WO2012033374A2 - 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응 - Google Patents
1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응 Download PDFInfo
- Publication number
- WO2012033374A2 WO2012033374A2 PCT/KR2011/006682 KR2011006682W WO2012033374A2 WO 2012033374 A2 WO2012033374 A2 WO 2012033374A2 KR 2011006682 W KR2011006682 W KR 2011006682W WO 2012033374 A2 WO2012033374 A2 WO 2012033374A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyl
- formula
- sulfonate
- compound
- triazolium
- Prior art date
Links
- 0 CC1N(*)NN(*S(O*)(=O)=O)C1 Chemical compound CC1N(*)NN(*S(O*)(=O)=O)C1 0.000 description 5
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/12—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
- C07D493/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
Definitions
- the present invention has 1,2,3-triazolium salts and sulfonate leaving groups that are effective for the preparation of 18 F labeled compounds that may be suitable for use as radiotracers for Positron Emission Tomography (PET). It relates to a precursor. The present invention also relates to a method for preparing the precursor and a technique for preparing a compound labeled 18 F from the precursor.
- Nucleophilic substitution reaction is one of the most widely used organic chemistry reactions in organic chemistry, and is an important reaction for introducing various functional groups and constructing an organic compound skeleton (AR Katritzky, Chem. Soc. Rev. , 19, 83). -105, 1990; SR Hartshorn, Aliphatic Nucleophilic Substitution ; Cambridge University Press: Cambridge, 1973).
- heterogeneous nucleophilic substitution reactions using a solid nucleophile require the use of a catalyst that induces phase transitions between the solid and liquid phases to increase the solubility as well as the reactivity of the nucleophiles (CM Starks, J. Am. Chem. Soc ., 93 (1), 195-199, 1971; M.
- phase transfer catalysts used are neutral multidentate compounds consisting of polyethers, crown ethers, aminopolyethers, cryptands and kryptofixes [2.2.2] (Kryptofix [2.2.2]). And tetraalkylammonium salts, tetraalkylphosphonium salts.
- ionic liquids solvents that exist as liquids at room temperature, have been reported to act as phase transfer catalysts (DW Kim, J. Am. Chem. Soc., 124, 10278-10279, 2002; YR Jorapur, Bull.Korean Chem. Soc ., 27 (3), 345-353, 2006).
- Nucleophilic fluorination reactions one of the nucleophilic substitution reactions, require high temperatures and long reaction times due to the low reactivity of the fluoride ions.
- the olefin compound due to the E2 removal reaction in the nucleophilic fluorination reaction is obtained as a main byproduct, and the compound having a steric hindrance is characterized in that the production of the olefin compound is increased.
- [ 18 F] radioactive tracers which are the most studied and applied in positron emission tomography, a nuclear medicine molecular imaging technique that is of increasing interest, can be made through nucleophilic [ 18 F] fluorination reactions (PW).
- the nucleophilic fluorination reaction was carried out in a polar anhydrous aprotic solvent, in which an amount of olefin byproduct was formed.
- a protic solvent in the case of primary alcohol solvents such as methanol and ethanol, the reactivity is remarkably lowered due to the strong hydrogen bond between the proton and the fluoride ion of the alcohol solvent. It does not proceed.
- the tertiary alcohol solvent has an advantage of increasing the reaction selectivity of the nucleophilic fluorination reaction, but has a disadvantage in that the reaction rate is slow compared to the fluorination reaction in the conventional polar aprotic solvent.
- Hybrid molecules have been studied to compensate for this drawback, and as a result ionic liquids having imidazolium-based tertiary alcohol functional groups have been reported (SS Shinde, Tetrahedron Lett ., 50, 6654-6657, 2009; SS Shinde). , Org. Lett ., 10, 733-735, 2008).
- the imidazolium-based ionic liquids showed much faster reactivity than the reactions in heterogeneous nucleophilic fluorination reactions using cesium fluoride (CsF) than conventional ionic liquids or tertiary alcohol solvents. This showed a greater synergy than the reactive sum in the ionic liquid or tertiary alcohol solvent.
- CsF cesium fluoride
- the nucleophilic fluorination reaction of the imidazolium-based ionic liquid effectively inhibited the formation of olefins in acetonitrile solvent, which is a polar aprotic solvent.
- nucleophilic [ 18 F] fluorination reaction Another subject of the nucleophilic [ 18 F] fluorination reaction is the fast and high purity separation of the product after the reaction.
- radioactive isotopes fluorine-18
- sulfonate precursors to label fluorine-18 are used in relatively high amounts.
- the use of such excess sulfonate precursors and bases results in many byproducts containing excess sulfonate precursor that remains unreacted beyond the desired fluorine-18 label product after the reaction.
- fluorine-18 labeled products are separated by HPLC, and byproducts make the separation of the fluorine-18 labeled product difficult and take a long time.
- Another object of the present invention is to provide a method for preparing a sulfonate precursor having a 1,2,3-triazolium salt.
- Another object of the present invention is to provide a nucleophilic fluorination reaction using a sulfonate precursor having a 1,2,3-triazolium salt.
- the present invention provides a sulfonate precursor having a 1,2,3-triazolium salt represented by the following formula (1).
- the present invention also provides a method for preparing a sulfonate precursor having the 1,2,3-triazolium salt.
- the present invention provides a nucleophilic fluorination reaction using a sulfonate precursor having the 1,2,3-triazolium salt.
- the present invention provides a method for labeling the radioisotope fluorine-18 using a sulfonate precursor precursor having the 1,2,3-triazolium salt.
- the sulfonate precursor having a 1,2,3-triazolium salt according to the present invention is a 1,2,3-triazolium salt located at the end of the sulfonate acts as an effective phase transfer catalyst, and the molecule is ion-exchanged with metal salts and organic salts. Because it can induce a nucleophilic substitution reaction, the reaction rate and yield can be further improved. In addition, since there is no need to use an additional phase transfer catalyst in the nucleophilic fluorination reaction, the cost of the expensive phase transfer catalyst is reduced, and there is an advantage in that the sulfonate reactant of the polarity remaining after the reaction can be easily removed.
- the use of the precursor of the present invention as a precursor for 18 F label can provide a high yield of product in a short time, which is very useful for the preparation of radiopharmaceutical [ 18 F].
- FIG. 1 is a view showing an intramolecular nucleophilic substitution reaction using a compound as a precursor according to an embodiment of the present invention.
- FIG. 2 is a comparative HPLC analysis graph in the nucleophilic fluorination reaction using a compound and a general precursor according to an embodiment of the present invention.
- Figure 3 is a radio-TLC comparative analysis of the nucleophilic [ 18 F] fluorination reaction using a compound and a general precursor according to an embodiment of the present invention.
- the present invention provides a sulfonate precursor having a 1,2,3-triazolium salt represented by the following formula (1).
- R 1 is the remainder except for fluorine-18 in the [ 18 F] radiopharmaceutical structure used for positron emission tomography, which is unsubstituted or substituted with a protecting group;
- A is a single bond or a C 1 -C 50 hydrocarbon group, wherein the C 1 -C 50 hydrocarbon group may be substituted or unsubstituted with oxygen, nitrogen, sulfur, phosphorus, halogen or a combination thereof;
- R 2 is hydrogen or a hydrocarbon of C 1 -C 50 ,
- R 3 is a hydrocarbon of C 1 -C 50 ,
- the C 1 -C 50 hydrocarbon group of R 2 and R 3 may be substituted or unsubstituted with oxygen, nitrogen, sulfur, phosphorus, halogen or a combination thereof,
- X is a halogen anion, a sulfonate anion, BF 4 -, PF 6 - , SbF 6 -, or N (Tf) 2 - a.
- R 1 is a moiety other than fluorine-18 in the [ 18 F] radiopharmaceutical structure used for positron emission tomography, and the hydrogen moiety may be unsubstituted or substituted with a protecting group.
- R 1 includes all parts known in the art as excluding fluorine-18 in the [ 18 F] radiopharmaceutical structure used for positron emission tomography, and is not particularly limited.
- X When X is a sulfonate anion, it includes all sulfonate anions known in the art. For example, -ONs -, OSO 2 - ( CF 2) n CF 3 (wherein, n is an integer from 1 to 10), -OTs -, -Oms - , -OTf - or the like, but are not limited to, . According to the ease of reaction and economical efficiency, -OTf - is preferable.
- R 2 is hydrogen; Hydroxymethyl; t -butyl; 2-hydroxy-isopropyl; Phenyl or benzyloxymethyl, R 3 is methyl and X is trifluoromethanesulfonate (OTf ⁇ ).
- the compound of formula 1 according to the present invention may be represented by the following structural formula:
- R 1 , R 2 , R 3 , X and n are as defined above.
- step 1 Reacting the azido sulfonyl chloride represented by the formula (4) with the compound having an alcohol functional group represented by the formula (5) under an organic solvent and a base to obtain an azido sulfonate precursor of the formula (6) (step 1);
- the azido sulfonate represented by Formula 6 prepared in Step 1 and the compound having a terminal alkyne functional group represented by Formula 7 are reacted under an organic solvent and a copper catalyst to form 1,2,3-triazole sulfonate of Formula 8 Obtaining step (step 2);
- step 2 reacting the 1,2,3-triazole sulfonate precursor represented by Formula 8 prepared in Step 2 with an alkyl sulfonate represented by Formula 9 under an organic solvent to obtain a compound of Formula 1 (Step 3)
- Step 1 comprises a compound having an azido sulfonyl chloride represented by the formula (4) and an alcohol functional group represented by the formula (5).
- a sulfidolation reaction under an organic solvent and a base is used to obtain an azido sulfonate precursor represented by Chemical Formula 6.
- the organic solvent is tetrahydrofuran (THF), 1,4-dioxane (1,4-dioxane), dichloromethane (CH 2 Cl 2 ), chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ), 1,2 Dichloroethane (1,2-dichloroethane), benzene, toluene, acetonitrile, dimethylformamide (N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), etc. can be used, and preferably May use dichloromethane, chloroform or 1,2, -dichloroethane.
- THF tetrahydrofuran
- 1,4-dioxane 1,4-dioxane
- dichloromethane CH 2 Cl 2
- chloroform CHCl 3
- carbon tetrachloride CCl 4
- 1,2 Dichloroethane 1,2-dichloroethan
- the base may be an alkali metal salt of bicarbonate ions or carbonate ions or an amine base of triethylamine, diisopropylethylamine, pyridine, lutidine, collidine, preferably triethylamine or diisopropylethylamine Can be used.
- step 1 the compounds of Formulas 4 and 5 are dissolved in dichloromethane, the reaction mixture is cooled to 0 ° C., triethylamine is slowly added, and then reacted at 0 ° C. for 30 minutes to form azido sulfonate precursors of Formula 6 You can get it.
- step 2 is an azido sulfonate represented by Formula 6 prepared in Step 1 and a terminal alkyne functional group represented by Formula 7.
- the organic solvent is tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetonitrile, dimethylformamide, dimethylsulfoxide, methanol, ethanol, isopropanol, t -butanol, water or a mixed solution of the above organic solvent and water may be used, and preferably a mixed solvent of acetonitrile or dimethylformamide / water may be used.
- the copper catalyst is a copper catalyst having a number of oxidation of 1 consisting of copper iodide (CuI), copper bromide (CuBr), copper chloride (CuCl), or copper sulfate (CuSO 4 ), copper acetate (Cu (OAc) 2 ), copper nitrate (A copper catalyst having an oxidation number of 2 consisting of Cu (NO 3 ) 2 ), copper trifluoromethanesulfonate (Cu (OTf) 2 ) and copper oxide (CuO) can be used.
- a reducing agent consisting of sodium ascorbate, sodium sulfite (Na 2 SO 3 ), and dithiothreitol may be additionally used.
- Preferred copper catalysts may be copper iodide or copper sulfate / sodium-ascorbate.
- the base is also added, and an alkali metal salt of bicarbonate ions or carbonate ions, or an amine base triethylamine, diisopropylethylamine, pyridine, lutidine, collidine, and the like can be used.
- an alkali metal salt of bicarbonate ions or carbonate ions or an amine base triethylamine, diisopropylethylamine, pyridine, lutidine, collidine, and the like can be used.
- triethylamine or diisopropylethylamine can be used.
- each of the azide and alkyne compounds represented by Chemical Formulas 6 and 7 is dissolved in an acetonitrile solvent, and copper iodide and triethylamine are added at room temperature, and the mixture is stirred at room temperature. Triazole sulfonates can be obtained.
- Step 3 is a reaction of 1,2,3-triazole sulfonate precursor represented by Formula 8 obtained in step 2 with an alkyl sulfonate represented by Formula 9 under an organic solvent to form 1,2,3-tria of Formula 1 It is the process of obtaining a solium sulfonate.
- the organic solvent may be used tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetonitrile, dimethylformamide, dimethyl sulfoxide, preferably May be used dichloromethane, chloroform, 1,2, -dichloroethane.
- the present invention provides a nucleophilic substitution reaction using a sulfonate precursor having the 1,2,3-triazolium salt of Formula 1.
- Sulfonate precursors having 1,2,3-triazolium salts of formula (1) according to the present invention can be used to prepare compounds of formula (3) by reacting with nucleophiles in the form of various metal salts or organic salts as shown in FIG.
- the intermediate compound of Formula 2 is produced by nucleophilic ion exchange by interacting with 1,2,3-triazolium salt with a metal salt or an organic salt, and the intermediate compound of Formula 2 of FIG. It can be quickly converted to the compound of formula 2 which is a product. That is, due to the structure in which the 1,2,3-triazolium salt is introduced into the precursor, the reaction rate may be remarkably improved in the nucleophilic substitution reaction.
- M in Figure 1 is a metal cation such as Li, Na, K, Rb, Cs; Tetraalkylammonium cations each substituted with the same or different C 1 -C 8 alkyl groups; Tetraalkylphosphonium cations each substituted with the same or different C 1 -C 8 alkyl groups; 1,3-dialkylimidazolium each substituted with the same or different C 1 -C 8 alkyl group; And N-alkyl pyridiniums each substituted with the same or different C 1 -C 8 alkyl group.
- a metal cation such as Li, Na, K, Rb, Cs
- Tetraalkylammonium cations each substituted with the same or different C 1 -C 8 alkyl groups
- Tetraalkylphosphonium cations each substituted with the same or different C 1 -C 8 alkyl groups
- 1,3-dialkylimidazolium each substituted with the same or different C 1 -
- nucleophiles corresponding to Nu include F; Cl; Br; I; Hydroxide; Alkoxides; Acetate (OAc), nitrate (NO 3 ), azide (N 3 ), cyanide (CN), thiocyanate (SCN), and the like.
- F F
- F 18 F
- the radioactive isotope such as 18 F may be a nucleophilic substitution reaction with the sulfonate precursor having hit the 1,2,3-triazolium salt of the present invention.
- the 1,2,3-triazolium salt according to the present invention when used in the nucleophilic fluorination reaction, the 1,2,3-triazolium salt of the formula (1)
- the sulfonate precursor having a nucleophilic substitution reaction with fluoride in an organic solvent can be prepared to give a compound of formula (14) labeled F.
- the organic solvent is acetonitrile, dimethylformaldehyde, dimethylacetaldehyde, dimethyl sulfoxide, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, chlorobenzene, chloroform, carbon tetrachloride It is preferable to use it, selecting from the group which consists of a 1, 2- dichloroethane, acetone, ethyl methyl ketone, and an alcohol.
- the alcohol may be a secondary alcohol such as isopropanol, isobutanol, isoamyl alcohol, 3-pentanol, or the like; Or t-butanol, t-amyl alcohol, 2,3-dimethyl-2-butanol, 2- (trifluoromethyl) -2-propanol, 3-methyl-3-pentanol, 3-ethyl-3-pentanol , 2-methyl-2-pentanol, 2,3-dimethyl-3-pentanol, 2,4-dimethyl-2-pentanol, 2-methyl-2-hexanol, 2-cyclopropyl-2-
- tertiary alcohols such as propanol, 2-cyclopropyl-2-butanol, 2-cyclopropyl-3-methyl-2-butanol, 1-methylcycloheptanol and the like.
- the 18 F labeling method using sulfonate precursors with 1,2,3-triazolium salts can be carried out using polymer cartridges, for example [ 18 F] fluoride in a Chromafix® (PS-HCO 3 ) cartridge. Hold in cartridge and elute [ 18 F] fluoride into reaction vessel using TBAOMs methanol solution. The eluted solution is blown with nitrogen and heated to 100-120 °C to remove the solvent and water. Next, the precursor of Chemical Formula 1 and t -amyl alcohol are added to the reaction vessel, and the reaction mixture is stirred at 120 ° C. for 10 minutes, and then cooled to room temperature to obtain a compound labeled 18 F.
- polymer cartridges for example [ 18 F] fluoride in a Chromafix® (PS-HCO 3 ) cartridge. Hold in cartridge and elute [ 18 F] fluoride into reaction vessel using TBAOMs methanol solution. The eluted solution is blown with nitrogen and heated to 100-120
- the 1,2,3-triazolium salt included in the sulfonate precursor according to the present invention is located in the leaving group of the compound to form an intermediate that interacts with the metal salt, thereby inducing the reaction faster to induce nucleophilic substitution reaction in the molecule. It is effective, and because it does not need to use an additional phase transfer catalyst, unlike the existing reaction, the cost of expensive phase transfer catalyst is reduced, and the separation of the product is easy because there is no need to use a phase transfer catalyst that is difficult to separate after the reaction.
- the compound of the present invention is used as a precursor for 18 F label, it is possible to provide a high yield of product in a short time, which can be usefully used for the preparation of radiopharmaceutical [ 18 F].
- Anhydrous dimethylformamide (20.0 mL) was added to a reaction vessel containing 60% sodium hydride (NaH, 702 mg, 17.7 mmol) under nitrogen, and propazyl alcohol ( 7a , 492 mg, 8.76 mmol) was added at 0 ° C., followed by 30 Stir at 0 ° C. for minutes.
- Anhydrous dimethylformamide (10.0 mL) solution in which benzyl bromide (1.00 g, 5.84 mmol) was dissolved was slowly added to the reaction solution, stirred at room temperature from 0 ° C. for 3 hours, and 2N hydrochloric acid was added to terminate the reaction.
- Step 2 Preparation of 3- (2-naphthoxy) propyl 3-[(4-hydroxymethyl) -1,2,3-triazol-1-yl] propane sulfonate (8a)
- Benzyl propazyl ether 7b , 150 mg, 1.02 mmol
- a compound obtained in Preparation Example 2 and the compound 2- [3- (3-azidopropanesulfonoxy) propoxy] naphthalene obtained in Step 1 of Example 1
- Target compound 3- (2-naphthoxy) propyl 3-[(4-benzyloxymethyl) -1 in the same manner as in step 2 of Example 1, except that ( 6a , 325 mg, 0.93 mmol) was used , 2,3-triazol-1-yl] propane sulfonate ( 8b , 408 mg, 89%) was obtained.
- Trimethylsilyl acetylene 124 mg, 1.26 mmol
- compound 2- [3- (3-azidopropanesulfonoxy) propoxy] naphthalene 6a , 400 mg, 1.14 mmol
- the target compound 3- (2-naphthoxy) propyl 3-[(4-trimethylsilyl) -1,2,3-triazol-1-yl] in the same manner as in step 2 of Example 1 Propane sulfonate ( 8c , 47%, 240 mg) was obtained.
- Step 1 E- [2- (2- (2- (4- (4- ( tert Preparation of -butoxycarbonyl (methyl) amino) styryl) phenoxy) ethoxy) ethoxy) ethoxy] ethyl 2-azidopropane-1-sulfonate (6b)
- Example 1 except that the compound benzyl propazyl ether ( 7b , 79.7 mg, 0.546 mmol) obtained in Preparation Example 2 and the compound 6b (300 mg, 0.496 mmol) obtained in Step 1 of Example 6 were used. In the same manner as in Step 2, 8f (82%, 307 mg) of the title compound was obtained.
- Example 6 Except for using Compound 8f (300 mg, 0.340 mmol) obtained in Example 6, the target compound 1e (355 mg, 99%) was obtained in the same manner as in Example 11.
- Example 11 Except for using the compound 8g (225 mg, 0.255 mmol) obtained in Example 7 to obtain the target compound 1f (295 mg, 99%) in the same manner as in Example 11.
- Example 8 Except for using the compound 8h (350 mg, 0.632 mmol) obtained in Example 8 to obtain the target compound 1g (452 mg, 99%) in the same manner as in Example 11.
- Example 10 Except for using Compound 8i (37 mg, 0.068 mmol) obtained in Example 10, the target compound 1h (46 mg, 96%) was obtained in the same manner as in Example 11.
- Table 2 was obtained after terminating all reactions at 30 minutes when the reaction of Category 6 showing the fastest fluorination progress among six reactions.
- the sulfonate precursor having the 1,2,3-triazolium salt according to the present invention had a phase transfer catalytic effect, and the reaction proceeded much faster than the intermolecular nucleophilic substitution through the intramolecular nucleophilic substitution.
- the reaction proceeded much faster than the intermolecular nucleophilic substitution through the intramolecular nucleophilic substitution.
- 1,2,3-triazolium sulfonate 1a prepared in Examples 11-14 above for evaluating the reactivity of the sulfonate precursor with 1,2,3-triazolium salt according to the invention to the R 1 substituent Heterogeneous nucleophilic fluorination reaction was carried out using 1d . All reactions used 0.1 mmol of sulfonate precursor and 3.0 equivalents of cesium fluoride in 1 mL of acetonitrile at 80 ° C. Table 3 below was obtained by calculating the HPLC integral value after the reaction.
- [ 18 F] fluoride ([ 18 O] H 2 O aqueous solution, 2-4 mCi) produced from cyclotron was passed through a Chromafix (PS-HCO 3 ) cartridge, followed by 0.05 M tetrabutylammonium bicarbonate (TBAHCO 3 ) eluted with methanol solution (0.5 mL). After nitrogen gas was blown and dried at 100 ° C., each precursor (5 mg) was added to the reaction vessel, followed by addition of t-amyl alcohol (0.5 mL) and reaction at 120 ° C. for 10 minutes. The progress of the reaction was confirmed by Radio-TLC at 2 minutes, 5 minutes, and 10 minutes, and the results are shown in FIG. 3.
- PS-HCO 3 Chromafix
- TBAHCO 3 0.05 M tetrabutylammonium bicarbonate
- phase transfer catalyst Since the use of a phase transfer catalyst is essential for the 18 F labeling reaction using the compound 9 as a precursor according to the prior art, a tetrabutylammonium salt serving as a phase transfer catalyst is commonly used in the experiment process in order to compare reaction rates for each precursor under the same conditions. It was. From the results in FIG. 3, it can be seen that the reaction rate was faster when the precursor of the present invention was used under the same conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
본 발명은 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 이의 제조방법 및 응용에 관한 것으로, 보다 상세하게는 상전이 촉매 효과를 갖는 유기 염을 전구체의 이탈기 부분에 도입하여 친핵체와 설포네이트 전구체의 분자내 친핵성 치환반응을 유도하여 반응 속도를 증가시킬 수 있으며, 별도의 상전이 촉매의 사용을 회피하는 효과를 나타낸다. 이는 양전자방출 단층촬영술 (Positron Emission Tomography)에 사용되는 [18F]방사성의약품의 효과적인 제조를 위한 설포네이트 전구체로 응용될 수 있다.
Description
본 발명은 양전자방출 단층촬영 (Positron Emission Tomography: PET)용 방사성 추적자로서 사용하기에 적합할 수 있는 18F로 표지된 화합물의 제조에 효과적인 1,2,3-트리아졸륨 염과 설포네이트 이탈기를 갖는 전구체에 관한 것이다. 또한, 본 발명은 상기 전구체의 제조방법 및 상기 전구체로부터 18F로 표지된 화합물을 제조하는 기술에 관한 것이다.
친핵성 치환반응은 유기화학에서 가장 많이 응용되고 있는 대표적인 유기화학 반응중 하나로서, 여러가지 작용기의 도입 및 유기화합물질의 골격을 구축하는 중요한 반응이다(A. R. Katritzky, Chem. Soc. Rev., 19, 83-105, 1990; S. R. Hartshorn, Aliphatic Nucleophilic Substitution; Cambridge University Press: Cambridge, 1973). 이중에서, 고체 형태의 친핵체를 사용하는 불균일상 친핵성 치환반응은 친핵체의 용해성 뿐만 아니라 반응성을 증가시켜주기 위해 고체-액체상 간의 상전이를 유도하는 촉매의 사용이 필수적이다(C. M. Starks, J. Am. Chem. Soc., 93 (1), 195-199, 1971; M. Makosza, Pure Appl. Chem., 72 (7), 1399-1403, 2000; A. W. Herriott, J. Am. Chem. Soc., 97 (9), 2345-2349, 1975). 대표적으로 사용되는 상전이 촉매로는 폴리에테르, 크라운 에테르, 아미노폴리에테르, 크립탄드(cryptand), 크립토픽스[2.2.2] (Kryptofix [2.2.2])로 이루어진 중성의 멀티덴테이트 (multidentate) 화합물과 테트라알킬암모늄 염, 테트라알킬포스포늄 염의 이온성 화합물들이 있다. 최근에는 상온에서 액체로 존재하는 용매인 이온성 액체 (ionic liquids)가 상전이 촉매의 역할을 한다는 것이 보고된 바 있다 (D. W. Kim, J. Am. Chem. Soc., 124, 10278-10279, 2002; Y. R. Jorapur, Bull. Korean Chem. Soc., 27 (3), 345-353, 2006).
친핵성 치환반응의 하나인, 친핵성 플루오르화 반응은 플루오라이드 이온의 낮은 반응성 때문에 높은 온도와 긴 반응시간을 필요로 한다. 뿐만 아니라, 플루오라이드 이온의 염기성으로 인하여 친핵성 플루오르화 반응시 E2 제거반응으로 인한 올레핀 화합물이 주된 부생성물로 얻어지며, 입체 장애가 있는 화합물의 경우 올레핀 화합물의 생성이 증가되는 특징이 있다. 특히, 지속적으로 관심이 높아지고 있는 핵의학 분자영상 기술인 양전자방출 단층촬영술에서 가장 많이 연구되고, 응용되고 있는 [18F]방사성추적자는 친핵성 [18F]플루오르화 반응을 통해 만들어질 수 있다 (P. W. Miller, Angew. Chem. Int. Ed., 47, 8998-9033, 2008; S. M. Ametamey, Chem. Rev., 108, 1501-1516, 2008; D. Le Bars, J. Fluorine Chem., 127, 1488-1493, 2006; M. E. Phelps, Proc. Natl. Acad. Sci. USA, 97, 9226-9233, 2000). 상기 반응에 사용되는 양전자방출 동위원소인 플루오린-18은 110분의 반감기를 갖고 있고, 생산 비용이 매우 고가이기 때문에, 가능한 빠른 시간내에 고수율로 합성되어져야 한다.
일반적으로 친핵성 플루오르화 반응은 극성의 무수 비양성자성 용매에서 수행되었고, 이때 일정량의 올레핀 부생성물이 형성되었다. 반대로, 양성자성 용매에서의 친핵성 플루오르화 반응에 있어서, 메탄올이나 에탄올과 같은 1차 알코올 용매의 경우에는 알코올 용매의 양성자와 플루오라이드 이온간의 강한 수소결합으로 반응성이 현저히 저하되어 플루오르화 반응이 잘 진행되지 않는다. 하지만, 입체장애가 크고 상대적으로 비극성인 3차 알코올 용매의 경우, 플루오라이드 이온과 용매의 양성자간의 수소결합이 약하여 플루오라이드 이온의 친핵성이 유지되며, 염기성은 크게 저하되는 특성이 있다 (D. W. Kim, J. Am. Chem. Soc., 126, 16394, 2006; WO 2006/065038 A1). 이와 같이, 3차 알코올 용매는 친핵성 플루오르화 반응의 반응선택성을 증가시키는 장점이 있지만, 기존의 극성 비양성자성 용매에서의 플루오르화 반응에 비해 반응속도가 느리다는 단점이 있다. 이와 같은 단점을 보완하기 위한 하이브리드 분자가 연구되었고, 그 결과 이미다졸륨 기반의 3차 알코올 작용기를 갖는 이온성 액체가 보고되었다 (S. S. Shinde, Tetrahedron Lett., 50, 6654-6657, 2009; S. S. Shinde, Org. Lett., 10, 733-735, 2008). 상기 이미다졸륨 기반의 이온성 액체는 세슘 플루오라이드 (CsF)을 이용한 불균일성 친핵성 플루오르화 반응에서의 비교실험 결과, 기존의 이온성 액체나, 3차 알코올 용매에서의 반응보다 훨씬 빠른 반응성을 보였으며, 이는 이온성 액체나 3차 알코올 용매에서의 반응성 합보다 더 큰 시너지 효과를 나타내었다. 또한, 상기 이미다졸륨 기반의 이온성 액체의 친핵성 플루오르화 반응은 극성 비양성자성 용매인 아세토니트릴 용매에서도 올레핀의 형성을 효과적으로 억제하였다.
친핵성 [18F]플루오르화 반응의 또 다른 연구 대상은 반응 후 생성물을 빠르고 순도 높게 분리하는 것이다. 일반적으로 방사성 동위원소인 플루오린-18은 극미량이 사용되며 플루오린-18을 표지할 설포네이트 전구체는 상대적으로 매우 과량이 사용된다. 또한, 플루오린-19를 이용하는 일반적인 친핵성 치환반응과 달리, 과량의 염기를 넣어주어야 하는 반응상의 특징이 있다. 이러한 과량의 설포네이트 전구체와 염기의 사용으로, 반응 후 원하는 플루오린-18 표지 생성물 이외에도 반응하지 않고 남아있는 과량의 설포네이트 전구체를 포함하는 많은 부생성물들이 만들어진다. 일반적으로 플루오린-18이 표지된 생성물은 HPLC를 통해 분리를 하는데, 부생성물들은 상기 플루오린-18 표지 생성물의 분리를 어렵게 하고, 분리시간이 오래 걸리도록 한다.
반응 후 부생성물과 남아있는 전구체를 효과적으로 제거하기 위해, 전구체의 설포네이트 이탈기를 반응 후 분리하기 수월하게 변형시킨 몇 가지 방법들이 개발되었다.
먼저, 설포닐 클로라이드 작용기가 있는 비용해성 고분자를 이용하여 고분자에 지지된 퍼플루오로알킬 설포네이트 전구체를 합성하고, 반응 후 여과를 통해 쉽게 제거하는 연구가 보고되었다 (WO 2005/012319 A1; L, J. Brown, Angew. Chem. Int. Ed., 46, 941-944, 2007). 그러나, 퍼플루오로알칸 설포닐 클로라이드 작용기가 있는 비용해성 고분자의 제조가 매우 복잡하고, 각 단계별 고분자의 분석자료가 미미하여 재현이 어려운 단점이 있으며, 반응 후 대부분의 화합물이 부반응에 의해 용액상으로 떨어져 나가므로 목적과는 달리 화합물 분리에 대한 효과가 없다.
또한 퍼플루오로알킬 그룹의 큰 친유성 성질을 이용하여 이탈기에 퍼플루오로알킬기를 붙인 설포네이트 전구체의 합성 및 친핵성 [18F]플루오르화 반응이 보고되었다 (R. Bejot, Angew. Chem. Int. Ed., 48, 586-589, 2009). 하지만, 반응 후 전구체를 포함한 퍼플루오로 화합물을 제거하기 위해 매우 복잡한 다단계의 고체상 추출 (solid phase extraction)를 거쳐야 하며, 이러한 번거로운 과정은 당연히 방사화학적 수율을 떨어뜨리고, 제조시간을 오히려 더 길게 한다.
최근, 본 발명자들은 대표적인 클릭화학인 구리(I)-촉매하의 알킨/아자이드 [3+2]고리화반응을 통해 1,2,3-트리아졸기를 갖는 설포네이트 전구체를 연구하였으며, 그 결과 1,2,3-트리아졸기가 금속염과 상호작용하여 분자내 친핵성 치환반응을 유도함으로써 짧은 시간 내에 높은 수율의 생성물을 제공할 수 있었다(한국특허 출원 제10-2010-0050565호).
더 나아가, 본 발명자들은 1,2,3-트리아졸 설포네이트 전구체로부터 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체에 대한 연구를 수행하였고, 1,2,3-트리아졸륨 염이 상전이 촉매로 작용하여 짧은 시간내에 높은 수율로 분자내 친핵성 치환반응을 일으키는 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 제공하는 데 있다.
본 발명의 다른 목적은 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용한 친핵성 플루오르화 반응을 제공하는 데 있다.
본 발명의 또 다른 목적은 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용하여 방사성 동위원소인 플루오린-18을 표지하는 방법을 제공하는 데 있다.
본 발명은 하기 화학식 1로 표시되는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 제공한다.
[화학식 1]
(상기 화학식 1에서 R1, R2, R3, A 및 X는 명세서에서 정의한 바와 같다)
또한, 본 발명은 상기 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법을 제공한다.
나아가, 본 발명은 상기 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용한 친핵성 플루오르화 반응을 제공한다.
나아가, 본 발명은 상기 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체 전구체를 이용하여 방사성 동위원소인 플루오린-18을 표지하는 방법을 제공한다.
본 발명에 따른 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체는 설포네이트 말단에 위치한 1,2,3-트리아졸륨 염이 효과적인 상전이 촉매로 작용하여 금속염 및 유기염과 이온교환 방법으로 분자내 친핵성 치환반응을 유도할 수 있기 때문에 반응 속도와 수율이 더 향상될 수 있다. 또한, 친핵성 플루오르화 반응시 추가적인 상전이 촉매를 사용할 필요가 없기 때문에 값비싼 상전이 촉매에 따른 비용이 절감되며, 반응 후 남아있는 극성의 설포네이트 반응물을 손쉽게 제거할 수 있는 장점이 있다.
따라서, 본 발명의 전구체를 18F 표지를 위한 전구체로서 활용하면 짧은 시간 내에 높은 수율의 생성물을 제공할 수 있어 [18F]방사성의약품 제조에 매우 유용하다.
도 1은 본 발명의 일실시예에 따른 화합물을 전구체로 이용한 분자내 친핵성 치환반응을 나타내는 도면이다.
도 2는 본 발명의 일실시예에 따른 화합물과 일반적인 전구체를 이용한 친핵성 플루오르화 반응에서의 HPLC 비교 분석 그래프이다.
도 3은 본 발명의 일실시예에 따른 화합물과 일반적인 전구체를 이용한 친핵성 [18F]플루오르화 반응에 대한 Radio-TLC 비교 분석 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 하기 화학식 1로 표시되는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 제공한다.
[화학식 1]
상기 화학식 1에서,
R1은 보호기로 치환 또는 비치환된, 양전자방출 단층촬영술에 이용되는 [18F]방사성의약품 구조에서 플루오린-18을 제외한 나머지 부분이고;
A는 단일결합 또는 C1-C50의 탄화수소기이고, 상기 C1-C50의 탄화수소기는 산소, 질소, 황, 인, 할로겐 또는 이들의 조합으로 치환 또는 비치환될 수 있고;
R2는 수소 또는 C1-C50의 탄화수소이고,
R3은 C1-C50의 탄화수소이고,
상기 R2 및 R3의 C1-C50의 탄화수소기는 산소, 질소, 황, 인, 할로겐 또는 이들의 조합으로 치환 또는 비치환될 수 있고,
X는 할로겐 음이온, 설포네이트 음이온, BF4
- , PF6
-, SbF6
-, 또는 N(Tf)2
-이다.
R1은 양전자방출 단층촬영술에 이용되는 [18F]방사성의약품 구조에서 플루오린-18을 제외한 나머지 부분으로서 수소 부분이 보호기로 치환 또는 비치환될 수 있다. R1은 양전자방출 단층촬영술에 이용되는 [18F]방사성의약품 구조에서 플루오린-18을 제외한 나머지 부분으로서 본 기술 분야에 공지된 모든 부분을 포함하며, 특별히 한정되지는 않는다.
X가 설포네이트 음이온인 경우, 본 기술 분야에 공지된 모든 설포네이트 음이온을 포함한다. 예를 들면, -ONs-, OSO2-(CF2)nCF3(이때, n은 1 내지 10의 정수), -OTs-, -Oms-, -OTf- 등일 수 있으나, 이에 한정되지는 않는다. 반응의 용이성 및 경제성의 측면에 따르면, -OTf-가 바람직하다.
본 발명의 일 실시예에 따르면,
R2는 수소; 히드록시메틸; t-부틸; 2-히드록시-이소프로필; 페닐 또는 벤질옥시메틸이고, R3는 메틸이고, X는 트리플루오로메탄설포네이트(OTf-)이다.
본 발명에 따른 화학식 1의 화합물을 하기와 같은 구조식으로 표시될 수 있다:
[화학식 1-1]
[화학식 1-2]
상기 식에서, R1, R2, R3, X 및 n은 앞서 정의한 바와 같다.
본 발명에 따른 상기 화학식 1의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 보다 구체적으로 예시하면 다음과 같다:
(1) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(2) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-히드록시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(3) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-(1-히드록시-1-메틸)에틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(4) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(5) 1-(3-(E-(2-(2-(2-(4-(4-(tert-부톡시카보닐(메틸)아미노)스티릴)페녹시)에톡시)에톡시)에톡시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(6) 1-(3-(1-(2β-(3-tert-부톡시카보닐-5-메틸-2,4-디옥소-피리미딘-1-일)-5?-트리페닐메틸옥시메틸-퓨란-4-일)옥시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(7) 1-(3-(1-(2,2,7,7-테트라메틸-테트라히드로-3aH-비스[1,3]디옥솔로[4,5-b:4',5'-d]피란-5-일)메틸옥시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
(8) 1-(2-(3-(2-나프톡시)프로폭시)설포닐)벤질)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트.
상기 화합물의 구조식을 하기 표 1에 정리하였다.
[표 1]
또한, 본 발명은 하기 반응식 1에 표시되는 바와 같이,
화학식 4로 표기되는 아지도 설포닐 클로라이드와 화학식 5로 표기되는 알코올 작용기를 갖는 화합물을 유기용매 및 염기 하에서 반응시켜 화학식 6의 아지도 설포네이트 전구체를 얻는 단계 (단계 1); 상기 단계 1에서 제조된 화학식 6으로 표기되는 아지도 설포네이트와 화학식 7로 표기되는 말단 알킨 작용기를 갖는 화합물을 유기용매 및 구리촉매 하에서 반응시켜 화학식 8의 1,2,3-트리아졸 설포네이트를 얻는 단계 (단계 2); 및 상기 단계 2에서 제조된 화학식 8로 표기되는 1,2,3-트리아졸 설포네이트 전구체를 유기용매 하에서 화학식 9로 표시되는 알킬 설포네이트와 반응시켜 화학식 1의 화합물을 얻는 단계(단계 3)를 포함하는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법을 제공한다.
[반응식 1]
(상기 반응식 1에서, R1, R2, R3 및 X와 A는 상기 화학식 1에서 정의한 바와 같다.)
이하, 본 발명에 따른 제조방법을 보다 상세히 설명한다.
본 발명에 의한 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법에 있어서, 상기 단계 1은 화학식 4로 표기되는 아지도 설포닐 클로라이드와 화학식 5로 표기되는 알코올 작용기를 갖는 화합물을 유기용매 및 염기 하에서 설포닐레이션 반응으로 화학식 6로 표기되는 아지도 설포네이트 전구체를 얻는 단계이다. 이때, 유기용매는 테트라히드로퓨란 (THF), 1,4-디옥산 (1,4-dioxane), 디클로로메탄 (CH2Cl2), 클로로포름 (CHCl3), 사염화탄소 (CCl4), 1,2-디클로로에탄 (1,2-dichloroethane), 벤젠, 톨루엔, 아세토니트릴 (acetonitrile), 디메틸포름아미드 (N,N-dimethylformamide, DMF), 디메틸설폭사이드 (dimethylsulfoxide, DMSO) 등을 사용할 수 있고, 바람직하게는 디클로로메탄, 클로로포름 또는 1,2,-디클로로에탄을 사용할 수 있다. 상기 염기는 중탄산 이온이나 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 디이소프로필에틸아민, 피리딘, 루티딘, 콜리딘의 아민 염기를 사용할 수 있고, 바람직하게는 트리에틸아민 혹은 디이소프로필에틸아민을 사용할 수 있다.
구체적으로 상기 단계 1에서는 상기 화학식 4 및 5의 화합물을 디클로로메탄에 녹이고 반응 혼합물을 0℃로 냉각한 다음 트리에틸아민을 서서히 가한 후 30분간 0℃에서 반응시켜 화학식 6의 아지도 설포네이트 전구체를 얻을 수 있다.
본 발명의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법에 있어서, 상기 단계 2는 단계 1에서 제조된 화학식 6으로 표기되는 아지도 설포네이트와 화학식 7으로 표기되는 말단 알킨 작용기를 갖는 화합물을 유기용매 및 구리촉매 하에서 반응시켜 화학식 8로 표기되는 1,2,3-트리아졸 설포네이트를 얻는 단계이다. 상기 유기용매는 테트라히드로퓨란, 1,4-디옥산, 디클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄, 벤젠, 톨루엔, 아세토니트릴, 디메틸포름아미드, 디메틸설폭사이드, 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 또는 상기 유기용매와 물의 혼합용액을 사용할 수 있고, 바람직하게는 아세토니트릴 또는 디메틸포름아미드/물의 혼합용매를 사용할 수 있다.
상기 구리 촉매는 요오드화구리 (CuI), 브롬화구리 (CuBr), 염화구리 (CuCl)로 이루어진 산화수가 1인 구리 촉매, 또는 황산구리 (CuSO4), 초산구리 (Cu(OAc)2), 질산구리 (Cu(NO3)2), 트리플루오로메탄설포네이트화구리 (Cu(OTf)2), 산화구리 (CuO)로 이루어진 산화수가 2인 구리 촉매를 사용할 수 있다. 산화수가 2인 구리 촉매를 사용할 경우 소듐-아스코베이트, 소듐 설파이트 (Na2SO3), 디티오트레이톨 (dithiothreitol)로 이루어진 환원제를 추가로 사용할 수 있다. 바람직한 구리 촉매로는 요오드화구리 또는 황산구리/소듐-아스코베이트를 사용할 수 있다.
산화수가 1인 구리 촉매를 사용할 경우에는 염기도 함께 넣어주며, 중탄산 이온이나 탄산 이온의 알칼리 금속염, 또는 아민 염기인 트리에틸아민, 디이소프로필에틸아민, 피리딘, 루티딘, 콜리딘 등을 사용할 수 있고, 바람직하게는 트리에틸아민 또는 디이소프로필에틸아민을 사용할 수 있다.
구체적으로 상기 단계 2에서는 화학식 6과 7로 표기되는 각각의 아자이드 및 알킨 화합물을 아세토니트릴 용매에 녹인 다음 상온에서 요오드화구리와 트리에틸아민을 가하고 상온에서 교반시켜 화학식 8의 1,2,3-트리아졸 설포네이트를 얻을 수 있다.
상기 단계 3은 상기 단계 2에서 얻은 화학식 8로 표기되는 1,2,3-트리아졸 설포네이트 전구체를 유기용매 하에서 화학식 9로 표시되는 알킬 설포네이트와 반응시켜 화학식 1의 1,2,3-트리아졸륨 설포네이트를 얻는 과정이다. 상기 유기용매는 테트라히드로퓨란, 1,4-디옥산, 디클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄, 벤젠, 톨루엔, 아세토니트릴, 디메틸포름아미드, 디메틸설폭사이드를 사용할 수 있고, 바람직하게는 디클로로메탄, 클로로포름, 1,2,-디클로로에탄을 사용할 수 있다.
나아가, 본 발명은 상기 화학식 1의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용한 친핵성 치환반응을 제공한다.
본 발명에 따른 화학식 1의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체는 도 1에 나타낸 바와 같이 다양한 금속염 또는 유기염 형태의 친핵체와 반응하여 화학식 3의 화합물을 제조하는데 사용될 수 있다. 도 1에서 화학식 2의 중간체 화합물은 1,2,3-트리아졸륨 염이 금속염 또는 유기염과 상호작용하여 친핵체 이온 교환이 일어나 생성되며, 도 1의 화학식 2의 중간체 화합물은 분자내 친핵성 치환반응을 통해 빠르게 생성물인 화학식 2의 화합물로 전환될 수 있다. 즉, 1,2,3-트라아졸륨염이 전구체에 도입된 구조로 인하여 친핵성 치환반응에서 반응속도가 현저히 개선될 수 있는 것이다.
이때, 도 1의 M은 Li, Na, K, Rb, Cs 등의 금속 양이온; 각각 동일하거나 상이한 C1-C8의 알킬기로 치환된 테트라알킬암모늄(tetraalkylammonium) 양이온; 각각 동일하거나 상이한 C1-C8의 알킬기로 치환된 테트라알킬포스포늄 (tetraalkylphosphonium) 양이온; 각각 동일하거나 상이한 C1-C8의 알킬기로 치환된 1,3-디알킬이미다졸륨; 각각 동일하거나 상이한 C1-C8의 알킬기로 치환된 N-알킬 피리디늄 등을 들 수 있고, Nu에 해당하는 친핵체로는 F; Cl; Br; I; 히드록사이드; 알콕사이드; 아세테이트(OAc), 니트레이트(NO3), 아자이드(N3), 시아나이드(CN), 티오시아네이트(thiocyanate, SCN) 등을 들 수 있으며, 상기 Nu가 F일 때, 상기 F는 18F를 사용할 수 있다. 따라서, 18F과 같은 방사성 동위원소를 표지하는 데에도 본 발명에 따른 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용한 친핵성 치환반응을 할 수 있다.
구체적으로 본 발명에 따른 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 친핵성 플루오르화 반응에 이용할 경우 하기 반응식 2에 나타낸 바와 같이, 화학식 1의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 유기용매 하에서 플루오라이드와 친핵성 치환 반응시켜 F가 표지된 화학식 14의 화합물을 제조할 수 있다.
[반응식 2]
(상기 반응식 2에서 R1, R2, R3 및 X와 A는 명세서에서 정의한 바와 같고, F는 18F이다)
이때, 상기 유기 용매는 아세토니트릴, 디메틸포름알데히드, 디메틸아세트알데히드, 디메틸설폭사이드, 테트라히드로퓨란, 1,4-디옥산, 1,2-디메톡시에탄, 벤젠, 톨루엔, 클로로벤젠, 클로로포름, 사염화탄소, 1,2-디클로로에탄, , 아세톤, 에틸메틸케톤 및 알코올로 이루어지는 군으로부터 선택하여 사용하는 것이 바람직하다. 상기 알코올은 아이소프로판올, 아이소부탄올, 아이소아밀알코올, 3-펜탄올 등과 같은 2차 알코올; 또는 t-부탄올, t-아밀 알코올, 2,3-다이메틸-2-부탄올, 2-(트라이플루오르메틸)-2-프로판올, 3-메틸-3-펜탄올, 3-에틸-3-펜탄올, 2-메틸-2-펜탄올, 2,3-다이메틸-3-펜탄올, 2,4-다이메틸-2-펜탄올, 2-메틸-2-헥산올, 2-싸이클로프로필-2-프로판올, 2-싸이클로프로필-2-부탄올, 2-싸이클로프로필-3-메틸-2-부탄올, 1-메틸싸이클로헵탄올 등과 같은 3차 알코올로 이루어진 군으로부터 선택하여 사용하는 것이 바람직하다.
1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용한 18F 표지 방법은 폴리머카트리지를 사용하여 수행할 수 있으며, 일례로 Chromafix®(PS-HCO3) 카트리지에 [18F]플루오라이드를 카트리지에 잡아두고, TBAOMs메탄올 용액을 이용하여 [18F]플루오라이드를 반응용기로 용출한다. 용출된 용액을 질소를 불어주며 100-120℃로 가열하여 용매와 수분을 제거한다. 다음으로 상기 화학식 1의 전구체와 t-아밀 알코올을 반응용기에 첨가하고, 반응혼합물을 120℃에서 10분간 교반시킨 후 상온으로 냉각하여 18F이 표지된 화합물을 얻을 수 있다.
본 발명에 따른 설포네이트 전구체에 포함되는 1,2,3-트리아졸륨 염은 화합물의 이탈기에 위치함으로써 금속염과 상호작용하는 중간체를 형성하여 분자내 친핵성 치환반응을 유도하기에 반응을 보다 빠르게 하는 효과가 있고, 기존의 반응과 달리 추가적인 상전이 촉매를 사용할 필요가 없기 때문에 값비싼 상전이 촉매에 따른 비용이 절감되며, 반응 후 분리가 어려운 상전이 촉매를 사용할 필요가 없으므로 생성물의 분리가 용이한 장점이 있어 본 발명의 화합물을 18F 표지를 위한 전구체로 활용시, 짧은 시간 내에 높은 수율의 생성물을 제공할 수 있어 [18F]방사성 의약품 제조에 유용하게 사용될 수 있다.
이하, 본 발명을 실시예와 실험예에 의해 상세히 설명한다. 단, 하기의 실시예와 실험예는 본 발명의 내용이 하기의 실시예와 실험예에 의해 한정되는 것은 아니다.
<제조예 1>
2-(3-히드록시프로폭시)나프탈렌 (5a)의 제조
2-나프톨 (1.00 g, 6.94 mmol)을 디메틸포름아미드 (15.0 mL)에 녹인 후, 3-브로모-1-프로판올 (0.690 mL, 7.63 mmol)을 첨가하고, 반응 혼합물을 80℃에서 15 시간 동안 교반시킨 뒤 물을 가한 다음, 에틸 아세테이트로 유기화합물을 추출하였다. 추출된 에틸 아세테이트 용액을 소듐 설페이트로 처리한 뒤 컬럼 크로마토그래피 (40% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 2-(3-히디록시프로폭시)나프탈렌 (5a, 1.08 g, 77%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.74 (br s, 1H), 2.12 (m, 2H), 3.92 (t, J = 6.0 Hz, 2H), 4.25 (t, J = 6.0 Hz, 2H), 6.16-7.13 (m, 2H), 7.34 (t, J = 7.0 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.72-7.76 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 32.2, 60.8, 65.9, 106.9, 119.0, 123.9, 126.6, 126.9, 127.8, 129.2, 129.6, 134.7, 156.9.
<제조예 2> 벤질 프로파질 에테르 (7b)의 제조
질소 하에서 60% 수소화나트륨 (NaH, 702 mg, 17.7 mmol)이 들어있는 반응용기에 무수 디메틸포름아미드 (20.0 mL)를 넣고 0℃에서 프로파질 알코올 (7a, 492 mg, 8.76 mmol)을 가한 후 30분간 0℃에서 교반시켰다. 벤질 브로마이드 (1.00 g, 5.84 mmol)가 녹아있는 무수 디메틸포름아미드 (10.0 mL) 용액을 반응 용액에 서서히 가한 후 0℃부터 상온으로 3 시간 동안 교반 한 뒤, 2 N 염산을 가해 반응을 종결시켰다. 에틸아세테이트로 유기화합물을 추출한 후, 모아진 에틸아세테이트 용액을 소듐 설페이트로 처리한 후 컬럼 크로마토그래피 (3% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 벤질 프로파질 에테르 (7b, 958 mg, 75%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.46 (t, J = 2.5 Hz, 1H), 4.17 (d, J = 2.5 Hz, 2H), 4.61 (s, 2H), 7.29-7.37 (m, 5H);
13C NMR (125 MHz, CDCl3) δ 57.2, 71.7, 74.8, 79.8, 128.1, 128.3, 128.6, 137.4.
<비교예 1> 2-(3-메탄설폰옥시프로폭시)나프탈렌 (9)의 제조
상기 제조예 1에서 얻은 2-(3-히드록시프로폭시)나프탈렌 (5a, 700 mg, 3.46 mmol)을 디클로로메탄 (10.0 mL)에 녹인 후, 메탄설포닐 클로라이드 (0.321 mL, 4.15 mmol)와 트리에틸아민 (0.723 mL, 5.19 mmol)을 차례대로 첨가한 후, 0℃에서 1 시간 동안 교반 시켰다. 물을 가하여 반응을 종결시키고, 디클로로메탄으로 유기화합물을 추출하였다. 추출된 디클로로메탄 용액을 소듐 설페이트로 처리한 후 컬럼 크로마토그래피 (40% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 2-(3-메탄설폰옥시프로폭시)나프탈렌 (9, 873 mg, 90%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.30 (quintet, J = 6.0 Hz, 2H), 3.00 (s, 3H), 4.22 (t, J = 5.8 Hz, 2H), 4.50 (t, J = 6.0 Hz, 2H), 7.13-7.15 (m, 2H), 7.34-7.37 (m, 1H), 7.44-7.48 (m, 1H), 7.73-7.79 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 29.2, 37.4, 63.3, 67.0, 106.8, 118.8, 124.0, 126.7, 126.9, 127.8, 129.2, 129.7, 134.6, 156.6.
<실시예 1>
단계 1: 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a)의 제조
상기 제조 예 1에서 얻은 화합물 2-(3-메탄설폰옥시프로폭시)나프탈렌 (5a, 200 mg, 0.99 mmol)와 3-아지도설포닐클로라이드 (4a, 200 mg, 1.09 mmol)를 사용하는 것을 제외하고는 상기 비교예 1과 동일한 방법을 수행하여 목적 화합물 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a, 342 mg, 98%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.07 (quintet, J = 6.8 Hz, 2H), 2.31 (quintet, J = 5.9 Hz, 2H), 3.19 (t, J = 7.3 Hz, 2H), 3.41 (t, J = 6.3 Hz, 2H), 4.22 (t, J = 5.8 Hz, 2H), 4.51 (t, J = 6.0 Hz, 2H), 7.15-7.16 (m, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.74-7.80 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 23.6, 29.3, 47.4, 49.3, 63.3, 67.0, 106.8, 118.8, 124.0, 126.7, 126.9, 127.8, 129.2, 129.7, 134.6, 156.5.
단계 2: 3-(2-나프톡시)프로필 3-[(4-히드록시메틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8a)의 제조
프로파질 알코올 (7a, 17.7 mg, 0.315 mmol)과 상기 실시예 1의 단계 1에서 얻은 화합물 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a, 100 mg, 0.286 mmol)을 디메닐포름아마이드 (2.00 mL)에 녹이고, 반응용액에 0.2M 황산구리 (0.29 mL, 0.057 mmol)와 0.2M 소듐-아스코베이트 (0.57 mL, 0.114 mmol) 수용액을 가하였다. 반응 혼합물을 상온에서 2 시간 동안 교반시킨 후, 물을 가한 뒤 에틸아세테이트로 유기화합물을 추출하였다. 추출된 에틸아세테이트 용액을 암모늄클로라이드 수용액으로 세척하고, 소듐설페이트로 처리한 후 컬럼 크로마토그래피 (50% 에틸아세테이트/n-헥산)를 수행하여 목적화합물 3-(2-나프톡시)프로필 3-[(4-히드록시메틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8a, 59 mg, 51%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.28 (quintet, J = 6.0 Hz, 2H), 2.42 (quintet, J = 6.9 Hz, 2H), 2.65 (br s, 1H), 3.11 (t, J = 7.3 Hz, 2H), 4.20 (t, J = 5.8 Hz, 2H), 4.42 (t, J = 6.8 Hz, 2H), 4.49 (t, J = 6.0 Hz, 2H), 4.72 (s, 2H), 7.11-7.13 (m, 2H), 7.35 (td, J = 8.0 Hz, 1.0 Hz, 1H), 7.41 (s, 1H), 7.45 (td, J = 8.3 Hz, 1.3 Hz, 1H), 7.72-7.77 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 24.6, 29.2, 46.9, 47.9, 56.5, 63.3, 67.3, 106.9, 118.8, 122.4, 124.1, 126.7, 126.9, 127.8, 129.2, 129.8, 134.6, 148.1, 156.5.
<실시예 2> 3-(2-나프톡시)프로필 3-[(4-벤질옥시메틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8b)의 제조
상기 제조예 2에서 얻은 화합물인 벤질 프로파질 에테르 (7b, 150 mg, 1.02 mmol)와 상기 실시예 1의 단계 1에서 얻은 화합물 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a, 325 mg, 0.93 mmol)를 사용하는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적 화합물 3-(2-나프톡시)프로필 3-[(4-벤질옥시메틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8b, 408 mg, 89%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.27 (quintet, J = 5.9 Hz, 2H), 2.42 (quintet, J = 6.9 Hz, 2H), 3.11 (t, J = 7.0 Hz, 2H), 4.19 (t, J = 6.0 Hz, 2H), 4.42 (t, J = 6.5 Hz, 2H), 4.48 (t, J = 6.3 Hz, 2H), 4.59 (s, 2H), 4.63 (s, 2H), 7.10-7.13 (m, 2H), 7.28-7.31 (m, 1H), 7.32-7.35 (m, 4H), 7.44 (td, J = 8.3 Hz, 1.3 Hz, 1H), 7.46 (s, 1H), 7.71-7.76 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 0.17, 24.6, 29.2, 47.0, 47.8, 63.3, 63.7, 67.3, 72.8, 104.9, 106.8, 118.8, 123.2, 124.0, 126.7, 126.9, 127.8, 128.0, 128.1, 128.6, 129.2, 129.8, 134.6, 137.9, 145.7, 156.5.
<실시예 3> 3-(2-나프톡시)프로필 3-[(4-트리메틸실릴)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8c)의 제조
트리메틸실릴 아세틸렌 (124 mg, 1.26 mmol)과 상기 실시예 1의 단계 1에서 얻은 화합물 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a, 400 mg, 1.14 mmol)을 사용하는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적 화합물 3-(2-나프톡시)프로필 3-[(4-트리메틸실릴)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8c, 47%, 240 mg)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 0.31 (s, 9H), 2.29 (quintet, J = 5.9 Hz, 2H), 2.44 (quintet, J = 6.9 Hz, 2H), 3.14 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 6.0 Hz, 2H), 4.45-4.51 (m, 4H), 7.11-7.14 (m, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.43-7.47 (m, 2H), 7.72-7.77 (m, 3H);
13C NMR (125 MHz, CDCl3) δ -0.97, 24.8, 29.3, 47.1, 47.3, 63.3, 67.3, 106.9, 118.8, 124.0, 126.7, 126.9, 127.8, 129.2, 129.6, 129.8, 134.6, 147.1, 156.5.
<실시예 4> 3-(2-나프톡시)프로필 3-(1,2,3-트리아졸-1-일)프로판 설포네이트 (8d)의 제조
상기 실시예 3에서 만든 화합물 3-(2-나프톡시)프로필 3-[(4-트리메틸실릴)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8c, 230 mg, 0.514 mmol)를 녹인 메탄올 (3.00 mL) 용액에 포타슘 플루오라이드 (45 mg, 0.77 mmol)를 가한 뒤, 50℃에서 4시간 동안 교반 시켰다. 물을 가하여 반응을 종결한 후, 에틸아세테이트로 유기화합물을 추출한 뒤, 추출된 에틸아세테이트 용액을 소듐설페이트로 처리한 후 컬럼 크로마토그래피 (80% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 3-(2-나프톡시)프로필 3-[(1,2,3-트리아졸-1-일)프로판] 설포네이트 (1d, 23%, 86 mg)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.28 (quintet, J = 6.0 Hz, 2H), 2.44 (quintet, J = 6.9 Hz, 2H), 3.10 (t, J = 7.3 Hz, 2H), 4.20 (t, J = 5.8 Hz, 2H), 4.47-4.50 (m, 4H), 7.11-7.13 (m, 2H), 7.37-7.33 (m, 1H), 7.43-7.45 (m, 2H), 7.65 (s, 1H), 7.72-7.78 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 24.7, 29.2, 46.9, 47.7, 63.3, 67.3, 106.8, 118.8, 124.1, 124.1, 126.7, 126.9, 127.8, 129.2, 129.8, 134.2, 134.6, 156.5.
<실시예 5> 3-(2-나프톡시)프로필 3-[(4-(1-히드록시-1-메틸)에틸]-1,2,3-트리아졸-1-일)프로판 설포네이트 (8e)의 제조
2-메틸-3-부틴-2-올 (26.4 mg, 0.315 mmol) 및 상기 실시예 1의 단계 1에서 얻은 화합물 2-[3-(3-아지도프로판설폰옥시)프로폭시]나프탈렌 (6a, 100 mg, 0.286 mmol)을 사용하는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적화합물 3-(2-나프톡시)프로필 3-[(4-(1-히드록시-1-메틸)에틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 (8e, 75%, 192 mg)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.61 (s, 6H), 2.29 (quintet, J = 5.9 Hz, 2H), 2.43 (quintet, J = 7.0 Hz, 2H), 3.14 (t, J = 7.0 Hz, 2H), 4.21 (t, J = 6.0 Hz, 2H), 4.41 (t, J = 6.8 Hz, 2H), 4.50 (t, J = 6.3 Hz, 2H), 7.11-7.14 (m, 2H), 7.35 (t, J = 7.8 Hz, 1H), 7.38 (s, 1H), 7.45 (t, J = 7.3 Hz, 1H), 7.72-7.78 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 24.6, 29.2, 30.6, 47.1, 47.8, 63.3, 67.3, 68.7, 106.9, 118.8, 119.8, 124.1, 126.7, 126.9, 127.8, 129.2, 129.8, 134.6, 156.0, 156.5.
<실시예 6>
단계 1: E-[2-(2-(2-(4-(4-(
tert
-부톡시카보닐(메틸)아미노)스티릴)페녹시)에톡시)에톡시)에톡시]에틸 2-아지도프로판-1-설포네이트(6b)의 제조
화합물 (E)-tert-부틸-4-(4-(2-(2-(2-히드록시에톡시)에톡시)에톡시)스티릴)페닐(메틸)카바메이트 (5b, 150 mg, 0.379 mmol)와 3-아지도프로판설포닐 클로라이드 (4a, 76.6 mg, 0.415 mmol)를 사용하는 것을 제외하고는 비교예 1과 동일한 방법으로 목적화합물 E-[2-(2-(2-(4-(4-(tert-부톡시카보닐(메틸)아미노)스티릴)페녹시)에톡시)에톡시)에톡시]에틸 2-아지도프로판-1-설포네이트 (6b, 89%, 177 mg)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 2.10 (quintet, J = 6.88 Hz, 2H), 3.24-3.27 (m, 5H), 3.47 (t, J = 6.5 Hz, 2H), 3.69-3.74 (m, 4H), 3.76-3.74 (m, 2H), 3.86 (t, J = 4.8 Hz, 2H), 4.15 (t, J = 9.0 Hz, 2H), 4.37-4.39 (m, 2H), 6.91 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 16.5 Hz, 1H), 7.01 (d, J = 16.5 Hz, 1H), 7.21 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 7.5 Hz, 4H);
13C NMR (125 MHz, CDCl3) δ 23.7, 28.5, 37.4, 47.7, 49.5, 67.7, 69.2, 69.4, 70.0, 70.8, 70.9, 71.0, 80.5, 115.0, 125.7, 126.3, 126.5, 127.9, 128.1, 130.6, 134.8, 143.0, 154.9, 158.6.
단계 2: 화합물 8f의 제조
상기 제조예 2에서 얻은 화합물 벤질 프로파질 에테르 (7b, 79.7 mg, 0.546 mmol)와 상기 실시예 6의 단계 1에서 얻은 화합물 6b (300 mg, 0.496 mmol)를 사용하는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적화합물 8f (82%, 307 mg)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 2.47 (quintet, J = 6.9 Hz, 2H), 3.20 (t, J = 7.25 Hz, 2H), 3.27 (s, 3H), 3.66-3.71 (m, 4H), 3.73-3.75 (m, 2H), 3.82 (t, J = 4.5 Hz, 2H), 4.12 (t, J = 4.5 Hz, 2H), 4.36-4.38 (m, H), 4.50 (t, J = 6.8 Hz, 2H), 4.60 (s, 2H), 4.67 (s, 2H), 6.88 (d, J = 9.0 Hz, 2H), 6.94 (d, J = 16.5 Hz, 1H), 7.00 (d, J = 16.0 Hz, 1H), 7.21 (d, J = 8.5 Hz, 2H), 7.28-7.30 (m, 1H), 7.32-7.36 (m, 4H), 7.41-7.44 (m, 4H), 7.58 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 24.7, 28.5, 37.4, 47.3, 47.9, 63.8, 67.7, 69.1, 69.8, 69.9, 70.8, 70.9, 72.8, 80.5, 115.0, 123.3, 125.7, 126.3, 126.5, 127.9, 128.0, 128.0, 128.1, 128.6, 130.6, 134.8, 138.0, 143.0, 145.6, 154.9, 158.5.
<실시예 7>
단계 1: 화합물 6d의 제조
단계 1-A: 화합물 6c의 제조
화합물 5c (300 mg, 0.584 mmol)와 3-아지도프로판설포닐 클로라이드 (4a, 118 mg, 0.643 mmol)를 피리딘 (6.00 mL)에 녹이고 실버(I) 트리플루오로메탄 설포네이트 (0.159 mL, 0.584 mmol)를 첨가한 후, 0℃부터 상온까지 밤새 교반시켰다. 물을 가하여 반응을 종결시키고, 에틸아세테이트로 유기화합물을 추출한 후, 2 N 염산으로 세척한 다음, 소듐설페이트로 처리한 후 컬럼 크로마토그래피 (40% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 6c (365 mg, 99%)를 얻었다.
1H NMR (200 MHz, CDCl3) δ 1.71-1.92 (m, 5H), 2.43-2.53 (m, 1H), 2.73-3.10 (m, 3H), 3.28-3.39 (m, 3H), 3.60-3.68 (m, 1H), 4.18-4.26 (m, 1H), 5.28 (t, J = 3.8 Hz, 1H), 6.25-6.30 (m, 1H), 7.24-7.38 (m, 10H), 7.40-7.46 (m, 6H), 9.19 (s, 1H);
13C NMR (50 MHz, CDCl3) δ 12.5, 23.1, 39.6, 48.6, 48.9, 61.3, 78.6, 81.2, 83.8, 87.5, 111.2, 127.5, 128.0, 128.6, 135.1, 143.2, 150.5, 163.7.
단계 1-B: 화합물 6d의 제조
상기 단계 1-A에서 만든 화합물 6c (218 mg, 0.345 mmol)를 테트라히드로퓨란 (3.00 mL)에 녹이고 N,N-디메틸아미노피리딘 (54.9 mg, 0.449 mmol)과 디-t-부틸디카보네이트 (90.3 mg, 0.414 mmol)를 0℃에서 첨가한 후, 1시간 동안 교반시켰다. 물을 가하여 반응을 종결한 후, 에틸아세테이트로 유기화합물을 추출한 다음, 소듐설페이트로 처리하고 컬럼 크로마토그래피 (40% 에틸아세테이트/n-헥산)를 수행하여 목적 화합물 6d (250 mg, 99%)를 얻었다.
1H NMR (200 MHz, CDCl3) δ 1.60 (s, 9H), 1.68-1.90 (m, 5H), 2.43-2.53 (m, 1H), 2.71-3.06 (m, 3H), 3.28-3.39 (m, 3H), 3.59-3.67 (m, 1H), 4.20-4.27 (m, 1H), 5.28-5.42 (m, 1H), 6.23 (dd, J = 7.7 Hz, 2.9 Hz, 1H), 7.20-7.37 (m, 10H), 7.42-7.45 (m, 6H);
13C NMR (50 MHz, CDCl3) δ 12.5, 23.1, 27.4, 39.6, 48.5, 48.9, 61.4, 78.6, 81.4, 84.2, 86.9, 87.5, 110.8, 127.5, 128.0, 128.6, 134.5, 143.2, 147.8, 148.5, 161.1.
단계 2: 화합물 8g의 제조
상기 단계 1에서 만든 화합물 6d (252 mg, 0.343 mmol)와 상기 제조예 2에서 얻은 화합물 7b (55.1 mg, 0.377 mmol)를 사용하는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적화합물 8g (235 mg, 78%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.60 (s, 9H), 1.76 (s, 3H), 2.23 (quintet, J = 6.3 Hz, 2H), 2.47 (dd, J = 15.5 Hz, 2.0 Hz, 1H), 2.73-2.79 (m, 1H), 2.85-2.97 (m, 2H), 3.36 (dd, J = 10.0 Hz, 1.0 Hz, 1H), 3.62 (dd, J = 10.0 Hz, 1.0 Hz, 1H), 4.18-4.21 (m, 1H), 4.34 (t, J = 6.5 Hz, 2H), 4.61 (s, 2H), 4.66 (s, 2H), 5.24 (t, J = 2.5 Hz, 1H), 6.20 (dd, J = 7.8 Hz, 3.3 Hz, 1H), 7.25-7.36 (m, 15H), 7.35-7.41 (m, 6H), 7.48 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 12.7, 24.3, 27.6, 39.8, 47.6, 48.3, 60.6, 61.5, 63.8, 72.9, 79.0, 81.5, 84.4, 87.1, 87.8, 111.0, 123.3, 127.7, 128.0, 128.1, 128.2, 128.7, 128.8, 134.6, 137.9, 143.3, 145.8, 148.0, 148.7, 161.3.
<실시예 8>
단계 1: 화합물 6e의 제조
1,2:3,4-디-o-아이소프로피리딘-α-D-글락토피라노스 (5d, 1.00 g, 3.84 mmol)와 3-아지도프로판설포닐 클로라이드 (4a, 641 mg, 3.49 mmol)를 사용하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 목적화합물 6e (1.549 g, 99%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.33 (d, J = 1.5 Hz, 6H), 1.45 (s, 3H), 1.54 (s, 3H), 2.11-2.18 (m, 2H), 3.23-3.35 (m, 2H), 3.45-3.54 (m, 2H), 4.09-4.11 (m, 1H), 4.23 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 4.34-4.42 (m, 4H), 4.64 (dd, J = 7.75 Hz, 2.3 Hz, 1H), 5.53 (d, 4.5 Hz, 1H);
13C NMR (125 MHz, CDCl3) δ 23.7, 24.5, 25.0, 26.1, 26.1, 47.9, 49.6, 66.6, 69.6, 70.5, 70.8, 96.4, 109.2, 110.1.
단계 2: 화합물 8h의 제조
상기 단계 1에서 얻은 화합물 6e (500 mg, 1.19 mmol)와 상기 제조예 2에서 얻은 화합물 벤질 프로파질 에테르 (7b, 191 mg, 1.30 mmol)를 디메닐포름아미드 (5.00 mL)에 녹이는 것을 제외하고는 상기 실시예 1의 단계 2와 동일한 방법으로 목적화합물 8h (629 mg, 96%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.31 (d, J = 9.0 Hz, 6H), 1.44 (s, 3H), 1.49 (s, 3H), 2.48-2.54 (m, 2H), 3.15-3.21 (m, 1H), 3.24-3.30 (m, 1H), 4.08-4.10 (m, 1H), 4.21 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 4.32-4.33 (m, 1H), 4.35-4.44 (m, 2H), 4.55 (t, J = 6.8 Hz, 2H), 4.61-4.63 (m, 3H), 4.69 (s, 1H), 5.51 (d, J = 5.0 Hz, 1H), 7.28-7.31 (m, 1H), 7.33-7.36 (m, 4H), 7.65 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 24.5, 24.8, 25.0, 26.1, 26.1, 47.5, 48.1, 63.9, 66.7, 69.9, 70.4, 70.8, 72.8, 96.3, 109.3, 110.2, 123.2, 128.0, 128.1, 128.6, 137.9, 145.6.
<실시예 9> 2-(아지도메틸)벤젠-1-설포닐 클로라이드 (4b)의 제조
단계 1: 화합물 11의 제조
ortho-톨루엔설포닐 클로라이드 (10, 5.85 g, 30 mmol)을 디클로로메탄 (100 mL)에 녹인 후 0℃에서 에탄올 (5.21 mL, 0.089 mol), 트리에틸아민 (8.35 mL, 0.060 mol), N,N-디메틸아미노피리딘 (DMAP, 364 mg, 3.0 mmol)을 차례로 넣어 준 뒤 천천히 상온까지 온도를 올리면서 1시간 교반시켰다. 반응 용액에 물을 가하고 유기층을 분리한 다음, 디클로로메탄을 이용하여 물층에서 유기화합물을 추출하였다. 모아진 유기층을 감압하에 농축시킨 뒤 컬럼 크로마토그래피 (10% 에틸아세테이트/n-헥산)로 분리하여 목적화합물 (11, 6.0 g, 98%)을 얻었다.
1H NMR (CDCl3, 400 MHz) δ 1.31 (t, J = 7.4 Hz, 3H), 2.66 (s, 3H), 4.10 (q, J = 7.3 Hz, 2H), 7.32-7.37 (m, 2H), 7.52 (t, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H);
13C NMR (CDCl3, 100 MHz) δ 14.7, 20.2, 66.7, 126.1, 129.9, 132.5, 133.6, 134.7, 138.3.
단계 2: 화합물 12의 제조
상기 단계 1에서 얻은 화합물 11 (1.5 g, 7.49 mmol)을 사염화탄소 (40 mL)에 녹인 후 N-브로모숙신이미드 (NBS, 1.36 g, 7.49 mmol), 벤조일퍼옥사이드 (363 mg, 1.12 mmol)를 차례로 넣어 준 후 3시간 동안 가열 환류시켰다. 상온까지 반응 용액을 식히고 감압하에 농축시킨 뒤 컬럼 크로마토그래피 (5% 에틸아세테이트/n-헥산)를 수행하여 액체상태인 목적화합물 12 (588 mg, 28%)를 얻었다.
1H NMR (CDCl3, 400 MHz) δ 1.39 (t, J = 7.2 Hz, 3H), 4.26 (q, J = 7.1 Hz, 2H), 4.92 (s, 2H), 7.47 (t, J = 7.7 Hz, 1H), 7.62-7.70 (m, 2H), 8.00 (d, J = 7.8 Hz, 1H);
13C NMR (CDCl3, 100 MHz) δ 14.7, 28.5, 67.6, 128.6, 130.2, 133.4, 134.2, 134.3, 137.4.
단계 3: 화합물 13의제조
상기 단계 2에서 얻은 화합물 12 (165 mg, 0.591 mmol)를 아세토니트릴 (5 mL)에 녹인 후 소듐아자이드 (77 mg, 1.18 mmol)을 넣어 주고 24시간 동안 가열 환류시켰다. 상온까지 반응 혼합 용액을 식힌 후 감압 여과한 뒤 얻어진 고체를 소량의 메탄올에 다시 녹인 다음 셀라이트를 이용하여 감압 여과하고 여과액을 감압 증류 시킨 후 건조하여 화합물 13 (125 mg, 90%)을 얻었다.
1H NMR (CD3OD, 400 MHz) δ 4.90 (s, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.44-7.52 (m, 2H), 7.94 (d, J = 7.6 Hz, 1H);
13C NMR (CD3OD, 100 MHz) δ 51.2, 126.9, 127.1, 128.9, 130.2, 133.7, 142.9.
단계 4: 화합물 4b의 제조
상기 단계 3에서 얻은 화합물 13 (145 mg, 0.616 mmol)에 아세톤 (5 mL)을 넣어 준 뒤 시아누릭 클로라이드 (TCT, 227 mg, 1.23 mmol), 18-crown-6 (49 mg, 0.185 mmol)을 넣어 주고 24시간 가열 환류시켰다. 상온까지 반응 혼합 용액을 식힌 후 감압 여과 하여 부산물을 제거시키고 여과액을 감압하에 농축시킨 뒤 컬럼 크로마토그래피 (5% 에틸아세테이트/n-헥산)를 수행하여 액체 상태의 목적화합물 4b (82 mg, 58%)를 얻었다.
1H NMR (CDCl3, 400 MHz) δ 5.02 (s, 2H), 7.58 (t, J = 8.4 Hz, 1H), 7.77-7.80 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H);
13C NMR (CD3OD, 100 MHz) δ 50.8, 128.8, 129.1, 130.5, 135.2, 135.8, 142.0.
<실시예 10> 화합물 8i의 제조
단계 1: 화합물 6f의 제조
상기 실시예 9에서 얻은 화합물 4b (80 mg, 0.345 mmol)를 디클로로메탄 (2 mL)에 녹인 후 0℃에서 상기 제조예 1에서 얻은 화합물 5a (77 mg, 0.380 mmol), 트리에틸아민 (0.072 mL, 0.518 mmol), N,N-디메틸아미노피리딘 (DMAP, 42 mg, 0.518 mmol)을 차례로 넣어 준 뒤 15분 동안 0℃에서 교반시켰다. 반응 용액에 물을 가하고 유기층을 분리한 다음, 디클로로메탄을 이용하여 물층에서 유기화합물을 추출하였다. 모아진 유기층을 감압하에 농축시킨 뒤 컬럼 크로마토그래피 (10% 에틸아세테이트/n-헥산)로 분리하여 액체 상태의 목적화합물 6f (38 mg, 28%)를 얻었다.
1H NMR (CDCl3, 400 MHz) δ 2.22 (p, J = 6.0 Hz, 2H), 4.10 (t, J = 5.8 Hz, 2H), 4.32 (t, J = 6.0 Hz, 2H), 4.81 (s, 2H), 7.00 (dd, J = 8.8, 2.4 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.39-7.46 (m, 2H), 7.53-7.56 (m, 2H), 7.70-7.72 (m, 2H), 7.76 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H);
13C NMR (CDCl3, 100 MHz) δ 28.8, 51.2, 63.1, 67.8, 106.7, 118.5, 123.8, 126.4, 126.7, 127.6, 128.3, 129.1, 129.4, 130.1, 130.4, 133.7, 134.2, 134.4, 135.4, 156.3.
단계 2: 화합물 8i의 제조
상기 단계 1에서 얻은 화합물 6f (35 mg, 0.088 mmol)를 아세토니트릴 (1.0 mL)에 녹인 후 제조예 2에서 얻은 화합물 7b (14 mg, 0.097 mmol), 요오드화구리 (2 mg, 0.01 mmol), 디이소프로필에틸아민 (0.003 mL, 0.03 mmol)을 차례로 넣어 준 뒤 상온에서 1시간 교반시켰다. 반응 용액을 감압하에 농축시킨 다음 컬럼 크로마토그래피 (30% EA/n-헥산)를 수행하여 액체 상태의 목적 화합물 8i (37 mg, 77 %)을 얻었다.
1H NMR (CDCl3, 400 MHz) δ 2.18 (p, J = 5.9 Hz, 2H), 4.05 (t, J = 5.8 Hz, 2H), 4.33 (t, J = 6.2, Hz, 2H), 4.56 (s, 2H), 4.60 (s, 2H), 5.90 (s, 2H), 6.97 (dd, J = 8.8 Hz, 2.4 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 7.12 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.26-7.33 (m, 5H), 7.35-7.44 (m, 4H), 7.60 (s, 1H), 7.67-7.70 (m, 2H), 7.74 (d, J = 8.0 Hz, 1H), 8.01 (dd, J = 7.6 Hz, 1.6 Hz, 1H).
13C NMR (CDCl3, 100 MHz) δ 28.7, 50.1, 63.0, 63.5, 68.0, 72.6, 106.7, 118.5, 123.7, 123.8, 126.5, 126.8, 127.6, 127.7, 127.8, 127.9, 128.4, 128.8, 129.1, 129.4, 130.0, 130.9, 133.5, 134.4, 134.5, 137.7, 145.5, 156.2.
<실시예 11> 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a)의 제조
상기 실시예 4에서 얻은 3-(2-나프톡시)프로필 3-[(1,2,3-트리아졸-1-일)프로판] 설포네이트 8d (120 mg, 0.320 mmol)를 아세토니트릴 (1.00 mL)에 녹이고 트리플루오로메탄설포네이트 (MeOTf, 0.063 mL, 0.384 mmol)를 가한 뒤, 0℃에서 30분간 교반시키고 용매를 감압하여 목적화합물 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 1a (172 mg, 99%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.23 (quintet, J = 5.8 Hz, 2H), 2.42 (quintet, J = 7.1 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 4.11 (s, 3H), 4.14 (t, J = 5.8 Hz, 2H), 4.46 (t, J = 6.0 Hz, 2H), 4.61 (t, J = 7.0 Hz, 2H), 7.11-7.09 (m, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.73-7.68 (m, 2H), 8.33 (s, 1H), 8.52 (s, 1H) ;
13C NMR (125 MHz, CDCl3) δ 23.8, 29.1, 40.2, 46.2, 51.6, 63.3, 67.9, 106.8, 118.9, 124.0, 126.7, 126.9, 127.8, 129.1, 129.6, 131.3, 131.9, 134.6, 156.6.
<실시예 12> 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-히드록시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1b)의 제조
상기 실시예 1에서 얻은 화합물 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)- 4-히드록시메틸-1,2,3-트리아졸 8a (128 mg, 0.316 mmol)을 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1-(3-(3-(2-나프톡시프로폭시)설포닐) 프로필)-3-메틸-4-히드록시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 1b (179 mg, 99%)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 2.25 (quintet, J = 5.9 Hz, 2H), 2.45 (quintet, J = 7.1 Hz, 2H), 3.27 (t, J = 7.2 Hz, 2H), 3.54 (br s, 1H), 4.06 (s, 3H), 4.17 (t, J = 5.80 Hz, 2H), 4.48 (t, J = 6.0 Hz, 2H), 4.57 (t, J = 7.0 Hz, 2H), 4.72 (s, 2H), 7.12-7.1 (m, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.74-7.69 (m, 3H), 8.37 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 23.6, 29.0, 38.2, 46.1, 51.5, 53.0, 63.4, 67.9, 106.8, 118.9, 124.0, 126.7, 126.9, 127.8, 129.1, 129.3, 129.6, 134.6, 144.0, 156.6.
<실시예 13> 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-(1-히드록시-1-메틸)에틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1c)의 제조
상기 실시예 5에서 얻은 3-(2-나프톡시)프로필 3-[(4-(1-히드록시-1-메틸)에틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 8e (179 mg, 0.413 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-(1-히드록시-1-메틸)에틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 1c (245 mg, 99%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.61 (s, 6H), 2.25 (quintet, J = 6.0 Hz, 2H), 2.47 (quintet, J = 7.0 Hz, 2H), 3.30 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 5.8 Hz, 2H), 4.26 (s, 3H), 4.47 (t, J = 6.3 Hz, 2H), 4.59 (t, J = 7.0 Hz, H), 7.13-7.11 (m, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.74-7.70 (m, 3H), 8.29 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 23.6, 29.0, 29.1, 40.1, 46.3, 51.6, 63.4, 67.2, 68.0, 104.9, 118.9, 124.0, 126.7, 127.0, 127.8, 127.8, 129.1, 129.6, 134.6, 149.8, 156.6.
<실시예 14> 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1d)의 합성
상기 실시예 2에서 얻은 3-(2-나프톡시)프로필 3-[(4-벤질옥시메틸)-1,2,3-트리아졸-1-일]프로판 설포네이트 8b (42 mg, 0.085 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1-(3-(3-(2-나프톡시프로폭시)설포닐) 프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 1d (47 mg, 84%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.24 (quintet, J = 5.9 Hz, 2H), 2.44 (quintet, J = 5.7 Hz, 2H), 3.29 (t, J = 7.0 Hz, 2H), 4.03 (s, 3H), 4.15 (t, J
= 5.8 Hz, 2H), 4.47 (t, J = 4.2 Hz, 2H), 4.55 (s, 2H), 4.60 (t, J = 4.8 Hz, 2H), 4.63 (s, 2H), 7.12-7.10 (m, 2H), 7.35-7.27 (m, 6H), 7.40 (t, J = 6.8 Hz, 1H), 7.72-7.68 (m, 3H), 8.39 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 23.7, 29.1, 29.9, 38.5, 46.2, 51.7, 53.6, 59.4, 63.4, 68.0, 73.9, 106.8, 118.9, 123.9, 126.6, 127.0, 127.8, 128.4, 128.7, 129.0, 129.1, 129.6, 130.0, 134.6, 136.4, 140.8, 156.6.
<실시예 15> 화합물 1e의 합성
상기 실시예 6에서 얻은 화합물 8f (300 mg, 0.340 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1e (355 mg, 99%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 2.52 (quintet, J = 6.9 Hz, 2H), 3.26 (s, 3H), 3.37 (t, J = 6.8 Hz, 2H), 3.71-3.67 (m, 4H), 3.75-3.74 (m, 2H), 3.82 (t, J = 4.2 Hz, 2H), 4.10 (t, J = 4.2 Hz, 2H), 4.16 (s, 3H), 4.39-4.38 (m, 2H), 4.59 (s, 2H), 4.70 (t, J = 6.8 Hz, 2H), 4.74 (s, 2H), 6.86 (d, J = 9.0 Hz, 2H), 6.95 (dd, J = 29.0 Hz, 16.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.37-7.29 (m, 5H), 7.41 (t, J = 9.25 Hz, 4H), 8.57 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 23.8, 28.5, 37.4, 38.7, 46.5, 51.8, 59.7, 67.7, 69.0, 69.9, 70.4, 70.7, 70.8, 74.0, 80.6, 115.0, 119.5, 122.0, 125.7, 126.3, 126.5, 127.9, 128.4, 128.7, 128.9, 130.4, 130.6, 134.7, 136.4, 141.0, 143.1, 154.9, 158.5.
<실시예 16> 화합물 1f의 합성
상기 실시예 7에서 얻은 화합물 8g (225 mg, 0.255 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1f (295 mg, 99%)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 1.59 (s, 9H), 1.93 (s, 3H), 2.45 (dd, J = 16.2 Hz, 2.6 Hz, 1H), 2.55 (quintet, J = 7.2 Hz, 2H), 2.83-2.76 (m, 2H), 3.46-3.41 (m, 2H), 3.88-3.83 (m, 1H), 3.98-3.94 (m, 1H), 4.15-4.11 (m, 1H), 4.25 (s, 3H), 4.63 (s, 2H), 4.73 (t, J = 6.8 Hz, 2H), 4.78 (s, 2H), 5.29 (t, J = 3.8 Hz, 1H), 6.17 (dd, J = 7.8 Hz, 2.6 Hz, 1H), 8.53 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 12.8, 23.8, 27.6, 38.8, 40.0, 47.1, 51.9, 59.0, 59.5, 74.1, 80.2, 82.2, 82.3, 84.5, 87.1, 110.9, 127.4, 128.1, 128.1, 128.4, 128.8, 128.9, 129.0, 130.3, 135.2, 136.2, 141.3, 147.0, 148.2, 148.8, 161.5.
<실시예 17> 화합물 1g의 합성
상기 실시예 8에서 얻은 화합물 8h (350 mg, 0.632 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1g (452 mg, 99%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.31 (d, J = 9.5 Hz, 6H), 1.44 (s, 3H), 1.50 (s, 3H), 2.57 (quintet, J = 6.8 Hz, 2H), 3.44-3.30 (m, 2H), 4.13-4.08 (m, 1H), 4.22 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 4.26 (s, 3H), 4.34-4.33 (m, 1H), 4.40-4.39 (m, 2H), 4.64-4.62 (m, 3H), 4.80-4.77 (m, 4H), 5.52 (d, J = 5.0 Hz, 1H), 7.39-7.32 (m, 5H), 8.64 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 23.9, 24.5, 25.0, 26.1, 26.1, 31.1, 38.7, 46.8, 51.9, 59.7, 66.7, 70.2, 70.4, 70.7, 70.8, 74.1, 96.3, 109.3, 110.1, 128.5, 128.8, 129.0, 130.4, 136.3, 141.1.
<실시예 18> 화합물 1h의 합성
상기 실시예 10에서 얻은 화합물 8i (37 mg, 0.068 mmol)를 사용하는 것을 제외하고는 상기 실시예 11과 동일한 방법으로 목적화합물 1h (46 mg, 96 %)를 얻었다.
1H NMR (CDCl3, 400 MHz) δ 2.20 (p, J = 5.9 Hz, 2H), 4.04-4.10 (m, 5H), 4.35 (t, J = 6.0 Hz, 2H), 4.54 (s, 2H), 4.66 (s, 2H), 5.98 (s, 2H), 6.95 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 7.26-7.35 (m, 6H), 7.43 (t, J = 7.5 Hz, 1H), 7.50-7.55 (m, 2H), 7.61-7.64 (m, 1H), 7.68-7.72 (m, 2H), 7.75 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 8.26 (s, 1H);
13C NMR (CDCl3, 100 MHz) δ 28.5, 38.5, 54.0, 59.3, 63.0, 68.6, 73.7, 106.8, 118.4, 123.9, 126.6, 126.8, 127.6, 128.2, 128.5, 128.7, 129.0, 129.3, 129.5, 129.9, 130.4, 130.6, 133.8, 134.4, 134.6, 135.1, 136.1, 140.5, 156.2.
<실험예 1> 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1d)와 3-(2-나프톡시)프로필 설포네이트 (9)의 친핵성 플루오르화 반응 비교 실험.
상기 실시예 14에서 제조된 1-(3-(3-(2-나프톡시프로폭시)설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1d)를 이용하여 본 발명의 1,2,3-트리아졸륨 염을 갖는 설포네이트의 친핵성 플루오르화 반응에서의 효과를 검토하였다. 이를 위해 일반적으로 이용되는 화학식 9의 메탄 설포네이트 이탈기를 갖는 3-(2-프로폭시)프로필 설포네이트 전구체를 동일한 조건에서 실험하여 비교하였다. 각 반응은 80℃에서 용매 1.00 mL과 설포네이트 전구체 0.1 mmol, 세슘 플루오라이드 3.0 당량을 사용하였다. 용매로는 아세토니트릴과 t-부탄올을 사용하였다. 분자간 친핵성 치환반응과 분자내 친핵성 치환반응을 비교하기 위하여 표 2의 구분 2와 구분 5에서와 같이 상전이 촉매 활성을 갖는 이온성액체인 1-부틸-3-메틸-이미다졸륨 트리플루오로메탄 설포네이트 ([bmim][OTf])를 메탄 설포네이트 전구체 화합물 9에 동일한 당량수 (0.1 mmol)를 넣어 실험하였다. 하기 표 2과 도 2는 반응 후 HPLC 적분 값을 계산하여 얻었다.
[표 2]
상기 표 2는 6가지 반응 중에서 가장 빠른 플루오르화 진행을 보인 구분 6의 반응이 종결된 30분에서 모든 반응을 종결시킨 후 얻었다.
우선, 상기 표 2에서 아세토니트릴 용매를 사용하였을 때의 결과를 보면, 상전이 촉매 없이 메탄 설포네이트 전구체 9만 넣고 반응시킨 구분 1의 경우 반응이 전혀 진행되지 않은 반면, 본 발명의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체 1d만 넣고 반응시킨 구분 3의 경우는 같은 시간 동안 다른 부생성물 없이 플루오로 화합물이 57% 형성됨을 알 수 있었다. 이는 1,2,3-트리아졸륨 그룹이 불균일상 친핵성 치환반응에서 효과적인 상전이 촉매로 작용한다는 것을 보여주는 결과이다. 또한, 메탄 설포네이트 전구체 9에 동량의 상전이 촉매인 [bmim][OTf]을 가한 후 반응시킨 구분 2의 경우 4%의 반응 진행률을 보였다. 이를 구분 3과 비교하면 구분 2는 상전이 촉매인 [bmim][OTf]가 우선적으로 [bmim][F]로 전환된 후 메탄 설포네이트 9 화합물과 분자간 상호작용을 통해 반응이 진행되지만, 본 발명의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체 1d는 그 자체가 세슘 플루오라이드와 음이온 교환을 통해 1,2,3-트리아졸륨 플루오라이드 염을 형성하고 분자내 존재하는 설포네이트 이탈기를 치환하는 방법으로 반응 속도가 현저히 증가함을 알 수 있다.
또한, 상기 표 2에서 t-부탄올 용매를 사용하였을 때의 결과를 보면, t-부탄올이 세슘 플루오라이드 고체를 용해시켜 플루오라이드 이온을 활성화시키는 작용을 통해 전체적으로 아세토니트릴 용매를 사용하였을 때 보다 빠르게 반응이 진행됨을 알 수 있다. 본 발명의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체는 30분 만에 반응이 종결된 반면 메탄 설포네이트 전구체 9를 사용한 구분 4와 구분 5는 각각 23%와 40%의 플루오르화된 화합물이 생성되었다.
따라서, 본 발명에 따른 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체가 상전이 촉매 효과가 있음을 확인하였고, 분자내 친핵성 치환반응을 통해 분자간 친핵성 치환반응보다 훨씬 빠르게 반응이 진행됨을 알 수 있었다.
<실험예 2> 1,2,3-트리아졸륨 설포네이트 전구체 1a-1d의 친핵성 플루오르화 반응
본 발명에 따른 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 R1 치환기에 대한 반응성을 평가하기 위해 상기 실시예 11-14에서 제조된 1,2,3-트리아졸륨 설포네이트 1a-1d를 이용하여 불균일상 친핵성 플루오르화 반응을 수행하였다. 모든 반응은 80℃에서 아세토니트릴 1 mL에 설포네이트 전구체 0.1 mmol과 세슘 플루오라이드 3.0 당량을 사용하였다. 하기 표 3은 반응 후 HPLC 적분 값을 계산하여 얻었다.
[표 3]
상기 표 3의 결과는 상기 실험예 1의 표 2에서의 실험과 동일한 조건으로 실시하여 얻었다. R1의 치환기가 수소인 상기 표 3의 구분 1의 경우가 가장 느린 결과를 나타내었으며, 1차 알코올기가 있는 상기 표 3의 구분 2의 경우가 72%의 반응 진행을 보여 가장 빨랐으며, 3차 알코올 치환기와 벤질옥시메틸 기가 치환된 상기 표 3의 구분 3과 4는 각각 35%, 37%의 반응 진행을 보였다.
<실험예 3> 1,2,3-트리아졸륨 설포네이트 전구체 1d, 1h와 3-(2-나프톡시)프로필 설포네이트 (9)의 친핵성 [18F]플루오르화 반응 비교 실험.
싸이클로트론으로부터 생산된 [18F]플루오라이드 ([18O]H2O 수용액, 2-4 mCi)를 크로마픽스 (PS-HCO3) 카트리지에 통과시켜 잡아둔 다음 0.05 M 테트라부틸암모늄 바이카보네이트(TBAHCO3) 메탄올 용액 (0.5 mL)으로 용출하였다. 질소 기체를 불어주며 100℃에서 건조시킨 다음 각각의 전구체 (5 mg)를 반응 용기에 첨가한 후 t-아밀 알코올 (0.5 mL)을 첨가하고 120℃에서 10분간 반응하였다. 반응의 진행은 2분, 5분, 10분에서 Radio-TLC를 통해 확인하였고, 그 결과는 도 3에 나타내었다.
종래기술에 따른 전구체인 화합물 9를 사용하는 18F 표지 반응에서는 상전이 촉매의 사용이 필수적이므로, 동일한 조건 하에서 전구체별로 반응속도를 비교하기 위하여 상전이 촉매 역할을 하는 테트라부틸암모늄염을 실험과정에서 공통적으로 사용하였다. 도 3의 결과로부터, 동일한 조건 하에서 본 발명의 전구체를 사용한 경우에 더 빠른 반응속도를 나타내었음을 알 수 있다.
Claims (10)
- 하기 화학식 1로 표시되는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체:[화학식 1]상기 화학식 1에서,R1은 양전자방출 단층촬영술에 이용되는 [18F]방사성의약품 구조에서 플루오린-18을 제외한 나머지 구조의 화합물 또는 보호기를 포함한 화합물이고,A는 단일결합 또는 C1-C50의 탄화수소기이고, 상기 C1-C50의 탄화수소기는 산소, 질소, 황, 인, 할로겐 또는 이들의 조합으로 치환 또는 비치환될 수 있고;R2는 수소 또는 C1-C50의 탄화수소이고,R3는 C1-C50의 탄화수소이고,상기 R2 및 R3의 C1-C50의 탄화수소기는 산소, 질소, 황, 인, 할로겐 또는 이들의 조합으로 치환 또는 비치환될 수 있고,X는 할로겐 음이온, 설포네이트 음이온, BF4 - , PF6 -, SbF6 -, 또는 N(Tf)2 -이다.
- 제1항에 있어서, 상기 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체는(1) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(2) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-히드록시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(3) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-(1-히드록시-1-메틸)에틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(4) 1-(3-(3-(2-나프톡시)프로폭시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(5) 1-(3-(E-(2-(2-(2-(4-(4-(tert-부톡시카보닐(메틸)아미노)스티릴)페녹시)에톡시)에톡시)에톡시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(6) 1-(3-(1-(2β-(3-tert-부톡시카보닐-5-메틸-2,4-디옥소-피리미딘-1-일)-5?-트리페닐메틸옥시메틸-퓨란-4-일)옥시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;(7) 1-(3-(1-(2,2,7,7-테트라메틸-테트라히드로-3aH-비스[1,3]디옥솔로[4,5-b:4',5'-d]피란-5-일)메틸옥시설포닐)프로필)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트; 및(8) 1-(2-(3-(2-나프톡시)프로폭시)설포닐)벤질)-3-메틸-4-벤질옥시메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체.
- 하기 반응식 1에 표시되는 바와 같이,화학식 4로 표기되는 아지도 설포닐 클로라이드와 화학식 5로 표기되는 알코올 작용기를 갖는 화합물을 유기용매 및 염기 하에서 반응시켜 화학식 6의 아지도 설포네이트 전구체를 얻는 단계 (단계 1);상기 단계 1에서 제조된 화학식 6으로 표기되는 아지도 설포네이트와 화학식 7로 표기되는 말단 알킨 작용기를 갖는 화합물을 유기용매 및 구리촉매 하에서 반응시켜 화학식 8의 1,2,3-트리아졸 설포네이트를 얻는 단계 (단계 2); 및상기 단계 2에서 제조된 화학식 8로 표기되는 1,2,3-트리아졸 설포네이트 전구체를 유기용매 하에서 화학식 9로 표시되는 알킬 설포네이트와 반응시켜 화학식 1의 화합물을 얻는 단계(단계 3)를 포함하는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법.[반응식 1](상기 반응식 1에서, R1, R2, R3 및 X와 A는 제1항의 화학식 1에서 정의한 바와 같다.)
- 제5항에 있어서,반응식 1에서 사용되는 유기용매는 테트라히드로퓨란 (THF), 1,4-디옥산 (1,4-dioxane), 디클로로메탄 (CH2Cl2), 클로로포름 (CHCl3), 사염화탄소 (CCl4), 1,2-디클로로에탄 (1,2-dichloroethane), 벤젠, 톨루엔, 아세토니트릴 (acetonitrile), 디메틸포름아미드 (N,N-dimethylformamide, DMF) 및 디메틸설폭사이드 (dimethylsulfoxide, DMSO)으로 이루어진 군으로부터 선택되는 어느 1종인 것을 특징으로 하는 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체의 제조방법.
- 제7항에 있어서, 상기 유기 용매는 아세토니트릴, 디메틸포름알데히드, 디메틸아세트알데히드, 디메틸설폭사이드, 테트라히드로퓨란, 1,4-디옥산, 1,2-디메톡시에탄, 벤젠, 톨루엔, 클로로벤젠, 클로로포름, 사염화탄소, 1,2-디클로로에탄, 아세톤, 에틸메틸케톤 및 알코올로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 18F가 표지된 화합물을 제조하는 방법.
- 제8항에 있어서, 상기 알코올은 아이소프로판올, 아이소부탄올, 아이소아밀알코올 및 3-펜탄올로 이루어지는 군으로부터 선택되는 2차 알코올; 또는 t-부탄올, t-아밀 알코올, 2,3-다이메틸-2-부탄올, 2-(트라이플루오르메틸)-2-프로판올, 3-메틸-3-펜탄올, 3-에틸-3-펜탄올, 2-메틸-2-펜탄올, 2,3-다이메틸-3-펜탄올, 2,4-다이메틸-2-펜탄올, 2-메틸-2-헥산올, 2-싸이클로프로필-2-프로판올, 2-싸이클로프로필-2-부탄올, 2-싸이클로프로필-3-메틸-2-부탄올 및 1-메틸싸이클로헵탄올로 이루어지는 군으로부터 선택되는 3차 알코올인 것을 특징으로 하는 18F가 표지된 화합물을 제조하는 방법.
- 제1항의 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체를 이용하여 친핵성 플루오르화 반응시키는 단계를 포함하는 진단용 [18F]방사성의약품의 제조 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0088184 | 2010-09-09 | ||
KR20100088184 | 2010-09-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012033374A2 true WO2012033374A2 (ko) | 2012-03-15 |
WO2012033374A3 WO2012033374A3 (ko) | 2012-06-28 |
Family
ID=45811095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/006682 WO2012033374A2 (ko) | 2010-09-09 | 2011-09-08 | 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101407970B1 (ko) |
WO (1) | WO2012033374A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020018613A1 (en) * | 2018-07-17 | 2020-01-23 | Wake Forest University Health Sciences | Compounds useful for in vivo imaging of protein oxidation and/or cancer treatment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102234360B1 (ko) * | 2014-06-10 | 2021-04-01 | 서강대학교산학협력단 | 유기염을 갖는 설포네이트 화합물, 이를 이용한 유기염을 갖는 유기플루오로 화합물 및 그 제조방법 |
KR101923383B1 (ko) | 2018-07-26 | 2019-02-22 | (주)코리아에스이 | 탄소섬유와 고황산염시멘트를 이용한 콘크리트 인공암 조형물과 이를 시공하는 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003080544A1 (en) * | 2002-03-22 | 2003-10-02 | Amersham Plc | Radiofluorination methods |
KR20040065076A (ko) * | 2003-01-15 | 2004-07-21 | 학교법인 인하학원 | 플루오린-18로 표지된 유기플루오로화합물의 제조방법 |
WO2004108636A2 (en) * | 2003-05-30 | 2004-12-16 | Perkinelmer Las, Inc. | Isotopically labeled chemically stable reagents and process for the synthesis thereof |
WO2006116629A2 (en) * | 2005-04-27 | 2006-11-02 | Siemens Medical Solutions Usa, Inc. | The preparation of molecular imaging probes using click chemistry |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2110367A1 (en) * | 2008-04-14 | 2009-10-21 | Bayer Schering Pharma Aktiengesellschaft | Purification strategy for direct nucleophilic procedures |
-
2011
- 2011-09-08 WO PCT/KR2011/006682 patent/WO2012033374A2/ko active Application Filing
- 2011-09-08 KR KR1020110091499A patent/KR101407970B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003080544A1 (en) * | 2002-03-22 | 2003-10-02 | Amersham Plc | Radiofluorination methods |
KR20040065076A (ko) * | 2003-01-15 | 2004-07-21 | 학교법인 인하학원 | 플루오린-18로 표지된 유기플루오로화합물의 제조방법 |
WO2004108636A2 (en) * | 2003-05-30 | 2004-12-16 | Perkinelmer Las, Inc. | Isotopically labeled chemically stable reagents and process for the synthesis thereof |
WO2006116629A2 (en) * | 2005-04-27 | 2006-11-02 | Siemens Medical Solutions Usa, Inc. | The preparation of molecular imaging probes using click chemistry |
Non-Patent Citations (1)
Title |
---|
LEPORE, S.D. ET AL.: 'Recent advances in heterolytic nucleofugal leaving group' TETRAHEDRON vol. 63, 2007, pages 5103 - 5122 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020018613A1 (en) * | 2018-07-17 | 2020-01-23 | Wake Forest University Health Sciences | Compounds useful for in vivo imaging of protein oxidation and/or cancer treatment |
Also Published As
Publication number | Publication date |
---|---|
KR20120026461A (ko) | 2012-03-19 |
KR101407970B1 (ko) | 2014-06-19 |
WO2012033374A3 (ko) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020384121B2 (en) | GLP-1 receptor agonist and use thereof | |
WO2013176522A1 (ko) | 카트리지를 이용한 방사성의약품 제조방법 | |
AU2017374460B2 (en) | Novel phenyl propionic acid derivatives and uses thereof | |
WO2012081880A2 (ko) | 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용 | |
WO2016064082A2 (ko) | 신규한 아미노알킬벤조티아제핀 유도체 및 이의 용도 | |
WO2021187886A1 (ko) | Glp-1 수용체 효능제, 이를 포함하는 약학적 조성물 및 이의 제조방법 | |
WO2011052888A2 (ko) | (3-플루오로-2-히드록시)프로필 작용기가 도입된 아릴 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 퇴행성 뇌질환의 진단 또는 치료용 약학적 조성물 | |
CA3162320A1 (en) | Methods of preparing n6-((2-azidoethoxy)carbonyl)lysine | |
WO2022216094A1 (ko) | Glp-1 수용체 효능제, 이를 포함하는 약학적 조성물 및 이의 제조방법 | |
WO2012033374A2 (ko) | 1,2,3-트리아졸륨 염을 갖는 설포네이트 전구체, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응 | |
WO2012157900A2 (ko) | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 | |
WO2021194244A1 (ko) | 신규한 이노토디올의 제조방법 | |
WO2016072801A1 (ko) | 유기 플루오르화 지방족 화합물의 제조방법 및 정제방법 | |
WO2022220610A1 (ko) | 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법 | |
WO2021133033A1 (ko) | 용액공정상 pna 올리고머의 제조방법 | |
WO2021246781A1 (en) | Pyridine derivatives as immunomodulators | |
WO2020101450A1 (ko) | 아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물 | |
WO2021137665A1 (ko) | Hsp90 억제제로서의 1,2,3-트리아졸 유도체 화합물 및 이의 용도 | |
WO2024034746A1 (ko) | 유기 키랄 촉매 화합물을 이용한 고리형 무수물의 비대칭 고리열림반응 생성물의 제조방법 | |
KR101214942B1 (ko) | 1,2,3-트리아졸기를 갖는 설포네이트 전구체, 이의 제조방법 및 이의 응용 | |
WO2022114333A1 (ko) | 방사성 동위원소를 포함하는 2-[18f]플루오로-4-보로노페닐알라닌의 효과적인 제조방법 | |
WO2019004693A1 (ko) | 알콕시알렌 화합물로부터 금속 촉매를 사용하여 n-글리코사이드 화합물을 위치선택적 및 입체선택적으로 제조하는 방법 | |
WO2023090858A1 (ko) | 아이속사졸 유도체의 제조 방법 및 그의 중간체 | |
WO2022220613A1 (ko) | 스핑고신-1-인산 수용체 효능제의 신규한 제조방법 | |
WO2017204554A2 (ko) | 보란촉매 존재 하에 퓨란 유도체로부터 실란 유도체의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823807 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823807 Country of ref document: EP Kind code of ref document: A2 |