WO2016060757A1 - Amorphous cathode material for battery device - Google Patents

Amorphous cathode material for battery device Download PDF

Info

Publication number
WO2016060757A1
WO2016060757A1 PCT/US2015/049515 US2015049515W WO2016060757A1 WO 2016060757 A1 WO2016060757 A1 WO 2016060757A1 US 2015049515 W US2015049515 W US 2015049515W WO 2016060757 A1 WO2016060757 A1 WO 2016060757A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
cathode material
structures
cathode
region
Prior art date
Application number
PCT/US2015/049515
Other languages
English (en)
French (fr)
Inventor
Ann Marie Sastry
Chia-Wei Wang
Yen-Hung Chen
Hyoncheol Kim
Xiang Chun ZHANG
Myoundo CHUNG
Original Assignee
Sakti3, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakti3, Inc. filed Critical Sakti3, Inc.
Priority to CN201580056293.8A priority Critical patent/CN107112595A/zh
Priority to KR1020177010636A priority patent/KR102072534B1/ko
Priority to EP15849837.8A priority patent/EP3235047A4/en
Priority to JP2017520379A priority patent/JP2017531297A/ja
Publication of WO2016060757A1 publication Critical patent/WO2016060757A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the thin film energy storage device, and all solid-state devices that the method of present invention can apply to, can be used for a variety of applications such as a solar panel, a consumer electronic device, a vehicle, or an electrical grid;
  • the consumer electronic devices include, but not limited to: display device, MP3 players, smartphones, tablets, laptop computers, smartwatches, activity trackers, and other wearable devices;
  • the vehicles include, but not limited to: hybrid electric buses, electric buses, hybrid electric cars, electric cars, electric bicycles, electric motorcycles, electric scooters, electric golf carts, trains, ships, airplanes, electric airplanes, helicopters, unmanned aerial vehicles, electric unmanned aerial vehicles, drones, other aerial vehicles, space stations, space shuttles, space planes, satellites, unmanned spacecrafts, other spacecrafts, and other hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles; and wherein the electrical grid includes, but not limited to stand-alone micro-grids for residential homes, commercial buildings, and communities, and centralized electrical grids.
  • the substrate member can include a surface region and can be characterized by a melting point temperature.
  • the barrier material can be formed overlying the surface region of the substrate member.
  • This barrier material can include a polymer material and can be configured to substantially block a migration of an active metal species to the substrate member.
  • the barrier material can be characterized by a barrier degrading temperature.
  • the first electrode material can be formed overlying the surface region as well.
  • the thickness of cathode material can have an amorphous characteristic.
  • the formation of this cathode material can be executed while maintaining a temperature ranging from about -40 Degrees Celsius to no greater than 500 Degrees Celsius.
  • the formation of the cathode material can be such that a spatial volume is characterized by an external border region of the cathode material, the thickness of cathode material is characterized by an effective diffusivity having a value ranging from l .E-18 m 2 /s to l .E-4 m 2 /s, and the cathode material is characterized by a void region being 0.001% to 80% of the spatial volume.
  • the cathode material includes a lithium species, the lithium species being selected from at least one of LiSON, Li x Lai_ x Zr0 3 , Li x Lai_ x Ti0 3 , LiAlGeP0 4 , LiAlTiP0 4 , LiSiCON, Lii. 3 Alo. 3 Tii. 7 (P0 4 ) 3 , 0.5LiTaO 3+0 . 5 SrTiO 3 , Lio.
  • LiSON Li x Lai_ x Zr0 3
  • Li x Lai_ x Ti0 3 LiAlGeP0 4
  • LiAlTiP0 4 LiSiCON, Lii. 3 Alo. 3 Tii. 7 (P0 4 ) 3 , 0.5LiTaO 3+0 . 5 SrTiO 3 , Lio.
  • the present invention provides a suitable solid state battery structure including barrier regions.
  • the cathode material is configured to provide improved power density for electrochemical cells.
  • the present cathode material can be made using conventional process technology techniques. Of course, there can be other variations, modifications, and alternatives.
  • FIGURE 2C is a microscopic graph view of the same area as the schematic drawing shown in FIGURE 2A according to an embodiment of present invention.
  • FIGURE 2F is a scanning electron microscope graph of the "bridge" region shown in FIGURE 2C according to an embodiment of present invention.
  • FIGURES 4A - 4F illustrate simplified cross-sectional views of each process step showing an electrochemical cell layer formed according to an embodiment of the present invention.
  • FIGURE 7 is a simplified cross-sectional view of an illustration of a cathode material according to an embodiment of the present invention.
  • FIGURE 8 is a simplified cross-sectional view of an illustration of a cathode material according to an embodiment of the present invention.
  • FIGURES 20-22 are values based upon experimental results according to examples of the present invention.
  • present invention provides a method for fabricating a thin film electrochemical energy storage device or an all solid-state device to achieve better performance and longer cycle lifetime by using multiple active and intermediate thin film layers serving either as stress mitigation means, thermal control means, ionic diffusion prevention means, ionic diffusion enhancing means, enhancing electrical conduction means, electrical insulation means, adhesion means, or the most importantly planarizing means for subsequent layers.
  • the performance of those devices can either be electrical-chemical conversion efficiency, photovoltaic conversion efficiency, electrical conduction, electrical insulation, or high/low temperature operational capabilities.
  • the materials used to form intermediary thin- film planarizing layers overlying the flaws of electrochemical/electrical active layer(s) within a thin film energy storage device or other solid-state device having inert physical properties can be categorized into four groups, but not limited to, based on their functions:
  • the materials used to form intermediary one or more thin film planarizing layers overlying the first electrochemical/electrical active layer(s) within a solid state battery or other solid-state thin film device having inert properties to mitigate flaws, to prevent mechanical failures due to an oxygen species, a water species, a nitrogen species, and a carbon dioxide species from diffusing into electrochemical/electrical active layers, or to prevent contamination from bonding to, alloying, mixing or forming a composite with the first layer due to the formation of this intermediated one more thin film layers.
  • the selection of the materials to form this planarizing layer unit is closely depending on its intention.
  • the material for this layer can be selected from a group ceramic, but not limited to, aluminum oxide, aluminum nitride, zirconium dioxide (zirconia), magnesium oxide, yttrium oxide, calcium oxide, cerium (III) oxide and boron nitride. If this planarizing layer is used also as a moisture resistance, the material for this planarizing layer can be selected, but not limited to, from a group of metals, glass, ceramics, mica, silicone resins, asbestos, acrylics, diallyl phthalate, and plastic resins.
  • one or more planarizing layers are used to fills pinholes and cracks.
  • the thicknesses, orders and selection of these planarizing layers depend on the flaw dimensions, and type of the materials of the proceeding layers. Furthermore, the types of microstructures of these planarizing layers can alter their own material properties. Carefully choosing the proper evaporation methods are necessary because types of evaporation methods, their background gases, and substrates, evaporation sources temperature are closely related to the end product's microstructure of the films.
  • present invention provides a method utilizing one or more inert layers overlaying other layers of dissimilar materials to constrain diffusion of species or conduction of electrons, wherein the stacking sequence of said layers is either in a single stack or in repeats one or more times.
  • the inert layer used to prevent diffusion of strong reactive species throughout the layers within the thin film energy storage device or an all solid- state devices.
  • the strong reactive species that the inert layers try to control include, but not limited to, lithium atoms, lithium ions, protons, sodium ions, and potassium ions, or other ionic species.
  • one or more thin film planarizing layers overlaying on the electrical/electrochemical active layer of a thin film energy storage device or an all solid-state device enable devices operation under high temperature, ruggedness, resistance to harsh environments including chemical and physical degradation, and providing electrical isolation.
  • present invention provides a method of utilizing one or more thin film planarizing layers overlaying on the electrical/electrochemical active layer of a thin film energy storage device or an all solid-state device enable devices operation under high temperature, ruggedness, resistance to harsh environments including chemical and physical degradation, and providing electrical isolation.
  • several thin-film layers sequentially are deposited on top each other to form functional unit, and their orders are:
  • the adhesive layer has total thickness less than 500 Angstroms, and the materials of this adhesive layer are selected from either: a group of elastomers, such as butyl, styrene butadiene, phenolic, polysulfide, silicone, or neoprene; a group of polymer electrolyte, such as metal salts, AX (where A + is anodic ion and is selected from a group of metals, but not limited to, Li + , Na + , Mg 2+ , etc., and X “ is cathodic ions, but are not limited to, T, CI " , Br “ , CIO 4 " , CF 3 SO 3 " ,BF 4 " , and AsF 6 " ), in polymer where polymer is chosen from a group of polymer such as, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(ethylene glycol) (PEG), poly(vinylidene fluoride) (PEO),
  • the types of materials that can be used to insulating temperature can be selected either from a group of ceramic, such as soda-lime, mica, and borosilicate; from a group of metal, such as aluminum, silver copper, zinc, indium, and tin; or from a group of polymer, such as ethylene (E), polyethylene, propylene (P), vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoropropylvinylether, perfluoromethylvinylether, chlorotrifluoroethylene, polycarbonate, polyetherimide (PEI), polymide, polystyrene, epoxy, and phenolic materials.
  • a group of ceramic such as soda-lime, mica, and borosilicate
  • metal such as aluminum, silver copper, zinc, indium, and tin
  • polymer such as ethylene (E), polyethylene, propylene (P), vinyl fluoride, vinylidene flu
  • present invention provides a method of using plurality of bi-layers in a thin film electrochemical system or other solid-state devices to prevent diffusion of Li or other active species from the solid-state device and to protect thin film electrochemical system or solid-state device from service environments that can react with the active materials such as oxygen, moisture or nitrogen.
  • the first layer is a polymer layer, which is inert and will not react with the active material. This polymer layer has two functions: preventing diffusion of the active material ionic species, and serving as planarizing layer for subsequent layer.
  • the second layer of this bi-layered functional unit is comprised of inorganic materials.
  • FIGURE IB is a simplified cross-sectional view of a modified thin film electrochemical cell, 102, with an additional diffusion barrier layer over the bridge region between the electrolyte and the anode layers according to an embodiment of present invention.
  • FIGURE IB illustrates a cross-sectional view of a modified electrochemical cell with an additional diffusion barrier layer 170 over the bridge region between the electrolyte and the anode layers to prevent anode species (i.e. lithium ion) from diffusing into the substrate or other under layer materials.
  • anode species i.e. lithium ion
  • FIGURES 4A - 4F illustrate simplified cross-sectional views of each process step showing an electrochemical cell layer formed according to an embodiment of the present invention.
  • a substrate is provided in FIGURE 4A.
  • the anode and the cathode current collectors ACC and CCC
  • ACC and CCC are deposited on the substrate
  • cathode material is deposited on the cathode current collector (FIGURE 4C)
  • the material of the electrolyte is deposited over the cathode (FIGURE 4D)
  • the diffusion barrier is deposited over the bridge region across the electrolyte between the active area where the cathode material is deposited and the anode current collector (FIGURE 4E)
  • anode material is deposited over the active area, the bridge region, and a portion of the anode current collector (FIGURE 4F).
  • the electrolyte can be configured overlying the cathode material.
  • the thickness of cathode material can include a first thickness of amorphous material and a second thickness of material.
  • the first thickness of cathode material can be greater than the second thickness, and the first thickness of amorphous material can be different in structure than the second thickness of material.
  • the cathode material can also include a surface morphology.
  • the effective diffusivity includes a first diffusivity of the first thickness and a second diffusivity of the second thickness.
  • the cathode material can be characterized by a conductivity ranging from l .E-12 S/m to 1.E4 S/m, by a C rate ranging from C/100 to lOOC, by an XRD peak to total ratio ranging from 0% to 50% crystallinity, and by an average crystallite size ranging from 0.1 nm to lOOnm configured in a spatial region.
  • FIGURE 8 is a simplified cross-sectional view of an illustration of a cathode material 800 according to an embodiment of the present invention.
  • the formation of the cathode material can include forming a plurality of first cone structures 811 and a plurality of second cone structures 812 such that the plurality of first cone structures 811 is inter-digitated with the plurality of the second cone structures 812.
  • Figure 22 shows a graph of the related data for the second sample.
  • This cell sample was provided on a glass substrate.
  • the dimensions for this cell sample were as follows: current collector (CC): 0.1 lum, cathode (CA) 1.09um, electrode (EL): 0.49um, and anode (AN): 0.9um.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
PCT/US2015/049515 2014-10-15 2015-09-10 Amorphous cathode material for battery device WO2016060757A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580056293.8A CN107112595A (zh) 2014-10-15 2015-09-10 用于电池装置的非晶阴极材料
KR1020177010636A KR102072534B1 (ko) 2014-10-15 2015-09-10 배터리 장치용 비정질 캐소드 재료
EP15849837.8A EP3235047A4 (en) 2014-10-15 2015-09-10 Amorphous cathode material for battery device
JP2017520379A JP2017531297A (ja) 2014-10-15 2015-09-10 電池装置用の非晶質カソード材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/514,779 2014-10-15
US14/514,779 US9627709B2 (en) 2014-10-15 2014-10-15 Amorphous cathode material for battery device

Publications (1)

Publication Number Publication Date
WO2016060757A1 true WO2016060757A1 (en) 2016-04-21

Family

ID=55747095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/049515 WO2016060757A1 (en) 2014-10-15 2015-09-10 Amorphous cathode material for battery device

Country Status (6)

Country Link
US (2) US9627709B2 (ja)
EP (1) EP3235047A4 (ja)
JP (1) JP2017531297A (ja)
KR (1) KR102072534B1 (ja)
CN (1) CN107112595A (ja)
WO (1) WO2016060757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053404A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited MULTIPLE ACTIVE AND INTERSTRATE LAYERS IN A SEMICONDUCTOR DEVICE

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
US11081731B2 (en) 2017-10-18 2021-08-03 International Business Machines Corporation High-capacity rechargeable batteries
CN109935897B (zh) * 2017-12-19 2021-11-26 成都大超科技有限公司 固态电解质及其锂电池电芯、锂电池
CN108039479B (zh) * 2017-12-25 2020-06-30 中国工程物理研究院电子工程研究所 一种用于锂电池的阳极材料及其制备方法
CN108232293B (zh) * 2018-01-03 2020-07-07 清陶(昆山)能源发展有限公司 一种有机-无机复合固态电解质的制备方法
CN110247105A (zh) * 2018-03-07 2019-09-17 重庆市科学技术研究院 一种提高固态电解质致密度的制备方法
CN109256555B (zh) * 2018-10-16 2020-12-22 清华大学 一种硫系复合正极材料及其全固态锂电池以及它们的制备方法
US11488001B2 (en) 2019-02-05 2022-11-01 International Business Machines Corporation Neuromorphic devices using layers of ion reservoirs and ion conductivity electrolyte
JP2022519942A (ja) * 2019-04-04 2022-03-25 ジョンソン・アイピー・ホールディング・エルエルシー 高温リチウム空気電池
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CN114641462A (zh) 2019-11-18 2022-06-17 6K有限公司 用于球形粉末的独特原料及制造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CA3180426A1 (en) 2020-06-25 2021-12-30 Richard K. Holman Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
CN112458428B (zh) * 2020-11-26 2022-07-26 南开大学 一种可用于选区原子层沉积的微纳加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280206A1 (en) * 2007-05-11 2008-11-13 Stmicroelectronics S.A. Process for realizing an electrode based on vanadium oxide and battery comprising such an electrode
US20120058380A1 (en) * 2011-11-09 2012-03-08 Sakti3, Inc. Monolithically integrated thin-film solid state lithium battery device having multiple layers of lithium electrochemical cells
US20120115028A1 (en) * 2010-11-08 2012-05-10 Toyota Jidosha Kabushiki Kaisha All-solid battery
US20140106229A1 (en) * 2012-10-17 2014-04-17 Infineon Technologies Ag Battery electrode, battery, and method for manufacturing a battery electrode
US20140102878A1 (en) * 2004-12-08 2014-04-17 Hongmei Zhang DEPOSITION OF LiCoO2

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862646A (en) 1955-02-18 1958-12-02 Haloid Xerox Inc Powder particle aerosol generator
US4009052A (en) 1975-02-24 1977-02-22 Exxon Research And Engineering Company Chalcogenide battery
DE3420245A1 (de) 1984-05-30 1985-12-05 Leybold-Heraeus GmbH, 5000 Köln Vakuumaufdampfanlage, insbesondere fuer die herstellung von magnetbaendern
KR930007853B1 (ko) 1986-12-10 1993-08-20 후지 세이끼 가부시기 가이샤 진공 증발장치
JP2612602B2 (ja) 1987-12-17 1997-05-21 東洋インキ製造 株式会社 連続蒸着フィルムの製造方法および装置
US4933889A (en) 1988-04-29 1990-06-12 International Business Machines Corporation Method for fine decomposition in finite element mesh generation
JP2775538B2 (ja) 1991-11-14 1998-07-16 住友重機械工業株式会社 成形シミュレーション方法及び装置
JP3441107B2 (ja) * 1992-05-18 2003-08-25 三菱電線工業株式会社 リチウム二次電池
JPH05320906A (ja) 1992-05-21 1993-12-07 Nissin Electric Co Ltd 成膜方法及び装置
US6294479B1 (en) 1992-05-21 2001-09-25 Nissin Electric Co., Ltd Film forming method and apparatus
JP3713055B2 (ja) 1992-06-24 2005-11-02 日本電信電話株式会社 3次元lsi形状シミュレーションシステム
US5367465A (en) 1992-06-24 1994-11-22 Intel Corporation Solids surface grid generation for three-dimensional topography simulation
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
JP3067907B2 (ja) 1992-10-07 2000-07-24 キヤノン株式会社 スパッタリング装置、スパッタリング方法、該スパッタリング方法によって形成された積層膜、真空処理装置、および該真空処理装置によって処理が施された基板
US5453934A (en) 1993-03-26 1995-09-26 Cray Research, Inc. Method for use in designing an arbitrarily shaped object
JP3571785B2 (ja) 1993-12-28 2004-09-29 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
US5411592A (en) 1994-06-06 1995-05-02 Ovonic Battery Company, Inc. Apparatus for deposition of thin-film, solid state batteries
US5498489A (en) 1995-04-14 1996-03-12 Dasgupta; Sankar Rechargeable non-aqueous lithium battery having stacked electrochemical cells
JP2658917B2 (ja) 1994-11-09 1997-09-30 日本電気株式会社 三次元配線インダクタンス計算方法
US5906757A (en) 1995-09-26 1999-05-25 Lockheed Martin Idaho Technologies Company Liquid injection plasma deposition method and apparatus
DE69730413T2 (de) 1996-11-21 2005-09-08 Koninklijke Philips Electronics N.V. Batteriesteuerungssystem und batteriesimulator
US6982132B1 (en) 1997-10-15 2006-01-03 Trustees Of Tufts College Rechargeable thin film battery and method for making the same
US6413676B1 (en) 1999-06-28 2002-07-02 Lithium Power Technologies, Inc. Lithium ion polymer electrolytes
US6350222B2 (en) 1999-07-28 2002-02-26 Thermwood Corporation Machine tool with improved tool changer means
DE29914930U1 (de) 1999-08-26 1999-12-09 Deckel Maho Gmbh Bearbeitungseinheit einer Werkzeugmaschine
EP1091325B1 (en) 1999-09-03 2002-06-26 Autodesk, Inc. Defining parameters for an FEA calculation in a CAD program
US6833031B2 (en) 2000-03-21 2004-12-21 Wavezero, Inc. Method and device for coating a substrate
US6962613B2 (en) 2000-03-24 2005-11-08 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
US20020120906A1 (en) 2000-07-17 2002-08-29 Lei Xia Behavioral modeling and analysis of galvanic devices
CA2426156C (en) 2000-10-20 2011-04-05 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US20020169620A1 (en) 2001-03-29 2002-11-14 Spotnitz Robert M. Method of doing business: customer-driven design of a charge storage device
WO2003012908A2 (en) 2001-07-27 2003-02-13 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
TW560102B (en) 2001-09-12 2003-11-01 Itn Energy Systems Inc Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design
US20030068559A1 (en) 2001-09-12 2003-04-10 Armstrong Joseph H. Apparatus and method for the design and manufacture of multifunctional composite materials with power integration
US6656234B2 (en) 2001-09-26 2003-12-02 Ford Global Technologies, Llc Tuning battery electrode porosity technical field
EP1442489B1 (en) 2001-11-09 2009-09-16 Yardney Technical Products, Inc. Non-aqueous electrolytes for lithium electrochemical cells
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7368190B2 (en) 2002-05-02 2008-05-06 Abbott Diabetes Care Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US20040168925A1 (en) 2002-10-09 2004-09-02 Uziel Landau Electrochemical system for analyzing performance and properties of electrolytic solutions
EP1593754B1 (en) 2002-12-26 2018-05-23 Toppan Printing Co., Ltd. Vacuum deposition apparatus and method of producing vapor-deposited film
US7294209B2 (en) 2003-01-02 2007-11-13 Cymbet Corporation Apparatus and method for depositing material onto a substrate using a roll-to-roll mask
US6906436B2 (en) 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
TWI236778B (en) 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
US20040144321A1 (en) 2003-01-28 2004-07-29 Eastman Kodak Company Method of designing a thermal physical vapor deposition system
US6949238B2 (en) 2003-01-31 2005-09-27 The Regents Of The University Of California Microporous crystals and synthesis schemes
US7211461B2 (en) 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP4588342B2 (ja) 2003-04-02 2010-12-01 パナソニック株式会社 2次電池及びその製造方法
US7531205B2 (en) 2003-06-23 2009-05-12 Superpower, Inc. High throughput ion beam assisted deposition (IBAD)
JP2005078985A (ja) * 2003-09-02 2005-03-24 Toshiba Battery Co Ltd 非水系二次電池用電極及びこれを用いたリチウム二次電池。
JP2005093373A (ja) 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd エネルギーデバイス及びその製造方法
US20050079418A1 (en) 2003-10-14 2005-04-14 3M Innovative Properties Company In-line deposition processes for thin film battery fabrication
US20050114105A1 (en) 2003-11-24 2005-05-26 Barber Andrew J. System for predicting the dynamic behavior of physical systems
WO2005067645A2 (en) * 2004-01-06 2005-07-28 Cymbet Corporation Layered barrier structure having one or more definable layers and method
US20050244580A1 (en) 2004-04-30 2005-11-03 Eastman Kodak Company Deposition apparatus for temperature sensitive materials
JP2005353759A (ja) 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
WO2006020685A2 (en) 2004-08-11 2006-02-23 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US7315789B2 (en) 2004-11-23 2008-01-01 Lg Chem, Ltd. Method and system for battery parameter estimation
US7193229B2 (en) 2004-12-28 2007-03-20 Asml Netherlands B.V. Lithographic apparatus, illumination system and method for mitigating debris particles
US7618742B2 (en) 2005-01-28 2009-11-17 Eveready Battery Co., Inc. Electrochemical cell with improved internal contact
US20070218329A1 (en) 2005-07-05 2007-09-20 Keith Kepler D Combinatorial method and apparatus for screening electrochemical materials
JP4844867B2 (ja) 2005-11-15 2011-12-28 住友電気工業株式会社 真空蒸着装置の運転方法および真空蒸着装置
EP1961060B1 (en) 2005-11-17 2017-12-20 Sapurast Research LLC Hybrid thin-film battery
CN101496027B (zh) 2005-11-22 2012-12-12 埃克森美孚上游研究公司 模拟系统和方法
US20080259976A1 (en) 2005-11-30 2008-10-23 The Governors Of The University Of Alberta Organic Columnar Thin Films
JP4815447B2 (ja) 2006-05-19 2011-11-16 株式会社アルバック 有機蒸着材料用蒸着装置、有機薄膜の製造方法
JP2009545845A (ja) * 2006-08-04 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気化学的エネルギー源、電子装置、およびそのような電気化学的エネルギー源の製造方法
US7490710B1 (en) 2006-08-19 2009-02-17 Wes-Tech Automation Solutions, Llc Flexible manufacturing system having modular work stations
JP5063969B2 (ja) 2006-09-29 2012-10-31 東京エレクトロン株式会社 蒸着装置、蒸着装置の制御装置、蒸着装置の制御方法および蒸着装置の使用方法
JP5134254B2 (ja) * 2007-01-24 2013-01-30 一般財団法人ファインセラミックスセンター 二次電池用電極およびその利用
JP2008210783A (ja) 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd 電池とその負極の製造方法、負極の製造装置
JP5282025B2 (ja) 2007-02-28 2013-09-04 株式会社アルバック 蒸着源、蒸着装置、有機薄膜の成膜方法
JP2008235227A (ja) * 2007-03-23 2008-10-02 Toyota Motor Corp 固体電池およびその製造方法
JP2009099495A (ja) * 2007-10-19 2009-05-07 Toyota Motor Corp リチウム二次電池
JP5299860B2 (ja) * 2007-11-12 2013-09-25 国立大学法人九州大学 全固体電池
US20090157369A1 (en) 2007-12-14 2009-06-18 Nanoexa,Inc. Fast and High-Throughput Search Engine for Materials for Lithium-Ion Batteries Using Quantum Simulations
WO2009098996A1 (ja) * 2008-02-06 2009-08-13 Zeon Corporation 薄膜デバイス、その製造方法、及び電子部品
JP2011512010A (ja) * 2008-02-12 2011-04-14 マサチューセッツ インスティテュート オブ テクノロジー 小型バッテリとこれに用いる電極
US20090217876A1 (en) 2008-02-28 2009-09-03 Ceramic Technologies, Inc. Coating System For A Ceramic Evaporator Boat
JP2009301850A (ja) * 2008-06-12 2009-12-24 Toyota Motor Corp リチウム二次電池
KR20100068494A (ko) * 2008-06-17 2010-06-23 파나소닉 주식회사 비수전해질 이차전지용 양극 및 그것을 이용한 비수전해질 이차전지
US7945344B2 (en) 2008-06-20 2011-05-17 SAKT13, Inc. Computational method for design and manufacture of electrochemical systems
US9249502B2 (en) 2008-06-20 2016-02-02 Sakti3, Inc. Method for high volume manufacture of electrochemical cells using physical vapor deposition
JP2010027409A (ja) * 2008-07-21 2010-02-04 Toyota Motor Corp リチウムイオン二次電池
CN102171873A (zh) 2008-08-05 2011-08-31 Sakti3有限公司 包含功能梯度部件的电化学电池
FR2936106B1 (fr) * 2008-09-16 2010-10-01 Commissariat Energie Atomique Micro-batterie au lithium comportant une couche d'encapsulation et procede de fabrication.
CN102171864A (zh) * 2008-12-24 2011-08-31 日本碍子株式会社 锂二次电池的正极活性物质用的板状粒子、同物质膜及锂二次电池
US9799914B2 (en) 2009-01-29 2017-10-24 Corning Incorporated Barrier layer for thin film battery
PL2401232T3 (pl) 2009-02-24 2016-10-31 Bezpośrednie napylanie próżniowe wspomagane plazmą z współosiowej drążonej katody i związany z nim sposób
JP2011029151A (ja) * 2009-07-02 2011-02-10 Fuji Heavy Ind Ltd 電極材料およびリチウムイオン二次電池
JP5515665B2 (ja) * 2009-11-18 2014-06-11 ソニー株式会社 固体電解質電池、正極活物質および電池
US8252117B2 (en) 2010-01-07 2012-08-28 Primestar Solar, Inc. Automatic feed system and related process for introducing source material to a thin film vapor deposition system
US20110294005A1 (en) 2010-05-28 2011-12-01 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and electric device
US8521497B2 (en) 2010-06-03 2013-08-27 Battelle Energy Alliance, Llc Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices
JP2013528912A (ja) * 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド 再充電可能高密度電気化学素子
JP4936032B1 (ja) * 2010-10-21 2012-05-23 大日本印刷株式会社 非水電解液二次電池用電極板、非水電解液二次電池、および電池パック
JP2012169165A (ja) * 2011-02-15 2012-09-06 Sony Corp 固体電解質電池
KR101342512B1 (ko) * 2011-03-17 2013-12-17 로베르트 보쉬 게엠베하 수계 활물질 조성물, 이를 이용하여 제조된 전극 및 리튬 이차 전지
US8900743B2 (en) 2011-10-27 2014-12-02 Sakti3, Inc. Barrier for thin film lithium batteries made on flexible substrates and related methods
JP5443445B2 (ja) * 2011-07-06 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
JP2013051171A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp 全固体電池用電極体及び全固体電池
WO2013046443A1 (ja) * 2011-09-30 2013-04-04 トヨタ自動車株式会社 全固体電池およびその製造方法
US9127344B2 (en) 2011-11-08 2015-09-08 Sakti3, Inc. Thermal evaporation process for manufacture of solid state battery devices
JP2013225495A (ja) * 2012-03-21 2013-10-31 Nippon Electric Glass Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
KR20150018559A (ko) * 2012-07-11 2015-02-23 도요타 지도샤(주) 전고체 전지 및 그 제조 방법
US9692039B2 (en) * 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
JP2014035888A (ja) * 2012-08-09 2014-02-24 Toyota Motor Corp 全固体電池及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102878A1 (en) * 2004-12-08 2014-04-17 Hongmei Zhang DEPOSITION OF LiCoO2
US20080280206A1 (en) * 2007-05-11 2008-11-13 Stmicroelectronics S.A. Process for realizing an electrode based on vanadium oxide and battery comprising such an electrode
US20120115028A1 (en) * 2010-11-08 2012-05-10 Toyota Jidosha Kabushiki Kaisha All-solid battery
US20120058380A1 (en) * 2011-11-09 2012-03-08 Sakti3, Inc. Monolithically integrated thin-film solid state lithium battery device having multiple layers of lithium electrochemical cells
US20140106229A1 (en) * 2012-10-17 2014-04-17 Infineon Technologies Ag Battery electrode, battery, and method for manufacturing a battery electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3235047A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053404A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited MULTIPLE ACTIVE AND INTERSTRATE LAYERS IN A SEMICONDUCTOR DEVICE
US20190088996A1 (en) * 2017-09-15 2019-03-21 Dyson Technology Limited Multiple active and inter layers in a solid-state device

Also Published As

Publication number Publication date
US20160240884A1 (en) 2016-08-18
KR102072534B1 (ko) 2020-02-03
EP3235047A4 (en) 2018-07-04
CN107112595A (zh) 2017-08-29
US20170352907A1 (en) 2017-12-07
US9627709B2 (en) 2017-04-18
JP2017531297A (ja) 2017-10-19
EP3235047A1 (en) 2017-10-25
KR20170056014A (ko) 2017-05-22
US10593985B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
US10593985B2 (en) Amorphous cathode material for battery device
US20190334206A1 (en) Multiple active and inter layers in a solid-state device
US11011795B2 (en) Barrier for thin film lithium batteries made on flexible substrates and related methods
JP6887088B2 (ja) 積層型全固体電池およびその製造方法
US7846579B2 (en) Thin film battery with protective packaging
JP6675821B2 (ja) 固体電池およびその製造方法
US8192789B2 (en) Method for manufacture and structure of multiple electrochemistries and energy gathering components within a unified structure
US9673478B2 (en) Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
US20170149093A1 (en) Configurations of solid state thin film batteries
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
KR20080058284A (ko) 확장 캐비티를 갖는 전류-전극 집전체 어셈블리를 포함하는리튬 축전지 및 그것의 제조 방법
KR20170057421A (ko) 보호된 음극을 갖는 전기 화학 전지
KR101786959B1 (ko) 고체-상태 전지를 위한 기판
CN107819103B (zh) 具有提高的活性材料份额的电极
JP5521719B2 (ja) 全固体二次電池用集電体、全固体二次電池用電極体および全固体二次電池
WO2021132504A1 (ja) 固体電池
WO2017204859A1 (en) Configuration of solid state thin film batteries
WO2020100682A1 (ja) 固体電池
KR20140073924A (ko) 다중 접합 박막 전지 및 그 제조 방법
JP2014229502A (ja) 積層型全固体電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015849837

Country of ref document: EP