WO2016051820A1 - 自動販売機 - Google Patents

自動販売機 Download PDF

Info

Publication number
WO2016051820A1
WO2016051820A1 PCT/JP2015/057800 JP2015057800W WO2016051820A1 WO 2016051820 A1 WO2016051820 A1 WO 2016051820A1 JP 2015057800 W JP2015057800 W JP 2015057800W WO 2016051820 A1 WO2016051820 A1 WO 2016051820A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
evaporator
vending machine
compartment
refrigerant
Prior art date
Application number
PCT/JP2015/057800
Other languages
English (en)
French (fr)
Inventor
基孝 田近
祐樹 柳澤
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to DE112015004447.7T priority Critical patent/DE112015004447T5/de
Priority to CN201580052849.6A priority patent/CN107077767B/zh
Priority to US15/515,100 priority patent/US20170241693A1/en
Publication of WO2016051820A1 publication Critical patent/WO2016051820A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F11/00Coin-freed apparatus for dispensing, or the like, discrete articles
    • G07F11/62Coin-freed apparatus for dispensing, or the like, discrete articles in which the articles are stored in compartments in fixed receptacles
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F9/00Details other than those peculiar to special kinds or types of apparatus
    • G07F9/10Casings or parts thereof, e.g. with means for heating or cooling
    • G07F9/105Heating or cooling means, for temperature and humidity control, for the conditioning of articles and their storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing

Definitions

  • the present invention relates to a vending machine that cools and sells products.
  • a frozen beverage vending machine described in Patent Document 1 is known as an example of a vending machine that cools and sells products.
  • This frozen beverage vending machine cools and sells beverages contained in containers such as PET bottles (hereinafter referred to as “contained beverages”).
  • the internal product storage is partitioned into three storage rooms by a partition, and the left storage room is configured as a frozen beverage storage, the middle storage room, and the right storage room as cold beverage storages.
  • the frozen beverage storage is kept at a set temperature (for example, ⁇ 25 ° C.) at which the beverage in the container can be frozen, and the cold beverage storage is a set temperature (for example, 5 ° C.) at which the beverage in the container can be cooled when drinking. To be kept.
  • the frozen beverage vending machine is configured to sequentially carry out and sell the corresponding beverages in the container when a product selection button is pressed.
  • the frozen beverage vending machine has a storage room (the frozen beverage storage) having a lower set temperature in the storage than the storage room of a conventional general beverage vending machine.
  • the energy (power consumption) required for cooling the inside of the cabinet increases. For this reason, in this kind of vending machine, it is desired to suppress the energy required for the interior cooling.
  • the present invention is an automatic machine capable of suppressing the energy required for cooling the inside of the storage room even when the storage room has a storage temperature lower than the storage room of a conventional general vending machine.
  • the purpose is to provide a vending machine.
  • a vending machine having at least three storage rooms each of which is partitioned by a partition wall and capable of cooling the stored product.
  • the at least three storage rooms are arranged side by side.
  • the internal temperature of the remaining storage room sandwiched between the first storage room and the second storage room among the at least three storage rooms is the internal temperature of the first storage room and the second storage room. Is set lower.
  • the remaining storage room in which the internal temperature is set lower is sandwiched between the first storage room and the second storage room, and the first storage room and the second storage room Thus, the heat entering from the outside into the remaining chamber is reduced. For this reason, even if it is a case where it has a storage room where preset temperature is lower than the storage room which the conventional general drink vending machine has, the energy required for interior cooling can be controlled.
  • FIG. 1 It is a figure which shows schematic structure of one Embodiment of the vending machine to which this invention was applied. It is a circuit block diagram of the refrigerating cycle apparatus of the said vending machine. It is a figure which shows the state (refrigerant circulation path) of the said refrigeration cycle apparatus in the case of cooling the left store room of the said vending machine. It is a figure which shows the state (refrigerant circulation path
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of a vending machine to which the present invention is applied.
  • the vending machine 1 according to the embodiment is configured to be able to cool and sell the beverage in a container, and has a product storage 2 having a heat insulating structure inside.
  • the product storage 2 is divided into three storage rooms (a right storage room 4, a middle storage room 5, and a left storage room 6) by a heat insulating wall (partition wall) 3, and the three storage rooms 4 to 6 are vending machines. 1 are arranged side by side continuously in the width direction.
  • a product storage device (not shown) that stores a large number of the beverages in the container and has a product delivery mechanism is installed. Then, for example, when a product selection button (not shown) is pressed, the vending machine 1 causes the product storage device to select a product (the beverage in the container) corresponding to the product selection button. It is comprised so that it may carry out to an exit. In the present embodiment, it is assumed that the right storage chamber 4 has the largest volume among the three storage chambers 4 to 6.
  • a first cooling unit 7 is installed in the right compartment 4, a second cooling unit 8 is installed in the middle compartment 5, and a third cooling unit 9 is installed in the left compartment 6.
  • a condensing unit 11 is installed in the machine room 10 below the product storage 2.
  • the first to third cooling units 7 to 9 and the condensing unit 11 are connected via a refrigerant pipe 20 and circulate the refrigerant to circulate the refrigerant in the right compartment 4, the middle compartment 5, and the left compartment 6.
  • the refrigeration cycle apparatus 30 that can cool each of the above is configured.
  • the right compartment 4 and the left compartment 6 are cooled by the refrigeration cycle apparatus 30 and function as a refrigerator compartment
  • the middle compartment 5 is cooled by the refrigeration cycle apparatus 30 and functions as a supercooling chamber.
  • the right-hand chamber 4 and the left-hand chamber 6 cool the beverage in the container to the temperature of drinking (ie, the refrigerated state), and the middle chamber 5 places the beverage in the container in a supercooled state. It is configured to cool. For this reason, the temperature in the right compartment 4 and the left compartment 6 (internal temperature) is maintained at the first set temperature at which the beverage in the container can be cooled to the temperature of drinking by the refrigeration cycle device 30.
  • the temperature (inside temperature) in the inner chamber 5 is maintained at the second set temperature at which the beverage in the container can be cooled to the supercooled state by the refrigeration cycle apparatus 30.
  • the first set temperature is higher than the freezing point of the beverage in the container, and can be, for example, around 5 ° C. (about 3 to 8 ° C.).
  • the second set temperature is a temperature below the freezing point of the beverage in the container, and can be, for example, around ⁇ 5 ° C. (about ⁇ 2 to ⁇ 7 ° C.).
  • FIG. 2 is a circuit configuration diagram of the refrigeration cycle apparatus 30.
  • the refrigeration cycle apparatus 30 includes the first cooling unit 7 installed in the right compartment 4, the second cooling unit 8 installed in the middle compartment 5, and the third cooling installed in the left compartment 6.
  • the unit 9 includes a condensing unit 11 disposed in the machine room 10 and a refrigerant pipe 20 that connects the first to third cooling units 7 to 9 and the condensing unit 11.
  • the refrigerant selectively circulates through the first to third cooling units 7 to 9 through the refrigerant pipe 20, thereby allowing the refrigerant to enter the right compartment 4 and the middle compartment 5. And the inside of the left compartment 6 are individually cooled.
  • the first cooling unit 7 includes a first evaporator (internal heat exchanger) 71 and a first evaporator fan 72 that blows air to the first evaporator 71.
  • the second cooling unit 8 includes a second evaporator (internal heat exchanger) 81 and a second evaporator fan 82 that blows air to the second evaporator 81.
  • the third cooling unit 9 includes a third evaporator (internal heat exchanger) 91 and a third evaporator fan 92 that blows air to the third evaporator 91.
  • Each of the evaporators 71, 81, 91 cools the interiors of the chambers 4-6 by exchanging heat between the refrigerant and the air in the chambers 4-6.
  • the condensing unit 11 includes a compressor 31, a gas cooler (external heat exchanger) 32, a gas cooler fan 33 that blows air to the gas cooler 32, and an expansion mechanism (first capillary tube 34, second capillary tube 35, third capillary). A tube 36 and an electronic expansion valve 37).
  • the compressor 31 compresses the refrigerant (a high-temperature and high-pressure gas refrigerant).
  • the gas cooler 32 cools the refrigerant (high-temperature and high-pressure gas refrigerant) sent from the compressor 31 to room temperature.
  • the expansion mechanism expands the refrigerant cooled by the gas cooler 32 to lower the temperature and pressure.
  • the 2nd capillary tube 35 and the electronic expansion valve 37 are provided here as the said expansion mechanism for the store
  • the refrigerant pipe 20 includes first to fourth refrigerant flow paths 21 to 24.
  • the first refrigerant channel 21 is a channel for circulating the refrigerant in the order of the compressor 31, the gas cooler 32, the first capillary tube 34, and the first evaporator 71. As the refrigerant flows through the first refrigerant channel 21, the inside of the right compartment 4 is cooled.
  • the second refrigerant flow path 22 is a flow path for circulating the refrigerant that has passed through the compressor 31 and the gas cooler 32 via the second evaporator 81. As the refrigerant flows through the second refrigerant flow path 22, the inside of the inner chamber 5 is cooled.
  • the second refrigerant channel 22 branches from a portion between the gas cooler 32 and the first capillary tube 34 in the first refrigerant channel 21, and the electronic expansion valve 37, the second capillary tube 35, and the second evaporator 81 are connected. After passing through, the first refrigerant channel 21 is connected to a portion between the first capillary tube 34 and the first evaporator 71.
  • a first flow path switching valve (electromagnetic three-way valve) 25 is provided at a branch portion B1 where the second refrigerant flow path 22 branches from the first refrigerant flow path 21.
  • the first flow path switching valve 25 communicates the gas cooler 32 side and the first capillary tube 34 side of the branch section B1 in the first refrigerant flow path 21 when OFF, and the branch section B of the first refrigerant flow path 21 when ON.
  • the gas cooler 32 side and the second refrigerant flow path 22 are configured to communicate with each other.
  • the third refrigerant flow path 23 is a flow path for circulating the refrigerant that has passed through the compressor 31 and the gas cooler 32 via the third evaporator 91. As the refrigerant flows through the third refrigerant flow path 23, the inside of the left chamber 6 is cooled.
  • the third refrigerant flow path 23 branches from a portion between the gas cooler 32 and the first capillary tube 34 in the first refrigerant flow path 21, passes through the third capillary tube 36 and the third evaporator 91, and then passes through the first refrigerant flow path 23.
  • the flow path 31 is connected to a portion between the first capillary tube 34 and the first evaporator 71.
  • a second flow path switching valve (electromagnetic three-way valve) 26 is provided at a branch portion B2 where the first refrigerant flow path 21 branches from the third refrigerant flow path 23.
  • the second flow path switching valve 26 When the second flow path switching valve 26 is OFF, the gas cooler 32 side and the first capillary tube 34 side of the branch section B2 in the first refrigerant flow path 21 communicate with each other, and when the second flow path switching valve 26 is ON, the branch section B of the first refrigerant flow path 21 is communicated.
  • the gas cooler 32 side and the third refrigerant flow path 23 are configured to communicate with each other.
  • the fourth refrigerant flow path 24 is a flow path for circulating the refrigerant sent from the compressor 31 (that is, the high-temperature and high-pressure gas refrigerant before passing through the gas cooler 32) via the second evaporator 81.
  • the fourth refrigerant flow path 24 is mainly used when the second evaporator 81 is defrosted.
  • the fourth refrigerant channel 24 branches from a predetermined portion between the compressor 31 and the gas cooler 32 in the first refrigerant channel 21, passes through the second evaporator 81, and then the compressor 31 in the first refrigerant channel 21. And the gas cooler 32 are connected to a portion closer to the gas cooler 32 than the predetermined portion.
  • a third flow path switching valve (electromagnetic three-way valve) 27 is provided at a branch portion B3 where the first refrigerant flow path 21 branches from the fourth refrigerant flow path 24.
  • the third flow path switching valve 27 When the third flow path switching valve 27 is OFF, the compressor 31 side and the gas cooler 32 side of the branch section B3 in the first refrigerant flow path 21 communicate with each other.
  • the third flow path switching valve 27 When the third flow path switching valve 27 is ON, the compression of the branch section B3 of the first refrigerant flow path 21 is established. It is comprised so that the machine 31 side and the 4th refrigerant
  • the operation of the refrigeration cycle apparatus 30 configured as described above is controlled by a control device (not shown) of the vending machine 1.
  • the control device uses, from various sensors (not shown), the inside temperature of each of the compartments 4 to 6, the refrigerant inlet temperature and the refrigerant outlet temperature of the gas cooler 32, the refrigerant inlet temperature and the refrigerant of each evaporator 71, 81, 91. Enter the exit temperature and outside temperature.
  • the controller appropriately controls the first to third flow path switching valves 25 to 27, the compressor 31, the gas cooler fan 33, the electronic expansion valve 37, and the first to third evaporator fans 72, 82, and 92. Then, the operation of the refrigeration cycle apparatus 30 is controlled.
  • the operation control of the refrigeration cycle apparatus 30 executed by the control device will be specifically described.
  • control device lowers the internal temperature of the right compartment 4 and the left compartment 6 to the first set temperature. Then, the internal temperature of the internal storage chamber 5 is lowered to the second set temperature. Specifically, the control device first lowers the internal temperature of the right compartment 4, the central compartment 5, and the left compartment 6 to the first set temperature, and then the internal temperature of the intermediate compartment 5 Is controlled to lower the temperature to the second set temperature.
  • control device reduces the internal temperature to the first set temperature in the order of the left compartment 6, the middle compartment 5, and the right compartment 4.
  • the present invention is not limited to this, and the order of the storage rooms for reducing the internal temperature to the first set temperature can be appropriately set.
  • FIG. 3 shows a state (refrigerant circulation path) of the refrigeration cycle apparatus 30 when the left compartment 6 is cooled.
  • the control device starts the compressor 31, the gas cooler fan 33, the first evaporator fan 72, and the third evaporator fan 92, and turns on the second flow path switching valve 26. To do.
  • the refrigerant circulates in the order of the compressor 31, the gas cooler 32, the third capillary tube 36, the third evaporator 91, and the first evaporator 71.
  • the internal temperature of (and the right compartment 4) decreases.
  • the control device stops the third evaporator fan 92 and turns off the second flow path switching valve 26. Thereby, the cooling in the left compartment 6 at the time of starting is completed.
  • the first evaporator fan 72 is activated in addition to the third evaporator fan 92 because the inside of the right compartment 4 having a large volume is cooled in advance. This is to suppress the energy consumption (power consumption) when the inside of the right compartment 4 is cooled.
  • the first evaporator fan 72 may not be started. In this case, only the cooling of the left compartment 6 is performed.
  • FIG. 4 shows a state (refrigerant circulation path) of the refrigeration cycle apparatus 30 when the inside of the inner compartment 5 is cooled.
  • the control device activates the second evaporator fan 82 and turns on the first flow path switching valve 25 when the inside of the middle compartment 5 is cooled after the cooling of the left compartment 6 is finished.
  • the first evaporator fan 71 has already been activated when the inside of the left compartment 6 is cooled. Then, as shown in FIG. 4, the refrigerant circulates in the order of the compressor 31, the gas cooler 32, the electronic expansion valve 37, the second capillary tube 35, the second evaporator 81, and the first evaporator 71. 5 (and right warehouse 4) inside temperature falls.
  • the said control apparatus will stop the 2nd evaporator fan 82, and will turn OFF the 1st flow-path switching valve 25, if the temperature in the store
  • the reason why the first evaporator fan 72 is kept activated is that the inside of the right compartment 4 having a large volume is cooled in advance as in the case where the inside of the left compartment 6 is cooled. This is because the amount of energy consumed when the inside of the right compartment 4 is cooled is suppressed. It should be noted that the first evaporator fan 72 may not be activated, and in this case, only the cooling of the inner chamber 5 is performed.
  • FIG. 5 shows the state (refrigerant circulation path) of the refrigeration cycle apparatus 30 when the inside of the right compartment 4 is cooled. Cooling in the right compartment 4 is started when the cooling in the inner compartment 5 ends, that is, the control device stops the second evaporator fan 82 and turns off the first flow path switching valve 25. In this case, as shown in FIG. 5, the refrigerant flows (circulates) through the first refrigerant flow path 21, and the internal temperature of the right compartment 4 decreases.
  • the said control apparatus will stop the 1st evaporator fan 72, if the internal temperature of the right compartment 4 falls to the lower limit of the said 1st preset temperature. Thereby, the cooling in the right compartment 4 at the time of starting is completed.
  • the control device When the control device lowers the internal temperature of the right compartment 4, the central compartment 5, and the left compartment 6 to the first set temperature as described above, then the internal temperature of the intermediate compartment 5 Is reduced to the second set temperature. Specifically, the control device activates the second evaporator fan 82, turns on the first flow path switching valve 25, and adjusts (decreases) the opening of the electronic expansion valve 37 to adjust the refrigerant flow rate. . Then, the refrigerant circulates in the order of the compressor 31, the gas cooler 32, the electronic expansion valve 37, the second capillary tube 35, the second evaporator 81, and the first evaporator 71 (see FIG. 4). The internal temperature further decreases from the first set temperature.
  • the control device stops the second evaporator fan 82 and turns off the first flow path switching valve 25 when the inside temperature of the inner compartment 5 falls to the lower limit value of the second set temperature. Thereby, the cooling in the inner storage room 5 at the time of starting is completed. The opening degree of the electronic expansion valve 37 is maintained as it is.
  • the first evaporator fan 72 is further added.
  • the inside temperature of the right compartment 4 can be lowered.
  • the control device when the internal temperature of the right compartment 4 and the left compartment 6 decreases to the first set temperature and the internal temperature of the intermediate compartment 5 decreases to the second set temperature, that is, automatic sales.
  • the compressor 31 and the gas cooler fan 33 are stopped and the refrigeration cycle apparatus 30 is stopped (set to a standby state).
  • the control device monitors the internal temperature of each of the compartments 4 to 6 while the refrigeration cycle device 30 is stopped (standby), and appropriately operates the refrigeration cycle device 30 as necessary.
  • the inside temperature of the right compartment 4 and the left compartment 6 is kept at the first set temperature, and the inside temperature of the middle compartment 5 is kept at the second set temperature.
  • the control device activates the compressor 31, the gas cooler fan 33, and the second evaporator fan 82 and first
  • the inner chamber 5 is cooled by turning on the flow path switching valve 25 (see FIG. 4).
  • the refrigerating-cycle apparatus 30 will be stopped again (it returns to a standby state).
  • the internal temperature of the right compartment 4 may also be lowered by starting the first evaporator fan 72 together.
  • the control device activates the compressor 31, the gas cooler fan 33, and the third evaporator fan 92 and The interior of the left compartment 6 is cooled by turning on the flow path switching valve 26 (see FIG. 3). And if the internal temperature of the left compartment 6 falls to the lower limit of the first set temperature, the refrigeration cycle apparatus 30 is stopped (returned to the standby state). At this time, the internal temperature of the right compartment 4 may also be lowered by starting the first evaporator fan 72 together.
  • the control device activates the compressor 31, the gas cooler fan 33, and the first evaporator fan 72 to the right.
  • the inside of the storage room 4 is cooled (see FIG. 5).
  • the refrigeration cycle apparatus 30 is stopped (returned to the standby state).
  • the said control apparatus performs the defrost control which removes the frost which generate
  • the control device first performs defrosting control of the first evaporator 71 installed in the right compartment 4 and the third evaporator 91 installed in the left compartment 6, and then the middle warehouse Defrost control of the second evaporator 81 installed in the chamber 5 is executed.
  • (3-1) Defrost control for the first evaporator 71 and the third evaporator 91
  • the control device is after the predetermined time has elapsed since the start of the vending machine 1 or the previous execution of the defrost control. And when the refrigeration cycle apparatus 30 is in a standby state, the defrosting control of the first evaporator 71 and the third evaporator 91 is executed. Specifically, the control device defrosts the first evaporator 71 and the third evaporator 91 by activating the first evaporator fan 72 and the third evaporator fan 92. At this time, the compressor 31, the gas cooler fan 33, and the second evaporator fan 82 remain stopped.
  • control device is used for the frost generated in the first evaporator 71 and the third evaporator 91 installed in the right and left compartments 4 and 6 whose inside temperature is higher than 0 ° C. Perform defrosting by blowing air.
  • the control device stops the third evaporator fan 92 when the first defrost time has elapsed since the start of the first evaporator fan 72 and the third evaporator fan 92, and the second defrost time ( ⁇ the first defrost time).
  • the first evaporator fan 72 is stopped.
  • the defrosting of the 1st evaporator 71 installed in the right compartment 4 and the 3rd evaporator 91 installed in the left compartment 6 is complete
  • the first defrosting time and the second defrosting time depend on the size of the first evaporator 71 (right compartment 4) and the size of the third evaporator 91 (left compartment 6). It can be set appropriately.
  • (3-2) Defrost Control for Second Evaporator 81 the control device starts defrosting of the first evaporator 71 and defrosting of the third evaporator 91 simultaneously. Like to do. Further, after the defrosting of the first evaporator 71 is finished, the inside temperature of the right compartment 4 is increased, and after the defrosting of the third evaporator 91 is finished, the inside temperature of the left compartment 6 is raised. Yes. For this reason, it is necessary to cool the inside of the right compartment 4 after the defrosting of the first evaporator 71, and it is necessary to cool the inside of the left compartment 6 after the defrosting of the third evaporator 91.
  • the control device is configured to cool the right compartment 4 after the defrosting of the first evaporator 71 and the third evaporator 91 and / or cool the left compartment 6 when the inside of the left compartment 6 is cooled.
  • the second evaporator 81 installed in is defrosted.
  • the cooling in the left chamber 6 is performed before the cooling in the right chamber 4. Since the left warehouse room 6 has a smaller volume than the right warehouse room 4, the internal temperature of the left warehouse room 6 exceeds the upper limit value of the first set temperature before the internal temperature of the right warehouse room 4. Because it is considered.
  • the control device When the inside temperature of the left compartment 6 exceeds the upper limit value of the first set temperature after the defrosting of the first evaporator 71 and the third evaporator 91 is finished, the control device includes the compressor 31, the gas cooler fan 33, The first evaporator fan 72 and the third evaporator fan 92 are activated, and the second flow path switching valve 26 and the third flow path switching valve 27 are turned on. Then, as shown in FIG. 6, the refrigerant circulates in the order of the compressor 31, the second evaporator 81, the gas cooler 32, the third capillary tube 36, the third evaporator 91, and the first evaporator 71.
  • the high-temperature and high-pressure refrigerant gas (hot gas) delivered from the compressor 31 flows through the second evaporator 81, and the second evaporator 81 is defrosted. That is, the control device defrosts the frost generated in the second evaporator 81 with the hot gas.
  • coolant which passed the 2nd evaporator 81 flows through the gas cooler 32, the 3rd capillary tube 36, the 3rd evaporator 91, and the 1st evaporator 71, and the warehouse of the left compartment 6 (and right compartment 4).
  • the internal temperature decreases.
  • by stopping the first evaporator fan 72 only the internal temperature of the left compartment 6 can be lowered.
  • the control device ends the cooling of the left compartment 6 and the refrigerant outlet temperature of the second evaporator 81 becomes a predetermined temperature (
  • the defrosting end temperature is reached, the defrosting of the second evaporator 81 is ended.
  • the control device When the internal temperature of the left compartment 6 decreases to the lower limit value of the first set temperature, the control device performs the compressor 31, the gas cooler fan 33, the first evaporator fan 72, and the third evaporator fan 92. Is stopped, and the second flow path switching valve 26 is turned OFF. As a result, the cooling in the left chamber 6 is completed and the refrigeration cycle apparatus 30 returns to the standby state.
  • the control device cools the right compartment 4. That is, the control device starts the compressor 31, the gas cooler fan 33, and the first evaporator fan 72. In this case, since the defrosting of the second evaporator 81 has already been completed, the third flow path switching valve 27 remains OFF. Then, the refrigerant flows (circulates) through the first refrigerant flow path 21 and the internal temperature of the right compartment 4 decreases (see FIG. 5).
  • the control device stops the compressor 31, the gas cooler fan 33, and the first evaporator fan 72. Thereby, cooling in the right compartment 4 is completed and the refrigeration cycle apparatus 30 returns to the standby state.
  • the control device finishes cooling the left compartment 6. Then, the refrigeration cycle apparatus 30 is shifted to cooling in the right compartment 4 without putting it in a standby state. That is, when the internal temperature of the left compartment 6 decreases to the lower limit value of the first set temperature, the control device stops the third evaporator fan 92 and turns off the second flow path switching valve 26 to the right. It shifts to cooling in the store room 4.
  • the control device cools the right compartment 4 and defrosts the second evaporator 81. That is, the control device activates the compressor 31, the gas cooler fan 33, and the first evaporator fan 72, and turns on the third flow path switching valve 27. Then, as shown in FIG. 7, the refrigerant circulates in the order of the compressor 31, the second evaporator 81, the gas cooler 32, the first capillary tube 34, and the first evaporator 71. Thereby, the refrigerant (hot gas) sent from the compressor 31 flows through the second evaporator 81, and defrosting (defrosting with hot gas) of the second evaporator 81 is performed. Moreover, the refrigerant
  • the second evaporator 81 has already been defrosted during the cooling of the left compartment 6, and normally the inside temperature of the right compartment 4 is equal to the first set temperature.
  • the refrigerant outlet temperature of the second evaporator 81 reaches the defrosting end temperature before decreasing to the lower limit value. Therefore, the control device controls the operation of the refrigeration cycle apparatus 30 as follows.
  • the control device turns off the third flow path switching valve 27 when the refrigerant outlet temperature of the second evaporator 81 reaches the defrosting end temperature. Then, the refrigerant circulates through the first refrigerant flow path 21 (see FIG. 5). That is, the refrigerant (the hot gas) does not circulate through the second evaporator 81. Thereby, the defrosting of the second evaporator 81 ends, while the cooling of the right compartment 4 is continued.
  • the control device stops the compressor 31, the gas cooler fan 33, and the first evaporator fan 72. Thereby, cooling in the right compartment 4 is completed and the refrigeration cycle apparatus 30 returns to the standby state.
  • the 3rd flow path switching valve 27 is turned off at the time of completion
  • the control device When the cooling in the right compartment 4 is finished and the refrigeration cycle apparatus 30 is set in a standby state, and then the second evaporator 81 is defrosted again when the left compartment 6 is cooled. Good.
  • the vending machine 1 has the right compartment 4, the middle compartment 5, and the left compartment 6, each of which is partitioned by the partition wall 3 and capable of cooling the contained beverage. is doing.
  • the right warehouse room 4, the middle warehouse room 5, and the left warehouse room 6 are arranged side by side in the width direction of the vending machine 1 inside the vending machine 1.
  • the inside temperature of the middle compartment 5 sandwiched between the right compartment 4 and the left compartment 6 is set lower than the inside temperatures of the right compartment 4 and the left compartment 6. For this reason, the intrusion heat from the outside to the inner storage room 5 having a lower internal temperature is reduced, and the energy (power consumption) required for cooling the inner storage room 5 can be suppressed.
  • the right compartment 4 and the left compartment 6 function as refrigeration rooms
  • the middle compartment 5 functions as a supercooling room. That is, the right compartment 4 and the left compartment 6 are cooled to a temperature (> 0 ° C.) that does not freeze the beverage in the container, and the middle compartment 5 cools the beverage in the container to a supercooled state.
  • the containers contained in the containers having different cooling states such as the refrigerated beverage containing the refrigerated state cooled to the drinking temperature and the beverage containing the supercooled beverage while suppressing the energy required for cooling the inside of the inner compartment 5 in particular. Beverages can be sold.
  • the vending machine 1 has the refrigerating-cycle apparatus 30 as a cooling device which can cool the inside of the right warehouse room 4, the inside of the middle warehouse room 5, and the inside of the left warehouse room 6 individually. . And at the time of starting of the vending machine 1, first, the inside temperature of the right compartment 4, the middle compartment 5, and the left compartment 6 is lowered to the first set temperature, and then the inside of the middle compartment 5 is stored. The temperature is lowered to the second set temperature. That is, the vending machine 1 (the control device thereof) sets the internal temperature of the middle compartment 5 after the temperature in the right compartment 4 and the left compartment 6 is lowered to the second set temperature ( The temperature is decreased to ⁇ the first set temperature.
  • the energy required for cooling the internal store room 5 can be suppressed.
  • the beverage in the container in the right compartment 4 and the left compartment 6 ie, the refrigerated compartment
  • the beverage in the container in the middle compartment 5 ie, the supercooled compartment. This is possible, and loss of sales opportunities can be suppressed.
  • the vending machine 1 (the control device) includes a first evaporator (internal heat exchanger) 71 installed in the right compartment 4 and a third compartment installed in the left compartment 6.
  • the frost generated in the evaporator (internal heat exchanger) 91 is defrosted by blowing air, and the frost generated in the second evaporator (internal heat exchanger) 81 installed in the inner chamber 5
  • defrosting is performed with a high-temperature and high-pressure refrigerant gas (hot gas) sent from the compressor 31.
  • the defrosting of the second evaporator 81 is after the defrosting of the first evaporator 71 and the third evaporator 91, and the cooling in the right compartment 4 or the left compartment 6 is performed. It is done at the same time. Therefore, the first to third evaporators 71, 81, 91 can be defrosted at the same time, and the stable operation of the vending machine 1 is maintained. Further, it is usually necessary to cool the right compartment 4 after the defrosting of the first evaporator 71, and it is necessary to cool the left compartment 6 after the defrosting of the third evaporator 91. For this reason, it is not necessary to operate the refrigerating cycle apparatus 30 only for defrosting of the 2nd evaporator 81, and energy consumption (power consumption) as a whole can be suppressed.
  • the vending machine 1 has three store rooms (the right store room 4, the middle store room 5, and the left store room 6) which can cool the said drink with a container as goods,
  • the right compartment 4 and the left compartment 6 function as a refrigerator, and the middle compartment 5 functions as supercooling.
  • the product may be other than the beverage in the container, and the inside temperature of the middle compartment 5 may be set lower than the inside temperature of the right compartment 4 and the left compartment 6.
  • the middle warehouse room 5 may function as a freezer, or at least one of the right warehouse room 4 and the left warehouse room 6 may function as a supercooling chamber, and the middle warehouse room 5 may function as a freezer room.
  • the vending machine 1 may have four or more storage rooms arranged side by side so that the products contained therein can be cooled.
  • the internal temperature of the remaining storage room sandwiched between the two storage rooms arranged on both sides is set lower than the internal temperature of the two storage rooms arranged on both sides.
  • the storage room that can cool the product includes not only a cooling-only storage room that only cools the product but also a storage room that can be switched between cooling and heating the product. Of course.
  • the vending machine 1 reduces the internal temperature of the right compartment 4, the central compartment 5, and the left compartment 6 to the first set temperature, After that, the internal temperature of the internal storage room 5 is lowered to the second set temperature.
  • the vending machine 1 (the control device) reduces the internal temperature of the right compartment 4, the central compartment 5, and the left compartment 6 to the first set temperature, After that, the internal temperature of the internal storage room 5 is lowered to the second set temperature.
  • the vending machine 1 (the control device thereof) cools the inner compartment 5 after lowering the internal temperatures of the right compartment 4 and the left compartment 6 to the first set temperature, and then cools the middle compartment 5
  • the inside temperature of 5 may be lowered to the second set temperature.
  • the set temperature in the right compartment 4 and the set temperature in the left compartment 6 may be different.
  • the internal temperature of the middle compartment 5 is the internal set temperature. What is necessary is just to make it fall to 2nd setting temperature.
  • the inside temperature of the middle compartment 5 is changed to the second preset temperature. You may make it reduce to. The same applies to the case where the vending machine 1 has four or more storage rooms capable of cooling the stored goods.
  • the interior temperatures of all the compartments are substantially the same. It is preferable that the temperature is lowered to the same temperature and then the inside temperature of the remaining compartment (the middle compartment 5) is further lowered.
  • the control device sequentially lowers the internal temperature of each of the storage rooms 4 to 6 to the first set temperature.
  • the present invention is not limited to this, and the control device decreases the internal temperature of each of the storage rooms 4 to 6 little by little (for example, by 2 to 5 ° C.) in order, and thereby sets each of the storage rooms 4 to 6.
  • the inside temperature may be the first set temperature at substantially the same time. In this way, the internal temperature in all of the storage rooms 4 to 6 decreases in substantially the same manner. For example, even when the start-up control is being executed, all of the storage rooms 4 to 6 are contained in the containers.
  • the beverage can be sold in a state cooled to some extent.
  • the defrosting of the 1st evaporator 71 and the defrosting of the 3rd evaporator 91 are performed simultaneously, the defrosting of the 1st evaporator 71 and the 3rd evaporator 91 are performed. Defrosting may be performed at different timings. In this case, after the defrosting of the first evaporator 71 and the inside of the right compartment 4 is cooled, and / or after the defrosting of the third evaporator 91 and the left compartment 6 When the inside is cooled, the second evaporator 81 can be defrosted.
  • the vending machine 1 (the control device), after the defrosting of the first evaporator 71 and the third evaporator 91 is finished, the inside temperature in the right compartment 4 or the left compartment.
  • the internal temperature in 6 exceeds the upper limit of the first set temperature, cooling in the right compartment 4 or cooling in the left compartment 6 is performed.
  • the vending machine 1 immediately after the defrosting of the first evaporator 71 and the third evaporator 91, in other words, without checking the temperature inside each compartment, You may make it perform cooling of this, or the inside of the left compartment 6 is cooled.
  • the defrosting of the second evaporator 81 is performed until the refrigerant outlet temperature of the second evaporator 81 reaches the refrigerant end temperature.
  • the present invention is not limited to this, and the defrosting of the second evaporator 81 may be performed until a predetermined time elapses after the refrigerant outlet temperature of the second evaporator 81 reaches the refrigerant end temperature. . If it does in this way, defrosting of the 2nd evaporator 81 can be performed more reliably.
  • the vending machine 1 may employ a refrigeration cycle apparatus 50 shown in FIG. 8, for example, instead of the refrigeration cycle apparatus 30 (FIG. 2).
  • FIG. 8 the same reference numerals are used for the same components as in FIG. Differences between the above-described refrigeration cycle apparatus 30 (FIG. 2) and the refrigeration cycle apparatus 50 shown in FIG. 8 are as follows.
  • a fifth refrigerant flow path 51 and a sixth refrigerant flow path 52 are provided instead of the fourth refrigerant flow path 24 in the refrigeration cycle apparatus 30 (FIG. 2).
  • the fifth refrigerant flow path 51 branches from a predetermined portion (branch portion B3) between the compressor 31 and the gas cooler 32 in the first refrigerant flow path 21 and is an inlet of the second evaporator 81 in the second refrigerant flow path 22. Connected to the side.
  • the sixth refrigerant flow path 52 branches from the outlet side of the second evaporator 81 in the second refrigerant flow path 22 and is connected to a portion between the branch portion B3 and the gas cooler 32 in the first refrigerant flow path 21. .
  • a fourth flow path switching valve (electromagnetic three-way valve) 53 is provided at a branch portion B4 where the sixth refrigerant flow path 52 branches from the second refrigerant flow path 22.
  • the fourth flow path switching valve 53 communicates the second evaporator 81 side and the first refrigerant flow path 21 side of the branch portion B4 in the second refrigerant flow path 22 when OFF, and the second refrigerant flow path 22 when ON.
  • the fourth flow path switching valve 53 is turned on by the control device when the second evaporator 82 is defrosted.
  • the control executed by the control device is basically the same as that in the case of the refrigeration cycle device 30 (FIG. 2) except that the fourth flow path switching valve 53 is turned on when the second evaporator 81 is defrosted. Are the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Defrosting Systems (AREA)

Abstract

従来の一般的な自動販売機が有する庫室よりも庫内設定温度の低い庫室を有する場合であっても、その庫内冷却に要するエネルギーを抑制することのできる自動販売機を提供するために、商品を冷却して販売する自動販売機(1)は、それぞれが断熱壁(隔壁)(3)によって区画されると共に収容した商品を冷却可能な少なくとも三つの庫室(右庫室(4)、中庫室(5)、左庫室(6))を有し、これら右庫室(4)、中庫室(5)、及び左庫室(6)は連続的に並んで配置されており、そして、右庫室(4)及び左庫室(6)に挟まれた中庫室(5)の庫内温度が、右庫室(4)及び左庫室(6)の庫内温度よりも低く設定される。

Description

自動販売機
 本発明は、商品を冷却して販売する自動販売機に関する。
 商品を冷却して販売する自動販売機の一例として、特許文献1に記載された凍結飲料自動販売機が知られている。この凍結飲料自動販売機は、ペットボトルなどの容器に入った飲料(以下「容器入り飲料」という)を冷却して販売する。前記凍結飲料自動販売機は、内部の商品収納庫が隔壁によって三つの庫室に区画され、左庫室が凍結飲料庫、中庫室及び右庫室がコールド飲料庫として構成されている。前記凍結飲料庫は、前記容器入り飲料が凍結可能な設定温度(例えば-25℃)に保たれ、前記コールド飲料庫は、前記容器入り飲料を飲み頃に冷却可能な設定温度(例えば5℃)に保たれるようになっている。そして、前記凍結飲料自動販売機は、商品選択ボタンが押されることにより、対応する前記容器入り飲料を順次搬出して販売するように構成されている。
特開2006-48325号公報
 しかし、前記凍結飲料自動販売機は、従来の一般的な飲料自動販売機が有する庫室よりも庫内設定温度の低い庫室(前記凍結飲料庫)を有しており、従来の一般的な飲料自動販売機に比べて、その庫内冷却に要するエネルギー(消費電力量)が増加する。このため、この種の自動販売機においては、前記庫内冷却に要するエネルギーを抑制することが望まれている。
 そこで、本発明は、従来の一般的な自動販売機が有する庫室よりも庫内設定温度の低い庫室を有する場合であっても、その庫内冷却に要するエネルギーを抑制することのできる自動販売機を提供することを目的とする。
 本発明の一側面によると、それぞれが隔壁によって区画されると共に収容した商品を冷却可能な少なくとも三つの庫室を有する自動販売機が提供される。この自動販売機において、前記少なくとも三つの庫室は連続的に並んで配置されている。そして、前記少なくとも三つの庫室のうちの第1庫室と第2庫室とに挟まれた残りの庫室の庫内温度が、前記第1庫室及び前記第2庫室の庫内温度よりも低く設定される。
 前記自動販売機において、庫内温度がより低く設定される前記残りの庫室は前記第1庫室と前記第2庫室とに挟まれており、前記第1庫室及び前記第2庫室によって前記残りの庫室内への外部からの侵入熱が低減される。このため、従来の一般的な飲料自動販売機が有する庫室よりも設定温度の低い庫室を有する場合であっても、庫内冷却に要するエネルギーを抑制できる。
本発明が適用された自動販売機の一実施形態の概略構成を示す図である。 前記自動販売機の冷凍サイクル装置の回路構成図である。 前記自動販売機の左庫室内を冷却する場合の前記冷凍サイクル装置の状態(冷媒循環経路)を示す図である。 前記自動販売機の中庫室内を冷却する場合の前記冷凍サイクル装置の状態(冷媒循環経路)を示す図である。 前記自動販売機の右庫室内を冷却する場合の前記冷凍サイクル装置の状態(冷媒循環経路)を示す図である。 前記左庫室内の冷却及び前記中庫室に設置された庫内熱交換器の除霜を行う場合の前記冷凍サイクル装置の(冷媒循環経路)を示す図である。 前記右庫室内の冷却及び前記中庫室に設置された庫内熱交換器の除霜を行う場合の前記冷凍サイクル装置の(冷媒循環経路)を示す図である。 前記自動販売機の他の冷凍サイクル装置の回路構成図である。
 以下、添付図面を参照して本発明の実施の形態を説明する。
 図1は、本発明が適用された自動販売機の一実施形態の概略構成を示す図である。実施形態による自動販売機1は、前記容器入り飲料を冷却して販売可能に構成されており、内部に断熱構造の商品収納庫2を有する。商品収納庫2は、断熱壁(隔壁)3によって三つの庫室(右庫室4、中庫室5、及び左庫室6)に区画され、当該三つの庫室4~6は自動販売機1の幅方向に連続的に並んで配置されている。
 各庫室4~6には、多数の前記容器入り飲料を収容すると共に商品搬出機構を有した商品収納装置(図示省略)が設置されている。そして、自動販売機1は、例えば、図示省略の商品選択ボタンが押されることにより、前記商品収納装置のいずれかが前記商品選択ボタンに対応する商品(前記容器入り飲料)を図示省略の商品取出口に搬出するように構成されている。なお、本実施形態においては、三つの庫室4~6のうち右庫室4の容積が最も大きいものとする。
 右庫室4には第1冷却ユニット7が設置され、中庫室5には第2冷却ユニット8が設置され、左庫室6には第3冷却ユニット9が設置されている。また、商品収納庫2の下側の機械室10にはコンデンシングユニット11が設置されている。第1~3冷却ユニット7~9とコンデンシングユニット11とは冷媒配管20を介して接続されて、冷媒を循環させることによって右庫室4内、中庫室5内、及び左庫室6内のそれぞれを個別に冷却可能な冷凍サイクル装置30を構成している。
 本実施形態において、右庫室4及び左庫室6は冷凍サイクル装置30によって冷却されて冷蔵室として機能し、中庫室5は冷凍サイクル装置30によって冷却されて過冷却室として機能する。具体的には、右庫室4及び左庫室6は、前記容器入り飲料を飲み頃の温度(すなわち、冷蔵状態)に冷却し、中庫室5は、前記容器入り飲料を過冷却状態に冷却するように構成されている。このため、右庫室4及び左庫室6内の温度(庫内温度)は、冷凍サイクル装置30によって前記容器入り飲料を前記飲み頃の温度に冷却可能な第1設定温度に保持される。また、中庫室5内の温度(庫内温度)は、冷凍サイクル装置30によって前記容器入り飲料を過冷却状態に冷却可能な第2設定温度に保持される。ここで、前記第1設定温度は、前記容器入り飲料の凝固点よりも高い温度であり、例えば5℃前後(3~8℃程度)とすることができる。前記第2設定温度は、前記容器入り飲料の凝固点以下の温度であり、例えば-5℃前後(-2~-7℃程度)とすることができる。
 図2は、冷凍サイクル装置30の回路構成図である。
 上述のように、冷凍サイクル装置30は、右庫室4に設置された第1冷却ユニット7、中庫室5に設置された第2冷却ユニット8、左庫室6に設置された第3冷却ユニット9、機械室10に配置されたコンデンシングユニット11、及び第1~第3冷却ユニット7~9とコンデンシングユニット11とを接続する冷媒配管20を含む。そして、冷凍サイクル装置30において、前記冷媒が冷媒配管20を介して前記第1~第3冷却ユニット7~9を選択的に経由して循環することによって右庫室4内、中庫室5内、及び左庫室6内のそれぞれが個別に冷却される。
 第1冷却ユニット7は、第1蒸発器(庫内熱交換器)71と第1蒸発器71に送風する第1蒸発器ファン72とを有する。第2冷却ユニット8は、第2蒸発器(庫内熱交換器)81と第2蒸発器81に送風する第2蒸発器ファン82とを有する。第3冷却ユニット9は、第3蒸発器(庫内熱交換器)91と第3蒸発器91に送風する第3蒸発器ファン92とを有する。各蒸発器71,81,91は、前記冷媒と各庫室4~6内の空気とを熱交換させることによって各庫室4~6内を冷却する。
 コンデンシングユニット11は、圧縮機31と、ガスクーラ(庫外熱交換器)32と、ガスクーラ32に送風するガスクーラファン33と、膨張機構(第1キャピラリチューブ34、第2キャピラリチューブ35、第3キャピラリチューブ36、電子膨張弁37)とを有する。圧縮機31は前記冷媒を圧縮する(高温高圧のガス冷媒とする)。ガスクーラ32は圧縮機31から送出された前記冷媒(高温高圧のガス冷媒)を常温に冷却する。前記膨張機構はガスクーラ32で冷却された前記冷媒を膨張させて低温低圧化する。なお、ここでは中庫室5用の前記膨張機構として第2キャピラリチューブ35及び電子膨張弁37が設けられているが、いずれか一方のみを設けるようにしてもよい。また、図示省略しているが、圧縮機31に流入する冷媒とガスクーラ31から流出する冷媒との間で熱交換を行わせる、いわゆる内部熱交換器が設けられるのが好ましい。
 冷媒配管20は、第1~第4冷媒流路21~24を含む。
 第1冷媒流路21は、前記冷媒を圧縮機31、ガスクーラ32、第1キャピラリチューブ34、及び第1蒸発器71の順に循環させるための流路である。前記冷媒が第1冷媒流路21を流れることにより右庫室4内が冷却される。
 第2冷媒流路22は、圧縮機31及びガスクーラ32を通過した前記冷媒を第2蒸発器81経由で循環させるための流路である。前記冷媒が第2冷媒流路22を流れることにより中庫室5内が冷却される。第2冷媒流路22は、第1冷媒流路21におけるガスクーラ32と第1キャピラリチューブ34との間の部位から分岐し、電子膨張弁37、第2キャピラリチューブ35、及び第2蒸発器81を経由した後に第1冷媒流路21における第1キャピラリチューブ34と第1蒸発器71との間の部位に接続している。第1冷媒流路21から第2冷媒流路22が分岐する分岐部B1には第1流路切換弁(電磁三方弁)25が設けられている。この第1流路切換弁25は、OFF時には第1冷媒流路21における分岐部B1のガスクーラ32側と第1キャピラリチューブ34側とを連通させ、ON時には第1冷媒流路21の分岐部Bのガスクーラ32側と第2冷媒流路22とを連通させるように構成されている。
 第3冷媒流路23は、圧縮機31及びガスクーラ32を通過した前記冷媒を第3蒸発器91経由で循環させるための流路である。前記冷媒が第3冷媒流路23を流れることにより左庫室6内が冷却される。第3冷媒流路23は、第1冷媒流路21におけるガスクーラ32と第1キャピラリチューブ34との間の部位から分岐し、第3キャピラリチューブ36及び第3蒸発器91を経由した後に第1冷媒流路31における第1キャピラリチューブ34と第1蒸発器71との間の部位に接続している。第1冷媒流路21から第3冷媒流路23が分岐する分岐部B2には第2流路切換弁(電磁三方弁)26が設けられている。この第2流路切換弁26は、OFF時には第1冷媒流路21における分岐部B2のガスクーラ32側と第1キャピラリチューブ34側とを連通させ、ON時には第1冷媒流路21の分岐部Bのガスクーラ32側と第3冷媒流路23とを連通させるように構成されている。
 第4冷媒流路24は、圧縮機31から送出された前記冷媒(すなわち、ガスクーラ32を通過する前の高温高圧のガス冷媒)を第2蒸発器81経由で循環させるための流路である。この第4冷媒流路24は、主に第2蒸発器81の除霜を行う際に使用される。第4冷媒流路24は、第1冷媒流路21における圧縮機31とガスクーラ32との間の所定部位から分岐し、第2蒸発器81を経由した後に第1冷媒流路21における圧縮機31とガスクーラ32との間の前記所定部位よりもガスクーラ32側の部位に接続している。第1冷媒流路21から第4冷媒流路24が分岐する分岐部B3には第3流路切換弁(電磁三方弁)27が設けられている。この第3流路切換弁27は、OFF時には第1冷媒流路21における分岐部B3の圧縮機31側とガスクーラ32側とを連通させ、ON時には第1冷媒流路21の分岐部B3の圧縮機31側と第4冷媒流路24とを連通させるように構成されている。
 以上のように構成された冷凍サイクル装置30の動作は、自動販売機1の制御装置(図示省略)によって制御される。すなわち、前記制御装置は、図示省略の各種センサから、各庫室4~6の庫内温度、ガスクーラ32の冷媒入口温度及び冷媒出口温度、各蒸発器71,81,91の冷媒入口温度及び冷媒出口温度、及び外気温などを入力する。そして、前記制御装置は、前記第1~第3流路切換弁25~27、圧縮機31、ガスクーラファン33、電子膨張弁37、第1~第3蒸発器ファン72,82,92を適宜制御して冷凍サイクル装置30の動作を制御する。以下、前記制御装置によって実行される冷凍サイクル装置30の動作制御について具体的に説明する。
(1)起動時制御
 前記制御装置は、自動販売機1の起動時(再起動時を含む)においては、右庫室4及び左庫室6の庫内温度を前記第1設定温度まで低下させ、中庫室5の庫内温度を前記第2設定温度まで低下させる。具体的には、前記制御装置は、まず右庫室4、中庫室5、及び左庫室6の庫内温度を前記第1設定温度まで低下させ、その後、中庫室5の庫内温度を前記第2設定温度まで低下させるように、冷凍サイクル装置30の動作を制御する。
 本実施形態において、前記制御装置は、左庫室6、中庫室5、及び右庫室4の順に各庫内温度を前記第1設定温度まで低下させる。但し、これに限るものではなく、庫内温度を前記第1設定温度まで低下させる庫室の順番は適宜設定され得る。
 図3は、左庫室6内を冷却する場合の冷凍サイクル装置30の状態(冷媒循環経路)を示している。前記制御装置は、左庫室6内を冷却する場合、圧縮機31、ガスクーラファン33、第1蒸発器ファン72、及び第3蒸発器ファン92を起動させ、第2流路切換弁26をONする。すると、図3に示すように、前記冷媒は、圧縮機31、ガスクーラ32、第3キャピラリチューブ36、第3蒸発器91、及び第1蒸発器71の順に循環し、これにより、左庫室6(及び右庫室4)の庫内温度が低下する。
 そして、前記制御装置は、左庫室6の庫内温度が前記第1設定温度の下限値まで低下すると、第3蒸発器ファン92を停止させると共に第2流路切換弁26をOFFする。これにより、起動時における左庫室6内の冷却が終了する。ここで、左庫室6内を冷却する際に第3蒸発器ファン92に加えて第1蒸発器ファン72を起動させるのは、容積の大きい右庫室4内を事前に冷却しておくことで右庫室4内の冷却を行う際のエネルギー消費量(消費電力量)を抑制するためである。但し、第1蒸発器ファン72を起動させないようにしてもよく、この場合には左庫室6内の冷却のみが行われる。
 図4は、中庫室5内を冷却する場合の冷凍サイクル装置30の状態(冷媒循環経路)を示している。前記制御装置は、左庫室6内の冷却終了後に中庫室5内を冷却する場合、第2蒸発器ファン82を起動させると共に第1流路切換弁25をONする。なお、第1蒸発器ファン71は左庫室6内を冷却するときにすでに起動されている。すると、図4に示すように、前記冷媒は圧縮機31、ガスクーラ32、電子膨張弁37、第2キャピラリチューブ35、第2蒸発器81、第1蒸発器71の順に循環して、中庫室5(及び右庫室4)の庫内温度が低下する。
 そして、前記制御装置は、中庫室5の庫内温度が前記第1設定温度の下限値まで低下すると、第2蒸発器ファン82を停止させ、第1流路切換弁25をOFFする。ここで、第1蒸発器ファン72を起動させたままとしておくのは、上述の左庫室6内を冷却させる場合と同様、容積の大きい右庫室4内を事前に冷却しておくことで右庫室4内の冷却を行う際のエネルギー消費量を抑制するためである。なお、第1蒸発器ファン72を起動させないようにしてもよく、この場合に中庫室5内の冷却のみが行われる。
 図5は、右庫室4内を冷却する場合の冷凍サイクル装置30の状態(冷媒循環経路)を示している。中庫室5内の冷却終了、すなわち、前記制御装置が第2蒸発器ファン82を停止させ、第1流路切換弁25をOFFすることによって、右庫室4内の冷却が開始される。この場合、図5に示すように、前記冷媒が第1冷媒流路21を流れて(循環して)右庫室4の庫内温度が低下する。
 そして、前記制御装置は、右庫室4の庫内温度が前記第1設定温度の下限値まで低下すると、第1蒸発器ファン72を停止させる。これにより、起動時における右庫室4内の冷却が終了する。
 前記制御装置は、以上のようにして右庫室4、中庫室5、及び左庫室6の庫内温度を前記第1設定温度まで低下させると、次いで、中庫室5の庫内温度を前記第2設定温度まで低下させる。具体的には、前記制御装置は、第2蒸発器ファン82を起動させ、第1流路切換弁25をONし、電子膨張弁37の開度を調整(小さく)して冷媒流量を調整する。すると、前記冷媒は圧縮機31、ガスクーラ32、電子膨張弁37、第2キャピラリチューブ35、第2蒸発器81、第1蒸発器71の順に循環して(図4参照)、中庫室5の庫内温度が前記第1設定温度からさらに低下する。
 そして、前記制御装置は、中庫室5の庫内温度が前記第2設定温度の下限値まで低下すると、第2蒸発器ファン82を停止させると共に第1流路切換弁25をOFFする。これにより、起動時における中庫室5内の冷却が終了する。なお、電子膨張弁37の開度はそのまま維持される。
 ここで、中庫室5内の冷却中、例えば右庫室4の庫内温度が前記第1設定温度の上限値を超えた場合又はそのおそれがある場合には、さらに第1蒸発器ファン72を起動させることで中庫室5の庫内温度に加えて右庫室4の庫内温度も低下させることができる。
 前記制御装置は、右庫室4及び左庫室6の庫内温度が前記第1設定温度まで低下すると共に中庫室5の庫内温度が前記第2設定温度まで低下すると、すなわち、自動販売機1の起動が完了すると、圧縮機31及びガスクーラファン33を停止して冷凍サイクル装置30を停止させる(待機状態とする)。
(2)通常制御
 前記制御装置は、冷凍サイクル装置30の停止(待機)中、各庫室4~6の庫内温度を監視し、必要に応じて冷凍サイクル装置30を適宜動作させることにより、右庫室4及び左庫室6の庫内温度を前記第1設定温度に保持し、中庫室5の庫内温度を前記第2設定温度に保持する。
 例えば、中庫室5の庫内温度が前記第2設定温度の上限値を超えた場合、前記制御装置は、圧縮機31、ガスクーラファン33、及び第2蒸発器ファン82を起動させると共に第1流路切換弁25をONすることで中庫室5内を冷却する(図4参照)。そして、中庫室5の庫内温度が前記第2設定温度の下限値まで低下すると、冷凍サイクル装置30を再び停止させる(待機状態に戻す)。このとき、併せて第1蒸発器ファン72を起動させることにより右庫室4の庫内温度も低下させるようにしてもよい。
 例えば、左庫室6の庫内温度が前記第1設定温度の上限値を超えた場合、前記制御装置は、圧縮機31、ガスクーラファン33、及び第3蒸発器ファン92を起動させると共に第2流路切換弁26をONすることで左庫室6内を冷却する(図3参照)。そして、左庫室6の庫内温度が前記第1設定温度の下限値まで低下すると、冷凍サイクル装置30を停止させる(待機状態に戻す)。このとき、併せて第1蒸発器ファン72を起動させることにより右庫室4の庫内温度も低下させるようにしてもよい。
 例えば、右庫室4の庫内温度が前記第1設定温度の上限値を超えた場合、前記制御装置は、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を起動させることで右庫室4内を冷却する(図5参照)。そして、右庫室4の庫内温度が前記第1設定温度の下限値まで低下すると、冷凍サイクル装置30を停止させる(待機状態に戻す)。
(3)除霜制御
 前記制御装置は、自動販売機1の稼働中、各蒸発器71,81,91に発生した霜を除去する除霜制御を定期的又は随時に実行する。本実施形態において、前記制御装置は、まず右庫室4に設置された第1蒸発器71及び左庫室6に設置された第3蒸発器91の除霜制御を実行し、その後、中庫室5に設置された第2蒸発器81の除霜制御を実行する。
(3-1)第1蒸発器71及び第3蒸発器91に対する除霜制御
 前記制御装置は、自動販売機1の起動完了又は前回の除霜制御の実行から所定時間が経過した後であって、かつ、冷凍サイクル装置30が待機状態にあるときに、第1蒸発器71及び第3蒸発器91の除霜制御を実行する。具体的には、前記制御装置は、第1蒸発器ファン72及び第3蒸発器ファン92を起動させることで第1蒸発器71及び第3蒸発器91の除霜を行う。なお、このとき圧縮機31、ガスクーラファン33、及び第2蒸発器ファン82は停止させたままである。つまり、前記制御装置は、庫内温度が0℃よりも高い右庫室4及び左庫室6に設置された第1蒸発器71及び第3蒸発器91に発生した霜に対しては庫内空気の送風による除霜を行う。
 そして、前記制御装置は、第1蒸発器ファン72及び第3蒸発器ファン92の起動から第1除霜時間が経過すると第3蒸発器ファン92を停止させ、第2除霜時間(≧前記第1除霜時間)が経過したら第1蒸発器ファン72を停止させる。これにより、右庫室4に設置された第1蒸発器71及び左庫室6に設置された第3蒸発器91の除霜が終了する。ここで、前記第1除霜時間及び前記第2除霜時間は、第1蒸発器71(右庫室4)の大きさや第3蒸発器91(左庫室6)の大きさなどに応じて適宜設定され得る。
(3-2)第2蒸発器81に対する除霜制御
 上述のように、本実施形態において、前記制御装置は、第1蒸発器71の除霜と第3蒸発器91の除霜とを同時に開始するようにしている。また、第1蒸発器71の除霜終了後は右庫室4の庫内温度が上昇しており、第3蒸発器91の除霜終了後は左庫室6の庫内温度が上昇している。このため、第1蒸発器71の除霜終了後は右庫室4内を冷却する必要が生じ、第3蒸発器91の除霜終了後は左庫室6内を冷却する必要が生じる。そこで、前記制御装置は、第1蒸発器71及び第3蒸発器91の除霜終了後に右庫室4内を冷却するとき及び/又は左庫室6内を冷却するときに、中庫室5に設置された第2蒸発器81の除霜を行う。なお、ここでは右庫室4内の冷却よりも左庫室6内の冷却が先に行われるものとする。左庫室6は右庫室4に比べて容積が小さいため、左庫室6の庫内温度の方が右庫室4の庫内温度よりも先に前記第1設定温度の上限値を超えると考えられるからである。
 第1蒸発器71及び第3蒸発器91の除霜終了後に左庫室6の庫内温度が前記第1設定
温度の上限値を超えると、前記制御装置は、圧縮機31、ガスクーラファン33、第1蒸発器ファン72、及び第3蒸発器ファン92を起動させ、第2流路切換弁26及び第3流路切換弁27をONする。すると、図6に示すように、前記冷媒は、圧縮機31、第2蒸発器81、ガスクーラ32、第3キャピラリチューブ36、第3蒸発器91、第1蒸発器71の順に循環する。これにより、圧縮機31から送出された高温高圧の冷媒ガス(ホットガス)が第2蒸発器81を流れて第2蒸発器81の除霜が行われる。つまり、前記制御装置は、第2蒸発器81に発生した霜に対しては前記ホットガスによる除霜を行う。また、第2蒸発器81を通過した冷媒がガスクーラ32、第3キャピラリチューブ36、第3蒸発器91、及び第1蒸発器71を流れることで左庫室6(及び右庫室4)の庫内温度が低下する。ここで、第1蒸発器ファン72を停止させておくことにより、左庫室6の庫内温度のみを低下させることができる。
 そして、前記制御装置は、左庫室6の庫内温度が前記第1設定温度の下限値まで低下すると左庫室6の冷却を終了し、第2蒸発器81の冷媒出口温度が所定温度(除霜終了温度)に達すると第2蒸発器81の除霜を終了する。以下、(a)左庫室6の冷却が終了する前に第2蒸発器81の除霜が終了した場合と、(b)第2蒸発器81の除霜が終了する前に左庫室6内の冷却が終了した場合とに分けて説明する。
(a)左庫室6内の冷却が終了する前に第2蒸発器81の除霜が終了した場合
 左庫室6の庫内温度が前記第1設定温度の下限値まで低下する前に第2蒸発器81の冷媒出口温度が前記除霜終了温度に達した場合、前記制御装置は、第3流路切換弁27をOFFする。すると、前記冷媒は、圧縮機31、ガスクーラ32、第3キャピラリチューブ36、第3蒸発器91、第1蒸発器71の順に循環する(図3参照)。すなわち、前記冷媒(前記ホットガス)が第2蒸発器81を循環しなくなる。これにより、第2蒸発器81の除霜は終了する一方、左庫室6(及び右庫室4)の冷却は継続される。
 そして、左庫室6の庫内温度が前記第1設定温度の下限値まで低下すると、前記制御装置は、圧縮機31、ガスクーラファン33、第1蒸発器ファン72、及び第3蒸発器ファン92を停止させ、第2流路切換弁26をOFFする。これにより、左庫室6内の冷却が終了すると共に冷凍サイクル装置30が待機状態に戻る。
 次いで、右庫室4の庫内温度が前記第1設定温度の前記上限値を超えると、前記制御装置は右庫室4内の冷却を行う。すなわち、前記制御装置は、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を起動させる。この場合はすでに第2蒸発器81の除霜が終了しているため、第3流路切換弁27はOFFのままである。すると、前記冷媒は第1冷媒流路21を流れて(循環して)右庫室4の庫内温度が低下する(図5参照)。
 そして、右庫室4の庫内温度が前記第1設定温度の下限値まで低下すると、前記制御装置は、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を停止させる。これにより、右庫室4内の冷却が終了すると共に冷凍サイクル装置30が待機状態に戻る。
 ここで、左庫室6内の冷却中に右庫室4の庫内温度が前記第1設定温度の前記上限値を超えた場合には、前記制御装置は、左庫室6内の冷却終了後、冷凍サイクル装置30を待機状態にすることなく、右庫室4内の冷却に移行させる。すなわち、前記制御装置は、左庫室6の庫内温度が前記第1設定温度の下限値まで低下すると、第3蒸発器ファン92を停止させると共に第2流路切換弁26をOFFして右庫室4内の冷却に移行させる。
(b)第2蒸発器81の除霜が終了する前に左庫室6内の冷却が終了した場合
 第2蒸発器81の冷媒出口温度が前記除霜終了温度に達する前に左庫室6の庫内温度が前記第1設定温度の下限値まで低下した場合、前記制御装置は、圧縮機31、ガスクーラファン33、第1蒸発器ファン72、及び第3蒸発器ファン92を停止させ、第2流路切換弁26及び第3流路切換弁27をOFFする。これにより、左庫室6内の冷却が終了すると共に冷凍サイクル装置30は待機状態に戻る(第2蒸発器81の除霜は終了していない)。
 次いで、右庫室4の庫内温度が前記第1設定温度の上限値を超えると、前記制御装置は、右庫室4内の冷却及び第2蒸発器81の除霜を行う。すなわち、前記制御装置は、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を起動させ、第3流路切換弁27をONする。すると、図7に示すように、前記冷媒は、圧縮機31、第2蒸発器81、ガスクーラ32、第1キャピラリチューブ34、第1蒸発器71の順に循環する。これにより、圧縮機31から送出された前記冷媒(ホットガス)が第2蒸発器81を流れて第2蒸発器81の除霜(ホットガスによる除霜)が行われる。また、第2蒸発器81を通過した冷媒がガスクーラ32、第1キャピラリチューブ34、及び第1蒸発器71を流れることで右庫室4の庫内温度が低下する。
 ここで、本実施形態においては、左庫室6内の冷却時にすでに第2蒸発器81の除霜が行われており、通常は、右庫室4の庫内温度が前記第1設定温度の下限値まで低下する前に第2蒸発器81の冷媒出口温度が前記除霜終了温度に達することになる。そのため、前記制御装置は、以下のように冷凍サイクル装置30の動作を制御する。
 前記制御装置は、第2蒸発器81の冷媒出口温度が前記除霜終了温度に達すると、第3流路切換弁27をOFFする。すると、前記冷媒は第1冷媒流路21を循環する(図5参照)。すなわち、前記冷媒(前記ホットガス)が第2蒸発器81を循環しなくなる。これにより、第2蒸発器81の除霜は終了する一方、右庫室4の冷却は継続される。
 そして、右庫室4の庫内温度が前記第1設定温度の下限値まで低下すると、前記制御装置は、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を停止させる。これにより、右庫室4内の冷却が終了すると共に冷凍サイクル装置30が待機状態に戻る。
 なお、ここでは左庫室6内の冷却終了時に第3流路切換弁27がOFFされているが、第3流路切換弁27はONのままとしてもよい。左庫室6内の冷却終了時にはまだ第2蒸発器81の除霜が終了していないため、右庫室4内を冷却するときにおいても第2蒸発器81の除霜を行うからである。この場合、前記制御装置は、右庫室4内の冷却及び第2蒸発器81の除霜を行う際に、圧縮機31、ガスクーラファン33、及び第1蒸発器ファン72を起動させればよい(第3流路切換弁27をONする必要はない)。また、かりに第2蒸発器81の冷媒出口温度が前記除霜終了温度に達する前に右庫室4の庫内温度が前記第1設定温度の下限値まで低下した場合には、前記制御装置は、右庫室4内の冷却を終了すると共に冷凍サイクル装置30を待機状態とし、その後、左庫室6内の冷却を行う際に第2蒸発器81の除霜を再度行うように構成すればよい。
 以上説明した実施形態によると、自動販売機1は、それぞれが隔壁3によって区画されると共に収容した前記容器入り飲料を冷却可能な右庫室4、中庫室5、及び左庫室6を有している。右庫室4、中庫室5、及び左庫室6は、自動販売機1の内部において、自動販売機1の幅方向に連続的に並んで配置されている。そして、右庫室4と左庫室6とに挟まれた中庫室5の庫内温度が右庫室4及び左庫室6の庫内温度よりも低く設定されている。このため、庫内温度のより低い中庫室5への外部からの侵入熱が低減されることとなり、中庫室5内の冷却に要するエネルギー(消費電力量)を抑制できる。
 また、本実施形態においては、右庫室4及び左庫室6は冷蔵室として機能し、中庫室5は過冷却室として機能する。すなわち、右庫室4及び左庫室6は前記容器入り飲料を凍結しない飲み頃の温度(>0℃)に冷却し、中庫室5は前記容器入り飲料を過冷却状態に冷却する。このため、特に中庫室5内の冷却に要するエネルギーを抑制しつつ、飲み頃温度に冷却された冷蔵状態の前記容器入り飲料と過冷却状態の前記容器入り飲料という冷却状態の異なる前記容器入り飲料の販売が可能となる。
 また、本実施形態において、自動販売機1は、右庫室4内、中庫室5内、及び左庫室6内を個別に冷却可能な冷却装置としての冷凍サイクル装置30を有している。そして、自動販売機1の起動時に、まず右庫室4、中庫室5、及び左庫室6の庫内温度を前記第1設定温度まで低下させ、その後に、中庫室5の庫内温度を前記第2設定温度まで低下させるようにしている。つまり、自動販売機1(の前記制御装置)は、右庫室4及び左庫室6の庫内温度が低下した状態となってから中庫室5の庫内温度を前記第2設定温度(<前記第1設定温度)まで低下させるようにしている。このため、中庫室5の庫内温度を一気に前記第2設定温度まで低下させる場合に比べて、中庫室5内の冷却に要するエネルギーを抑制することができる。また、右庫室4及び左庫室6(すなわち、前記冷蔵室)内の前記容器入り飲料を中庫室5(すなわち、前記過冷却室)内の前記容器入り飲料に先んじて販売することが可能であり、販売機会の損失を抑制することができる。
 さらに、本実施形態において、自動販売機1(の前記制御装置)は、右庫室4に設置された第1蒸発器(庫内熱交換器)71及び左庫室6に設置された第3蒸発器(庫内熱交換器)91に発生した霜に対しては送風による除霜を行い、中庫室5に設置された第2蒸発器(庫内熱交換器)81に発生した霜に対しては圧縮機31から送出された高温高圧の冷媒ガス(ホットガス)による除霜を行うようにしている。そして、第1蒸発器71及び第3蒸発器91の除霜は、予め設定された除霜時間が経過したら終了し、第2蒸発器81の除霜は、第2蒸発器81の冷媒出口温度が所定温度に達したら終了する。このため、各蒸発器71,81,91の除霜に要するエネルギーを抑制しつつ、庫内温度が0℃以下となる中庫室5に設置された第2蒸発器81の除霜を確実に行うことができる。
 特に、本実施形態において、第2蒸発器81の除霜は、第1蒸発器71及び第3蒸発器91の除霜終了後であって、右庫室4内又は左庫室6内の冷却と同時に行われている。このため、第1~第3蒸発器71,81,91の除霜を同時期に行うことができ、自動販売機1の安定した稼働が維持される。また、通常、第1蒸発器71の除霜終了後は右庫室4内を冷却する必要が生じ、第3蒸発器91の除霜終了後は左庫室6内を冷却する必要が生じる。このため、第2蒸発器81の除霜のためだけに冷凍サイクル装置30を動作させる必要はなく、全体としてのエネルギー消費(消費電力量)を抑制できる。
 なお、上述の実施形態において、自動販売機1は、商品としての前記容器入り飲料を冷却可能な三つの庫室(右庫室4、中庫室5、及び左庫室6)を有し、右庫室4及び左庫室6を冷蔵庫として機能させ、中庫室5を過冷却として機能させている。しかし、これに限るものではない。前記商品は前記容器入り飲料以外であってもよく、また、右庫室4及び左庫室6の庫内温度よりも中庫室5の庫内温度の方が低く設定されればよい。例えば、中庫室5を冷凍庫として機能させたり、右庫室4及び左庫室6の少なくとも一方を過冷却室として機能させると共に中庫室5を冷凍室として機能させたりしてもよい。
 さらに、自動販売機1は、それぞれが収容した前記商品を冷却可能な連続的に並んで配置された四つ以上の庫室を有してもよい。この場合には、両側に配置された二つの庫室の挟まれた残りの庫室の庫内温度が、両側に配置された前記二つの庫室の庫内温度よりも低く設定される。ここで、前記商品を冷却可能な庫室とは、前記商品の冷却のみを行う冷却専用の庫室だけではなく、前記商品の冷却と加温とを切り替えて行うことができる庫室を含むことはもちろんである。
 また、上述の実施形態においては、自動販売機1(の前記制御装置)は、右庫室4、中庫室5、及び左庫室6の庫内温度を前記第1設定温度まで低下させ、その後に、中庫室5の庫内温度を前記第2設定温度まで低下させるようにしている。しかし、これに限るものではない。中庫室5の庫内温度を前記第2設定温度まで低下させる際に、少なくとも右庫室4及び左庫室6の庫内温度が前記第1設定温度まで低下されていればよい。例えば、自動販売機1(の前記制御装置)は、右庫室4及び左庫室6の庫内温度を第1設定温度まで低下させた後に、中庫室5の冷却を行って中庫室5の庫内温度を前記第2設定温度まで低下させるようにしてもよい。右庫室4の庫内設定温度と左庫室6の庫内設定温度とが異なっていてもよい。この場合、右庫室4の庫内温度及び左庫室6の庫内温度をそれぞれの庫内設定温度まで低下させた後に、中庫室5の庫内温度をその庫内設定温度である前記第2設定温度まで低下させるようにすればよい。もちろん、中庫室5の庫内温度を右庫室4の庫内設定温度又は左庫室6の庫内設定温度まで低下させた後に、中庫室5の庫内温度を前記第2設定温度まで低下させるようにしてもよい。なお、これらのことは、自動販売機1が収容商品を冷却可能な四つ以上の庫室を有する場合も同様である。但し、庫内冷却に要するエネルギーの抑制の観点からは、上述の実施形態のように、全ての庫室(右庫室4、中庫室5、及び左庫室6)の庫内温度をほぼ同じ温度まで低下させてから、前記残りの庫室(中庫室5)の庫内温度をさらに低下させるように構成するのが好ましい。
 また、上述の実施形態において、前記制御装置は、各庫室4~6の庫内温度を順番に前記第1設定温度まで低下させるようにしている。しかし、これに限るものではなく、前記制御装置は、各庫室4~6の庫内温度を順番に少しずつ低下させて(例えば2~5℃ずつ低下させて)、各庫室4~6の庫内温度がほぼ同じ時期に前記第1設定温度となるようにしてもよい。このようにすると、全ての庫室4~6内の庫内温度がほぼ同じように低下するので、例えば前記起動時制御の実行中であっても、全ての庫室4~6の前記容器入り飲料をある程度冷却した状態で販売することが可能となる。
 また、上述の実施形態においては、第1蒸発器71の除霜と第3蒸発器91の除霜とが同時に実行されているが、第1蒸発器71の除霜と第3蒸発器91の除霜とが別々のタイミングで実行されてもよい。この場合には、第1蒸発器71の除霜終了後であって右庫室4内が冷却されるとき、及び/又は、第3蒸発器91に除霜終了後であって左庫室6内が冷却されるときに、第2蒸発器81の除霜が行われるようにすることができる。
 また、上述の実施形態において、自動販売機1(の前記制御装置)は、第1蒸発器71及び第3蒸発器91の除霜終了後、右庫室4内の庫内温度又は左庫室6内の庫内温度が前記第1設定温度の上限値を超えると、右庫室4内の冷却又は左庫室6内の冷却を行うようにしている。しかし、これに限るものではない。自動販売機1(の前記制御装置)は、第1蒸発器71及び第3蒸発器91の除霜終了後、直ちに、換言すれば、各庫内温度を確認することなく、右庫室4内の冷却又は左庫室6内の冷却を行うようにしてもよい。
 また、上述の実施形態において、第2蒸発器81の除霜は第2蒸発器81の冷媒出口温度が前記冷媒終了温度に達するまで行われている。しかし、これに限るものではなく、第2蒸発器81の除霜は、第2蒸発器81の冷媒出口温度が前記冷媒終了温度に達してから所定時間が経過するまで行われるようにしてもよい。このようにすると、第2蒸発器81の除霜をより確実に行うことができる。
 さらに、自動販売機1は、冷凍サイクル装置30(図2)に代えて、例えば図8に示す冷凍サイクル装置50を採用してもよい。なお、図8において、図2と同じ構成要素については同一の符号を用いている。上述の冷凍サイクル装置30(図2)と図8に示す冷凍サイクル装置50との相違点は以下のとおりである。
 まず、冷凍サイクル装置50(図8)では、冷凍サイクル装置30(図2)における第4冷媒流路24に代えて第5冷媒流路51及び第6冷媒流路52が設けられている。第5冷媒流路51は、第1冷媒流路21における圧縮機31とガスクーラ32との間の所定部位(分岐部B3)から分岐して第2冷媒流路22における第2蒸発器81の入口側に接続している。第6冷媒流路52は、第2冷媒流路22における第2蒸発器81の出口側から分岐して第1冷媒流路21における分岐部B3とガスクーラ32との間の部位に接続している。第2冷媒流路22から第6冷媒流路52が分岐する分岐部B4には第4流路切換弁(電磁三方弁)53が設けられている。この第4流路切換弁53は、OFF時には第2冷媒流路22における分岐部B4の第2蒸発器81側と第1冷媒流路21側とを連通させ、ON時には第2冷媒流路22の分岐部B4の第2蒸発器81側と第6冷媒流路52とを連通させせるように構成されている。なお、第4流路切換弁53は、第2蒸発器82の除霜を行う際に前記制御装置によってONされる。
 次に、冷凍サイクル装置50(図8)では、第1冷媒流路21におけるガスクーラ32と第2流路切換弁26との間(前記内部熱交換器が設けられている場合には前記内部熱交換器と第2流路切換弁26との間)に、第4キャピラリチューブ54が設けられている。また、好ましくは、第1流路切換弁25及び第4流路切換弁53の安定した動作の確保などのため、第1流路切換弁25と電子膨張弁37との間に逆止弁55が設けられ、第4流路切換弁53とガスクーラ32との間(すなわち、第6冷媒流路52の途中)に逆止弁56が設けられる。なお、前記制御装置が実行する制御は、第2蒸発器81の除霜を行う場合に第4流路切換弁53をONすることを除いて、冷凍サイクル装置30(図2)の場合と基本的に同じである。
 以上、本発明の実施形態及びその変形例について説明したが、本発明は上述の実施形態や変形例に限定されるものではなく、本発明の技術的思想に基づいて更なる変形や変更が可能であることはもちろんである。
 1…自動販売機、2…商品収納庫、3…断熱壁(隔壁)、4…右庫室、5…中庫室、6…左庫室、7…第1冷却ユニット、8…第2冷却ユニット、9…第3冷却ユニット、10…機械室、11…コンデンシングユニット、20…冷媒配管、21~24…第1~第4冷媒流路、25~27…第1~第3流路切換弁、30…冷凍サイクル装置(冷却装置)、31…圧縮機、32…ガスクーラ(庫外熱交換器)、33…ガスクーラファン、34~36…第1~第3キャピラリチューブ(膨張機構)、37…電子膨張弁(膨張機構)、50…冷凍サイクル装置(冷却装置)、51…第5冷媒流路、52…第6冷媒流路、53…第4流路切換弁、54…第4キャピラリチューブ、71…第1蒸発器(庫内熱交換器)、72…第1蒸発器ファン、81…第2蒸発器(庫内熱交換器)、82…第2蒸発器ファン、91…第3蒸発器(庫内熱交換器)、92…第3蒸発器ファン

Claims (12)

  1.  それぞれが隔壁によって区画されると共に収容した商品を冷却可能な少なくとも三つの庫室を有する自動販売機であって、
     前記少なくとも三つの庫室は連続的に並んで配置され、
     前記少なくとも三つの庫室のうちの第1庫室と第2庫室とに挟まれた残りの庫室の庫内温度が、前記第1庫室及び前記第2庫室の庫内温度よりも低く設定される、自動販売機。
  2.  前記商品は容器入り飲料であり、
     前記第1庫室及び前記第2庫室の庫内温度は前記容器入り飲料の凝固点よりも高い温度に保持され、前記残りの庫室の庫内温度は前記容器入り飲料の凝固点以下の温度に設定される、請求項1に記載の自動販売機。
  3.  前記商品は容器入り飲料であり、
     前記第1庫室及び前記第2庫室は前記容器入り飲料を冷蔵状態に冷却し、前記残りの庫室は前記容器入り飲料を過冷却状態に冷却する、請求項1又は2に記載の自動販売機。
  4.  前記第1庫室及び前記第2庫室の庫内設定温度は0℃よりも高く、前記残りの庫室の庫内設定温度は-5℃前後である、請求項1~3のいずれか一つに記載の自動販売機。
  5.  前記少なくとも三つの庫室内のそれぞれを個別に冷却可能な冷却装置を有し、
     前記少なくとも三つの庫室の全ての庫内温度を前記第1庫室及び前記第2庫室の庫内設定温度まで低下させた後に、前記残りの庫室の庫内温度をその庫内設定温度まで低下させる、請求項1~4のいずれか一つに記載の自動販売機。
  6.  前記少なくとも三つの庫室内のそれぞれを個別に冷却可能な冷却装置を有し、
     起動時において、前記第1庫室の庫内温度及び前記第2庫室の庫内温度をそれぞれの庫内設定温度まで低下させた後に、前記残りの庫室の庫内温度をその庫内設定温度まで低下させる、請求項1~4のいずれか一つに記載に自動販売機。
  7.  前記冷却装置は、冷媒を圧縮する圧縮機、前記冷媒を冷却するガスクーラ、前記冷媒を膨張させる膨張機構、及び前記少なくとも三つの庫室のそれぞれに配置された庫内熱交換器を含み、前記冷媒が各庫内熱交換器を選択的に経由して循環することによって前記少なくとも三つの庫室のそれぞれが個別に冷却される、請求項5又は6に記載の自動販売機。
  8.  前記冷却装置は、前記圧縮機から送出された高温高圧の冷媒ガスを前記残りの庫室に配置された前記庫内熱交換器に流すための冷媒流路を含み、
     前記高温高圧の冷媒ガスを前記残りの庫室に配置された前記庫内熱交換器に流すことによって前記残りの庫室に配置された前記庫内熱交換器の除霜を行う、
     請求項7に記載の自動販売機。
  9.  前記残りの庫室に配置された前記庫内熱交換器の除霜は、前記第1庫室内又は前記第2庫室内の冷却と同時に行われる、請求項8に記載の自動販売機。
  10.  前記残りの庫室に配置された前記庫内熱交換器の除霜は、前記第1庫室及び第2庫室の少なくとも一方に配置された前記庫内熱交換器の除霜終了後に行われる、請求項9に記載の自動販売機。
  11.  前記残りの庫室に配置された前記庫内熱交換器の除霜は、当該庫内熱交換器の冷媒出口温度が所定温度に達するまで行われる、請求項8~10のいずれか一つに記載の自動販売機。
  12.  前記残りの庫室に配置された前記庫内熱交換器の除霜は、当該庫内熱交換器の冷媒出口温度が所定温度に達してから所定時間が経過するまで行われる、請求項8~10のいずれか一つに記載の自動販売機。
PCT/JP2015/057800 2014-09-29 2015-03-17 自動販売機 WO2016051820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015004447.7T DE112015004447T5 (de) 2014-09-29 2015-03-17 Verkaufsautomat
CN201580052849.6A CN107077767B (zh) 2014-09-29 2015-03-17 自动售货机
US15/515,100 US20170241693A1 (en) 2014-09-29 2015-03-17 Vending machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014198087A JP6478544B2 (ja) 2014-09-29 2014-09-29 自動販売機
JP2014-198087 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016051820A1 true WO2016051820A1 (ja) 2016-04-07

Family

ID=55629880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057800 WO2016051820A1 (ja) 2014-09-29 2015-03-17 自動販売機

Country Status (5)

Country Link
US (1) US20170241693A1 (ja)
JP (1) JP6478544B2 (ja)
CN (1) CN107077767B (ja)
DE (1) DE112015004447T5 (ja)
WO (1) WO2016051820A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008194A (ja) * 2018-07-04 2020-01-16 富士電機株式会社 冷媒回路装置
US20210341194A1 (en) * 2015-07-28 2021-11-04 Lg Electronics Inc. Refrigerator
US20220364781A1 (en) * 2019-10-28 2022-11-17 Bsh Hausgeraete Gmbh Refrigeration appliance including a compartment that can be heated and cooled

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109572B1 (en) * 2015-06-22 2019-05-01 Lg Electronics Inc. Refrigerator
KR20170067559A (ko) * 2015-12-08 2017-06-16 엘지전자 주식회사 냉장고 및 그 제어방법
JP6712468B2 (ja) * 2016-01-21 2020-06-24 サンデン・リテールシステム株式会社 商品収納装置
KR102395456B1 (ko) * 2016-06-09 2022-05-06 엘지전자 주식회사 온도 상황 인식적 냉장고 및 이를 제어하는 방법
US10203144B2 (en) * 2016-11-29 2019-02-12 Bsh Hausgeraete Gmbh Refrigeration device comprising a refrigerant circuit with a multi suction line
JP6899066B2 (ja) * 2017-06-14 2021-07-07 アサヒ飲料株式会社 自動販売機
CN109272639B (zh) * 2018-07-25 2021-03-30 上海机商实业有限公司 防结冰霜方法、防结冰霜系统及售卖机
AU2020245206A1 (en) 2019-03-25 2021-09-23 Pepsico, Inc. Beverage container dispenser and method for dispensing beverage containers
CA3134013A1 (en) * 2019-04-05 2020-10-08 Pepsico, Inc. Cooler for beverage containers
US11910815B2 (en) 2019-12-02 2024-02-27 Pepsico, Inc. Device and method for nucleation of a supercooled beverage
US11466910B2 (en) * 2020-05-11 2022-10-11 Rheem Manufacturing Company Systems and methods for reducing frost accumulation on heat pump evaporator coils
TWI760009B (zh) * 2020-12-14 2022-04-01 徐綺紳 酒類販賣機
US11649999B2 (en) * 2021-05-14 2023-05-16 Electrolux Home Products, Inc. Direct cooling ice maker with cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272572U (ja) * 1985-10-25 1987-05-09
JPH05306856A (ja) * 1992-04-30 1993-11-19 Hitachi Ltd 空冷式冷凍装置
JP2002286354A (ja) * 2001-03-27 2002-10-03 Sanyo Electric Co Ltd 冷蔵庫
JP2006048325A (ja) * 2004-08-04 2006-02-16 Fuji Electric Retail Systems Co Ltd 凍結飲料自動販売機
JP2012230631A (ja) * 2011-04-27 2012-11-22 Fuji Electric Co Ltd 熱交換器及び自動販売機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688455B2 (ja) * 2004-09-09 2011-05-25 ユニ・チャーム株式会社 掃除用具
AU2006258762A1 (en) * 2005-06-15 2006-12-21 Daikin Industries, Ltd. Refrigeration system
JP3998035B2 (ja) * 2005-06-15 2007-10-24 ダイキン工業株式会社 冷凍装置
CN101198831A (zh) * 2005-06-15 2008-06-11 大金工业株式会社 冷冻装置
US8126983B2 (en) * 2006-09-28 2012-02-28 Broadcom Corporation Method and system for distributed infrastructure for streaming data via multiple access points
JP2008082625A (ja) * 2006-09-27 2008-04-10 Mitsubishi Electric Corp 冷凍冷蔵庫及びそれを用いたシステムキッチン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272572U (ja) * 1985-10-25 1987-05-09
JPH05306856A (ja) * 1992-04-30 1993-11-19 Hitachi Ltd 空冷式冷凍装置
JP2002286354A (ja) * 2001-03-27 2002-10-03 Sanyo Electric Co Ltd 冷蔵庫
JP2006048325A (ja) * 2004-08-04 2006-02-16 Fuji Electric Retail Systems Co Ltd 凍結飲料自動販売機
JP2012230631A (ja) * 2011-04-27 2012-11-22 Fuji Electric Co Ltd 熱交換器及び自動販売機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341194A1 (en) * 2015-07-28 2021-11-04 Lg Electronics Inc. Refrigerator
JP2020008194A (ja) * 2018-07-04 2020-01-16 富士電機株式会社 冷媒回路装置
JP7192273B2 (ja) 2018-07-04 2022-12-20 富士電機株式会社 冷媒回路装置
US20220364781A1 (en) * 2019-10-28 2022-11-17 Bsh Hausgeraete Gmbh Refrigeration appliance including a compartment that can be heated and cooled

Also Published As

Publication number Publication date
CN107077767B (zh) 2020-01-10
US20170241693A1 (en) 2017-08-24
JP2016071485A (ja) 2016-05-09
DE112015004447T5 (de) 2017-07-20
JP6478544B2 (ja) 2019-03-06
CN107077767A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016051820A1 (ja) 自動販売機
EP2390588B1 (en) Hot water supply device with heat pump
CN101617184B (zh) 冷却贮藏库
EP2677252B1 (en) Refrigerator
US20150184926A1 (en) Cooling apparatus for refrigerator and control method thereof
CN101617185B (zh) 冷却贮藏库及其运转方法
WO2016080275A1 (ja) 冷凍装置
JP4624223B2 (ja) 冷凍システム
KR102455048B1 (ko) 냉장고
JP2007333299A (ja) 冷蔵庫
WO2017006723A1 (ja) 冷凍装置
JP2010044678A (ja) 自動販売機
JP5901775B2 (ja) 冷凍装置
JP2016151410A (ja) 輸送用冷凍ユニット
JP3746753B2 (ja) 2つの保冷庫を有する車両用の冷凍装置、およびその制御方法
JP4702101B2 (ja) 冷却装置および自動販売機
JP2016223688A (ja) 冷凍・冷蔵ショーケースの制御方法
JP2016223687A (ja) 冷凍・冷蔵ショーケース
US20140284024A1 (en) Method for controlling refrigerator
JP2005076961A (ja) 冷凍システム
JP6641823B2 (ja) 自動販売機
JP2007085720A (ja) 冷凍システム
JP2003194448A (ja) 冷蔵庫
JP7286008B2 (ja) 冷蔵庫
JP2019054983A (ja) 冷凍・冷蔵ショーケース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515100

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004447

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846380

Country of ref document: EP

Kind code of ref document: A1