, 본 발명에 따른 이온 교환 SPE 정제방법을 이용하여 정제할 경우 플루오르화 반응 후 존재하는 잔여 불순물의 제거 효율까지 향상되는 효과를 누릴 수 있다.
이하, 본 발명을 하기 실시예에 의하여 보다 상세히 설명하도록 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니며, 당업계의 통상의 지식을 가진 자는 본 발명의 기술적 사상을 벗어나지 아니하는 범위 내에서 본 발명에 대하여 다양한 변형 및 변경을 가할 수 있으며, 이 또한 본 발명의 범위에 속하게 됨은 물론이다.
실시예 1. 반응용매 1-메톡시-2-메틸-2-프로판올의 이용
실시예 1-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 1-페닐-4-(3-토실프로필)-페닐피페라진을 녹인 아세토니트릴 0.1 mL 및 본 발명에 따른 다작용기 반응용매인 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
실시예 1-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 1과 동일한 방법을 이용하되, 상기 반응용기에 2-(3-메탄설포닐옥시프로폭시)나프탈렌(OMs를 1차 이탈기로 갖는 지방족 화합물) 및 2-(2-메탄설포닐옥시프로폭시)나프탈렌(OMs를 2차 이탈기로 갖는 지방족 화합물)을 각각 녹인 아세토니트릴 0.1 mL 및 본 발명에 따른 다작용기 반응용매인 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
비교예 1. 반응용매 아세토니트릴의 이용
비교예 1-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 1-1에서와 동일한 재료 및 방법을 이용하되, 반응용매로서 아세토니트릴을 이용하여 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
비교예 1-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 1-1에서와 동일한 재료 및 방법을 이용하되, 반응용매로서 아세토니트릴을 이용하여 2-(3-[18F]플루오로프로폭시)나프탈렌 및 2-(2-[18F]플루오로프로폭시)나프탈렌을 제조하였다.
비교예 2. 반응용매 t-아밀 알코올의 이용
비교예 2-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 1-1에서와 동일한 재료 및 방법을 이용하되, 반응용매로서 t-아밀 알코올을 이용하여 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
비교예 2-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 1-1에서와 동일한 재료 및 방법을 이용하되, 반응용매로서 t-아밀 알코올을 이용하여 2-(3-[18F]플루오로프로폭시)나프탈렌 및 2-(2-[18F]플루오로프로폭시)나프탈렌을 제조하였다.
상기 실험 결과는 하기 표 1에서 보는 바와 같다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 1-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 1-메톡시-2-메틸-2-프로판올 89.3% 71.4% 100%
실시예 1-2 2-(3-[18F]플루오로프로폭시)나프탈렌 94.7% 61.5% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 95.1% 63.4% 100%
비교예 1-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 아세토니트릴 9.1% 6.2% 100%
비교예 1-2 2-(3-[18F]플루오로프로폭시)나프탈렌 56.5% 31.1% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 43.7% 20.4% 100%
비교예 2-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 t-아밀 알코올 52.4% 12.4% 100%
비교예 2-2 2-(3-[18F]플루오로프로폭시)나프탈렌 96.5% 13.7% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 93.7% 10.4% 100%
상기 표 1에서 보는 바와 같이, 본 발명에 따른 다작용기 용매인 1-메톡시-2-메틸-2-프로판올을 이용하여 유기 플루오르화 지방족 화합물을 제조한 결과 표지효율이 약 90%이상을 나타내고 합성수율은 61% 이상을 나타내어 고수율, 고순도, 고효율로 유기 플루오르화 지방족 화합물을 제조할 수 있음을 확인할 수 있었다. 이에 반하여 종래 반응용매인 t-아밀 알코올(비교예 2)를 사용한 경우, OMs 이탈기를 갖는 O-알킬 지방족 화합물에 대한 유기 플루오르화 지방족 화합물의 표지효율은 90% 이상을 나타내었으나 합성 수율이 10% 수준으로 나타나 효율적으로 유기 플루오르화 지방족 화합물의 제조를 할 수 없으며, OTs 이탈기를 갖는 N-알킬 지방족 화합물에 대한 유기 플루오르화 지방족 화합물의 표지효율은 52.4%로 낮고, 합성 수율 역시 12.4%로 낮음을 확인하였다. 또한, 종래 반응용매인 아세토니트릴(비교예 1)의 경우, OTs 이탈기를 갖는 N-알킬 지방족 화합물에 대한 유기 플루오르화 지방족 화합물의 표지효율은 9.1%로 극히 낮았으며, 합성 수율 역시 6.2%로 아주 낮았고, OMs 이탈기를 갖는 O-알킬 지방족 화합물에 대한 유기 플루오르화 지방족 화합물의 표지효율은 56.5%, 43.7% 를 나타내어 그리 높지 않으며 합성 수율 역시 각각 31.1%, 20.4%를 나타내어 아주 낮아 효율적으로 유기 플루오르화 지방족 화합물을 제조할 수 없음을 확인하였다.
실시예 2. 반응용매 1-클로로-2-메틸-2-프로판올의 이용
실시예 2-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 1-페닐-4-(3-토실프로필)-페닐피페라진을 녹인 아세토니트릴 0.1 mL 및 본 발명에 따른 다작용기 반응용매인 1-클로로-2메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
실시예 2-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 2-(3-메탄설포닐옥시프로폭시)나프탈렌(OMs를 1차 이탈기로 갖는 지방족 화합물) 또는 2-(2-메탄설포닐옥시프로폭시)나프탈렌(OMs를 2차 이탈기로 갖는 지방족 화합물)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-클로로-2메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 2-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 1-클로로-2-메틸-2-프로판올 58.2% 42.3% 100%
실시예 2-2 2-(3-[18F]플루오로프로폭시)나프탈렌 87.1% 51.9% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 85.4% 53.1% 100%
상기 표 2에서 보는 바와 같이, 실시예 2는 본 발명에 따른 다작용기 용매로서 1-클로로-2-메틸-2-프로판올을 사용하여 유기 플루오로화된 지방족 화합물을 제조한 경우로서, 실시예 2-1의 경우 표지효율율과 합성수율이 각각 58.2%와 42.3%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴에 비하여 약 6-7배 높고, 종래 반응용매인 상기표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 3배 높은 것으로 학인 되었다.
실시예 2-2의 경우 표지효율은 각각 87.1%, 85.4%로 높게 나타나며, 합성 수율은 각각 51.9%, 53.1%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴의 합성수율에 비하여 약 2-3배 높고, 종래 반응용매인 상기 표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 5배 높은 것으로 확인되었다.
실시예 3. 반응용매 1-나이트릴-2-메틸-2-프로판올의 이용
실시예 3-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-1과 동일 재료 및 동일 방법을 이용하여 OTs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-나이트릴-2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
실시예 3-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-2과 동일 재료 및 동일 방법을 이용하여 OMs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-나이트릴-2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 3-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 1-나이트릴-2-메틸-2-프로판올 42.8% 30.2% 100%
실시예 3-2 2-(3-[18F]플루오로프로폭시)나프탈렌 81.3% 49.4% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 83.8% 50.3% 100%
상기 표 3에서 보는 바와 같이, 상기 실시예 3은 본 발명에 따른 다작용기 용매로서 1-나이트릴-2-메틸-2-프로판올을 사용하여 유기 플루오로화된 지방족 화합물을 제조한 경우로서, 실시예 2-1의 경우 표지효율율과 합성수율이 각각 42.8%와 30.2%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴에 비하여 약 5배 높고, 종래 반응용매인 상기표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 2배 높은 것으로 학인 되었다.
실시예 3-2의 경우 표지효율은 각각 81.3%, 83.8%로서 높게 나타나며, 합성 수율은 각각 49.4%, 50.3%로서 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴의 합성수율에 비하여 약 2-3배 높고, 종래 반응용매인 상기 표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 4-5배 높은 것으로 확인되었다.
실시예 4. 반응용매 3-(메톡시메틸)-3-펜탄올의 이용
실시예 4-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-1과 동일 재료 및 동일 방법을 이용하여 OTs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 3-(메톡시메틸)-3-펜탄올을 이용하여 유기 플루오르화된 지방족 화합물 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
실시예 4-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-2과 동일 재료 및 동일 방법을 이용하여 OMs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 3-(메톡시메틸)-3-펜탄올을 이용하여 유기 플루오르화된 지방족 화합물 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 4-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 3-(메톡시메틸)-3-펜탄올 64.7% 43.8% 100%
실시예 4-2 2-(3-[18F]플루오로프로폭시)나프탈렌 84.3% 54.9% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 83.4% 51.7% 100%
상기 표 4에서 보는 바와 같이, 실시예 4는 본 발명에 따른 다작용기 반응용매로서 3-(메톡시메틸)-3-펜탄올를 이용하여 유기 플루오로화된 지방족 화합물을 제조한 경우로서, 실시예 4-1의 경우 표지효율율과 합성수율이 각각 64.7%와 43.8%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴에 비하여 약 7배 높고, 종래 반응용매인 상기표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 4배 높은 것으로 학인 되었다.
실시예 4-2의 경우 표지효율은 각각 84.3%, 83.4%로, 합성수율 역시 각각 54.9%, 51.7%로 나타났으며, 이는 비교예 1-2(아세토니트릴 이용) 및 비교예 2-2(t-아밀 알코올 이용)의 경우보다 표지효율 및 합성수율 측면에서 모두 높게 나타남을 확인할 수 있었다.
실시예 5. 반응용매 1-(2-메톡시에톡시)2-메틸-2-프로판올의 이용
실시예 5-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-1과 동일 재료 및 동일 방법을 이용하여 OTs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-(2-메톡시에톡시)2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
실시예 5-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-2과 동일 재료 및 동일 방법을 이용하여 OMs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-(2-메톡시에톡시)2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 5-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 1-(2-메톡시에톡시)2-메틸-2-프로판올 58.7% 47.0% 100%
실시예 5-2 2-(3-[18F]플루오로프로폭시)나프탈렌 85.3% 52.1% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 81.8% 50.3% 100%
상기 표 5에서 보는 바와 같이, 실시예 5는 본 발명에 따른 다작용기 반응용매로서 1-(2-메톡시에톡시)2-메틸-2-프로판올를 이용하여 유기 플루오로화된 지방족 화합물을 제조한 경우로서, 실시예 5-1의 경우 표지효율율과 합성수율이 각각 58.7%와 47.0%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴에 비하여 약 8배 높고, 종래 반응용매인 상기표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 4배 높은 것으로 학인 되었다.
실시예 5-2의 경우 표지효율은 각각 85.3%, 81.8%로 높게 나타나고 합성수율 역시 각각 52.1%, 50.3%로 높게 확인된 바, 이는 비교예 1-2(아세토니트릴 이용) 및 비교예 2-2(t-아밀 알코올 이용)의 경우보다 표지효율 및 합성수율 측면에서 모두 높게 나타남을 확인할 수 있었다.
실시예 6. 반응용매 1-에톡시-2-메틸-2-프로판올의 이용
실시예 6-1. OTs를 1차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-1과 동일 재료 및 동일 방법을 이용하여 OTs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-에톡시-2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 1-(3-[18F]플루오로프로필)-4-페닐피페라진을 제조하였다.
실시예 6-2. OMs를 1차 또는 2차 이탈기로 갖는 지방족 화합물의 유기 플루오르화
상기 실시예 2-2과 동일 재료 및 동일 방법을 이용하여 OMs를 이탈기로 갖는 지방족 화합물의 유기 플루오르화를 수행하되, 다만 반응용매로서 1-에톡시-2-메틸-2-프로판올을 이용하여 유기 플루오르화된 지방족 화합물 2-(3-[18F]플루오로프로폭시)나프탈렌 또는 2-(2-[18F]플루오로프로폭시)나프탈렌을 합성하였다.
구분 유기플루오로-18 화합물 반응용매 표지효율 합성 수율 방사화학적순도
실시예 6-1 1-(3-[18F]플루오로프로필)-4-페닐피페라진 1-에톡시-2-메틸-2-프로판올 50.1% 39.8% 100%
실시예 6-2 2-(3-[18F]플루오로프로폭시)나프탈렌 87.3% 55.2% 100%
2-(2-[18F]플루오로프로폭시)나프탈렌 80.1% 53.2% 100%
상기 표 6에서 보는 바와 같이, 실시예 6는 본 발명에 따른 다작용기 반응용매로서 1-에톡시-2-메틸-2-프로판올를 이용하여 유기 플루오로화된 지방족 화합물을 제조한 경우로서, 실시예 6-1의 경우 표지효율율과 합성수율이 각각 50.1%와 39.8%로 종래 반응용매인 상기 표 1의 비교예 1-2의 아세토니트릴에 비하여 약 6배 높고, 종래 반응용매인 상기표 1의 비교예 2-2의 t-아밀 알코올의 합성수율에 비하여 약 3배 높은 것으로 학인 되었다.
실시예 6-2의 경우 표지효율은 각각 87.3%, 80.1%로 높게 나타나고 합성수율 역시 각각 55.2%, 53.2%로 높게 확인된 바, 이는 비교예 1-2(아세토니트릴 이용) 및 비교예 2-2(t-아밀 알코올 이용)의 경우보다 표지효율 및 합성수율 측면에서 모두 높게 나타남을 확인할 수 있었다.
실시예 7. [18F]플루오로프로필카보메톡시트로판의 제조
실시예 7-1. OTs를 1차 이탈기로 갖는 지방족 화합물을 전구체로 이용
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 전구체로서 OTs 이탈기를 갖는 지방족 화합물인 (3-톨루엔설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판((3-toluenesulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
실시예 7-2. OMs를 1차 이탈기로 갖는 지방족 화합물을 전구체로 이용
상기 실시예 3와 동일한 방법으로 제조하되, OMs를 이탈기로 갖는 지방족 화합물인 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 전구체로 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 4. 반응용매 아세토나이트릴의 이용
비교예 4-1.
상기 실시예 7-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 4-2.
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 5. 반응용매 t-아밀 알코올의 이용
비교예 5-1.
상기 실시예 7-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 5-2.
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
상기 실험 결과는 하기 표 7에서 보는 바와 같다.
구분 전구체 반응용매 총합성시간 표지효율 합성 수율 방사화학적순도
실시예 7-1 -OTs 1-메톡시-2-메틸-2-프로판올 25분 92.7% 74.2% 100%
실시예 7-2 -OMs 25분 77.4% 65.7% 100%
비교예 4-1 -OTs 아세토니트릴 25분 12.7% 5.4% 100%
비교예 4-2 -OMs 25분 6.1% 6.7% 100%
비교예 5-1 -OTs t-아밀 알코올 25분 45.2% 2.9% 87%
비교예 5-2 -OMs 25분 41.9% 3.1% 82%
상기 실험 결과, 종래 반응용매인 아세토나이트릴을 사용한 경우(비교예 4-1 내지 비교예 4-2)는 합성수율은 5-7%로 정도로 매우 낮았으며, 표지효율 역시 약 6 내지 약 12%를 낮아 매우 낮았으며, 종래 반응용매인 t-아밀 알코올을 사용한 경우(비교예 5-1 내지 비교예 5-2) 표지효율은 약 40% 대를 나타내었으나 합성수율이 2-3%로 극히 낮아, 유기 플루오르화된 지방족 화합물의 제조에 적합하지 않음을 확인할 수 있었다. 이에 반하여, 상기 실시예 7-1 내지 실시예 7-2의 경우 본 발명에 따른 다작용기 용매인 1-메톡시-2-메틸-2-프로판올을 사용한 결과로서 합성 수율이 74.2%, 65.7%를 나타내어 비교예들에 비하여 상당히 높았으며 표지 효율 역시 92.7%, 77.4%를 각각 나타내어 비교예들에 비하여 상당히 높았으며 순도도 100%임을 확인할 수 있었다. 따라서, 본 발명에 따른 다작용기 용매를 이용할 경우, 고효율, 고순도, 고수율로 유기 플루오르화된 지방족 화합물의 제조가 가능함을 확인할 수 있었다.
실시예 8. [18F]엘비티 999의 제조
본 실시예에서는 Cl을 1차 이탈기로 갖는 지방족 화합물을 전구체로 이용하여 [18F]엘비티 999을 합성하였다.
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 전구체로서 Cl를 1차 이탈기로 갖는 지방족 화합물인 ((E)-4-클로로부-2-엔일)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((E)-4-chlorobut-2-enyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]엘비티 999를 합성하였다.
표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 건조과정 없이 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다. 이 결과는 하기 표 8에서 보는 바와 같다.
실시예 9. [18F]플루오로미소니다졸의 제조
본 실시예에서는 OTs를 2차 이탈기로 갖는 지방족 화합물을 전구체로 이용하여 [18F]플루오로미소니다졸을 합성하였다.
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 전구체로서 OTs를 2차 이탈기로 갖는 지방족 화합물인 3-(2-니트로이미다졸-1-일)-2-O-테트라하이드로피라닐-1- O -톨루엔설포닐 프로판디올(3-(2-nitroimidazol-1-yl)-2- O -tetrahydropyranyl-1- O -toluenesulfonyl propanediol)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오라이드를 표지하였으며 표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 1 M 염산을 넣고 100 ℃에서 5분 동안 가수분해 및 2 M의 수산화나트륨을 넣고 중화를 시킨 후, 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다. 이 결과는 하기 표 8에서 보는 바와 같다.
실시예 10. [18F]플루오로티미딘의 합성
본 실시예에서는 ONs를 2차 이탈기로 갖는 지방족 화합물을 전구체로 이용하여 [18F]플루오로티미딘을 합성하였다.
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 전구체로서 ONs를 2차 이탈기로 갖는 지방족 화합물인 5'-O-DMTr-2'-데옥시-3'-O-노실-b-D-트레오-펜토퓨라노실)-3-N-BOC-티민(5'-O-DMTr-2'-deoxy-3'-O-nosyl-b-D-threo-pentofuranosyl)-3-N-BOC- thymine)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오라이드를 표지하였으며 표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 1 M 염산을 넣고 100 ℃에서 5분 동안 가수분해 및2 M의 수산화나트륨을 넣고 중화를 시킨 후, 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다. 이 결과는 하기 표 8에서 보는 바와 같다.
실시예 11. [18F] 플루오로데옥시글루코스의 합성
본 실시예에서는 OTf를 2차 이탈기로 갖는 지방족 화합물을 전구체로 이용하여 [18F] 플루오로데옥시글루코스를 합성하였다.
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 전구체로서 OTf를 2차 이탈기로 갖는 지방족 화합물인 만노즈 트리플레이트(mannose triflate, 1,3,4,6-tetra-O-acetyl-2-O-trifluoro-methanesulfonyl-beta-D-mannopyranose)를 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오라이드를 표지하였으며 표지효율은 라디오 얇은막크로마토그래피로 확인을 하였다. 반응 후 1 M 염산을 넣고 100 ℃에서 5분 동안 가수분해 및 2 M의 수산화나트륨을 넣고 중화를 시킨 후, 물로 희석하여 고체상 추출법을 사용하여 정제하였으며 정제 후 고성능액체크로마토그래피로 순도 확인을 수행하였다.
상기 실시예 8 내지 11은 다양한 방사성 의약품을 본 발명에 따른 다작용기 용매인 1-메톡시-2-메틸-2-프로판올을 사용하여 제조한 것이며, 이들의 표지효율, 정제방법, 정제시간, 합성수율 및 순도는 하기 표 8에서 보는 바와 같다.
구분 유기플루오로-18 화합물 표지효율 정제방법 정제 시간 합성 수율 방사화학적순도
실시예 8 [18F]엘비티999 87.4 SPE 5분 57.4% 100%
실시예 9 [18F]플루오로미소니다졸 97.4% 65.1% 100%
실시예 10 [18F]플루오로티미딘 95.7% 63.4% 100%
실시예 11 [18F]플루오로데옥시글루코스 93.7% 66.4% 100%
상기 실시예 8의 [18F]엘비티999, 실시예 9의 [18F]플루오로미소니다졸, 실시예 10의 [18F]플루오로티미딘, 및 실시예 11의 [18F]플루오로데옥시글루코스의 경우, 현재 국내외에서 임상에서 사용되고 있는 다양한 방사성 의약품으로서, 본 발명에 따른 다작용기 용매인 1-메톡시-2-메틸-2-프로판올을 이용하여 제조한 결과, 상기 표 3에서 보는 바와 같이, 제조된 방사성 의약품의 순도는 모두 100%이고, 표지효율은 각각 97.4%, 95.7%, 90.5%, 93.7%로 아주 높으며, 합성 수율 역시 각각 65.1%, 63.4%, 61.7%, 66.4%로 높은 것으로 확인되어, 본 발명에 따른 다작용기 용매를 이용하여 고수율, 고순도, 고효율로 방사성 의약품의 제조가 가능함을 확인할 수 있었다.
실시예 12. [18F]플루오로프로필카보메톡시트로판의 정제
실시예 12-1. 고체상 추출(SPE)을 이용한 정제
실시예 7-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(실시예 12-1-1) 및 실시예 7-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(실시예 12-1-2)하기 위하여, 상기 실시예 7-1 및 7-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 물로 희석하여 역상 고체상 추출(SPE)법을 이용하여 정제하였으며, 정제 후 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
실시예 12-2. 고성능 액체크로마토그래피(HPLC)를 이용한 정제
실시예 7-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(실시예 12-2-1) 및 실시예 7-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(실시예 12-2-2)하기 위하여, 상기 실시예 7-1 및 7-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 고성능 액체크로마토그래피로 정제하였으며 정제를 수행한 후에 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
실시예 12의 결과는 하기 표 9에서 보는 바와 같다.
비교예 6. [18F]플루오로프로필카보메톡시트로판의 정제
비교예 6-1. 고체상 추출(SPE)을 이용한 정제
비교예 4-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 6-1-1) 및 비교예 4-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 6-1-2)하기 위하여, 상기 비교예 4-1 및 4-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 물로 희석하여 역상 고체상 추출(SPE)법을 이용하여 정제하였으며, 정제 후 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
비교예 6-2. 고성능 액체크로마토그래피(HPLC)를 이용한 정제
비교예 4-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 6-2-1) 및 비교예 4-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 6-2-2)하기 위하여, 상기 비교예 4-1 및 4-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 고성능 액체크로마토그래피로 정제하였으며 정제를 수행한 후에 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
비교예 6의 결과는 하기 표 9에서 보는 바와 같다.
비교예 7. [18F]플루오로프로필카보메톡시트로판의 정제
비교예 7-1. 고체상 추출(SPE)을 이용한 정제
비교예 5-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 7-1-1) 및 비교예 5-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 7-1-2)하기 위하여, 상기 비교예 5-1 및 5-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 물로 희석하여 역상 고체상 추출(SPE)법을 이용하여 정제하였으며, 정제 후 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
비교예 7-2. 고성능 액체크로마토그래피(HPLC)를 이용한 정제
비교예 5-1에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 7-2-1) 및 비교예 5-2에서 합성된 [18F]플루오로프로필카보메톡시트로판을 정제(비교예 7-2-2)하기 위하여, 상기 비교예 5-1 및 5-2에서 전구체 및 반응용매를 첨가하여 [18F]플루오로프로필카보메톡시트로판으로 합성 반응이 완료되면 건조과정 없이 고성능 액체크로마토그래피로 정제하였으며 정제를 수행한 후에 고성능 액체크로마토그래피로 순도 확인을 수행하였다.
비교예 7의 결과는 하기 표 9에서 보는 바와 같다.
비교예 8. [18F]플루오로프로필카보메톡시트로판의 정제
비교예 8-1. 고체상 추출(SPE)을 이용한 정제
상기 비교예 7-1-1 및 비교예 7-1-2와 모두 동일한 재료 및 방법을 각각 이용하되, 다만 [18F]플루오로프로필카보메톡시트로판의 합성 이후 건조과정을 거친 후 정제하여 합성수율 및 방사화학적 순도를 확인하였다.
비교예 8-2. 고성능 액체크로마토그래피(HPLC)를 이용한 정제
상기 비교예 7-2-1 및 비교예 7-2-2와 모두 동일한 재료 및 방법을 각각 이용하되, 다만 [18F]플루오로프로필카보메톡시트로판의 합성 이후 건조과정을 거친 후 정제하여 합성수율 및 방사화학적 순도를 확인하였다.
비교예 8의 결과는 하기 표 9에서 보는 바와 같다.
구분 전구체 총 합성시간 표지효율 정제방법 정제 시간 합성 수율 방사화학적 순도
실시예 12-1-1 -OTs 25분 92.7% SPE 15분 74.2% 100%
실시예 12-1-2 -OMs 77.4% 65.7% 100%
실시예 12-2-1 -OTs 25분 83.2% HPLC 30분 44.7% 100%
실시예 12-2-2 -OMs 71.5% 40.1% 100%
비교예 6-1-1 -OTs 25분 12.7% SPE 15분 6.7% 100%
비교예 6-1-2 -OMs 6.1% 5.4% 100%
비교예 6-2-1 -OTs 25분 8.9% HPLC 30분 2.1% 100%
비교예 6-2-2 -OMs 11.8% 2.4% 100%
비교예 7-1-1 -OTs 25분 45.2% SPE 15분 2.9% 87%
비교예 7-1-2 -OMs 41.9% 3.1% 82%
비교예 7-2-1 -OTs 25분 42.7% HPLC 30분 8.7% 100%
비교예 7-2-2 -OMs 47.4% 7.5% 100%
비교예 8-1-1 -OTs 40분 58.7% SPE 15분 36.4% 100%
비교예 8-1-2 -OMs 53.9% 34.1% 100%
비교예 8-2-1 -OTs 40분 60.4% HPLC 30분 21.7% 100%
비교예 8-2-2 -OMs 47.1% 18.5% 100%
상기 표 9에서 보는 바와 같이, 본 발명의 다작용기 용매를 이용하여 [18F]플루오로프로필카보메톡시트로판을 이용하여 제조한 경우 추후 정제 과정을 SPE(실시예 12-1) 및 HPLC(실시예 12-2)을 이용하더라도 그 표지효율, 합성수율 및 방사화학적 순도는 종래 반응 용매인 아세토니트릴(비교예 6) 및 t-아밀 알코올(비교예 7)을 이용하여 제조한 경우도 훨씬 효과가 좋음을 확인할 수 있었다.
다만, 본 발명의 다작용기 용매를 이용하더라도 HPLC(실시예 12-2)보다는 SPE(실시예 12-1)를 이용하여 정제하는 경우에 합성 수율 측면에서 약간 더 좋은 효과를 나타냄을 확인할 수 있었다.
한편, 실시예 12, 비교예 6 및 비교예 7의 경우 각각의 정제 과정을 수행할 때 건조 과정을 거치지 않고 각각의 정제방법에 따라 [18F]플루오로프로필카보메톡시트로판을 정제하였고, 비교예 8은 건조 과정을 거치 후 각각의 정제방법에 따라 [18F]플루오로프로필카보메톡시트로판을 정제한 것이다. 그 결과는, 건조 과정을 더 수행하기에 전체 합성 시간은 건조과정을 거치지 않은 경우보다 합성 수율이 약간 증가하였으나, 건조 과정으로 인하여 전체 합성 시간이 약 15분 늘어났으며 건조 과정 중에 소실되는 방사능으로 인하여 합성 수율은 실시예 12에 비하여 약 50%이하로 감소됨을 확인할 수 있었다.
실시예 13. [18F]플루오로프로필카보메톡시트로판의 역상 정제 방법
상기 실시예 12-1에 사용된 역상 SPE 방법을 이용하여 정제할 경우 방사화학적 순도가 높고 표지효율 및 합성수율이 높은 [18F]플루오로프로필카보메톡시트로판의 제조가 가능하지만, 합성 후 [18F]플루오로프로필카보메톡시트로판와 유사한 극성도를 갖는 불순물이 존재하게 되는데 역상 정제 방법을 통하여 이러한 불순물의 정제가 가능한지를 확인하였다.
실시예 13-1. 역상 기반의 고성능 액체 크로마토그래피(HPLC)를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판 합성 후 70% 메탄올 8 mL을 이용하여 희석하였다. 희석된 반응혼합물을 C18 컬럼을 이용한 HPLC 방법을 이용하여 정제를 수행하였며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 13-2. 실리카 기반의 역상 기반의 고체상 추출 카트리지(SPE)를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판 합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 C18 SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 C18 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 C18 SPE 카트리지를 씻어준다. 최종적으로 C18 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 13-3. 폴리머 기반의 역상 기반의 고체상 추출 카트리지(SPE)를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하여 [18F]플루오로프로필카보메톡시트로판을 합성한 후 상기 13-2와 동일 재료 및 동일 방법을 이용하되, HLB SPE 카트리지를 이용하여 [18F]플루오로프로필카보메톡시트로판을 정제하였다.
실시예 13의 결과는 하기 표 10에서 보는 바와 같다.
구분 SPE 카트리지 방사능 회수율 방사화학적 순도 전구체 기반의 유기불순물 제거율
실시예 13-1 실리카-기반의 역상 HPLC 32.7% 100% 99.7%
실시예 13-2 실리카-기반의 역상 SPE (C18) 97.8% 100 2.6%
실시예 13-3 폴리머-기반의 역상 SPE (HLB) 95.7% 100 4.1%
상기 표 10에서 보는 바와 같이, 실시예 13-1의 실리카 기반의 역상 HPLC를 이용하여 정제하는 경우에는 전구체 기반의 유기불순물 제거율을 상당히 높았으나, 정제 후 방사능 회수율이 너무 낮아서 방사성 의약품으로의 활용성이 아주 낮음을 확인하였다. 한편, 실시예 13-2 및 실시예 13-3의 경우에는 방사능 회수율은 아주 좋았으나 전구체 기반의 유기불순물 제거율이 너무 낮은 문제점을 발견하였다.
실시예 14. 실리카 기반 양이온 교환 SPE를 이용한 정제
실시예 14-1. 실리카 기반의 양이온 교환 CM SPE 카트리지 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 CM SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 CM SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 CM SPE 카트리지를 씻어준다. 최종적으로 CM SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 14-2. 실리카 기반의 양이온 교환 SCX SPE 카트리지 이용한 정제
상기 실시예 14-1과 동일한 재료 및 동일한 방법을 이용하되, 정제 카트리지로서 SCX SPE 카트리지를 이용하여 [18F]플루오로프로필카보메톡시트로판을 정제하였다.
실시예 14-3. 실리카 기반의 양이온 교환 WCX SPE 카트리지 이용한 정제
상기 실시예 14-1과 동일한 재료 및 동일한 방법을 이용하되, 정제 카트리지로서 WCX SPE 카트리지를 이용하여 [18F]플루오로프로필카보메톡시트로판을 정제하였다.
실시예 14의 결과는 하기 표 11에서 보는 바와 같다.
실시예 15. 폴리머 기반 양이온 교환 SPE를 이용한 정제
실시예 15-1. 폴리머 기반 양이온 교환 MCX SPE 카트리지를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 MCX SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 MCX SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 MCX SPE 카트리지를 씻어준다. 최종적으로 MCX SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 15-2. 폴리머 기반 양이온 교환 WCX SPE 카트리지를 이용한 정제
상기 실시예 15-1과 동일 재료 및 동일 방법을 이용하되, 정제 카트리지로서 WCX SPE 카트리지를 이용하여 [18F]플루오로프로필카보메톡시트로판을 정제하였다.
실시예 15의 결과는 하기 표 11에서 보는 바와 같다.
구분 SPE 카트리지 방사능 회수율 방사화학적 순도 전구체 기반의 유기불순물 제거율
실시예 14-1 실리카-기반의 양이온 교환(CM) 97.0% 100 98.2
실시예 14-2 실리카-기반의 양이온 교환(SCX, -SO3 -) 94.7% 100 97.1%
실시예14-3 실리카-기반의 양이온 교환(WCX, -COO-) 96.4% 100 98.7%
실시예15-1 폴리머-기반의 양이온 교환(MCX, -SO3 -)) 70.2% 100 96.4%
실시예 15-2 폴리머-기반의 양이온 교환(WCX, -COO-) 75.9% 100 98.1%
상기 표 11에서 보는 바와 같이, 실리카 기반 및 폴리머 기반의 양이온 교환수지를 사용하였을 때 전구체 기반의 유기 불순물 제거율이 모두 96% 이상으로 나타나서 상기 실시예 13의 표 10과 대비하였을 때 역상 SPE 카트리지를 이용할 때보다 양이온 교환 SPE 카트리지를 이용하는 것이 전구체 기반의 유기불순물들 제거에 효과적임을 확인할 수 있었다. 또한, 양이온 교환 SPE 카트리지를 사용하여 정제할 경우 방사능의 회수율 역시 실리카 기반의 SPE는 95% 이상의 회수율을, 폴리머-기반의 SPE는 70% 이상의 회수율을 보여 모두 방사성 의약품으로서 활용이 가능함을 확인할 수 있었다.
실시예 16. 실리카 기반 음이온 교환 SPE를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 SAX SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 SAX SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 SAX SPE 카트리지를 씻어준다. 최종적으로 SAX SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 16의 결과는 하기 표 12에서 보는 바와 같다.
실시예 17. 폴리머 기반 음이온 SPE를 이용한 정제
실시예 17-1. 폴리머 기반 음이온 MAX SPE 카트리지를 이용한 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 MAX SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 MAX SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 MAX SPE 카트리지를 씻어준다. 최종적으로 MAX SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 17-2. 폴리머 기반 음이온 WAX SPE 카트리지를 이용한 정제
상기 실시예 17-1과 동일 재료 및 동일 방법을 이용하되, 정제 카트리지로서 WAX SPE 카트리지를 이용하여 [18F]플루오로프로필카보메톡시트로판을 정제하였다.
실시예 17의 결과는 하기 표 12에서 보는 바와 같다.
구분 SPE 카트리지 방사능 회수율 방사화학적 순도 전구체 기반의 유기불순물 제거율
실시예 16 실리카-기반의 음이온 교환(SAX, 4차 암모늄) 98.2% 100 92.4%
실시예 17-1 폴리머-기반의 음이온 교환(MAX, 4차 암모늄) 81.2% 100 89.6%
실시예 17-2 폴리머-기반의 음이온 교환(WAX, 2차 암모늄) 70.9% 100 87.0%
상기 표 12에서 보는 바와 같이, 음이온 교환수지를 사용하였을 때, 상기 실시예 14 및 15의 양이온 교환 수지(표 11 참조)보다는 조금 낮은 87%이상의 제거율로 전구체 기반의 유기불순물이 제거됨을 확인 하였으며 방사능의 회수율은 상기 실시예 14 및 15의 양이온 교환수지와 비슷하게 최고 98% 최저 70%의 회수율을 보였다.
실시예 18. 양이온 및 음이온 교환 모두 활용한 SPE 정제
실시예 18-1. 실리카 기반 양이온 및 음이온 교환 모두 활용한 SPE 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 SCX+SAX SPE 카트리지(2개를 연결하여 사용)를 통과하여 [18F]플루오로프로필카보메톡시트로판을 연결된 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 연결된 SPE 카트리지를 씻어준다. 최종적으로 연결된 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 18-2. 폴리머 기반 양이온 및 음이온 교환 모두 활용한 SPE 정제
상기 실시예 7-2와 동일 재료 및 동일 방법을 이용하되, [18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 MCX+MAX SPE 카트리지(2개를 연결하여 사용)를 통과하여 [18F]플루오로프로필카보메톡시트로판을 연결된 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 연결된 SPE 카트리지를 씻어준다. 최종적으로 연결된 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 [18F]플루오로프로필카보메톡시트로판의 방사능을 측정하여 방사능 회수율을 확인 하였다. 또한 정제 후 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 18의 결과는 하기 표 13에서 보는 바와 같다.
구분 SPE 카트리지 방사능 회수율 방사화학적 순도 전구체 기반의 유기불순물 제거율
실시예 18-1 실리카-기반의 이온 교환(SCX + SAX) 97.2% 100 97.7%
실시예 18-2 폴리머-기반의 이온 교환(MCX + MAX) 83.1% 100 98.3%
상기 표 13에서 보는 바와 같이, [18F]플루오로프로필카보메톡시트로판의 [18F]플루오라이드 표지 조건(염기 및 반응용매)에 따라서 생성되는 전구체 기반의 유기불순물의 종류와 양은 각기 달라질 수 있으며 동일한 조건이라고 하더라도 방사성의약품의 특성상 유기불순물의 종류와 양이 달라질 수 있다. 따라서 양이온과 음이온 교환 카트리지를 혼합하여 사용함으로서 생성되는 유기 불순물을 보다 안정적으로 제거 할 수 있음을 확인 할 수 있었다.
실시예 19. 실리카 기반의 이온 교환 SPE 카트리지 이용한 정제
실시예 19-1. 반응용매 1-메톡시-2-메틸-2-프로판올 이용한 합성 후 정제
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
[18F]플루오로프로필카보메톡시트로판 합성 후, 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 SCX+SAX SPE 카트리지(2개를 연결하여 사용)를 통과하여 [18F]플루오로프로필카보메톡시트로판을 연결된 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 연결된 SPE 카트리지를 씻어준다. 최종적으로 연결된 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하였으며 생리식염수로 희석하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다. 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 19-2. 반응용매 아세토나이트릴 이용한 합성 후 정제
상기 실시예 19-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
실시예 19-3. 반응용매 t-아밀 알코올 이용한 합성 후 정제
상기 실시예 19-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
실시예 19의 결과는 하기 표 14에서 보는 바와 같다.
실시예 20. 폴리머 기반의 이온 교환 SPE 카트리지 이용한 정제
실시예 20-1. 반응용매 1-메톡시-2-메틸-2-프로판올 이용한 합성 후 정제
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
[18F]플루오로프로필카보메톡시트로판 합성 후, 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 MCX+MAX SPE 카트리지(2개를 연결하여 사용)를 통과하여 [18F]플루오로프로필카보메톡시트로판을 연결된 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 연결된 SPE 카트리지를 씻어준다. 최종적으로 연결된 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하였으며 생리식염수로 희석하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다. 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
실시예 20-2. 반응용매 아세토나이트릴 이용한 합성 후 정제
상기 실시예 20-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
실시예 20-3. 반응용매 t-아밀 알코올 이용한 합성 후 정제
상기 실시예 20-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
실시예 20의 결과는 하기 표 14에서 보는 바와 같다.
비교예 9. 역상 기반 HPLC를 이용한 정제
비교예 9-1. 반응용매 1-메톡시-2-메틸-2-프로판올 이용한 합성 후 정제
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
[18F]플루오로프로필카보메톡시트로판합성 후 70% 메탄올 8 mL을 이용하여 희석한다. 희석된 반응혼합물을 C18 컬럼을 이용한 HPLC 방법을 이용하여 정제를 해 주었으며 정제 전의 반응혼합물의 표지효율 및 방사능과 정제 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 정제혼합물은 C18 SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 C18 SPE 카트리지에 머무르게 한다. 잔류 유기용매 제거하기 위하여 5 mL 이상의 물을 이용하여 C18 SPE 카트리지를 씻어준다. 최종적으로 C18 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하여였으며 생리식염수로 희석하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다. 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
비교예 9-2. 반응용매 아세토나이트릴 이용한 합성 후 정제
상기 비교예 9-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 9-3. 반응용매 t-아밀 알코올 이용한 합성 후 정제
상기 비교예 9-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 9의 결과는 하기 표 14에서 보는 바와 같다.
비교예 10. 역상 기반 SPE 카트리지 이용한 정제
비교예 10-1. 반응용매 1-메톡시-2-메틸-2-프로판올 이용한 합성 후 정제
4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 반응용기로 용리시켰다. 용리 후 용리액은 100 ℃에서 질소 가스를 주입하면서 공비혼합증류를 이용하여 완벽하게 제거해주었다.
상기 반응용기에 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 본 발명에 따른 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
[18F]플루오로프로필카보메톡시트로판합성 후 20 mL 이상의 물을 이용하여 희석한다. 희석된 반응혼합물은 C18 SPE 카트리지를 통과하여 [18F]플루오로프로필카보메톡시트로판을 C18 SPE 카트리지에 머무르게 한다. 잔류 유기용매 및 극성불순물을 제거하기 위하여 5 mL 이상의 물을 이용하여 C18 SPE 카트리지를 씻어준다. 최종적으로 C18 SPE 카트리지에 머무르고 있는 [18F]플루오로프로필카보메톡시트로판을 2 mL 이상의 에탄올을 이용하여 용출 하였으며 생리식염수로 희석하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다. 고성능액체크로마토그래피를 이용하여 방사화학적 순도 및 전구체 기반의 유기불순물의 제거율 확인을 수행하였다.
비교예 10-2. 반응용매 아세토나이트릴 이용한 합성 후 정제
상기 비교예 10-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 아세토나이트릴 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 10-3. 반응용매 t-아밀 알코올 이용한 합성 후 정제
상기 비교예 10-1과 동일 재료 및 동일 방법을 이용하되, 반응용매로서 t-아밀 알코올 1mL를 이용하여 [18F]플루오로프로필카보메톡시트로판을 제조하였다.
비교예 10의 결과는 하기 표 14에서 보는 바와 같다.
구분 정제방법 반응용매 합성 수율 방사화학적순도 전구체 기반의 유기불순물 제거율
실시예 19-1 SCX+SAX 1-메톡시-2-메틸-2-프로판올 62.5% 100%% 96.7%
실시예 19-2 아세토나이트릴 5.1% 100% 97.4%
실시예 19-3 t-아밀 알코올 7.8% 100% 94.6%
실시예 20-1 MCX+MAX 1-메톡시-2-메틸-2-프로판올 70.7% 100% 97.8%
실시예 20-2 아세토나이트릴 6.4% 100% 96.2%
실시예 20-3 t-아밀 알코올 8.6% 100% 96.1%
비교예 9-1 HPLC 1-메톡시-2-메틸-2-프로판올 40.3% 98.0% 98.6%
비교예 9-2 아세토나이트릴 2.3% 100% 99.1%
비교예 9-3 t-아밀 알코올 8.4% 100% 99.4%
비교예 10-1 C18 SPE 1-메톡시-2-메틸-2-프로판올 63.8% 93.4% 3.4%
비교예 10-2 아세토나이트릴 5.6% 91.7% 4.1%
비교예 10-3 t-아밀 알코올 3.7% 94.1% 3.7%
상기 표 14에서 보는 바와 같이, 보면 HPLC를 이용하여 합성된 [18F]플루오로프로필카보메톡시트로판을 정제한 경우 가장 높은 유기불순물 제거율을 보였다. 그러나 HPLC 정제의 경우 분리 시작시점 및 분리 종료시점이 작업자에 의해 결정이 되며 HPLC 컬럼의 사용횟수 또는 이동상의 조제 정확도에 따라서 그 결과는 달라질 여지가 있다. 즉 HPLC는 작업자 숙련도에 따라 그 결과가 상이해질 가능성이 크다. 그러나 SPE 정제의 경우 장비에 의해서 일괄적으로 적용이 됨으로써 작업자의 개입 여부가 없기에 작업자의 숙련도에 영향을 받지 않아 항상 일정한 결과를 도출할 수 있는 장점을 가지기에 방사성의약품 제조에 더 적합한 정제 방법이라고 할 수 있다. 한편 일반적으로 사용되는 역상 기반의 C18 SPE의 경우 높은 합성 수율과 방사화학적 순도는 보일 수 있으나 전구체 기반의 유기불순물 제거율이 이온 교환 SPE 정제에 비하여 현저하게 낮아 높은 비방사능(mCi/umol)을 요구하는 [18F]플루오로프로필카보메톡시트로판에는 적용이 어려움을 확인할 수 있었다. 이에 비하여 양이온 및 음이온 교환 SPE 카트리지를 이용할 경우 이온성을 띄는 대부분의 유기불순물을 제거해 줄 수 있음으로 대부분의 전구체 기반의 유기불순물이 제거되는 것을 확인 할 수 있었다.
한편, 본 발명의 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법에 대하여 하기에서 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조 공정의 개략도이다.
본 발명의 일 실시예에 따른 역류방지 반응용기(10)는 방사성 의약품의 합성에 이용되는 시약이 공급되는 제1라인(11)과 상기 역류방지 반응용기(10) 내의 진공상태를 제공하는 제2라인(13)을 포함하고, 상기 제1라인(11)은 방사성 의약품의 합성에 이용되는 시약, 예를 들어, [18F]플루오라이드 제공 용액, 방사성 의약품의 전구체, [18F]플루오라이드를 상기 전구체에 표지시키는데 이용되는 반응용매 등 각각의 시약을 공급하는 공급부 및 질소 또는 공기 공급부와 매니폴드 형태로 연결되어 하나의 카세트를 형성한다. 따라서 카세트는 단일 매니폴드 또는 복수 개의 매니폴드로 구성될 수 있으며, 방사성 의약품의 카세트의 구성은 방사성 의약품의 반응용기가 본 발명에 따른 역류방지 반응용기(10)인 것을 제외한 나머지 구성은 종래 알려진 구성요소들을 포함할 수 있다.
상기 제1라인(11)의 엔드 포인트(E)는 상기 역류방지 반응용기(10)의 밑면으로부터 일정 간격 높이에 위치하고 있는데, 바람직하게는 상기 제1라인(11)의 엔드 포인트(E)는 상기 역류방지 반응용기(10) 내에 공급되는 물질의 표면으로부터 일정 간격 높이(h)에 위치하게 되고, 더욱 바람직하게는 상기 제1라인(11)의 엔드 포인트(E)와 상기 역류방지 반응용기(10)내에 공급되는 모든 방사성 의약품의 합성에 이용되는 시약의 표면 사이의 거리가 최대 5cm이다. 즉, 상기 제1라인(11)의 엔드 포인트(E)는 상기 역류방지 반응용기(10)내에 공급되는 모든 방사성 의약품의 합성에 이용되는 시약의 표면으로부터 최소 0cm 내지 최대 5cm 높은 위치에 위치할 수 있다.
도 1을 참조하면, 제1라인(11)의 엔드 포인트(E)가 역류방지 반응용기(10)의 밑면으로부터 일정 간격 높이에 위치하고 있고, 이러한 제1라인(11)을 통하여 F-18 용액(20)이 공급되는데(도1의 (A)), 제1라인(11)의 엔드 포인트(E)가 역류방지 반응용기(10)의 밑면으로부터 일정 간격 높은 위치에 위치하고 있어 F-18 용액(20)이 튀지 않고 안정적으로 공급되어(도1의 (B)) 상기 용액이 역류방지 반응용기(10)의 바닥에 안정적으로 공급되게 된다(도 1의 (C)). 상기 공급되는 F-18용액을 건조시키기 위하여 상기 제1라인(11)을 통하여 질소 또는 공기를 제공하더라도(도1의 (D)) 상기 제1라인(11)의 엔드 포인트(E)가 역류방지 반응용기(10)의 밑면으로부터 일정 간격 높은 위치에 위치하고 있어 상기 F-18 용액(20)이 상기 제공되는 질소 또는 공기에 의하여 버블이 형성되지 않고 역류방지 반응용기(10)의 기벽에 튀는 현상이 방지될 수 있다(도1의 (E)). 상기 F-18용액(20)이 건조된 후, 방사성 의약품의 전구체(30)가 제1라인(11)을 통하여 공급되는데 마찬가지로 기벽으로 튀지 않고 안정적으로 상기 F-18용액(20) 상으로 방사성 의약품의 전구체(30)가 공급된다(도 1의 (F) 및 (G)). 그 후 상기 제1라인(11)을 통하여 반응용매(40)를 공급하여 상기 f-18이 상기 방사성 의약품의 전구체에 표지시키는 반응을 수행하게 되는데, 이 경우에 제1라인(11)의 엔드 포인트(E)가 역류방지 반응용기(10) 내에 공급된 모든 시약의 표면으로부터 일정 간격 높은 위치(h)에 위치하고 있어 상기 표지반응을 위하여 100 내지 140℃사이로 온도를 높이더라도 상기 반응용매(40)가 상기 제1라인(11)으로 역류되지 아니하여 공급되는 양만큼 안정적으로 상기 역류방지 반응용기(10) 내에서 상기 표지반응에 거의 대부분 참여할 수 있어 안정적으로 방사성 의약품을 제조할 수 있으며, 방사성 의약품의 합성 수율이 향상되는 효과를 가질 수 있으며, 또한 반응용매(40)가 제1라인(11)을 통하여 역류하지 않기에 제1라인(11)의 엔드 포인트(E) 가 마련되지 아니한 타단의 경우 카세트와 연결되어 있는데 반응용매(40)가 상기 카세트로 역류되지 아니하여 카세트 파손 등의 문제도 일어나지 않게 된다.
본 발명과 비교하기 위하여 종래 반응용기를 포함하는 카세트를 이용하여 방사성 의약품을 제조하는 경우를 도 2를 참조하여 살펴보도록 한다. 도 2는 종래 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조 공정의 개략도이다. 도 2를 참조하면, 시약의 공급 및 회수를 위하여 마련되어 회수율을 높이기 위하여 시약 공급 라인(11a)의 엔드 포인트(Ea)가 반응용기(10a)의 바닥면에 닿아 있도록 마련되어 있다(도 2의(A)). 따라서 상기 시약 공급 라인(11a)을 통하여 F-18 용액(20a)을 공급할 때 F-18용액이 반응용기(10a)의 기벽으로 튀게 되어(도 2의(B)) 소정의 양의 F-18 용액(20a)이 반응용기(10a)의 기벽에 묻게 된다(도 2의 (C)). 또한 상기 공급된 F-18용액(20a)을 건조시키기 위하여 상기 시약공급라인(11a)을 통하여 질소 또는 공기를 공급하면 질소 또는 공기가 상기 F-18 용액(20a) 내로 공급되기에 기포(22)가 발생하게 되고(도 2의 (D)) 이로 인하여 더 많은 양의 F-18 용액이 반응용기(10a)의 기벽에 튀게 된다(도 2의 (E)). 그 이후 방사성 의약품의 전구체가 상기 시약공급라인(11a)을 통하여 공급하게 되고(도 2의 (F)), F-18 용액(20a)과 마찬가지로 상기 방사성 의약품의 전구체(30a) 역시 반응용기(10a)의 기벽으로 튀게 되어(도 2의 (G)) 소정량의 방사성 의약품의 전구체 역시 기벽에 방울 방울 잔존하게 되며(도 2의 (H)), 그 이유는 시약공급라인(11a)이 반응용기(10a)의 바닥면에 맞닿아 위치하게 되어 그런 것이다. 그 이후 상기 방사성 의약품의 전구체에 F-18을 표지시키기 위하여 반응용매(40a)를 시약공급라인(11a)을 통하여 주입하게 되는데 이러한 표지반응은 일반적으로 100 내지 140℃사이에서 이루어지게 되고 주입된 반응용매(40a)의 끓는 점이 넘게 되어 이로 인하여 반응용매(40a)의 기화가 일어나서 양압이 걸리게 되고 이러한 양압으로 인하여 반응용매(40a)가 상기 시약공급라인(11a)으로 역류하게 되어 상기 표지반응에 참여하지 못하게 된다(도 2의 (I)). 이에 따라 상기 시약공급라인(11a)의 엔드 포인트(Ea)가 마련되지 않은 타단은 카세트와 연결되어 있어 상기 사용되는 반응용매(40a)의 물질의 종류에 따라 카세트의 저항성이 없을 경우 본 과정에서 카세트 파손의 문제가 발생할 수 있어 반응물질의 회수가 불가능하여 방사성 의약품의 제조에 실패할 수 있는 문제점이 발생할 수 있다.
따라서, 본 발명에 따른 역류방지 반응용기(10)를 포함하는 카세트를 이용하여 방사성 의약품을 제조할 경우, 표지반응 시 반응용매가 제1라인(11)으로 역류되지 아니하여 역류로 인한 카세트 파손의 문제점이 해소되므로 반응용매 저항성을 갖는 카세트의 재질 개발이 필요하게 되므로 제조단가를 낮출 수 있으며, 공급된 반응용매(40)가 표지반응에 거의 대부분 참여할 수 있어 방사성 의약품의 합성 수율이 향상되는 효과를 가질 수 있으며, GMP(우수의약품 제조관리 제도)에 적합한 방사성 의약품의 제조가 가능하게 된다.
다시 도 1을 참조하면, 본 발명에 따른 역류방지 반응용기(10)를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법에서 이용되는 반응용매는, 비양성자성 용매, 양성자성 용매 및 다작용기 용매 중 어느 하나를 포함할 수 있다.
상기 비양성자성 용매는, 아세토니트릴, 다이메틸폼아마이드, 및 다이메닐설폭사이드로 중에서 선택되는 어느 하나를 포함할 수 있다.
상기 양성자성 용매는, 메탄올, 에탄올, n-프로판올, n-부탄올, n-아밀알코올, n-헥실알코올, n-헵탄올, n-옥탄올을 포함하는 1차 알코올, 이소프로판올, 이소부탄올, 이소아밀알코올, 3-펜탄올을 포함하는 2차 알코올, t-부탄올, t-아밀알코올, 2,3-디메틸-2-부탄올, 2-(트리플루오로메틸)-2-프로판올, 3-메틸-3-펜탄올, 3-에틸-3-펜탄올, 2-메틸-2-펜탄올, 2,3-디메틸-3-펜탄올, 2,4-디메틸-2-펜탄올, 2-메틸-2-헥산올, 2-시클로프로필-2-프로판올, 2-시클로프로필-2-부탄올, 2-시클로프로필-3-메틸-2-부탄올, 1-메틸시클로펜탄올, 1-에틸시클로펜탄올, 1-프로필시클로펜탄올, 1-메틸시클로헥산올, 1-에틸시클로헥산올, 1-메틸시클로헵탄올을 포함하는 3차 알코올로 이루어지는 군으로부터 선택되는 어느 하나를 포함할 수 있다.
상기 다작용기 용매는, 하기 화학식 1로 표시되는 화합물이다:
Figure PCTKR2015011955-appb-I000022
[화학식 1]
(상기 화학식 1에서
R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X1와 동일한 작용기이며,
Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며,
X1는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이고,
R3는 바람직하게 C1~C10 알킬기이다.)
여기에서, 상기 상기 Ln은, 바람직하게 C1~C3 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~3 사이의 정수인 폴리에틸렌 글리콜이다.
여기에서, 상기 알콕시기는 바람직하게, 메톡시, 에톡시, 프로폭시, 이소프로폭시 및 t-부톡시 중에서 선택되는 어느 하나이다.
여기에서, 상기 할라이드는, 바람직하게 클로라이드(Cl), 브로마이드(Br) 및 아이오다이드(I) 중에서 선택되는 어느 하나이다.
여기에서, 상기 R1 및 R2는, 바람직하게 메틸기 또는 에틸기이다.
여기에서, 상기 화학식 1의 다작용기 용매는, 바람직하게는, 1-메톡시-2-메틸-2-프로판올, 1-에톡시-2-메틸-2-프로판올, 1-프로폭시-2-메틸-2-프로판올, 1-이소프로폭시-2-메틸-2-프로판올, 1-t-부톡시-2-메틸-2-프로판올, 1-나이트릴-2-메틸-2-프로판올, 1-클로로-2메틸-2-프로판올, 1-브로모-2-메틸-2-프로판올, 1-아이오도-2-메틸-2-프로판올, 1-(2-메톡시에톡시)2-메틸-2-프로판올 및 3-(메톡시메틸)-3-펜탄올으로 이루어지는 군으로부터 선택되는 어느 하나이다.
이에 따라, 본 발명에 따른 역류방지 반응용기(10)를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법은, 역류방지 반응용기(10)에 [18F]플루오라이드를 용리시키는 단계(도 1의 (A) 내지 (C))와; 상기 역류방지 반응용기 내 상기 용리액을 건조시키는 단계(도 1의 (D) 내지 (E))와; 상기 역류방지 반응용기 내로 방사성의약품의 전구체 및 반응용매를 공급하여 상기 반응용매 하에서 상기 건조된 [18F]플루오라이드와 상기 방사성 의약품의 전구체를 반응시키는 단계(도 1의 (F) 내지 (H))를 포함한다. 상기 용리단계는, 예를 들어, 4차암모늄염지지체(Chromafix 또는 QMA)에 [18F]플루오라이드를 통과시켜 음이온을 교환하는 방법으로 [18F]플루오라이드를 흡착시키고 수소이온 농도가 조절된 KOMs 혼합용액으로 4차 암모늄지지체에 흡착되어 있는 [18F]플루오라이드를 역류방지 반응용기(10)로 용리시키는 단계이다. 상기 건조단계는 상기 제1라인(11)을 통하여 질소 또는 공기를 소정 온도, 예를 들어 100 내지 140℃의 온도에서 용리액을 건조시키는 단계이다. 상기 반응단계는, 상기 방사성 의약품의 전구체 및 반응용매를 상기 제1라인(11)으로 주입하여 약 100 내지 140℃에서 반응시켜 F-18이 상기 방사성의약품의 전구체에 표지되어 방사성 의약품이 합성되는 단계이다. 상기 합성단계 이후, 물에 용해하여 고체상추출(SPE)법 또는 HPLC 정제법 등을 이용하여 정제하는 단계를 더 포함할 수 있다. 상기 고체상추출(SPE)법 또는 HPLC법의 경우 상기 본 발명의 실시예 12 내지 19에 따른 방법을 이용할 수 있다. 또한, 본 발명에 따른 상기 용리단계, 건조단계, 합성단계, 및 정제단계는, 방사성 의약품의 제조에서 일반적으로 이용되는 방법을 활용할 수 있음은 물론이다.
이러한, 본 발명에 따른 역류방지 반응용기(10)를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법은, 상기 기재된 반응용매 하에서 어떠한 종류의 F-18이 표지된 유기화합물의 합성에 이용될 수 있다.
따라서, 본 발명의 방법에 이용되는 F-18 플루오라이드의 공급원인 플루오린염은, 바람직하게, 플루오린-18을 포함하는 화합물을 포함할 수 있으며, 리튬, 소듐, 포타슘, 루비듐 및 세슘으로 구성되는 군으로부터 선택된 알칼리 금속을 포함하여 구성된 알칼리 금속 플루오라이드; 마그네슘, 칼슘, 스트론튬 및 바륨으로 구성되는 군으로부터 선택된 알칼리 토금속을 포함하여 구성된 알칼리 토금속 플루오라이드; 및 암모늄 플루오라이드 중에서 선택될 수 있으나, 보다 바람직하게는 포타슘 플루오라이드 또는 암모늄 플루오라이드이다. 상기 포타슘을 포함한 알칼리금속 플루오라이드 또는 테트라알킬암모늄 플루오라이드는 바람직하게는 셀라이트(Celite), 분자체(Molecular Seive), 알루미나 및 실리카겔 중에서 선택된 어느 하나의 지지체에 의하여 흡착된 것이 바람직하다. 상기 암모늄 플루오라이드는 바람직하게는 테트라부틸암모늄 플루오라이드 및 벤질트리메틸 암모늄 플루오라이드를 포함하는 4차 암모늄 플루오라이드; 트리에틸암모늄 플루오라이드, 트리부틸암모늄 플루오라이드를 포함하는 3차 암모늄 플루오라이드; 디부틸암모늄 플루오라이드, 디헥실암모늄 플루오라이드를 포함하는 2차 암모늄 플루오라이드; 부틸암모늄 플루오라이드, 헥실암모늄 플루오라이드를 포함하는 1차 암모늄 플루오라이드로 구성되는 군에서 선택될 수 있으나, 보다 바람직하게는 테트라부틸암모늄 플루오라이드이다. 상기 플루오린염은 하기 기재된 방사성 의약품의 전구체 1mg에 대하여 1pg 내지 100ng의 [18F]플루오라이드로 사용될 수 있다
또한, 본 발명에 이용되는 방사성 의약품의 전구체는, 바람직하게, 알킬 할라이드 또는 알킬 설포네이트이며, 상기 알킬 할라이드 또는 알킬 설포네이트에서 할라이드는 F를 제외한 Cl, Br, I으로 구성된 군에서 선택된 것이며 설포네이트는 -SO3R12 이며 R12는 알킬기 또는 아릴기이며, 보다 구체적으로 알킬기는 C1 ~ C12 알킬 설포네이트 또는 할로 C1 ~ C12 알킬기가 바람직하고, 그의 일례로는 메탄설포네이트, 에탄설포네이트, 이소프로판설포네이트, 클로로메탄설포네이트, 트리플루오로메탄설포네이트 및 클로로에탄설포네이트로 구성된 군에서 선택되는 것이다. 또한, 아릴기는 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 또는 니트로페닐기에서 선택되는 것이 바람직하며, 그의 바람직한 일례로는 메틸페닐설포네이트; 에틸페닐설포네이트; 클로로페닐설포네이트, 브로모페닐설포네이트, 메톡시페닐설포네이트 또는 니트로페닐설포닐이다. 또한, 본 발명에 이용되는 방사성 의약품의 전구체는, 상기 본 발명의 실시예 1 내지 11을 이용하여 설명한 유기 플루오르화 지방족 화합물의 제조방법에서 이용되는 이탈기를 갖는 지방족 화합물을 포함할 수 있음은 물론이다.
예를 들어, 본 발명의 반응용기(10)를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법에 따라 제조될 수 있는 방사성 의약품은 다음으로 구성된 군에서 선택되는 적어도 어느 하나를 포함할 수 있다:
- [18F]플루오로프로필카보메톡시트로판(
Figure PCTKR2015011955-appb-I000023
)
- [18F]플루오로미소니다졸 (
Figure PCTKR2015011955-appb-I000024
)
- [18F]플루오로티미딘 (
Figure PCTKR2015011955-appb-I000025
)
- [18F]플루오로에스트라디올 (
Figure PCTKR2015011955-appb-I000026
)
- [18F]플루오로데옥시글루코스 (
Figure PCTKR2015011955-appb-I000027
)
- [18F]플루오로디디엔피인 (
Figure PCTKR2015011955-appb-I000028
)
- [18F]플루오로베타벤 (
Figure PCTKR2015011955-appb-I000029
)
- [18F]플푸오로베타피어 (
Figure PCTKR2015011955-appb-I000030
)
- [18F]에프에이치비지([18F]FHBG) (
Figure PCTKR2015011955-appb-I000031
)
- [18F]에이치엑스4([18F]HX4) (
Figure PCTKR2015011955-appb-I000032
)
- [18F]엘비티999([18F]LBT999) (
Figure PCTKR2015011955-appb-I000033
)
- [18F]플루테메타몰([18F]Flutemetamol) (
Figure PCTKR2015011955-appb-I000034
)
- [18F]에프씨119에스([18F]FC119S) (
Figure PCTKR2015011955-appb-I000035
)
이하, 본 발명을 하기 실시예에 의하여 보다 상세히 설명하도록 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니며, 당업계의 통상의 지식을 가진 자는 본 발명의 기술적 사상을 벗어나지 아니하는 범위 내에서 본 발명에 대하여 다양한 변형 및 변경을 가할 수 있으며, 이 또한 본 발명의 범위에 속하게 됨은 물론이다.
실시예 21과 실시예 22. [18F]플루오로프로필카보메톡시트로판의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로프로필카보메톡시트로판을 제조 하였다.
4 mg의 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane) 또는 (3-톨루엔설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판((3-toluenesulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 다작용기 반응용매로서 1-메톡시-2-메틸-2-프로판올 1.0 mL을 넣고 120 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
실시예 23과 실시예 24. [18F]플루오로프로필카보메톡시트로판의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로프로필카보메톡시트로판을 제조 하였다.
4 mg의 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane) 또는 (3-톨루엔설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판((3-toluenesulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 0.1 mL 과 양성자성 용매로서 t-아밀알코올 1.0 mL을 넣고 120 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
실시예 25와 실시예 26. [18F]플루오로프로필카보메톡시트로판의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로프로필카보메톡시트로판을 제조 하였다.
4 mg의 (3-메탄설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판 ((3-methansulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane) 또는 (3-톨루엔설포닐옥시프로필)-2β-카보메톡시-3-β-(4-요오도페닐)트로판((3-toluenesulfonyloxipropyl)-2β-carbomethoxy-3-β-(4-iodophenyl)tropane)을 녹인 아세토니트릴 1.1 mL 을 넣고 120 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
비교예 11-16. [18F]플루오로프로필카보메톡시트로판의 합성
도 2의 반응용기(10a)를 포함하는 기존의 TRACERlab MXFDG Cassette(GE Healthcare)와 TRACERlab MX자동화 합성장치를 사용하여 실시예 21-26과 동일한 시약 및 조건으로 [18F]플루오로프로필카보메톡시트로판을 합성하였다.
상기 실시예 21 내지 26과 비교예 11 내지 16의 방사성 의약품의 합성 수율 및 카세트 파손 여부에 대한 결과는 하기 표 15에서 보는 바와 같다.
구분 반응용기 전구체 반응용매 합성수율
실시예 21 역류방지 반응용기 FP-CIT-OMs 1-메톡시-2-메틸-2-프로판올 31.21%
실시예 22 FP-CIT-OTs 1-메톡시-2-메틸-2-프로판올 32.94%
실시예 23 FP-CIT-OMs t-아밀알코올 20.12%
실시예 24 FP-CIT-OTs t-아밀알코올 23.07%
실시예 25 FP-CIT-OMs 아세토니트릴 10.61%
실시예 26 FP-CIT-OTs 아세토니트릴 11.04%
비교예 11 기존 반응용기 FP-CIT-OMs 1-메톡시-2-메틸-2-프로판올 0 %( 카세트 파손)
비교예 12 FP-CIT-OTs 1-메톡시-2-메틸-2-프로판올 0 %( 카세트 파손)
비교예 13 FP-CIT-OMs t-아밀알코올 0 %( 카세트 파손)
비교예 14 FP-CIT-OTs t-아밀알코올 0 %( 카세트 파손)
비교예 15 FP-CIT-OMs 아세토니트릴 1.41%
비교예 16 FP-CIT-OTs 아세토니트릴 2.19%
상기 표 1에서 보는 바와 같이, 본 발명에 따른 역류방지 반응용기를 이용하여 방사성 의약품을 제조하는 경우(실시예 21 내지 26), 카세트의 파손 없이 높은 수율로 안정적으로 방사성의약품이 합성되며, 특히 아세토니트릴을 사용하여서도 (실시예 25, 26) 10% 정도의 수율로 제조가 가능함을 확인하였다. t-아밀 알코올의 경우 (실시예 23, 24) 20-23%의 수율로 FP-CIT가 제조 됨을 확인 할 수 있었으며 1-메톡시-2-메틸-2-프로판올의 경우 (실시예 21, 22) 제조 시간의 단축으로 인하여 10% 정도 수율이 상승된 31-33%의 높은 수율을 확인 할 수 있었다.
반면 기존 반응용기를 그대로 적용하여 방사성 의약품을 제조하는 경우(비교예 11 내지 16), 1-메톡시-2-메틸-2-프로판올 및 t-아밀 알코올에 저항성이 없는 일반적인 재질의 카세트의 경우 반응 도중 반응용매의 역류로 인하여 카세트가 파손되는 문제로 인하여 방사성의약품의 합성에 실패하였으며 카세트에 적용이 가능한 반응용매인 아세토니트릴을 사용하여도 반응시약이 전부 반응에 참여하지 못하는 문제로 인하여 1-2% 정도의 낮은 제조 수율을 보여 임상적용이 불가능함을 확인할 수 있었다.
실시예 27. [18F]플루오로티미딘의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로티미딘을 제조 하였다.
5 mg의 5'-O-DMTr-2'-데옥시-3'-O-노실-b-D-트레오-펜토퓨라노실)-3-N-BOC-티민(5'-O-DMTr-2'-deoxy-3'-O-nosyl-b-D-threo-pentofuranosyl)-3-N-BOC- thymine)을 녹인 아세토니트릴 1.1 mL 을 넣고 120 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로티미딘을 합성하였다.
비교예 17. [18F]플루오로티미딘의 합성
도 2의 반응용기(10a)를 포함하는 TRACERlab MXFDG Cassette(GE Healthcare)와 TRACERlab MX자동화 합성장치를 사용하여 실시예 27에 사용된 동일한 시약 및 조건으로 [18F]플루오로티미딘을 합성하였다.
실시예 28. [18F]플루오로미소니다졸의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로미소니다졸을 제조 하였다.
1-2 mg 3-(2-니트로이미다졸-1-일)-2-O-테트라하이드로피라닐-1-O-톨루엔설포닐 프로판디올(3-(2-nitroimidazol-1-yl)-2-O-tetrahydropyranyl-1-O-toluenesulfonyl propanediol)을 녹인 아세토니트릴 1.1 mL 을 넣고 100 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로미소니다졸을 합성하였다.
비교예 18. [18F]플루오로미소니다졸의 합성
도 2의 반응용기(10a)를 포함하는 기존의 TRACERlab MXFDG Cassette(GE Healthcare)와 TRACERlab MX자동화 합성장치를 사용하여 실시예 28 에 사용된 동일한 시약 및 조건으로 [18F]플루오로미소니다졸을 합성하였다.
실시예 29. [18F]플루오로에스트라디올의 합성
도 1의 역류방지 반응용기(10)를 TRACERlab MXFDG Cassette(GE Healthcare)에 적용하였으며 자동화 합성장치로는 TRACERlab MX를 사용하여 [18F]플루오로에스트라디올을 제조 하였다.
0.5-1 mg 3-(메톡시메톡시)-1,3,5(10)-고나트리엔-16베타, 17베타 디올-16,17-사이클릭 설페이트 (3-(Methoxymethoxy)-1,3,5(10)-gonatriene-16beta, 17beta diol-16,17-cyclic sulfate)을 녹인 아세토니트릴 1.1 mL 을 넣고 100 ℃에서 10-20분 동안 반응시켜서 [18F]플루오로에스트라디올을 합성하였다.
비교예 19. [18F]플루오로에스트라디올의 합성
도 2의 반응용기(10a)를 포함하는 기존의 TRACERlab MXFDG Cassette(GE Healthcare)와 TRACERlab MX자동화 합성장치를 사용하여 실시예 29와 동일한 시약 및 조건으로 [18F]플루오로에스트라디올을 합성하였다.
상기 실시예 27 내지 29 및 비교예 17 내지 19의 방사성 의약품의 합성 수율에 대한 결과는 하기 표 16에서 보는 바와 같다.
구분 반응용기 방사성의약품 합성수율
실시예 27 역류방지 반응용기 FLT 25.08%
실시예 28 FMISO 25.13%
실시예 29 FES 30.62%
비교예 17 기존 반응용기 FLT 3.72%
비교예 18 FMISO 5.14%
비교예 19 FES 1.41%
상기 표 16에서 보는 바와 같이, 비교예 17 내지 19와 같이 0.5-5 mg의 소량의 전구체를 사용할 경우 모든 시약이 반응에 참여하지 않아 1 내지 3% 내외의 아주 낮은 합성수율을 나타내게 된다. 그러나, 실시예 27 내지 29의 경우 모든 시약이 반응에 참여하게 되어 비교예 17 내지 19와 비교하여 적게는 5배에서 최대 30배 정도의 방사성의약품의 제조 수율 상승을 확인할 수 있었다.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.

Claims (34)

  1. 유기 플루오르화 지방족 화합물의 제조방법에 있어서,
    플루오린염을 하기 화학식 1로 표시되는 다작용기 용매를 이용하여 이탈기를 갖는 지방족 화합물과 반응시켜 상기 이탈기를 대체하여 [18F] 플루오라이드가 표지된 지방족 화합물의 획득단계를 포함하는 유기 플루오르화 지방족 화합물의 제조방법:
    Figure PCTKR2015011955-appb-I000036
    [화학식 1]
    (상기 화학식 1에서
    R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X1와 동일한 작용기이며,
    Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며,
    X1는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이고,
    R3는 C1~C10 알킬기이다.)
  2. 제1항에 있어서,
    상기 Ln은, C1~C3 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~3 사이의 정수인 폴리에틸렌 글리콜인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  3. 제1항에 있어서,
    상기 알콕시기(OR3)는, 메톡시, 에톡시, 프로폭시, 이소프로폭시 및 t-부톡시로 구성되는 군에서 선택되는 어느 하나인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  4. 제1항에 있어서,
    상기 할라이드는, 클로라이드(Cl), 브로마이드(Br) 및 아이오다이드(I)로 구성되는 군에서 선택되는 어느 하나인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  5. 제1항에 있어서,
    상기 R1 및 R2는, 메틸기 또는 에틸기인 것인 유기 플루오르화 지방족 화합물의 제조방법법.
  6. 제1항에 있어서,
    상기 화학식 1의 다작용기 용매는, 1-메톡시-2-메틸-2-프로판올, 1-에톡시-2-메틸-2-프로판올, 1-프로폭시-2-메틸-2-프로판올, 1-이소프로폭시-2-메틸-2-프로판올, 1-t-부톡시-2-메틸-2-프로판올, 1-나이트릴-2-메틸-2-프로판올, 1-클로로-2메틸-2-프로판올, 1-브로모-2-메틸-2-프로판올, 1-아이오도-2-메틸-2-프로판올, 1-(2-메톡시에톡시)2-메틸-2-프로판올 및 3-(메톡시메틸)-3-펜탄올로 이루어지는 군으로부터 선택되는 어느 하나인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  7. 제1항에 있어서,
    상기 플루오린염은 플루오린-18을 포함하는 화합물인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  8. 제1항에 있어서,
    상기 지방족 화합물은,
    알킬 할라이드 그룹 또는 알킬 설포네이트 그룹을 갖는 지방족 화합물이고, 상기 할라이드 그룹 또는 설포네이트 그룹이 이탈기인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  9. 제1항에 있어서,
    상기 지방족 화합물은,
    알킬 할라이드 그룹 또는 알킬 설포네이트 그룹을 갖는 지방족 화합물이고, 상기 할라이드 그룹 또는 설포네이트 그룹이 1차 이탈기 또는 2차 이탈기인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  10. 제1항에 있어서,
    상기 지방족 화합물은,
    N-(CH2)n-X2 또는 O-(CH2)n-X2 (X2는 이탈기이고, n=1~1-10 사이의 정수)를 갖는 지방족 화합물인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  11. 제10항에 있어서,
    상기 X2는, 할라이드 그룹 또는 설포네이트 그룹인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  12. 제8항, 제9항 및 제11항 중 어느 한 항에 있어서,
    상기 할라이드 그룹은, Cl, Br 및 I으로 구성된 군에서 선택되는 어느 하나인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  13. 제8항, 제9항 및 제11항 중 어느 한 항에 있어서,
    상기 설포네이트 그룹은, -SO3R12 (R12는 C1 ~ C12 알킬기, 할로 C1 ~ C12 알킬기, 페닐기, C1 ~ C4의 알킬 페닐기, 할로 페닐기, C1 ~ C4의 알콕시 페닐기, 및 니트로페닐기로 구성되는 군에서 선택되는 어느 하나)인 것인 유기 플루오르화 지방족 화합물의 제조방법.
  14. 제1항에 있어서,
    적어도 하나의 이온교환 SPE 카트리지를 이용하여 상기 획득된 [18F] 플루오라이드가 표지된 지방족 화합물의 정제 단계를 더 포함하는 유기 플루오르화 지방족 화합물의 제조방법.
  15. 제14항에 있어서,
    상기 이온교환 SPE 카트리지는, 양이온 교환 SPE 카트리지 및 음이온 교환 SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 제조방법.
  16. 제15항에 있어서,
    상기 이온교환 SPE 카트리지는, 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카로 이루어진 고체 지지체로 이루어진 것인 유기 플루오르화 지방족 화합물의 제조방법.
  17. 제16항에 있어서,
    상기 양이온 교환 SPE 카트리지는, SCX(실리카 기반의 강한 양이온 교환) SPE 카트리지, MCX(폴리머 기반의 양이온 교환) SPE 카트리지, 및 WCX(폴리머 기반의 약한 양이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 제조방법.
  18. 제16항에 있어서,
    상기 음이온 교환 SPE 카트리지는, SAX(실리카 기반의 강한 음이온 교환) SPE 카트리지, MAX(폴리머 기반의 강한 음이온 교환) SPE 카트리지, 및 WAX(폴리머 기반의 약한 음이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 제조방법.
  19. 유기 플루오르화 지방족 화합물의 정제방법에 있어서,
    하기 화학식 2의 이온 교환 SPE 카트리지로 수행되는 고체상 추출(SPE)을 이용하여 유기 플루오르화 지방족 화합물의 정제 단계를 포함하는 유기 플루오르화 지방족 화합물의 정제방법:
    Figure PCTKR2015011955-appb-I000037
    [화학식 2]
    (상기 화학식 2에서,
    고체 지지체는 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카이고;
    A는 상기 고체 지지체가 폴리머인 경우 없을 수 있으며 실리카인 경우 페닐기 또는 탄화수소 C1-20이며;
    B는 유기 양이온 또는 유기 음이온일 수 있으며,
    상기 유기 양이온은,
    Figure PCTKR2015011955-appb-I000038
    (여기에서 E는 질소 또는 인; R1, R2, 및 R3는 서로 동일 하거나 상이하고 C1-20의 탄화수소기, 1 이상의 질소를 갖는 Ar(
    Figure PCTKR2015011955-appb-I000039
    ), 질소 및 산소 또는 질소 및 황을 갖는 C2-20의 헤테로방향족 양이온(heteroaromatic cation)으로서 한 개의 질소 위치에서 C1-20의 탄화수소기로 치환된(
    Figure PCTKR2015011955-appb-I000040
    ,
    Figure PCTKR2015011955-appb-I000041
    ) 화합물 중 어느 하나)이고,
    상기 유기 음이온은, 설포닉 산(-SO3-) 또는 카르복실 산(-COO-)).
  20. 제19항에 있어서,
    상기 정제단계는,
    상기 화학식 2의 B가 유기 양이온인 이온 교환 SPE 카트리지 및 상기 화학식 2의 B가 유기 음이온인 이온 교환 SPE 카트리지를 함께 사용하여 유기 플루오르화 지방족 화합물을 정제하는 것인 유기 플루오르화 지방족 화합물의 정제방법.
  21. 유기 플루오르화 지방족 화합물의 정제방법에 있어서,
    적어도 하나의 이온교환 SPE 카트리지로 수행되는 고체상 추출(SPE)을 이용하여 유기 플루오르화 지방족 화합물을 정제하는 단계를 포함하고,
    여기에서 상기 유기 플루오르화 지방족 화합물은, [18F]플루오로프로필카보메톡시트로판인 것인 유기 플루오르화 지방족 화합물의 정제방법.
  22. 제21항에 있어서,
    상기 이온교환 SPE 카트리지는, 양이온 교환 SPE 카트리지 및 음이온 교환 SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 정제방법.
  23. 제22항에 있어서,
    상기 이온교환 SPE 카트리지는, 페닐기 및 탄화수소 C1-20으로 구성된 폴리머 또는 실리카로 이루어진 고체 지지체로 이루어진 것인 유기 플루오르화 지방족 화합물의 정제방법.
  24. 제23항에 있어서,
    상기 양이온 교환 SPE 카트리지는, SCX(실리카 기반의 강한 양이온 교환) SPE 카트리지, MCX(폴리머 기반의 양이온 교환) SPE 카트리지, 및 WCX(폴리머 기반의 약한 양이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 정제방법.
  25. 제23항에 있어서,
    상기 음이온 교환 SPE 카트리지는, SAX(실리카 기반의 강한 음이온 교환) SPE 카트리지, MAX(폴리머 기반의 강한 음이온 교환) SPE 카트리지, 및 WAX(폴리머 기반의 약한 음이온 교환) SPE 카트리지 중 적어도 어느 하나를 포함하는 것인 유기 플루오르화 지방족 화합물의 정제방법.
  26. 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법에 있어서,
    역류방지 반응용기에 [18F]플루오라이드를 용리시키는 단계와;
    상기 역류방지 반응용기 내 용리액을 건조시키는 단계와;
    상기 역류방지 반응용기 내로 방사성의약품의 전구체 및 반응용매를 공급하여 상기 반응용매 하에서 상기 건조된 [18F]플루오라이드와 상기 방사성 의약품의 전구체를 반응시키는 단계를 포함하고,
    상기 역류방지 반응용기는, 상기 방사성 의약품의 합성에 이용되는 시약이 공급되는 제1라인과 진공상태를 제공하는 제2라인을 포함하며, 상기 제1라인의 엔드 포인트가 적어도 상기 역류방지 반응용기 내에 공급되는 상기 방사성 의약품의 합성에 이용되는 시약의 표면보다 높은 위치에 존재하는 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  27. 제26항에 있어서,
    상기 제1라인의 엔드 포인트와 상기 시약의 표면 사이의 거리는 최대 5cm인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  28. 제27항에 있어서,
    상기 역류방지 반응용기를 포함하는 카세트는, 매니폴드(manifold) 형태의 카세트인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  29. 제27항에 있어서,
    상기 반응 용매는, 비양성자성 용매, 양성자성 용매 및 다작용기 용매 중 어느 하나인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  30. 제29항에 있어서,
    상기 비양성자성 용매는, 아세토니트릴, 다이메틸폼아마이드, 및 다이메닐설폭사이드로 중에서 선택되는 어느 하나인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  31. 제29항에 있어서,
    상기 양성자성 용매는, 메탄올, 에탄올, n-프로판올, n-부탄올, n-아밀알코올, n-헥실알코올, n-헵탄올, n-옥탄올을 포함하는 1차 알코올, 이소프로판올, 이소부탄올, 이소아밀알코올, 3-펜탄올을 포함하는 2차 알코올, t-부탄올, t-아밀알코올, 2,3-디메틸-2-부탄올, 2-(트리플루오로메틸)-2-프로판올, 3-메틸-3-펜탄올, 3-에틸-3-펜탄올, 2-메틸-2-펜탄올, 2,3-디메틸-3-펜탄올, 2,4-디메틸-2-펜탄올, 2-메틸-2-헥산올, 2-시클로프로필-2-프로판올, 2-시클로프로필-2-부탄올, 2-시클로프로필-3-메틸-2-부탄올, 1-메틸시클로펜탄올, 1-에틸시클로펜탄올, 1-프로필시클로펜탄올, 1-메틸시클로헥산올, 1-에틸시클로헥산올, 1-메틸시클로헵탄올을 포함하는 3차 알코올로 이루어지는 군으로부터 선택되는 어느 하나인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  32. 제29항에 있어서,
    상기 다작용기 용매는, 하기 화학식 1로 표시되는 화합물인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법:
    Figure PCTKR2015011955-appb-I000042
    [화학식 1]
    (상기 화학식 1에서
    R1 및 R2는 각각 독립적으로 수소, C1~C10 알킬기 또는 X1와 동일한 작용기이며,
    Ln은 C1~C10 알킬기 또는 CH2(OCH2CH2)n 에서 n=1~10 사이의 정수인 폴리에틸렌 글리콜이며,
    X1는 극성 그룹으로 알콕시기(OR3), 나이트릴기(CN) 및 할라이드 중에서 선택되는 어느 하나이고,
    R3는 C1~C10 알킬기이다.)
  33. 제32항에 있어서,
    상기 할라이드는, 클로라이드(Cl), 브로마이드(Br) 및 아이오다이드(I) 중에서 선택되는 어느 하나인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
  34. 제33항에 있어서,
    상기 다작용기 용매는, 1-메톡시-2-메틸-2-프로판올, 1-에톡시-2-메틸-2-프로판올, 1-프로폭시-2-메틸-2-프로판올, 1-이소프로폭시-2-메틸-2-프로판올, 1-t-부톡시-2-메틸-2-프로판올, 1-나이트릴-2-메틸-2-프로판올, 1-클로로-2메틸-2-프로판올, 1-브로모-2-메틸-2-프로판올, 1-아이오도-2-메틸-2-프로판올, 1-(2-메톡시에톡시)2-메틸-2-프로판올 및 3-(메톡시메틸)-3-펜탄올로 이루어지는 군으로부터 선택되는 어느 하나인 것인 역류방지 반응용기를 포함하는 카세트를 이용하는 방사성 의약품의 제조방법.
PCT/KR2015/011955 2014-11-07 2015-11-06 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법 WO2016072801A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2015343906A AU2015343906B2 (en) 2014-11-07 2015-11-06 Method for preparing organic fluoride-aliphatic compound and method for purifying organic fluoride-aliphatic compound
CA2971382A CA2971382C (en) 2014-11-07 2015-11-06 Method for preparing organic fluoride-aliphatic compound and method for purifying organic fluoride-aliphatic compound
JP2017543693A JP6605034B2 (ja) 2014-11-07 2015-11-06 有機フッ化化合物の製造方法及び精製方法
US15/524,705 US10525151B2 (en) 2014-11-07 2015-11-06 Method for preparing organic fluoride-aliphatic compound and method for purifying organic fluoride-aliphatic compound
ES15856189T ES2838752T3 (es) 2014-11-07 2015-11-06 Método para preparar un compuesto alifático de fluoruro orgánico y método para purificar un compuesto alifático de fluoruro orgánico
CN201580065240.2A CN107001213B (zh) 2014-11-07 2015-11-06 具有氟化脂肪族基团的有机化合物的制备方法及纯化方法
CN202010460956.5A CN111574515B (zh) 2014-11-07 2015-11-06 有机氟化脂肪族化合物的制备方法及纯化方法
RU2017120040A RU2710558C2 (ru) 2014-11-07 2015-11-06 Способ получения фторзамещенного органического алифатического соединения и способ очистки фторзамещенного органического алифатического соединения
DK15856189.4T DK3216780T5 (da) 2014-11-07 2015-11-06 Fremgangsmåde til fremstilling af organisk fluorid-alifatisk forbindelse og fremgangsmåde til oprensning af organisk fluorid-alifatisk forbindelse
EP15856189.4A EP3216780B1 (en) 2014-11-07 2015-11-06 Method for preparing organic fluoride-aliphatic compound and method for purifying organic fluoride-aliphatic compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140154592 2014-11-07
KR10-2014-0154592 2014-11-07
KR10-2014-0154593 2014-11-07
KR1020140154593A KR101519425B1 (ko) 2014-11-07 2014-11-07 역류방지 반응용기를 포함하는 카세트를 이용한 방사성 의약품의 제조방법
KR1020150126731A KR101605291B1 (ko) 2014-11-07 2015-09-08 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법
KR10-2015-0126731 2015-09-08

Publications (1)

Publication Number Publication Date
WO2016072801A1 true WO2016072801A1 (ko) 2016-05-12

Family

ID=55909438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011955 WO2016072801A1 (ko) 2014-11-07 2015-11-06 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법

Country Status (10)

Country Link
US (1) US10525151B2 (ko)
EP (1) EP3216780B1 (ko)
JP (1) JP6605034B2 (ko)
CN (2) CN111574515B (ko)
AU (1) AU2015343906B2 (ko)
CA (1) CA2971382C (ko)
DK (1) DK3216780T5 (ko)
ES (1) ES2838752T3 (ko)
RU (1) RU2710558C2 (ko)
WO (1) WO2016072801A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842989B1 (ko) * 2018-01-02 2018-03-28 (주)퓨쳐켐 카보닐기를 갖는 알코올 용매를 이용한 플루오르화 화합물의 제조방법
CN115160308A (zh) * 2022-08-08 2022-10-11 江苏华益科技有限公司 一种18f-fpcit的自动化合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040065076A (ko) * 2003-01-15 2004-07-21 학교법인 인하학원 플루오린-18로 표지된 유기플루오로화합물의 제조방법
KR100789847B1 (ko) * 2004-12-15 2007-12-28 (주)퓨쳐켐 알코올 용매하에서 유기플루오로 화합물의 제조방법
KR101009712B1 (ko) * 2007-02-22 2011-01-19 재단법인 아산사회복지재단 양성자성 용매와 이에 녹는 염들을 이용한 음이온 교환고분자 지지체로부터의 플루오린-18 플루오라이드 용리와이를 이용한 플루오린-18의 표지방법
WO2012092110A2 (en) * 2010-12-27 2012-07-05 Ge Healthcare Limited Radiopharmacy and devices
KR20120089417A (ko) * 2010-12-14 2012-08-10 서강대학교산학협력단 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용
KR20130087821A (ko) * 2012-01-30 2013-08-07 재단법인 아산사회복지재단 수소이온 농도가 조절된 플루오린-18의 용리액 제조 및 이를 이용한 플루오린-18의 표지방법
KR20130087816A (ko) * 2012-01-30 2013-08-07 재단법인 아산사회복지재단 방사성 동위원소 플루오린-18이 표지된 유기플루오로화합물의 제조방법
US20140213757A1 (en) * 2011-09-30 2014-07-31 Ge Healthcare Limited Cassette for radiopharmaceutical synthesis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2224165A1 (en) * 1996-04-09 1997-10-16 Yamasa Corporation 9-(2-deoxy-2-fluoro-4-thio-.beta.-d-arabinofuranosyl)purine derivatives
TW200823170A (en) * 2006-09-06 2008-06-01 Nihon Mediphysics Co Ltd Process for producing radioactive fluorine labeled organic compound, and relevant synthetic apparatus and program
CN101104627A (zh) * 2007-07-20 2008-01-16 张锦明 18f-fdg自动化合成方法及设备
AU2008342628B2 (en) * 2008-01-03 2014-05-01 Ge Healthcare Limited Fluoride processing method
CN101585816B (zh) * 2008-05-20 2011-04-20 中国科学院上海应用物理研究所 一种苯磺酰胺类羟基衍生物及其中间体及制备方法和应用
KR20140006783A (ko) * 2010-09-09 2014-01-16 피라말 이미징 에스에이 친핵성 [18f]플루오린화에 적합한 [18f]플루오라이드의 신속한 제조 방법
CN102336678A (zh) * 2011-07-13 2012-02-01 中国人民解放军总医院 一种制备18f-fet的方法
US9468692B2 (en) * 2014-01-23 2016-10-18 General Electric Company Labeled molecular imaging agents and methods of use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040065076A (ko) * 2003-01-15 2004-07-21 학교법인 인하학원 플루오린-18로 표지된 유기플루오로화합물의 제조방법
KR100789847B1 (ko) * 2004-12-15 2007-12-28 (주)퓨쳐켐 알코올 용매하에서 유기플루오로 화합물의 제조방법
KR101009712B1 (ko) * 2007-02-22 2011-01-19 재단법인 아산사회복지재단 양성자성 용매와 이에 녹는 염들을 이용한 음이온 교환고분자 지지체로부터의 플루오린-18 플루오라이드 용리와이를 이용한 플루오린-18의 표지방법
KR20120089417A (ko) * 2010-12-14 2012-08-10 서강대학교산학협력단 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용
WO2012092110A2 (en) * 2010-12-27 2012-07-05 Ge Healthcare Limited Radiopharmacy and devices
US20140213757A1 (en) * 2011-09-30 2014-07-31 Ge Healthcare Limited Cassette for radiopharmaceutical synthesis
KR20130087821A (ko) * 2012-01-30 2013-08-07 재단법인 아산사회복지재단 수소이온 농도가 조절된 플루오린-18의 용리액 제조 및 이를 이용한 플루오린-18의 표지방법
KR20130087816A (ko) * 2012-01-30 2013-08-07 재단법인 아산사회복지재단 방사성 동위원소 플루오린-18이 표지된 유기플루오로화합물의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216780A4 *

Also Published As

Publication number Publication date
DK3216780T3 (da) 2021-01-11
EP3216780B1 (en) 2020-10-07
US10525151B2 (en) 2020-01-07
RU2017120040A (ru) 2018-12-10
JP6605034B2 (ja) 2019-11-13
CN107001213B (zh) 2021-01-15
ES2838752T3 (es) 2021-07-02
CN107001213A (zh) 2017-08-01
EP3216780A1 (en) 2017-09-13
CA2971382C (en) 2023-03-07
EP3216780A4 (en) 2019-02-20
US20170319720A1 (en) 2017-11-09
CN111574515A (zh) 2020-08-25
AU2015343906A1 (en) 2017-06-15
JP2017535605A (ja) 2017-11-30
DK3216780T5 (da) 2021-03-15
AU2015343906B2 (en) 2020-07-23
RU2710558C2 (ru) 2019-12-27
RU2017120040A3 (ko) 2019-06-06
CA2971382A1 (en) 2016-05-12
CN111574515B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
AU2020384121B2 (en) GLP-1 receptor agonist and use thereof
WO2013176522A1 (ko) 카트리지를 이용한 방사성의약품 제조방법
WO2016064082A2 (ko) 신규한 아미노알킬벤조티아제핀 유도체 및 이의 용도
AU2017374460B2 (en) Novel phenyl propionic acid derivatives and uses thereof
WO2012081880A2 (ko) 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용
WO2021187886A1 (ko) Glp-1 수용체 효능제, 이를 포함하는 약학적 조성물 및 이의 제조방법
WO2021194216A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2022216094A1 (ko) Glp-1 수용체 효능제, 이를 포함하는 약학적 조성물 및 이의 제조방법
WO2016072801A1 (ko) 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2015130121A1 (en) Aminocarbonylcarbamate compounds
Wodarski et al. Synthesis of 3′‐deoxy‐3′‐[18F] fluoro‐thymidine with 2, 3′‐anhydro‐5′‐O‐(4, 4′‐dimethoxytrityl)‐thymidine
WO2021150080A1 (ko) 다환 방향족 유도체 화합물 및 이를 이용한 유기발광소자
WO2012157900A2 (ko) 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
WO2022045837A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2012033374A2 (ko) 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응
WO2019143016A1 (ko) 전이체 단백질 과발현 관련 질환의 양성자방출단층촬영 방사성추적자, 형광영상 진단 및 광역학 치료를 위한 전이체 단백질 표적 리간드 및 이의 제조방법
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2011014009A2 (ko) 신규 이치환된 페녹시아세틸계 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 다약제내성 억제용 약학적 조성물
WO2022114333A1 (ko) 방사성 동위원소를 포함하는 2-[18f]플루오로-4-보로노페닐알라닌의 효과적인 제조방법
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2019221445A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022220613A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2013180415A1 (ko) 신규한 포타슘 오가노-1h-1,2,3-트리아졸-4-일트리플루오로보레이트 유도체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856189

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017543693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015856189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017120040

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015343906

Country of ref document: AU

Date of ref document: 20151106

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2971382

Country of ref document: CA