WO2016067874A1 - 熱変位補正量設定変更装置を備える工作機械 - Google Patents
熱変位補正量設定変更装置を備える工作機械 Download PDFInfo
- Publication number
- WO2016067874A1 WO2016067874A1 PCT/JP2015/078588 JP2015078588W WO2016067874A1 WO 2016067874 A1 WO2016067874 A1 WO 2016067874A1 JP 2015078588 W JP2015078588 W JP 2015078588W WO 2016067874 A1 WO2016067874 A1 WO 2016067874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal displacement
- correction
- environmental temperature
- machining
- system thermal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/013—Control or regulation of feed movement
- B23Q15/04—Control or regulation of feed movement according to the final size of the previously-machined workpiece
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/18—Compensation of tool-deflection due to temperature or force
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37428—Temperature of tool
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37582—Position, angle of workpiece surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49102—Tool temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49205—Compensate with stored values as function of machining time
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49206—Compensation temperature, thermal displacement, use measured temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49209—Compensation by using temperature feelers on slide, base, workhead
Definitions
- the present invention provides a machine equipped with a changing device that enables a field worker to easily correct a correction amount related to thermal displacement correction when performing thermal displacement correction control for correcting a thermal displacement amount associated with a temperature change in the environment surrounding the machine tool. Related to machinery.
- thermal displacement A deviation in the positional relationship between the cutting edge of the tool and the workpiece due to heat is called thermal displacement.
- An NC device that controls a machine tool usually has a function of correcting a thermal displacement.
- the thermal displacement correction function a method is generally employed in which a temperature sensor is provided in a main member constituting the machine tool, and a value obtained by multiplying the temperature of each part by a coefficient is added to obtain a thermal displacement correction amount.
- the thermal displacement correction control device disclosed in Patent Document 1 measures the position of a reference sphere provided outside the processing area at regular time intervals to determine the amount of displacement, and records it together with the temperature of each part at that time. .
- the coefficient value is obtained.
- the amount of displacement measured at the reference position, the amount of displacement at the reference position when corrected using the currently effective thermal displacement correction coefficient, and the amount of displacement at the reference position when the thermal displacement correction coefficient obtained by calculation is applied. By displaying each graph, the operator is allowed to select whether or not to use the coefficient obtained by calculation.
- the apparatus shown in Patent Document 2 records the processing dimensions until thermal stabilization immediately after the start of processing along with the time, and when processing the same workpiece later, the recorded time from the start of processing and the time at that time Correction is performed based on the machining dimensions. As a result, even when the processing is not stable immediately after the start of processing, good processing dimensions can be obtained. Further, the apparatus disclosed in Patent Document 3 detects the spindle rotational speed and the spindle load, and corrects the thermal displacement by estimating the current thermal displacement amount using an arithmetic expression based on the previously estimated thermal displacement amount. ing.
- the thermal displacement when the temporal change in thermal expansion immediately after the start of machining is extremely large is used as the thermal displacement correction amount as it is as the displacement amount of the actually measured machining dimension. Limited to machining of workpieces, lacks versatility. Further, in the apparatus disclosed in Patent Document 3, the current spindle speed and load are detected, and the current thermal displacement amount is estimated using an arithmetic expression based on the previously estimated thermal displacement amount. It can be said that it accurately reflects the state of the main spindle.
- the heat source is not limited to the main shaft, and, for example, a thermal displacement amount due to a change in environmental temperature is generated, but this is not considered.
- the environmental temperature system thermal displacement amount of the machine tool depends on the environment in which the machine tool is installed, the standard environmental parameters at the time of shipment from the manufacturer often cannot accurately calculate the environmental temperature system thermal displacement amount. For example, if the same machine tool is heated in a closed environment in winter, if it is cooled in a closed environment in summer, and if the factory is opened in spring or autumn Although the environmental temperature system thermal displacement amount differs greatly, there is no one that estimates and corrects the environmental temperature system thermal displacement amount in consideration of various conditions of the environment in which the machine tool is installed. Therefore, when the environmental temperature system thermal displacement correction is not performed accurately, it is necessary to change the coefficient used in the environmental temperature system thermal displacement estimation calculation formula, but understand the estimation formula Unless it was a professional engineer, it could not be handled.
- the present invention has been devised in view of such circumstances, and its purpose is to improve these problems.
- An environmental temperature system thermal displacement amount estimation unit that calculates an environmental temperature system thermal displacement amount based on temperature values measured by the plurality of temperature sensors; and a computational thermal displacement correction amount that compensates for the environmental temperature system thermal displacement amount
- a machine tool that executes environmental temperature-based thermal displacement correction control based on an environmental temperature-based thermal displacement correction amount obtained by multiplying the correction factor by a correction magnification.
- the above machine tool performs thermal displacement correction control with the correction amount obtained by multiplying the calculated thermal displacement correction amount by the correction factor to compensate for the estimated environmental temperature system thermal displacement amount. Even if the environmental temperature system thermal displacement amount changes in accordance with various environments, it is possible to easily change the correction amount by changing the correction magnification, and it is possible to cope with various environments.
- a drive system thermal displacement amount estimation unit that calculates a drive system thermal displacement amount based on a rotational drive state and a movement drive state of the workpiece gripping unit and the tool gripping unit is further provided, and the drive system thermal displacement amount
- the technical idea 1 is that thermal displacement correction control is executed based on a total thermal displacement correction amount obtained by adding the environmental temperature system thermal displacement correction amount to a drive system thermal displacement correction amount that compensates for The machine tool described.
- the machine tool When correcting the thermal displacement generated in the machine tool, the machine tool is divided into two systems: a drive system thermal displacement caused by a heat source provided in the machine tool itself and an environmental temperature system thermal displacement caused by a heat source external to the machine tool. The amount of thermal displacement is estimated, and the amount of correction for each thermal displacement is added together for correction. Since the drive system thermal displacement is the thermal displacement caused by the heat source of the machine tool itself, analysis of the relationship between the operating state of the heat source and the thermal displacement has advanced, and it is possible in recent years to estimate the thermal displacement with high accuracy. However, the ambient temperature system thermal displacement amount varies widely depending on the location where the machine tool is installed, and it is difficult to estimate the thermal displacement amount with high accuracy.
- the above-mentioned machine tool performs the environmental temperature system thermal displacement correction by multiplying the estimated correction amount by the correction factor for the environmental temperature system thermal displacement that is difficult to correct with high accuracy. Even if the machine is placed in an unexpected environment and, as a result, the thermal displacement correction does not operate as expected, it is possible to make a simple improvement.
- Technical idea 3 Recording of execution of the environmental temperature system thermal displacement correction control is recorded as environmental temperature system thermal displacement correction record data, and the environmental temperature system thermal displacement correction record data includes the environmental temperature system thermal displacement correction amount and And a graph showing the temporal transition of the environmental temperature system thermal displacement correction based on the environmental temperature system thermal displacement correction record data, including at least the correction magnification applied to the correction amount calculation and the time when the correction was performed.
- an increase / decrease switch for temporarily changing the recording correction magnification which is the correction magnification recorded in the environmental temperature system thermal displacement correction recording data, and the temporary correction magnification changed by the increase / decrease switch is set to the environmental temperature system thermal displacement correction
- the temporal transition of the environmental temperature system thermal displacement correction when applied to the recorded data is displayed in a graph superimposed on the graph, and the correction magnification determination is performed to change the correction magnification to the temporary correction magnification.
- the machine tool according to the technical idea 2 characterized in that it comprises a switch.
- the above-mentioned machine tool records the environmental temperature system thermal displacement correction performed as data, and displays the time transition in a graph. Further, if the correction magnification at the time of implementation is changed, what kind of correction is made is calculated and displayed on a graph representing the current transition. Since the temporary correction magnification can be increased or decreased with a switch, the optimum correction magnification can be determined by checking the graph while changing the correction magnification in various ways. That is, even an operator who does not know the processing algorithm of the environmental temperature system thermal displacement correction can determine the optimal correction magnification.
- the environmental temperature system thermal displacement correction recording data is recorded at regular intervals, and the temporal transition of the environmental temperature system thermal displacement correction is a temporal transition of the environmental temperature system thermal displacement correction amount.
- the machine tool according to the technical idea 3 characterized by the above.
- the behavior of the thermal displacement of the machine tool is roughly grasped through the measurement of the machining dimension performed to ensure the machining tolerance and the input operation of the tool wear correction amount for keeping the machining dimension within the tolerance range. Since the above machine tool displays the time transition of the environmental temperature system thermal displacement correction amount as a graph, is it necessary for veteran workers who have roughly grasped the behavior of thermal displacement as described above to correct thermal displacement correctly? It can be judged sensuously. Therefore, if the thermal displacement correction is not performed accurately and the environmental temperature system thermal displacement correction graph does not match the feeling of the experienced worker, a temporary graph is created so that it becomes a graph close to that of the experienced worker. By adjusting the correction magnification, it is possible to improve so that the thermal displacement correction is performed with higher accuracy.
- the environmental temperature system thermal displacement correction record data further includes a correction axis meaning an axis to be monitored, an actual machining dimension, and a tool wear correction amount applied at the time of machining.
- the amount of tool wear caused by machining is extremely small compared to the amount of thermal displacement of the machine tool, so here the tool wear amount entered to keep the post-machining dimensions within the machining tolerance is compensated for the thermal displacement.
- the influence on the machining accuracy due to thermal displacement can be displayed in a graph.
- the graph of the processing dimension in the above calculation can be changed so as to be close to the target dimension.
- the correct correction magnification can be set while checking the graph. Therefore, even a worker who has not been able to roughly grasp the behavior of the thermal displacement of the machine tool, such as an experienced worker, can adjust the correction magnification optimally.
- the environmental temperature system thermal displacement correction record data further includes a target machining dimension, and based on the environmental temperature system thermal displacement correction record data, the calculated value of the machining dimension when no tool wear correction is performed is
- the machine tool according to the technical idea 5 further comprising an optimum correction magnification calculation unit that calculates the correction magnification that becomes a target machining dimension and sets the calculated correction magnification as the temporary correction magnification.
- the optimum correction magnification calculator calculates the correction magnification at which the calculated machining dimension when the tool wear amount is zero is the target machining dimension. It is possible to easily correct the system thermal displacement correction amount. Furthermore, by utilizing the measured value of the machining dimension (actual machining dimension), the amount of thermal displacement at the position that requires the most machining accuracy is measured, and the correction magnification is determined using that value. Accurate correction is possible at the required position.
- the environmental temperature system thermal displacement correction record data records the environmental temperature system thermal displacement correction record data at a plurality of machining sites for each workpiece, and the specific machining among the plurality of machining sites is recorded.
- the correction magnification acquired on the basis of the environmental temperature system thermal displacement correction record data in the part is set to be valid when machining the specific machining part, and valid when machining the entire workpiece including the machining part.
- the machine tool can set different correction magnifications for a plurality of machining parts, even when machining with the same tool being changed, the environment due to the different machine attitudes It is possible to cope with the difference in the amount of thermal displacement of the temperature system.
- the environmental temperature system thermal displacement may vary depending on the machining site. Even in such a case, the correction is made depending on the machining site. By changing the magnification, appropriate environmental temperature system thermal displacement correction can be performed at a plurality of locations.
- Technical idea 8 The machine tool according to technical idea 5, wherein the actual machining dimension is automatically measured and written by a measuring device.
- the machine tool can automatically measure the actual machining dimension using the measuring device provided in the machine, and can automatically input the actual machining dimension of the environmental temperature system thermal displacement correction record data. It is possible to collect data without the input work of the user.
- Technical idea 9 The machine tool according to the technical idea 5, wherein the actual machining dimension is measured and input by the operator after measuring the workpiece after machining.
- the above machine tools are to measure the actual machining dimensions during machining, the heat that accompanies the cutting stays in the workpiece and the workpiece is thermally expanded, so accurate machining dimensions can be obtained. It may not be possible. In such a case, after a predetermined time after processing, the operator can manually measure the actual processing dimension and input the actual processing dimension through the screen.
- Technical idea 10 The machine tool according to the technical idea 5, wherein the environmental temperature system thermal displacement correction recording data is recorded by a data recording command executed at the time of machining.
- the machine tool can automatically acquire necessary data when machining a workpiece by programming a data recording command in the machining program.
- the environmental temperature system thermal displacement correction record data further includes a temperature value measured by the temperature sensor, and all of the above-mentioned parameters on the same time axis as the graph showing the temporal transition of the environmental temperature system thermal displacement correction.
- FIG. 1 is a perspective view illustrating a configuration of a machine tool according to the embodiment.
- FIG. 2 is a hardware configuration diagram of the NC device provided in the machine tool according to the embodiment.
- FIG. 3 is a block diagram for estimating a thermal displacement correction amount using two systems of thermal displacement correction equations.
- FIG. 4 is a block diagram for estimating the thermal displacement correction amount in consideration of the correction magnification for one of the systems.
- FIG. 5 is a processing diagram for performing processing with the machine tool according to the embodiment.
- FIG. 6 is an example of a machining program used in the embodiment.
- FIG. 7 is a diagram showing a data structure of processing state data recorded inside in the embodiment.
- FIG. 8 is a diagram illustrating a correction magnification setting support screen according to the first embodiment.
- FIG. 9 is a diagram illustrating the graph display according to the first embodiment.
- FIG. 10 is a flowchart illustrating the graph display process according to the first embodiment.
- FIG. 11 is a diagram illustrating a flowchart for calculating the optimum correction magnification according to the first embodiment.
- FIG. 12 is a diagram illustrating a flowchart for manually setting the correction magnification according to the first embodiment.
- FIG. 13 is a diagram illustrating a display screen according to the second embodiment.
- FIG. 14 is a diagram illustrating a display screen according to the third embodiment.
- FIG. 1 shows a main configuration of a machine tool 1 according to the present embodiment.
- the machine tool 1 includes a bed 10, a work spindle 20 fixed to the bed 10, a work spindle 30 provided on the work spindle 20 so as to be rotatable in the C-axis direction, and moves on the bed 10 in the Y-axis and Z-axis directions.
- the column 40 provided so as to be movable, the tool spindle 50 provided on the column 40 so as to be movable in the X-axis direction and the B-axis direction, the tool spindle 60 rotatably provided on the tool spindle 50, and components thereof NC unit 70 for controlling the.
- a tool mounted on a chuck (not shown), which is a work gripping part mounted on the work spindle 30, is machined by a tool mounted on the tool spindle 60, which is a tool gripping part.
- temperature sensors 81 to 90 (circles in FIG. 1) are attached to the respective constituent members. Specifically, one temperature sensor 81, 82 is mounted near the upper end and the lower end of the bed 10 immediately below the processing area that is greatly affected by heat generated by cutting. Three other temperature sensors 83 to 85 are mounted on the bed 10. Two temperature sensors 86, 87 are mounted on the work spindle 20, and two temperature sensors 88, 89 are mounted on the column 40. Furthermore, one temperature sensor 90 is also mounted on the tool head stock 50. In each case, the temperature of a part that affects the posture deformation of each member is measured.
- FIG. 2 is a diagram illustrating a hardware configuration of the NC device 70 provided in the machine tool 1.
- the NC device 70 has a CPU 100 that controls the entire device.
- the CPU 100 has a machining program memory 120 for storing a program related to machining, a system program memory 121 for storing a program for controlling the entire apparatus (system), a work memory 122, and a thermal displacement correction setting via the bus line 110.
- the processing state data 250 is an example of the environmental temperature system thermal displacement correction record data, and is data used to display a graph of the temporal transition of the environmental temperature system thermal displacement correction.
- the CPU 100 also has a display control unit 200 that controls display on the display 201 via the bus line 110, and an input control unit that receives input from the keyboard 211 on the operation panel and input from the touch panel 212 arranged on the display 201. 210 is connected.
- various display data to be displayed on the display 201 in this embodiment, the processing state data input / display unit 450 of the correction magnification setting support screens 400 (FIG. 8) and 401 (FIG. 13). Further, screen display image information such as a processing dimension graph display unit 412, a temperature graph display unit 421, and other processing programs are stored.
- the CPU 100 also has an X-axis control unit 130, a Y-axis control unit 140, a Z-axis control unit 150, a B-axis control unit 160, a C-axis control unit 170, a work spindle control unit 180, and a bus line 110.
- a tool spindle control unit 190 is connected.
- Each axis control unit receives each axis movement command from the CPU 100, and sends the movement command to each axis to each axis drive circuit, that is, the X axis drive circuit 131, the Y axis drive circuit 141, the Z axis drive circuit 151, and the B axis.
- Each axis drive circuit receives this movement command, and receives an X-axis drive motor 132, a Y-axis drive motor 142, a Z-axis drive motor 152, a B-axis drive motor 162, a C-axis drive motor 172, and a workpiece spindle drive motor 182. And the tool spindle drive motor 192 is driven.
- the NC device 70 is configured by the above-described components, but is not limited to this.
- the areas in the memory may be divided with various memories as one memory, and various programs and various data may be stored in the respective areas.
- the temperature sensors 81 to 90 are mounted on each component of the machine tool 1, and the temperature detection signal of each temperature sensor is input to the CPU 100 via the interface 220 and the bus line 110.
- the thermal displacement correction setting control unit 123 processes the measured temperature values obtained from the temperature sensors 81 to 90 through the interface 220 and the internal variables created during each NC control process in the work memory 122. Processing for recording in the processing state data memory 125 as the time state data 250 (FIG. 7), processing for creating a screen image for supporting setting change of the thermal displacement correction amount, and writing to the display data memory 124 are performed. ⁇ Calculation of thermal displacement correction amount>
- FIG. 3 is a block diagram for performing thermal displacement correction control by estimating a thermal displacement amount by two systems of thermal displacement estimation units, that is, a drive system thermal displacement estimation unit 310 and an environmental temperature system thermal displacement estimation unit 320.
- the drive system thermal displacement amount estimation unit 310 uses, for example, the method described in Patent Document 3 to calculate the drive system thermal displacement amounts 311, 312, and 313 for each of the X axis, the Y axis, and the Z axis, as well as the state values and commands of the drive system. Calculated based on a value or a part of temperature measurement values.
- the environmental temperature system thermal displacement amount estimation unit 320 calculates the environmental temperature system thermal displacement amounts 321, 322, and 323 for each of the X axis, the Y axis, and the Z axis based on a plurality of temperature measurement values 1 to n. .
- the drive system thermal displacement estimation unit 310 and the environmental temperature system thermal displacement estimation unit 320 perform estimation independently of each other.
- the thermal displacement amounts 311, 312, 313, and 321, 322, 323 of the respective axes calculated by the respective thermal displacement amount estimation units are used to calculate correction amounts for compensating the displacement amounts, so that the sign inversion units 314, 315, respectively.
- the signs are inverted at 316 and 324, 325, and 326, and the drive system thermal displacement correction amounts 317, 318, and 319 and the calculated thermal displacement correction amounts 327, 328, and 329 are calculated.
- the drive system thermal displacement correction amount and the calculated thermal displacement correction amount are added by the thermal displacement correction amount adding unit 330 to calculate the total thermal displacement correction amounts 331, 332, and 333 for each axis, and the thermal displacement correction control. Execute.
- FIG. 4 shows a block diagram for performing thermal displacement correction control by adding the correction magnification processing 350, 360 and 370 to the processing block of FIG. 3 to calculate the thermal displacement correction amount.
- the correction magnification processes 350, 360, and 370 are calculated by multiplying the calculated thermal displacement correction amounts 327, 328, and 329 by correction magnifications Bx, By, and Bz that are set independently for each axis.
- the quantities 351, 361, 371 are calculated. Thereafter, as in FIG. 3, the drive system thermal displacement correction amounts 317, 318, 319 and the environmental temperature system thermal displacement correction amounts 351, 361, 371 are added in the thermal displacement correction amount addition unit 330, and the total of each axis is obtained.
- Thermal displacement correction amounts 341, 342, and 343 are calculated and thermal displacement correction control is executed. Further, a correction magnification setting support unit 380 for determining the correction magnification is provided. Correction magnification setting support screens 400, 401, and 402, which are specific examples of the correction magnification setting support unit 380, will be described later.
- the expression and coefficient for estimating the environmental temperature thermal displacement amount are often unknown or difficult to understand for the operator.
- the correction magnification setting support unit 380 displays an easy-to-understand screen display that allows a worker to make a sensuous determination.
- the environmental temperature system thermal displacement amount and the environmental temperature system thermal displacement correction amount are expressions corresponding to the driving system thermal displacement amount and the driving system thermal displacement correction amount, and include elements of the driving system in the estimation calculation formula. Means no.
- the elements of the driving system refer to command values, moving speeds, rotational speeds, driving current values, etc. relating to moving bodies and rotating bodies.
- the drive system thermal displacement amount estimation unit 310 is represented by one box.
- the drive system includes a work spindle, a tool spindle, an X axis, a Y axis, a Z axis, a B axis, and the like. C axis is present.
- each thermal displacement amount is not calculated
- FIG. 5 is a machining drawing of the workpiece according to the present embodiment.
- the workpiece according to the present embodiment has three steps on the outer diameter portion and two steps on the inner diameter portion, and one end is threaded.
- a tolerance range is specified for the outer diameter portion of ⁇ 65 and the inner diameter portion of ⁇ 40. When the tolerance range is specified in this way, the operator measures the dimension after machining and appropriately inputs the tool wear correction amount so that the machining dimension falls within the tolerance range.
- FIG. 6 shows a machining program for performing machining based on the machining drawing of FIG.
- the machining program is stored in the machining program memory 120. Below, each step of this processing program is explained. However, parts unnecessary for the description of this embodiment are omitted as appropriate.
- N1 (BAR-OUT R)” indicates the start of the outer diameter roughing process.
- X82.0Z5.0 is a movement command to the cutting start point of the outer diameter rough machining.
- the following two lines of commands starting with “G71” define specific data for executing the outer diameter roughing.
- “U3.0” and “R2.0” on the first line of “G71” define a cutting depth of 3.0 mm and a clearance of 2.0 mm.
- the details of the outer diameter roughing cycle are not described, but while cutting in the Z axis direction by cutting 3.0mm in the X axis direction once, cutting in the X axis direction repeatedly until reaching the defined shape. Cutting in the Z-axis direction is performed.
- the outer diameter rough machining cycle and the inner diameter rough machining cycle are switched, and the cutting feed direction is -Z direction and + Z direction (the machining direction of the workpiece with the first spindle gripping). And the machining direction of the workpiece of the second spindle holding).
- “P100” and “Q200” on the second line of “G71” indicate the definition part of the product shape formed in the roughing cycle. That is, “N100” to “N200” are defined portions. “U0.3”, “W0.1” and “F0.3” are the finishing allowance of 0.3 mm in the X-axis direction, the finishing allowance of 0.1 mm in the Z-axis direction, and the cutting feed of 0.3 mm during rough machining. / Rotation is defined.
- Subsequent “N100” to “N200” lines define operation settings for finishing.
- a finished shape, a nose R correction command, a finishing feed amount, and the like are defined.
- the line immediately after “N200”, that is, “G40G00Z30.0M05” cancels the nose R correction commanded during the shape definition (“G40”), escapes in the Z-axis direction, stops the main shaft, and has a rough outer diameter. Processing is finished.
- N2 (BAR-OUT F) indicates the start of the outer diameter finishing process.
- X82.0Z5.0 is a movement command to the incision start point of the outer diameter finishing process as in the outer diameter roughing process.
- G70P100Q200 is a command for finishing a machining shape defined by “N100” to “N200”.
- the subsequent “M ** A1B65.0” is a machining state data recording command for recording the internal data of the NC device when this command is executed.
- the internal data to be recorded are the work number being executed, the date / time, the tool number being used at that time, the tool wear correction amount effective at that time, and the environmental temperature system thermal displacement correction amount effective at that time.
- the correction axis is X axis for “A1”, Y axis for “A2”, and “A3” for “A3”. Record the Z axis.
- 65.0 mm is recorded as a target dimension based on “B65.0”.
- the record is stored in the processing state data memory 125 as processing state data 250 (FIG. 7) described later.
- the correction axis designates an axis to be monitored for the environmental temperature system thermal displacement correction amount. Therefore, the tool wear correction amount to be recorded is the axial component of the axis commanded as the correction axis in this case among the axial components of the X axis, Y axis, and Z axis.
- the target dimension is the dimension in the axial direction of the axis commanded as the correction axis.
- the subsequent inner diameter machining is substantially the same as the outer diameter machining, and a detailed description thereof will be omitted. Briefly, immediately after finishing inner diameter machining with “G71P300Q400” based on rows “N300” to “N400”, state data 250 at that time with “M ** A1B40.0”. Is stored in the machining state data memory 125.
- FIG. 7A is a data structure diagram of the processing state data 250 recorded in the present embodiment.
- the machining state data 250 includes a workpiece number WNO, a machining date DATE, a machining time TIME, a tool number TNO, a correction axis CAx, a target machining dimension TSz, an actual machining dimension MSz, a tool wear correction amount A $ WV, and a correction magnification A $ B.
- the actual machining dimension MSz that is not added only in the above is automatically written from the measurement data obtained by the automatic measurement operation performed by the workpiece dimension measuring apparatus executed thereafter, or the dimension of the workpiece after the operator performs machining. Is manually input by an operation on the screen described later.
- FIG. 7B is a diagram schematically showing how the state data set 251 during processing is extracted.
- the machining state data set 251 is extracted from all the machining state data 250 by the selection data guidance input unit 433 (FIG. 8) of the machining state data extraction unit 430 of the correction magnification setting support screen 400 described later. It is the data for displaying the processed dimension graph. Specifically, the machining state data set 251 first extracts data including all of the specified workpiece number WNO, tool number TNO, and correction axis CAx from all the machining state data 250, and performs machining. Rearrange in order of date DATE and processing time TIME.
- the data of the processing date DATE specified as the processing start date and the processing time TIME data, and the difference between the processing times of the preceding and succeeding data is less than a predetermined time interval A group is further extracted and created.
- the correction magnification setting support screen 400 includes a graph display unit 410, a processing state data extraction unit 430, a processing state data input / display unit 450, and a correction magnification adjustment operation unit 470.
- the graph display unit 410 includes a processing dimension graph display unit 412 displayed on the upper stage and a temperature graph display unit 421 displayed on the lower stage.
- the machining state data extraction unit 430 includes a data extraction mode switch 432, a selection data guidance input unit 433, a correction axis change / display unit 435, and a tool number change / display unit 437.
- the correction magnification adjustment operation unit 470 includes a correction magnification increase / decrease switch 472, an optimum correction magnification calculation switch 474, a correction magnification display unit 476, and a correction magnification determination switch 478.
- a processing state data set 251 to be displayed in a graph on the correction magnification setting support screen 400 is extracted from a large number of processing state data 250 accumulated over a long period of time. Is done.
- the combination of the correction axis CAx and the tool number TNO existing in the extracted machining state data 250 is the combination of the correction axis of the selection data guidance input unit 433 and the tool No. Displayed in the column.
- the extracted data is rearranged in order of processing date DATE and processing time TIME. It is assumed that the data whose difference between the processing times of the data before and after the rearranged data is less than a predetermined time interval is processed continuously. In addition, data whose processing time difference between the preceding and subsequent data is equal to or greater than a predetermined time interval is divided into a plurality of continuous processing data groups, assuming that continuous processing is interrupted before and after that.
- the processing state data set 251 for performing graph display is determined.
- the correction axis change / display unit 435 has a function of changing and displaying a target axis for changing the correction magnification setting.
- the correction axis CAx of the extracted machining state data set 251 is displayed.
- the processing state data 250 is extracted as a processing state data set 251.
- machining state data 250 having all of the extraction condition workpiece number WNO, correction axis CAx, and tool number TNO is extracted. Then, the machining date DATE and the machining time TIME are rearranged in order, the machining start date and the machining end date are displayed in a list on the machining state data extraction unit 430, and displayed with a mark indicating that the latest machining start date is selected. Is done. If there is no machining state data 250 having the set work number WNO and the tool number TNO and having the changed correction axis CAx, an alarm is displayed or the like, and the machining state data set 251 is displayed. No changes are made. However, the changed correction axis is displayed as it is, and when changing the tool number to be described next, the machining state data 250 is extracted with the changed correction axis and the new tool number.
- the tool number change / display unit 437 has a function of changing and displaying the target tool number TNO for which the correction magnification setting is changed.
- the tool number TNO of the extracted machining state data set 251 is displayed.
- the tool number is changed by operating the change switch in this state, it has the work number WNO set as described above and the correction axis CAx, and has the latest time of data having the changed tool number TNO.
- the processing state data 250 is extracted as a processing state data set 251.
- an alarm is displayed or the like, and the machining state data set 251 is displayed. No changes are made.
- a machining dimension graph is displayed based on the actual machining dimension MSz and the machining time TIME of the extracted machining state data set 251.
- the processing dimension graph display will be described later. Further, when the screen is switched to the correction magnification setting support screen 400, the processing state data set 251 extracted last time is held, and the screen is displayed with the processing state data set 251 displayed before. .
- the processing state data input / display unit 450 displays the data of the extracted processing state data set 251. It should be noted that the cursor can be moved only in the processing dimension column, and a numerical value can be manually input.
- An operator who measures the dimensions of the workpiece after machining can input the actual machining dimension MSz of the machining state data 250 using the machining state data input / display unit 450.
- the machining dimensions do not necessarily measure all the workpieces. Depending on the tendency of variations in machining dimensions, the machining dimensions may be measured every time, or once every 5 minutes or once every 10 minutes. In some cases, it is determined and measured. Accordingly, the actual machining dimension MSz may be blank. In the case of automatic measurement, the actual machining dimension MSz is already input when machining is completed.
- the correction magnification increase / decrease switch 472 of the correction magnification adjustment operation unit 470 is a switch for increasing or decreasing the correction magnification by 0.1 unit.
- the correction magnification display unit 476 displays the correction magnification B, and the correction magnification can be changed by operating the correction magnification increase / decrease switch 472.
- the changed correction magnification is not used for the estimation calculation of the actual thermal displacement amount.
- the provisional correction magnification is specified.
- the correction magnification in this state is referred to as “temporary correction magnification B ′”.
- the temporary correction magnification B ′ is used for calculation when displaying the adjusted machining dimension graph 414 on the machining dimension graph display unit 412 described later.
- the unit when the correction magnification is increased / decreased by the correction magnification increase / decrease switch 472 or rounded when calculating the optimum correction magnification has been described as 0.1, it is not limited to 0.1. By setting with parameters or the like, the unit of increase / decrease can be set freely.
- the optimum correction magnification calculation switch 474 of the correction magnification adjustment operation unit 470 by operating the optimum correction magnification calculation switch 474 of the correction magnification adjustment operation unit 470, the optimum correction magnification is calculated, and the magnification rounded by 0.1 unit is flashed and displayed on the correction magnification display unit 476. That is, the correction magnification calculated by operating the optimum correction magnification calculation switch 474 is set as the temporary correction magnification B ′, and the adjusted processing dimension graph 414 is displayed on the processing dimension graph display unit 412. Before the correction magnification determination switch 478 is operated, manual adjustment by the correction magnification increase / decrease switch 472 is also possible. Details of the process for calculating the optimum correction magnification will be described later.
- the machining dimension graph display unit 412 displays a graph showing how the machining dimensions change with time based on the extracted machining state data set 251.
- the solid line pre-adjustment machining dimension graph 413 is displayed based on the actual machining dimension MSz of the machining state data set 251 extracted by the above operation.
- the post-adjustment processed machining dimension graph 414 is displayed in a form that moves up and down in the vicinity of the pre-adjustment machining dimension graph 413 by adjusting the temporary correction magnification B ′.
- the processing dimension graph display process will be described later.
- the temperature graph display unit 421 displays a graph showing that the measured temperature values of all the temperature sensors 81 to 90 provided in the machine tool change with the passage of time on the same time axis as the above machining dimension graph. Is done. Note that the measured temperature values of all the temperature sensors 81 to 90 are recorded in association with the time every predetermined time.
- This graph display makes it possible to find a temperature sensor that shows an abnormal temperature transition, and to take measures before adjusting the correction magnification. For example, the estimation of the environmental temperature system thermal displacement does not assume that a specific part of a member constituting the machine tool is given heat or taken away by an external factor. For this reason, if the blower of an air conditioner or an adjacent machine directly hits a specific part of the machine tool, a thermal displacement that cannot be corrected by the correction magnification may occur. Since the temperature graph display unit 421 is effective in easily finding such a situation, it can be said that it is an important support function in operating this correction function based on the correction magnification.
- FIG. 9 is a diagram for explaining processing for displaying a machining dimension graph on the correction magnification setting support screen 400.
- the correction axis CAx is the X axis and the target machining dimension TSz is ⁇ 22.0 mm, which is omitted in the table.
- TIME is a processing time.
- MSz is an actual machining dimension in the machining state data set 251.
- a graph MSz indicated by a solid line in FIG. 9 represents the time change of the actual machining dimension with the machining time on the horizontal axis.
- a $ WV is a tool wear correction amount in the machining state data set 251.
- T1, T2, T3, and T4 are measured temperature values of temperature sensors provided in each part of the processing machine.
- the description here is based on an example in which four temperature sensors are provided.
- X4 is a calculated value of the machining dimension when there is no thermal displacement correction in consideration of the applied thermal displacement correction amount S1 at the same time with respect to the machining dimension X2 in the calculation without tool wear correction. That is, it is a calculated value of the machining dimension when neither tool wear correction nor environmental temperature system thermal displacement correction is performed.
- the arrow S1 shown in the graph of FIG. 9 is the applied thermal displacement correction amount at that time. It is shown that the calculated machining dimension X2 without tool wear correction is obtained by performing the thermal displacement correction with the applied thermal displacement correction amount S1 for the calculated machining dimension X4 without tool wear correction & thermal displacement correction.
- the graph X2 can be rephrased as the coordinate value of the edge position actually positioned when positioning to the target machining dimension TSz with the thermal displacement correction applied. That is, the displacement with respect to the target position, and the displacement amount that has not been completely corrected despite the application of the thermal displacement correction, is shown as the graph X2. Therefore, the calculated machining dimension X2 without tool wear correction can be said to be an example of the temporal transition of the environmental temperature system thermal displacement correction.
- S2 is obtained by multiplying the applied thermal displacement correction amount S1 by 1.6 which is the provisional correction magnification B ′.
- S2 is referred to as “thermal displacement correction amount after provisional correction magnification adjustment”.
- X3 is obtained by correcting the machining dimension X4 with the thermal displacement correction amount S2 after adjusting the temporary correction magnification in the calculation without the tool wear correction & thermal displacement correction. That is, X3 is a calculated processing dimension when the adjusted temporary correction magnification is applied.
- X3 is referred to as “calculated machining dimension after adjustment of provisional correction magnification”.
- the machining dimension graph display unit 412 of the correction magnification setting support screen 400 in FIG. 8 displays the above calculated machining dimension X2 without tool wear correction and the calculated machining dimension X3 after adjusting the temporary correction magnification.
- the calculated machining dimension X2 without tool wear correction is a pre-adjustment machining dimension graph 413, which is displayed as a solid line.
- the calculated processing dimension X3 after adjusting the temporary correction magnification is a post-adjustment processing dimension graph 414, which is displayed as a dotted line.
- the temporary correction magnification B ′ is automatically calculated. That is, immediately after extracting the machining state data set 251 to be displayed as the machining dimension graph, only the pre-adjustment machining dimension graph 413 is displayed.
- the post-adjustment processing dimension graph 414 is displayed above the pre-adjustment processing dimension graph 413 by increasing the provisional correction magnification B ′.
- the larger the temporary correction magnification B ' the higher the graph can be moved.
- the post-adjustment processing dimension graph 414 is displayed below the pre-adjustment processing dimension graph 413 by reducing the temporary correction magnification B ′.
- the post-adjustment processing dimension graph 414 As described above, as a result of moving the post-adjustment processing dimension graph 414 up and down, it can be visually confirmed whether or not the post-adjustment processing dimension graph 414 changes in the vicinity of the target processing dimension TSz. That is, the effect of correction by the correction magnification is expressed in a visible form, and the operator can determine the correction magnification with confidence.
- FIG. 10 is a flowchart for explaining the procedure of the processing dimension graph display process. This flowchart will be described based on the data shown in FIG.
- the arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
- step S20 the CPU 100 calculates the calculated machining dimension X4 without the tool wear correction & thermal displacement correction from the calculated machining dimension X2 without the tool wear correction.
- S1 A $ HCX.
- the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction is calculated in advance at this point in order to be used for optimum correction magnification calculation processing described later and a graph display at the time of manual setting.
- step S30 the machining dimension X2 is calculated and displayed in a graph by the graph display program.
- This graph is the pre-adjustment processing dimension graph 413 of FIG. However, the graph is not displayed for the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction.
- FIG. 11 is a flowchart for explaining the procedure of the optimum correction magnification calculation process. This processing is started when the operator operates the optimum correction magnification calculation switch 474 in a state where the processing state data set 251 to be displayed is extracted and the pre-adjustment processing dimension graph 413 is displayed. The arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
- step S100 the CPU 100 calculates a provisional correction magnification B ′. That is, at the latest time when the machining dimension graph is displayed, the value of the machining dimension X4 and the value of the target machining dimension TSz calculated during the processing of FIG. First, the difference (TSz ⁇ X4) is calculated. Next, the CPU 100 divides the environmental temperature system thermal displacement correction amount A $ HCX (that is, S1) effective at the latest time by the correction magnification A $ B that is effective at that time (that is, the correction magnification). By dividing by the calculated thermal displacement correction amount converted to 1) and rounding by 0.1 unit, a temporary correction magnification B ′ for automatic calculation is obtained.
- B ′ ROUND ((TSz ⁇ X4) / (S1 / A $ B), 1).
- the calculation process for calculating the optimum correction magnification is an optimum correction magnification calculator.
- Tool wear correction & no thermal displacement correction In the calculation, the machining dimension X4 is a machining dimension when neither tool wear correction nor thermal displacement correction is performed. Therefore, if the difference from the target machining dimension is the thermal displacement correction amount, the tool wear is corrected. It should be the target machining dimension without correction.
- step S110 the CPU 100 divides the applied thermal displacement correction amount S1 by the applied correction magnification A $ B (that is, the calculated thermal displacement correction amount converted to the correction magnification 1). ) Is multiplied by the provisional correction magnification B ′ to calculate the environmental temperature system thermal displacement correction amount S2 to which the provisional correction magnification is applied.
- the applied thermal displacement correction amount has been described on the assumption that the correction magnification is 1.
- a process of dividing by the applied correction magnification A $ B is added.
- step S120 the CPU 100 calculates X3 by adding the environmental temperature system thermal displacement correction amount S2 obtained by applying the temporary correction magnification to the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction.
- X3 is a calculated processing dimension when the provisional correction magnification is applied.
- step S130 the graph display program displays this X3 as a graph.
- This graph is the post-adjustment processing dimension graph 414 of FIG.
- step S140 the operator looks at the graph display and determines whether the machining accuracy has improved. If the operator determines that the machining accuracy has improved (OK), the operator operates the correction magnification determination switch 478 to determine the temporary correction magnification B ′ as the correction magnification B in step S150. Subsequent thermal displacement correction is calculated using the determined correction magnification B, and environmental temperature system thermal displacement correction control is performed.
- step S140 when the operator is not satisfied with the machining accuracy of the post-adjustment machining dimension graph 414 (NG), the process proceeds to step S160, and a manual setting process described later is executed.
- FIG. 12 is a flowchart for explaining a manual setting process procedure for setting the correction magnification manually. This processing is executed when the correction magnification adjustment operation unit 470 of the correction magnification setting support screen 400 is operated. In step S160 in the optimum correction magnification calculation process of FIG. 11, when the automatically calculated correction magnification is not satisfied, the correction magnification automatically calculated using the correction magnification adjustment operation unit 470 is manually changed. This is the case.
- the solid line pre-adjustment processing dimension graph 413 is displayed on the processing dimension graph display unit 412 by the processing dimension graph display processing of FIG.
- Calculation without tool wear correction & thermal displacement correction For calculation dimension X4, a graph is not displayed but calculation is performed.
- the calculated machining dimension X2 without tool wear correction is a value obtained by adding the applied thermal displacement correction amount S1 to the calculated machining dimension X4 without tool wear correction & thermal displacement correction.
- the arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
- step S210 the operator manually changes the temporary correction magnification B 'by operating the correction magnification increase / decrease switch 472.
- step S220 the CPU 100 applies the temporary correction magnification by multiplying the value obtained by dividing the applied thermal displacement correction amount S1 by the applied correction magnification A $ B by the changed temporary correction magnification B ′.
- An environmental temperature system thermal displacement correction amount S2 is calculated.
- step S230 the CPU 100 adds the environmental temperature system thermal displacement correction amount S2 to which the temporary correction magnification is applied to the machining dimension X4 in the calculation without the tool wear correction & thermal displacement correction, and calculates when the temporary correction magnification is applied.
- a machining dimension X3 is calculated.
- step S240 the calculated machining dimension X3 when the temporary correction magnification is applied by the graph display program is displayed in a graph. This is the post-adjustment processing dimension graph 414 in FIG.
- step S250 the operator determines whether or not the post-adjustment machining dimension graph 414 can be adopted. If the worker determines that the employment is not possible (NG), the process returns to step S210, and the worker readjusts the temporary correction magnification B ′. If the worker determines that the job can be accepted (OK), the process proceeds to step S260, and the worker operates the correction magnification determination switch 478. Thereby, the provisional correction magnification B ′ is set to the correction magnification B, and the subsequent correction magnification B is determined.
- the applied thermal displacement correction amount S1 is multiplied by the correction magnification, so that the dotted line display of the post-adjustment machining dimension graph 414 is the adjustment of the solid line display. It appears on the upper side of the pre-processed dimension graph 413.
- the operator operates the correction magnification increase / decrease switch 472 to move up and down the adjusted processing dimension graph 414 of the dotted line display, determines a good correction magnification closest to the target dimension, and operates the correction magnification determination switch 478 to perform correction. The magnification can be determined.
- the operator can bring the adjusted processing dimension graph closer to the target dimension by adjusting the correction magnification.
- the work that does not feel uncomfortable for the operator corrects the correction amount of the environmental temperature system thermal displacement correction. Therefore, it is possible to solve the problem that the conventional worker feels that the thermal displacement correction is not accurately corrected but cannot correct it.
- the purpose of measuring the machining dimension by the operator is to specify the tolerance and to ensure accuracy.
- the thermal displacement amount at the position where the most accuracy is required is measured, and the environmental temperature system thermal displacement correction is performed with high accuracy. It becomes possible.
- the post-processing dimension measurement performed to maintain the processing accuracy is merely a normal task for the operator. As a result, the environmental temperature system thermal displacement correction can be adjusted with high accuracy without placing a new burden on the operator.
- the optimum correction magnification calculation function is used, the optimum correction magnification at which the adjusted machining dimensions are close to the target value is automatically calculated. For this reason, even an inexperienced operator can easily correct the environmental temperature system thermal displacement correction amount.
- FIG. 13 shows a correction magnification setting support screen 401 according to the second embodiment.
- processing state data 250 for a plurality of processing parts can be recorded.
- a correction magnification effective range setting / display unit 434 for setting and displaying an effective range of the correction magnification B in the processing state data extraction unit 431 is added.
- the display method of the selection data guidance input unit 433 is different from the correction magnification setting support screen 400 (FIG. 8) of the first embodiment.
- the workpiece number WNO and the correction axis CAx are identified even after the plurality of machining parts are specified. Display is made. For example, in FIG. 13, a machining part with tool number 3 and a machining part with tool number 6 are displayed as two machining parts. FIG. 13 shows an example in which the tool numbers are different. Even if the tool numbers are the same, if the target machining dimension TSz specified by B of “M ** A * B **” in the machining program is different. Of course, the machining site is also different, and the same tool number TNO may be displayed. Therefore, even if the target dimension column is added to the selection data guidance input unit 433 and the tool number TNO is the same, the machining site can be correctly selected.
- the correction magnification B is set based on the machining state data 250 recorded in one machining part.
- this is not necessarily an ideal correction magnification for the other processed part.
- the direction and amount of the thermal displacement amount may differ between the inner diameter machining and the outer diameter machining because the B-axis positioning angle of the tool spindle is different. Therefore, by making it possible to change the correction magnification for each processing part, it is possible to cope with the difference in the amount of thermal displacement due to the change in the posture of the members constituting the machine tool.
- the correction magnification effective range setting / display unit 434 is an operation means for changing and displaying each effective range for a plurality of correction magnifications set based on the machining state data 250 regarding a plurality of machining parts.
- the effective range is automatically “General”. Thereby, the set correction magnification is applied to all machining operations.
- the effective range is automatically “limited”. Thereby, the correction magnification is applied only to the processing of the processing part. That is, it is limited only to the finishing process when the processing state data 250 is recorded. The same applies to the third and subsequent items.
- the correction magnification to be applied in a limited manner is automatically set so that it is generally applied according to the order of setting work.
- the application can be changed to a limited application by pressing the “Limit” switch while “General” is lit. By this operation, all correction magnifications are “limited”.
- the machining site designated as “limited” is changed to “general”, and the other machining sites designated as “general” are automatically changed to “limited”. Note that when “general” and “limited” are set as the effective range, all other processed parts except the processed part that is “limited” are the “general” effective range.
- FIG. 14 shows a correction magnification setting support screen 402 according to the third embodiment.
- a correction amount graph display unit 416 is displayed instead of the machining dimension graph display unit 412.
- the correction amount graph display unit 416 displays the temporal transition of the environmental temperature thermal displacement correction amount in a graph.
- the tendency of the thermal displacement amount is often roughly grasped through measurement of a machining dimension performed to compensate machining accuracy and input work of a tool wear correction amount.
- the operator determines whether the correction amount is large or small simply by displaying in a graph how the thermal displacement correction amount changes over time. For this purpose, the operator operates the correction magnification increase / decrease switch 472 of the correction magnification adjustment operation unit 471 to display the adjusted correction amount graph 418 so that the correction value can be corrected.
- the environmental temperature system thermal displacement correction amount and the correction magnification effective at a certain time point in the NC device are stored in the memory together with the time as environmental temperature system thermal displacement correction recording data.
- an environmental temperature system thermal displacement correction recording data memory is prepared separately. Using this data, the correction amount graph 417 before adjustment has recorded the recorded environmental temperature system thermal displacement correction amount as it is, and the correction amount graph 418 after adjustment has recorded the recorded environment temperature system thermal displacement amount. After dividing by the correction magnification, it is multiplied by the provisional correction magnification B ′ to display a graph. Therefore, since this correction magnification setting support device does not require manual input of the machining dimensions, the burden on the operator is further reduced.
- the machine tool is embodied in a machine tool that controls a total of five axes including three linear axes and two rotating axes.
- the present invention is also applicable to a linear two-axis lathe and a linear or three-axis vertical or horizontal machining center. Is possible.
- the turning process program it is applicable also in the program which rotates a tool and processes.
- the drive system thermal displacement estimation unit and the environmental temperature system thermal displacement estimation unit have been described, but instead of or in addition to the drive system thermal displacement amount, a configuration having some heat generating member,
- the present invention can also be applied when a configuration having a heat radiating member is provided. In that case, the amount of thermal displacement based on a specific heat generation or heat radiating member may be estimated, and correction may be made comprehensively together with the amount of environmental temperature thermal displacement.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Abstract
Description
また、特許文献3に示される装置は、主軸回転数および主軸負荷を検出し、前回推定した熱変位量に基づく演算式を用いて今回の熱変位量を推定して熱変位を補正するようにしている。
また、特許文献3に示される装置では、現在の主軸回転数および負荷を検出し、前回推定した熱変位量に基づく演算式を用いて今回の熱変位量を推定しているため、最大の発熱源である主軸の状態を正確に反映しているといえる。しかし、発熱源は主軸だけではなく、例えば環境温度の変化に伴う熱変位量も発生するが、それに関しては考慮されてはいない。
技術的思想1:ワークを把持するワーク把持部と、工具を把持する工具把持部と、を備え、前記ワーク把持部および前記工具把持部の少なくともいずれか一方を回転駆動し、前記ワーク把持部および前記工具把持部の少なくともいずれか一方を所定の方向へ移動駆動することにより、前記ワークを前記工具で加工する工作機械であって、前記工作機械を構成する部材に装着した複数の温度センサと、前記複数の温度センサが測定した温度値に基づき環境温度系熱変位量を計算する環境温度系熱変位量推定部と、を設け、前記環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して得られる環境温度系熱変位補正量に基づいて環境温度系熱変位補正制御を実行することを特徴とする工作機械。
更に、加工寸法の計測値(実績加工寸法)を活用することで、最も加工精度を要する位置の熱変位量を計測したことになり、その値を用いて補正倍率を決定するため、加工精度が必要な位置において正確な補正が可能となる。
技術的思想11:前記環境温度系熱変位補正記録データは、前記温度センサが測定した温度値を更に含み、前記環境温度系熱変位補正の時間的推移を表すグラフと同一時間軸ですべての前記温度値の推移をグラフ表示することを特徴とする技術的思想4または5に記載の工作機械。
工作機械の各構成部材に装着された温度センサが故障すると、当然、環境温度系熱変位補正制御は正常には動作しない。また、工作機械の外周の特定の領域にエアコン等の風が直接当ると、想定された熱変位とは異なる挙動を示す。その場合、その環境に則した熱変位量を推定するようにパラメータや処理を変更するよりは、その様な事態を回避した方が、つまり、風が直接当らないように工作機械の外周に壁を設ける等の対策を施した方が、ユーザにとっても分かり易い解決策と言える。本機能は、温度センサの故障や、局所的な想定外の温度状態を、容易に判別が可能であり、処理アルゴリズムが難解な熱変位補正機能を正常に動作させようとして無駄な努力を行うことを回避することができる。
図1は、本実施例の工作機械1の主要な構成を示す。工作機械1は、ベッド10、ベッド10に固定されたワーク主軸台20、ワーク主軸台20にC軸方向に回転自在に備えられたワーク主軸30、ベッド10上をY軸およびZ軸方向に移動可能に備えられたコラム40、コラム40上をX軸方向およびB軸方向に移動可能に備えられた工具主軸台50、工具主軸台50に回転自在に備えられた工具主軸60およびこれらの構成部材を制御するNC装置70、から構成される。工具把持部である工具主軸60に装着された工具によって、ワーク主軸30に装着されたワーク把持部である非図示のチャックに装着されたワークを加工する。また、図1に示されるように、上記それぞれの構成部材には温度センサ81~90(図1の●印)が取り付けられている。具体的には、切削に伴う発熱の影響を大きく受ける加工領域直下のベッド10上端近傍と下端近傍に1個ずつ温度センサ81、82が装着されている。またベッド10にはその他3個の温度センサ83~85が装着されている。ワーク主軸台20には、上下に2個の温度センサ86、87が、コラム40にも上下に2個の温度センサ88、89が装着されている。更に、工具主軸台50にも1個の温度センサ90が装着されている。それぞれ、各部材の姿勢変形に影響を与える部位の温度を計測するようにしている。
NC装置70は、装置全体を制御するCPU100を有している。
CPU100には、バスライン110を介して、加工に関係するプログラムを格納する加工プログラムメモリ120、装置(システム)全体を制御するプログラムを格納するシステムプログラムメモリ121、作業用メモリ122、熱変位補正設定制御部123、ディスプレイの表示データを格納する表示データメモリ124、および加工時におけるNC装置70の内部状態等の記録である加工時状態データ250(図7)を格納する加工時状態データメモリ125が接続される。なお、加工時状態データ250は、環境温度系熱変位補正記録データの一例であって、環境温度系熱変位補正の時間的推移のグラフ表示に用いるデータである。
なお、温度センサ81~90は、図1に示されるように、工作機械1の各構成部材に装着され、各温度センサの温度検出信号は、インターフェース220およびバスライン110を介してCPU100に入力される。
<熱変位補正量の計算>
駆動系熱変位量推定部310は、例えば特許文献3に記載された方法で、X軸、Y軸およびZ軸毎の駆動系熱変位量311、312および313を、駆動系の状態値や指令値、あるいは一部の温度計測値に基づいて、演算して求める。環境温度系熱変位量推定部320は、X軸、Y軸およびZ軸毎の環境温度系熱変位量321、322および323を、複数の温度計測値1~nに基づいて、演算して求める。駆動系熱変位量推定部310および環境温度系熱変位量推定部320は、それぞれ独立して推定を行っている。
次に、駆動系熱変位補正量および計算上熱変位補正量を熱変位補正量加算部330において加算して、各軸の合計熱変位補正量331、332および333を算出して熱変位補正制御を実行する。
なお、環境温度系熱変位量および環境温度系熱変位補正量は、駆動系熱変位量および駆動系熱変位補正量に対応させた表現であって、その推定演算式に駆動系の要素を含まないことを意味する。駆動系の要素とは、移動体や回転体に関する、指令値、移動速度、回転数、駆動電流値、等をいう。
図5は、本実施例に係る加工ワークの加工図面である。
本実施例に係る加工ワークは、外径部に3段の段差および内径部に2段の段差を有し、一方端にネジが施される。外径部のφ65部および内径部φ40部には、公差範囲の指定がある。このように公差範囲の指定がある場合は、加工後の寸法を作業者が計測し、適宜に工具摩耗補正量を入力することで、加工寸法を公差範囲内に収めるようにしている。
「X82.0Z5.0」は、外径荒加工の切込開始点への移動指令である。
続く「G71」で始まる2行の指令は、外径荒加工を実施するための具体的な諸データを定義するものである。
「N200」の直後の行、すなわち、「G40G00Z30.0M05」により、形状定義中に指令されたノーズR補正をキャンセルし(「G40」)、Z軸方向に逃がして主軸を停止させ、外径荒加工を終了させている。
「X82.0Z5.0」は、外径荒加工と同様、外径仕上げ加工の切込開始点への移動指令である。
「G70P100Q200」は、「N100」から「N200」までで定義した加工形状を仕上げ加工する指令である。
図7(a)は、本実施例で記録する加工時状態データ250のデータ構造図である。
加工時状態データ250は、ワーク番号WNO、加工日DATE、加工時刻TIME、工具番号TNO、補正軸CAx、目標加工寸法TSz、実績加工寸法MSz、工具摩耗補正量A$WV、補正倍率A$B、環境温度系熱変位補正量X[A$HCX]、環境温度系熱変位補正量Y[A$HCY]および環境温度系熱変位補正量Z[A$HCZ]から構成される。図6で示した加工プログラムの「M**」が実行されるごとに、実行中のワーク番号WNO、加工日DATE、加工時刻TIME、その時点で使用中の工具番号TNO、「M**A*B*」にて指定された補正軸CAxと目標加工寸法TSz、その時に有効であった、工具摩耗補正量A$WV、補正倍率A$Bおよび環境温度系熱変位補正量A$HCX、A$HCY、A$HCZの各データが追加される。
補正倍率設定支援機能の実施例1として、図8に補正倍率設定支援画面400を示す。補正倍率設定支援画面400は、グラフ表示部410、加工時状態データ抽出部430、加工時状態データ入力/表示部450および補正倍率調整操作部470から構成される。
加工時状態データ抽出部430は、データ抽出モードスイッチ432、選択データ誘導入力部433、補正軸変更/表示部435および工具番号変更/表示部437から構成される。
補正倍率調整操作部470は、補正倍率増減スイッチ472、最適補正倍率算出スイッチ474、補正倍率表示部476および補正倍率決定スイッチ478から構成される。
加工時状態データ抽出部430を操作することにより、長期間に亘って蓄積された多数の加工時状態データ250の中から、補正倍率設定支援画面400にグラフ表示する加工時状態データセット251が抽出される。
表示された中から特定の開始日を、画面上をタッチ等して指定することにより、グラフ表示を行う加工時状態データセット251が確定される。
前述した選択データ誘導入力部433の操作により加工時状態データセット251が抽出されている場合は、抽出された加工時状態データセット251の補正軸CAxを表示している。この状態時に、変更スイッチを操作して補正軸を変更した場合は、上記で設定されたワーク番号WNOと工具番号TNOを有し、且つ変更された補正軸CAxを有するデータの直近の時刻を有する加工時状態データ250が、加工時状態データセット251として抽出される。
なお、設定されたワーク番号WNOと工具番号TNOを有し、且つ変更された補正軸CAxを有する加工時状態データ250がなかった場合は、アラームを表示するなどして、加工時状態データセット251の変更は行われない。ただし、変更された補正軸はそのまま表示され、次に説明する工具番号の変更時には、変更された補正軸と新しい工具番号で加工時状態データ250が抽出される。
前述した選択データ誘導入力部433の操作により加工時状態データセット251が抽出されている場合は、抽出された加工時状態データセット251の工具番号TNOを表示している。この状態時に、変更スイッチを操作して工具番号を変更した場合は、上記で設定されたワーク番号WNOと補正軸CAxを有し、且つ変更された工具番号TNOを有するデータの直近の時刻を有する加工時状態データ250が、加工時状態データセット251として抽出される。
なお、設定されたワーク番号WNOと補正軸CAxを有し、且つ変更された工具番号TNOを有する加工時状態データ250がなかった場合は、アラームを表示するなどして、加工時状態データセット251の変更は行われない。
また、補正倍率設定支援画面400へ画面が切り替わる時には、前回抽出されていた加工時状態データセット251が保持されており、前に表示されていた加工時状態データセット251にて画面が表示される。
ただし、補正倍率変更後、補正倍率決定スイッチ478が押されるまでは、変更した補正倍率は実際の熱変位量の推定演算には用いられないため、補正倍率表示部476に点滅表示することにより、暫定的な補正倍率であることを明示している。この状態の補正倍率を「仮補正倍率B’」と称す。仮補正倍率B’は、後述する加工寸法グラフ表示部412に調整後加工寸法グラフ414を表示させるときの計算に用いられる。
なお、補正倍率増減スイッチ472により補正倍率を増減したり、最適補正倍率を算出する際に丸めたりするときの単位を0.1で説明したが、0.1に限定するものではない。パラメータ等で設定することにより、増減の単位を自由に設定することも可能である。
図9は、補正倍率設定支援画面400において加工寸法グラフを表示する処理を説明するための図である。ここで、補正軸CAxはX軸、目標加工寸法TSzはφ22.0mmであるところ、表中では省略している。
TIMEは、加工時刻である。
MSzは、加工時状態データセット251中の実績加工寸法である。図9で実線で示すグラフMSzは、横軸に加工時刻をとり、実績加工寸法の時間変化を表現したものである。
A$WVは、加工時状態データセット251中の工具摩耗補正量である。
X2は、MSzに対して同一時刻に有効であった工具摩耗補正量A$WVを考慮して、その工具摩耗補正量A$WVによる補正がなかった場合の加工寸法の計算値(以後、「工具摩耗補正なし計算上加工寸法」という)である。具体的には、X2=MSz-A$WVで計算される。
X4は、工具摩耗補正なし計算上加工寸法X2に対して、更に同一時刻の適用済み熱変位補正量S1を考慮して、その熱変位補正がなかった場合の加工寸法の計算値である。すなわち、工具摩耗補正も環境温度系熱変位補正も行わなかった場合の加工寸法の計算値である。以後、X4を「工具摩耗補正&熱変位補正なし計算上加工寸法」という。具体的には、X4=X2-S1で計算される。
X3は、工具摩耗補正&熱変位補正なし計算上加工寸法X4を仮補正倍率調整後熱変位補正量S2で補正することにより求められる。すなわち、X3は、調整後の仮補正倍率を適用した場合の計算上の加工寸法である。以後、X3を「仮補正倍率調整後計算上加工寸法」という。
補正倍率設定支援画面400において、表示すべき加工時状態データセット251が抽出されると、この処理が開始される。以下の各ステップにおける演算処理部分は、システムプログラムメモリ121に格納されている所定のプログラムを用いてCPU100により実行される。
表示すべき加工時状態データセット251が抽出されて調整前加工寸法グラフ413が表示されている状態で、作業者が最適補正倍率算出スイッチ474を操作すると、この処理が開始される。以下の各ステップにおける演算処理部分は、システムプログラムメモリ121に格納されている所定のプログラムを用いてCPU100により実行される。
仮補正倍率B’を決定した後に、ステップS110において、CPU100は、適用済み熱変位補正量S1を適用済み補正倍率A$Bで除算した値(すなわち補正倍率1に換算した計算上熱変位補正量)に仮補正倍率B’を乗算して、仮補正倍率を適用した環境温度系熱変位補正量S2を計算する。
なお、図9で加工寸法グラフ表示処理を説明するときは、分かり易くするために適用済み熱変位補正量は補正倍率が1であることを前提に説明したが、一度補正倍率を調整した後に加工を行って得た加工時状態データ250を用いて調整することもあるため、上記の適用済み補正倍率A$Bで除算する処理が付け加わる。
ステップS140において、作業者が調整後加工寸法グラフ414の加工精度に満足できない場合(NG)には、ステップS160に移り、後述する手動設定処理が実行されることになる。
作業者が採用可(OK)と判断した場合には、ステップS260に進み、作業者は補正倍率決定スイッチ478を操作する。これにより、仮補正倍率B’が補正倍率Bに設定され、その後の補正倍率Bが決定される。
さらに、加工精度を保つために行う加工後の寸法計測は、作業者にとっては通常業務に過ぎない。その結果、作業者に新たな負担をかけることなく、環境温度系熱変位補正を高精度に調整できることになる。
図13は、実施例2による補正倍率設定支援画面401を示す。実施例2では、複数の加工部位の加工時状態データ250を記録することができる。そのために、加工時状態データ抽出部431に補正倍率Bの有効範囲を設定し表示する補正倍率有効範囲設定/表示部434が追加されている。
また、選択データ誘導入力部433の表示の仕方が、実施例1の補正倍率設定支援画面400(図8)とは異なる。
図14は、実施例3による補正倍率設定支援画面402を示す。補正倍率設定支援画面402のグラフ表示部411には、加工寸法グラフ表示部412に代わって補正量グラフ表示部416が表示される。補正量グラフ表示部416は、環境温度系熱変位補正量の時間的推移をグラフ表示する。
ベテランの作業者になると、加工精度を補償するために行う加工寸法の計測や、工具摩耗補正量の入力作業を通じて、熱変位量の傾向を概略把握していることが多い。そのような作業者にとっては、熱変位補正量が時間経過によってどのように推移しているかをグラフ表示するだけで、補正量が多いか少ないかを判断することができる。そのために、作業者が補正倍率調整操作部471の補正倍率増減スイッチ472を操作し、調整後の補正量グラフ418を表示することにより、補正値の是正を行えるようにする。
本発明の実施形態は、前記した各実施例に限定されるものではない。例えば下記のようにしてもよい。
前記実施例では、工作機械を直線3軸と回転2軸の合計5軸を制御する工作機械において具体化したが、直線2軸の旋盤や、直線3軸の立形または横形のマシニングセンタにおいても適用は可能である。また、旋削加工プログラムを用いて説明したが、工具を回転させて加工するプログラムにおいても適用可能である。
Claims (11)
- ワークを把持するワーク把持部と、工具を把持する工具把持部と、を備え、
前記ワーク把持部および前記工具把持部の少なくともいずれか一方を回転駆動し、
前記ワーク把持部および前記工具把持部の少なくともいずれか一方を所定の方向へ移動駆動する
ことにより、前記ワークを前記工具で加工する工作機械であって、
前記工作機械を構成する部材に装着した複数の温度センサと、
前記複数の温度センサが測定した温度値に基づき環境温度系熱変位量を計算する環境温度系熱変位量推定部と、
を設け、
前記環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して得られる環境温度系熱変位補正量に基づいて環境温度系熱変位補正制御を実行する
ことを特徴とする工作機械。 - 前記ワーク把持部および前記工具把持部の回転駆動状態および移動駆動状態に基づき駆動系熱変位量を計算する駆動系熱変位量推定部を、更に設け、
前記駆動系熱変位量を補償する駆動系熱変位補正量に、前記環境温度系熱変位補正量を加算して得られる合計熱変位補正量に基づいて熱変位補正制御を実行する
ことを特徴とする請求項1に記載の工作機械。 - 前記環境温度系熱変位補正制御を実行した記録を環境温度系熱変位補正記録データとして記録し、
前記環境温度系熱変位補正記録データは、前記環境温度系熱変位補正量と、該補正量の算出に適用した前記補正倍率と、当該補正を実施した時刻と、を少なくとも含み、
前記環境温度系熱変位補正記録データに基づき環境温度系熱変位補正の時間的推移をグラフ表示し、
前記環境温度系熱変位補正記録データに記録された前記補正倍率である記録補正倍率を仮に変更する増減スイッチを設け、
該増減スイッチによって変更された仮補正倍率を前記環境温度系熱変位補正記録データに適用したときの環境温度系熱変位補正の時間的推移を、前記グラフに重ねてグラフ表示し、
前記補正倍率を前記仮補正倍率に変更する補正倍率決定スイッチを備える
ことを特徴とする請求項2に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、一定時間ごとに記録され、
前記環境温度系熱変位補正の時間的推移は、前記環境温度系熱変位補正量の時間的推移である
ことを特徴とする請求項3に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、監視対象の軸を意味する補正軸と、実績加工寸法と、加工時に適用された工具摩耗補正量と、を更に含み、
前記環境温度系熱変位補正の時間的推移は、工具摩耗補正を行わない場合の加工寸法の計算値の時間的推移である
ことを特徴とする請求項3に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、目標加工寸法を更に含み、
該環境温度系熱変位補正記録データに基づき、工具摩耗補正を行わない場合の加工寸法の計算値が前記目標加工寸法となる前記補正倍率を演算し、前記仮の補正倍率として設定する最適補正倍率算出部を備える
ことを特徴とする請求項5に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、1つの加工ワークにつき複数の加工部位における前記環境温度系熱変位補正記録データをそれぞれ記憶し、
前記複数の加工部位の内特定の加工部位における前記環境温度系熱変位補正記録データに基づいて取得した前記補正倍率を、前記特定の加工部位の加工時に有効とする限定設定と、該加工部位を含む前記ワーク全般の加工時に有効とする全般設定と、のいずれか一方を設定する
ことを特徴とする請求項5に記載の工作機械。 - 前記実績加工寸法を計測装置により自動で計測して書き込む
ことを特徴とする請求項5に記載の工作機械。 - 前記実績加工寸法を作業者が加工後の前記ワークを計測して入力する
ことを特徴とする請求項5に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、加工時に実行されるデータ記録指令により記録される
ことを特徴とする請求項5に記載の工作機械。 - 前記環境温度系熱変位補正記録データは、前記温度センサが測定した温度値を更に含み、
前記環境温度系熱変位補正の時間的推移を表すグラフと同一時間軸ですべての前記温度値の推移をグラフ表示する
ことを特徴とする請求項4または5に記載の工作機械。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580030647.1A CN106488828B (zh) | 2014-10-29 | 2015-10-08 | 具备热位移修正量设定变更装置的机床 |
EP15854385.0A EP3168001B1 (en) | 2014-10-29 | 2015-10-08 | Machine tool equipped with device for changing setting of thermal displacement correction amount |
JP2016509226A JP6001211B1 (ja) | 2014-10-29 | 2015-10-08 | 熱変位補正量設定変更装置を備える工作機械 |
US15/458,028 US10353373B2 (en) | 2014-10-29 | 2017-03-14 | Machine tool thermal displacement and magnification correction adjustment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014220562 | 2014-10-29 | ||
JP2014-220562 | 2014-10-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/458,028 Continuation US10353373B2 (en) | 2014-10-29 | 2017-03-14 | Machine tool thermal displacement and magnification correction adjustment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016067874A1 true WO2016067874A1 (ja) | 2016-05-06 |
Family
ID=55857216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078588 WO2016067874A1 (ja) | 2014-10-29 | 2015-10-08 | 熱変位補正量設定変更装置を備える工作機械 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10353373B2 (ja) |
EP (1) | EP3168001B1 (ja) |
JP (1) | JP6001211B1 (ja) |
CN (1) | CN106488828B (ja) |
WO (1) | WO2016067874A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018176398A (ja) * | 2017-04-21 | 2018-11-15 | ファナック株式会社 | ロボットシステム |
JP2019005874A (ja) * | 2017-06-27 | 2019-01-17 | 中村留精密工業株式会社 | 工作機械の熱変位の補正方法及び補正装置 |
JP2019063959A (ja) * | 2017-10-04 | 2019-04-25 | ファナック株式会社 | 熱変位補正システム |
JP2020059073A (ja) * | 2018-10-05 | 2020-04-16 | 村田機械株式会社 | 工作機械及び加工方法 |
JP2020059072A (ja) * | 2018-10-05 | 2020-04-16 | 村田機械株式会社 | 工作機械及び加工方法 |
JP2020099982A (ja) * | 2018-12-25 | 2020-07-02 | オークマ株式会社 | 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置 |
JP6784868B1 (ja) * | 2019-09-02 | 2020-11-11 | ヤマザキマザック株式会社 | 制御装置、工作機械、算出方法及びプログラム |
JP7305903B1 (ja) * | 2022-09-16 | 2023-07-10 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
JP7362975B1 (ja) * | 2022-09-16 | 2023-10-17 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10509390B2 (en) * | 2015-02-12 | 2019-12-17 | Glowforge Inc. | Safety and reliability guarantees for laser fabrication |
JP6280078B2 (ja) * | 2015-05-11 | 2018-02-14 | ファナック株式会社 | 工作機械の熱変位補正訓練装置 |
JP6464220B2 (ja) * | 2017-03-21 | 2019-02-06 | ファナック株式会社 | 機械学習装置及び熱変位補正装置 |
JP6564412B2 (ja) | 2017-03-21 | 2019-08-21 | ファナック株式会社 | 機械学習装置及び熱変位補正装置 |
US10365633B2 (en) * | 2017-06-14 | 2019-07-30 | Ford Motor Company | Method for generating CNC machine offset based on thermal model |
JP6691087B2 (ja) * | 2017-10-04 | 2020-04-28 | ファナック株式会社 | 熱変位補正システム |
JP6687650B2 (ja) * | 2018-01-31 | 2020-04-28 | ファナック株式会社 | 熱変位補正装置及び機械学習装置 |
JP6673950B2 (ja) * | 2018-01-31 | 2020-04-01 | ファナック株式会社 | 基準温度設定装置、基準温度設定方法及び基準温度設定プログラム |
JP6802208B2 (ja) * | 2018-03-23 | 2020-12-16 | ファナック株式会社 | 熱変位補正システム及び計算機 |
JP6875347B2 (ja) * | 2018-10-12 | 2021-05-26 | ファナック株式会社 | 熱変位補正装置及び数値制御装置 |
JP6556413B1 (ja) * | 2018-10-31 | 2019-08-07 | 三菱電機株式会社 | 数値制御装置、学習装置および学習方法 |
JP7057306B2 (ja) * | 2019-03-15 | 2022-04-19 | ファナック株式会社 | 温度補間装置 |
JP6882364B2 (ja) * | 2019-04-23 | 2021-06-02 | ファナック株式会社 | 機械学習装置及び熱変位補正装置 |
CN110174872B (zh) * | 2019-06-25 | 2024-06-21 | 东莞市博思特数控机械有限公司 | 一种数控机床温升补偿方法 |
CN110579999A (zh) * | 2019-08-27 | 2019-12-17 | 东莞市巨冈机械工业有限公司 | 基于三轴钻攻数控机床的z向零位漂移误差补偿方法、电子设备、计算机可读存储介质 |
JP7481112B2 (ja) * | 2019-12-26 | 2024-05-10 | ファナック株式会社 | 熱変位補正装置 |
JP7486358B2 (ja) * | 2020-06-25 | 2024-05-17 | オークマ株式会社 | 工作機械の精度診断装置及び精度診断方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228055A (ja) * | 1984-04-25 | 1985-11-13 | Yamazaki Mazak Corp | 数値制御工作機械における熱寸法変位の補正制御方法 |
JP2002239872A (ja) * | 2001-02-14 | 2002-08-28 | Toshiba Mach Co Ltd | 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置 |
JP2002307263A (ja) * | 2001-04-10 | 2002-10-23 | Takizawa Tekkosho:Kk | Nc工作機械における加工済みワークの測定結果の利用方法 |
JP2004030421A (ja) * | 2002-06-27 | 2004-01-29 | Nakamura Tome Precision Ind Co Ltd | Nc工作機械 |
JP2006116663A (ja) * | 2004-10-22 | 2006-05-11 | Yamazaki Mazak Corp | 工作機械の熱変位補正方法及び熱変位補正装置 |
JP2009238164A (ja) * | 2008-03-28 | 2009-10-15 | Seiko Epson Corp | 加工装置システム |
JP2012086326A (ja) * | 2010-10-21 | 2012-05-10 | Mitsubishi Heavy Ind Ltd | 工作機械の熱変位補正システム |
JP2013146823A (ja) * | 2012-01-19 | 2013-08-01 | Fanuc Ltd | 工作機械の熱変位補正装置 |
JP5295467B1 (ja) * | 2012-12-10 | 2013-09-18 | 三菱電機株式会社 | 多軸制御システム設定・調整機能支援装置 |
JP5490304B2 (ja) * | 2011-02-24 | 2014-05-14 | 三菱電機株式会社 | 放電加工装置および放電加工システム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0747257B2 (ja) * | 1989-08-22 | 1995-05-24 | 日立精機株式会社 | 工作機械の熱変位補正方法およびその制御装置 |
JPH0419042A (ja) * | 1990-05-12 | 1992-01-23 | Enshu Ltd | 工作機械の熱変位補正方法 |
JP3405965B2 (ja) * | 2000-07-06 | 2003-05-12 | ファナック株式会社 | 工作機械の熱変位補正方法 |
CN102736557B (zh) * | 2011-04-07 | 2016-07-20 | 杨建国 | 基于虚拟仪器的数控机床误差实时补偿系统 |
US9200656B2 (en) * | 2011-07-20 | 2015-12-01 | Furniture of America, Inc. | Joint structure for furniture |
CN102658499B (zh) * | 2012-04-20 | 2014-08-06 | 西安交通大学 | 一种精密卧式加工中心主轴热误差补偿方法 |
CN102629121B (zh) * | 2012-04-24 | 2014-04-09 | 上海交通大学 | 数控机床几何与热复合位置误差的智能补偿系统 |
-
2015
- 2015-10-08 JP JP2016509226A patent/JP6001211B1/ja active Active
- 2015-10-08 WO PCT/JP2015/078588 patent/WO2016067874A1/ja active Application Filing
- 2015-10-08 CN CN201580030647.1A patent/CN106488828B/zh active Active
- 2015-10-08 EP EP15854385.0A patent/EP3168001B1/en active Active
-
2017
- 2017-03-14 US US15/458,028 patent/US10353373B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60228055A (ja) * | 1984-04-25 | 1985-11-13 | Yamazaki Mazak Corp | 数値制御工作機械における熱寸法変位の補正制御方法 |
JP2002239872A (ja) * | 2001-02-14 | 2002-08-28 | Toshiba Mach Co Ltd | 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置 |
JP2002307263A (ja) * | 2001-04-10 | 2002-10-23 | Takizawa Tekkosho:Kk | Nc工作機械における加工済みワークの測定結果の利用方法 |
JP2004030421A (ja) * | 2002-06-27 | 2004-01-29 | Nakamura Tome Precision Ind Co Ltd | Nc工作機械 |
JP2006116663A (ja) * | 2004-10-22 | 2006-05-11 | Yamazaki Mazak Corp | 工作機械の熱変位補正方法及び熱変位補正装置 |
JP2009238164A (ja) * | 2008-03-28 | 2009-10-15 | Seiko Epson Corp | 加工装置システム |
JP2012086326A (ja) * | 2010-10-21 | 2012-05-10 | Mitsubishi Heavy Ind Ltd | 工作機械の熱変位補正システム |
JP5490304B2 (ja) * | 2011-02-24 | 2014-05-14 | 三菱電機株式会社 | 放電加工装置および放電加工システム |
JP2013146823A (ja) * | 2012-01-19 | 2013-08-01 | Fanuc Ltd | 工作機械の熱変位補正装置 |
JP5295467B1 (ja) * | 2012-12-10 | 2013-09-18 | 三菱電機株式会社 | 多軸制御システム設定・調整機能支援装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3168001A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10562185B2 (en) | 2017-04-21 | 2020-02-18 | Fanuc Corporation | Robot system |
JP2018176398A (ja) * | 2017-04-21 | 2018-11-15 | ファナック株式会社 | ロボットシステム |
JP7019163B2 (ja) | 2017-06-27 | 2022-02-15 | 中村留精密工業株式会社 | 工作機械の熱変位の補正方法及び補正装置 |
JP2019005874A (ja) * | 2017-06-27 | 2019-01-17 | 中村留精密工業株式会社 | 工作機械の熱変位の補正方法及び補正装置 |
JP2019063959A (ja) * | 2017-10-04 | 2019-04-25 | ファナック株式会社 | 熱変位補正システム |
JP2020059073A (ja) * | 2018-10-05 | 2020-04-16 | 村田機械株式会社 | 工作機械及び加工方法 |
JP2020059072A (ja) * | 2018-10-05 | 2020-04-16 | 村田機械株式会社 | 工作機械及び加工方法 |
JP7155843B2 (ja) | 2018-10-05 | 2022-10-19 | 村田機械株式会社 | 工作機械及び加工方法 |
JP7103136B2 (ja) | 2018-10-05 | 2022-07-20 | 村田機械株式会社 | 工作機械及び加工方法 |
JP7210268B2 (ja) | 2018-12-25 | 2023-01-23 | オークマ株式会社 | 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置 |
JP2020099982A (ja) * | 2018-12-25 | 2020-07-02 | オークマ株式会社 | 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置 |
WO2021044491A1 (ja) * | 2019-09-02 | 2021-03-11 | ヤマザキマザック株式会社 | 制御装置、工作機械、算出方法及びプログラム |
JP6784868B1 (ja) * | 2019-09-02 | 2020-11-11 | ヤマザキマザック株式会社 | 制御装置、工作機械、算出方法及びプログラム |
JP7305903B1 (ja) * | 2022-09-16 | 2023-07-10 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
JP7362975B1 (ja) * | 2022-09-16 | 2023-10-17 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
WO2024057532A1 (ja) * | 2022-09-16 | 2024-03-21 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
WO2024057584A1 (ja) * | 2022-09-16 | 2024-03-21 | ヤマザキマザック株式会社 | 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3168001A4 (en) | 2017-11-08 |
JPWO2016067874A1 (ja) | 2017-04-27 |
US10353373B2 (en) | 2019-07-16 |
EP3168001B1 (en) | 2019-12-18 |
EP3168001A1 (en) | 2017-05-17 |
CN106488828B (zh) | 2017-12-29 |
JP6001211B1 (ja) | 2016-10-05 |
CN106488828A (zh) | 2017-03-08 |
US20170185063A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6001211B1 (ja) | 熱変位補正量設定変更装置を備える工作機械 | |
JP5905158B2 (ja) | 数値制御装置 | |
US9594357B2 (en) | Thermal displacement compensating device of machine tool | |
US7245983B2 (en) | Method and apparatus for correcting thermal displacement of machine tool | |
US11353842B2 (en) | Apparatus and method for automatically converting thermal displacement compensation parameters of machine tool | |
TWI665044B (zh) | 線放電加工機 | |
JP4803491B2 (ja) | 工作機械における位置補正装置 | |
WO2012157687A1 (ja) | 熱変位補正装置および熱変位補正方法 | |
JP7481112B2 (ja) | 熱変位補正装置 | |
US20150177728A1 (en) | Numerical controller for smoothing tool path in operation based on table format data | |
US11567470B2 (en) | Computer-aided optimization of numerically controlled machining of a workpiece | |
JP2017027360A (ja) | 機械の誤差補償システム及び誤差補償方法、誤差補償プログラム | |
JP6299184B2 (ja) | 工作機械および工作機械における加工制御方法 | |
US20210132590A1 (en) | Error compensation method for machine tool and machine tool | |
US10025290B2 (en) | Thermal displacement correction training unit for machine tool | |
JP7473321B2 (ja) | シミュレーション装置、数値制御装置、及びシミュレーション方法 | |
KR102053465B1 (ko) | 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법 | |
US20150205285A1 (en) | Robot, Robot Control Method and Robot Control Program | |
JP6561003B2 (ja) | 工作機械の熱変位補正方法、工作機械 | |
JP4282909B2 (ja) | 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置 | |
JP7009326B2 (ja) | 工作機械の数値制御装置 | |
JP2006116654A (ja) | Nc工作機械の熱変形補正方法及び熱変形補正装置 | |
JP2016064497A (ja) | データ補正装置、データ補正方法、及び、加工装置 | |
US10802051B2 (en) | Waveform display device that allows cycle time comparison to be made | |
CN113840687B (zh) | 加工机的控制装置及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016509226 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15854385 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015854385 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015854385 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |