WO2016067874A1 - 熱変位補正量設定変更装置を備える工作機械 - Google Patents

熱変位補正量設定変更装置を備える工作機械 Download PDF

Info

Publication number
WO2016067874A1
WO2016067874A1 PCT/JP2015/078588 JP2015078588W WO2016067874A1 WO 2016067874 A1 WO2016067874 A1 WO 2016067874A1 JP 2015078588 W JP2015078588 W JP 2015078588W WO 2016067874 A1 WO2016067874 A1 WO 2016067874A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal displacement
correction
environmental temperature
machining
system thermal
Prior art date
Application number
PCT/JP2015/078588
Other languages
English (en)
French (fr)
Inventor
鈴木 敦
石田 恒一
敏人 奥田
Original Assignee
ヤマザキマザック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマザキマザック株式会社 filed Critical ヤマザキマザック株式会社
Priority to CN201580030647.1A priority Critical patent/CN106488828B/zh
Priority to EP15854385.0A priority patent/EP3168001B1/en
Priority to JP2016509226A priority patent/JP6001211B1/ja
Publication of WO2016067874A1 publication Critical patent/WO2016067874A1/ja
Priority to US15/458,028 priority patent/US10353373B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • B23Q15/04Control or regulation of feed movement according to the final size of the previously-machined workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37428Temperature of tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37582Position, angle of workpiece surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49102Tool temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49205Compensate with stored values as function of machining time
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49206Compensation temperature, thermal displacement, use measured temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49209Compensation by using temperature feelers on slide, base, workhead

Definitions

  • the present invention provides a machine equipped with a changing device that enables a field worker to easily correct a correction amount related to thermal displacement correction when performing thermal displacement correction control for correcting a thermal displacement amount associated with a temperature change in the environment surrounding the machine tool. Related to machinery.
  • thermal displacement A deviation in the positional relationship between the cutting edge of the tool and the workpiece due to heat is called thermal displacement.
  • An NC device that controls a machine tool usually has a function of correcting a thermal displacement.
  • the thermal displacement correction function a method is generally employed in which a temperature sensor is provided in a main member constituting the machine tool, and a value obtained by multiplying the temperature of each part by a coefficient is added to obtain a thermal displacement correction amount.
  • the thermal displacement correction control device disclosed in Patent Document 1 measures the position of a reference sphere provided outside the processing area at regular time intervals to determine the amount of displacement, and records it together with the temperature of each part at that time. .
  • the coefficient value is obtained.
  • the amount of displacement measured at the reference position, the amount of displacement at the reference position when corrected using the currently effective thermal displacement correction coefficient, and the amount of displacement at the reference position when the thermal displacement correction coefficient obtained by calculation is applied. By displaying each graph, the operator is allowed to select whether or not to use the coefficient obtained by calculation.
  • the apparatus shown in Patent Document 2 records the processing dimensions until thermal stabilization immediately after the start of processing along with the time, and when processing the same workpiece later, the recorded time from the start of processing and the time at that time Correction is performed based on the machining dimensions. As a result, even when the processing is not stable immediately after the start of processing, good processing dimensions can be obtained. Further, the apparatus disclosed in Patent Document 3 detects the spindle rotational speed and the spindle load, and corrects the thermal displacement by estimating the current thermal displacement amount using an arithmetic expression based on the previously estimated thermal displacement amount. ing.
  • the thermal displacement when the temporal change in thermal expansion immediately after the start of machining is extremely large is used as the thermal displacement correction amount as it is as the displacement amount of the actually measured machining dimension. Limited to machining of workpieces, lacks versatility. Further, in the apparatus disclosed in Patent Document 3, the current spindle speed and load are detected, and the current thermal displacement amount is estimated using an arithmetic expression based on the previously estimated thermal displacement amount. It can be said that it accurately reflects the state of the main spindle.
  • the heat source is not limited to the main shaft, and, for example, a thermal displacement amount due to a change in environmental temperature is generated, but this is not considered.
  • the environmental temperature system thermal displacement amount of the machine tool depends on the environment in which the machine tool is installed, the standard environmental parameters at the time of shipment from the manufacturer often cannot accurately calculate the environmental temperature system thermal displacement amount. For example, if the same machine tool is heated in a closed environment in winter, if it is cooled in a closed environment in summer, and if the factory is opened in spring or autumn Although the environmental temperature system thermal displacement amount differs greatly, there is no one that estimates and corrects the environmental temperature system thermal displacement amount in consideration of various conditions of the environment in which the machine tool is installed. Therefore, when the environmental temperature system thermal displacement correction is not performed accurately, it is necessary to change the coefficient used in the environmental temperature system thermal displacement estimation calculation formula, but understand the estimation formula Unless it was a professional engineer, it could not be handled.
  • the present invention has been devised in view of such circumstances, and its purpose is to improve these problems.
  • An environmental temperature system thermal displacement amount estimation unit that calculates an environmental temperature system thermal displacement amount based on temperature values measured by the plurality of temperature sensors; and a computational thermal displacement correction amount that compensates for the environmental temperature system thermal displacement amount
  • a machine tool that executes environmental temperature-based thermal displacement correction control based on an environmental temperature-based thermal displacement correction amount obtained by multiplying the correction factor by a correction magnification.
  • the above machine tool performs thermal displacement correction control with the correction amount obtained by multiplying the calculated thermal displacement correction amount by the correction factor to compensate for the estimated environmental temperature system thermal displacement amount. Even if the environmental temperature system thermal displacement amount changes in accordance with various environments, it is possible to easily change the correction amount by changing the correction magnification, and it is possible to cope with various environments.
  • a drive system thermal displacement amount estimation unit that calculates a drive system thermal displacement amount based on a rotational drive state and a movement drive state of the workpiece gripping unit and the tool gripping unit is further provided, and the drive system thermal displacement amount
  • the technical idea 1 is that thermal displacement correction control is executed based on a total thermal displacement correction amount obtained by adding the environmental temperature system thermal displacement correction amount to a drive system thermal displacement correction amount that compensates for The machine tool described.
  • the machine tool When correcting the thermal displacement generated in the machine tool, the machine tool is divided into two systems: a drive system thermal displacement caused by a heat source provided in the machine tool itself and an environmental temperature system thermal displacement caused by a heat source external to the machine tool. The amount of thermal displacement is estimated, and the amount of correction for each thermal displacement is added together for correction. Since the drive system thermal displacement is the thermal displacement caused by the heat source of the machine tool itself, analysis of the relationship between the operating state of the heat source and the thermal displacement has advanced, and it is possible in recent years to estimate the thermal displacement with high accuracy. However, the ambient temperature system thermal displacement amount varies widely depending on the location where the machine tool is installed, and it is difficult to estimate the thermal displacement amount with high accuracy.
  • the above-mentioned machine tool performs the environmental temperature system thermal displacement correction by multiplying the estimated correction amount by the correction factor for the environmental temperature system thermal displacement that is difficult to correct with high accuracy. Even if the machine is placed in an unexpected environment and, as a result, the thermal displacement correction does not operate as expected, it is possible to make a simple improvement.
  • Technical idea 3 Recording of execution of the environmental temperature system thermal displacement correction control is recorded as environmental temperature system thermal displacement correction record data, and the environmental temperature system thermal displacement correction record data includes the environmental temperature system thermal displacement correction amount and And a graph showing the temporal transition of the environmental temperature system thermal displacement correction based on the environmental temperature system thermal displacement correction record data, including at least the correction magnification applied to the correction amount calculation and the time when the correction was performed.
  • an increase / decrease switch for temporarily changing the recording correction magnification which is the correction magnification recorded in the environmental temperature system thermal displacement correction recording data, and the temporary correction magnification changed by the increase / decrease switch is set to the environmental temperature system thermal displacement correction
  • the temporal transition of the environmental temperature system thermal displacement correction when applied to the recorded data is displayed in a graph superimposed on the graph, and the correction magnification determination is performed to change the correction magnification to the temporary correction magnification.
  • the machine tool according to the technical idea 2 characterized in that it comprises a switch.
  • the above-mentioned machine tool records the environmental temperature system thermal displacement correction performed as data, and displays the time transition in a graph. Further, if the correction magnification at the time of implementation is changed, what kind of correction is made is calculated and displayed on a graph representing the current transition. Since the temporary correction magnification can be increased or decreased with a switch, the optimum correction magnification can be determined by checking the graph while changing the correction magnification in various ways. That is, even an operator who does not know the processing algorithm of the environmental temperature system thermal displacement correction can determine the optimal correction magnification.
  • the environmental temperature system thermal displacement correction recording data is recorded at regular intervals, and the temporal transition of the environmental temperature system thermal displacement correction is a temporal transition of the environmental temperature system thermal displacement correction amount.
  • the machine tool according to the technical idea 3 characterized by the above.
  • the behavior of the thermal displacement of the machine tool is roughly grasped through the measurement of the machining dimension performed to ensure the machining tolerance and the input operation of the tool wear correction amount for keeping the machining dimension within the tolerance range. Since the above machine tool displays the time transition of the environmental temperature system thermal displacement correction amount as a graph, is it necessary for veteran workers who have roughly grasped the behavior of thermal displacement as described above to correct thermal displacement correctly? It can be judged sensuously. Therefore, if the thermal displacement correction is not performed accurately and the environmental temperature system thermal displacement correction graph does not match the feeling of the experienced worker, a temporary graph is created so that it becomes a graph close to that of the experienced worker. By adjusting the correction magnification, it is possible to improve so that the thermal displacement correction is performed with higher accuracy.
  • the environmental temperature system thermal displacement correction record data further includes a correction axis meaning an axis to be monitored, an actual machining dimension, and a tool wear correction amount applied at the time of machining.
  • the amount of tool wear caused by machining is extremely small compared to the amount of thermal displacement of the machine tool, so here the tool wear amount entered to keep the post-machining dimensions within the machining tolerance is compensated for the thermal displacement.
  • the influence on the machining accuracy due to thermal displacement can be displayed in a graph.
  • the graph of the processing dimension in the above calculation can be changed so as to be close to the target dimension.
  • the correct correction magnification can be set while checking the graph. Therefore, even a worker who has not been able to roughly grasp the behavior of the thermal displacement of the machine tool, such as an experienced worker, can adjust the correction magnification optimally.
  • the environmental temperature system thermal displacement correction record data further includes a target machining dimension, and based on the environmental temperature system thermal displacement correction record data, the calculated value of the machining dimension when no tool wear correction is performed is
  • the machine tool according to the technical idea 5 further comprising an optimum correction magnification calculation unit that calculates the correction magnification that becomes a target machining dimension and sets the calculated correction magnification as the temporary correction magnification.
  • the optimum correction magnification calculator calculates the correction magnification at which the calculated machining dimension when the tool wear amount is zero is the target machining dimension. It is possible to easily correct the system thermal displacement correction amount. Furthermore, by utilizing the measured value of the machining dimension (actual machining dimension), the amount of thermal displacement at the position that requires the most machining accuracy is measured, and the correction magnification is determined using that value. Accurate correction is possible at the required position.
  • the environmental temperature system thermal displacement correction record data records the environmental temperature system thermal displacement correction record data at a plurality of machining sites for each workpiece, and the specific machining among the plurality of machining sites is recorded.
  • the correction magnification acquired on the basis of the environmental temperature system thermal displacement correction record data in the part is set to be valid when machining the specific machining part, and valid when machining the entire workpiece including the machining part.
  • the machine tool can set different correction magnifications for a plurality of machining parts, even when machining with the same tool being changed, the environment due to the different machine attitudes It is possible to cope with the difference in the amount of thermal displacement of the temperature system.
  • the environmental temperature system thermal displacement may vary depending on the machining site. Even in such a case, the correction is made depending on the machining site. By changing the magnification, appropriate environmental temperature system thermal displacement correction can be performed at a plurality of locations.
  • Technical idea 8 The machine tool according to technical idea 5, wherein the actual machining dimension is automatically measured and written by a measuring device.
  • the machine tool can automatically measure the actual machining dimension using the measuring device provided in the machine, and can automatically input the actual machining dimension of the environmental temperature system thermal displacement correction record data. It is possible to collect data without the input work of the user.
  • Technical idea 9 The machine tool according to the technical idea 5, wherein the actual machining dimension is measured and input by the operator after measuring the workpiece after machining.
  • the above machine tools are to measure the actual machining dimensions during machining, the heat that accompanies the cutting stays in the workpiece and the workpiece is thermally expanded, so accurate machining dimensions can be obtained. It may not be possible. In such a case, after a predetermined time after processing, the operator can manually measure the actual processing dimension and input the actual processing dimension through the screen.
  • Technical idea 10 The machine tool according to the technical idea 5, wherein the environmental temperature system thermal displacement correction recording data is recorded by a data recording command executed at the time of machining.
  • the machine tool can automatically acquire necessary data when machining a workpiece by programming a data recording command in the machining program.
  • the environmental temperature system thermal displacement correction record data further includes a temperature value measured by the temperature sensor, and all of the above-mentioned parameters on the same time axis as the graph showing the temporal transition of the environmental temperature system thermal displacement correction.
  • FIG. 1 is a perspective view illustrating a configuration of a machine tool according to the embodiment.
  • FIG. 2 is a hardware configuration diagram of the NC device provided in the machine tool according to the embodiment.
  • FIG. 3 is a block diagram for estimating a thermal displacement correction amount using two systems of thermal displacement correction equations.
  • FIG. 4 is a block diagram for estimating the thermal displacement correction amount in consideration of the correction magnification for one of the systems.
  • FIG. 5 is a processing diagram for performing processing with the machine tool according to the embodiment.
  • FIG. 6 is an example of a machining program used in the embodiment.
  • FIG. 7 is a diagram showing a data structure of processing state data recorded inside in the embodiment.
  • FIG. 8 is a diagram illustrating a correction magnification setting support screen according to the first embodiment.
  • FIG. 9 is a diagram illustrating the graph display according to the first embodiment.
  • FIG. 10 is a flowchart illustrating the graph display process according to the first embodiment.
  • FIG. 11 is a diagram illustrating a flowchart for calculating the optimum correction magnification according to the first embodiment.
  • FIG. 12 is a diagram illustrating a flowchart for manually setting the correction magnification according to the first embodiment.
  • FIG. 13 is a diagram illustrating a display screen according to the second embodiment.
  • FIG. 14 is a diagram illustrating a display screen according to the third embodiment.
  • FIG. 1 shows a main configuration of a machine tool 1 according to the present embodiment.
  • the machine tool 1 includes a bed 10, a work spindle 20 fixed to the bed 10, a work spindle 30 provided on the work spindle 20 so as to be rotatable in the C-axis direction, and moves on the bed 10 in the Y-axis and Z-axis directions.
  • the column 40 provided so as to be movable, the tool spindle 50 provided on the column 40 so as to be movable in the X-axis direction and the B-axis direction, the tool spindle 60 rotatably provided on the tool spindle 50, and components thereof NC unit 70 for controlling the.
  • a tool mounted on a chuck (not shown), which is a work gripping part mounted on the work spindle 30, is machined by a tool mounted on the tool spindle 60, which is a tool gripping part.
  • temperature sensors 81 to 90 (circles in FIG. 1) are attached to the respective constituent members. Specifically, one temperature sensor 81, 82 is mounted near the upper end and the lower end of the bed 10 immediately below the processing area that is greatly affected by heat generated by cutting. Three other temperature sensors 83 to 85 are mounted on the bed 10. Two temperature sensors 86, 87 are mounted on the work spindle 20, and two temperature sensors 88, 89 are mounted on the column 40. Furthermore, one temperature sensor 90 is also mounted on the tool head stock 50. In each case, the temperature of a part that affects the posture deformation of each member is measured.
  • FIG. 2 is a diagram illustrating a hardware configuration of the NC device 70 provided in the machine tool 1.
  • the NC device 70 has a CPU 100 that controls the entire device.
  • the CPU 100 has a machining program memory 120 for storing a program related to machining, a system program memory 121 for storing a program for controlling the entire apparatus (system), a work memory 122, and a thermal displacement correction setting via the bus line 110.
  • the processing state data 250 is an example of the environmental temperature system thermal displacement correction record data, and is data used to display a graph of the temporal transition of the environmental temperature system thermal displacement correction.
  • the CPU 100 also has a display control unit 200 that controls display on the display 201 via the bus line 110, and an input control unit that receives input from the keyboard 211 on the operation panel and input from the touch panel 212 arranged on the display 201. 210 is connected.
  • various display data to be displayed on the display 201 in this embodiment, the processing state data input / display unit 450 of the correction magnification setting support screens 400 (FIG. 8) and 401 (FIG. 13). Further, screen display image information such as a processing dimension graph display unit 412, a temperature graph display unit 421, and other processing programs are stored.
  • the CPU 100 also has an X-axis control unit 130, a Y-axis control unit 140, a Z-axis control unit 150, a B-axis control unit 160, a C-axis control unit 170, a work spindle control unit 180, and a bus line 110.
  • a tool spindle control unit 190 is connected.
  • Each axis control unit receives each axis movement command from the CPU 100, and sends the movement command to each axis to each axis drive circuit, that is, the X axis drive circuit 131, the Y axis drive circuit 141, the Z axis drive circuit 151, and the B axis.
  • Each axis drive circuit receives this movement command, and receives an X-axis drive motor 132, a Y-axis drive motor 142, a Z-axis drive motor 152, a B-axis drive motor 162, a C-axis drive motor 172, and a workpiece spindle drive motor 182. And the tool spindle drive motor 192 is driven.
  • the NC device 70 is configured by the above-described components, but is not limited to this.
  • the areas in the memory may be divided with various memories as one memory, and various programs and various data may be stored in the respective areas.
  • the temperature sensors 81 to 90 are mounted on each component of the machine tool 1, and the temperature detection signal of each temperature sensor is input to the CPU 100 via the interface 220 and the bus line 110.
  • the thermal displacement correction setting control unit 123 processes the measured temperature values obtained from the temperature sensors 81 to 90 through the interface 220 and the internal variables created during each NC control process in the work memory 122. Processing for recording in the processing state data memory 125 as the time state data 250 (FIG. 7), processing for creating a screen image for supporting setting change of the thermal displacement correction amount, and writing to the display data memory 124 are performed. ⁇ Calculation of thermal displacement correction amount>
  • FIG. 3 is a block diagram for performing thermal displacement correction control by estimating a thermal displacement amount by two systems of thermal displacement estimation units, that is, a drive system thermal displacement estimation unit 310 and an environmental temperature system thermal displacement estimation unit 320.
  • the drive system thermal displacement amount estimation unit 310 uses, for example, the method described in Patent Document 3 to calculate the drive system thermal displacement amounts 311, 312, and 313 for each of the X axis, the Y axis, and the Z axis, as well as the state values and commands of the drive system. Calculated based on a value or a part of temperature measurement values.
  • the environmental temperature system thermal displacement amount estimation unit 320 calculates the environmental temperature system thermal displacement amounts 321, 322, and 323 for each of the X axis, the Y axis, and the Z axis based on a plurality of temperature measurement values 1 to n. .
  • the drive system thermal displacement estimation unit 310 and the environmental temperature system thermal displacement estimation unit 320 perform estimation independently of each other.
  • the thermal displacement amounts 311, 312, 313, and 321, 322, 323 of the respective axes calculated by the respective thermal displacement amount estimation units are used to calculate correction amounts for compensating the displacement amounts, so that the sign inversion units 314, 315, respectively.
  • the signs are inverted at 316 and 324, 325, and 326, and the drive system thermal displacement correction amounts 317, 318, and 319 and the calculated thermal displacement correction amounts 327, 328, and 329 are calculated.
  • the drive system thermal displacement correction amount and the calculated thermal displacement correction amount are added by the thermal displacement correction amount adding unit 330 to calculate the total thermal displacement correction amounts 331, 332, and 333 for each axis, and the thermal displacement correction control. Execute.
  • FIG. 4 shows a block diagram for performing thermal displacement correction control by adding the correction magnification processing 350, 360 and 370 to the processing block of FIG. 3 to calculate the thermal displacement correction amount.
  • the correction magnification processes 350, 360, and 370 are calculated by multiplying the calculated thermal displacement correction amounts 327, 328, and 329 by correction magnifications Bx, By, and Bz that are set independently for each axis.
  • the quantities 351, 361, 371 are calculated. Thereafter, as in FIG. 3, the drive system thermal displacement correction amounts 317, 318, 319 and the environmental temperature system thermal displacement correction amounts 351, 361, 371 are added in the thermal displacement correction amount addition unit 330, and the total of each axis is obtained.
  • Thermal displacement correction amounts 341, 342, and 343 are calculated and thermal displacement correction control is executed. Further, a correction magnification setting support unit 380 for determining the correction magnification is provided. Correction magnification setting support screens 400, 401, and 402, which are specific examples of the correction magnification setting support unit 380, will be described later.
  • the expression and coefficient for estimating the environmental temperature thermal displacement amount are often unknown or difficult to understand for the operator.
  • the correction magnification setting support unit 380 displays an easy-to-understand screen display that allows a worker to make a sensuous determination.
  • the environmental temperature system thermal displacement amount and the environmental temperature system thermal displacement correction amount are expressions corresponding to the driving system thermal displacement amount and the driving system thermal displacement correction amount, and include elements of the driving system in the estimation calculation formula. Means no.
  • the elements of the driving system refer to command values, moving speeds, rotational speeds, driving current values, etc. relating to moving bodies and rotating bodies.
  • the drive system thermal displacement amount estimation unit 310 is represented by one box.
  • the drive system includes a work spindle, a tool spindle, an X axis, a Y axis, a Z axis, a B axis, and the like. C axis is present.
  • each thermal displacement amount is not calculated
  • FIG. 5 is a machining drawing of the workpiece according to the present embodiment.
  • the workpiece according to the present embodiment has three steps on the outer diameter portion and two steps on the inner diameter portion, and one end is threaded.
  • a tolerance range is specified for the outer diameter portion of ⁇ 65 and the inner diameter portion of ⁇ 40. When the tolerance range is specified in this way, the operator measures the dimension after machining and appropriately inputs the tool wear correction amount so that the machining dimension falls within the tolerance range.
  • FIG. 6 shows a machining program for performing machining based on the machining drawing of FIG.
  • the machining program is stored in the machining program memory 120. Below, each step of this processing program is explained. However, parts unnecessary for the description of this embodiment are omitted as appropriate.
  • N1 (BAR-OUT R)” indicates the start of the outer diameter roughing process.
  • X82.0Z5.0 is a movement command to the cutting start point of the outer diameter rough machining.
  • the following two lines of commands starting with “G71” define specific data for executing the outer diameter roughing.
  • “U3.0” and “R2.0” on the first line of “G71” define a cutting depth of 3.0 mm and a clearance of 2.0 mm.
  • the details of the outer diameter roughing cycle are not described, but while cutting in the Z axis direction by cutting 3.0mm in the X axis direction once, cutting in the X axis direction repeatedly until reaching the defined shape. Cutting in the Z-axis direction is performed.
  • the outer diameter rough machining cycle and the inner diameter rough machining cycle are switched, and the cutting feed direction is -Z direction and + Z direction (the machining direction of the workpiece with the first spindle gripping). And the machining direction of the workpiece of the second spindle holding).
  • “P100” and “Q200” on the second line of “G71” indicate the definition part of the product shape formed in the roughing cycle. That is, “N100” to “N200” are defined portions. “U0.3”, “W0.1” and “F0.3” are the finishing allowance of 0.3 mm in the X-axis direction, the finishing allowance of 0.1 mm in the Z-axis direction, and the cutting feed of 0.3 mm during rough machining. / Rotation is defined.
  • Subsequent “N100” to “N200” lines define operation settings for finishing.
  • a finished shape, a nose R correction command, a finishing feed amount, and the like are defined.
  • the line immediately after “N200”, that is, “G40G00Z30.0M05” cancels the nose R correction commanded during the shape definition (“G40”), escapes in the Z-axis direction, stops the main shaft, and has a rough outer diameter. Processing is finished.
  • N2 (BAR-OUT F) indicates the start of the outer diameter finishing process.
  • X82.0Z5.0 is a movement command to the incision start point of the outer diameter finishing process as in the outer diameter roughing process.
  • G70P100Q200 is a command for finishing a machining shape defined by “N100” to “N200”.
  • the subsequent “M ** A1B65.0” is a machining state data recording command for recording the internal data of the NC device when this command is executed.
  • the internal data to be recorded are the work number being executed, the date / time, the tool number being used at that time, the tool wear correction amount effective at that time, and the environmental temperature system thermal displacement correction amount effective at that time.
  • the correction axis is X axis for “A1”, Y axis for “A2”, and “A3” for “A3”. Record the Z axis.
  • 65.0 mm is recorded as a target dimension based on “B65.0”.
  • the record is stored in the processing state data memory 125 as processing state data 250 (FIG. 7) described later.
  • the correction axis designates an axis to be monitored for the environmental temperature system thermal displacement correction amount. Therefore, the tool wear correction amount to be recorded is the axial component of the axis commanded as the correction axis in this case among the axial components of the X axis, Y axis, and Z axis.
  • the target dimension is the dimension in the axial direction of the axis commanded as the correction axis.
  • the subsequent inner diameter machining is substantially the same as the outer diameter machining, and a detailed description thereof will be omitted. Briefly, immediately after finishing inner diameter machining with “G71P300Q400” based on rows “N300” to “N400”, state data 250 at that time with “M ** A1B40.0”. Is stored in the machining state data memory 125.
  • FIG. 7A is a data structure diagram of the processing state data 250 recorded in the present embodiment.
  • the machining state data 250 includes a workpiece number WNO, a machining date DATE, a machining time TIME, a tool number TNO, a correction axis CAx, a target machining dimension TSz, an actual machining dimension MSz, a tool wear correction amount A $ WV, and a correction magnification A $ B.
  • the actual machining dimension MSz that is not added only in the above is automatically written from the measurement data obtained by the automatic measurement operation performed by the workpiece dimension measuring apparatus executed thereafter, or the dimension of the workpiece after the operator performs machining. Is manually input by an operation on the screen described later.
  • FIG. 7B is a diagram schematically showing how the state data set 251 during processing is extracted.
  • the machining state data set 251 is extracted from all the machining state data 250 by the selection data guidance input unit 433 (FIG. 8) of the machining state data extraction unit 430 of the correction magnification setting support screen 400 described later. It is the data for displaying the processed dimension graph. Specifically, the machining state data set 251 first extracts data including all of the specified workpiece number WNO, tool number TNO, and correction axis CAx from all the machining state data 250, and performs machining. Rearrange in order of date DATE and processing time TIME.
  • the data of the processing date DATE specified as the processing start date and the processing time TIME data, and the difference between the processing times of the preceding and succeeding data is less than a predetermined time interval A group is further extracted and created.
  • the correction magnification setting support screen 400 includes a graph display unit 410, a processing state data extraction unit 430, a processing state data input / display unit 450, and a correction magnification adjustment operation unit 470.
  • the graph display unit 410 includes a processing dimension graph display unit 412 displayed on the upper stage and a temperature graph display unit 421 displayed on the lower stage.
  • the machining state data extraction unit 430 includes a data extraction mode switch 432, a selection data guidance input unit 433, a correction axis change / display unit 435, and a tool number change / display unit 437.
  • the correction magnification adjustment operation unit 470 includes a correction magnification increase / decrease switch 472, an optimum correction magnification calculation switch 474, a correction magnification display unit 476, and a correction magnification determination switch 478.
  • a processing state data set 251 to be displayed in a graph on the correction magnification setting support screen 400 is extracted from a large number of processing state data 250 accumulated over a long period of time. Is done.
  • the combination of the correction axis CAx and the tool number TNO existing in the extracted machining state data 250 is the combination of the correction axis of the selection data guidance input unit 433 and the tool No. Displayed in the column.
  • the extracted data is rearranged in order of processing date DATE and processing time TIME. It is assumed that the data whose difference between the processing times of the data before and after the rearranged data is less than a predetermined time interval is processed continuously. In addition, data whose processing time difference between the preceding and subsequent data is equal to or greater than a predetermined time interval is divided into a plurality of continuous processing data groups, assuming that continuous processing is interrupted before and after that.
  • the processing state data set 251 for performing graph display is determined.
  • the correction axis change / display unit 435 has a function of changing and displaying a target axis for changing the correction magnification setting.
  • the correction axis CAx of the extracted machining state data set 251 is displayed.
  • the processing state data 250 is extracted as a processing state data set 251.
  • machining state data 250 having all of the extraction condition workpiece number WNO, correction axis CAx, and tool number TNO is extracted. Then, the machining date DATE and the machining time TIME are rearranged in order, the machining start date and the machining end date are displayed in a list on the machining state data extraction unit 430, and displayed with a mark indicating that the latest machining start date is selected. Is done. If there is no machining state data 250 having the set work number WNO and the tool number TNO and having the changed correction axis CAx, an alarm is displayed or the like, and the machining state data set 251 is displayed. No changes are made. However, the changed correction axis is displayed as it is, and when changing the tool number to be described next, the machining state data 250 is extracted with the changed correction axis and the new tool number.
  • the tool number change / display unit 437 has a function of changing and displaying the target tool number TNO for which the correction magnification setting is changed.
  • the tool number TNO of the extracted machining state data set 251 is displayed.
  • the tool number is changed by operating the change switch in this state, it has the work number WNO set as described above and the correction axis CAx, and has the latest time of data having the changed tool number TNO.
  • the processing state data 250 is extracted as a processing state data set 251.
  • an alarm is displayed or the like, and the machining state data set 251 is displayed. No changes are made.
  • a machining dimension graph is displayed based on the actual machining dimension MSz and the machining time TIME of the extracted machining state data set 251.
  • the processing dimension graph display will be described later. Further, when the screen is switched to the correction magnification setting support screen 400, the processing state data set 251 extracted last time is held, and the screen is displayed with the processing state data set 251 displayed before. .
  • the processing state data input / display unit 450 displays the data of the extracted processing state data set 251. It should be noted that the cursor can be moved only in the processing dimension column, and a numerical value can be manually input.
  • An operator who measures the dimensions of the workpiece after machining can input the actual machining dimension MSz of the machining state data 250 using the machining state data input / display unit 450.
  • the machining dimensions do not necessarily measure all the workpieces. Depending on the tendency of variations in machining dimensions, the machining dimensions may be measured every time, or once every 5 minutes or once every 10 minutes. In some cases, it is determined and measured. Accordingly, the actual machining dimension MSz may be blank. In the case of automatic measurement, the actual machining dimension MSz is already input when machining is completed.
  • the correction magnification increase / decrease switch 472 of the correction magnification adjustment operation unit 470 is a switch for increasing or decreasing the correction magnification by 0.1 unit.
  • the correction magnification display unit 476 displays the correction magnification B, and the correction magnification can be changed by operating the correction magnification increase / decrease switch 472.
  • the changed correction magnification is not used for the estimation calculation of the actual thermal displacement amount.
  • the provisional correction magnification is specified.
  • the correction magnification in this state is referred to as “temporary correction magnification B ′”.
  • the temporary correction magnification B ′ is used for calculation when displaying the adjusted machining dimension graph 414 on the machining dimension graph display unit 412 described later.
  • the unit when the correction magnification is increased / decreased by the correction magnification increase / decrease switch 472 or rounded when calculating the optimum correction magnification has been described as 0.1, it is not limited to 0.1. By setting with parameters or the like, the unit of increase / decrease can be set freely.
  • the optimum correction magnification calculation switch 474 of the correction magnification adjustment operation unit 470 by operating the optimum correction magnification calculation switch 474 of the correction magnification adjustment operation unit 470, the optimum correction magnification is calculated, and the magnification rounded by 0.1 unit is flashed and displayed on the correction magnification display unit 476. That is, the correction magnification calculated by operating the optimum correction magnification calculation switch 474 is set as the temporary correction magnification B ′, and the adjusted processing dimension graph 414 is displayed on the processing dimension graph display unit 412. Before the correction magnification determination switch 478 is operated, manual adjustment by the correction magnification increase / decrease switch 472 is also possible. Details of the process for calculating the optimum correction magnification will be described later.
  • the machining dimension graph display unit 412 displays a graph showing how the machining dimensions change with time based on the extracted machining state data set 251.
  • the solid line pre-adjustment machining dimension graph 413 is displayed based on the actual machining dimension MSz of the machining state data set 251 extracted by the above operation.
  • the post-adjustment processed machining dimension graph 414 is displayed in a form that moves up and down in the vicinity of the pre-adjustment machining dimension graph 413 by adjusting the temporary correction magnification B ′.
  • the processing dimension graph display process will be described later.
  • the temperature graph display unit 421 displays a graph showing that the measured temperature values of all the temperature sensors 81 to 90 provided in the machine tool change with the passage of time on the same time axis as the above machining dimension graph. Is done. Note that the measured temperature values of all the temperature sensors 81 to 90 are recorded in association with the time every predetermined time.
  • This graph display makes it possible to find a temperature sensor that shows an abnormal temperature transition, and to take measures before adjusting the correction magnification. For example, the estimation of the environmental temperature system thermal displacement does not assume that a specific part of a member constituting the machine tool is given heat or taken away by an external factor. For this reason, if the blower of an air conditioner or an adjacent machine directly hits a specific part of the machine tool, a thermal displacement that cannot be corrected by the correction magnification may occur. Since the temperature graph display unit 421 is effective in easily finding such a situation, it can be said that it is an important support function in operating this correction function based on the correction magnification.
  • FIG. 9 is a diagram for explaining processing for displaying a machining dimension graph on the correction magnification setting support screen 400.
  • the correction axis CAx is the X axis and the target machining dimension TSz is ⁇ 22.0 mm, which is omitted in the table.
  • TIME is a processing time.
  • MSz is an actual machining dimension in the machining state data set 251.
  • a graph MSz indicated by a solid line in FIG. 9 represents the time change of the actual machining dimension with the machining time on the horizontal axis.
  • a $ WV is a tool wear correction amount in the machining state data set 251.
  • T1, T2, T3, and T4 are measured temperature values of temperature sensors provided in each part of the processing machine.
  • the description here is based on an example in which four temperature sensors are provided.
  • X4 is a calculated value of the machining dimension when there is no thermal displacement correction in consideration of the applied thermal displacement correction amount S1 at the same time with respect to the machining dimension X2 in the calculation without tool wear correction. That is, it is a calculated value of the machining dimension when neither tool wear correction nor environmental temperature system thermal displacement correction is performed.
  • the arrow S1 shown in the graph of FIG. 9 is the applied thermal displacement correction amount at that time. It is shown that the calculated machining dimension X2 without tool wear correction is obtained by performing the thermal displacement correction with the applied thermal displacement correction amount S1 for the calculated machining dimension X4 without tool wear correction & thermal displacement correction.
  • the graph X2 can be rephrased as the coordinate value of the edge position actually positioned when positioning to the target machining dimension TSz with the thermal displacement correction applied. That is, the displacement with respect to the target position, and the displacement amount that has not been completely corrected despite the application of the thermal displacement correction, is shown as the graph X2. Therefore, the calculated machining dimension X2 without tool wear correction can be said to be an example of the temporal transition of the environmental temperature system thermal displacement correction.
  • S2 is obtained by multiplying the applied thermal displacement correction amount S1 by 1.6 which is the provisional correction magnification B ′.
  • S2 is referred to as “thermal displacement correction amount after provisional correction magnification adjustment”.
  • X3 is obtained by correcting the machining dimension X4 with the thermal displacement correction amount S2 after adjusting the temporary correction magnification in the calculation without the tool wear correction & thermal displacement correction. That is, X3 is a calculated processing dimension when the adjusted temporary correction magnification is applied.
  • X3 is referred to as “calculated machining dimension after adjustment of provisional correction magnification”.
  • the machining dimension graph display unit 412 of the correction magnification setting support screen 400 in FIG. 8 displays the above calculated machining dimension X2 without tool wear correction and the calculated machining dimension X3 after adjusting the temporary correction magnification.
  • the calculated machining dimension X2 without tool wear correction is a pre-adjustment machining dimension graph 413, which is displayed as a solid line.
  • the calculated processing dimension X3 after adjusting the temporary correction magnification is a post-adjustment processing dimension graph 414, which is displayed as a dotted line.
  • the temporary correction magnification B ′ is automatically calculated. That is, immediately after extracting the machining state data set 251 to be displayed as the machining dimension graph, only the pre-adjustment machining dimension graph 413 is displayed.
  • the post-adjustment processing dimension graph 414 is displayed above the pre-adjustment processing dimension graph 413 by increasing the provisional correction magnification B ′.
  • the larger the temporary correction magnification B ' the higher the graph can be moved.
  • the post-adjustment processing dimension graph 414 is displayed below the pre-adjustment processing dimension graph 413 by reducing the temporary correction magnification B ′.
  • the post-adjustment processing dimension graph 414 As described above, as a result of moving the post-adjustment processing dimension graph 414 up and down, it can be visually confirmed whether or not the post-adjustment processing dimension graph 414 changes in the vicinity of the target processing dimension TSz. That is, the effect of correction by the correction magnification is expressed in a visible form, and the operator can determine the correction magnification with confidence.
  • FIG. 10 is a flowchart for explaining the procedure of the processing dimension graph display process. This flowchart will be described based on the data shown in FIG.
  • the arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
  • step S20 the CPU 100 calculates the calculated machining dimension X4 without the tool wear correction & thermal displacement correction from the calculated machining dimension X2 without the tool wear correction.
  • S1 A $ HCX.
  • the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction is calculated in advance at this point in order to be used for optimum correction magnification calculation processing described later and a graph display at the time of manual setting.
  • step S30 the machining dimension X2 is calculated and displayed in a graph by the graph display program.
  • This graph is the pre-adjustment processing dimension graph 413 of FIG. However, the graph is not displayed for the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction.
  • FIG. 11 is a flowchart for explaining the procedure of the optimum correction magnification calculation process. This processing is started when the operator operates the optimum correction magnification calculation switch 474 in a state where the processing state data set 251 to be displayed is extracted and the pre-adjustment processing dimension graph 413 is displayed. The arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
  • step S100 the CPU 100 calculates a provisional correction magnification B ′. That is, at the latest time when the machining dimension graph is displayed, the value of the machining dimension X4 and the value of the target machining dimension TSz calculated during the processing of FIG. First, the difference (TSz ⁇ X4) is calculated. Next, the CPU 100 divides the environmental temperature system thermal displacement correction amount A $ HCX (that is, S1) effective at the latest time by the correction magnification A $ B that is effective at that time (that is, the correction magnification). By dividing by the calculated thermal displacement correction amount converted to 1) and rounding by 0.1 unit, a temporary correction magnification B ′ for automatic calculation is obtained.
  • B ′ ROUND ((TSz ⁇ X4) / (S1 / A $ B), 1).
  • the calculation process for calculating the optimum correction magnification is an optimum correction magnification calculator.
  • Tool wear correction & no thermal displacement correction In the calculation, the machining dimension X4 is a machining dimension when neither tool wear correction nor thermal displacement correction is performed. Therefore, if the difference from the target machining dimension is the thermal displacement correction amount, the tool wear is corrected. It should be the target machining dimension without correction.
  • step S110 the CPU 100 divides the applied thermal displacement correction amount S1 by the applied correction magnification A $ B (that is, the calculated thermal displacement correction amount converted to the correction magnification 1). ) Is multiplied by the provisional correction magnification B ′ to calculate the environmental temperature system thermal displacement correction amount S2 to which the provisional correction magnification is applied.
  • the applied thermal displacement correction amount has been described on the assumption that the correction magnification is 1.
  • a process of dividing by the applied correction magnification A $ B is added.
  • step S120 the CPU 100 calculates X3 by adding the environmental temperature system thermal displacement correction amount S2 obtained by applying the temporary correction magnification to the machining dimension X4 in the calculation without tool wear correction & thermal displacement correction.
  • X3 is a calculated processing dimension when the provisional correction magnification is applied.
  • step S130 the graph display program displays this X3 as a graph.
  • This graph is the post-adjustment processing dimension graph 414 of FIG.
  • step S140 the operator looks at the graph display and determines whether the machining accuracy has improved. If the operator determines that the machining accuracy has improved (OK), the operator operates the correction magnification determination switch 478 to determine the temporary correction magnification B ′ as the correction magnification B in step S150. Subsequent thermal displacement correction is calculated using the determined correction magnification B, and environmental temperature system thermal displacement correction control is performed.
  • step S140 when the operator is not satisfied with the machining accuracy of the post-adjustment machining dimension graph 414 (NG), the process proceeds to step S160, and a manual setting process described later is executed.
  • FIG. 12 is a flowchart for explaining a manual setting process procedure for setting the correction magnification manually. This processing is executed when the correction magnification adjustment operation unit 470 of the correction magnification setting support screen 400 is operated. In step S160 in the optimum correction magnification calculation process of FIG. 11, when the automatically calculated correction magnification is not satisfied, the correction magnification automatically calculated using the correction magnification adjustment operation unit 470 is manually changed. This is the case.
  • the solid line pre-adjustment processing dimension graph 413 is displayed on the processing dimension graph display unit 412 by the processing dimension graph display processing of FIG.
  • Calculation without tool wear correction & thermal displacement correction For calculation dimension X4, a graph is not displayed but calculation is performed.
  • the calculated machining dimension X2 without tool wear correction is a value obtained by adding the applied thermal displacement correction amount S1 to the calculated machining dimension X4 without tool wear correction & thermal displacement correction.
  • the arithmetic processing part in each of the following steps is executed by the CPU 100 using a predetermined program stored in the system program memory 121.
  • step S210 the operator manually changes the temporary correction magnification B 'by operating the correction magnification increase / decrease switch 472.
  • step S220 the CPU 100 applies the temporary correction magnification by multiplying the value obtained by dividing the applied thermal displacement correction amount S1 by the applied correction magnification A $ B by the changed temporary correction magnification B ′.
  • An environmental temperature system thermal displacement correction amount S2 is calculated.
  • step S230 the CPU 100 adds the environmental temperature system thermal displacement correction amount S2 to which the temporary correction magnification is applied to the machining dimension X4 in the calculation without the tool wear correction & thermal displacement correction, and calculates when the temporary correction magnification is applied.
  • a machining dimension X3 is calculated.
  • step S240 the calculated machining dimension X3 when the temporary correction magnification is applied by the graph display program is displayed in a graph. This is the post-adjustment processing dimension graph 414 in FIG.
  • step S250 the operator determines whether or not the post-adjustment machining dimension graph 414 can be adopted. If the worker determines that the employment is not possible (NG), the process returns to step S210, and the worker readjusts the temporary correction magnification B ′. If the worker determines that the job can be accepted (OK), the process proceeds to step S260, and the worker operates the correction magnification determination switch 478. Thereby, the provisional correction magnification B ′ is set to the correction magnification B, and the subsequent correction magnification B is determined.
  • the applied thermal displacement correction amount S1 is multiplied by the correction magnification, so that the dotted line display of the post-adjustment machining dimension graph 414 is the adjustment of the solid line display. It appears on the upper side of the pre-processed dimension graph 413.
  • the operator operates the correction magnification increase / decrease switch 472 to move up and down the adjusted processing dimension graph 414 of the dotted line display, determines a good correction magnification closest to the target dimension, and operates the correction magnification determination switch 478 to perform correction. The magnification can be determined.
  • the operator can bring the adjusted processing dimension graph closer to the target dimension by adjusting the correction magnification.
  • the work that does not feel uncomfortable for the operator corrects the correction amount of the environmental temperature system thermal displacement correction. Therefore, it is possible to solve the problem that the conventional worker feels that the thermal displacement correction is not accurately corrected but cannot correct it.
  • the purpose of measuring the machining dimension by the operator is to specify the tolerance and to ensure accuracy.
  • the thermal displacement amount at the position where the most accuracy is required is measured, and the environmental temperature system thermal displacement correction is performed with high accuracy. It becomes possible.
  • the post-processing dimension measurement performed to maintain the processing accuracy is merely a normal task for the operator. As a result, the environmental temperature system thermal displacement correction can be adjusted with high accuracy without placing a new burden on the operator.
  • the optimum correction magnification calculation function is used, the optimum correction magnification at which the adjusted machining dimensions are close to the target value is automatically calculated. For this reason, even an inexperienced operator can easily correct the environmental temperature system thermal displacement correction amount.
  • FIG. 13 shows a correction magnification setting support screen 401 according to the second embodiment.
  • processing state data 250 for a plurality of processing parts can be recorded.
  • a correction magnification effective range setting / display unit 434 for setting and displaying an effective range of the correction magnification B in the processing state data extraction unit 431 is added.
  • the display method of the selection data guidance input unit 433 is different from the correction magnification setting support screen 400 (FIG. 8) of the first embodiment.
  • the workpiece number WNO and the correction axis CAx are identified even after the plurality of machining parts are specified. Display is made. For example, in FIG. 13, a machining part with tool number 3 and a machining part with tool number 6 are displayed as two machining parts. FIG. 13 shows an example in which the tool numbers are different. Even if the tool numbers are the same, if the target machining dimension TSz specified by B of “M ** A * B **” in the machining program is different. Of course, the machining site is also different, and the same tool number TNO may be displayed. Therefore, even if the target dimension column is added to the selection data guidance input unit 433 and the tool number TNO is the same, the machining site can be correctly selected.
  • the correction magnification B is set based on the machining state data 250 recorded in one machining part.
  • this is not necessarily an ideal correction magnification for the other processed part.
  • the direction and amount of the thermal displacement amount may differ between the inner diameter machining and the outer diameter machining because the B-axis positioning angle of the tool spindle is different. Therefore, by making it possible to change the correction magnification for each processing part, it is possible to cope with the difference in the amount of thermal displacement due to the change in the posture of the members constituting the machine tool.
  • the correction magnification effective range setting / display unit 434 is an operation means for changing and displaying each effective range for a plurality of correction magnifications set based on the machining state data 250 regarding a plurality of machining parts.
  • the effective range is automatically “General”. Thereby, the set correction magnification is applied to all machining operations.
  • the effective range is automatically “limited”. Thereby, the correction magnification is applied only to the processing of the processing part. That is, it is limited only to the finishing process when the processing state data 250 is recorded. The same applies to the third and subsequent items.
  • the correction magnification to be applied in a limited manner is automatically set so that it is generally applied according to the order of setting work.
  • the application can be changed to a limited application by pressing the “Limit” switch while “General” is lit. By this operation, all correction magnifications are “limited”.
  • the machining site designated as “limited” is changed to “general”, and the other machining sites designated as “general” are automatically changed to “limited”. Note that when “general” and “limited” are set as the effective range, all other processed parts except the processed part that is “limited” are the “general” effective range.
  • FIG. 14 shows a correction magnification setting support screen 402 according to the third embodiment.
  • a correction amount graph display unit 416 is displayed instead of the machining dimension graph display unit 412.
  • the correction amount graph display unit 416 displays the temporal transition of the environmental temperature thermal displacement correction amount in a graph.
  • the tendency of the thermal displacement amount is often roughly grasped through measurement of a machining dimension performed to compensate machining accuracy and input work of a tool wear correction amount.
  • the operator determines whether the correction amount is large or small simply by displaying in a graph how the thermal displacement correction amount changes over time. For this purpose, the operator operates the correction magnification increase / decrease switch 472 of the correction magnification adjustment operation unit 471 to display the adjusted correction amount graph 418 so that the correction value can be corrected.
  • the environmental temperature system thermal displacement correction amount and the correction magnification effective at a certain time point in the NC device are stored in the memory together with the time as environmental temperature system thermal displacement correction recording data.
  • an environmental temperature system thermal displacement correction recording data memory is prepared separately. Using this data, the correction amount graph 417 before adjustment has recorded the recorded environmental temperature system thermal displacement correction amount as it is, and the correction amount graph 418 after adjustment has recorded the recorded environment temperature system thermal displacement amount. After dividing by the correction magnification, it is multiplied by the provisional correction magnification B ′ to display a graph. Therefore, since this correction magnification setting support device does not require manual input of the machining dimensions, the burden on the operator is further reduced.
  • the machine tool is embodied in a machine tool that controls a total of five axes including three linear axes and two rotating axes.
  • the present invention is also applicable to a linear two-axis lathe and a linear or three-axis vertical or horizontal machining center. Is possible.
  • the turning process program it is applicable also in the program which rotates a tool and processes.
  • the drive system thermal displacement estimation unit and the environmental temperature system thermal displacement estimation unit have been described, but instead of or in addition to the drive system thermal displacement amount, a configuration having some heat generating member,
  • the present invention can also be applied when a configuration having a heat radiating member is provided. In that case, the amount of thermal displacement based on a specific heat generation or heat radiating member may be estimated, and correction may be made comprehensively together with the amount of environmental temperature thermal displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

 工作機械を構成する部材の温度に基づく環境温度系熱変位補正量を、作業者によって高精度に補正することができる工作機械を提供するため、ワークを把持するワーク把持部と、工具を把持する工具把持部とを備え、ワークおよび工具の少なくともいずれか一方を回転させ、ワークおよび工具の少なくともいずれか一方を所定の方向へ移動させることにより、ワークを前記工具で加工する工作機械であって、工作機械を構成する部材に装着した複数の温度センサと、複数の温度センサが測定した温度値に基づき環境温度系熱変位量を計算する環境温度系熱変位量推定部とを設け、環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して環境温度系熱変位補正量を求め、該環境温度系熱変位補正量に基づいて熱変位補正制御を実行する。また、補正倍率の調整を支援するグラフ表示機能を備える。

Description

熱変位補正量設定変更装置を備える工作機械
 本発明は、工作機械の周囲環境の温度変化に伴う熱変位量を補正する熱変位補正制御を行うに当たって、現場作業者が熱変位補正に係る補正量の是正を容易に行える変更装置を備える工作機械に関する。
 工作機械を稼働させることによって生じる熱および工作機械の周囲の熱による工作機械の各構成部材の熱膨張は、工具の刃先と加工ワークとの位置関係を狂わせ、加工精度を悪化させる大きな要因となっている。熱による工具の刃先と加工ワークとの位置関係の狂いは熱変位と称される。工作機械を制御するNC装置は、通常熱変位を補正する機能を備える。熱変位補正機能は、工作機械を構成する主要な部材に温度センサを設け、各部の温度に係数を乗じた値を合計して熱変位補正量とする方法が一般的に採用されている。しかし、熱変位の要因となる発熱源は種々多数あり、また、熱の影響を受けるすべての部材に関して、その熱膨張の程度や方向を考慮する必要がある。また、すべての要因を正確に解析して、高精度に熱変位補正を行うことは、極めて困難である。特に、工作機械の外部要因による温度変化は、原理的に解析不可能であり、熱変位を正確に補正することはできない。
 特許文献1に示される熱変位補正制御装置は、一定時間ごとに加工エリア外に設けられた基準球の位置を計測して、変位量を求め、そのときの各部位の温度とともに記録している。熱変位量を各部位の温度によって推定する計算式に用いる係数の値については、記録した複数の変位量と温度を推定計算式に代入して係数に対する方程式を作成し、それを解いて最適な係数の値を求めている。そして、基準位置を計測した変位量、現在有効な熱変位補正係数を用いて補正した場合の基準位置の変位量、および計算で求めた熱変位補正係数を適用した場合の基準位置の変位量をそれぞれグラフ表示させることにより、作業者に計算で求めた係数の採用の可否を選択させるようにしている。
 特許文献2に示される装置は、加工開始直後の熱的に安定するまでの間の加工寸法を時刻とともに記録し、後に、同一ワークの加工を行う時には記録された加工開始からの時間とその時の加工寸法に基づいて補正を行っている。これにより、加工開始直後の熱的に安定していない状態でも、良好な加工寸法が得られるようにしている。
 また、特許文献3に示される装置は、主軸回転数および主軸負荷を検出し、前回推定した熱変位量に基づく演算式を用いて今回の熱変位量を推定して熱変位を補正するようにしている。
特許第5490304号公報 特開昭60-228055号公報 特開2006-116663号公報
 しかし、特許文献1に示される装置では、熱変位量を計測する位置が固定であり、その上、その位置が加工位置から離れた位置に設定されている。そのため、実際に加工を行う位置の熱変位量を正しく計測しているとはいえない。また、刃先を同一位置に位置決めしても、機械の姿勢が異なることで刃先位置の熱変位量が異なるような事態については、想定されてはいない。更に、補正精度を高めるために補正係数の変更を促す機能を有するところ、作業者はあくまでも受動的であり、能動的に作業者の意思で補正係数を変更するものではない。
 特許文献2に示される装置では、加工開始直後の熱膨張の時間変化が極めて大きいときの熱変位を、実際に計測した加工寸法の変位量をそのまま熱変位補正量として使用しているが、同一ワークの加工に限定されており、汎用性に欠ける。
 また、特許文献3に示される装置では、現在の主軸回転数および負荷を検出し、前回推定した熱変位量に基づく演算式を用いて今回の熱変位量を推定しているため、最大の発熱源である主軸の状態を正確に反映しているといえる。しかし、発熱源は主軸だけではなく、例えば環境温度の変化に伴う熱変位量も発生するが、それに関しては考慮されてはいない。
 更に、工作機械の環境温度系熱変位量は、工作機械が設置される環境に依存するため、メーカ出荷時の標準パラメータでは正確な環境温度系熱変位量が算出できないことが多かった。例えば、同一の工作機械であっても、冬場の締めきった環境で暖房をかけた場合、夏場の締めきった環境で冷房をかけた場合、および春季あるいは秋季で工場が開放された場合とでは、環境温度系熱変位量が大きく異なるが、工作機械が設置された環境の様々な条件を考慮に入れて環境温度系熱変位量を推定して補正するものは存在していなかった。そのため、環境温度系熱変位補正が正確に行われないときは、環境温度系熱変位量の推定演算式に用いられる係数を変更して対応する必要があるが、推定演算式を理解している専門技術者でなければ対応ができなかった。
 本発明は、こうした実情に鑑みて考案されたものであり、その目的は、これらの課題を改善することにある。
 以下、上記課題を解決するための手段およびその作用効果について記載する。
 技術的思想1:ワークを把持するワーク把持部と、工具を把持する工具把持部と、を備え、前記ワーク把持部および前記工具把持部の少なくともいずれか一方を回転駆動し、前記ワーク把持部および前記工具把持部の少なくともいずれか一方を所定の方向へ移動駆動することにより、前記ワークを前記工具で加工する工作機械であって、前記工作機械を構成する部材に装着した複数の温度センサと、前記複数の温度センサが測定した温度値に基づき環境温度系熱変位量を計算する環境温度系熱変位量推定部と、を設け、前記環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して得られる環境温度系熱変位補正量に基づいて環境温度系熱変位補正制御を実行することを特徴とする工作機械。
 上記工作機械は、推定された環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して求めた補正量で熱変位補正制御を行うようにしたので、工作機械が設置される様々な環境に応じて環境温度系熱変位量が変化しても、補正倍率を変更することで容易に補正量を変更することができ、多様な環境に対応が可能である。
 技術的思想2:前記ワーク把持部および前記工具把持部の回転駆動状態および移動駆動状態に基づき駆動系熱変位量を計算する駆動系熱変位量推定部を、更に設け、前記駆動系熱変位量を補償する駆動系熱変位補正量に、前記環境温度系熱変位補正量を加算して得られる合計熱変位補正量に基づいて熱変位補正制御を実行することを特徴とする技術的思想1に記載の工作機械。
 上記工作機械は、工作機械に生ずる熱変位を補正するにあたり、工作機械自身が備える熱源に起因する駆動系熱変位と、工作機械の外部の熱源に起因する環境温度系熱変位の2系統に分けてその熱変位量を推定し、それぞれの熱変位の補正量を合算して補正するようにしている。駆動系熱変位量は、工作機械自身が備える熱源による熱変位であるため、熱源の動作状態と熱変位量との関係の解析が進み、高精度に熱変位量を推定することが、近年可能となっているが、環境温度系熱変位量は、工作機械が設置される場所によって工作機械の周囲環境は千差万別であり、高精度に熱変位量を推定することが困難である。そこで上記工作機械は、高精度に補正することが困難な環境温度系熱変位に対して、推定した補正量に補正倍率を乗算して環境温度系熱変位補正を行うことにしたので、たとえ工作機械が想定外の環境下に置かれ、その結果熱変位補正が期待したように動作しなかったとしても、簡易的に改善を行うことが可能となる。
 技術的思想3:前記環境温度系熱変位補正制御を実行した記録を環境温度系熱変位補正記録データとして記録し、前記環境温度系熱変位補正記録データは、前記環境温度系熱変位補正量と、該補正量の算出に適用した前記補正倍率と、当該補正を実施した時刻と、を少なくとも含み、前記環境温度系熱変位補正記録データに基づき環境温度系熱変位補正の時間的推移をグラフ表示し、前記環境温度系熱変位補正記録データに記録された前記補正倍率である記録補正倍率を仮に変更する増減スイッチを設け、該増減スイッチによって変更された仮補正倍率を前記環境温度系熱変位補正記録データに適用したときの環境温度系熱変位補正の時間的推移を、前記グラフに重ねてグラフ表示し、前記補正倍率を前記仮補正倍率に変更する補正倍率決定スイッチを備えることを特徴とする技術的思想2に記載の工作機械。
 上記工作機械は、実施した環境温度系熱変位補正をデータで記録し、その時間的推移をグラフ表示する。更に、実施したときの補正倍率を仮に変更したとしたらどの様な補正となったかについて、計算して現状の推移を表すグラフに重ねてグラフ表示する。仮の補正倍率はスイッチで増減できるので、補正倍率を種々変更してグラフを確認することで、最適な補正倍率を決定することができる。すなわち、環境温度系熱変位補正の処理アルゴリズムを知らない作業者でも、最適な補正倍率を決定することができる。
 技術的思想4:前記環境温度系熱変位補正記録データは、一定時間ごとに記録され、前記環境温度系熱変位補正の時間的推移は、前記環境温度系熱変位補正量の時間的推移であることを特徴とする技術的思想3に記載の工作機械。
 ベテランの作業者は、経験に基づいて工具の実際の摩耗傾向を把握している。従って、加工公差を確保するために行う加工寸法の計測と、加工寸法を公差範囲内に抑えるための工具摩耗補正量の入力作業を通じて工作機械の熱変位の挙動を概略把握している。上記工作機械は、環境温度系熱変位補正量の時間的推移をグラフ表示するので、上記のように熱変位の挙動を概略把握しているベテラン作業者は、正しく熱変位補正が為されているか否かを感覚的に判断することができる。従って、もし熱変位補正が正確に実施されなくて、環境温度系熱変位補正のグラフがベテラン作業者の感覚に合致していない場合は、ベテラン作業者の感覚に近いグラフとなるように仮の補正倍率を調整することで、より精度よく熱変位補正が行われるように改善することができる。
 技術的思想5:前記環境温度系熱変位補正記録データは、監視対象の軸を意味する補正軸と、実績加工寸法と、加工時に適用された工具摩耗補正量と、を更に含み、前記環境温度系熱変位補正の時間的推移は、工具摩耗補正を行わない場合の加工寸法の計算値の時間的推移であることを特徴とする技術的思想3に記載の工作機械。
 加工によって生じる工具の摩耗量は、工作機械の熱変位量に比較すると極めて小さな値であるため、ここでは加工後の寸法を加工公差内に抑えるために入力する工具摩耗量を、熱変位を補償するデータとして捉え、仮に工具摩耗量がゼロとした場合の加工寸法を計算することで、熱変位による加工精度への影響をグラフ表示することができる。そして、加工時に適用された環境温度系熱変位補正量を、仮の補正倍率を増減して変更することで、上記計算上の加工寸法のグラフを変更することができ、目標寸法に近くなるような補正倍率を、グラフで確認しながら設定することができる。従って、ベテラン作業者のように工作機械の熱変位の挙動を概略把握できていない作業者であっても、補正倍率を最適に調整することができる。
 技術的思想6:前記環境温度系熱変位補正記録データは、目標加工寸法を更に含み、該環境温度系熱変位補正記録データに基づき、工具摩耗補正を行わない場合の加工寸法の計算値が前記目標加工寸法となる前記補正倍率を演算し、前記仮の補正倍率として設定する最適補正倍率算出部を備えることを特徴とする技術的思想5に記載の工作機械。
 上記工作機械は、工具摩耗量をゼロとした場合の計算上の加工寸法が目標加工寸法になる補正倍率を、最適補正倍率算出部が求めるので、経験の浅い作業者であっても、環境温度系熱変位補正量の是正を容易に行うことができる。
 更に、加工寸法の計測値(実績加工寸法)を活用することで、最も加工精度を要する位置の熱変位量を計測したことになり、その値を用いて補正倍率を決定するため、加工精度が必要な位置において正確な補正が可能となる。
 技術的思想7:前記環境温度系熱変位補正記録データは、1つの加工ワークにつき複数の加工部位における前記環境温度系熱変位補正記録データをそれぞれ記録し、前記複数の加工部位の内特定の加工部位における前記環境温度系熱変位補正記録データに基づいて取得した前記補正倍率を、前記特定の加工部位の加工時に有効とする限定設定と、該加工部位を含む前記ワーク全般の加工時に有効とする全般設定と、のいずれか一方を設定することを特徴とする技術的思想5に記載の工作機械。
 上記工作機械は、複数の加工部位に対して、異なる補正倍率を設定することができるため、同一工具を用いて機械の姿勢を変更して加工した場合においても、機械の姿勢が異なることによる環境温度系熱変位量の相違に対応することができる。あるいは、長いストロークを要する軸において、加工精度を要する加工部位が離れている場合、加工部位によって環境温度系熱変位量が異なることがあるが、その様な場合であっても、加工部位によって補正倍率を変更することで、複数個所においても、適切な環境温度系熱変位補正を行うことができる。
 技術的思想8:前記実績加工寸法を計測装置により自動で計測して書き込むことを特徴とする技術的思想5に記載の工作機械。
 上記工作機械は、機械に備えられた計測装置を用いて、実績加工寸法を自動で計測して、前記環境温度系熱変位補正記録データの実績加工寸法を自動で入力することができるため、作業者の入力作業を行わなくてもデータの収集が可能である。
 技術的思想9:前記実績加工寸法を作業者が加工後の前記ワークを計測して入力することを特徴とする技術的思想5に記載の工作機械。
 上記工作機械は、加工中に実績加工寸法の計測を行おうとすると、切削に伴う熱がワークに滞留し、ワークが熱膨張しているときに計測することになり、正確な実績加工寸法が得られない場合がある。このような場合は、加工後の所定時間経過後に、作業者が実績加工寸法を手動で計測して、画面を通して実績加工寸法を入力することができる。
 技術的思想10:前記環境温度系熱変位補正記録データは、加工時に実行されるデータ記録指令により記録されることを特徴とする技術的思想5に記載の工作機械。
 上記工作機械は、加工プログラム中にデータ記録指令をプログラムすることで、ワーク加工時に自動的に必要なデータを取得することができる。また、仕上げ加工の直後に加工時状態データ記録指令をプログラムすることで、時々刻々と変化する環境温度系熱変位補正量のデータの、最も必要なタイミングでデータを取得することが可能となり、より正確な補正倍率を決定することが可能となる。
 技術的思想11:前記環境温度系熱変位補正記録データは、前記温度センサが測定した温度値を更に含み、前記環境温度系熱変位補正の時間的推移を表すグラフと同一時間軸ですべての前記温度値の推移をグラフ表示することを特徴とする技術的思想4または5に記載の工作機械。
 工作機械の各構成部材に装着された温度センサが故障すると、当然、環境温度系熱変位補正制御は正常には動作しない。また、工作機械の外周の特定の領域にエアコン等の風が直接当ると、想定された熱変位とは異なる挙動を示す。その場合、その環境に則した熱変位量を推定するようにパラメータや処理を変更するよりは、その様な事態を回避した方が、つまり、風が直接当らないように工作機械の外周に壁を設ける等の対策を施した方が、ユーザにとっても分かり易い解決策と言える。本機能は、温度センサの故障や、局所的な想定外の温度状態を、容易に判別が可能であり、処理アルゴリズムが難解な熱変位補正機能を正常に動作させようとして無駄な努力を行うことを回避することができる。
図1は、実施例に係る工作機械の構成を示す斜視図である。 図2は、実施例に係る工作機械に備えられたNC装置のハードウェア構成図である。 図3は、2系統の熱変位補正式を用いて熱変位補正量を推定するブロック図である。 図4は、系統の一方に補正倍率を考慮して熱変位補正量を推定するブロック図である。 図5は、実施例に係る工作機械で加工を行う加工図である。 図6は、実施例で用いる加工プログラムの例である。 図7は、実施例で内部に記録する加工時状態データのデータ構造を示す図である。 図8は、実施例1に係る補正倍率設定支援画面を説明する図である。 図9は、実施例1に係るグラフ表示を説明する図である。 図10は、実施例1に係るグラフ表示処理を行うときのフローチャートを示す図である。 図11は、実施例1に係る最適補正倍率算出を行うときのフローチャートを示す図である。 図12は、実施例1に係る補正倍率を手動で設定するときのフローチャートを示す図である。 図13は、実施例2に係る表示画面を説明する図である。 図14は、実施例3に係る表示画面を説明する図である。
 以下、本発明に係る実施の形態を実施例として、図面に基づいて説明する。また、補正倍率設定支援機能に関しては、実施例1~実施例3に分けて説明する。
 <機械の構成>
 図1は、本実施例の工作機械1の主要な構成を示す。工作機械1は、ベッド10、ベッド10に固定されたワーク主軸台20、ワーク主軸台20にC軸方向に回転自在に備えられたワーク主軸30、ベッド10上をY軸およびZ軸方向に移動可能に備えられたコラム40、コラム40上をX軸方向およびB軸方向に移動可能に備えられた工具主軸台50、工具主軸台50に回転自在に備えられた工具主軸60およびこれらの構成部材を制御するNC装置70、から構成される。工具把持部である工具主軸60に装着された工具によって、ワーク主軸30に装着されたワーク把持部である非図示のチャックに装着されたワークを加工する。また、図1に示されるように、上記それぞれの構成部材には温度センサ81~90(図1の●印)が取り付けられている。具体的には、切削に伴う発熱の影響を大きく受ける加工領域直下のベッド10上端近傍と下端近傍に1個ずつ温度センサ81、82が装着されている。またベッド10にはその他3個の温度センサ83~85が装着されている。ワーク主軸台20には、上下に2個の温度センサ86、87が、コラム40にも上下に2個の温度センサ88、89が装着されている。更に、工具主軸台50にも1個の温度センサ90が装着されている。それぞれ、各部材の姿勢変形に影響を与える部位の温度を計測するようにしている。
 図2は、工作機械1に備えられたNC装置70のハードウェア構成を示す図である。
 NC装置70は、装置全体を制御するCPU100を有している。
 CPU100には、バスライン110を介して、加工に関係するプログラムを格納する加工プログラムメモリ120、装置(システム)全体を制御するプログラムを格納するシステムプログラムメモリ121、作業用メモリ122、熱変位補正設定制御部123、ディスプレイの表示データを格納する表示データメモリ124、および加工時におけるNC装置70の内部状態等の記録である加工時状態データ250(図7)を格納する加工時状態データメモリ125が接続される。なお、加工時状態データ250は、環境温度系熱変位補正記録データの一例であって、環境温度系熱変位補正の時間的推移のグラフ表示に用いるデータである。
 また、CPU100には、バスライン110を介して、ディスプレイ201の表示を制御する表示制御部200、操作盤上のキーボード211からの入力およびディスプレイ201に配置したタッチパネル212からの入力を受け付ける入力制御部210が接続される。
 なお、表示データメモリ124には、ディスプレイ201に表示するための各種表示データ、本実施例では補正倍率設定支援画面400(図8)、401(図13)の加工時状態データ入力/表示部450、加工寸法グラフ表示部412、温度グラフ表示部421、その他加工プログラム等の画面表示イメージ情報が格納されている。
 また、CPU100には、バスライン110を介して、X軸制御部130、Y軸制御部140、Z軸制御部150、B軸制御部160、C軸制御部170、ワーク主軸制御部180および、工具主軸制御部190が接続されている。各軸制御部は、CPU100からの各軸移動指令を受けて、各軸への移動指令を各軸駆動回路、すなわちX軸駆動回路131、Y軸駆動回路141、Z軸駆動回路151、B軸駆動回路161、C軸駆動回路171、ワーク主軸駆動回路181および工具主軸駆動回路191に出力する。そして、各軸駆動回路は、この移動指令を受けて、X軸駆動モータ132、Y軸駆動モータ142、Z軸駆動モータ152、B軸駆動モータ162、C軸駆動モータ172、ワーク主軸駆動モータ182および工具主軸駆動モータ192を駆動する。
 以上のような構成要素でNC装置70は構成されるが、これに限定されるものではない。例えば、各種メモリを1つのメモリとしてメモリ内の領域を分割し、それぞれの領域に各種プログラムや各種データを格納するようにしてもよい。
 なお、温度センサ81~90は、図1に示されるように、工作機械1の各構成部材に装着され、各温度センサの温度検出信号は、インターフェース220およびバスライン110を介してCPU100に入力される。
 また、熱変位補正設定制御部123は、インターフェース220を介して得られる温度センサ81~90からの計測温度値、および作業用メモリ122にNC制御の各処理中に作成される内部変数を、加工時状態データ250(図7)として加工時状態データメモリ125に記録する処理、熱変位補正量の設定変更を支援する画面イメージを作成して表示データメモリ124に書き込む処理等を行っている。
 <熱変位補正量の計算>
 図3は、駆動系熱変位量推定部310と環境温度系熱変位量推定部320の2系統の熱変位量推定部により熱変位量を推定して熱変位補正制御を行うブロック図を示す。
 駆動系熱変位量推定部310は、例えば特許文献3に記載された方法で、X軸、Y軸およびZ軸毎の駆動系熱変位量311、312および313を、駆動系の状態値や指令値、あるいは一部の温度計測値に基づいて、演算して求める。環境温度系熱変位量推定部320は、X軸、Y軸およびZ軸毎の環境温度系熱変位量321、322および323を、複数の温度計測値1~nに基づいて、演算して求める。駆動系熱変位量推定部310および環境温度系熱変位量推定部320は、それぞれ独立して推定を行っている。
 それぞれの熱変位量推定部で演算された各軸の熱変位量311、312、313、および321、322、323は、変位量を補償する補正量を算出するため、それぞれ符号反転部314、315、316および324、325、326にて符号が反転され、駆動系熱変位補正量317、318、319、および計算上熱変位補正量327、328、329が算出される。
 次に、駆動系熱変位補正量および計算上熱変位補正量を熱変位補正量加算部330において加算して、各軸の合計熱変位補正量331、332および333を算出して熱変位補正制御を実行する。
 前述したように、駆動系熱変位量の演算については高精度の演算値が得られるところ、環境温度系熱変位量の演算については、工作機械の設置環境等により高精度の演算値が得られない場合が少なくなかった。
 図4は、図3の処理ブロックに対して補正倍率処理350、360および370を加えて熱変位補正量を計算して熱変位補正制御を行うブロック図を示す。補正倍率処理350、360、370は、計算上熱変位補正量327、328、329に、各軸ごとに独立して設定される補正倍率Bx、By、Bzを乗算して環境温度系熱変位補正量351、361、371を算出する。その後は図3と同様に、駆動系熱変位補正量317、318、319、および環境温度系熱変位補正量351、361、371を熱変位補正量加算部330において加算して、各軸の合計熱変位補正量341、342、343を算出して熱変位補正制御を実行する。また、その補正倍率を決定するための補正倍率設定支援部380を備える。補正倍率設定支援部380の具体例である補正倍率設定支援画面400、401、402は、後述する。
 ここにおいて、環境温度系熱変位量を推定する式および係数は、作業者にとって未知あるいは理解困難であることが多い。作業者にとっては、推定される熱変位量が実際の熱変位量とは異なることは感覚的に把握することができるが、正確な熱変位補正のためには補正倍率をいくつに変更すればよいかを通常は判断できない。そのために、補正倍率設定支援部380は、作業者に対して、感覚的に判断が可能になるような分かり易い画面表示を行う。これにより、作業者による手動の設定を可能とし、また、自動で最適な補正倍率を計算する。
 なお、環境温度系熱変位量および環境温度系熱変位補正量は、駆動系熱変位量および駆動系熱変位補正量に対応させた表現であって、その推定演算式に駆動系の要素を含まないことを意味する。駆動系の要素とは、移動体や回転体に関する、指令値、移動速度、回転数、駆動電流値、等をいう。
 また、図3および図4では、駆動系熱変位量推定部310を1個のボックスで表現したが、駆動系としては、ワーク主軸、工具主軸、X軸、Y軸、Z軸、B軸およびC軸が存在する。そして、それぞれの熱変位量が同じ構造の演算式で求められるわけではないので、各駆動系ごとに推定部を設けて各駆動系熱変位量を求め、結果を合算してもよい。更に、前記の系とは全く異なる発熱源または冷却装置を有する工作機械においては、これらに関する熱変位量推定部を追加することも可能である。
 <加工>
 図5は、本実施例に係る加工ワークの加工図面である。
 本実施例に係る加工ワークは、外径部に3段の段差および内径部に2段の段差を有し、一方端にネジが施される。外径部のφ65部および内径部φ40部には、公差範囲の指定がある。このように公差範囲の指定がある場合は、加工後の寸法を作業者が計測し、適宜に工具摩耗補正量を入力することで、加工寸法を公差範囲内に収めるようにしている。
 図6は、図5の加工図面に基づく加工を行う加工プログラムを示す。加工プログラムは加工プログラムメモリ120に格納されている。以下に、この加工プログラムの各ステップについて説明する。ただし、本実施例の説明に不要な部分は適宜省略している。
 「N1(BAR-OUT R)」は、外径荒加工工程の開始を示す。
 「X82.0Z5.0」は、外径荒加工の切込開始点への移動指令である。
 続く「G71」で始まる2行の指令は、外径荒加工を実施するための具体的な諸データを定義するものである。
 「G71」の1行目の「U3.0」と「R2.0」は、1回当りの切込量3.0mmと逃げ量2.0mmを定義している。外径荒加工サイクルの詳細については述べないが、X軸方向に1回当り3.0mm切り込んでZ軸方向への切削を行いながら、定義した形状に至るまで何度もX軸方向に切り込んでZ軸方向への切削を行うものである。ちなみに、「U」と「R」の引数の符号によって、外径荒加工サイクルと内径荒加工サイクルを切り替えたり、切削送りの方向を-Z方向と+Z方向(第1主軸把持のワークの加工方向と第2主軸把持のワークの加工方向)に切り替えたりもする。
 「G71」の2行目の「P100」と「Q200」は、荒加工サイクルで形成する製品形状の定義箇所を示している。すなわち、「N100」から「N200」の行が定義箇所である。また、「U0.3」、「W0.1」および「F0.3」は、X軸方向の仕上代0.3mm、Z軸方向の仕上代0.1mm、荒加工時の切削送り0.3mm/回転を定義している。
 続く「N100」から「N200」の行は、仕上げ加工時の動作設定を定義する。ここに、仕上げ形状やノーズR補正指令、仕上げ時の送り量などが定義される。
 「N200」の直後の行、すなわち、「G40G00Z30.0M05」により、形状定義中に指令されたノーズR補正をキャンセルし(「G40」)、Z軸方向に逃がして主軸を停止させ、外径荒加工を終了させている。
 次に、「N2(BAR-OUT F)」は、外径仕上げ加工工程の開始を示す。
 「X82.0Z5.0」は、外径荒加工と同様、外径仕上げ加工の切込開始点への移動指令である。
 「G70P100Q200」は、「N100」から「N200」までで定義した加工形状を仕上げ加工する指令である。
 続く「M**A1B65.0」は、この指令を実行したときのNC装置の内部データを記録する加工時状態データ記録指令である。記録する内部データは、実行中のワーク番号、日付・時刻、その時点で使用中の工具番号、その時点で有効な工具摩耗補正量、およびその時点で有効な環境温度系熱変位補正量である。また、「M**」と同時に指令された「A」の引数に基づき、補正軸として、「A1」の場合はX軸を、「A2」の場合はY軸を、「A3」の場合はZ軸を記録する。更に、「B65.0」に基づき、目標寸法として65.0mmを記録する。記録は、後述する加工時状態データ250(図7)として、加工時状態データメモリ125に格納される。なお補正軸とは、環境温度系熱変位補正量の監視対象の軸を指定するものである。従って、記録する工具摩耗補正量は、X軸、Y軸、Z軸の各軸方向成分のうち、ここでは補正軸として指令された軸の軸方向成分である。また目標寸法は、補正軸として指令された軸の軸方向の寸法である。
 続く内径加工に関しては、外径部の加工とほぼ同様であるため詳細な説明を省略する。簡単に説明すると、「G71P300Q400」で内径加工の仕上げ加工を、「N300」から「N400」の行に基づいて行った直後に、「M**A1B40.0」でその時点の加工時状態データ250を加工時状態データメモリ125に格納する。
 <加工時状態データ>
 図7(a)は、本実施例で記録する加工時状態データ250のデータ構造図である。
 加工時状態データ250は、ワーク番号WNO、加工日DATE、加工時刻TIME、工具番号TNO、補正軸CAx、目標加工寸法TSz、実績加工寸法MSz、工具摩耗補正量A$WV、補正倍率A$B、環境温度系熱変位補正量X[A$HCX]、環境温度系熱変位補正量Y[A$HCY]および環境温度系熱変位補正量Z[A$HCZ]から構成される。図6で示した加工プログラムの「M**」が実行されるごとに、実行中のワーク番号WNO、加工日DATE、加工時刻TIME、その時点で使用中の工具番号TNO、「M**A*B*」にて指定された補正軸CAxと目標加工寸法TSz、その時に有効であった、工具摩耗補正量A$WV、補正倍率A$Bおよび環境温度系熱変位補正量A$HCX、A$HCY、A$HCZの各データが追加される。
 上記にて唯一追加されなかった実績加工寸法MSzは、その後に実行されるワーク寸法計測装置による自動計測動作によって得られる計測データから自動的に書き込まれるか、または、作業者が加工後にワークの寸法を計測して、後述する画面上の操作により手動で入力される。
 図7(b)は、加工時状態データセット251を抽出する様子を模式的に表現した図である。この加工時状態データセット251は、後述する補正倍率設定支援画面400の加工時状態データ抽出部430の選択データ誘導入力部433(図8)にて、すべての加工時状態データ250の中から抽出した、加工寸法グラフを表示するためのデータである。具体的には、加工時状態データセット251は、最初にすべての加工時状態データ250の中から、指定されたワーク番号WNO、工具番号TNOおよび補正軸CAxをすべて含むデータを抽出して、加工日DATE、加工時刻TIME順に並べ替える。次に、この操作によって抽出されたデータのうち、加工開始日として指定された加工日DATE、加工時刻TIMEのデータを先頭に、前後のデータの加工時刻の差が所定の時間間隔未満であるデータ群を更に抽出して、作成される。
 <補正倍率設定支援画面>
 補正倍率設定支援機能の実施例1として、図8に補正倍率設定支援画面400を示す。補正倍率設定支援画面400は、グラフ表示部410、加工時状態データ抽出部430、加工時状態データ入力/表示部450および補正倍率調整操作部470から構成される。
 グラフ表示部410は、上段に表示される加工寸法グラフ表示部412および下段に表示される温度グラフ表示部421から構成される。
 加工時状態データ抽出部430は、データ抽出モードスイッチ432、選択データ誘導入力部433、補正軸変更/表示部435および工具番号変更/表示部437から構成される。
 補正倍率調整操作部470は、補正倍率増減スイッチ472、最適補正倍率算出スイッチ474、補正倍率表示部476および補正倍率決定スイッチ478から構成される。
 次に、各構成部の機能について説明する。
 加工時状態データ抽出部430を操作することにより、長期間に亘って蓄積された多数の加工時状態データ250の中から、補正倍率設定支援画面400にグラフ表示する加工時状態データセット251が抽出される。
 データ抽出モードスイッチ432を操作すると、選択データ誘導入力部433のワークNo.の列に、すべての加工時状態データ250に記録されている全ワーク番号が番号順に表示される。その他の列はすべて空欄となる。
 表示されたワーク番号WNOの中から特定のワーク番号を、画面上をタッチ等して指定することにより、指定されたワーク番号を有する加工時状態データ250のみが抽出される。そして、抽出された加工時状態データ250に存在する補正軸CAxと工具番号TNOの組合せが、選択データ誘導入力部433の補正軸と工具No.の列に表示される。
 表示された補正軸CAxと工具番号TNOの組合せの中から特定の組合せを、画面上をタッチ等して指定することにより、前記ワーク番号WNO、前記補正軸CAxおよび前記工具番号TNOのすべてを含む加工時状態データ250のみが抽出される。
 そして、抽出したデータを加工日DATE、加工時刻TIME順に並べ替える。並べ替えたデータに関しその前後のデータの加工時刻の差が所定の時間間隔未満のデータは、連続してその加工を行ったとする。また、その前後のデータの加工時刻の差が所定の時間間隔以上のデータは、その前後で連続加工が途切れたとして、複数の連続加工データ群に分割される。
 分割されたそれぞれの連続加工データ群について、先頭のデータの加工日DATEを加工開始日、最後のデータの加工日DATEを加工終了日として、選択データ誘導入力部433の開始日と終了日の列に一覧表示する。
 表示された中から特定の開始日を、画面上をタッチ等して指定することにより、グラフ表示を行う加工時状態データセット251が確定される。
 補正軸変更/表示部435は、補正倍率の設定変更を行う対象の軸を変更し表示する機能を有する。
 前述した選択データ誘導入力部433の操作により加工時状態データセット251が抽出されている場合は、抽出された加工時状態データセット251の補正軸CAxを表示している。この状態時に、変更スイッチを操作して補正軸を変更した場合は、上記で設定されたワーク番号WNOと工具番号TNOを有し、且つ変更された補正軸CAxを有するデータの直近の時刻を有する加工時状態データ250が、加工時状態データセット251として抽出される。
 また、新しい加工時状態データセット251が抽出された場合は、抽出条件のワーク番号WNO、補正軸CAxおよび工具番号TNOをすべて有する加工時状態データ250が抽出される。そして、加工日DATE、加工時刻TIME順に並び変えられ、加工開始日と加工終了日が加工時状態データ抽出部430に一覧表示され、最新の加工開始日を選択したマークが付された状態で表示される。
 なお、設定されたワーク番号WNOと工具番号TNOを有し、且つ変更された補正軸CAxを有する加工時状態データ250がなかった場合は、アラームを表示するなどして、加工時状態データセット251の変更は行われない。ただし、変更された補正軸はそのまま表示され、次に説明する工具番号の変更時には、変更された補正軸と新しい工具番号で加工時状態データ250が抽出される。
 工具番号変更/表示部437は、補正倍率の設定変更を行う対象の工具番号TNOを変更し表示する機能を有する。
 前述した選択データ誘導入力部433の操作により加工時状態データセット251が抽出されている場合は、抽出された加工時状態データセット251の工具番号TNOを表示している。この状態時に、変更スイッチを操作して工具番号を変更した場合は、上記で設定されたワーク番号WNOと補正軸CAxを有し、且つ変更された工具番号TNOを有するデータの直近の時刻を有する加工時状態データ250が、加工時状態データセット251として抽出される。
 なお、設定されたワーク番号WNOと補正軸CAxを有し、且つ変更された工具番号TNOを有する加工時状態データ250がなかった場合は、アラームを表示するなどして、加工時状態データセット251の変更は行われない。
 加工時状態データセット251が抽出されると、抽出された加工時状態データセット251の実績加工寸法MSzと加工時刻TIMEに基づいて加工寸法のグラフが表示される。加工寸法のグラフ表示に関しては、後述する。
 また、補正倍率設定支援画面400へ画面が切り替わる時には、前回抽出されていた加工時状態データセット251が保持されており、前に表示されていた加工時状態データセット251にて画面が表示される。
 加工時状態データ入力/表示部450により、抽出された加工時状態データセット251のデータが表示される。なお、加工寸法の欄にのみ、カーソルが移動可能であり、手動による数値入力が可能である。加工後にワークの寸法を計測した作業者は、この加工時状態データ入力/表示部450を用いて、加工時状態データ250の実績加工寸法MSzを入力することができる。加工寸法は、必ずしもすべての加工ワークを計測するものではなく、加工寸法のばらつきの傾向に応じて、毎回計測する場合もあれば、5回に1回とか、10分に1回とか、の頻度を決めて計測する場合もある。従って、実績加工寸法MSzは空欄のこともある。また、自動計測の場合は、加工完了時には実績加工寸法MSzは入力済みである。
 補正倍率調整操作部470の補正倍率増減スイッチ472は、補正倍率を0.1単位で増加または減少させるためのスイッチである。補正倍率表示部476には、補正倍率設定支援画面400に切り替えたときには、補正倍率Bが表示されており、補正倍率増減スイッチ472を操作することで補正倍率を変更することができる。
 ただし、補正倍率変更後、補正倍率決定スイッチ478が押されるまでは、変更した補正倍率は実際の熱変位量の推定演算には用いられないため、補正倍率表示部476に点滅表示することにより、暫定的な補正倍率であることを明示している。この状態の補正倍率を「仮補正倍率B’」と称す。仮補正倍率B’は、後述する加工寸法グラフ表示部412に調整後加工寸法グラフ414を表示させるときの計算に用いられる。
 なお、補正倍率増減スイッチ472により補正倍率を増減したり、最適補正倍率を算出する際に丸めたりするときの単位を0.1で説明したが、0.1に限定するものではない。パラメータ等で設定することにより、増減の単位を自由に設定することも可能である。
 また、補正倍率調整操作部470の最適補正倍率算出スイッチ474を操作することにより、最適な補正倍率が演算され、0.1単位で丸めた倍率が補正倍率表示部476に点滅表示される。すなわち、最適補正倍率算出スイッチ474を操作して演算された補正倍率は、仮補正倍率B’として設定され、加工寸法グラフ表示部412に調整後加工寸法グラフ414を表示させる。補正倍率決定スイッチ478を操作する前は、補正倍率増減スイッチ472による手動での調整も可能である。最適補正倍率の算出処理の詳細に関しては後述する。
 加工寸法グラフ表示部412には、抽出された加工時状態データセット251に基づき、加工寸法が時間の推移に伴って変化する様子がグラフ表示される。実線の調整前加工寸法グラフ413は、前記操作により抽出された加工時状態データセット251の実績加工寸法MSzに基づいて表示される。破線の調整後加工寸法グラフ414は、仮補正倍率B’を調整することで調整前加工寸法グラフ413の近傍で上下移動する形態で表示される。加工寸法グラフの表示処理に関しては後述する。
 温度グラフ表示部421には、工作機械に備えられたすべての温度センサ81~90の測定温度値が時間の推移に伴って変化する様子が、上記の加工寸法グラフと同一の時間軸でグラフ表示される。なお、すべての温度センサ81~90の測定温度値は、所定時間ごとに時刻とともに関連付けて記録されている。
 このグラフ表示により、異常な温度推移を示す温度センサを発見することができ、補正倍率の調整以前に対処を行うことが可能となる。例えば、環境温度系熱変位量の推定は、工作機械を構成する部材の特定個所が、外部要因によって熱を与えられたり、奪われたりすることを想定してはいない。そのため、空調機器や隣接する機械のブロアの風が工作機械の特定箇所に直接当たると、補正倍率で補正できないような熱変位が発生する場合がある。温度グラフ表示部421は、この様な事態を容易に発見することに有効であるため、補正倍率による本補正機能を運用する上で、重要な支援機能といえる。
 <加工寸法グラフ表示処理>
 図9は、補正倍率設定支援画面400において加工寸法グラフを表示する処理を説明するための図である。ここで、補正軸CAxはX軸、目標加工寸法TSzはφ22.0mmであるところ、表中では省略している。
 まず、図9の表中のデータについて説明する。
 TIMEは、加工時刻である。
 MSzは、加工時状態データセット251中の実績加工寸法である。図9で実線で示すグラフMSzは、横軸に加工時刻をとり、実績加工寸法の時間変化を表現したものである。
 A$WVは、加工時状態データセット251中の工具摩耗補正量である。
 T1、T2、T3およびT4は、加工機械の各部に備えられた温度センサの計測温度値である。ここでの説明は、温度センサが4個備えられた例で説明する。
 X2は、MSzに対して同一時刻に有効であった工具摩耗補正量A$WVを考慮して、その工具摩耗補正量A$WVによる補正がなかった場合の加工寸法の計算値(以後、「工具摩耗補正なし計算上加工寸法」という)である。具体的には、X2=MSz-A$WVで計算される。
 S1は、加工時に適用された環境温度系熱変位補正量(以後、「適用済み熱変位補正量」という)である。補正軸CAxがX軸であるので、加工時状態データセット251中の環境温度系熱変位補正量A$HCXデータである。具体的には、S1=A$HCXである。
 X4は、工具摩耗補正なし計算上加工寸法X2に対して、更に同一時刻の適用済み熱変位補正量S1を考慮して、その熱変位補正がなかった場合の加工寸法の計算値である。すなわち、工具摩耗補正も環境温度系熱変位補正も行わなかった場合の加工寸法の計算値である。以後、X4を「工具摩耗補正&熱変位補正なし計算上加工寸法」という。具体的には、X4=X2-S1で計算される。
 図9のグラフに示した矢印S1は、その時刻における適用済み熱変位補正量である。工具摩耗補正&熱変位補正なし計算上加工寸法X4を適用済み熱変位補正量S1で熱変位補正を行うことで、工具摩耗補正なし計算上加工寸法X2が得られることを示している。つまり、グラフX2は、熱変位補正を適用した状態で目標加工寸法TSzに位置決めしたときの、実際に位置決めされた刃先位置の座標値と言い換えることができる。すなわち、目標位置とのズレであり、熱変位補正を適用しているにも係らず補正しきれていない変位量がグラフX2として表れているのである。従って、この工具摩耗補正なし計算上加工寸法X2は、環境温度系熱変位補正の時間的推移の一例と言える。
 一方、時刻11:55における工具摩耗補正&熱変位補正なし計算上加工寸法X4の値(21.951)から目標加工寸法TSzの値(22.000)を減じて、符号を反転させると、時刻11:55における理想的な熱変位補正量(0.049)が得られる。この値を時刻11:55における適用済み熱変位補正量S1(0.030)の値で除すると、1.63が得られる。これは、補正倍率を1.63倍にすることにより、工具摩耗補正を行わなくともほぼ目標の加工寸法が得られることを示している。仮補正倍率B’は、手動設定時には0.1単位であるため、ここでは1.6に丸める。この結果の値が前述した最適補正倍率算出値である。
 S2は、適用済み熱変位補正量S1を仮補正倍率B’である1.6で乗算したものである。以後、S2を「仮補正倍率調整後熱変位補正量」という。
 X3は、工具摩耗補正&熱変位補正なし計算上加工寸法X4を仮補正倍率調整後熱変位補正量S2で補正することにより求められる。すなわち、X3は、調整後の仮補正倍率を適用した場合の計算上の加工寸法である。以後、X3を「仮補正倍率調整後計算上加工寸法」という。
 図8の補正倍率設定支援画面400の加工寸法グラフ表示部412は、上記で説明した工具摩耗補正なし計算上加工寸法X2と仮補正倍率調整後計算上加工寸法X3を表示する。工具摩耗補正なし計算上加工寸法X2は、調整前加工寸法グラフ413であり、実線でグラフ表示される。また、仮補正倍率調整後計算上加工寸法X3は、調整後加工寸法グラフ414であり、点線でグラフ表示される。
 以上、仮補正倍率B’を自動計算した場合を説明したが、仮補正倍率B’を手動で設定する場合も同様である。すなわち、加工寸法グラフ表示する対象の加工時状態データセット251を抽出した直後は、調整前加工寸法グラフ413のみが表示されている。ここで、仮補正倍率B’を大きくすることにより、調整前加工寸法グラフ413の上側に調整後加工寸法グラフ414が表示される。仮補正倍率B’を大きくすればするほど、グラフを上に移動させることができる。逆に、仮補正倍率B’を小さくすることにより、調整前加工寸法グラフ413の下側に調整後加工寸法グラフ414が表示される。仮補正倍率B’を小さくすればするほど、グラフを下に移動させることができる。このように操作することで、調整後加工寸法グラフ414を目標加工寸法TSz近傍で推移する位置に移動させて、補正倍率を決定すればよいことになる。
 以上のようにして、調整後加工寸法グラフ414を上下に移動させた結果、調整後加工寸法グラフ414が目標加工寸法TSz近傍で推移しているか否かを視認することができる。すなわち、補正倍率による補正の効果が目で見える形に表現され、作業者は自信を持って補正倍率を決定することができる。
 図10は、加工寸法グラフ表示処理の手順を説明するフローチャートである。このフローチャートを図9に示されたデータに基づいて説明する。
 補正倍率設定支援画面400において、表示すべき加工時状態データセット251が抽出されると、この処理が開始される。以下の各ステップにおける演算処理部分は、システムプログラムメモリ121に格納されている所定のプログラムを用いてCPU100により実行される。
 ステップS10において、CPU100は、加工時状態データセット251の実績加工寸法MSzと工具摩耗補正量A$WVから工具摩耗補正なし計算上加工寸法X2を計算する。すなわち、X2=MSz-A$WVの計算を行う。
 次にステップS20において、CPU100は、工具摩耗補正なし計算上加工寸法X2から工具摩耗補正&熱変位補正なし計算上加工寸法X4を計算する。工具摩耗補正&熱変位補正なし計算上加工寸法X4は、加工時に有効であった環境温度系熱変位補正量A$HCX、A$HCYおよびA$HCZによる環境温度系熱変位補正を行わなかった場合の加工寸法であり、前述したように、X4=X2-S1である。図9のデータの場合、補正軸CAxがX軸であるので、S1=A$HCXである。工具摩耗補正&熱変位補正なし計算上加工寸法X4は、後述する最適補正倍率算出処理や、手動設定時のグラフ表示に使用するため、予めこの時点で計算をしておく。
 最後にステップS30において、グラフ表示プログラムにより工具摩耗補正なし計算上加工寸法X2がグラフ表示される。このグラフが、図8の調整前加工寸法グラフ413である。ただし、工具摩耗補正&熱変位補正なし計算上加工寸法X4に関しては、グラフ表示はしない。
 図11は、最適補正倍率算出処理の手順を説明するフローチャートである。
 表示すべき加工時状態データセット251が抽出されて調整前加工寸法グラフ413が表示されている状態で、作業者が最適補正倍率算出スイッチ474を操作すると、この処理が開始される。以下の各ステップにおける演算処理部分は、システムプログラムメモリ121に格納されている所定のプログラムを用いてCPU100により実行される。
 ステップS100において、CPU100は、仮補正倍率B’を計算する。すなわち、加工寸法グラフが表示されている最新時刻において、図10の処理中に計算済みとなった工具摩耗補正&熱変位補正なし計算上加工寸法X4の値と、目標加工寸法TSzの値との差(TSz-X4)をまず計算する。次に、CPU100は、その最新時刻において有効であった環境温度系熱変位補正量A$HCX(すなわち、S1)をその時刻において有効であった補正倍率A$Bで除した値(すなわち補正倍率1に換算した計算上熱変位補正量)で除して、0.1単位で丸めることにより、自動計算の仮補正倍率B’を得る。適用済み熱変位補正量S1を用いて表わすと、B’=ROUND((TSz-X4)/(S1/A$B)、1)となる。前記最適補正倍率を算出する計算処理が、最適補正倍率算出部である。工具摩耗補正&熱変位補正なし計算上加工寸法X4は、工具摩耗補正も熱変位補正もしていない場合の加工寸法であるので、目標加工寸法との差を熱変位補正量とすれば、工具摩耗補正を行わないでも目標加工寸法になるはずである。
 仮補正倍率B’を決定した後に、ステップS110において、CPU100は、適用済み熱変位補正量S1を適用済み補正倍率A$Bで除算した値(すなわち補正倍率1に換算した計算上熱変位補正量)に仮補正倍率B’を乗算して、仮補正倍率を適用した環境温度系熱変位補正量S2を計算する。
 なお、図9で加工寸法グラフ表示処理を説明するときは、分かり易くするために適用済み熱変位補正量は補正倍率が1であることを前提に説明したが、一度補正倍率を調整した後に加工を行って得た加工時状態データ250を用いて調整することもあるため、上記の適用済み補正倍率A$Bで除算する処理が付け加わる。
 ステップS120において、CPU100は、工具摩耗補正&熱変位補正なし計算上加工寸法X4に仮補正倍率を適用した環境温度系熱変位補正量S2を加算してX3を計算する。X3は、仮補正倍率を適用した場合の計算上加工寸法となる。
 ステップS130において、グラフ表示プログラムによりこのX3がグラフ表示される。このグラフが、図8の調整後加工寸法グラフ414である。
 ステップS140において、作業者は、このグラフ表示を見て、加工精度が向上したか否かを判断する。作業者が加工精度が向上したと判断した場合(OK)には、ステップS150において、作業者は補正倍率決定スイッチ478を操作してこの仮補正倍率B’を補正倍率Bに決定する。その後の熱変位補正は、決定された補正倍率Bを用いて計算され、環境温度系熱変位補正制御が行われることになる。
 ステップS140において、作業者が調整後加工寸法グラフ414の加工精度に満足できない場合(NG)には、ステップS160に移り、後述する手動設定処理が実行されることになる。
 図12は、補正倍率を手動操作で設定する手動設定処理手順を説明するフローチャートである。この処理は、補正倍率設定支援画面400の補正倍率調整操作部470を操作すると実行される処理である。図11の最適補正倍率算出処理におけるステップS160においては、自動計算された補正倍率に満足できなかったときに実行され、すなわち補正倍率調整操作部470を用いて自動計算された補正倍率を手動で変更する場合である。
 補正倍率を増減する前は、前述したように図10の加工寸法グラフ表示処理により、加工寸法グラフ表示部412には、実線の調整前加工寸法グラフ413のみが表示されている。工具摩耗補正&熱変位補正なし計算上加工寸法X4については、グラフ表示はしないが計算は行われている。工具摩耗補正なし計算上加工寸法X2は、工具摩耗補正&熱変位補正なし計算上加工寸法X4に適用済み熱変位補正量S1を加算した値である。以下の各ステップにおける演算処理部分は、システムプログラムメモリ121に格納されている所定のプログラムを用いてCPU100により実行される。
 ステップS210において、作業者が補正倍率増減スイッチ472を操作することにより、仮補正倍率B’を手動変更する。
 ステップS220において、CPU100は、適用済み熱変位補正量S1を適用済み補正倍率A$Bで除算して得た値に、変更された仮補正倍率B’を乗算して、仮補正倍率を適用した環境温度系熱変位補正量S2を計算する。
 ステップS230において、CPU100は、工具摩耗補正&熱変位補正なし計算上加工寸法X4に仮補正倍率を適用した環境温度系熱変位補正量S2を加算して、仮補正倍率を適用した場合の計算上加工寸法X3を計算する。
 ステップS240において、グラフ表示プログラムにより仮補正倍率を適用した場合の計算上加工寸法X3がグラフ表示される。これが、図8の調整後加工寸法グラフ414である。
 ステップS250において、作業者が、調整後加工寸法グラフ414が採用可能か否かを判断する。作業者が採用不可(NG)と判断した場合には、ステップS210に戻って、作業者は仮補正倍率B’の再調整を行う。
 作業者が採用可(OK)と判断した場合には、ステップS260に進み、作業者は補正倍率決定スイッチ478を操作する。これにより、仮補正倍率B’が補正倍率Bに設定され、その後の補正倍率Bが決定される。
 ここで、補正倍率増減スイッチ472の操作により仮補正倍率を増加した場合、適用済み熱変位補正量S1に補正倍率が乗算されるので、調整後加工寸法グラフ414の点線表示が、実線表示の調整前加工寸法グラフ413の上側に表れてくる。作業者は、補正倍率増減スイッチ472を操作して点線表示の調整後加工寸法グラフ414を上下させて、目標寸法に最も近づいて良好な補正倍率を決めて補正倍率決定スイッチ478を操作し、補正倍率を決定することができる。
 以上で説明したように、作業者は、補正倍率を調整することによって、調整後加工寸法グラフを目標寸法に近づけることができる。作業者にとってこの違和感のない作業が、環境温度系熱変位補正の補正量を是正することになる。したがって、従来作業者が熱変位補正に対して正確に補正されていないと感じていながらも補正することができなかったという問題点を解消することができる。
 しかも、作業者が加工寸法を計測する目的は、公差の指定があり精度を確保するためである。作業者による寸法計測値を環境温度系熱変位補正量の計算に活用することで、最も精度が必要な位置における熱変位量を計測したことになり、高精度な環境温度系熱変位補正を行うことが可能となる。
 さらに、加工精度を保つために行う加工後の寸法計測は、作業者にとっては通常業務に過ぎない。その結果、作業者に新たな負担をかけることなく、環境温度系熱変位補正を高精度に調整できることになる。
 また、最適補正倍率算出機能を使用すれば、自動的に調整後加工寸法が目標値近傍となる最適補正倍率が計算される。このため、経験の浅い作業者にとっても環境温度系熱変位補正量の是正を容易に行うことが可能となる。
 補正倍率設定支援機能に関する実施例2について、実施例1との相違点を中心に図面を参照しつつ説明する。
 図13は、実施例2による補正倍率設定支援画面401を示す。実施例2では、複数の加工部位の加工時状態データ250を記録することができる。そのために、加工時状態データ抽出部431に補正倍率Bの有効範囲を設定し表示する補正倍率有効範囲設定/表示部434が追加されている。
 また、選択データ誘導入力部433の表示の仕方が、実施例1の補正倍率設定支援画面400(図8)とは異なる。
 選択データ誘導入力部433の表示に関しては、同一加工中に複数の加工部位の加工時状態データ250を記録しているため、ワーク番号WNOと補正軸CAxを特定した後も、複数の加工部位による表示がなされる。例えば、図13では、2つの加工部位として、工具番号3による加工部位と工具番号6による加工部位が表示される。また、図13では工具番号が異なる例を示したが、工具番号が同一であったとしても、加工プログラムの「M**A*B**」のBで指定した目標加工寸法TSzが異なれば、当然加工部位も異なり、同一工具番号TNOが表示されることもある。そのため、選択データ誘導入力部433に目標寸法の欄が追加され、同一工具番号TNOであったとしても、加工部位を正しく選択できる。
 同一ワーク番号WNOで同一補正軸CAxの時に複数の加工部位の加工時状態データ250を記録した場合、一方の加工部位で記録された加工時状態データ250に基づいて補正倍率Bが設定されたとしても、他方の加工部位にとって理想的な補正倍率であるとは限らない。例えば、内径加工時と外径加工時では、工具主軸のB軸位置決め角度が異なることから熱変位量の方向や量が異なる場合がある。従って、加工部位ごとに補正倍率を変更可能とすることにより、工作機械を構成する部材の姿勢変化による熱変位量の相違に対応することができる。
 補正倍率有効範囲設定/表示部434は、複数の加工部位に関する加工時状態データ250に基づいて設定された複数の補正倍率について、それぞれの有効範囲を変更し表示するための操作手段である。
 補正倍率の設定を最初に行った場合、自動的に有効範囲は「全般」となる。これにより、すべての加工動作に対してその設定された補正倍率が適用される。2つ目の加工部位の加工時状態データ250に基づいて補正倍率を設定すると、自動的に有効範囲は「限定」となる。これにより、その加工部位の加工に対してのみ補正倍率が適用される。すなわち、その加工時状態データ250が記録されたときの仕上げ加工に対してのみ、限定される。3つ目以降も同様である。
 しかし、限定的に適用したい補正倍率が、設定作業の順番により全般的に適用されるように自動設定される場合もある。このような場合、「全般」が点灯している状態で「限定」スイッチを押すことにより、限定的な適用に変更が可能である。この操作により、すべての補正倍率が「限定」とされる。逆に、「限定」とされた加工部位を「全般」に変更することも可能である。この操作により、「限定」とされた加工部位は「全般」に変更されるとともに、「全般」とされていた他の加工部位は「限定」に自動的に変更される。なお、有効範囲として「全般」および「限定」が設定されているとき、「限定」とされた加工部位を除くその他全ての加工部位が「全般」の有効範囲である。
 補正倍率設定支援機能に関する実施例3について、実施例1および2との相違点を中心に図面を参照しつつ説明する。
 図14は、実施例3による補正倍率設定支援画面402を示す。補正倍率設定支援画面402のグラフ表示部411には、加工寸法グラフ表示部412に代わって補正量グラフ表示部416が表示される。補正量グラフ表示部416は、環境温度系熱変位補正量の時間的推移をグラフ表示する。
 ベテランの作業者になると、加工精度を補償するために行う加工寸法の計測や、工具摩耗補正量の入力作業を通じて、熱変位量の傾向を概略把握していることが多い。そのような作業者にとっては、熱変位補正量が時間経過によってどのように推移しているかをグラフ表示するだけで、補正量が多いか少ないかを判断することができる。そのために、作業者が補正倍率調整操作部471の補正倍率増減スイッチ472を操作し、調整後の補正量グラフ418を表示することにより、補正値の是正を行えるようにする。
 この機能を実現するために、NC装置において一定時間ごとの時点において有効であった環境温度系熱変位補正量および補正倍率を時刻とともに、環境温度系熱変位補正記録データとしてメモリに格納する。そのために、別途環境温度系熱変位補正記録データメモリを用意する。このデータを用いて、調整前の補正量グラフ417は記録された環境温度系熱変位補正量をそのまま、また、調整後の補正量グラフ418は記録された環境温度系熱変位量を記録された補正倍率で除算した後に仮補正倍率B’で乗算して、グラフ表示させる。したがって、この補正倍率設定支援装置は、加工寸法の手動入力を必要としないため、作業者の負担が更に軽減されることになる。
 <その他の実施形態>
 本発明の実施形態は、前記した各実施例に限定されるものではない。例えば下記のようにしてもよい。
 前記実施例では、工作機械を直線3軸と回転2軸の合計5軸を制御する工作機械において具体化したが、直線2軸の旋盤や、直線3軸の立形または横形のマシニングセンタにおいても適用は可能である。また、旋削加工プログラムを用いて説明したが、工具を回転させて加工するプログラムにおいても適用可能である。
 前記実施例では、駆動系熱変位量推定部と環境温度系熱変位量推定部を用いて説明したが、駆動系熱変位量に代わって、または追加して、何らかの発熱部材を有する構成や、放熱部材を有する構成を備えた場合にも適用可能である。その場合には、特定の発熱または放熱部材に基づく熱変位量を推定し、環境温度系熱変位量と併せて総合的に補正を行ってもよい。
 また、加工時状態データを外部の記憶媒体に保存することも可能である。それにより、季節による環境変化に対しても、1年または過去数年間の加工時状態データに基づいて補正倍率を設定することが可能となり、工作機械の設置環境の変化に伴う環境温度系熱変位量の変化に対して事前に対策を施すことも可能となる。
 1…工作機械、10…ベッド、20…ワーク主軸台、30…ワーク主軸、40…コラム、50…工具主軸台、60…工具主軸、70…NC装置、81~90…温度センサ、100…CPU、125…加工時状態データメモリ、250…加工時状態データ、400~402…補正倍率設定支援画面、412…加工寸法グラフ表示部、413…調整前加工寸法グラフ、414…調整後加工寸法グラフ、421…温度グラフ表示部、430~431…加工時状態データ抽出部、470~471…補正倍率調整操作部、

Claims (11)

  1.  ワークを把持するワーク把持部と、工具を把持する工具把持部と、を備え、
     前記ワーク把持部および前記工具把持部の少なくともいずれか一方を回転駆動し、
     前記ワーク把持部および前記工具把持部の少なくともいずれか一方を所定の方向へ移動駆動する
    ことにより、前記ワークを前記工具で加工する工作機械であって、
     前記工作機械を構成する部材に装着した複数の温度センサと、
     前記複数の温度センサが測定した温度値に基づき環境温度系熱変位量を計算する環境温度系熱変位量推定部と、
    を設け、
     前記環境温度系熱変位量を補償する計算上熱変位補正量に補正倍率を乗算して得られる環境温度系熱変位補正量に基づいて環境温度系熱変位補正制御を実行する
    ことを特徴とする工作機械。
  2.  前記ワーク把持部および前記工具把持部の回転駆動状態および移動駆動状態に基づき駆動系熱変位量を計算する駆動系熱変位量推定部を、更に設け、
     前記駆動系熱変位量を補償する駆動系熱変位補正量に、前記環境温度系熱変位補正量を加算して得られる合計熱変位補正量に基づいて熱変位補正制御を実行する
    ことを特徴とする請求項1に記載の工作機械。
  3.  前記環境温度系熱変位補正制御を実行した記録を環境温度系熱変位補正記録データとして記録し、
     前記環境温度系熱変位補正記録データは、前記環境温度系熱変位補正量と、該補正量の算出に適用した前記補正倍率と、当該補正を実施した時刻と、を少なくとも含み、
     前記環境温度系熱変位補正記録データに基づき環境温度系熱変位補正の時間的推移をグラフ表示し、
     前記環境温度系熱変位補正記録データに記録された前記補正倍率である記録補正倍率を仮に変更する増減スイッチを設け、
     該増減スイッチによって変更された仮補正倍率を前記環境温度系熱変位補正記録データに適用したときの環境温度系熱変位補正の時間的推移を、前記グラフに重ねてグラフ表示し、
     前記補正倍率を前記仮補正倍率に変更する補正倍率決定スイッチを備える
    ことを特徴とする請求項2に記載の工作機械。
  4.  前記環境温度系熱変位補正記録データは、一定時間ごとに記録され、
     前記環境温度系熱変位補正の時間的推移は、前記環境温度系熱変位補正量の時間的推移である
    ことを特徴とする請求項3に記載の工作機械。
  5.  前記環境温度系熱変位補正記録データは、監視対象の軸を意味する補正軸と、実績加工寸法と、加工時に適用された工具摩耗補正量と、を更に含み、
     前記環境温度系熱変位補正の時間的推移は、工具摩耗補正を行わない場合の加工寸法の計算値の時間的推移である
    ことを特徴とする請求項3に記載の工作機械。
  6.  前記環境温度系熱変位補正記録データは、目標加工寸法を更に含み、
     該環境温度系熱変位補正記録データに基づき、工具摩耗補正を行わない場合の加工寸法の計算値が前記目標加工寸法となる前記補正倍率を演算し、前記仮の補正倍率として設定する最適補正倍率算出部を備える
    ことを特徴とする請求項5に記載の工作機械。
  7.  前記環境温度系熱変位補正記録データは、1つの加工ワークにつき複数の加工部位における前記環境温度系熱変位補正記録データをそれぞれ記憶し、
     前記複数の加工部位の内特定の加工部位における前記環境温度系熱変位補正記録データに基づいて取得した前記補正倍率を、前記特定の加工部位の加工時に有効とする限定設定と、該加工部位を含む前記ワーク全般の加工時に有効とする全般設定と、のいずれか一方を設定する
    ことを特徴とする請求項5に記載の工作機械。
  8.  前記実績加工寸法を計測装置により自動で計測して書き込む
    ことを特徴とする請求項5に記載の工作機械。
  9.  前記実績加工寸法を作業者が加工後の前記ワークを計測して入力する
    ことを特徴とする請求項5に記載の工作機械。
  10.  前記環境温度系熱変位補正記録データは、加工時に実行されるデータ記録指令により記録される
    ことを特徴とする請求項5に記載の工作機械。
  11.  前記環境温度系熱変位補正記録データは、前記温度センサが測定した温度値を更に含み、
     前記環境温度系熱変位補正の時間的推移を表すグラフと同一時間軸ですべての前記温度値の推移をグラフ表示する
    ことを特徴とする請求項4または5に記載の工作機械。
PCT/JP2015/078588 2014-10-29 2015-10-08 熱変位補正量設定変更装置を備える工作機械 WO2016067874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580030647.1A CN106488828B (zh) 2014-10-29 2015-10-08 具备热位移修正量设定变更装置的机床
EP15854385.0A EP3168001B1 (en) 2014-10-29 2015-10-08 Machine tool equipped with device for changing setting of thermal displacement correction amount
JP2016509226A JP6001211B1 (ja) 2014-10-29 2015-10-08 熱変位補正量設定変更装置を備える工作機械
US15/458,028 US10353373B2 (en) 2014-10-29 2017-03-14 Machine tool thermal displacement and magnification correction adjustment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220562 2014-10-29
JP2014-220562 2014-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/458,028 Continuation US10353373B2 (en) 2014-10-29 2017-03-14 Machine tool thermal displacement and magnification correction adjustment

Publications (1)

Publication Number Publication Date
WO2016067874A1 true WO2016067874A1 (ja) 2016-05-06

Family

ID=55857216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078588 WO2016067874A1 (ja) 2014-10-29 2015-10-08 熱変位補正量設定変更装置を備える工作機械

Country Status (5)

Country Link
US (1) US10353373B2 (ja)
EP (1) EP3168001B1 (ja)
JP (1) JP6001211B1 (ja)
CN (1) CN106488828B (ja)
WO (1) WO2016067874A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176398A (ja) * 2017-04-21 2018-11-15 ファナック株式会社 ロボットシステム
JP2019005874A (ja) * 2017-06-27 2019-01-17 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
JP2019063959A (ja) * 2017-10-04 2019-04-25 ファナック株式会社 熱変位補正システム
JP2020059073A (ja) * 2018-10-05 2020-04-16 村田機械株式会社 工作機械及び加工方法
JP2020059072A (ja) * 2018-10-05 2020-04-16 村田機械株式会社 工作機械及び加工方法
JP2020099982A (ja) * 2018-12-25 2020-07-02 オークマ株式会社 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置
JP6784868B1 (ja) * 2019-09-02 2020-11-11 ヤマザキマザック株式会社 制御装置、工作機械、算出方法及びプログラム
JP7305903B1 (ja) * 2022-09-16 2023-07-10 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム
JP7362975B1 (ja) * 2022-09-16 2023-10-17 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10509390B2 (en) * 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
JP6280078B2 (ja) * 2015-05-11 2018-02-14 ファナック株式会社 工作機械の熱変位補正訓練装置
JP6464220B2 (ja) * 2017-03-21 2019-02-06 ファナック株式会社 機械学習装置及び熱変位補正装置
JP6564412B2 (ja) 2017-03-21 2019-08-21 ファナック株式会社 機械学習装置及び熱変位補正装置
US10365633B2 (en) * 2017-06-14 2019-07-30 Ford Motor Company Method for generating CNC machine offset based on thermal model
JP6691087B2 (ja) * 2017-10-04 2020-04-28 ファナック株式会社 熱変位補正システム
JP6687650B2 (ja) * 2018-01-31 2020-04-28 ファナック株式会社 熱変位補正装置及び機械学習装置
JP6673950B2 (ja) * 2018-01-31 2020-04-01 ファナック株式会社 基準温度設定装置、基準温度設定方法及び基準温度設定プログラム
JP6802208B2 (ja) * 2018-03-23 2020-12-16 ファナック株式会社 熱変位補正システム及び計算機
JP6875347B2 (ja) * 2018-10-12 2021-05-26 ファナック株式会社 熱変位補正装置及び数値制御装置
JP6556413B1 (ja) * 2018-10-31 2019-08-07 三菱電機株式会社 数値制御装置、学習装置および学習方法
JP7057306B2 (ja) * 2019-03-15 2022-04-19 ファナック株式会社 温度補間装置
JP6882364B2 (ja) * 2019-04-23 2021-06-02 ファナック株式会社 機械学習装置及び熱変位補正装置
CN110174872B (zh) * 2019-06-25 2024-06-21 东莞市博思特数控机械有限公司 一种数控机床温升补偿方法
CN110579999A (zh) * 2019-08-27 2019-12-17 东莞市巨冈机械工业有限公司 基于三轴钻攻数控机床的z向零位漂移误差补偿方法、电子设备、计算机可读存储介质
JP7481112B2 (ja) * 2019-12-26 2024-05-10 ファナック株式会社 熱変位補正装置
JP7486358B2 (ja) * 2020-06-25 2024-05-17 オークマ株式会社 工作機械の精度診断装置及び精度診断方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228055A (ja) * 1984-04-25 1985-11-13 Yamazaki Mazak Corp 数値制御工作機械における熱寸法変位の補正制御方法
JP2002239872A (ja) * 2001-02-14 2002-08-28 Toshiba Mach Co Ltd 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置
JP2002307263A (ja) * 2001-04-10 2002-10-23 Takizawa Tekkosho:Kk Nc工作機械における加工済みワークの測定結果の利用方法
JP2004030421A (ja) * 2002-06-27 2004-01-29 Nakamura Tome Precision Ind Co Ltd Nc工作機械
JP2006116663A (ja) * 2004-10-22 2006-05-11 Yamazaki Mazak Corp 工作機械の熱変位補正方法及び熱変位補正装置
JP2009238164A (ja) * 2008-03-28 2009-10-15 Seiko Epson Corp 加工装置システム
JP2012086326A (ja) * 2010-10-21 2012-05-10 Mitsubishi Heavy Ind Ltd 工作機械の熱変位補正システム
JP2013146823A (ja) * 2012-01-19 2013-08-01 Fanuc Ltd 工作機械の熱変位補正装置
JP5295467B1 (ja) * 2012-12-10 2013-09-18 三菱電機株式会社 多軸制御システム設定・調整機能支援装置
JP5490304B2 (ja) * 2011-02-24 2014-05-14 三菱電機株式会社 放電加工装置および放電加工システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747257B2 (ja) * 1989-08-22 1995-05-24 日立精機株式会社 工作機械の熱変位補正方法およびその制御装置
JPH0419042A (ja) * 1990-05-12 1992-01-23 Enshu Ltd 工作機械の熱変位補正方法
JP3405965B2 (ja) * 2000-07-06 2003-05-12 ファナック株式会社 工作機械の熱変位補正方法
CN102736557B (zh) * 2011-04-07 2016-07-20 杨建国 基于虚拟仪器的数控机床误差实时补偿系统
US9200656B2 (en) * 2011-07-20 2015-12-01 Furniture of America, Inc. Joint structure for furniture
CN102658499B (zh) * 2012-04-20 2014-08-06 西安交通大学 一种精密卧式加工中心主轴热误差补偿方法
CN102629121B (zh) * 2012-04-24 2014-04-09 上海交通大学 数控机床几何与热复合位置误差的智能补偿系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228055A (ja) * 1984-04-25 1985-11-13 Yamazaki Mazak Corp 数値制御工作機械における熱寸法変位の補正制御方法
JP2002239872A (ja) * 2001-02-14 2002-08-28 Toshiba Mach Co Ltd 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置
JP2002307263A (ja) * 2001-04-10 2002-10-23 Takizawa Tekkosho:Kk Nc工作機械における加工済みワークの測定結果の利用方法
JP2004030421A (ja) * 2002-06-27 2004-01-29 Nakamura Tome Precision Ind Co Ltd Nc工作機械
JP2006116663A (ja) * 2004-10-22 2006-05-11 Yamazaki Mazak Corp 工作機械の熱変位補正方法及び熱変位補正装置
JP2009238164A (ja) * 2008-03-28 2009-10-15 Seiko Epson Corp 加工装置システム
JP2012086326A (ja) * 2010-10-21 2012-05-10 Mitsubishi Heavy Ind Ltd 工作機械の熱変位補正システム
JP5490304B2 (ja) * 2011-02-24 2014-05-14 三菱電機株式会社 放電加工装置および放電加工システム
JP2013146823A (ja) * 2012-01-19 2013-08-01 Fanuc Ltd 工作機械の熱変位補正装置
JP5295467B1 (ja) * 2012-12-10 2013-09-18 三菱電機株式会社 多軸制御システム設定・調整機能支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168001A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562185B2 (en) 2017-04-21 2020-02-18 Fanuc Corporation Robot system
JP2018176398A (ja) * 2017-04-21 2018-11-15 ファナック株式会社 ロボットシステム
JP7019163B2 (ja) 2017-06-27 2022-02-15 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
JP2019005874A (ja) * 2017-06-27 2019-01-17 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
JP2019063959A (ja) * 2017-10-04 2019-04-25 ファナック株式会社 熱変位補正システム
JP2020059073A (ja) * 2018-10-05 2020-04-16 村田機械株式会社 工作機械及び加工方法
JP2020059072A (ja) * 2018-10-05 2020-04-16 村田機械株式会社 工作機械及び加工方法
JP7155843B2 (ja) 2018-10-05 2022-10-19 村田機械株式会社 工作機械及び加工方法
JP7103136B2 (ja) 2018-10-05 2022-07-20 村田機械株式会社 工作機械及び加工方法
JP7210268B2 (ja) 2018-12-25 2023-01-23 オークマ株式会社 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置
JP2020099982A (ja) * 2018-12-25 2020-07-02 オークマ株式会社 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置
WO2021044491A1 (ja) * 2019-09-02 2021-03-11 ヤマザキマザック株式会社 制御装置、工作機械、算出方法及びプログラム
JP6784868B1 (ja) * 2019-09-02 2020-11-11 ヤマザキマザック株式会社 制御装置、工作機械、算出方法及びプログラム
JP7305903B1 (ja) * 2022-09-16 2023-07-10 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム
JP7362975B1 (ja) * 2022-09-16 2023-10-17 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム
WO2024057532A1 (ja) * 2022-09-16 2024-03-21 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム
WO2024057584A1 (ja) * 2022-09-16 2024-03-21 ヤマザキマザック株式会社 複合加工装置、複合加工装置の制御方法、及び、制御方法を実行させるためのプログラム

Also Published As

Publication number Publication date
EP3168001A4 (en) 2017-11-08
JPWO2016067874A1 (ja) 2017-04-27
US10353373B2 (en) 2019-07-16
EP3168001B1 (en) 2019-12-18
EP3168001A1 (en) 2017-05-17
CN106488828B (zh) 2017-12-29
JP6001211B1 (ja) 2016-10-05
CN106488828A (zh) 2017-03-08
US20170185063A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6001211B1 (ja) 熱変位補正量設定変更装置を備える工作機械
JP5905158B2 (ja) 数値制御装置
US9594357B2 (en) Thermal displacement compensating device of machine tool
US7245983B2 (en) Method and apparatus for correcting thermal displacement of machine tool
US11353842B2 (en) Apparatus and method for automatically converting thermal displacement compensation parameters of machine tool
TWI665044B (zh) 線放電加工機
JP4803491B2 (ja) 工作機械における位置補正装置
WO2012157687A1 (ja) 熱変位補正装置および熱変位補正方法
JP7481112B2 (ja) 熱変位補正装置
US20150177728A1 (en) Numerical controller for smoothing tool path in operation based on table format data
US11567470B2 (en) Computer-aided optimization of numerically controlled machining of a workpiece
JP2017027360A (ja) 機械の誤差補償システム及び誤差補償方法、誤差補償プログラム
JP6299184B2 (ja) 工作機械および工作機械における加工制御方法
US20210132590A1 (en) Error compensation method for machine tool and machine tool
US10025290B2 (en) Thermal displacement correction training unit for machine tool
JP7473321B2 (ja) シミュレーション装置、数値制御装置、及びシミュレーション方法
KR102053465B1 (ko) 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법
US20150205285A1 (en) Robot, Robot Control Method and Robot Control Program
JP6561003B2 (ja) 工作機械の熱変位補正方法、工作機械
JP4282909B2 (ja) 熱変位補正方法および熱変位補正係数の変更方法並びに同補正機能を有する数値制御装置
JP7009326B2 (ja) 工作機械の数値制御装置
JP2006116654A (ja) Nc工作機械の熱変形補正方法及び熱変形補正装置
JP2016064497A (ja) データ補正装置、データ補正方法、及び、加工装置
US10802051B2 (en) Waveform display device that allows cycle time comparison to be made
CN113840687B (zh) 加工机的控制装置及其控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016509226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854385

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015854385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015854385

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE